
Chapter 11

Contrast Functions
Geometry

Contrast functions, called also divergence functions, are distance-like
quantities which measure the asymmetric “proximity” of two proba-
bility density functions on a statistical manifold or statistical model S.
A contrast function, D(p||q), for density functions p, q ∈ S, is a
smooth, non-negative function that vanishes for p = q. Eguchi
[38, 39, 41] has shown that a contrast functionD induces a Riemannian
metric by its second order derivatives, and a pair of dual connections
by its third order derivatives.

This chapter introduces contrast functionals on statistical mani-
folds, which are natural extensions of Kullback–Leibler relative entropy
from statistical models, and analyzes their corresponding geometric
structures and how these interact with the dualistic structure of a sta-
tistical manifold. The chapter also investigates the geometry gener-
ated by a contrast functional on the space of probability distributions
of a statistical model and provides examples of contrast functions.

It has been shown in Chap. 4 that Kullback–Leibler relative ent-
ropy is positive, non-degenerate, its first variation along the diagonal
ξ0 = ξ vanishes, and the Hessian along the diagonal defines the Fisher
metric.
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The contrast functions mimic the aforementioned properties of
the Kullback–Leibler relative entropy. The only difference in the new
context is that there are no density functions and no formula of
expectation type can be used here.

We overcome this flaw by defining the contrast functions abs-
tractly in two stages: (i) on an open set of R

k; (ii) on a smooth
manifold S.

11.1 Contrast Functions on R
k

Consider an open set E in R
k, and let ξ1, ξ2 ∈ E. A contrast function

on E is a smooth functionD( · ‖ · ) : E×E → R satisfying the following
properties:

(i) positive: D(ξ1||ξ2) ≥ 0, ∀ξ1, ξ2 ∈ E;

(ii) non-degenerate: D(ξ1||ξ2) = 0 ⇐⇒ ξ1 = ξ2;

(iii) the first variation along the diagonal {ξ1 = ξ2} vanishes:

∂ξi1
D(ξ1||ξ2)|ξ1=ξ2 = ∂ξi2

D(ξ1||ξ2)|ξ1=ξ2 = 0;

(iv) the Hessian along the diagonal ξ0 = ξ

gij(ξ1) = ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1

is strictly positive definite and smooth with respect to ξ1.

Some comments regarding the notation are worthy to make. Even
if the function D(ξ1||ξ2) is not a distance (the symmetry and the tri-
angle inequality are not satisfied), it is a useful distance-like measure
of the separation between two points ξ1, ξ2. The separation notation
is represented by the symbol ||.

Another observation worthy to make is the redundancy of part
(iii) of the definition; this is a consequence of parts (i) and (ii) as
follows:

lim
ε↘0

D(ξ1 + ε||ξ1)−D(ξ1||ξ1)
ε

= lim
ε↘0

D(ξ1 + ε||ξ1)
ε

≥ 0

lim
ε↗0

D(ξ1 + ε||ξ1)−D(ξ1||ξ1)
ε

= lim
ε↗0

D(ξ1 + ε||ξ1)
ε

≤ 0,

which implies the limit equal to 0. We assumed ξ1 ∈ R for the sake of
notation simplicity, but the result holds true in multiple dimensions.

We note two facts, which are direct consequences of the definition:
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(1) The point ξ0 is a global minimum of the map ξ → D(ξ0||ξ).
(2) The quadratic approximation of a contrast function is given by

D(ξ1||ξ2) = 1

2

∑

i,j

gij(ξ1)(ξ
i
1 − ξi2)(ξ

j
1 − ξj2) + o(‖Δ(ξ1 − ξ2)‖2)

(11.1.1)

when ξ2 − ξ1 → 0.

Hence, for any two close enough neighbor vectors ξ1, ξ2 ∈ E, the
contrast function is approximated by half the length of their difference
measured in the inner product induced by the matrix gij

D(ξ1||ξ2) ≈ 1

2
〈ξ1 − ξ2, ξ1 − ξ2〉g = 1

2
‖ξ1 − ξ2‖2g.

In the following we show how a contrast function can be induced
by a strictly convex function.

Proposition 11.1.1 Let ϕ : E → R be a strictly convex function.
Then

D(ξ0||ξ) = ϕ(ξ)− ϕ(ξ0)−
∑

j

∂jϕ(ξ0)(ξ
j − ξj0) (11.1.2)

= ϕ(ξ)− ϕ(ξ0)− 〈∂ϕ(ξ0), ξ − ξ0〉
is a contrast function on E.

Proof:

(i) Positivity: since the graph of the strictly convex function ϕ is
above the tangent plane at each point, we have

ϕ(ξ) ≥ ϕ(ξ0) +
∑

j

∂jϕ(ξ0)(ξ
j − ξj0). (11.1.3)

This implies D(ξ0||ξ) ≥ 0.

(ii) Non-degenerate: Since the equality in (11.1.3) occurs only for
ξ = ξ0, it follows that D(ξ0||ξ) = 0 implies ξ = ξ0.

(iii) Differentiating with respect to ξi yields

∂ξiD(ξ0||ξ) = ∂ξiϕ(ξ)− ∂ξiϕ(ξ0),

and hence ∂ξiD(ξ0||ξ)|ξ=ξ0 = 0.
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(iv) Since the function ϕ is strictly convex, and

∂ξi∂ξjD(ξ0||ξ) = ∂ξi∂ξjϕ(ξ) (11.1.4)

it follows that ∂ξi∂ξjD(ξ0||ξ) is strictly positive definite. Hence
D(ξ0||ξ) satisfies the properties of a contrast function.

We shall discuss in the following a few particular cases.

Example 11.1.2 (Exponential Model) Consider the convex func-
tion ϕ(ξ) = − ln ξ, with ξ > 0. The induced contrast function is
given by

D(ξ0||ξ) = ξ

ξ0
− ln

ξ

ξ0
− 1,

which is exactly the Kullback–Leibler relative entropy for the exp-
onential distribution. It is worth noting that the convex function
ϕ(ξ) = ξ − ln ξ induces the same contrast function. Hence, there is
no one-to-one correspondence between convex functions and contrast
functions.

Example 11.1.3 The convex function ϕ(ξ) = ξ2 − ln ξ, with ξ > 0,
induces the contrast function

D(ξ0||ξ) = (ξ − ξ0)
2 +

ξ

ξ0
− ln

ξ

ξ0
− 1.

Example 11.1.4 If consider ϕ(ξ) = ξ2, with ξ > 0, the induced
contrast function is

D(ξ0||ξ) = (ξ − ξ0)
2.

Not all contrast functions are induced by strictly convex functions.
For instance, one can show that

D(ξ0||ξ) = (ξ − ξ0)
2

ξ0ξ2

is a contrast function on (0,∞)2, which cannot be written in the
form of formula (11.1.2). We make the note that this contrast func-
tion is related to the problem of minimum chi-squared estimator, as
described in Kass and Vos [49], p.244. There are many other con-
trast functions that are not in the form (11.1.2), for instance most
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f -divergences, see Sect. 12.2. It can be shown that a contrast function
derived from a strictly convex function by formula (11.1.2) is a dually
flat contrast function.

It is worth noting that the definition of the contrast function
adopted by Kass and Vos [49], p.240, is slightly modified, replacing
condition (iv) by the following condition:

(iv′) the matrix
gij(ξ1) = ∂ξi1

∂
ξj1
D(ξ1||ξ2)

is positive definite and a smooth function of ξ1 alone.

The contrast function given by formula (11.1.2) is sometimes called
Bregman divergence, see Bregman [20], and it is widely used in convex
optimization, see Bauschke [14], Bauschke and Combettes [16], and
Bauschke et al. [15].

The term of “contrast function” has been defined slightly different
by other authors, and under different names (divergence, yoke, etc.)
see Eguchi [40], Rao [72] and Barndorff-Nielsen [11].

11.2 Contrast Functions on a Manifold

Let S be a smooth manifold. A contrast function on S is a smooth
mapping DS( · ‖ · ) : S × S → R, such that any parametrization φ :
E → S makes

D(ξ1||ξ2) = DS
(
φ(ξ1)||φ(ξ2)

)

a contrast function on E. This definition was given for the first time
in Amari [5].

We note the local character of a contrast function on a manifold.
If p1, p2 ∈ S belong to the same coordinate chart, there are ξ1, ξ2 ∈ E

such that φ(pi) = ξi and then we have D(ξ1||ξ2) = DS
(
p1||p2

)
. Since

there might be no coordinate charts to include both points p1, p2, then
the contrast function DS( · ‖ · ) makes sense only locally. In general,
there might be no global defined contrast functions on a manifold S.

The invariance of the contrast function with respect to charts is
given in the following result.

Theorem 11.2.1 Consider two local parametrizations φ : Eξ → U ,
ϕ : Eη → V on the manifold S. If

D(ξ1||ξ2) = DS
(
φ(ξ1)||φ(ξ2)

)
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Figure 11.1: The parameterizations φ and ϕ on a manifold S

is a contrast function on the parameter space Eξ, then

D(η1||η2) = DS
(
ϕ(η1)||ϕ(η2)

)

is also a contrast function on the parameter space Eη.

Proof: For any two points p1, p2 ∈ U ∩ V ⊂ S denote p1 = φ(ξ1) =
ϕ(η1), p2 = φ(ξ2) = ϕ(η2). Let ψ : Eξ → Eη, ψ(ξ) = η be the
change of parametrization map, which is invertible as a composition
of invertible maps ψ = ϕ−1 ◦ φ, see Fig. 11.1.

(i) The positivity follows obviously from

D(η1||η2) = DS
(
p1||p2

)
= D(ξ1||ξ2) ≥ 0.

(ii) To check the non-degeneracy we note thatD(η1||η2) = 0 implies
D(ξ1||ξ2) = 0, and hence ξ1 = ξ2, or ψ

−1(η1) = ψ−1(η2). Since
ψ−1 is one-to-one, we obtain η1 = η2.

(iii) The fact that the first variation along the diagonal {η1 = η2}
vanishes is a consequence of (i) and (ii).

(iv) We investigate first how does gij change when changing the
parameter ξ into η

gij(ξ) = g(∂ξi , ∂ξj ) = g
(∂ηr
∂ξi

∂ηr ,
∂ηk

∂ξj
∂ηk

)

=
∂ηr

∂ξi
∂ηk

∂ξj
g(∂ηr , ∂ηk) =

∂ηr

∂ξi
∂ηk

∂ξj
ḡrk(η),
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and hence

gij(ξ) =
∂ηr

∂ξi
∂ηk

∂ξj
ḡrk(η). (11.2.5)

Consider the points p1 and p2 infinitesimally close. Then writ-
ing the quadratic approximation formula (11.1.1) in differential
form for D(ξ1||ξ2) and D(η1||η2) and combining with (11.2.5)
and the chain rule yields

D(ξ1||ξ2) =
1

2

∑

i,j

gij(ξ1)dξ
idξj

=
1

2

∑

i,j

∑

r,k

ḡrk(η1)
∂ηr

∂ξi
∂ηk

∂ξj
dξidξj (11.2.6)

D(η1||η2) =
1

2

∑

r,k

hrk(η1)dη
rdηk

=
1

2

∑

i,j

∑

r,k

hrk(η1)
∂ηr

∂ξi
∂ηk

∂ξj
dξidξj . (11.2.7)

Comparing (11.2.6) and (11.2.7) yields ḡrk(η) = hrk(η). Since
ḡrk(η) is strictly positive definite, then hrk(η) is the same. Hence
D(η1, η2) verifies all the conditions of a contrast function.

Corollary 11.2.2 The diagonal part of the Hessians

gij(ξ1) = ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1

hij(η1) = ∂ηi2
∂
ηj2
D(η1||η2)|η2=η1

are related by the following relation

gij(ξ1) =
∂ηr

∂ξi
∂ηk

∂ξj
hrk(η1). (11.2.8)

11.3 Induced Riemannian Metric

One of the useful consequences of the invariance property given by
Theorem 11.2.1 is that a contrast function provides a unique Rie-
mannian metric on the manifold S. This metric is the inner product
gp : TpS × TpS → R defined in a particular chart as
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gp(∂i, ∂j) = ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1 , (11.3.9)

for any coordinate vector fields ∂i, ∂j on S about p.

In the following we shall develop two formulas equivalent with
(11.3.9). Consider the notation ρ(ξ1, ξ2) = D(ξ1||ξ2). By (ii) we have

∂ξi1
ρ(ξ1, ξ2)|ξ1=ξ2=ξ = ∂ξi1

ρ(ξ, ξ) = 0

∂ξi2
ρ(ξ1, ξ2)|ξ1=ξ2=ξ = ∂ξi2

ρ(ξ, ξ) = 0.

Denote ∂j =
∂
∂ξj

. Differentiating the function ϕ(ξ) = ∂ξi1
ρ(ξ, ξ) with

respect to ∂j we get

0 = ∂jϕ(ξ) = ∂
ξj1
∂ξi1
ρ(ξ, ξ) + ∂

ξj2
∂ξi1
ρ(ξ, ξ),

which implies
∂
ξj1
∂ξi1
ρ(ξ, ξ) = −∂

ξj2
∂ξi1
ρ(ξ, ξ). (11.3.10)

Differentiating the function φ(ξ) = ∂ξi2
ρ(ξ, ξ) with respect to ∂j

we obtain

0 = ∂jφ(ξ) = ∂
ξj1
∂ξi2
ρ(ξ, ξ) + ∂

ξj2
∂ξi2
ρ(ξ, ξ),

which implies
∂
ξj2
∂ξi2
ρ(ξ, ξ) = −∂

ξj1
∂ξi2
ρ(ξ, ξ). (11.3.11)

Assuming ρ(· , ·) smooth enough, the partial derivatives commute and
using (11.3.10) and (11.3.11) we arrive at the following equivalent
local formulas for the induced Riemannian metric:

gij(ξ) = ∂ξi1
∂
ξj1
D(ξ1||ξ2)|ξ2=ξ1 (11.3.12)

= ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1 (11.3.13)

= −∂ξi1∂ξj2D(ξ1||ξ2)|ξ2=ξ1 (11.3.14)

= −∂
ξj1
∂ξi2
D(ξ1||ξ2)|ξ2=ξ1 . (11.3.15)

Another relation which will be useful in a later section is obtained
by differentiating with respect to ∂k(=

∂
∂ξk

) in relation (11.3.11) and
applying the chain rule

∂k∂ξj2
∂ξi2
ρ(ξ, ξ) = −∂k∂ξj1∂ξi2ρ(ξ, ξ) ⇐⇒

∂ξk1
∂
ξj2
∂ξi2
ρ(ξ, ξ) + ∂ξk2

∂
ξj2
∂ξi2
ρ(ξ, ξ) = −∂ξk1∂ξj1∂ξi2ρ(ξ, ξ)

−∂ξk2∂ξj1∂ξi2ρ(ξ, ξ).
(11.3.16)
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The following notation is adopted for the representation of a
vector field X on S with respect to two local coordinate systems
(ξi1) and (ξi2)

X(ξ1) =
∑

i

Xi(ξ1)∂ξi1
, X(ξ2) =

∑

i

Xi(ξ2)∂ξi2
.

We note that for any vector field X we have

X(ξ1)D(ξ1||ξ2)|ξ1=ξ2 = X(ξ2)D(ξ1||ξ2)|ξ1=ξ2 = 0.

Next we provide the global definition of the induced Riemannian
metric.

Proposition 11.3.1 The inner product of two vector fields is given
by the following equivalent formulas

g(X,Y ) = X(ξ1)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2
= X(ξ2)Y(ξ2)D(ξ1||ξ2)|ξ1=ξ2
= −X(ξ1)Y(ξ2)D(ξ1||ξ2)|ξ1=ξ2
= −X(ξ2)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2 .

Proof: The proof follows from the bilinearity of g and an application
of relations (11.3.12)–(11.3.15). For instance, the first relation can be
shown as

g(X,Y ) =
∑

i,j

XiY jg(∂i, ∂j)

=
∑

i,j

XiY j∂ξi1
∂
ξj1
D(ξ1||ξ2)|ξ1=ξ2

= X(ξ1)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2 .

11.4 Dual Contrast Function

If D is a contrast function on R
k, then the associated dual contrast

function is defined by

D∗(ξ1||ξ2) = D(ξ2||ξ1).
The fact that D∗ satisfies properties (i)–(iv) from the definition of a
contrast function follows obviously from the fact that D satisfies the
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same properties. Similarly, we can define the dual contrast function
on a manifold by

D∗
S(p||q) = DS(q||p), ∀p, q ∈ S.

It is worthy to note that the contrast functions D and D∗ induce the
same Riemannian metric on the manifold S. However, the connections
induced by D and D∗ play a central role in the geometry of contrast
functions, as we shall see in the next couple of sections.

11.5 Induced Primal Connection

Let g be the Riemannian metric on S induced by the contrast func-
tion DS . Consider the operator ∇(D) given by

g(∇(D)
X Y, Z) = −X(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2 , (11.5.17)

for any vector fields X,Y, Z defined on the overlap of the chart
neighborhoods associated with the coordinate systems (ξi1) and (ξi2).
We shall check that ∇(D) satisfies the properties of a connection.
The R-bilinearity is obvious. Let f ∈ F(S) be an arbitrary smooth
function. Then

g(∇(D)
fX Y, Z) = −fX(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2 = g(f∇(D)

X Y, Z),

and dropping the Z-argument implies ∇(D)
fX Y = f∇(D)

X Y . Next we
check Leibniz rule in the second argument

g(∇(D)
X fY, Z) = −X(ξ1)(fY(ξ1))Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2

= −fX(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2
−X(ξ1)(f) Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2

= fg(∇(D)
X fY, Z) +X(ξ1)(f)g(Y, Z)

= g(f∇(D)
X fY +X(f)Y, Z),

so ∇(D)
X fY = f∇(D)

X fY +X(f)Y .

Writing formula (11.5.17) in local coordinates we obtain the compo-
nents of the linear connection ∇(D) as in the following

Γ
(D)
ij,k = g(∇(D)

∂i
∂j , ∂k) = −∂ξi1∂ξj1∂ξk2D(ξ1||ξ2)|ξ1=ξ2 . (11.5.18)
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The commutativity of the partial derivatives imply Γ
(D)
ij,k = Γ

(D)
ji,k, and

hence the connection ∇(D) has zero torsion. We can arrive to the
same result in the following equivalent way. Starting from the global
definition of the connection and Riemannian metric we write

g(∇(D)
X Y −∇(D)

Y X,Z) = −X(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2
+Y(ξ1)X(ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2

= −[X,Y ](ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2
= g([X,Y ], Z).

Dropping the Z-argument implies ∇(D)
X Y −∇(D)

Y X = [X,Y ], i.e., the
torsion of connection ∇(D) is zero.

11.6 Induced Dual Connection

The dual connection ∇(D∗) is the connection induced by the dual
contrast function D∗, i.e., it is given by

g(∇(D∗)
X Y, Z) = −X(ξ2)Y(ξ2)Z(ξ1)D

∗(ξ2||ξ1)|ξ1=ξ2
= −X(ξ2)Y(ξ2)Z(ξ1)D(ξ1||ξ2)|ξ1=ξ2 ,

for any vector fields X,Y, Z. This can be written locally as

Γ
(D∗)
ij,k = g(∇(D∗)

∂i
∂j , ∂k) = −∂ξi2∂ξj2∂ξk1D(ξ1||ξ2)|ξ1=ξ2 .

Theorem 11.6.1 The connections ∇(D) and ∇(D∗) are torsion-less
dual connections.

Proof: The fact that the torsions vanish follows from the symmetry

in the first two indices of the connection components Γ
(D)
ij,k = Γ

(D)
ji,k

and Γ
(D∗)
ij,k = Γ

(D∗)
ji,k . The duality relation will be shown in local coor-

dinates. Differentiating with respect to ∂k = ∂ξk in relation gij(ξ) =
−∂ξi1∂ξj2D(ξ||ξ) we obtain

∂kgij = −∂ξk1∂ξi1∂ξj2D(ξ||ξ)
−∂ξk2∂ξi1∂ξj2D(ξ||ξ)

= Γ
(D)
ki,j + Γ

(D∗)
kj,i ,

which is equivalent with the duality of D and D∗.
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Therefore, a contrast function D on a manifold S induces a
statistical structure (g,∇(D),∇(D∗)). Hence, (S, g,∇(D),∇(D∗))
becomes the statistical manifold induced by the contrast function D.

Proposition 11.6.2 The Levi–Civita connection of the Riemannian
space (S, g) is given by

∇(0) =
1

2

(∇(D) +∇(D∗)).

Proof: Since ∇(D) and ∇(D∗) have zero torsion, the same applies
to ∇(0). Using the duality relation we show that ∇(0) is a metrical
connection

Xg(Y, Z) =
1

2
Xg(Y, Z) +

1

2
Xg(Y, Z)

=
1

2

{
g(∇(D)

X Y, Z) + g(Y,∇(D∗)
X Z)

}

=
1

2

{
g(∇(D∗)

X Y, Z) + g(Y,∇(D)
X Z)

}

= g
(∇(D)

X Y +∇(D∗)
X Y

2
, Z

)
+ g

(
Y,

∇(D)
X Z +∇(D∗)

X Z

2

)

= g(∇(0)
X Y, Z) + g(Y,∇(0)

X Z).

11.7 Skewness Tensor

Besides a Riemannian metric g and a pair of dual connections ∇(D),
∇(D∗), a contrast function D also induces the skewness tensor by

C(D)(X,Y, Z) = g
(∇(D∗)

X Y −∇(D)
X Y, Z

)

=
(
X(ξ1)Y(ξ1)Z(ξ2) −X(ξ2)Y(ξ2)Z(ξ1)

)
D(ξ1||ξ2)|ξ1=ξ2 .

In local coordinates this becomes

C
(D)
ijk = Γ

(D∗)
ij,k − Γ

(D)
ij,k

= ∂ξi1
∂
ξj1
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2 − ∂ξi2
∂
ξj2
∂ξk1

D(ξ1||ξ2)|ξ1=ξ2 .

In the virtue of identities (11.3.12)–(11.3.15), the tensor C
(D)
ijk be-

comes completely symmetric.
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11.8 Third Order Approximation of D(p|| ·)
This section will present the third order approximation of a contrast
function DS on a manifold S. Let p, q ∈ S be two points in the
same chart with coordinates ξ1 = φ−1(p) and ξ2 = φ−1(q). Denote
Δξi = ξi2 − ξi1. The third order approximation of DS(p|| ·) about p is
given by

DS(p||q) = DS(p||p) + ∂ξi2
D(ξ1||ξ2)|ξ1=ξ2=ξΔξi

+
1

2
∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ1=ξ2=ξΔξiΔξj

+
1

6
∂ξi2
∂
ξj2
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2=ξΔξiΔξjΔξk + o(‖Δξ‖2),

where o(‖Δξ‖2) is a term which converges to 0 faster than ‖Δξ‖2
does, as p → q. Since from the definition of a contrast function the
first two terms are zero, then

DS(p||q) =
1

2
gij(ξ1)Δξ

iΔξj +
1

6
hijk(ξ1)Δξ

iΔξjΔξk + o(‖Δξ‖2),

where gij is the induced Riemannian metric. It suffices to compute
the coefficients

hijk(ξ1) = ∂ξi2
∂
ξj2
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2=ξ.

Writing relation (11.3.16) in terms of the induced connections com-
ponents, see formula (11.5.18), we have

−Γ∗
ij,k + hijk = Γjk,i + Γ∗

ik,j

from where

hijk = Γ∗
ij,k + Γjk,i + Γ∗

ik,j

= ∂jgik + Γ∗
ik,j

= ∂kgij + Γ∗
ij,k.

The last two identities follow from formula (8.1.2). A similar argu-
ment can be used to show also the relation

hijk = ∂igkj + Γ∗
jk,i.

This relations imply the total symmetry of hijk

hijk = hikj = hkji = hjik.
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It is worthy to mention that if D(· || ·) induces a dually flat statistical
manifold (i.e., Γ = Γ∗ = 0), then hijk = 0.

We have seen that any contrast function induces a dualistic struc-
ture (g(D),∇(D),∇(D∗)) on S. Next we consider the converse implica-
tion, which states that any triple (g,∇,∇∗), which consists in a metric
and two dual torsion-free connections, is induced from a divergence.
The divergence can be given locally by

D(p||q) = 1

2
gij(p)Δξ

iΔξj +
1

6
hijk(p)Δξ

iΔξjΔξk, (11.8.19)

where Δξi = ξi(q) − ξi(p) and hijk = ∂igkj + Γ∗
jk,i. The existence of

a globally defined contrast function is proved in Matumoto [56].

However, the contrast function is not unique. An alternative con-
struction for (11.8.19) is

D(p||q) = 1

2
gij(p)Δξ

iΔξj − 1

6
h∗ijk(p)Δξ

iΔξjΔξk,

where h∗ijk = ∂igjk + Γ∗
jk,i.

11.9 Hessian Geometry

Assume now that there is a local coordinate chart with respect to
which the contrast functionDS is induced locally by a convex function
ϕ via formula (11.1.2). We make the remark that it is not necessarily
true that there is always a local system of coordinates in which the
contrast function is induced by a convex function. However, when
this occurs, it defines a dually flat structure of statistical manifold,
as we shall see next. This type of contrast function is sometimes
called Bregman divergence, see Bregman [20], and it is widely used
in convex optimization, see Bauschke [14–16]. For a generalization of
this contrast function to an α-family, see Zhang [86].

Using (11.1.4) we obtain that the metric is given by the Hessian
of the strictly convex potential function ϕ

gij(ξ) = ∂ξi∂ξjϕ(ξ). (11.9.20)

A straightforward computation shows that the components of the
induced dual connections ∇(D) and ∇(D∗) are given by

Γ
(D)
ij,k(ξ) = 0, Γ

(D∗)
ij,k (ξ) = ∂ξi∂ξj∂ξkϕ(ξ). (11.9.21)



11.10. Problems 317

A further computation shows that the Riemann curvature tensors are
R = R∗ = 0, i.e., the connections are dually flat.

It is worth noting that there are topological obstructions to the
existence of dually flat structures. Ay and Tuschmann [10] proved
that if (S, g,∇,∇∗) is dually flat and S is compact, then the first
fundamental group π1(S) must be finite.

The skewness tensor is given by the third order derivatives as

C
(D)
ijk = ∂ξi∂ξj∂ξkϕ(ξ).

This geometry is commonly referred to in the literature as the Hessian
geometry. Some authors considered weaker conditions than strictly
convexity for the potential function ϕ, see Shima [74] and Shima and
Yagi [75]. For more details on hessian metrics, the reader is referred
to Bercu [17] and Corcodel [29].

11.10 Problems

11.1. Let γ : (a, b) → (M, g) be a regular curve, i.e., γ̇ �= 0. Define

D(s||t) =
∫ t

s
(t− u)|γ̇(u)|2g du.

Show that D( · || · ) is a contrast function on (a, b).

11.2. Let S be a statistical model and consider two distributions
p0, p1 ∈ S. Define the following curves in S

p
(m)
t = (1− t)p0 + tp1, p

(e)
t = Ctp

1−t
0 pt1, 0 ≤ t ≤ 1,

where Ct is a normalization function. Denote by g(m)(t) and
g(e)(t) the Fisher metrics along the aforementioned curves.
Let

D(m)(p1||p0) =
∫ 1

0
(1− s)g(m)(s) ds,

D(e)(p1||p0) =
∫ 1

0
(1− s)g(e)(s) ds.

(a) Prove that D(m)( · || · ) and D(e)( · || · ) are contrast func-
tions on S.

(b) What is the relationship between D(m)( · || · ) and
D(e)( · || · )?
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11.3. Let (M, g,∇,∇∗) be a dually flat statistical manifold and (xi)
and (ζα) a pair of dual coordinate systems associated with
potentials ϕ and ψ (i.e., xi = ∂ζiϕ(ζ), ζj = ∂xjψ(x)). Define
D :M ×M → R as

D(p||q) = ψ
(
x(p)

)
+ ϕ

(
ζ(q)

)− xi(p)ζi(q).

(a) Prove that D( · || · ) is a contrast function (called the
canonical divergence of (M, g,∇,∇∗)).

(b) Find the dual contrast function D∗( · || · ).
(c) Show that for any p, q, r ∈M the following relation holds

D(p||q) +D(q||r) = D(p||r)− (
xi(q)− xi(p)

)(
ζi(q)− ζi(q)

)
.

(d) Let θ be the angle made at q by the ∇-geodesic joining
p and q, γpq, and the ∇∗-geodesic joining q and r, γ∗qr.
Show that

D(p||q) +D(q||r) = D(p||r)− ‖γ̇pq‖ · ‖γ̇∗qr‖ cos(π − θ).

(e) If θ =
π

2
show the following Pythagorean relation:

D(p||r) = D(p||q) +D(q||r).

(f) Find the skewness tensor associated with D( · || · ).
11.4. Consider the Euclidean space (M, g) = (Rn, δij), with∇ = ∇∗

given by ∇UV = U(V j)ej , for any U, V ∈ X (M).

(a) Show that the Euclidean coordinates system is self-dual,
i.e., xi = ζi.

(b) Show that in this case the potential functions are given
by

ψ(x) =
1

2

∑

i

(xi)2, φ(x) =
1

2

∑

i

(ζi)
2.

(c) Prove that the canonical divergence is given by
D(p||q) = 1

2d
2
E(p, q), where dE(p, q) denotes the Euclidean

distance between p and q.

11.5. How many of the previous requirements still hold on a
Riemannian manifold (M, g,∇) with a flat Levi–Civita con-
nection ∇?
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11.6. Let (M, g,∇,∇∗) be a dually flat statistical manifold, and
denote by D( · || · ) the associated canonical divergence. Con-
sider the D-sphere centered at p ∈M of radius ρ, defined by

S(D) = {q ∈M ;D(p||q) = ρ}.
Show that every ∇-geodesic starting at the center p intersects
S(D) orthogonally.

11.7. Consider the exponential family p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ),
x ∈ X , with {Fi(x)} linearly independent on X . Define ηj =
Eξ[Fj ], 1 ≤ j ≤ n.

(a) Show that ηj = ∂jψ(ξ).

(b) Prove that (ξi) and (ηj) are dual systems of coordinates.

(c) Verify that (ξi) is a 1-affine coordinate system and (ηj) is
a (−1)-affine coordinate system.

(d) Let ϕ(η) be the potential associated with ξ, i.e., ξj =
∂ηjϕ(η). Show that ϕ(η) = Eξ[ln pξ(x)− C(x)].

(e) Let H(p) be the entropy of distribution p. Validate the
relation

H(pξ) = −ϕ(ξ)− Eξ[C(x)].

(f) Let η̂j = Fj(x). Show that η̂ is an unbiased estimator
for η, and that the covariance matrix provides the Fisher
metric, i.e., Vη(η̂) = gij .

(g) Find the contrast function given by the canonical diver-
gence associated with the dual system of coordinates (ξi),
(ηi). What is its relationship with the Kullback–Leibler
relative entropy?

11.8. Consider the statistical model given by the Poisson distribu-
tion p(x; ξ) = e−ξ ξ

x

x! , x ∈ {0, 1, 2, . . . }, ξ > 0. Consider η = ξ
and θ = ln ξ.

(a) Prove that η and θ are dual coordinates.

(b) Find the canonical divergence associated with the above
dual coordinates.

11.9. Consider the statistical model given by the normal family

p(x; ξ) =
1√
2πσ

e−
(x−μ)2

2σ2 , μ ∈ R, σ > 0.
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Show that (θi) are (ηi) are dual systems of coordinates, where

η1 = μ, η2 = μ2 + σ2

θ1

2θ2
= −μ, (θ1)2 − 2θ2

4(θ2)2
= μ2 + σ2.

11.10. Consider the statistical model given by the exponential dis-
tribution p(x; ξ) = ξe−ξx, x ≥ 0, ξ > 0.

(a) Find a pair of dual coordinates on the above statistical
model.

(b) Find the potentials ψ and ϕ associated with the dual coor-
dinates obtained at (a).

(c) Deduct the expression for the Fisher metric.

(d) Find the canonical divergence associated with the dual
coordinates obtained at (a).
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