
Chapter 2

Explicit Examples

This chapter presents a few examples of usual statistical models
(normal, lognormal, beta, gamma, Bernoulli, and geometric) for which
we provide the Fisher metric explicitly and, if possible, the geodesics
and α-autoparallel curves. Some Fisher metrics will involve the use
of non-elementary functions, such as the digamma and trigamma
functions.

A distinguished role is dedicated to the normal distribution, which
is associated with a manifold of negative constant curvature (hyper-
bolic space) and to the multinomial geometry, which corresponds to
a space with positive constant curvature (spherical space).

2.1 The Normal Distribution

In this section we shall determine the geodesics with respect to the
Fisher information metric of a family of normal distributions. Given
two distributions of the same family, the geodesics are curves of min-
imum information joining the distributions. We shall see that such a
curve always exists between any two distributions on a normal family.
This is equivalent with the possibility of deforming one distribution
into the other by keeping the change of information to a minimum.

2.1.1 The Fisher Metric

Recall the formula for the density of a normal family

p(x, ξ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X = R,
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52 Chapter 2. Explicit Examples

with parameters (ξ1, ξ2) = (μ, σ) ∈ R×(0,∞). Using Proposition 1.6.3
we obtain the following components for the Fisher–Riemann metric.

Proposition 2.1.1 The Fisher information matrix for the normal
distribution is given by

gij =

(
1
σ2 0
0 2

σ2

)
. (2.1.1)

For the computation details see Problem 2.1. It is worth noting that
the metric does not depend on μ, i.e., it is translation invariant. This
metric is also very similar to the upper-half plane metric.

2.1.2 The Geodesics

A straightforward computation shows that the nonzero Christoffel
symbols of first and second kind are:

Γ11,2 =
1

σ3
, Γ12,1 = − 1

σ3
, Γ22,2 = − 2

σ3

Γ1
ij =

(
0 − 1

σ
− 1

σ 0

)
, Γ2

ij =

(
1
2σ 0
0 − 1

σ

)
.

Consequently, the geodesics equations (1.13.43) are solutions of a
Riccati ODE system

μ̈− 2

σ
μ̇σ̇ = 0 (2.1.2)

σ̈ +
1

2σ
(μ̇)2 − 1

σ
(σ̇)2 = 0. (2.1.3)

Separating and integrating in the first equation yields

μ̈

μ̇
=

2σ̇

σ
⇐⇒ d

ds
ln μ̇ = 2

d

ds
lnσ ⇐⇒ μ̇ = cσ2,

with c constant. We solve the equation in the following two cases:

1. The case c = 0. It follows that μ = constant, which corresponds

to vertical half lines. Then σ satisfies the equation σ̈ =
1

σ
σ̇2. Writing

the equation as
σ̈

σ̇
=
σ̇

σ
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and integrating yields ln σ̇ = ln(Cσ), with C constant. Integrating
again, we find σ(s) = KeCs. Hence, the geodesics in this case have
the following explicit equations

μ = c (2.1.4)

σ(s) = KeCs, (2.1.5)

with c, C ∈ R, K > 0 constants.

2. The case c �= 0. Substituting μ̇ = xσ2 in Eq. (2.1.3), we obtain
the following equation in σ

σσ̈ +
c2

2
σ4 − (σ̇)2 = 0. (2.1.6)

Let σ̇ = u. Then σ̈ =
du

dσ
u and (2.1.6) becomes

σ
du

dσ
u+

c2

2
σ4 − u2 = 0.

Multiplying by the integrant factor
1

σ3
leads to the exact equation

u

σ2︸︷︷︸
=M

du+
( c2

2
σ − u2

σ3︸ ︷︷ ︸
N

)
dσ = 0,

since
∂M

∂σ
=
∂N

∂u
= −2uσ−3.

Then there is a function f(σ, u) such that df = 0, with

∂f

∂u
=M,

∂f

∂σ
= N.

Integrating in the first equation yields

f(σ, u) =
u2

2σ2
+ h(σ),

with function h to be determined in the following. Differentiating
with respect to σ in the above equation,

∂f

∂σ
= −u

2

σ3
+ h′(σ),
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and comparing with

∂f

∂σ
= N =

c2

2
σ − u2

σ3
,

we get

h′(σ) =
c2

2
σ =⇒ h(σ) =

c2σ2

4
+ c0,

with c0 constant. Hence, a first integral for the system is

f(σ, u) =
u2

2σ2
+
c2σ2

4
=
E

2
,

with E positive constant. Solving for u, we obtain

u2

σ2
+
c2σ2

2
= E ⇐⇒

σ̇

σ
=

c√
2

√
C2 − σ2,

where C2 = 2E/c2. Separating and integrating, we find

∫
dσ

σ
√
C2 − σ2

= (s+ s0)
c√
2
.

Using the value of the integral

∫
dx

x
√
C2 − x2

= − 1√
C

tanh−1

√
1−
( x
C

)2
,

we obtain

− 1√
C

tanh−1

√
1−
( σ
C

)2
= (s+ s0)

c√
2
.

Solving for σ, we get

σ = c

√
1− tanh2

(√
E(s+ s0)

)
=

c

cosh
(√
E(s+ s0)

) .

In order to find μ we integrate in μ̇ = cσ2 and obtain

μ(s) =

∫
c3

cosh2
(√
E(s+ s0)

) ds = c3√
E

tanh
(√
E(s+ s0)

)
+K.
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Since we have

σ(s)2 + (μ(s)−K)2
E

c4
= c2,

the geodesics will be half-ellipses, with σ > 0.

In the case c = 0, the unknown σ satisfies

σ̇

σ
=

√
E ⇐⇒ d

ds
lnσ =

√
E

with solution

σ(s) = σ(0)e
√
Es,

while μ is constant, μ = K. The geodesics in this case are vertical
half-lines.

Proposition 2.1.2 Consider two normal distributions with equal
means, μ0 = μ1, and distinct standard deviations σ0 and σ1. Then the
smallest information transform, which deforms the first distribution
into the second one, is a normal distribution with constant mean and
standard deviation

σ(s) = σ
s/τ
1 σ

1−s/τ
0 , s ∈ [0, τ ].

Proof: The geodesic in this case is a vertical half-line with constant

mean and σ(s) = σ(0)e
√
Es. The amount

√
E can be found from the

boundary condition σ(τ) = σ1.

Let x0 = lnσ0, x1 = lnσ1, and x(s) = lnσ(s). Then x(s) =
s
τ x0+

(
1− s

τ

)
x1, which corresponds to a line segment. The minimal inf-

ormation loss during the deformation occurs when the log-likelihood
function describes a line segment.

2.1.3 α-Autoparallel Curves

A straightforward computation, using (1.11.34), yields the following
Christoffel coefficients of first kind

Γ
(α)
11,1 = Γ

(α)
21,2 = Γ

(α)
12,2 = Γ

(α)
22,1 = 0

Γ
(α)
11,2 =

1− α

σ3
, Γ

(α)
12,1 = Γ

(α)
21,1 = −1 + α

σ3
, Γ

(α)
22,2 = −2(1 + 2α)

σ3
.
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The Christoffel symbols of second kind are obtained by rising indices

Γ1
ij
(α)

= g11Γij,1
(α) + g12Γij,2

(α) = σ2Γij,1
(α)

= σ2
(

0 −1+α
σ3

−1+α
σ3 0

)
=

(
0 −1+α

σ
−1+α

σ 0

)
.

Γ2
ij
(α)

= g21Γij,1
(α) + g22Γij,2

(α)

=
σ2

2

(
1−α
σ3 0
0 −21+2α

σ3

)
=

(
1−α
2σ 0
0 −1+2α

σ

)
.

The Riccati equations (1.13.43) for the α-autoparallel curves are

μ̈− 2(1 + α)

σ
σ̇μ̇ = 0

σ̈ +
1− α

2σ
μ̇2 − 1 + 2α

σ
σ̇2 = 0.

The first equation can be transformed as in the following

μ̈

μ̇
= 2(1 + α)

σ̇

σ
⇐⇒

d

ds
ln μ̇ = 2(1 + α)

d

ds
lnσ ⇐⇒

ln μ̇ = 2(1 + α) lnσ + c0 ⇐⇒
μ̇ = c σ2(1+α),

with c constant. Substituting in the second equation yields

σ̈ +
1− α

2σ
c2σ4(1+α) − 1 + 2α

σ
σ̇2 = 0,

which after the new substitution u = σ̇ writes as

du

dσ
u+

1− α

2σ
c2σ4(1+α) − 1 + 2α

σ
u2 = 0.

Multiplying the equation by an integral factor of the form σk+1, we
obtain

σk+1u︸ ︷︷ ︸
=M

du+
( 1− α

2
c2σ4(α+1)+k − (1 + 2α)σku2︸ ︷︷ ︸

=N

)
dσ = 0.

From the closeness condition

∂M

∂σ
=
∂N

∂u
,
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we determine k + 1 = −(4α + 2). The exact equation we need to
solve is

uσ−(4α+2) du+
(1− α

2
c2σ − (1 + 2α)u2σ−(4α+3)

)
dσ = 0.

We need to determine a function f that satisfies the system

∂f

∂u
= uσ−(4α+2)

∂f

∂σ
=

1− α

2
c2σ − (1 + 2α)u2σ−(2α+3).

From the first equation, we have

f =
u2

2
σ−(4α+2) + h(σ) =⇒ ∂f

∂σ
= −(1 + 2α)u2σ−(4α+3) + h′(σ)

and comparing with the second equation yields

h′(σ) =
1− α

2
c2σ =⇒ h(σ) =

(1− α)c2

4
σ2 + C.

Hence, a first integral of motion is given by

f =
u2

2
σ−(4α+2) +

1− α

4
c2σ2 =

E

2
,

with E constant. Next we shall solve for σ. Using that u = σ̇, we have

u2

σ2(2α+1)
+

1− α

2
c2σ2 = E ⇐⇒

(
σ̇

σ2α+1

)2

+
1− α

2
c2σ2 = E ⇐⇒

(
σ̇

σ2α+1

)2

= E − 1− α

2
c2σ2 ⇐⇒

∫
dσ

σ2α+1
√
E − 1−α

2 c2σ2
= ±s+ s0 ⇐⇒

∫
dσ

σ2α+1
√
C2 − σ2

= (±s+ s0)

√
1− α

2
c, (2.1.7)

where

C = Cα =
2E

c

1

1− α
.
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The left side integral can be transformed using the substitutions
t = σ2, v =

√
C2 − t as follows

∫
dσ

σ2α+1
√
C2 − σ2

=

∫
dt

2σ2(α+1)
√
C2 − σ2

=

∫
dt

2tα+1
√
C2 − t

=

∫ −2v dv

2tα+1v
= −

∫
dv

(C2 − v2)α+1
,

and hence (2.1.7) becomes

−
∫

dv

(C2 − v2)α+1
= (±s+ s0)

√
1− α

2
c. (2.1.8)

The μ-component is given by

μ = c

∫
σ2(1+α)(s)ds. (2.1.9)

There are a few particular values of α for which this equation can
be solved explicitly.

Case α = −1

Equation (2.1.8) becomes

−v −K = (±s+ s0)

√
1− α

2
c,

with solution

σ2(s) = C2 −
(
(±s+ s0)

√
1− α

2
c+K

)2
,

for K constant. Equation (2.1.3) easily yields

μ(s) = cs+ μ(0).

Case α = 1/2

Since ∫
dv(

C2 − v2
)3/2 =

v

C2
√
C2 − v2

,

we solve

− v

C2
√
C2 − v2

= (±s+ s0)
c

2
+K

and obtain
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σ(s) =
C√

1 + C4
(
(±s+ s0)

c
2 +K

)2 .

The μ-component is given by the integral

μ(s) = c

∫
σ3(s) ds.

2.2 Jeffrey’s Prior

In the following we shall compute the prior on the statistical model

Sμ = {pξ;E[pξ = μ], V ar[pξ] > 1} = {p(μ,σ);σ > 1}
which represents a vertical half line in the upper-half plane. The
determinant is

G(ξ) = det gij(ξ) = det

(
1
σ2 0
0 2

σ2

)
=

2

σ4
.

Then the volume is computed as

V ol(Sμ) =

∫ ∞

1

√
G(ξ) dσ =

∫ ∞

1

√
2

σ2
dσ =

√
2 <∞.

Therefore the prior on Sμ is given by

Q(σ) =

√
G(σ)

V ol(Sμ)
=

1

σ2
.

2.3 Lognormal Distribution

In the case of lognormal distribution

pμ,σ(x) =
1√

2π σx
e−

(ln x−μ)2

2σ2 , x > 0,

the Fisher information matrix (Fisher–Riemann metric) is given by

g =

(
gμμ gμσ
gσμ gσσ

)
=

(
1
σ2 0
0 2

σ2

)
.

The computation details are left for the reader and are the sub-
ject of Problem 2.2. It is worth noting that this coincides with the
Fisher metric of a normal distribution model. Hence, the associated
geodesics are vertical half lines or halfs of ellipses.
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2.4 Gamma Distribution

In this case the statistical model is defined by the following family of
densities

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β ,

with (α, β) ∈ (0,∞)× (0,∞), x ∈ (0,∞). In the study of this model
we need some special functions. Let

ψ(α) =
Γ′(α)
Γ(α)

, ψ1(α) = ψ′(α) (2.4.10)

be the digamma and the trigamma functions, respectively. Differen-
tiating in the Dirichlet’s integral representation (see Erdélyi [42] vol.
I, p. 17)

ψ(α) =

∫ ∞

0
[e−t − (1 + t)−α]t−1 dt, α > 0

yields the following integral expression for the trigamma function

ψ1(α) = ψ′(α) =
∫ ∞

0

ln(1 + t)

t(1 + t)α
dt. (2.4.11)

Another interesting formula is the expression of the trigamma func-
tion as a Hurwitz zeta function

ψ1(α) = ζ(2, α) =
∑
n≥0

1

(α+ n)2
, (2.4.12)

which holds for α /∈ {0,−1,−2,−3, . . . }, relation obviously satisfied
in our case since α > 0.

Then the components of the Fisher–Riemann metric are obtained
from Proposition 1.6.3, using the relations

∫ ∞

0
p
ξ
(x) dx = 1,

∫ ∞

0
xp

ξ
(x) dx = αβ
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and the derivatives of the log-likelihood function that are asked to be
computed in Problem 2.2:

gαα = −E[∂2α�x(ξ)] =

∫ ∞

0
ψ′(α)p

ξ
(x) dx = ψ′(α) = ψ1(α),

g
ββ

= −E[∂2β�x(ξ)] = −
∫ ∞

0

( α
β2

− 2x

β3

)
p
ξ
(x) dx

= − α

β2
+

2

β3

∫ ∞

0
xp

ξ
(x) dx =

α

β2
,

g
αβ

= −E[∂αβ�x(ξ)] =

∫ ∞

0

1

β
p
ξ
(x) dx =

1

β
.

Proposition 2.4.1 The Fisher information matrix (Fisher–Riemann
metric) for the gamma distribution is

g =

(
ψ1(α)

1
β

1
β

α
β2

)
=

⎛
⎜⎝
∑
n≥0

1

(α+ n)2
1
β

1
β

α
β2

⎞
⎟⎠ .

It is worth noting that here α is the parameter for the gamma
distribution and it has nothing to do with α-connections.

2.5 Beta Distribution

The Fisher information metric for the beta distribution

pa,b =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, x ∈ [0, 1]

will be worked in terms of trigamma functions. Since the beta function

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx

can be expressed in terms of gamma functions as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

then its partial derivatives can be written in terms of digamma func-
tions, using relation (2.11.17), see Problem 2.4, part (a).

The log-likelihood function and its partial derivatives are left for
the reader as an exercise in Problem 2.4, parts (b) and (c). Since the
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second partial derivatives of �(a, b) do not depend on x, they will
coincide with their own expected values. It follows the next compo-
nents for the Fisher–Riemann metric:

gaa = −E[∂2a�(a, b)] = ψ1(a)− ψ1(a+ b)

gbb = −E[∂2b �x(a, b)] = ψ1(b)− ψ1(a+ b)

gab = gba = −E[∂a∂b�x(a, b)] = −ψ1(a+ b).

Proposition 2.5.1 The Fisher information matrix (Fisher–Riemann
metric) for the beta distribution is given by

g =

(
ψ1(a)− ψ1(a+ b) −ψ1(a+ b)

−ψ1(a+ b) ψ1(b)− ψ1(a+ b)

)
,

where ψ1 stands for the trigamma function.

2.6 Bernoulli Distribution

Consider the sample space X = {0, 1, . . . , n} and parameter space
E = [0, 1]. The Bernoulli, or binomial distribution, is given by

p(k; ξ) =
(n
k

)
ξk(1− ξ)n−k,

where the parameter ξ denotes the success probability. Then S =
{pξ; ξ ∈ [0, 1]} becomes a one-dimensional statistical model. The
derivatives of the log-likelihood function �k(ξ) = ln p(k; ξ) are pro-
posed as an exercise in Problem 2.5. Then the Fisher information is
given by the function

g11(ξ) = −Eξ[∂
2
ξ �(ξ)] =

n∑
k=0

p(k; ξ)∂2ξ �k(ξ)

=
n∑

k=0

k

ξ2
p(k; ξ) +

∑ (n− k)

(1− ξ)2
p(k; ξ)

=
n

ξ
+
n(1− ξ)

(1− ξ)2
=

n

ξ(1− ξ)
,

where we used that the mean of a Bernoulli distribution is nξ. Using
that the variance is nξ(1− ξ), it follows that

g11(ξ) =
n2

V ar(pξ)
,

which is a Cramér–Rao type identity corresponding to an efficient
estimator.
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2.7 Geometric Probability Distribution

Let X = {1, 2, 3, . . . }, E = [0, 1] and consider p(k; ξ) = (1 − ξ)k−1ξ,
k ∈ X , ξ ∈ E. The formulas for the partial derivatives of the log-
likelihood function are left as an exercise for the reader in Prob-
lem 2.6. Then the Fisher information becomes

g11(ξ) = −Eξ[∂
2
ξ �(ξ)]

=
∑
k≥1

(k − 1)p(k; ξ)

(ξ − 1)2
+
∑
k≥1

1

ξ2
p(k; ξ)

=
1

ξ2(1− ξ)
,

where we used the expression for the mean
∑

k≥1 k p(k; ξ) =
1
ξ .

2.8 Multinomial Geometry

In this section we investigate the geometry associated with the multi-
nomial probability distribution. The computation performed here is
inspired from Kass and Vos [49]. Consider m independent, identical
trials with n possible outcomes. The probability that a single trial
falls into class i is pi, i = 1, 2, . . . , n, and remains the same from trial
to trial. Since p1 + · · ·+ pn = 1, the parameter space is given by the
(n− 1)-dimensional simplex

E = {(p1, . . . , pn−1); 0 ≤ pi ≤ 1,
n−1∑
i=1

pi = 1}.

It is advantageous to consider the new parameterization

zi = 2
√
pi, i = 1, . . . , n.

Then
∑n

i=1 z
2
i = 4, and hence

z ∈ S
n−1
2,+ = {z ∈ R

n; ‖z‖2 = 4, zi ≥ 0}.

Therefore, the statistical manifold of multinomial probability dis-
tributions can be identified with S

n−1
2,+ , the positive portion of the

(n− 1)-dimensional sphere of radius 2. The Fisher information matrix
with respect to a local coordinate system (ξi) is
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grs(ξ) = 4
n∑

i=1

∂r
√
pi(ξ)∂s

√
pi(ξ)

=

n∑
i=1

∂rzi(ξ) ∂szi(ξ)

= 〈∂rz, ∂sz〉,
where ∂s = ∂ξs . Therefore, the Fisher metric is the natural metric
induced from the Euclidean metric of R

n on the sphere S
n−1
2,+ . We

note that ∂rz is a tangent vector to the sphere in the direction of ξr.
To find the information distance between two multinomial distri-

butions p and q, we need to find the length of the shortest curve on
the sphere S

n−1
2,+ , joining p and q. The curve that achieves the mini-

mum is an arc of great circle passing through p and q, and this curve
is unique.

Let zp and zq denote the points on the sphere corresponding to the
aforementioned distributions. The angle α made by the unit vectors
zp/2 and zq/2 satisfies cosα = 〈zp/2, zq/2〉. Since the distance on the
sphere is the product between the radius and the central angle, we
have

d(p, q) = 2α = 2arccos
( n∑

i=1

zip
2

ziq
2

)

= 2arccos
( n∑

i=1

(piqi)
1/2
)
.

It is worthy to note that the Euclidean distance between p and q can
be written as

‖zp − zq‖2 =
( n∑

i=1

(zip − ziq)
2
)1/2

= 2
( n∑

i=1

(zip
2

− ziq
2

)2)1/2

= 2
( n∑

i=1

(
√
pi −√

qi)
2
)1/2

= dH(p, q),

which is called the Hellinger distance between p and q. We shall dis-
cuss about this distance in more detail later.

The foregoing computation of the Fisher metric was exploiting
geometric properties. In the following we shall provide a direct com-
putation. We write the statistical model of multinomial distributions
by S = {p(k; ξ)}, with

p(k; ξ) =
n!

k1! . . . km!
pk11 . . . p

km−1

m−1 p
km
m ,
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where
X = {k = (k1, . . . km) ∈ N

m; k1 + . . . km = n},
and ξ = (ξ1, . . . , ξm−1) ∈ E = [0, 1]m−1, with ξi = pi, i = 1, . . .m− 1,
and pm = 1 − p1 − · · · − pm−1. Then a straightforward computation
shows

∂i�(k; ξ) =
ki
pi

− km
pm

∂j∂i�(k; ξ) = −
[kiδij
p2i

+
km
p2m

]
.

Using the formula for the marginal probability

∑
k

kip(k; ξ) = npi,

we have

gij(ξ) = −Eξ[∂i∂j�(k; ξ)] = E
[kiδij
p2i

+
km
p2m

]

=
δij
p2i

∑
k

kip(k; ξ) +
1

p2m

∑
k

kmp(k; ξ)

= n
[δij
pi

+
1

pm

]
= n
[δij
ξi

+
1

1− ξ1 − · · · − ξm−1

]
.

2.9 Poisson Geometry

Consider m independent Poisson distributions with parameters λi,
i = 1, . . . ,m. The joint probability function is given by the product

p(x;λ) =
m∏
i=1

pλi(xi) =
m∏
i=1

e−λi
λxi
i

xi!
,

with λ = (λ1, . . . , λm+1) ∈ E = (0,∞)m, and x = (x1, . . . , xm) ∈
X = (N∪ {0})m. The log-likelihood function and its derivatives with
respect to ∂j = ∂λj are

�(x;λ) = −λi + xi lnλi − ln(xi!)

∂j�(x;λ) = −1 +
xj
λj

∂k∂j�(x;λ) = −xj
λ2j
δkj .
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Then the Fisher information is obtained as

gjk(λ) = E
[xj
λ2j
δkj

]
=

1

λ2j
δkjE[xj ]

=
1

λ2j
δkj
∑
x

xjp(x;λ) =
1

λj
δkj .

Therefore the Fisher matrix has a diagonal form with positive entries.

2.10 The Space P(X )

Let X = {x1, . . . , xn} and consider the statistical model P(X ) of all
discrete probability densities on X . The space P(X ) can be imbedded
into the function space R

X = {f ; f : X → R} in several ways, as
we shall describe shortly. This study can be found in Nagaoka and
Amari [61].

For any α ∈ R consider the function ϕα : (0,∞) → R

ϕα(u) =

⎧⎪⎨
⎪⎩

2

1− α
u

1−α
2 , if α �= 1

lnu, if α = 1.

The imbedding

P(X ) � p(x; ξ) → ϕα

(
p(x; ξ)

) ∈ R
X

is called the α-representation of P(X ). A distinguished role will be
played by the α-likelihood functions

�(α)(x; ξ) = ϕα

(
p(x; ξ)

)
.

The coordinate tangent vectors in this representation are given by

∂i�
(α)(x; ξ) = ∂ξiϕα

(
p(x; ξ)

)
.

The α-representation can be used to define the Fisher metric and
the ∇(α)-connection on P(X ).

Proposition 2.10.1 The Fisher metric can be written in terms of
the α-likelihood functions as in the following
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(i) gij(ξ) =
n∑

k=1

∂i�
(α)(xk; ξ)∂j�

(−α)(xk; ξ);

(ii) gij(ξ) = − 2

1 + α

n∑
k=1

p(xk; ξ)
1+α
2 ∂i∂j�

(α)(xk; ξ).

Proof: Differentiating yields

∂i�
(α) = p

1−α
2 ∂i�; (2.10.13)

∂i�
(−α) = p

1+α
2 ∂i�; (2.10.14)

∂i∂j�
(α) = p

1−α
2

(
∂i∂j�+

1− α

2
∂i�∂j�

)
, (2.10.15)

where �(x; ξ) = ln p(x; ξ).

(i) The previous computations and formula (1.6.16) provide

n∑
k=1

∂i�
(α)(xk; ξ)∂j�

(−α)(xk; ξ) =
n∑

k=1

p
1−α
2 ∂i�(xk)p

1+α
2 ∂j�(xk)

=

n∑
k=1

p(xk; ξ)∂i�(xk)∂j�(xk)

= Eξ[∂i� ∂j�] = gij(ξ).

(ii) Relation (2.10.15) implies

p
1+α
2 ∂i∂j�

(α)(x; ξ) = p(x; ξ)∂i∂j�(x; ξ)+
1− α

2
p(x; ξ)∂i�∂j�(x; ξ).

Summing and using (1.6.16) and (1.6.18), we have

n∑
k=1

p(xk; ξ)
1+α
2 ∂i∂j�

(α)(xk; ξ) = Eξ[∂i∂j�] +
1− α

2
Eξ[∂i� ∂j�]

= −gij(ξ) + 1− α

2
gij(ξ)

= −1 + α

2
gij(ξ).

The symmetry of relation (i) implies that the Fisher metric in-
duced by both α and −α-representations are the same.
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Proposition 2.10.2 The components of the α-connection are given
in terms of the α-representation as

Γ
(α)
ij,k =

n∑
r=1

∂i∂j�
(α)(xr; ξ) ∂k�

(−α)(xr; ξ). (2.10.16)

Proof: Combining relations (2.10.14) and (2.10.15)

n∑
r=1

∂i∂j�
(α) ∂k�

(−α) =
n∑

r=1

p(xr; ξ)
(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�(xr; ξ)

= Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= Γ
(α)
ij,k,

by (1.11.34).

The particular values α = −1, 0, 1 provide distinguished impor-
tant cases of representations of P(X ).

2.10.1 −1-Representation

If α = −1, then ϕ−1(u) = u, and �(−1)
(
p(x; ξ)

)
= p(x; ξ) is the

identical imbedding of P(X ) into R
X . Thus P(X ) is an open set of

the affine space A1 = {f : X → R;
∑n

k=1 f(xk) = 1}. Therefore, the
tangent space at any point pξ can be identified with the following
affine variety

T
(−1)
ξ (P(X )) = A0 = {f : X → R;

n∑
k=1

f(xk) = 0}.

The coordinate vector fields in this representation are given by

(∂−1
i )

ξ
= ∂ipξ.

We can easily check that

n∑
k=1

(∂−1
i )

ξ
(xk) =

n∑
k=1

∂ipξ(xk) = ∂i(1) = 0,

so (∂−1
i )

ξ
∈ Tξ(P), for any ξ.
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2.10.2 0-Representation

This is also called the square root representation. In this case ϕ0(u) =
2
√
u, and the imbedding ϕ0 : P(X ) → R

X is

p(x; ξ) → ϕ0(p(x; ξ)) = �(0)(x; ξ) = 2
√
p(x; ξ) = θ(x) ∈ R

X .

Since
∑n

k=1 θ(xk)
2 = 4, the image of the imbedding ϕ0 is an open

subset of the sphere of radius 2,

ϕ0

(P(X )
) ⊂ {θ; θ : X → R;

∑
k

θ(xk)
2 = 4}.

The induced metric from the natural Euclidean metric of RX on this
sphere is

〈∂iθ, ∂jθ〉 =
n∑

k=1

∂iθ(xk)∂jθ(xk)

= 4

n∑
k=1

∂i
√
p(xk; ξ)∂j

√
p(xk; ξ)

= gij(ξ),

i.e., the Fisher metric on the statistical model P(X ).
The coordinate vector fields are given by

(∂0i )ξ = ∂i�
(0)(x; ξ) =

1√
p(x; ξ)

∂ip(x; ξ).

The next computation deals with the tangent space generated by
(∂0i )ξ . We have

〈θ, (∂0i )ξ〉 =
n∑

k=1

θ(xk)
1

p(xk; ξ)
∂ip(xk; ξ)

=
n∑

k=1

2
√
p(xk; ξ)

1

p(xk; ξ)
∂ip(xk; ξ)

= 2∂i

n∑
k=1

p(xk; ξ) = 0,

so that the vector (∂0i )ξ is perpendicular on the vector θ, and hence
belongs to the tangent plane to the sphere at θ. This can be identified

with the tangent space T
(0)
ξ P(X ) in the 0-representation.
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2.10.3 1-Representation

This is also called the exponential (or the logarithmic) representation,
because each distribution p(x; ξ) ∈ P(X ) is identified with
ln p(x; ξ) ∈ R

X . In this case the 1-likelihood function becomes
�(1)(x; ξ) = �(x; ξ) = ln p(x; ξ), i.e., the usual likelihood function.

The coordinate vector fields are given by

(∂1i )ξ = ∂i�
(1)(x; ξ) =

1

p(x; ξ)
∂ip(x; ξ).

In the virtue of the computation

Ep[(∂
1
i )ξ ] = Ep[∂i�

(1)(x; ξ)] =
n∑

k=1

∂ip(xk; ξ) = ∂i(1) = 0,

it follows that the tangent space in this representation is given by

T (1)
p (P(X )) = {f ; f ∈ R

X }, Ep[f ] = 0}.
It is worth noting that tangent spaces are invariant objects, that

do not depend on any representation. However, when considering
different system of parameters, tangent vectors can be described by
some particular relations, like in the cases of±1 and 0 representations.

2.10.4 Fisher Metric

Let ξi = p(xi; ξ), i = 1, . . . , n− 1, be the coordinates on P(X ). Since
p(xn; ξ) = 1 −∑n−1

j=1 ξ
j , then the partial derivatives with respect to

ξj are

∂ip(xk; ξ) =

{
δik, if k = 1, . . . , n− 1
−1, if k = n.

Then the Fisher metric is given by

gij(ξ) = Ep[∂i� ∂j�] =
n∑

k=1

p(xk; ξ)∂i ln p(xk; ξ)∂j ln p(xk; ξ)

=
n∑

k=1

∂ip(xk; ξ)∂jp(xk; ξ)

p(xk; ξ)

=
n−1∑
k=1

δikδjk
ξk

+
1

1−∑n−1
j=1 ξ

j

=
δij
ξj

+
1

1−∑n−1
j=1 ξ

j
·
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2.11 Problems

2.1. Consider the statistical model given by the densities of a nor-
mal family

p(x, ξ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X = R,

with parameters (ξ1, ξ2) = (μ, σ) ∈ R× (0,∞).

(a) Show that the log-likelihood function and its derivatives
are given by

�x(ξ)= ln p(x, ξ) = −1

2
ln(2π)− lnσ−(x− μ)2

2σ2

∂σ�x(ξ) = ∂σ ln p(x, ξ) = − 1

σ
+

1

σ3
(x− μ)2

∂σ∂σ�x(ξ) = ∂σ∂σ ln p(x, ξ) =
1

σ2
− 3

σ4
(x− μ)2

∂μ�x(ξ) = ∂μ ln p(x, ξ) =
1

σ2
(x− μ)

∂μ∂μ�x(ξ) = ∂μ∂μ ln p(x, ξ) = − 1

σ2

∂σ∂μ�x(ξ) = ∂σ∂μ ln p(x, ξ) = − 2

σ3
(x− μ).

(b) Show that the Fisher–Riemann metric components are
given by

g11 =
1

σ2
, g12 = g21 = 0, g22 =

2

σ2
.

2.2. Consider the statistical model defined by the lognormal
distribution

pμ,σ(x) =
1√

2π σx
e−

(ln x−μ)2

2σ2 , x > 0.

(a) Show that the log-likelihood function and its derivatives
are given by

�(μ, σ) = − ln
√
2π − lnσ − lnx− 1

2σ2
(lnx− μ)2

∂2μ�(μ, σ) = − 1

σ2

∂2σ�(μ, σ) =
1

σ2
− 3

σ4
(lnx− μ)2

∂μ∂σ�(μ, σ) = − 2

σ3
(lnx− μ).
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(b) Using the substitution y = lnx−μ, show that the compo-
nents of the Fisher–Riemann metric are given by

gσσ =
2

σ2
, gμμ =

1

σ2
, gμσ = gσμ = 0.

2.3. Let

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β ,

with (α, β) ∈ (0,∞) × (0,∞), x ∈ (0,∞) be the statistical
model defined by the gamma distribution.

(a) Show that the log-likelihood function is

�x(ξ) = ln p
ξ
= −α lnβ − ln Γ(α) + (α− 1) lnx− x

β
.

(b) Verify the relations

∂β�x(ξ) = −α
β
+

x

β2

∂αβ�x(ξ) = − 1

β

∂2β�x(ξ) =
α

β2
− 2x

β3

∂α�x(ξ) = − lnβ − ψ(α) + lnx

∂2α�x(ξ) = −ψ1(α),

where

ψ(α) =
Γ′(α)
Γ(α)

, ψ1(α) = ψ′(α) (2.11.17)

are the digamma and the trigamma functions, respectively.

(c) Prove that for α > 0, we have

∑
n≥0

α

(α+ n)2
> 1.

2.4. Consider the beta distribution

pa,b =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, x ∈ [0, 1].
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(a) Using that the beta function

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx

can be expressed in terms of gamma function as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

show that its partial derivatives can be written in terms of
digamma functions, as

∂a lnB(a, b) = ψ(a)− ψ(a+ b) (2.11.18)

∂b lnB(a, b) = ψ(b)− ψ(a+ b). (2.11.19)

(b) Show that the log-likelihood function is given by

�(a, b) = ln pa,b = − lnB(a, b) + (a− 1) lnx+ (b− 1) ln(1− x).

(c) Take partial derivatives and use formulas (2.11.18) and
(2.11.19) to verify relations

∂a�(a, b) = −∂a lnB(a, b) + lnx = ψ(a+ b)− ψ(a) + lnx

∂b�(a, b) = ψ(a+ b)− ψ(b) + ln(1− x)

∂2a�(a, b) = ψ′(a+ b)− ψ′(a) = ψ1(a+ b)− ψ1(a)

∂2b �(a, b) = ψ′(a+ b)− ψ′(b) = ψ1(a+ b)− ψ1(b)

∂a∂b�(a, b) = ψ′(a+ b) = ψ1(a+ b).

(c) Using the expression of trigamma functions as a Hurwitz
zeta function, show that the Fisher information matrix can be

written as a series g =
∑
n≥0

gn, where

gn =

⎛
⎜⎝

1
(a+n)2

− 1
(a+b+n)2

− 1
(a+b+n)2

− 1
(a+b+n)2

1
(b+n)2

− 1
(a+b+n)2

⎞
⎟⎠ .

2.5. Let S = {pξ; ξ ∈ [0, 1]} be a one-dimensional statistical model,
where

p(k; ξ) =
(n
k

)
ξk(1− ξ)n−k
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is the Bernoulli distribution, with k ∈ {0, 1, . . . , n} and ξ ∈ [0, 1].
Show that the derivatives of the log-likelihood function �k(ξ) =
ln p(k; ξ) are

∂ξ�k(ξ) =
k

ξ
− (n− k)

1

1− ξ

∂2ξ �k(ξ) = − k

ξ2
− (n− k)

1

(1− ξ)2
·

2.6. Consider the geometric probability distribution p(k; ξ) =
(1− ξ)k−1ξ, k ∈ {1, 2, 3, . . . }, ξ ∈ [0, 1]. Show that

∂ξ�k(ξ) =
k − 1

ξ − 1
+

1

ξ

∂2ξ �k(ξ) = − (k − 1)

(ξ − 1)2
− 1

ξ2
·

2.7. Let f be a density function on R and define the statistical
model

Sf =
{
p(x;μ, σ) =

1

σ
f
(x− μ

σ

)
;μ ∈ R, σ > 0

}
.

(a) Show that
∫
R
p(x;μ, σ) dx = 1.

(b) Verify the following formulas involving the log-likelihood
function � = ln p( · ;μ, σ):

∂μ� = − 1

σ

f ′

f
, ∂σ� = − 1

σ
− (x− μ)

σ2
f ′

f

∂μ∂σ� =
1

f2

[( f ′
σ2

+
1

σ

x− μ

σ2
f ′′
)
f − 1

σ

x− μ

σ2
(f ′)2

]
.

(b) Show that for any continuous function h we have

E(μ,σ)

[
h
(x− μ

σ

)]
= E(0,1)[h(x)].

(c) Assume that f is an even function (i.e., f(−x) = f(x)).
Show that the Fisher–Riemann metric, g, has a diagonal
form (i.e., g12 = 0).

(d) Prove that the Riemannian space (Sf , g) has a negative,
constant curvature.
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(e) Consider f(x) = 1√
2π
e−x2/2. Use the aforementioned points

to deduct the formula for gij and to show that the curva-
ture K = −1

2 .

2.8. Search the movement of the curve

(μ, σ) → pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 , μ2 + σ2 = 1

with (μ, σ, p) ∈ R× (0,∞)× (0,∞), x ∈ R, fixed, in the direc-
tion of the binormal vector field.

2.9. The graph of the normal density of probability

x→ pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2

is called Gauss bell. Find the equation of the surface obtained
by revolving the Gauss bell about:

(a) Ox axis;

(b) Op axis.

2.10. Inspect the movement of the trajectories of the vector field
(y, z, x) after the direction of the vector field(

1, 1,
1

σ
√
2π

e−
(x−μ)2

2σ2

)
,

where μ and σ are fixed.

2.11. The normal surface

(μ, σ) → pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 ,

(μ, σ) ∈ R× (0,∞); x ∈ R

is deformed into pμ,σ(tx), t ∈ R. What happens with the Gauss
curvature?

2.12. The gamma surface

(α, β) → pα,β(x) =
1

βαΓ(α)
xα−1 e

− x
β

(α, β) ∈ (0,∞)× (0,∞); x ∈ (0,∞)

is deformed into ptα,β(x), t ∈ (0,∞). What happens with the
mean curvature?
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