
Chapter 3

Entropy on Statistical
Models

Entropy is a notion taken form Thermodynamics, where it describes
the uncertainty in the movement of gas particles. In this chapter the
entropy will be considered as a measure of uncertainty of a random
variable.

Maximum entropy distributions, with certain moment constraints,
will play a central role in this chapter. They are distributions with a
maximal ignorance degree towards unknown elements of the distribu-
tion. For instance, if nothing is known about a distribution defined on
the interval [a, b], it makes sense to express our ignorance by choos-
ing the distribution to be the uniform one. Sometimes the mean is
known. In this case the maximum entropy decreases and the distribu-
tion is not uniform any more. More precisely, among all distributions
p(x) defined on (0,∞) with a given mean μ, the one with the max-
imum entropy is the exponential distribution. Furthermore, if both
the mean and the standard variation are given for a distribution p(x)
defined on R, then the distribution with the largest entropy is the
normal distribution.

Since the concept of entropy can be applied to any point of a sta-
tistical model, the entropy becomes a function defined on the statis-
tical model. Then, likewise in Thermodynamics, we shall investigate
the entropy maxima, as they have a distinguished role in the theory.
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78 Chapter 3. Entropy on Statistical Models

3.1 Introduction to Information Entropy

The notion of entropy comes originally from Thermodynamics. It is
a quantity that describes the amount of disorder or randomness in
a system bearing energy or information. In Thermodynamics the en-
tropy is defined in terms of heat and temperature.

According to the second law of Thermodynamics, during any pro-
cess the change in the entropy of a system and its surroundings is
either zero or positive. The entropy of a free system tends to increase
in time, towards a finite or infinite maximum. Some physicists de-
fine the arrow of time in the direction in which its entropy increases,
see Hawking [43]. Most processes tend to increase their entropy in
the long run. For instance, a house starts falling apart, an apple gets
rotten, a person gets old, a car catches rust over time, etc.

Another application of entropy is in information theory, formu-
lated by C. E. Shannon [73] in 1948 to explain aspects and problems
of information and communication. In this theory a distinguished
role is played by the information source, which produces a sequence
of messages to be communicated to the receiver. The information is
a measure of the freedom of choice with which a message can be se-
lected from the set of all possible messages. The information can be
measured numerically using the logarithm in base 2. In this case the
resulting units are called binary digits, or bits. One bit measures a
choice between two equally likely choices. For instance, if a coin is
tossed but we are unable to see it as it lands, the landing information
contains 1 bit of information. If there are N equally likely choices,
the number of bits is equal to the digital logarithm of the number of
choices, log2N . In the case when the choices are not equally probable,
the situation will be described in the following.

Shannon defined a quantity that measures how much informa-
tion, and at which rate this information is produced by an informa-
tion source. Suppose there are n possible elementary outcomes of the
source, A1, . . . , An, which occur with probabilities p1 = p(A1), . . . ,
pn = p(An), so the source outcomes are described by the discrete
probability distribution

event A1 A2 . . . An

probability p1 p2 . . . pn

with pi given. Assume there is an uncertainty function, H(p1, . . . , pn),
which “measures” how much “choice” is involved in selecting an
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event. It is fair to ask that H satisfies the following properties (Shan-
non’s axioms):

(i) H is continuous in each pi;

(ii) If p1 = · · · = pn =
1

n
, then H is monotonic increasing function

of n (i.e., for equally likely events there is more uncertainty when
there are more possible events).

(iii) If a choice is broken down into two successive choices, then the
initial H is the weighted sum of the individual values of H:

H(p1, p2, . . . , pn−1, p
′
n, p

′′
n) = H(p1, p2, . . . , pn−1, pn)

+ pnH
(p′n
pn
,
p′′n
pn

)
,

with pn = p′n + p′′n.

Shannon proved that the only function H satisfying the previous
three assumptions is of the form

H = −k
n∑

i=1

pi log2 pi,

where k is a positive constant, which amounts to the choice of a unit of
measure. The negative sign in front of the summation formula implies
its non-negativity. This is the definition of the information entropy
for discrete systems given by Shannon [73]. It is remarkable that
this is the same expression seen in certain formulations of statistical
mechanics.

Since the next sections involve integration and differentiation, it
is more convenient to use the natural logarithm instead of the digital
logarithm. The entropy defined by H = −∑n

i=1 pi ln pi is measured
in natural units instead of bits.1 Sometimes this is also denoted by
H(p1, . . . , pn).

We make some more remarks regarding notation. We write H(X)
to denote the entropy of a random variable X, H(p) to denote the
entropy of a probability density p, and H(ξ) to denote the entropy
H(pξ) on a statistical model with parameter ξ. The joint entropy of
two random variables X and Y will be denoted by H(X,Y ), while

1Since log2 x = lnx/ ln 2 = 1.44 lnx, a natural unit is about 1.44 bits.
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H(X|Y ) will be used for the conditional entropy of X given Y . These
notations will be used interchangeably, depending on the context.

The entropy can be used to measure information in the following
way. The information can be measured as a reduction in the uncer-
tainty, i.e. entropy. If X and Y are random variables that describe
an event, the initial uncertainty about the event is H(X). After the
random variable Y is revealed, the new uncertainty is H(X|Y ). The
reduction in uncertainty, H(X)−H(X|Y ), is called the information
conveyed about X by Y . Its symmetry property is left as an exercise
in Problem 3.3, part (d).

In the case of a discrete random variable X, the entropy can be
interpreted as the weighted average of the numbers − ln pi, where the
weights are the probabilities of the values of the associated random
variable X. Equivalently, this can be also interpreted as the expec-
tation of the random variable that assumes the value − ln pi with
probability pi

H(X) = −
n∑

i=1

P (X = xi) lnP (X = xi) = E[− lnP (X)].

Extending the situation from the discrete case, the uncertainty of
a continuous random variable X defined on the interval (a, b) will be
defined by an integral. If p denotes the probability density function
of X, then the integral

H(X) = −
∫ b

a
p(x) ln p(x) dx

defines the entropy of X, provided the integral is finite.
This chapter considers the entropy on statistical models as a func-

tion of its parameters. It provides examples of statistical manifolds
and their associated entropies and deals with the main properties of
the entropy regarding bounds, maximization and relation with the
Fisher information metric.

3.2 Definition and Examples

Let S = {pξ = p(x; ξ); ξ = (ξ1, . . . , ξn) ∈ E} be a statistical model,
where p(·, ξ) : X → [0, 1] is the probability density function which
depends on parameter vector ξ. The entropy on the manifold S is a
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function H : E → R, which is equal to the negative of the expectation
of the log-likelihood function, H(ξ) = −Epξ [�x(ξ)]. More precisely,

H(ξ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∫

X
p(x, ξ) ln p(x, ξ) dx, if X is continuous;

−
∑
x∈X

p(x, ξ) ln p(x, ξ), if X is discrete.

Since the entropy is associated with each distribution p(x, ξ), we shall
also use the alternate notation H

(
p(x, ξ)

)
. Sometimes, the entropy in

the continuous case is called differential entropy, while in the discrete
case is called discrete entropy.

It is worth noting that in the discrete case the entropy is always
positive, while in the continuous case might be zero or negative. Since
a simple scaling of parameters will modify a continuous distribution
with positive entropy into a distribution with a negative entropy (see
Problem 3.4.), in the continuous case there is no canonical entropy,
but just a relative entropy. In order to address this drawback, the
entropy is modified into the relative information entropy, as we shall
see in Chap. 4.

The entropy can be defined in terms of a base measure on the
space X , but for keeping the exposition elementary we shall assume
that X ⊆ R

n with the Lebesgue-measure dx.
The entropy for a few standard distributions is computed in the

next examples.

Example 3.2.1 (Normal Distribution) In this case X = R, ξ =
(μ, σ) ∈ R× (0,∞) and

p(x; ξ) =
1

σ
√
2π

e
−(x− μ)2

2σ2 .

The entropy is

H(μ, σ) = −
∫

X
p(x) ln p(x) dx

= −
∫

X
p(x)

(
− 1

2
ln(2π)− lnσ − (x− μ)2

2σ2

)
dx

=
1

2
ln(2π) + lnσ +

1

2σ2

∫

X
(x− μ)2p dx
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=
1

2
ln(2π) + lnσ +

1

2σ2
· σ2

=
1

2
ln(2π) + lnσ +

1

2

= ln(σ
√
2πe).

It follows that the entropy does not depend on μ, and is increasing
logarithmically as a function of σ, with lim

σ↘0
H = −∞, lim

σ↗∞
H = ∞.

Furthermore, the change of coordinates ϕ : E → E under which the
entropy is invariant, i.e. H(ξ) = H

(
ϕ(ξ)

)
, are only the translations

ϕ(μ, σ) = (μ+ k, σ), k ∈ R.

Example 3.2.2 (Poisson Distribution) In this case the sample
space is X = N, and the probability density

p(n; ξ) = e−ξ ξ
n

n!
, n ∈ N, ξ ∈ R

depends only on one parameter, ξ. Using ln p(n, ξ) = −ξ + n ln ξ −
ln(n!), we have

H(ξ) = −
∑
n≥0

p(n, ξ) ln p(n, ξ)

= −
∑
n≥0

(
− ξe−ξ ξ

n

n!
+ n ln ξe−ξ ξ

n

n!
− ln(n!)e−ξ ξ

n

n!

)

= ξe−ξ
∑
n≥0

ξn

n!
︸ ︷︷ ︸

=eξ

− ln ξ e−ξ
∑
n≥0

nξn

n!
+ e−ξ

∑
n≥0

ξn ln(n!)

n!

= ξ − ln ξ e−ξξeξ + e−ξ
∑
n≥0

ln(n!)

n!
ξn

= ξ(1− ln ξ) + e−ξ
∑
n≥0

ln(n!)

n!
ξn.

We note that lim
ξ↘0

H(ξ)=0 and H(x)<∞, since the series
∑
n≥0

ξn ln(n!)

n!

has an infinite radius of convergence, see Problem 3.21.

Example 3.2.3 (Exponential Distribution) Consider the expo-
nential distribution

p(x; ξ) = ξe−ξx, x > 0, ξ > 0
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with parameter ξ. The entropy is

H(ξ) = −
∫ ∞

0
p(x) ln p(x) dx = −

∫ ∞

0
ξe−ξx(ln ξ − ξx) dx

= −ξ ln ξ
∫ ∞

0
e−ξx dx+ ξ

∫ ∞

0
ξe−ξx x dx

= − ln ξ

∫ ∞

0
p(x, ξ) dx

︸ ︷︷ ︸
=1

+ξ

∫ ∞

0
xp(x, ξ) dx

︸ ︷︷ ︸
=1/ξ

= 1− ln ξ,

which is a decreasing function of ξ, with H(ξ) > 0 for ξ ∈ (0, e).

Making the parameter change λ =
1

ξ
, the model becomes p(x;λ) =

1
λe

−x/λ, λ > 0. The entropy H(λ) = 1+lnλ increases logarithmically
in λ. We note the fact that the entropy is parametrization dependent.

Example 3.2.4 (Gamma Distribution) Consider the family of
distributions

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β ,

with positive parameters (ξ1, ξ2) = (α, β) and x > 0. We shall start
by showing that

∫ ∞

0
lnx p

α,β
(x) dx = lnβ + ψ(α), (3.2.1)

where

ψ(α) =
Γ′(α)
Γ(α)

(3.2.2)

is the digamma function. Using that the integral of p
α,β

(x) is unity,
we have ∫ ∞

0
xα−1 e

− x
β dx = βα Γ(α),

and differentiating with respect to α, it follows

∫ ∞

0
lnxxα−1 e

− x
β dx = lnβ βα Γ(α) + βα Γ′(α). (3.2.3)

Dividing by βαΓ(α) yields relation (3.2.1).
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Since

ln p
α,β

(x) = −α lnβ − ln Γ(α) + (α− 1) lnx− x

β
,

using

∫ ∞

0
p
α,β

(x) dx = 1,

∫ ∞

0
x p

α,β
(x) dx = αβ and (3.2.1), the

entropy becomes

H(α, β) = −
∫ ∞

0
p
α,β

(x) ln p
α,β

(x) dx

= α lnβ + lnΓ(α)− (α− 1)

∫ ∞

0
lnx p

α,β
(x) dx

+
1

β

∫ ∞

0
x p

α,β
(x) dx

= lnβ + (1− α)ψ(α) + lnΓ(α) + α.

Example 3.2.5 (Beta Distribution) The beta distribution on
X = [0, 1] is defined by the density

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1,

with a, b > 0 and beta function given by

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx. (3.2.4)

Differentiating with respect to a and b in (3.2.4) yields

∂aB(a, b) =

∫ 1

0
lnxxa−1(1− x)b−1 dx

∂bB(a, b) =

∫ 1

0
ln(1− x)xa−1(1− x)b−1 dx.

Using

ln pa,b = − lnB(a, b) + (a− 1) lnx+ (b− 1) ln(1− x),
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we find

H(a, b) = −
∫ 1

0
pa,b(x) ln pa,b(x) dx

= lnB(a, b)− a− 1

B(a, b)

∫ 1

0
lnxxa−1(1− x)b−1 dx

− b− 1

B(a, b)

∫ 1

0
ln(1− x)xa−1(1− x)b−1 dx

= lnB(a, b)− (a− 1)
∂aB(a, b)

B(a, b)
− (b− 1)

∂bB(a, b)

B(a, b)

= lnB(a, b)− (a− 1)∂a lnB(a, b)− (b− 1)∂b lnB(a, b).

(3.2.5)

We shall express the entropy in terms of digamma function (3.2.2).
Using the expression of the beta function in terms of gamma functions

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

we have
lnB(a, b) = lnΓ(a) + lnΓ(b)− ln Γ(a+ b).

The partial derivatives of the function B(a, b) are

∂a lnB(a, b) = ψ(a)− ψ(a+ b) (3.2.6)

∂b lnB(a, b) = ψ(b)− ψ(a+ b). (3.2.7)

Substituting in (3.2.5) yields

H(a, b) = lnB(a, b) + (a+ b− 2)ψ(a+ b)− (a− 1)ψ(a)− (b− 1)ψ(b).
(3.2.8)

For example

H(1/2, 1/2) = ln
√
2 + ln

√
2− ψ(1) + ψ(1/2)

= ln 2 + γ − 2 ln 2− γ = − ln 2 < 0,

where we used

ψ(1) = −γ = −0.5772 . . . , ψ(1/2) = −2 ln 2− γ.

It can be shown that the entropy is always non-positive, see
Problem 3.22. For a = b = 1 the entropy vanishes

H(1, 1) = lnΓ(1) + lnΓ(1)− ln Γ(2) = 0.
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Example 3.2.6 (Lognormal Distribution) The lognormal distri-
bution

pμ,σ(x) =
1√
2πσx

e−
(ln x−μ)2

2σ2 , (μ, σ) ∈ (0,∞)× (0,∞)

defines a statistical model on the sample space X = (0,∞). First,
using the substitution y = lnx− μ, we have

∫ ∞

0
lnx pμ,σ(x) dx =

∫ ∞

0
(lnx− μ) pμ,σ(x) dx+ μ

=

∫ +∞

−∞
1√
2πyσ

e−
y2

2σ2 dy + μ = μ.

∫ ∞

0
(lnx− μ)2 pμ,σ(x) dx =

∫ +∞

−∞
1√
2πσ

e−
y2

2σ2 y2 dy = σ2.

Using

ln pμ,σ = − ln(
√
2πσ)− lnx− (lnx− μ)2

1

2σ2
,

and the previous integrals, the entropy becomes

H(μ, σ) = −
∫ ∞

0
pμ,σ(x) ln pμ,σ(x) dx

= ln(
√
2πσ) +

∫ ∞

0
lnx pμ,σ(x) dx

+
1

2σ2

∫ ∞

0
(lnx− μ)2pμ,σ(x) dx

= ln(
√
2π) + lnσ + μ+

1

2
.

Example 3.2.7 (Dirac Distribution) A Dirac distribution on
(a, b) centered at x0 ∈ (a, b) represents the density of an idealized
point mass x0. This can be thought of as an infinitely high, infinitely
thin spike at x0, with total area under the spike equal to 1. The Dirac
distribution centered at x0 is customarily denoted by p(x) = δ(x−x0),
and its relation with the integral can be written informally as

(i)

∫ b

a
p(x) dx =

∫ b

a
δ(x− x0) dx = 1;

(ii)

∫ b

a
g(x)p(x) dx =

∫ b

a
g(x)δ(x− x0) dx = g(x0),
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for any continuous function g(x) on (a, b).

The k-th moment is given by

mk =

∫ b

a
xkδ(x− x0) dx = xk0.

Then the mean of the Dirac distribution is μ = x0 and the variance
is V ar = m2 − (m1)

2 = 0. The underlying random variable, which is
Dirac distributed, is a constant equal to x0.

In order to compute the entropy of δ(x−x0), we shall approximate
the distribution by a sequence of distributions ϕε(x) for which we can
easily compute the entropy. For any ε > 0, consider the distribution

ϕε(x) =

⎧
⎪⎨
⎪⎩

1

ε
, if |x| < ε/2

0, otherwise,

with the entropy given by

Hε = −
∫ b

a
ϕε(x) lnϕε(x) dx

= −
∫ x2+ε/2

x0−ε/2

1

ε
ln

1

ε
dx

= ln ε.

Since lim
ε↘0

ϕε = δ(x−x0), by the Dominated Convergence Theorem

the entropy of δ(x− x0) is given by the limit

H = lim
ε↘0

Hε = lim
ε↘0

ln ε = −∞.

In conclusion, the Dirac distribution has the lowest possible entropy.
Heuristically, this is because of the lack of disorganization of the
associated random variable, which is a constant.

3.3 Entropy on Products of Statistical
Models

Consider the statistical manifolds S and U and let S × U be their
product model, see Example 1.3.9. Any density function f ∈ S × U ,
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with f(x, y) = p(x)q(y), p ∈ S, q ∈ U , has the entropy

HS×U (f) = −
∫∫

X×Y
f(x, y) ln f(x, y) dxdy

−
∫∫

X×Y
p(x)q(y)[ln p(x) + ln q(y)] dxdy

= −
∫

Y
q(y) dy

∫

X
p(x) ln p(x) dx

−
∫

X
p(x) dx

∫

Y
q(y) ln q(y) dy

= HS(p) +HU (q),

i.e., the entropy of an element of the product model S × U is the
sum of the entropies of the projections on S and U . This can be also
stated by saying that the joint entropy of two independent random
variables X and Y is the sum of individual entropies, i.e.

H(X,Y ) +H(X) +H(Y ),

see Problem 3.5 for details.

3.4 Concavity of Entropy

Theorem 3.4.1 For any two densities p, q : X → R we have

H(αp+ βq) ≥ αH(p) + βH(q), (3.4.9)

∀α, β ∈ [0, 1], with α+ β = 1.

Proof: Using that f(u) = −u lnu is concave on (0,∞), we obtain

f(αp+ βq) ≥ αf(p) + βf(q).

Integrating (summing) over X leads to expression (3.4.9).

With a similar proof we can obtain the following result.

Corollary 3.4.2 For any densities p1, . . . , pn on X and λi ∈ [0, 1]
with λ1 + · · ·+ λn = 1, we have

H
( n∑

i=1

λipi

)
≥

n∑
i=1

λiH(pi).

The previous result suggests to look for the maxima of the entropy
function on a statistical model.
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3.5 Maxima for Entropy

Let S = {pξ(x);x ∈ X , ξ ∈ E} be a statistical model. We can re-
gard the entropy H as a function defined on the parameters space E.
We are interested in the value of the parameter ξ for which the en-
tropy H(ξ) has a local maximum. This parameter value corresponds
to a distinguished density pξ. Sometimes, the density pξ satisfies some
given constraints, which are provided by the given observations, and
has a maximum degree of ignorance with respect to the unknown ob-
servations. This type of optimization problem is solved by considering
the maximization of the entropy with constraints. In order to study
this problem we shall start with the definition and characterization
of critical points of entropy.

Let f be a function defined on the statistical manifold S = {pξ}.
If ∂i = ∂ξi denotes the tangent vector field on S in the direction of
ξi, then

∂if =: ∂ξif := ∂ξi(f ◦ p
ξ
).

In the following the role of the function f is played by the entropy
H(ξ) = H(pξ).

Definition 3.5.1 A point q ∈ S is a critical point for the entropy
H if

X(H) = 0, ∀X ∈ TqS.

Since {∂i}i form a basis, choosing X = ∂i, we obtain that the point
q = pξ ∈ S is a critical point for H if and only if

∂iH(ξ) = 0, i = 1, 2, . . . , n.

A computation provides

∂iH = −∂i
∫

X
p(x, ξ) ln p(x, ξ) dx

= −
∫

X

(
∂ip(x, ξ) ln p(x, ξ) + p(x, ξ)

∂ip(x, ξ)

p(x, ξ)

)
dx

= −
∫

X

(
ln p(x, ξ) + 1

)
∂ip(x, ξ) dx

= −
∫

X
ln p(x, ξ) ∂ip(x, ξ) dx,

where we used that ∫

X
p(x, ξ) dx = 1
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and

0 = ∂i

∫

X
p(x, ξ) dx =

∫

X
∂ip(x, ξ) dx.

The previous computation can be summarized as in the following.

Proposition 3.5.2 The probability distribution pξ is a critical point
of the entropy H if and only if

∫

X
ln p(x, ξ) ∂ξip(x, ξ) dx = 0, ∀i = 1, . . . ,m. (3.5.10)

In the discrete case, when X = {x1, . . . , xn}, the Eq. (3.5.10) is re-
placed by the relation

n∑
k=1

ln p(xk, ξ) ∂ip(x
k, ξ) = 0, ∀i = 1, . . . ,m. (3.5.11)

Observe that the critical points characterized by the previous re-
sult do not belong to the boundary. The entropy, which is a concave
function, on a convex set (such as a mixture family) sometimes at-
tains the local minima along the boundary. Even if these points are
called critical by some authors, here we do not consider them as part
of our analysis.

The first derivative of the entropy can be also expressed in terms
of the log-likelihood function as in the following

∂iH = −
∫

X
ln p(x, ξ) ∂ξip(x, ξ) dx

= −
∫

X
p(x, ξ) ln p(x, ξ) ∂i ln p(x, ξ) dx

= −
∫

X
p(x, ξ)�(ξ) ∂i�(ξ) dx

= −Eξ[�(ξ) ∂ξi�(ξ)]. (3.5.12)

The goal of this section is to characterize the distributions pξ for
which the entropy is maximum. Minima and maxima are among the
set of critical points, see Definition 3.5.1. In order to deal with this
issue we need to compute the Hessian of the entropy H.
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The second order partial derivatives of the entropy H are

∂jiH = ∂j

∫

X
ln p(x, ξ) ∂ip(x, ξ) dx

= −
∫

X

(∂jp(x)
p(x)

∂ip(x) + ln p(x) ∂i∂jp(x)
)
dx

= −
∫

X

( 1

p(x)
∂ip(x) ∂jp(x) + ln p(x) ∂jip(x)

)
dx.

In the discrete case this becomes

∂jiH = −
n∑

k=1

(∂ip(xk, ξ) ∂jp(xk, ξ)
p(xk, ξ)

+ ln p(xk, ξ) ∂ijp(x
k, ξ)

)
.

(3.5.13)
We can also express the Hessian of the entropy in terms of the

log-likelihood function only. Differentiating in (3.5.12) we have

∂jiH = −∂j
∫

X
p(x, ξ)�(ξ) ∂i�(ξ) dx

= −
∫

X

(
∂jp(x, ξ)�(ξ) ∂i�(ξ) + p(x, ξ)∂j�(ξ) ∂i�(ξ)

+p(x, ξ)�(ξ) ∂i∂j�(ξ)
)
dx

= −Eξ[∂i� ∂j�]− Eξ[(∂j�(ξ)∂i�(ξ) + ∂i∂j�(ξ))�(ξ)]

= −gij(ξ)− hij(ξ).

We arrived at the following result that relates the entropy and the
Fisher information.

Proposition 3.5.3 The Hessian of the entropy is given by

∂i∂jH(ξ) = −gij(ξ)− hij(ξ), (3.5.14)

where gij(ξ) is the Fisher–Riemann metric and

hij(ξ) = Eξ[(∂j�(ξ)∂i�(ξ) + ∂i∂j�(ξ))�(ξ)].

Corollary 3.5.4 In the case of the mixture family (1.5.15)

p(x; ξ) = C(x) + ξiFi(x) (3.5.15)

the Fisher–Riemann metric is given by

gij(ξ) = −∂i∂jH(ξ). (3.5.16)

Furthermore, any critical point of the entropy (see Definition 3.5.1)
is a maximum point.
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Proof: From Proposition 1.5.1, part (iii) we have ∂i∂j�x(ξ)
= −∂i�x(ξ) ∂j�x(ξ) which implies hij(ξ) = 0. Substituting in (3.5.14)
yields (3.5.16). Using that the Fisher–Riemann matrix gij(ξ) is pos-
itive definite at any ξ, it follows that ∂i∂jH(ξ) is globally negative
definite, and hence all critical points must be maxima. We also note
that we can express the Hessian in terms of Fj as in the following

∂i∂jH(ξ) = −
∫

X

Fi(x)Fj(x)

p(x; ξ)
dx.

A Hessian Hess(F ) = (∂ijF ) is called positive definite if and only
if
∑

i,j ∂ijF v
ivj > 0, or, equivalently,

〈Hess(F )v, v〉 > 0, ∀v ∈ R
m.

In the following we shall deal with the relationship between the
Hessian and the second variation of the entropy H.

Consider a curve ξ(s) in the parameter space and let
(
ξu(s)

)
|u|<ε

be a smooth variation of the curve with ξu(s)|u=0 = ξ(s). Then s →
pξu(s) is a variation of the curve s→ p

ξ(s)
on the statistical manifold

S. Consider the variation

ξu(s) = ξ(s) + uη(s),

so ∂uξu(s) = η(s) and ∂2uξu(s) = 0. The second variation of the
entropy along the curve s→ pξu(s) is

d2

du2
H
(
ξu(s)

)
=

d

du
〈∂ξH, ∂uξu(s)〉

= 〈 d
du
∂ξH, ∂uξ(s)〉+ 〈∂ξH, ∂2uξu(s)︸ ︷︷ ︸

=0

〉

=
d

du
(∂iH) ∂uξ

i(s)

= ∂i∂jH(ξu(s)) · ∂uξiu(s)∂uξju(s).
Taking u = 0, we find

d2

du2
H
(
ξu(s)

)
|u=0

= ∂ijH
(
ξ(s)

)
ηi(s)ηj(s)

= 〈HessH(
ξ(s)

)
η, η〉.
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Hence d2

du2H
(
ξu(s)

)
|u=0

< 0(> 0) if and only if Hess(H) is negative

(positive) definite. Summarizing, we have:

Theorem 3.5.5 If ξ is such that pξ satisfies the critical point con-
dition (3.5.10) (or condition (3.5.11) in the discrete case), and the
Hessian Hess(H(ξ)) is negative definite at ξ, then pξ is a local max-
imum point for the entropy.

We shall use this result in the next section.

Corollary 3.5.6 Let ξ0 be such that

Eξ0 [�(ξ0)∂i�(ξ0)] = 0 (3.5.17)

and hij(ξ0) is positive definite. Then p(x, ξ0) is a distribution for
which the entropy reaches a local maximum.

Proof: In the virtue of (3.5.12) the Eq. (3.5.17) is equivalent with the
critical point condition ∂iH(ξ)|ξ=ξ0 = 0. Since gij(ξ0) is positive def-
inite, then (3.5.14) implies that ∂i∂jH(ξ0) is negative definite. Then
applying Theorem 3.5.5 ends the proof.

3.6 Weighted Coin

Generally, for discrete distributions we may identify the statistical
space S with the parameter space E. We shall present next the case
of a simple example where the entropy can be maximized. Flipping a
weighted coin provides either heads with probability ξ1, or tails with
probability ξ2 = 1 − ξ1. The statistical manifold obtained this way
depends on only one essential parameter ξ := ξ1. Since X = {x1 =
heads, x2 = tails}, the manifold is just a curve in R

2 parameterized
by ξ ∈ [0, 1]. The probability distribution of the weighted coin is given
by the table

outcomes x1 x2
probability ξ 1− ξ

We shall find the points of maximum entropy. First we write the
Eq. (3.5.11) to determine the critical points

ln p(x1, ξ) ∂ξp(x1, ξ) + ln p(x2, ξ) ∂ξp(x2, ξ) = 0 ⇐⇒
ln ξ − ln(1− ξ) = 0 ⇐⇒

ξ = 1− ξ
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and hence there is only one critical point, ξ = 1
2 .

The Hessian has only one component, so formula (3.5.13) yields

∂2ξH = −
( 1

p(x1)

(
∂ξp(x1)

)2
+ ln p(x1)∂

2
ξp(x1)

)

−
( 1

p(x2)

(
∂ξp(x2)

)2
+ ln p(x2)∂

2
ξp(x2)

)

= −
(1
ξ
· 1 + ln ξ · 0

)

−
( 1

1− ξ

(
∂ξ(1− ξ)

)2
+ ln(1− ξ) ∂2ξ (1− ξ)

)

= −
(1
ξ
+

1

1− ξ

)
.

Evaluating at the critical point, we get

∂2ξH|ξ= 1
2
= −4 < 0,

and hence ξ = 1
2 is a maximum point for the entropy. In this case

ξ1 = ξ2 = 1
2 . This can be restated by saying that the fair coin has

the highest entropy among all weighted coins.

3.7 Entropy for Finite Sample Space

Again, we underline that for discrete distributions we identify the
statistical space S with the parameter space E.

Consider a statistical model with a finite discrete sample space
X = {x1, . . . , xn+1} and associated probabilities p(xi) = ξi, ξi ∈
[0, 1], i = 1, . . . n+1. Since ξn+1 = 1−∑n

i=1 ξ
i, the statistical manifold

is described by n essential parameters, and hence it has n dimensions.
The manifold can be also seen as a hypersurface in R

n+1. The entropy
function is

H = −
n+1∑
i=1

ξi ln ξi. (3.7.18)

The following result deals with the maximum entropy condition. Even
if it can be derived from the concavity property of H, see Theo-
rem 3.4.1, we prefer to deduct it here in a direct way. We note that
concavity is used as a tool to derive the case of continuous distribu-
tions, see Corollary 5.9.3.



3.7. Entropy for Finite Sample Space 95

Theorem 3.7.1 The entropy (3.7.18) is maximum if and only if

ξ1 = · · · = ξn+1 =
1

n+ 1
. (3.7.19)

Proof: The critical point condition (3.5.11) becomes

n∑
k=1

ln p(xk, ξ)∂ξip(x
k, ξ) + ln p(xn+1, ξ) ∂ξip(x

n+1, ξ) = 0 ⇐⇒
n∑

k=1

ln ξk δik + ln ξn+1 ∂ξn+1(1− ξ1 − · · · − ξn) = 0 ⇐⇒

ln ξi − ln ξn+1 = 0 ⇐⇒
ξi = ξn+1,

∀i = 1, . . . , n. Hence condition (3.7.19) follows.

We shall investigate the Hessian at this critical point. Following
formula (3.5.13) yields

Hess(H)ij = −
n∑

k=1

∂i(ξ
k) · ∂j(ξk)
ξk

− ∂i(ξ
n+1) · ∂j(ξn+1)

ξn+1

−
n∑

k=1

ln ξk ∂i∂j(ξ
k)− ln ξn+1 ∂i∂j(ξ

n+1)

= −
( n∑

k=1

δikδjk
ξk

− 1

ξn+1

)
,

where we have used ∂i(ξ
n+1) = ∂i(1 − ξ1 − · · · − ξn) = −1, for i =

1, . . . , n.

At the critical point the Hessian is equal to

Hess(H)ij |
ξk= 1

n+1

= −(n+ 1)
(
1 +

n∑
k=1

δikδjk

)
= −2(n+ 1)In,

which shows that it is negative definite. Theorem 3.5.5 leads to the
desired conclusion.

Example 3.7.2 Let ξi be the probability that a die lands with the
face i up. This model depends on five essential parameters. According
to the previous result, the fair die is the one which maximizes the
entropy.
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3.8 A Continuous Distribution Example

Let p(x; ξ) = 2ξx+3(1−ξ)x2 be a continuous probability distribution
function, with x ∈ [0, 1]. The statistical manifold defined by the above
probability distribution is one dimensional, since ξ ∈ R. There is only
one basic vector field equal to

∂ξ = 2x− 3x2,

and which does not depend on ξ. In order to find the critical points,
we follow Eq. (3.5.10)

∫ 1

0
p(x, ξ) ∂ξp(x, ξ) dx = 0 ⇐⇒

∫ 1

0
(2x− 3x2)(2ξx+ 3(1− ξ)x2) dx = 0 ⇐⇒

2

15
ξ − 3

10
= 0 ⇐⇒ ξ =

9

4
.

Before investigating the Hessian, we note that

∂ξp(x; ξ) = 2x− 3x2, ∂2ξp(x; ξ) = 0, p
(
x;

9

4

)
=

9

4
x− 15

4
x2,

so

∂2ξH|ξ= 9
4

= −
∫ 1

0

(1
p
(∂ξp)

2 + ln p ∂2ξp
)
dx∣∣∣ξ= 9

4

= −
∫ 1

0

(2x− 3x2)2

9
2x− 15

4 x
2
dx < 0,

because 9
2x− 15

4 x
2 < 0 for x ∈ (0, 1].

Hence ξ = 9
4 is a maximum point for the entropy. The maximum

value of the entropy is

H
(9
4

)
= −

∫ 1

0

(9
2
x− 15

4
x2

)
ln
(9
2
x− 15

4
x2

)
dx

= −52

25
ln 3 +

47

30
+

23

25
ln 2

= −0.807514878.
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Figure 3.1: The function x→ x lnx has a global minimum value equal
to −1/e that is reached at x = 1/e

3.9 Upper Bounds for Entropy

We shall start with computing a rough upper bound for the entropy
in the case when the sample space is a finite interval, X = [a, b].
Consider the convex function

f : [0, 1] → R, f(u) =

{
u lnu if u ∈ (0, 1]

0 if u = 0.

Since f ′(u) = 1+ lnu, u ∈ (0, 1), the function has a global minimum
at u = 1/e, and hence u lnu ≥ −1/e, see Fig. 3.1.

Let p : X → R be a probability density. Substituting u = p(x)
yields p(x) ln p(x) ≥ −1/e. Integrating, we find

∫ b

a
p(x) ln p(x) dx ≥ −b− a

e
.

Using the definition of the entropy we obtain the following upper
bound.
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Proposition 3.9.1 The entropy H(p) of a probability distribution
p : [a, b] → [0,∞) satisfies the inequality

H(p) ≤ b− a

e
. (3.9.20)

Corollary 3.9.2 The entropy H(p) is smaller than half the length
of the domain interval of the distribution p, i.e.,

H(p) ≤ b− a

2
.

This implies that the entropy H(p) is smaller than the mean of the
uniform distribution.

We note that the inequality (3.9.20) becomes identity for the uni-
form distribution p : [0, e] → [0,∞), p(x) = 1/e, see Problem 3.20.
We shall present next another upper bound which is reached for all
uniform distributions.

Theorem 3.9.3 The entropy of a smooth probability distribution p :
[a, b] → [0,∞) satisfies the inequality

H(p) ≤ ln(b− a). (3.9.21)

Proof: Since the function

f : [0, 1] → R, f(u) =

{
u lnu if u ∈ (0, 1]

0 if u = 0

is convex on [0,∞), an application of Jensen integral inequality yields

f
( 1

b− a

∫ b

a
p(x) dx

)
≤ 1

b− a

∫ b

a
f
(
p(x)

)
dx⇐⇒

f
( 1

b− a

)
≤ 1

b− a

∫ b

a
p(x) ln p(x) dx⇐⇒

ln
( 1

b− a

)
≤

∫ b

a
p(x) ln p(x) dx⇐⇒

− ln(b− a) ≤ −H(p),

which is equivalent to (3.9.21). The identity is reached for the uniform
distribution p(x) = 1/(b− a).
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Figure 3.2: The inequality lnx ≤ x/e is reached for x = e

The above result states that the maximum entropy is realized only
for the case of the uniform distribution. In other words, the entropy
measures the closeness of a distribution to the uniform distribution.

Since we have the inequality

lnx ≤ x

e
, ∀x > 0

with equality only for x = e, see Fig. 3.2, it follows that the inequal-
ity (3.9.21) provides a better bound than (3.9.20).

In the following we shall present the bounds of the entropy in
terms of the maxima and minima of the probability distribution. We
shall use the following inequality involving the weighted average of n
numbers.

Lemma 3.9.4 If λ1, . . . , λn > 0 and α1, . . . , αn ∈ R, then

min
j

{αj} ≤
∑

i λiαi∑
i λi

≤ max
j

{αj}.

This says that if αj are the coordinates of n points of masses λj , then
the coordinate of the center of mass of the system is larger than the
smallest coordinate and smaller than the largest coordinate.
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Proposition 3.9.5 Consider the discrete probability distribution p =
{pj}, with p1 ≤ · · · ≤ pn. Then the entropy satisfies the double
inequality

− ln pn ≤ H(p) ≤ − ln p1.

Proof: Letting λj = pj and αj = − ln pj in Lemma 3.9.4 and using

H(p) = −
∑
j

pj ln pj =

∑
i λiαi∑
i λi

,

we find the desired inequality.

Remark 3.9.6 The distribution p = {pj} is uniform with pj =
1

n
if

and only if p1 = pn. In this case the entropy is given by

H(p) = − ln p1 = ln pn = − ln
1

n
= lnn.

The continuous analog of Proposition 3.9.5 is given below.

Proposition 3.9.7 Consider the continuous probability distribution
p : X → [a, b] ⊂ [0,∞), with pm = min

x∈X
p(x) and pM = max

x∈X
p(x).

Then the entropy satisfies the inequality

− ln pM ≤ H(p) ≤ − ln pm.

Proof: The proof is using the following continuous analog of
Lemma 3.9.4,

min
x∈X

α(x) ≤
∫
X λ(x)α(x) dx∫

X λ(x) dx
≤ max

x∈X
α(x),

where we choose α(x) = − ln p(x) and λ(x) = p(x).

3.10 Boltzman–Gibbs Submanifolds

Let

S = {pξ : [0, 1] −→ R+;

∫

X
p
ξ
(x) dx = 1}, ξ ∈ E,

be a statistical model with the state space X = [0, 1]. Let μ ∈ R be a
fixed constant and consider the set of elements of S with the mean μ

Mμ = {pξ ∈ S;
∫

X
xp

ξ
(x) dx = μ}.

and assume that Mμ is a submanifold of S.
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Definition 3.10.1 The statistical submanifold Mμ = {pξ} defined
above is called a Boltzman–Gibbs submanifold of S.
Example 3.10.1 In the case of beta distribution, the Boltzman–
Gibbs submanifold Mμ = {pa,ka; a > 0, k = (1−μ)/μ} is just a curve.
In particular, M1 = {pa,0; a > 0}, with pa,0(x) = 1

B(a,0)x
a−1(1−x)−1.

One of the problems arised here is to find the distribution of max-
imum entropy on a Boltzman–Gibbs submanifold. Since the maxima
are among critical points, which are introduced by Definition 3.5.1,
we shall start the study with finding the critical points of the entropy

H(ξ) = H(pξ) = −
∫

X
p
ξ
(x) ln p

ξ
(x) dx

on a Boltzman–Gibbs submanifold Mμ. Differentiating with respect
to ξj in relations

∫

X
xp

ξ
(x) dx = μ,

∫

X
p
ξ
(x) dx = 1 (3.10.22)

yields
∫

X
x ∂jp(x, ξ) dx = 0,

∫

X
∂jp(x, ξ) dx = 0. (3.10.23)

A computation provides

−∂jH(ξ) = ∂j

∫

X
p
ξ
(x) ln p

ξ
(x) dx

=

∫

X

(
∂jpξ(x) ln p

ξ
(x) + p

ξ
(x)

∂jpξ(x)

p
ξ
(x)

)
dx

=

∫

X
∂jp(x) ln p

ξ
(x) dx+

∫

X
∂jpξ(x) dx

︸ ︷︷ ︸
=0 by (3.10.23)

.

Hence the critical points p
ξ
satisfying ∂jH(ξ) = 0 are solutions of the

integral equation
∫
∂jp(x, ξ) ln p(x, ξ) dx = 0, (3.10.24)

subject to the constraint
∫

X
x∂jp(x, ξ) dx = 0. (3.10.25)



102 Chapter 3. Entropy on Statistical Models

Multiplying (3.10.25) by the Lagrange multiplier λ = λ(ξ) and adding
it to (3.10.24) yields

∫

X
∂jp(x, ξ)

(
ln p(x, ξ) + λ(ξ)x

)
dx = 0.

Since

∫
∂jp(x, ξ) dx = 0, it makes sense to consider those critical

points for which the term ln p(x, ξ) + λ(ξ)x is a constant function in
x, i.e., depends only on ξ

ln p(x, ξ) + λ(ξ)x = θ(ξ).

Then the above equation has the solution

p(x, ξ) = eθ(ξ)−λ(ξ)x, (3.10.26)

which is an exponential family. We still need to determine the func-
tions θ and λ such that the constraints (3.10.22) hold. This will be
done explicitly for the case when the sample space is X = [0, 1]. From
the second constraint we obtain a relation between θ and λ:

∫ 1

0
p(x, ξ) dx=1 =⇒ eθ(ξ)

∫ 1

0
e−λ(ξ)x dx = 1 ⇐⇒ 1− e−λ(ξ)

λ(ξ)
= e−θ(ξ),

which leads to

θ(ξ) = ln
λ(ξ)

1− e−λ(ξ)
.

Substituting in (3.10.26) yields

p(x, ξ) =
λ(ξ)

1− e−λ(ξ)
e−λ(ξ)x. (3.10.27)

Substituting in the constraint

∫ 1

0
xp(x, ξ) dx = μ,
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we find

λ(ξ)

1− e−λ(ξ)

∫ 1

0
xe−λ(ξ)x dx = μ⇐⇒

1− (
1 + λ(ξ)

)
e−λ(ξ)

λ(ξ)(1− e−λ(ξ))
= μ⇐⇒

eλ(ξ) − λ(ξ)− 1

λ(ξ)(eλ(ξ) − 1)
= μ⇐⇒

1

λ(ξ)
− 1

eλ(ξ) − 1
= μ.

Given μ, we need to solve the above equation for λ(ξ). In order to
complete the computation, we need the following result.

Lemma 3.10.2 The function

f(x) =
1

x
− 1

ex − 1
, x ∈ (−∞, 0) ∪ (0,∞),

has the following properties

i) lim
x↘0

f(x) = lim
x↗0

f(x) =
1

2
,

ii) lim
x−→∞ f(x) = 0, lim

x−→−∞ f(x) = 1,

iii) f(x) is a strictly decreasing function of x.

Proof: i) Applying l’Hôspital’s rule twice, we get

lim
x↘0

f(x) = lim
x↘0

ex − 1− x

x(ex − 1)
= lim

x↘0

ex − 1

ex − 1 + xex

= lim
x↘0

ex

ex + xex + ex
= lim

x↘0

1

2 + x
=

1

2
.

ii) It follows easily from the properties of the exponential function.

Since the function f is one-to-one, the equation f(λ) = μ has at
most one solution, see Fig. 3.3. More precisely,

• if μ ≥ 1, the equation has no solution;
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m=f(l)

l
30 20 10 10 20 30

0.2

0.4

0.6

0.8

Figure 3.3: The graph of the decreasing function f(x) =
1

x
− 1

ex − 1
and the solution of the equation f(λ) = μ with μ ∈ (0, 1)

• if μ ∈ (0, 1), the equation has a unique solution, for any ξ, i.e.,
λ is constant, λ = f−1(μ). For instance, if μ = 1/2, then λ = 0.

It follows that θ is also constant,

θ = ln
λ

1− e−λ
.

Hence the distribution becomes

p(x) = eθ−λx, x ∈ (0, 1).

3.11 Adiabatic Flows

The entropy H(ξ) is a real function defined on the parameter space
E of the statistical model S = {pξ}. The critical points of H(ξ)
are solutions of the system ∂iH(ξ) = 0. Suppose that the set C of
critical points is void. Then the constant level sets

∑
c := {H(ξ) =

c} are hypersurfaces in E. As usual, we accept the denomination of
hypersurface for

∑
c even if

∑
c ∩C consists in a finite number of

points.
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Let s −→ ξ(s), ξ(s) ∈ E, be a curve situated in one of the hyper-
surfaces

∑
c. Since H(ξ(s)) = c, it follows

d

ds
H
(
ξ(s)

)
= ∂jH

(
ξ(s)

)
ξ̇j(s) = 0. (3.11.28)

Since ξ̇j(s) is an arbitrary vector tangent to
∑

c, the vector field ∂iH
is normal to

∑
c. Consequently, any vector field X = (Xi) on E that

satisfies
∂iH(ξ)Xi(ξ) = 0

is tangent to
∑

c.

Let X = (Xi) be a vector field tangent to
∑

c. The flow ξ(s)
defined by

ξ̇(s) = Xi(ξ(s)), i = 1, . . . , n = dim S

is called adiabatic flow on
∑

c. This meansH(ξ) = c, since the entropy
is unchanged along the flow, i.e., H(ξ) is a first integral, or

∑
c is an

invariant set with respect to this flow.

Suppose now that S = {pξ} refers to a continuous distribution
statistical model. Then

∂jH
(
ξ(s)

)
=

∫

X
ln p

(
x, ξ(s)

)
∂jp

(
x, ξ(s)

)
dx

=

∫

X
�x(ξ(s))∂j�x(ξ(s)) dx,

and combining with (3.11.28) we arrive at the following result:

Proposition 3.11.1 The flow ξ̇i(s) = Xi(ξ(s)) is adiabatic if and
only if ∫

X
�x(ξ(s))

d

ds
�x(ξ(s)) dx = 0.

Example 3.11.1 If in the case of the normal distribution the en-
tropy along the curve s −→ pσ(s),μ(s) is constant, i.e.,

H
(
σ(s), μ(s)

)
= ln

(
σ(s)

√
2πe

)
= c

then σ(s) =
ec√
2πe

, constant. Hence the adiabatic flow in this case

corresponds to the straight lines

{σ = constant, μ(s)},
with μ(s) arbitrary curve.

For more information regarding flows the reader is referred to Udriste
[80, 82, 83].
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3.12 Problems

3.1. Use the uncertainty function axioms to show the following re-
lations:

(a) H
(1
2
,
1

3
,
1

6

)
= H

(1
2
,
1

2

)
+

1

2
H
(2
3
,
1

3

)
.

(b) H
(1
2
,
1

4
,
1

8
,
1

8

)
= H

(3
4
,
1

4

)
+

3

4
H
(2
3
,
1

3

)
+

1

4
H
(1
2
,
1

2

)
.

(c) H(p1, . . . , pn, 0) = H(p1, . . . , pn).

3.2. Consider two events A = {a1, . . . , am} and B = {b1, . . . , bn},
and let p(ai, bj) be the probability of the joint occurrence of
outcomes ai and bj . The entropy of the joint event is defined by

H(A,B) = −
∑
i,j

p(ai, bj) log2 p(ai, bj).

Prove the inequality

H(A,B) ≤ H(A) +H(B),

with identity if and only if the events A and B are independent
(i.e., p(ai, bi) = p(ai)p(bj)).

3.3. If A = {a1, . . . , am} and B = {b1, . . . , bn} are two events,
define the conditional entropy of B given A by

H(B|A) = −
∑
i,j

p(ai, bj) log2 pai(bj),

and the information conveyed about B by A as

I(B|A) = H(B)−H(B|A),

where pai(bj) =
p(ai, bj)∑
j p(ai, bj)

is the conditional probability of

bj given ai. Prove the following:

(a) H(A,B) = H(A) +H(B|A);
(b) H(B) ≥ H(B|A). When does the equality hold?

(c) H(B|A)−H(A|B) = H(B)−H(A);

(d) I(B|A) = I(A|B).
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3.4. Let X be a real-valued continuous random variable on R
n,

with density function p(x). Define the entropy of X by

H(X) = −
∫

Rn

p(x) ln p(x) dx.

(a) Show that the entropy is translation invariant, i.e.,H(X) =
H(X + c), for any constant c ∈ R.

(b) Prove the formula H(aX) = H(X) + ln |a|, for any con-
stant a ∈ R. Show that by rescaling the random variable
the entropy can change from negative to positive and vice
versa.

(c) Show that in the case of a vector valued random variable
Y : Rn → R

n and an n× n matrix A we have

H(AY ) = H(Y ) + ln | detA|.
(d) Use (c) to prove that the entropy is invariant under

orthogonal transformations of the random variable.

3.5. The joint and conditional entropies of two continuous random
variables X and Y are given by

H(X,Y ) = −
∫∫

p(x, y) log2 p(x, y) dxdy,

H(Y |X) = −
∫∫

p(x, y) log2
p(x, y)

p(x)
dxdy,

where p(x) =

∫
p(x, y) dy is the marginal probability of X.

Prove the following:

(a) H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y );

(b) H(Y |X) ≤ H(Y ).

3.6. Let α(x, y) be a function with α(x, y) ≥ 0,

∫

R

α(x, y) dx =
∫

R

α(x, y) dy = 1. Consider the averaging operation

q(y) =

∫

R

α(x, y)p(x) dx.

Prove that the entropy of the averaged distribution q(y) is
equal to or greater than the entropy of p(x), i.e., H(q) ≥ H(p).
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3.7. Consider the two-dimensional statistical model defined by

p(x, ξ1, ξ2) = 2ξ1x+ 3ξ2x2 + 4(1− ξ1 − ξ2)x3, x ∈ (0, 1).

(a) Compute the Fisher metric gij(ξ).

(b) Compute the entropy H(p).

(c) Find ξ for which H is critical. Does it correspond to a
maximum or to a minimum?

3.8. Find a generic formula for the informational entropy of the
exponential family p(ξ, x) = eC(x)+ξiFi(x)−φ(ξ), x ∈ X .

3.9. (The change of the entropy under a change of coordinates.)
Consider the vector random variables X and Y , related by
Y = φ(X), with φ : Rn → R

n invertible transformation.

(a) Show that

H(Y ) = H(X)− E[lnJφ−1 ],

where Jφ−1 is the Jacobian of φ−1 and E[ · ] is the expec-
tation with respect to the probability density of X.

(b) Consider the linear transformation Y = AX, with A ∈
R
n×n nonsingular matrix. What is the relation expressed

by part (a) in this case?

3.10. Consider the Gaussian distribution

p(x1, . . . , xn) =

√
detA

(2π)n/2
e−

1
2
〈Ax,x〉,

where A is a symmetric n× n matrix. Show that the entropy
of p is

H =
1

2
ln[(2πe)n detA].

3.11. LetX = (X1, . . . , Xn) be a random vector in R
n, with E[Xj ] =

0 and denote by A = aij = E[XiXj ] the associated covariance
matrix. Prove that

H(X) ≤ 1

2
ln[(2πe)n detA].

When is the equality reached?
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3.12. Consider the density of an exponentially distributed random
variable with parameter λ > 0

p(x, λ) = λe−λx, x ≥ 0.

Find its entropy.

3.13. Consider the Cauchy’s distribution on R

p(x, ξ) =
ξ

4π

1

x2 + ξ2
, ξ > 0.

Show that its entropy is

H(ξ) = ln(4πξ).

3.14. Find a generic formula for the informational energy of the
mixture family p(ξ, x) = C(x) + ξiFi(x), x ∈ X .

3.15. Let f(x) =
x

σ2
e−

x2

2σ2 , x ≥ 0, σ > 0, be the Rayleigh distribu-

tion. Prove that its entropy is given by

H(σ) = 1 + ln
σ√
2
+
γ

2
,

where γ is Euler’s constant.

3.16. Show that the entropy of the Maxwell–Boltzmann distribution

p(x, a) =
1

a3

√
2

π
x2e−

x2

2a2 , a > 0, x ∈ R

is H(a) = 1
2 − γ − ln(a

√
2π), where γ is Euler’s constant.

3.17. Consider the Laplace distribution

f(x, b, μ) =
1

2b
e−|x−μ|/b, b > 0, μ ∈ R.

Show that its entropy is

H(b, μ) = 1 + ln(2b).
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3.18. Let μ ∈ R. Construct a statistical model

S = {pξ(x); ξ ∈ E, x ∈ X}

such that the functional F : S −→ R,

F (p(·)) =
∫

X
xp(x) dx− μ

has at least one critical point. Is Mμ = F−1(0) a submanifold
of S?

3.19. Starting from the Euclidean space (Rn
+, δij), find the Hessian

metric produced by the Shannon entropy function

f : Rn
+ → R, f(x1, · · · , xn) = 1

k2

n∑
i=1

ln(k2xi).

3.20. Show that the inequality (3.9.20) becomes identity for the uni-
form distribution p : [0, e] → [0,∞), p(x) = 1/e, and this is
the only distribution with this property.

3.21. (a) Let an(x) = ξn ln(n!)
n! . Show that lim

n→∞

∣∣∣an+1(x)

an(x)

∣∣∣ = 0 for

any x;

(b) Show that the series
∑
n≥0

ξn ln(n!)

n!
has an infinite radius of

convergence;

(c) Deduce that the entropy for the Poisson distribution is
finite.

3.22. Show that the entropy of the beta distribution

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1

is always non-positive, H(α, β) ≤ 0, for any a, b > 0. For which
values of a and b does the entropy vanish?
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