Chapter 12

Contrast Functions on Statistical Models

This chapter deals with some important examples of contrast functions on a space of density functions, such as: Bregman divergence, Kullback–Leibler relative entropy, f-divergence, Hellinger distance, Chernoff information, Jefferey distance, Kagan divergence, and exponential contrast function. The relation with the skewness tensor and α -connection is made. The goal of this chapter is to produce hands-on examples for the theoretical concepts introduced in Chap. 11.

12.1 A First Example

We start with a suggestive example of Bregman divergence. We show that the Kullback–Leibler relative entropy on a statistical model is a particular example of Bregman divergence.

Let $S = \mathcal{P}(\mathcal{X})$, where $\mathcal{X} = \{x^1, \ldots, x^{n+1}\}\$ and consider the global chart $\phi : \mathcal{S} \to \mathbb{E} \subset \mathbb{R}^n$

$$
\phi(p) = (\ln p_1, ..., \ln p_n) = (\xi^1, ..., \xi^n),
$$

with the parameter space

$$
\mathbb{E} = \{(\xi^1, \dots, \xi^n); \xi^k > 0, \sum_{k=1}^n \xi^k < 1\}.
$$

The contrast function on S is then given by

$$
D_{\mathcal{S}}(p||q) = D_{\mathcal{S}}(\phi^{-1}(p)||\phi^{-1}(q))
$$

= $D(\xi_1||\xi_2),$

where $D(\cdot || \cdot)$ is the Bregman divergence on E induced by the convex function $\varphi(\xi) = \sum_{i=1}^n e^{\xi_i}$, i.e.,

$$
D(\xi_1||\xi_2) = \varphi(\xi_2) - \varphi(\xi_1) - \sum_{i=1}^n \partial_i \varphi(\xi_1)(\xi_2^i - \xi_1^i).
$$

Therefore

$$
D_{\mathcal{S}}(p||q) = D(\xi_1||\xi_2)
$$

= $\sum_{i} e^{\xi_2^i} - \sum_{i} e^{\xi_1^i} - \sum_{i} e^{\xi_1^i} (\xi_2^i - \xi_1^i)$
= $\sum_{i} p_i - \sum_{i} q_i - \sum_{i} p_i \ln \frac{q_i}{p_i}$
= $\sum_{i} p_i \ln \frac{p_i}{q_i} = D_{KL}(p||q).$

Hence, the induced contrast function $D_{\mathcal{S}}$ on $\mathcal{P}(\mathcal{X})$ in this case is the Kullback–Leibler relative entropy.

12.2 f**-Divergence**

An important class of contrast functions on statistical models was introduced by Csiszár [31, 32]. Let $f : (0, \infty) \to \mathbb{R}$ be a function satisfying the following conditions

- (a) f is convex;
- (b) $f(1) = 0$;
- (c) $f''(1) = 1$.

For each probability distributions p , q , consider

$$
D_f(p||q) = E_p\left[f\left(\frac{q(x)}{p(x)}\right)\right] = \int_{\mathcal{X}} p(x)f\left(\frac{q(x)}{p(x)}\right)dx. \tag{12.2.1}
$$

We shall assume that the previous integral converges and we can differentiate under the integral sign.

Proposition 12.2.1 *The operator* $D_f(\cdot||\cdot)$ *is a contrast function on the statistical model* $S = \{p_{\xi}\}.$

Proof: We check the properties of a contrast function.

 (i) positive: Jensen's inequality applied to the convex function f provides

$$
D_f(p||q) = E_p\Big[f\Big(\frac{q(x)}{p(x)}\Big)\Big] \ge f\Big(E_p\Big[\frac{q(x)}{p(x)}\Big]\Big)
$$

= $f\Big(\int_{\mathcal{X}} p(x)\frac{q(x)}{p(x)} dx\Big) = f(1) = 0.$

(*ii*) non-degenerate: Let $p \neq q$. Since f is strictly convex at 1, then

$$
D_f(p||q) = E_p\Big[f\Big(\frac{q(x)}{p(x)}\Big)\Big] > f\Big(E_p\Big[\frac{q(x)}{p(x)}\Big]\Big) = f(1) = 0,
$$

and hence $D(p||q) \neq 0$, which implies the non-degenerateness.

- (iii) The vanishing property of the first variation along the diagonal $\{\xi_1 = \xi_2\}$ is a consequence of (i) and (ii).
- (iv) Let $p = p_{\xi_0}$ and $q = p_{\xi}$. We shall compute the Hessian of

$$
D_f(p_{\xi_0}||p_{\xi}) = \int_{\mathcal{X}} p_{\xi_0}(x) f\left(\frac{p_{\xi}(x)}{p_{\xi_0}(x)}\right) dx \tag{12.2.2}
$$

along the diagonal $\xi^0 = \xi$. Differentiating we have

$$
\partial_{\xi j} f\left(\frac{p_{\xi}}{p_{\xi_0}}\right) = f'\left(\frac{p_{\xi}}{p_{\xi_0}}\right) \frac{1}{p_{\xi_0}} \partial_{\xi^j} p_{\xi}
$$
\n
$$
\partial_{\xi^i} \partial_{\xi^j} f\left(\frac{p_{\xi}}{p_{\xi_0}}\right) = f''\left(\frac{p_{\xi}}{p_{\xi_0}}\right) \left(\frac{p_{\xi}}{p_{\xi_0}}\right)^2 \partial_{\xi^i} (\ln p_{\xi}) \partial_{\xi^j} (\ln p_{\xi})
$$
\n
$$
+ f'\left(\frac{p_{\xi}}{p_{\xi_0}}\right) \frac{1}{p_{\xi}} \partial_{\xi^i} \partial_{\xi^j} p_{\xi}.
$$

Differentiating under the integral we get

$$
\partial_{\xi^i} \partial_{\xi^j} D_f(p_{\xi_0} || p_{\xi})_{|\xi = \xi_0} = f''(1) \int p_{\xi_0} \partial_{\xi^i} \ln p_{\xi} \partial_{\xi^j} \ln p_{\xi} dx_{|\xi = \xi_0}
$$

+ $f'(1) \partial_{\xi^i} \partial_{\xi^j} \int p_{\xi}(x) dx$
= $f''(1) E_{\xi} [\partial_{\xi^i} \ell(\xi) \partial_{\xi^j} \ell(\xi)]$
= $E_{\xi} [(\partial_{\xi^i} \ell)(\partial_{\xi^j} \ell)] = g_{ij}(\xi),$

which is strictly positive definite, since it is the Fisher–Riemann information matrix. Hence $D_f(\cdot||\cdot)$ is a contrast function.

 \blacksquare

Theorem 12.2.2 *The Riemannian metric induced by the contrast function* $D_f(\cdot||\cdot)$ *on the statistical model* $S = \{p_{\xi}\}\$ *is the Fisher– Riemann information matrix*

$$
g_{ij}(\xi) = \partial_{\xi^i} \partial_{\xi^j} D_f(p_{\xi_0} || p_{\xi})_{|\xi = \xi_0}.
$$

Proof: It follows from the calculation performed in the part (iv) above.

Let
$$
f^*(u) = uf\left(\frac{1}{u}\right)
$$
. Since
\n $f^*(1) = f(1) = 0$
\n $f^{*''}(u) = \frac{1}{u^3}f''\left(\frac{1}{u}\right) \ge 0$
\n $f^{*''}(1) = f''(1) = 1$,

then f^* satisfies properties $(a)-(c)$, and hence $D_{f^*}(\cdot||\cdot)$ is a contrast function, which defines the same Riemannian metric as $D_f(\cdot||\cdot)$.

Proposition 12.2.3 *The contrast function* $D_{f^*}(\cdot||\cdot)$ *is the dual of* $D_f(\cdot||\cdot).$

Proof: Consider the dual $D_f^*(p||q) = D_f(q||p)$. Then we have

$$
D_{f^*}(p||q) = \int_{\mathcal{X}} p(x) f^* \left(\frac{q(x)}{p(x)}\right) dx
$$

\n
$$
= \int_{\mathcal{X}} p(x) \frac{q(x)}{p(x)} f\left(\frac{p(x)}{q(x)}\right) dx
$$

\n
$$
= \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx
$$

\n
$$
= D_f(q||p) = D_f^*(p||q), \qquad \forall p, q \in \mathcal{S}.
$$

Therefore $D_{f^*} = D_f^*$.

In the following we shall find the induced connections. Let $\nabla^{(f)}$ be the linear connection induced by the contrast function $D_f(\cdot || \cdot)$, and denote by $\Gamma_{ij,k}^{(f)}$ its components on a local basis.

Proposition 12.2.4 *We have*

$$
\Gamma_{ij,k}^{(f)}(\xi) = E_{\xi} \Big[\big(\partial_i \partial_j \ell - (f'''(1) + 1) \partial_i \partial_j \ell \big) \partial_k \ell \Big]. \tag{12.2.3}
$$

Proof: From formula (11.5.18) we find

$$
\Gamma_{ij,k}^{(f)}(\xi) = -\partial_{\xi_0^i} \partial_{\xi_0^j} \partial_{\xi^k} D_f(p_{\xi_0} || p_{\xi})_{|\xi = \xi_0}.
$$
 (12.2.4)

We shall compute the derivatives on the right side. Differentiating in $(12.2.2)$ yields

$$
\partial_{\xi^k} D_f(p_{\xi_0} || p_{\xi}) = \int_{\mathcal{X}} f' \Big(\frac{p_{\xi}}{p_{\xi_0}} \Big) p_{\xi} \partial_{\xi^k} \ell(\xi) dx. \tag{12.2.5}
$$

Before continuing the computation we note that

$$
\partial_{\xi_0^j} f' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) = f'' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) \left(\frac{-p_{\xi}}{p_{\xi_0}} \right) \partial_{\xi_0^j} \ell(\xi_0)
$$
\n
$$
\partial_{\xi_0^i} \partial_{\xi_0^j} f' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) = f''' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) \frac{p_{\xi}^2}{p_{\xi_0}^2} \partial_{\xi_0^i} \ell(\xi_0) \partial_{\xi_0^j} \ell(\xi_0)
$$
\n
$$
+ f'' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) \frac{p_{\xi}}{p_{\xi_0}} \partial_{\xi_0^i} \ell(\xi_0) \partial_{\xi_0^j} \ell(\xi_0)
$$
\n
$$
- f'' \left(\frac{p_{\xi}}{p_{\xi_0}} \right) \frac{p_{\xi}}{p_{\xi_0}} \partial_{\xi_0^i} \partial_{\xi_0^j} \ell(\xi_0).
$$

Applying now $\partial_{\xi_0^i} \partial_{\xi_0^j}$ to [\(12.2.5\)](#page-4-0), using the foregoing formulas, and taking $\xi_0 = \xi$, yields

$$
\partial_{\xi_0^i} \partial_{\xi_0^j} \partial_{\xi^k} D_f(p_{\xi_0} || p_{\xi})_{|\xi = \xi_0} = \int_{\mathcal{X}} \left[(f'''(1) + f''(1)) p_{\xi} (\partial_{\xi^i} \ell) (\partial_{\xi^j} \ell) (\partial_{\xi^k} \ell) - f''(1) (\partial_{\xi^i} \partial_{\xi^j} \ell) (\partial_{\xi^k} \ell) \right] dx
$$

$$
= E_{\xi} \left[(\partial_{\xi^i} \partial_{\xi^j} \ell - (f'''(1) + 1) \partial_{\xi^i} \partial_{\xi^j} \ell) \partial_{\xi^k} \ell \right].
$$

Applying $(12.2.4)$ we arrive at $(12.2.3)$.

The relation with the geometry of α -connections is given below.

Theorem 12.2.5 *The connection induced by* $D_f(\cdot||\cdot)$ *is an* α*-connection*

$$
\nabla^{(f)} = \nabla^{(\alpha)},
$$

 $with \ \alpha = 2f'''(1) + 3.$

Proof: It suffices to show the identity in local coordinates. Recall first the components of the α -connection given by $(1.11.34)$

$$
\Gamma_{ij,k}^{(\alpha)} = E_{\xi} \left[\left(\partial_i \partial_j \ell + \frac{1 - \alpha}{2} \partial_i \ell \partial_j \ell \right) \partial_k \ell \right]. \tag{12.2.6}
$$

Comparing with [\(12.2.3\)](#page-4-2) we see that $\Gamma_{ij,k}^{(f)} = \Gamma_{ij,k}^{(\alpha)}$ if and only if $\alpha =$ $2f'''(1) + 3.$

We make the remark that $\nabla^{(f^*)} = \nabla^{(-\alpha)}$, which follows from the properties of dual connections induced by contrast functions. We shall show shortly that for any α there is a function f satisfying $(a)-(c)$ and solving the equation $\alpha = 2f'''(1) + 3$.

Proposition 12.2.6 *The skewness tensor induced by the contrast function* $D_f(\cdot||\cdot)$ *is given in local coordinates by*

$$
T_{ijk}^{(f)} = (2f'''(1) + 3)E_{\xi}[(\partial_i \ell)(\partial_j \ell)(\partial_k \ell)].
$$

Proof: Using Theorem [12.2.5,](#page-4-3) formula [\(12.2.6\)](#page-5-0) and the aforementioned remarks, we have

$$
T_{ijk}^{(f)} = \Gamma_{ijk}^{(f^*)} - \Gamma_{ijk}^{(f)} = \Gamma_{ijk}^{(-\alpha)} - \Gamma_{ijk}^{(\alpha)}
$$

\n
$$
= E_{\xi} \Big[\Big(\partial_i \partial_j \ell + \frac{1+\alpha}{2} \partial_i \ell \partial_j \ell \Big) \partial_k \ell \Big]
$$

\n
$$
-E_{\xi} \Big[\Big(\partial_i \partial_j \ell + \frac{1-\alpha}{2} \partial_i \ell \partial_j \ell \Big) \partial_k \ell \Big]
$$

\n
$$
= \alpha E_{\xi} [(\partial_i \ell)(\partial_j \ell)(\partial_k \ell)]
$$

\n
$$
= (2f'''(1) + 3) E_{\xi} [(\partial_i \ell)(\partial_j \ell)(\partial_k \ell)].
$$

п

12.3 Particular Cases

This section presents a few classical examples of contrast functions as particular examples of $D_f(\cdot||\cdot)$. These are constructed by choosing several examples of functions f that satisfy conditions $(a)-(c)$ and

verify the equation $\alpha = 2f'''(1) + 3$. We make the remark that if f is such a function, then $f_c(u) = f(u) + c(u-1)$, $c \in \mathbb{R}$, is also a function that induces the same contrast function, $D_{f_c} = D_f$. Therefore, the correspondence between functions f and contrast functions is not one-to-one.

12.3.1 Hellinger Distance

Consider $f(u) = 4(1 - \sqrt{u})$ and the associated contrast function

$$
D_f(p||q) = 4 \int_{\mathcal{X}} p(x) \left(1 - \sqrt{\frac{q(x)}{p(x)}}\right) dx = 4\left(1 - \int_{\mathcal{X}} \sqrt{p(x)q(x)} dx\right)
$$

=
$$
2\left(2 - \int_{\mathcal{X}} 2\sqrt{p(x)q(x)} dx\right)
$$

=
$$
2 \int_{\mathcal{X}} \left(p(x) - 2\sqrt{p(x)q(x)} + q(x)\right) dx
$$

=
$$
2 \int_{\mathcal{X}} \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx
$$

=
$$
H^2(p, q).
$$

H(p, q) is called the *Hellinger distance*, and is a true distance on the statistical model $S = \{p_{\xi}\}\$. Since in this case $\alpha = 2f'''(1) + 3 = 0$, the linear connection induced by $H^2(p,q)$ is exactly the Levi–Civita connection, $\nabla^{(0)}$, on the Riemannian manifold (\mathcal{S}, g) .

Example 12.3.1 Consider two exponential distributions, $p(x)$ = $\alpha e^{-\alpha x}$ and $q(x) = \beta e^{-\beta x}, x \ge 0, \alpha, \beta > 0$. Then

$$
H^{2}(p,q) = 4 - 4 \int_{0}^{\infty} \sqrt{p(x)q(x)} dx
$$

$$
= 4 - 4\sqrt{\alpha\beta} \int_{0}^{\infty} e^{-\frac{\alpha + \beta}{2}x} dx
$$

$$
= 4 - \frac{8\sqrt{\alpha\beta}}{\alpha + \beta},
$$

hence the Hellinger distance is $H(p,q) = 2\sqrt{1 - \frac{2\sqrt{\alpha\beta}}{n}}$ $\frac{\Delta \mathbf{v} \cdot \mathbf{v}}{\alpha + \beta}$.

The Hellinger distance can also be defined between two discrete distributions $p = (p_k)$ and $q = (q_k)$, replacing the integral by a sum

$$
H(p,q) = 2\left(1 - \sum_{k\geq 0} \sqrt{p_k q_k}\right)^{1/2} = \left(2 \sum_{k\geq 0} \left(\sqrt{p_k} - \sqrt{q_k}\right)^2\right)^{1/2}.
$$

Example 12.3.2 Consider two Poisson distributions, $p_k = \frac{\alpha^k}{k!}e^{-\alpha}$ and $q_k = \frac{\beta^k}{k!} e^{-\beta}$, $k \ge 0$. Then

$$
\sum_{k\geq 0} \sqrt{p_k q_k} = \sum_{k\geq 0} \frac{(\sqrt{\alpha \beta})^k}{k!} e^{-\frac{\alpha+\beta}{2}}
$$

$$
= e^{-\frac{\alpha+\beta}{2}} e^{\sqrt{\alpha \beta}} \sum_{k\geq 0} \frac{(\sqrt{\alpha \beta})^k}{k!} e^{-\sqrt{\alpha \beta}}
$$

$$
= e^{\sqrt{\alpha \beta} - \frac{\alpha+\beta}{2}}.
$$

Hence, the Hellinger distance becomes

$$
H(p,q) = 2\left(1 - \sum_{k\geq 0} \sqrt{p_k q_k}\right)^{1/2} = 2\sqrt{1 - e^{\sqrt{\alpha\beta} - \frac{\alpha + \beta}{2}}}.
$$

12.3.2 Kullback–Leibler Relative Entropy

The contrast function associated with function $f(u) = -\ln u$ is given by

$$
D_f(p||q) = \int_{\mathcal{X}} p(x) \ln \frac{p(x)}{q(x)} dx = D_{KL}(p||q),
$$

which is the *Kullback–Leibler information* or the *relative entropy*. In this case $\alpha = 2f'''(1) + 3 = -1$, so the associated connection is $\nabla^{(-1)}$.

It is worthy to note that the convex function $f(u) = u \ln u$ induces the contrast function

$$
D_f(p||q) = \int_{\mathcal{X}} q(x) \ln \frac{q(x)}{p(x)} dx = D_{KL}(q||p) = D_{KL}^*(p||q),
$$

which is the dual of the *Kullback–Leibler information*, see [51, 53]. Since $\alpha = 2f'''(1) + 3 = 1$, the induced connection is $\nabla^{(1)}$.

12.3.3 Chernoff Information of Order α

The convex function

$$
f^{(\alpha)} = \frac{1}{1 - \alpha^2} (1 - u^{\frac{1 + \alpha}{2}}), \qquad \alpha \neq \pm 1
$$

induces the contrast function

$$
D^{(\alpha)}(p||q) = \frac{4}{1-\alpha^2} \Big\{ 1 - \int_{\mathcal{X}} p(x)^{\frac{1-\alpha}{2}} q(x)^{\frac{1+\alpha}{2}} dx \Big\},\,
$$

see Chernoff [27]. For the computation of $D^{(\alpha)}$ in the case of exponential, normal and Poisson distributions, see Problems [12.9.](#page-13-0), [12.10.](#page-13-1) and [12.11.](#page-13-2) We note that for $\alpha = 0$ we retrieve the squared Hellinger distance, $D^{(0)}(p||q) = H^2(p,q)$.

12.3.4 Jeffrey Distance

The function $f(u) = \frac{1}{2}(u-1) \ln u$ induces the contrast function

$$
J(p,q) = D_f(p||q) = \frac{1}{2} \int_{\mathcal{X}} p(x) \left(1 - \frac{q(x)}{p(x)}\right) \ln \frac{p(x)}{q(x)} dx
$$

=
$$
\frac{1}{2} \int_{\mathcal{X}} (p(x) - q(x)) \left(\ln p(x) - \ln q(x) \right) dx,
$$

see Jeffrey [47]. A computation shows that $\alpha = 0$, so the induced connection is the Levi–Civita connection $\nabla^{(0)}$. In fact, the Jeffrey contrast function is the same as the symmetric Kullback–Leibler relative entropy

$$
J(p,q) = \frac{1}{2} \int_{\mathcal{X}} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \ln \frac{p(x)}{q(x)} dx
$$

=
$$
\frac{1}{2} \int_{\mathcal{X}} p(x) \ln \frac{p(x)}{q(x)} + \frac{1}{2} \int_{\mathcal{X}} q(x) \ln \frac{q(x)}{p(x)} dx
$$

=
$$
\frac{1}{2} \Big(D_{KL}(p||q) + D_{KL}(q||p) \Big).
$$

12.3.5 Kagan Divergence

Choosing $f(u) = \frac{1}{2}(1 - u)^2$ yields

$$
D_{\chi^2}(p||q) = D_f(p||q) = \frac{1}{2} \int_{\mathcal{X}} p(x) \left(1 - \frac{q(x)}{p(x)}\right) dx
$$

=
$$
\frac{1}{2} \int_{\mathcal{X}} \frac{(p(x) - q(x))^2}{q(x)} dx,
$$

called the *Kagan contrast function*, see Kagan [48]. In this case α = $2f'''(1) + 3 = 3$, and therefore the induced connection is $\nabla^{(3)}$. It is worth noting the relation with the minimum chi-squared estimation in the discrete case, see Kass and Vos [49], p.243. In this case the Kagan divergence becomes

$$
D_{\chi^2}(p,q) = \frac{1}{2} \sum_{i=1}^n \frac{(p_i - q_i)^2}{q_i}.
$$

12.3.6 Exponential Contrast Function

The contrast function associated with the convex function $f(u)$ $\frac{1}{2}(\ln u)^2$ is

$$
\mathcal{E}(p||q) = D_f(p||q) = \frac{1}{2} \int_{\mathcal{X}} p(x) \big(\ln p(x) - \ln q(x)\big)^2 dx.
$$

The induced connection in this case is $\nabla^{(-3)}$.

We note that all function candidates of the form $f(u) = K(\ln u)^{2k}$ are convex, but the condition $f''(1) = 1$ is verified only for $k = 1, 2$ (with appropriate constants K).

12.3.7 Product Contrast Function with (α, β)**-Index**

The following 2-parameter family of contrast functions is introduced and studied in Eguchi [40]

$$
D_{\alpha,\beta}(p||q) = \frac{2}{(1-\alpha)(1-\beta)} \int \left\{ 1 - \left(\frac{p(x)}{q(x)}\right)^{\frac{1-\alpha}{2}} \right\} \left\{ 1 - \left(\frac{p(x)}{q(x)}\right)^{\frac{1-\beta}{2}} \right\} dx,
$$

and is induced by the function

$$
f_{\alpha,\beta}(u) = \frac{2}{(1-\alpha)(1-\beta)}(1-u^{\frac{1-\alpha}{2}})(1-u^{\frac{1-\beta}{2}}).
$$

This connects to the previous contrast functions, see Problem [12.3.](#page-11-0)

It is worthy to note that the contrast function $D_{\alpha,\beta}(\cdot||\cdot)$ can be written as the following convex combination of Chernoff informations, see Problem 12.3 , part (e) .

We end this section with a few suggestive examples. The computations are left as exercises to the reader.

Example 12.3.1 Consider the statistical model $S = \{p_{\mu}; \mu \in \mathbb{R}^k\},\$ where

$$
p_{\mu}(x) = (2\pi)^{-k/2} e^{-\frac{\|x-\mu\|^2}{2}}, \qquad x \in \mathbb{R}^k
$$

is a k-dimensional Gaussian density with $\sigma = 1$. Problem [12.4](#page-11-1) provides exact formulas for the aforementioned contrast functions in terms of the Euclidean distance $\|\cdot\|.$

Example 12.3.2 (Exponential Model) Let $S = {p_ξ}$, where

$$
p_{\xi} = \xi e^{-\xi x}, \qquad \xi > 0, x > 0.
$$

A computation shows

$$
D_{KL}(p_{\xi}||p_{\xi'}) = \frac{\xi'}{\xi} - \ln \frac{\xi'}{\xi} - 1
$$

\n
$$
J(p_{\xi}, p_{\xi'}) = \frac{(\xi' - \xi)^2}{2\xi\xi'}
$$

\n
$$
H^2(p_{\xi}, p_{\xi'}) = \frac{4(\sqrt{\xi} - \sqrt{\xi'})^2}{\xi + \xi'}
$$

\n
$$
D^{(\alpha)}(p_{\xi}||p_{\xi'}) = \frac{4}{1 - \alpha^2} \left\{ 1 - \frac{\xi^{\frac{1 - \alpha}{2}} \xi'^{\frac{1 + \alpha}{2}}}{\frac{1 + \alpha}{2} \xi' + \frac{1 - \alpha}{2} \xi} \right\}
$$

\n
$$
D_{\chi^2}(p_{\xi}||p_{\xi'}) = \frac{1}{2} \left[\frac{1}{\left(2 - \frac{\xi}{\xi'} \right) \frac{\xi}{\xi'}} - 1 \right]
$$

\n
$$
\mathcal{E}(p_{\xi}||p_{\xi'}) = \frac{1}{2} \left\{ \frac{\xi'}{\xi} - \ln \frac{\xi'}{\xi} - 1 \right\}.
$$

It is worthy to note that all these contrast functions provide the same Riemannian metric on S given by $g_{11} = \frac{1}{\xi^2}$, which is the Fisher information. The induced distance between p_{ξ} and $p_{\xi'}$ is a hyperbolic distance, i.e., $dist(p_{\xi}, p_{\xi'}) = |\ln \frac{\xi}{\xi'}|$.

12.4 Problems

12.1. Consider the exponential family

$$
p(x; \xi) = e^{C(x) + \xi^i F_i(x) - \psi(\xi)}, \quad i = 1, \cdots, n,
$$

with $\psi(\xi)$ convex function, and define

$$
D(\xi_0||\xi)=\psi(\xi)-\psi(\xi_0)-\langle\partial\psi(\xi_0),\xi-\xi_0\rangle.
$$

- (a) Prove that $D(\cdot||\cdot)$ is a contrast function;
- (b) Find the dual contrast function $D^*(\cdot||\cdot);$
- (c) Prove that the Riemann metric induced by the contrast function $D(\cdot||\cdot)$ is the Fisher–Riemann metric of the exponential family. Find a formula for it using the function $\psi(\xi)$;
- (d) Find the components of the dual connections $\nabla^{(D)}$ and $\nabla^{(D^*)}$ induced by the contrast function $D(\cdot||\cdot);$
- (e) Show that the skewness tensor induced by the contrast function $D(\cdot||\cdot)$ is $T_{ijk}(\xi) = \partial_i \partial_j \partial_k \psi(\xi)$.
- **12.2.** Prove that the Hellinger distance

$$
H(p,q) = \sqrt{2 \int_{\mathcal{X}} (\sqrt{p(x)} - \sqrt{q(x)})^2 dx}
$$

satisfies the distance axioms.

12.3. Consider the Eguchi contrast function

$$
D_{\alpha,\beta}(p||q) = \frac{2}{(1-\alpha)(1-\beta)} \int \left\{1-\left(\frac{p}{q}\right)^{\frac{1-\alpha}{2}}\right\} \left\{1-\left(\frac{p}{q}\right)^{\frac{1-\beta}{2}}\right\} dx.
$$

Let $H(\cdot, \cdot), D^{(\alpha)}(\cdot||\cdot), J(\cdot, \cdot), \mathcal{E}(\cdot||\cdot)$ be the Hellinger distance, the Chernoff information of order α , the Jefferey distance, and the exponential contrast function, respectively. Prove the following relations:

- (a) $D_{0,0}(p||q) = H^2(p,q)$ (b) $D_{-\alpha,\alpha}(p||q) = \frac{1}{2} (D^{(\alpha)}(p||q) + D^{(-\alpha)}(p||q))$
- (c) $\lim_{\alpha \to 1} D_{-\alpha,\alpha}(p||q) = J(p,q)$
- (d) $\lim_{\alpha \to -1} D_{\alpha,\alpha}(p||q) = \mathcal{E}(p||q)$

(e)
$$
D_{\alpha,\beta}(p||q) = \lambda_1 D^{(-\alpha)} + \lambda_2 D^{(-\beta)} + \lambda_3 D^{(\frac{1-\alpha-\beta}{2})}
$$
,

where

$$
\lambda_1 = \frac{1+\alpha}{2(1-\beta)}, \ \lambda_2 = \frac{1+\beta}{2(1-\alpha)}, \ \lambda_3 = -\frac{(\alpha+\beta)(2-\alpha-\beta)}{2(1-\alpha)(1-\beta)},
$$

and show that $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

12.4. Consider the statistical model defined by the k-dimensional Gaussian family, $S = \{p_{\mu}; \mu \in \mathbb{R}^k\},\$

$$
p_{\mu}(x) = (2\pi)^{-k/2} e^{-\frac{||x-\mu||^2}{2}}, \qquad x \in \mathbb{R}^k.
$$

Prove the following relations:

(a)
$$
D_{KL}(p_{\mu}||p_{\mu'}) = \frac{1}{2} ||\mu - \mu'||^2
$$

\n(b) $J(p_{\mu}, p_{\mu'}) = \frac{1}{2} ||\mu - \mu'||^2$
\n(c) $H^2(p_{\mu}, p_{\mu'}) = 4\left[1 - e^{-\frac{||\mu - \mu'||^2}{8}}\right]$
\n(d) $D^{(\alpha)}(p_{\mu}||p_{\mu'}) = \frac{4}{1 - \alpha^2} \left[1 - e^{-\frac{1 - \alpha^2}{8} ||\mu - \mu'||^2}\right]$
\n(e) $\mathcal{E}(p_{\mu}||p_{\mu'}) = \frac{1}{2} ||\mu - \mu'||^2 \left[1 + \frac{1}{4} ||\mu - \mu'||^2\right],$

where $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^k .

12.5. Let $D_f(\cdot||\cdot)$ be the f-divergence. Prove the following convexity property

$$
D_f(\lambda p_1 + (1 - \lambda)p_2||\lambda q_1 + (1 - \lambda)q_2) \leq \lambda D_f(p_1||q_1) + (1 - \lambda)D_f(p_2||q_2),
$$

 $\forall \lambda \in [0, 1]$ and p_1, p_2, q_1, q_2 distribution functions.

- **12.6.** Prove the formulas for the contrast function in the case of the exponential distribution presented by Example [12.3.2.](#page-10-0)
- **12.7.** Consider the normal distributions $p(x) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$ and $q(x) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma_2}e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}.$

(a) Show that

$$
\int_{-\infty}^{\infty} \sqrt{p(x)q(x)} dx = \sqrt{\frac{2\sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2}} e^{A - B},
$$

where

$$
A = \frac{\left(\frac{\mu_1}{2\sigma_1^2} + \frac{\mu_2}{2\sigma_2^2}\right)^2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}, \quad B = \frac{\mu_1^2}{4\sigma_1^2} + \frac{\mu_2^2}{4\sigma_2^2}.
$$

(b) Find the Hellinger distance $H(p,q)$.

- **12.8.** Find the Hellinger distance between two gamma distributions.
- **12.9.** Consider two exponential distributions, $p(x) = ae^{-ax}$ and $q(x) = be^{-bx}$, $x \ge 0$. Show that the Chernoff information of order α is

$$
D^{\alpha}(p||q) = \frac{4}{1 - \alpha^2} \left\{ 1 - \frac{2a^{\frac{1 - \alpha}{2}} b^{\frac{1 + \alpha}{2}}}{a(1 - \alpha) + b(1 + \alpha)} \right\}, \quad \alpha \neq \pm 1.
$$

12.10. Consider the normal distributions $p(x) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$ and $q(x) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2\pi\sigma_2}e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$. Show that the Chernoff information

of order α is

$$
D^{\alpha}(p||q) = \frac{4}{1 - \alpha^2} \left\{ 1 - A \sqrt{\frac{\pi}{a} e^{\frac{b^2}{4a} - c}} \right\}, \qquad |\alpha| < 1,
$$

where

$$
a = \frac{1 - \alpha}{4\sigma_1^2} + \frac{1 + \alpha}{4\sigma_2^2}
$$

\n
$$
b = \frac{\mu_1(1 - \alpha)}{2\sigma_1^2} + \frac{\mu_2(1 + \alpha)}{2\sigma_2^2}
$$

\n
$$
c = \frac{\mu_1^2(1 - \alpha)}{4\sigma_1^2} + \frac{\mu_2^2(1 + \alpha)}{4\sigma_2^2}.
$$

12.11. The Chernoff information of order α for discrete distributions (p_n) and (q_n) is given by

$$
D^{(\alpha)}(p||q) = \frac{4}{1-\alpha^2} \Big\{ 1 - \sum_{n\geq 0} p_n^{\frac{1-\alpha}{2}} q_n^{\frac{1+\alpha}{2}} \Big\}.
$$

Let $p_n = \frac{\lambda_1^n}{n!} e^{-\lambda_1}$ and $q_n = \frac{\lambda_2^n}{n!} e^{-\lambda_2}$ be two Poisson distributions.

(a) Show that

$$
D^{(\alpha)}(p||q) = \frac{4}{1-\alpha^2} \left\{ 1 - e^{\lambda_1^{(1-\alpha)/2} \lambda_2^{(1+\alpha)/2} - \lambda_1 (1-\alpha)/2 - \lambda_2 (1+\alpha)/2} \right\}.
$$

(b) Show that the square of the Hellinger distance is given by

$$
H^{2}(p,q) = 4\{1 - e^{\sqrt{\lambda_1 \lambda_2} - \frac{\lambda_1 + \lambda_2}{2}}\}.
$$