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Preface

Statistical manifolds are geometric abstractions used to model
information, their field of study belonging to Information Geometry,
a relatively recent branch of mathematics, that uses tools of differ-
ential geometry to study statistical inference, information loss, and
estimation.

This field started with the differential geometric study of the man-
ifold of probability density functions. For instance, the set of normal
distributions

p(x;μ, σ) =
1√
2πσ

e−
(x−μ)2

2σ2 , x ∈ R,

with (μ, σ) ∈ R × (0,+∞), can be considered as a two-dimensional
surface. This can be endowed with a Riemannian metric, which mea-
sures the amount of information between the distributions. One of
these possibilities is to consider the Fisher information metric. In
this case, the distribution family p(x;μ, σ) becomes a space of con-
stant negative curvature. Therefore, any normal distribution can be
visualized as a point in the Poincaré upper-half plane.

In a similar way, we shall consider other parametric model fami-
lies of probability densities that can be organized as a differentiable
manifold embedded in the ambient space of all density functions.
Every point on this manifold is a density function, and any curve
corresponds to a one-parameter subfamily of density functions. The
distance between two points (i.e., distributions), which is measured
by the Fisher metric, was introduced almost simultaneously by C.
R. Rao and H. Jeffreys in the mid-1940s. The role of differential ge-
ometry in statistics was first emphasized by Efron in 1975, when he
introduced the concept of statistical curvature. Later Amari used the
tools of differential geometry to develop this idea into an elegant rep-
resentation of Fisher’s theory of information loss.

v
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A fundamental role in characterizing statistical manifolds is played
by two geometric quantities, called dual connections, which describe
the derivation with respect to vector fields and are interrelated in a
duality relation involving the Fisher metric. The use of dual connec-
tions leads to several other dual elements, such as volume elements,
Hessians, Laplacians, second fundamental forms, mean curvature vec-
tor fields, and Riemannian curvatures. The study of dual elements
and the relations between them constitute the main direction of de-
velopment in the study of statistical manifolds.

Even if sometimes we use computations in local coordinates, the
relationships between these geometric quantities are invariant with
respect to the selection of any particular coordinate system. There-
fore, the study of statistical manifolds provides techniques to investi-
gate the intrinsical properties of statistical models rather than their
parametric representations. This invariance feature made statistical
manifolds useful in the study of information geometry.

We shall discuss briefly the relation of this book with other pre-
viously published books on the same or closely related topic.

One of the well-known textbooks in the field is written by two of
the information geometry founders, Amari and Nagaoka [8], which
was published first time in Japan in 1993, and then translated into
English in 2000. This book presents a concise introduction to the
mathematical foundation of information geometry and contains an
overview of other related areas of interest and applications. Our book
intersects with Amari’s book over its first three chapters, i.e. where
it deals with geometric structures of statistical models and dual con-
nections. However, the present text goes in much more differential
geometric detail, studying also other new topics such as relative cur-
vature tensors, generalized shape operators, dual mean curvature vec-
tors, and entropy maximizing distributions. However, our textbook
does not deal with any applications in the field of statistic infer-
ence, testing, or estimation. It contains only the analysis of statistical
manifolds and statistical models. The question of how the new con-
cepts introduced here apply to other fields of statistics is still under
analysis.

Another book of great inspiration for us is the book of Kass and
Vos [49], published in 1997. Even if this book deals mainly with the
geometrical foundations of asymptotic inference and information loss,
it does also contain important material regarding statistical manifolds
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and their geometry. This challenge is developed more geometrically
in the present book than in the former.

Overview

This book is devoted to a specialized area, including Informational
Geometry. This is a field that is increasingly attracting the interest of
researchers from many different areas of science, including mathemat-
ics, statistics, geometry, computer science, signal processing, physics,
and neuroscience. It is the authors’ hope that the present book will
be a valuable reference for researchers and graduate students in one
of the aforementioned fields.

The book is structured into two distinct parts. The first one is an
accessible introduction to the theory of statistical models, while the
second part is devoted to an abstract approach of statistical mani-
folds.

Part I

The first part contains six chapters and relies on the understanding
of the differential geometry of probability density functions viewed
as surfaces.

The first two chapters present important density functions, which
will offer tractable examples for later discussions in the book. The
remaining four chapters devote to the geometry of entropy, which is
a fundamental notion in informational geometry. The readers without
a strong background in differential geometry can still follow. This part
itself can be read alone as an introduction to information geometry.

Chapter 1 introduces the notion of statistical model, which is a
space of density functions, and provides the exponential and mixture
families as distinguished examples. The Fisher information is defined
together with two dual connections of central importance to the the-
ory. The skewness tensor is also defined and computed in certain
particular cases.

Chapter 2 contains a few important examples of statistical models
for which the Fisher metric and geodesics are worked out explicitly.
This includes the case of normal and lognormal distributions, and
also the gamma and beta distribution families.

Chapter 3 deals with an introduction to entropy on statistical
manifolds and its basic properties. It contains definitions and
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examples, an analysis of maxima and minima of entropy, its upper
and lower bounds, Boltzmann–Gibbs submanifolds, and the adiabatic
flow.

Chapter 4 is dedicated to the Kullback–Leibler divergence (or rel-
ative entropy), which provides a way to measure the relative entropy
between two distributions. The chapter contains explicit computa-
tions and fundamental properties regarding the first and second vari-
ations of the cross entropy, its relation with the Fisher information
matrix and some variational properties involving Kullback–Leibler
divergence.

Chapter 5 defines and studies the concept of informational en-
ergy on statistical models, which is a concept analogous to kinetic
energy from physics. The first and second variations are studied and
uncertainty relations and some thermodynamics laws are presented.

Chapter 6 discusses the significance of maximum entropy distri-
butions in the case when the first N moments are given. A distin-
guished role is played by the case when N = 1 and N = 2, cases when
some explicit computations can be performed. A definition and brief
discussion of Maxwell–Boltzmann distributions is also made.

Part II

The second part is dedicated to a detailed study of statistical man-
ifolds and contains seven chapters. This part is an abstractization
of the results contained in Part I. Instead of statistical models, one
considers here differentiable manifolds, and instead of the Fisher in-
formation metric, one takes a Riemannian metric. Thus, we are able
to carry the ideas from the theory of statistical models over to Rie-
mannian manifolds endowed with a dualistic structure defined by a
pair of torsion-less dual connections.

Chapter 7 contains an introduction to the theory of differentiable
manifolds, a central role being played by the Riemannian manifolds.
The reader accustomed with the basics of differential geometry may
skip to the next chapter. The role of this chapter is to accommodate
the novice reader with the language and objects of differential geom-
etry, which will be further developed throughout the later chapters.

A formulation of the dualistic structure is given in Chap. 8. This
chapter defines and studies general properties of dual connections,
relative torsion tensors and curvatures, α-connections, the skewness
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and difference tensors. It also contains an equivalent construction of
statistical manifolds starting from a skewness tensor.

Chapter 9 describes how to associate a volume element with a
given connection and discusses the properties of dual volume ele-
ments, which are associated with a pair of dual connections. The
properties of α-volume elements are provided with the emphasis on
the relation with the Lie derivative and vector field divergence. An
explicit computation is done for the distinguished examples of ex-
ponential and mixture cases. A special section is devoted to the
study of equiaffine connections, i.e. connections which admit a pa-
rallel n-volume form. The relation with the statistical manifolds of
constant curvature is also emphasized.

Chapter 10 deals with a description of construction and properties
of dual Laplacians, which are Laplacians defined with respect to a
pair of dual connections. An α-Laplacian is also defined and studied.
The relation with the dual volume elements is also emphasized. The
last part of the chapter deals with trace of the metric tensor and its
relation to Laplacians.

The construction of statistical manifolds starting from contrast
functions is described in Chap. 11. The construction of a dualistic
structure (Riemannian metric and dual connections) starting from a
contrast function is due to Eguchi [38, 39, 41]. Contrast functions
are also known in the literature under the name of divergences, a
denomination we have tried to avoid here as much as we could.1

Chapter 12 presents a few classical examples of contrast func-
tions, such as Bregman, Chernoff, Jefferey, Kagan, Kullback–Leibler,
Hellinger, and f -divergence, and their values on a couple of examples
of statistical models.

The study of statistical submanifolds, which are subsets of statis-
tical manifolds with a similar induced structure, is done in Chap. 13.
Many classical notions, such as second fundamental forms, shape op-
erator, mean curvature vector, and Gauss–Codazzi equations, are pre-
sented here from the dualistic point of view. We put our emphasis
on the relation between dual objects; for instance, we find a relation
between the divergences of dual mean curvature vector fields and the
inner product of these vector fields.

1A divergence in differential geometry usually refers to an operator acting on
vector fields.
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The present book follows the line started by Fisher and Efron
and continued by Eguchi, Amari, Kaas, and Vos. The novelty of this
work, besides presentation, can be found in Chaps. 5, 6, 9, and 13.
The book might be of interest not only to differential geometers but
also to statisticians and probabilists.

Each chapter ends with a section of proposed problems. Even if
many of the problems are left as exercises from the text, there are
a number of problems, aiming to deepen the reader’s knowledge and
skills.

It was our endeavor to make the index as complete as possible,
containing all important concepts introduced in definitions. We also
provide a list of usual notations of this book. It is worthy noting that
for the sake of simplicity and readability, we employed the Einstain
summation convention, i.e., whenever an index appears in an expres-
sion once upstairs and once downstairs, the summation is implied.

The near flowchart will help the reader navigate through the book
content more easily.

Software

The book comes with a software companion, which is an Informa-
tion Geometry calculator. The software is written in C# and runs
on any PC computer (not a Mac) endowed with .NET Framework. It
computes several useful information geometry measures for the most
used probability distributions, including entropy, informational en-
ergy, cross entropy, Kullback–Leibler divergence, Hellinger distance,
and Chernoff information of order α. The user instructions are in-
cluded in Appendix A. Please visit http://extras.springer.com

to download the software.

Bibliographical Remarks

Our presentation of differential geometry of manifolds, which forms
the scene where the information geometry objects exist, is close in
simplicity to the one of Millman and Parker [58]. However, a more
advanced and exhaustive study of differential geometry can be found
in Kobayashi and Nomizu [50], Spivak [78], Helgason [44], or Auslan-
der and MacKenzie [9]. For the basics theory of probability distribu-
tions the reader can consult almost any textbook of probability and
statistics, for instance Wackerly et al. [85].

http://extras.springer.com
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The remaining parts of the book are based on fundamental ideas
inspired from the expository books of Amari and Nagaoka [8] and
Kass and Vos [49]. Another important source of information for the
reader is the textbook of Murrey and Rice [60]. While the aforemen-
tioned references deal with a big deal of statistical inference, our book
contains mainly a pure geometrical approach.

One of the notions playing a central role throughout the theory
is the Fisher information, which forms a Riemannian metric on the
space of probability distributions. This notion was first introduced
almost simultaneously by Rao [70] and Jeffreys [46] in the mid-1940s,
and continued to be studied by many researchers such as Akin [3],
Atkinson and Mitchell [4], James [45], Oller [63], and Oller et al.
[64, 65].

The role played by differential geometry in statistics was not fully
acknowledged until 1975 when Efron [37] first introduced the concept
of statistical curvature for one-parameter models and emphasized its
importance in the theory of statistical estimation. Efron pointed out
how any regular parametric family could be approximated locally by
a curved exponential family and that the curvature of these models
measures their departure from exponentiality. It turned out that this
concept was intimately related to Fisher’s theory of information loss.
Efron’s formal theory did not use all the bells and whistles of dif-
ferential geometry. The first step to an elegant geometric theory was
done by Dawid [33], who introduced a connection on the space of all
positive probability distributions and showed that Efron’s statistical
curvature is induced by this connection.

The use of differential geometry in its elegant splendor for the
elaboration of previous ideas was systematically achieved by Amari
[6] and [7], who studied the informational geometric properties of a
manifold with a Fisher metric on it. This is the reason why sometimes
this is also called the Fisher–Efron–Amari theory.

The concept of dual connections and the theory of dually flat
spaces as well as the α-connections were first introduced in 1982
by Nagaoka and Amari [61] and developed later in a monograph by
Amari [5]. These concepts were proved extremely useful in the study
of informational geometry, which investigates the differential geomet-
ric structure of the manifold of probability density functions. It is wor-
thy to note the independent work of Chentsov [26] on α-connections
done from a different perspective.

Entropy, from its probabilistic definition, is a measure of uncer-
tainty of a random variable. The maximum-entropy approach was
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introduced by the work of Shannon [73]. However, the entropy maxi-
mization principle was properly introduced by Akaike [2] in the mid-
1970s, as a theoretical basis for model selection. Since then it has been
used in order to choose the least “biased” distribution with respect to
the unknown information. The included chapter regarding maximum
entropy with moments constraints is inspired by Mead [57].

The entropy of a continuous distribution is not always positive.
In order to overcome this flaw one can use the relative entropy of two
distributions p and q. This concept was originally introduced by S.
Kullback and R. Leibler in 1951, see [51, 52]. This is also referred in
the literature under the names of divergence, information divergence,
information gain, relative entropy, or Kullback–Leibler divergence.
The Kullback–Leibler divergence models the information between a
true distribution p and a model distribution q; the reader can consult
the book of Burnham and Anderson [21] for details.

In practice, the density function p of a random variable is un-
known. The problem is the one of drawing inferences about the den-
sity p on the basis of N concrete realizations of the random variable.
Then we can look for the density p as an element of a certain re-
stricted class of distributions, instead of all possible distributions.
One way in which this restricted class can be constructed is to con-
sider the distributions having the same mean as the sample mean
and the variance equal to the variance of the sample. Then, we need
to choose the distribution that satisfies these constraints and is the
most ignorant with respect to the other moments. This is realized for
the distribution with the maximum entropy. The theorems regarding
maximum entropy distributions subject to different constraints are
inspired from Rao [71]. They treat the case of the normal distribu-
tion, as the distribution on R with the first two moments given, the
exponential distribution, as the distribution on [0,∞) with the given
mean, as well as the case of Maxwell–Boltzman distribution. The case
of the maximum entropy distribution with the first n given moments
is inspired from Mead and Papanicolaou [57]. The novelty brought
by this chapter is the existence of maximum entropy distributions in
the case when the sample space is a finite interval. The book also
introduces the curves of largest entropy, whose relevance in actual
physical situations is worth examining.

The second part of the book deals with statistical manifolds,
which are geometrical abstractions of statistical models. Lauritzen
[54] defined statistical manifolds as Riemannian manifolds endowed
with a pair of torsion-free dual connections. He also introduced an
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equivalent way of constructing statistical manifolds, starting from a
skewness tensor. A presentation of statistical structure in the lan-
guage of affine connections can be found in Simon [76].

The geometry of a statistical model can be also induced by con-
trast functions. The dualistic structure of contrast functions was de-
veloped by Eguchi [38, 39, 41], who has shown that a contrast func-
tion induces a Riemannian metric by its second order derivatives,
and a pair of dual connections by its third order derivatives. Further
information on contrast geometry can be found in Pfanzagl [69]. A
generalization of the geometry induced by the contrast functions is
the yoke geometry, introduced by Barndorff-Nilsen [11–13] and de-
veloped by Blaesid [18, 19].
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Chapter 1

Statistical Models

This chapter presents the notion of statistical models, a structure
associated with a family of probability distributions, which can be
given a geometric structure. This chapter deals with statistical models
given parametrically. By specifying the parameters of a distribution,
we determine a unique element of the family. When the family of
distributions can be described smoothly by a set of parameters, this
can be considered as a multidimensional surface. We are interested
in the study of the properties that do not depend on the choice of
model coordinates.

1.1 Probability Spaces

Let S be a set (finite or infinite). A σ-field F over the set S is a col-
lection of subsets of S that is closed under countable many intersec-
tions, unions, and complements. The pair (S,F) is called ameasurable
space. One may associate with each element of F a non-negative num-
ber which sets the “size” of each set. A function μ : F → R ∪ {±∞}
is called a measure on F if

(a) μ(E) ≥ 0, ∀E ∈ F ;

(b) μ(Ø) = 0;

(c) μ
(⋃

i≥1Ei

)
=
⋃
i≥1 μ(Ei), for any pairwise disjoint sequence

of sets {Ei}i≥1 in F .

The triple (S,F , μ) is called a measure space.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 3
DOI 10.1007/978-3-319-07779-6 1,
© Springer International Publishing Switzerland 2014
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A function f : S → Y between two measurable spaces, (S,F) and
(Y,G), is called measurable if f−1(G) ∈ F for any G ∈ G.

We shall deal next with a special type of measures useful for
this book. A probability measure is a measure μ with μ(S) = 1. The
measure μ in this case will be denoted customarily by P . A probability
space is a measure space (S,F , P ), with a probability measure P . In
this case the elements of F are called events. A probability measure
assigns a non-negative number to each event, called probability of the
event.

The set S is called sample space. It consists of all possible states
that occur randomly as outcomes of a given physical experiment. The
random outcomes (elements of sample space) can be “measured” by
some variables which are random. A real-valued random variable X
on a probability space is a measurable function X : S → R. This
means that for any two values a, b ∈ R ∪ {±∞} we have

{s ∈ S; a < X(s) < b} ∈ F ,

i.e., all the sample states for which X takes values between a and b
is an event.

There are three distinguished classes of random variables: discrete,
continuous, and mixture of the two. We shall discuss the first two
types and leave the third as an exercise to the reader.

1.1.1 Discrete Random Variables

A discrete random variableX takes finite or at most countably infinite
values, X : S → X = {x1, x2, x3, . . . }. Its probability is described by
a probability mass function p : X → [0, 1]

pk = p(xk) = P (X = xk) = P ({s ∈ S;X(s) = xk}), ∀k ≥ 1,

satisfying
∑

k≥1 pk = 1. The probability distribution characterized by
a probability mass function is called a discrete probability distribution.

The associated distribution function can be written as the sum

F (x) =

N∑
k=1

pk, ∀xN ≤ x < xN+1.

Among the most well-known discrete probability distributions
used in this book are the Poisson distribution, the Bernoulli distri-
bution, the binomial and geometric distributions.
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1.1.2 Continuous Random Variables

A continuous random variable X : S → X ⊂ R
n is a random variable

taking a continuous range of values; its probability distribution has
a probability density function, p(x), which is a non-negative function,
integrable with respect to the Lebesgue measure on X , i.e. a function
p : X → R satisfying

(i) p(x) ≥ 0, ∀x ∈ X ; (ii)

∫

X
p(x) dx = 1.

For any D open set in X , the relation between the probability measure
P and the density function p(x) is given by

P (X ∈ D) =

∫

D
p(x) dx.

In the particular case when X = R, the foregoing relation becomes

P (a < X < b) =

∫ b

a
p(x) dx, ∀a, b ∈ R, a < b.

In fact, the integral formula can be written also in the differentiable
form

p(x)dx = P (x < X < x+ dx),

showing that the measure p(x)dx represents the probability that the
random variable X takes values around the value x.

The function p(x) defines in turn a probability distribution func-
tion F : R → [0, 1]

F (x) =

∫ x

−∞
p(u) du.

This natural relation between probability distributions and probabil-
ity densities will make us to use both denominations interchangeably.

We note that if p1(x) and p2(x) are two probability densities, then
the convex combination

p(x) = λp1(x) + (1− λ)p2(x), λ ∈ [0, 1]

is also a probability density.

Among continuous probability distributions used in this book are
the normal distribution, the lognormal distribution, the gamma and
beta distributions.
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It is worth noting that any discrete distribution can be seen as
having a probability density function, which can be described in terms
of Dirac measure as p(x) =

∑
k≥1 pkδ(x− xk), where (pk)k≥1 are the

probabilities associated with the discrete values (xk)k≥1 taken by the
random variable X. For more details on Dirac distributions measures,
see Example 3.2.7.

1.2 A Statistic Estimation

In practice a random variable is measured by a finite number of
observations. Consider N observations

u1, u2, . . . , uN ∈ X (1.2.1)

of the continuous random variable X. We wish to estimate the
underlying probability distribution, p∗, that produced the previous
observations, which is in fact the probability density of X. This is
also known under the name of true distribution of X. Using the ob-
servations data, as well as our experience, we can infer the shape of
the distribution p∗. For instance, if the data (1.2.1) represents the
weights of N randomly chosen persons, using their symmetry and
the bell shaped properties, a relatively simplistic inference is that p∗

is a normal distribution. In this case, the choice is unique up to two
parameters, the mean and the variance. We need to choose the right
parameters which fit data in the best possible way.1 The general case
is similar, in the sense that the shape of p∗ depends on several parame-
ters, which makes the chosen distribution to belong to a parametrized
space. We need to choose the point (i.e., a distribution) on this space
that is the “closest” (with respect to a certain information measure)
to the true distribution p∗.

1.3 Parametric Models

This section deals with a family of probability density functions which
depends on several parameters, and hence it can be organized as a
parameterized surface; each point of this surface represents a proba-

1There are several ways of fitting data to a distribution. For instance, mini-
mizing the Kullback–Leibler divergence or the Hellinger distance are just a couple
of ways of doing this.
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bility density. More precisely, let

S = {pξ = p(x; ξ)|ξ = (ξ1, . . . , ξn) ∈ E}

be a family of probability distributions on X , where each element pξ
can be parameterized by n real-valued variables ξ = (ξ1, . . . , ξn).

1.3.1 Definition

The set E ⊂ R
n is called the parameters space. The set S is a subset

of the infinite dimensional space of functions

P(X ) =
{
f ; f : X → R, f ≥ 0,

∫

X
f dx = 1

}
.

Being inspired and influenced by the definition of surfaces, we shall
require the mapping

ι : E → P(X ), ι(ξ) = pξ

to be an immersion, i.e.,

(i) ι is one-to-one;

(ii) ι has rank n = dim E.

For a suggestive diagram, see Fig. 1.1. The classical definition of rank,
as the rank of the Jacobian of ι, does not apply to infinite dimensional
spaces. Therefore, here, by rank n we understand that the functions

∂pξ
∂ξ1

, . . . ,
∂pξ
∂ξn

are linearly independent.
In the particular case when X ⊂ R, this condition is implied by

the nonvanishing condition of the Wronskian at a single point

∣∣∣∣∣∣∣∣

ϕ1(x0, ξ) . . . ϕn(x0, ξ)
ϕ′
1(x0, ξ) . . . ϕ′

n(x0, ξ)
. . . . . . . . .

ϕ
(n−1)
1 (x0, ξ) . . . ϕ

(n−1)
n (x0, ξ)

∣∣∣∣∣∣∣∣
�= 0, ∀ξ

for some x0 ∈ X , where we used the shorthand notation ϕj(x, ξ) =
∂pξ(x)

∂ξj
, and ϕ

(k)
j (x0, ξ) = ∂kxϕj(x, ξ)|x=x0 . This can be shown by
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Figure 1.1: The immersion ιmaps each parameter ξ into a distribution
pξ ∈ S

assuming ϕj dependent and differentiating n − 1 times the linear
combination

∑n
j=1 cjϕj(x, ξ) = 0 with respect to x and then taking

the value at x0. We obtain a homogeneous system which has the triv-
ial solution cj = 0, 1 ≤ j ≤ n − 1. Hence, {ϕj} are independent as
functions of x, for all ξ.

The set S, satisfying the aforementioned properties (i)–(ii), is
called a statistical model or a parametric model2 of dimension n.
Sometimes, where there is no doubt about what is the parameters
space or sample space, it is useful to use the abbreviate notations
S = {pξ}, or S = {p(x; ξ)}. Other useful notations are the partial
differentiation with respect to parameters ∂k = ∂

∂ξk
. The condition

(ii) states the regularity of the statistical model.

1.3.2 Basic Properties

The functions ϕj(x, ξ) = ∂jpξ(x) play the role of basic vector fields
for the model surface S = {pξ}. The vector field ϕj acts on smooth
mappings f : S → F(X ,R) as a differentiation3

2Some authors consider a more general definition for parametric models, with-
out requiring properties (i) and (ii). All examples provided in this book satisfy
relations (i) and (ii); we required them here for smoothness reasons.

3The reason why f takes values in F(X ,R) is because we consider f(pξ) as a
real-valued function of x, x ∈ X .
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ϕj(f) =
∂(f(pξ))

∂ξj
.

As a consequence, Leibniz rule holds

ϕj(fg) = fϕj(g) + ϕj(f)g,

for f, g smooth mappings of S into the space of real-valued smooth
functions on X , denoted by F(X ,R).

A useful mapping is the log-likelihood function � : S → F(X ,R)
defined by

�(pξ)(x) = ln pξ(x).

Sometimes, for convenience reasons, this will be denoted by �x(ξ) =
�(pξ(x)). The derivatives of the log-likelihood function are

∂j�x(ξ) =
∂ ln pξ(x)

∂ξj
= ϕj(�x(ξ)), 1 ≤ j ≤ n.

They are also found in literature under the name of score functions.
Heuristically speaking, they describe how the information contained
in pξ changes in the direction of ξj . The functions ∂j�x(ξ) will play a
central role in defining the Fisher information matrix and the entropy
on a statistical manifold.

Differentiating under the integral sign yields
∫

X
ϕj(x) dx = ∂j

∫

X
pξ(x) dx = ∂j1 = 0, ∀1 ≤ j ≤ n. (1.3.2)

It is worth noting that interchanging the derivative with the integral
always holds if the sample space X is bounded. Otherwise, some fast
vanishing conditions need to be required for the distribution pξ(x),
as |x| → ∞.

In the case of discrete distributions we have
∑
k≥1

ϕj(xk) = ∂j
∑
k≥1

pξ(xk) = ∂j1 = 0, ∀1 ≤ j ≤ n. (1.3.3)

The derivative and the sum can be swapped if X is finite. Otherwise,
the series should be supposed uniformly convergent in ξ.

Sometimes (see, for instance, the case of exponential families,
Sect. 1.4), it is easier to check a condition of linear independence
on the log-likelihood function rather than on the density functions.
The following result is useful in practice.
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Figure 1.2: Two parameterizations of the statistical model S

Theorem 1.3.1 The regularity condition (ii) of the statistical model
S = {pξ} holds if and only if for any ξ ∈ E the set

{∂1�x(ξ), ∂2�x(ξ), . . . , ∂n�x(ξ)}

is a system of n linearly independent functions of x.

Proof: Differentiating yields

∂j�x(ξ) =
∂

∂ξj
ln p(x; ξ) =

1

p(x; ξ)

∂p(x; ξ)

∂ξj
=

1

p(x; ξ)
ϕj(x),

and hence the systems {∂j�x(ξ)} and {ϕj(x)} are proportional, which
ends the proof.

The following formula is useful in computations.

Proposition 1.3.2 Assume the conditions required for formulae
(1.3.2) and (1.3.3) hold. If Eξ[ . ] denotes the expectation with respect
to pξ, then

Eξ[∂j�x(ξ)] = 0, 1 ≤ j ≤ n.

Proof: We have the following computation

Eξ[∂j�x(ξ)] = Eξ

[∂jp(x; ξ)
p(x; ξ)

]
=

∫

X
∂jp(x; ξ) dx

= ∂j

( ∫

X
p(x; ξ) dx

)
= ∂j(1) = 0.
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Similarly, in the discrete case we have

Eξ[∂j�x(ξ)] =
∑
k≥1

pξ(xk) ∂j ln pξ(xk)

=
∑
k≥1

∂jpξ(xk) = ∂j
∑
k≥1

pξ(xk) = 0.

In the language of Sect. 2.10, Proposition 1.3.2 states that the
basis elements in the 1-representation have zero expectation.

1.3.3 Parameterizations

Since the statistical model S = {pξ} is the image of the one-to-one
mapping ι : E → P(X ), ι(ξ) = pξ, it makes sense to consider the
inverse function φ : S → E ⊂ R

n, φ(pξ) = ξ. Since the mapping φ
assigns a parameter ξ with each distribution pξ, we can consider it as
a coordinate system for our statistical model. The models of interest
in this chapter can be covered by only one coordinate system, i.e.,
(E, φ) forms a global coordinate system. This situation occurs most
often in the case of statistical models.

The parameterization of a statistical model is not unique. We
can change the coordinate system on S in the following way. Let
ψ : E → ψ(E) ⊂ R

n be a diffeomorphism (i.e., both ψ and ψ−1 are
C∞-smooth, with E and ψ(E) open sets in R

n). Then ψ ◦ ι : S →
ψ(E) ⊂ R

n is another coordinate system, and if denote ρ = ψ(ξ), then
the statistical model can be also written as S = {pψ−1(ρ); ρ ∈ ψ(E)},
see Fig. 1.2.

Even if the model may change its parameterization, its geometric
properties are not affected. Since the geometric results proved in one
parameterization are valid for all parameterizations, it is useful to
choose a convenient parameterization to work with.

1.3.4 Usual Examples

Example 1.3.1 (Exponential Distribution) Let X = [0,∞) and
consider the one-dimensional parameter space E = (0,∞), which is
an open interval in R. The exponential distribution with parameter
ξ is given by the formula

p(x; ξ) = ξe−ξx.
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The associated statistical model S = {p(x; ξ)} is one-dimensional,
and hence can be considered as a curve in P([0,∞)). It is easy to
verify that the mapping ι : E → P([0,∞)) is one-to-one and that
∂ξpξ(x) = (1− ξx)e−ξx �= 0 for almost all x ∈ [0,∞).

The diffeomorphism ψ : (0,∞) → (0,∞), ψ(ξ) = 1/ξ induces the
new parameterization p(x; ρ) = 1

ρe
−x/ρ.

Example 1.3.2 (Normal Distribution) Let X = R and E = R×
(0,∞). The normal distribution family is defined by the formula

p(x; ξ1, ξ2) = p(x;μ, σ) =
1

σ
√
2π

e−
(x−μ)2

2σ2 , x ∈ X , (ξ1, ξ2) ∈ E.

(1.3.4)
Hence the statistical model {p(x;μ, σ)} can be seen as a two-
dimensional surface parameterized by R× (0,∞).

Next we check the regularity condition (ii) of Sect. 1.3.1 using
Theorem 1.3.1. Since the log-likelihood function is

�x(μ, σ) = ln p(x;μ, σ) = −(x− μ)2

2σ2
− lnσ − ln

√
2π,

we find

∂μ�x(μ, σ) =
x− μ

σ2
,

∂σ�x(μ, σ) =
(x− μ)2

σ3
− 1

σ
.

Making the variable change y = x−μ, the condition reduces to show
that the polynomials y/σ2 and y2σ3 − 1/σ are linearly independent
functions of y, fact easy to check.

In order to show that the mapping ι : E → S is one-to-one,
assume that p(x;μ, σ) = p(x, μ̄, σ̄). Equating the log-likelihood func-
tions, ln p(x;μ, σ) = ln p(x, μ̄, σ̄), we get an identity between two
polynomials

(x− μ)2

2σ2
+ lnσ =

(x− μ̄)2

2σ̄2
+ ln σ̄.

Equating the coefficients of similar powers yields μ = μ̄ and σ = σ̄.

We end up with an example of parameterization. Since the dif-
feomorphism ψ : R × (0,∞) → R × (0,∞), ψ(μ, σ) = (μ + σ, 1/σ),
has the inverse ψ−1(ρ, η) = (ρ− 1/η, 1/η), we arrive at the following
parameterization

p(x; ρ; η) =
η√
2π
e−

1
2
(xη−ρη+1)2 , (ρ, η) ∈ E (1.3.5)
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of the normal distribution. It is worth noting that the distributions
(1.3.4) and (1.3.5) are geometrically identical, even if they look dif-
ferent in parameterizations.

Example 1.3.3 (Gamma Distribution) The sample space is
given by X = [0,∞) and the parameter space is E = (0,∞)× (0,∞).
We use the Gamma function

Γ(α) =

∫ ∞

0
tα−1e−tdt, α > 0.

The Gamma family of distributions

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β,

with parameters (ξ1, ξ2) = (α, β) ∈ E forms a two-dimensional sur-
face in P([0,∞)). We note that the exponential distribution p

1,β
(x)

represents a curve family on this surface. The regularity condition
can be checked out using Theorem 1.3.1.

Example 1.3.4 (Beta Distribution) We use the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt, a, b > 0.

The Beta family of probability densities is

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1,

where x ∈ X = [0, 1] and (a, b) ∈ E = (0,∞) × (0,∞), corresponds
to a two-dimensional surface in the space P([0, 1]).

Example 1.3.5 (P(X ), X finite) Let X = {x1, x2, . . . , xn} and

E =
{
(ξ1, . . . , ξn−1); ξi > 0,

n−1∑
i=1

ξi < 1
}
,

p(xi; ξ) =

{
ξi, if 1 ≤ i ≤ n− 1

1−
∑n−1

i=1 ξ
i, if i = n.

If {e1, . . . , en−1} denotes the natural basis of R
n−1 (i.e., the vector ej

has the entry 1 on the jth entry and 0 in rest), then ∂jpξ = (ej ,−1)T .
This implies that {∂jpξ}, j ∈ {1, n − 1}, are linearly independent,
which implies the regularity of the model. The injectivity of ι is
straightforward.
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Example 1.3.6 (Poisson Distribution) The sample and parame-
ter spaces are X = {0, 1, 2, . . . } and E = (0,∞), and the distribution
is given by

p(x;λ) =
λx

x!
e−λ.

This forms a one-dimensional statistical model. There is only one

score function in this case, ∂λ�x(λ) =
x

λ
− 1.

Example 1.3.7 (Bivariate Normal Distribution) Consider the
distribution

p(x1, x2; ξ) =
1

2πσ1σ2
√

1− ρ2
e−Q(x)/2, x ∈ X = R

2,

where

Q(x) =
1

1− ρ2

[(x1 − μ1)
2

σ21
− 2ρ

(x1 − μ1)(x2 − μ2)

σ1σ2
+

(x2 − μ2)
2

σ22

]
,

with the parameter space

ξ = (μ1, μ2, σ1, σ2, ρ) ∈ E = R
2 × (0,∞)× (0,∞) × [0, 1).

{p(x; ξ} defines a five-dimensional statistical model.

Example 1.3.8 (Multivariate Normal Distribution) Let X =
R
k, n = k + 1

2k(k + 1), and ξ = (μ,A). The distribution is given by

p(x; ξ) =
1

(2π)k/2(detA)1/2
e−

1
2
(x−μ)tA−1(x−μ),

with the parameter space

E = {(μ,A);μ ∈ R
k,positive-definite A ∈ R

k×k}.

The log-likelihood function for the previous statistical model is

�x(μ,A) = ln p(x; ξ) = −1

2
(x−μ)tA−1(x−μ)− 1

2
ln(detA)− k

2
ln(2π).
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Denote by μ = (μ1, . . . , μk), A = (Aij), A
−1 = (Aij), and uj =

xj−μj. Then a straightforward computation, see Problem 1.30, shows

∂μr�x(μ,A) = −
k∑
j=1

Arj +Ajr

2
(xj − μj)

= −
k∑
j=1

Arj +Ajr

2
uj ,

∂Aαβ�x(μ,A) =
1

2
Aαβ −

1

2
(xα − μα)(xβ − μβ)

=
1

2
Aαβ −

1

2
uαuβ.

The score functions ∂μr� and ∂Aαβ� are linearly independent polyno-
mials in uj .

Example 1.3.9 (Product of Statistical Models) Consider two
statistical models

S = {pξ : X → R; ξ ∈ E}, U = {qθ : Y → R; θ ∈ F}.

Let
S × U = {fξ,θ : X × Y → R; (ξ, θ) ∈ E× F},

where
fξ,θ(x, y) = pξ(x)qθ(y).

Since fξ,θ(x, y) ≥ 0 and

∫∫

X×Y
fξ,θ(x, y) dxdy =

∫∫

X×Y
pξ(x)qθ(y) dxdy

=

∫

X
pξ(x) dx

∫

Y
qθ(y) dy = 1,

it follows that fξ,θ is a probability density on X ×Y. In order to show
that S ×U is a statistical model, we still need to verify the regularity
condition. Since the log-likelihood functions satisfy

�(x,y)(ξ, θ) = ln fξ,θ(x, y) = ln pξ(x) + ln qθ(y) = �x(ξ) + �y(θ),

we obtain

∂ξj�(x,y)(ξ, θ) = ∂ξj �x(ξ)

∂θi�(x,y)(ξ, θ) = ∂θi�y(θ).
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Since the systems of functions {∂ξj �x(ξ)}, {∂θi�y(θ)} are linearly inde-
pendent on X and on Y, respectively, as they act on independent vari-
ables x and y, it follows that the system of functions {∂ξj �(x,y)(ξ, θ),
∂θi�(x,y)(ξ, θ)} are linearly independent on X × Y. Hence S × U be-
comes a statistical model, called the product statistical manifold of S
and U .

It is worth noting that if pξ and qθ are the probability densities
of two independent random variables X and Y with sample spaces
X and Y, respectively, then their joint probability density fξ,θ(x, y)
belongs to the product statistical manifold S × U .

Some of the previous examples are special cases of some more
general statistical models, which will be treated next. The following
two families of probability densities occupy a central role in the study
of informational geometry. For this reason we dedicate a separate
section to each of them.

1.4 Exponential Family

Consider n+ 1 real-valued smooth functions C(x), Fi(x) on X ⊂ R
k

such that
1, F1(x), F2(x), . . . , Fn(x)

are linearly independent, where 1 denotes the constant function. Then
define the normalization function

ψ(ξ) = ln
( ∫

X
eC(x)+ξiFi(x) dx

)
, (1.4.6)

and consider the exponential family of probability densities

p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ), (1.4.7)

with x ∈ X , and ξ such that ψ(ξ) <∞. Finally, choose the parameter
space E to be a non-empty set of elements ξ with ψ(ξ) < ∞. It is
worth stating that such a non-empty set E does not exist for all
choices of Fi(x), see Problem 1.29.

Formula (1.4.7) can be written equivalently as

p(x; ξ) = h(x)eξ
iFi(x)−ψ(ξ), (1.4.8)

with h(x) = eC(x), and ψ(ξ) not depending on x. We note that
the normalization condition,

∫
p(x; ξ) dx = 1, is equivalent with

condition (1.4.6).
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The statistical manifold S = {p(x; ξ)}, with p(x; ξ) given either
by (1.4.6) or by (1.4.8), is called an exponential family and ξj are its
natural parameters. The parameter space E is an open subset of Rn.
The dimension of E is called the order of the exponential family. In
the following we shall check the definition conditions of a statistical
manifold.

The injectivity of ι : E → S. Assume ι(ξ) = ι(θ). Then ln p(x; ξ) =
ln p(x; θ), and hence

ξiFi(x)− ψ(ξ) = θiFi(x)− ψ(θ).

Since {Fi(x)} ∪ {1} are linearly independent, then ξi = θi.

The regularity condition. Differentiating in the log-likelihood function

�x(ξ) = C(x) + ξiFi(x)− ψ(ξ)

and obtain
∂j�x(ξ) = Fj(x)− ∂jψ(ξ). (1.4.9)

Since {Fj(x)} are linearly independent, so will be {∂j�x(ξ)}, and
hence the regularity condition is satisfied.

The function ψ(ξ) depends on C(x) and Fi(x) by formula (1.4.6).
The next result shows a relation involving the expectation operator.

Proposition 1.4.1 Assume the conditions required for formula
(1.3.2) hold. Suppose the functions {Fi(x)} satisfy the integrability
condition Eξ[Fi] < ∞, where If Eξ[ · ] denotes the expectation with
respect to pξ. Then

∂jψ(ξ) = Eξ[Fj ], 1 ≤ j ≤ n. (1.4.10)

Proof: Differentiating in the normalization condition
∫
X p(x; ξ) dx =

1 yields
∫

X
∂ξjp(x; ξ) dx = 0 ⇔

∫

X
p(x; ξ)

(
Fj(x)− ∂ξjψ(ξ)

)
dx = 0 ⇔

∫

X
p(x; ξ)Fj(x) dx = ∂ξjψ(ξ)

∫

X
p(x; ξ) dx⇔

Eξ[Fj ] = ∂ξjψ(ξ)

= ∂jψ(ξ).
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As a consequence, relation (1.4.9) yields

∂j�x(ξ) = Fj(x)− Eξ[Fj ].

This leads to the relation

Eξ[∂i�x(ξ)∂j�x(ξ)] = Eξ[(Fi(x)− Eξ[Fi])(Fj(x)− Eξ[Fj ])]

= Covξ(Fi, Fj), (1.4.11)

which will be used in later computations. Another important relation
useful in future computations is obtained if differentiate in (1.4.9)
with respect to ξi; we find

∂i∂j�x(ξ) = −∂i∂jψ(ξ). (1.4.12)

It can be shown that the function ψ(ξ) is convex, see Problem 1.1.
Therefore, relation (1.4.12) implies the concavity of the log-likelihood
function �x(ξ).

Many of the usual distributions belong to the exponential family.
Here are some useful examples described in terms of functions C(x)
and {Fi(x)}. The explicit computations are left as an exercise to the
reader.

Example 1.4.1 (Exponential Distribution) This refers to Exam-
ple 1.3.1. Choose n = 1 and

C(x) = 0, F1(x) = −x, ξ1 = ξ, ψ(ξ) = − ln ξ.

Example 1.4.2 (Normal Distribution) Consider Example 1.3.2
and choose

C(x) = 0, F1(x) = x, F2(x) = x2, ξ1 =
μ

σ2
, ξ2 =

−1

2σ2
,

ψ(ξ) = −(ξ1)2

4ξ2
+

1

2
ln
(−π
ξ2

)
.

We note that parameters (ξ1, ξ2) ∈ E = R× (−∞, 0).

Example 1.4.3 (Poisson Distribution) In Example 1.3.6, choose
n = 1, C(x) = − lnx!, F1(x) = x, ξ = lnλ, ψ(ξ) = λ = eξ .



1.5. Mixture Family 19

Example 1.4.4 (Gamma Distribution) In Example 1.3.3, let

C(x) = − lnx, F1(x) = lnx, F2(x) = x, ξ1 = α, ξ2 =
−1

β
,

ψ(ξ) = ln(βαΓ(α)) = ln
((

− 1

ξ2

)α
Γ(ξ1)

)
,

with parameters (ξ1, ξ2) ∈ E = R× (−∞, 0).

Example 1.4.5 (Beta Distribution) Consider Example 1.3.4.
In this case n = 2 and

C(x) = − ln(x(1 − x)), F1(x) = lnx, F2(x) = ln(1− x),

ξ1 = a, ξ2 = b, ψ(ξ) = lnB(ξ1, ξ2),

with E = (−∞, 0) × (−∞, 0).

1.5 Mixture Family

Let Fi : X → R be n smooth functions, linearly independent on X ,
satisfying the integral constraints∫

X
Fj(x) dx = 0, 1 ≤ j ≤ n. (1.5.13)

Consider another smooth function C(x) on X with∫

X
C(x) = 1. (1.5.14)

Define the following family of probability densities

p(x; ξ) = C(x) + ξiFi(x). (1.5.15)

The statistical manifold S = {p(x; ξ)} is called a mixture family and
ξj are its mixture parameters. The dimension of the parameters space
E is called the order of the mixture family. We note that S is an affine
subspace of P(X ).

Both the injectivity and the regularity conditions of the immer-
sion ι : E → P(X ) result from the fact that {Fi(x)} are linearly
independent functions.

It is worth noting that the integral constraint (1.5.13) is com-
patible to the fact that ∂ξjp(x; ξ) = Fj(x) and

∫
∂ξjp(x; ξ) dx = 0,

see (1.3.2). This constraints will be used in the next result, which
deals with the properties of the log-likelihood function �x(ξ). In spite
of its proof simplicity, given the importance of this result, a full proof
is included.
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Proposition 1.5.1 If Eξ[ · ] denotes the expectation with respect to
pξ, then

(i) ∂j�x(ξ) =
Fj(x)

p(x)
;

(ii) ∂i∂j�x(ξ) = −Fi(x)Fj(x)
p(x; ξ)2

;

(iii) ∂i∂j�x(ξ) = −∂i�x(ξ) ∂j�x(ξ).

Proof:

(i) Differentiating and using that ∂ξjp(x; ξ) = Fj(x) yields

∂j�x(ξ) = ∂ξj ln p(x; ξ) =
∂ξjp(x; ξ)

p(x; ξ)
=

Fj(x)

p(x; ξ)
.

(ii) Differentiating in (i) yields

∂i∂j�x(ξ) = ∂ξi
Fj(x)

p(x; ξ)
= Fj(x)

−∂ξip(x; ξ)
p(x; ξ)2

= −Fi(x)Fj(x)
p(x; ξ)2

.

(iii) From (ii) and (i) we get

∂i∂j�x(ξ) = − Fi(x)

p(x; ξ)

Fj(x)

p(x; ξ)
= −∂i�x(ξ) ∂j�x(ξ).

The next example provides the reason for the name “mixture
family.”

Example 1.5.1 (Mixture of n + 1 Distributions) Consider n+1
probability densities, p1, p2, . . . , pn, pn+1, which are linearly indepen-
dent on X . Let E = {ξ ∈ R

n; ξj > 0;
∑n

j=1 ξ
j < 1}. The following

weighted average is also a probability density

p(x; ξ) = ξipi(x) +
(
1−

n∑
i=1

ξi
)
pn+1(x)

= pn+1(x) +
n∑
i=1

ξi(pi(x)− pn+1(x)),

which becomes a mixture family with C(x) = pn+1(x) and Fi(x) =
pi(x)− pn+1(x). The integral constraints (1.5.13) and (1.5.14) follow
easily from the properties of probability density functions.
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Proposition 1.5.2 The statistical manifold P(X ), with X finite (see
Example 1.3.5), is a mixture family.

Proof: Let X = {x1, x2, . . . , xn, xn+1} and consider the linearly in-
dependent probability densities p1, . . . , pn+1, defined by pj(xi) = δij .
Consider their weighted average

p(x; ξ) = ξipi(x) +
(
1−

n∑
i=1

ξi
)
pn+1(x).

We can easily check that p(x; ξ) is the distribution given by Example
1.3.5. From Example 1.5.1, it follows that the densities p(x; ξ) form
a mixture family.

1.6 Fisher Information

This section introduces the Fisher information and studies its main
properties solely from the differential geometric point of view.4

A fundamental object in differential geometry is the Riemannian
metric tensor g (from tangent vectors X, Y it produces a real number
g(X,Y )). The metric tensor is used to define the length of, and angle
between tangent vectors. For this reason the metric g must be sym-
metric and positive definite (i.e., a Riemannian metric). The metric
tensor g determines the Levi–Civita connection (Christoffel symbols)
and implicitly the Riemannian curvature tensor field.

In differential geometry, the parallel transport is a way of trans-
porting geometrical data along smooth curves in a manifold. If the
manifold is equipped with a symmetric affine connection ∇ (a co-
variant derivative or connection on the tangent bundle), then this
connection allows one to transport tangent vectors of the manifold
along curves so that they stay parallel with respect to the connec-
tion. A connection ∇ determines the curvature tensor field R of type
(1, 3). A manifold is called: (i) ∇-flat if there is a coordinate system
in which Γkij = 0; (ii) flat if R = 0. It is worth noting that (i) depends
on the coordinate system while (ii) does not.

4This follows the 1940s idea of C. R. Rao and H. Jeffreys to use the Fisher
information to define a Riemannian metric.
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Definition and Properties

A metric structure, similar to the Riemannian structure on a hyp-
ersurface, can be introduced on a statistical model, based on the
parameter ξ = (ξ1, . . . , ξn) ∈ E and the log-likelihood function �(ξ) =
ln pξ(x). The Fisher information matrix is defined by

gij(ξ) = Eξ[∂i�(ξ)∂j�(ξ)], ∀i, j ∈ {1, . . . , n}, (1.6.16)

which can be written explicitly as

gij(ξ) = Eξ[∂ξi ln pξ
·∂ξj ln pξ

] =

∫

X
∂ξi ln pξ

(x) ·∂ξj ln pξ(x) ·pξ
(x) dx.

We shall assume that the previous integral exists. There are sev-
eral equivalent formulas for gij(ξ), which will be presented in the
following.

Proposition 1.6.1 The Fisher information matrix can be repre-
sented in terms of the square root of probability densities as

gij(ξ) = 4

∫

X
∂ξi
√
pξ(x) · ∂ξj

√
pξ(x) dx.

Proof: A straightforward computation yields

gij(ξ) =

∫

X
∂ξi ln pξ

(x) · ∂ξj ln pξ
(x) · p

ξ
(x) dx

=

∫

X

∂ξipξ
(x)

pξ(x)
·
∂ξjpξ

(x)

pξ(x)
· p

ξ
(x) dx

= 4

∫

X

∂ξipξ
(x)

2
√
pξ(x)

·
∂ξjpξ

(x)

2
√
pξ(x)

dx

= 4

∫

X
∂ξi
√
pξ(x) · ∂ξj

√
pξ(x) dx.

We note that the discrete version of Proposition 1.6.1 states

gij(ξ) = 4
∑
k

∂ξi
√
pξ(xk) ∂ξj

√
pξ(xk). (1.6.17)

Example 1.6.1 Consider the case of a two-dimensional discrete prob-
ability model given by
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X x1 x2 x3
P (X = xk) ξ1 ξ2 1− ξ1 − ξ2

with ξi ∈ (0, 1). The previous table denotes a random variable X with
three outcomes x1, x2, x3, which occur with probabilities ξ1, ξ2, and
1− ξ1 − ξ2. This is a statistical model depending on two parameters,
ξ1 and ξ2. Formula (1.6.17) provides the Fisher information matrix

gij(ξ) = 4
(
∂ξi
√
ξ1 · ∂ξj

√
ξ1 + ∂ξi

√
ξ2 · ∂ξj

√
ξ2
)

+4
(
∂ξi
√

1− ξ1 − ξ2 · ∂ξj
√
1− ξ1 − ξ2

)

=
δi1j1
ξ1

+
δi2j2
ξ2

+
1√

1− ξ1 − ξ2
·

(gij) =

⎛
⎝

1
ξ1

+ 1√
1−ξ1−ξ2

1√
1−ξ1−ξ2

1√
1−ξ1−ξ2

1
ξ2

+ 1√
1−ξ1−ξ2

⎞
⎠ .

The matrix is non-degenerate since

det(gij) =
1

ξ1ξ2
+

1√
1− ξ1 − ξ2

( 1

ξ1
+

1

ξ2

)
�= 0, ∀ξi ∈ (0, 1).

In fact, this property holds for all Fisher information matrices, as the
next result shows.

Proposition 1.6.2 The Fisher information matrix on any statisti-
cal model is symmetric, positive definite and non-degenerate (i.e., a
Riemannian metric).

Proof: The symmetry follows from formula (1.6.16).
Forall ξ, ∀v ∈ TξS, v �= 0, we find using Proposition 1.6.1

g(v, v) =
∑
i,j

gijv
ivj = 4

∑
i,j

(∫

X
vi∂

ξi

√
p
ξi
(x)vj∂ξj

√
p
ξj
(x)
)
dx

= 4

∫

X

(∑
i

vi∂ξi
√
p
)(∑

j

vj∂ξj
√
p
)
dx

= 4

∫

X

(∑
i

vi∂ξi
√
p
)2
dx ≥ 0,

so (gij) is non-negative definite.
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Next we shall show that g is non-degenerate:

g(v, v) = 0 ⇔
∫

X

(∑
i

vi∂ξi
√
p
)2
dx = 0 ⇔

(∑
i

vi∂ξi
√
p
)2

= 0 ⇔
∑
i

vi∂ξi
√
p = 0 ⇔

∑
i

vi∂ξip = 0 ⇔ vi = 0, ∀i = 1, . . . , n,

since {∂ξip} are linear independent, which is an assumption made
previously.

Since (gij) is non-degenerate, we have in fact that

4

∫

X

(∑
i

vi∂ξi
√
p
)2
dx > 0,

and hence (gij) is positive definite.

Hence the Fisher information matrix provides the coefficients of
a Riemannian metric on the surface S. This allows us to measure
distances, angles and define connections on statistical models.

The next formula is useful in practical applications.

Proposition 1.6.3 The Fisher information matrix can be written as
the negative expectation of the Hessian of the log-likelihood function

gij(ξ) = −Eξ[∂ξi∂ξj�(ξ)] = −Eξ[∂ξi∂ξj ln pξ
]. (1.6.18)

Proof: Differentiating in

∫

X
p(x, ξ) dx = 1 yields

∫

X
∂ξip(x, ξ) dx = 0,

which can be also written as

Eξ[∂ξi ln pξ
] =

∫

X
∂ξi ln p(x, ξ) · p

ξ
(x) dx = 0.

Differentiating again with respect to ξj , we obtain

∫

X
∂ξj∂ξi ln p(x, ξ) · p(x, ξ) dx+

∫

X
∂ξi ln p(x, ξ) · ∂ξjp(x, ξ) dx = 0 ⇔

Eξ[∂ξj∂ξi ln pξ ] +

∫

X
∂ξi ln p(x, ξ) · ∂ξj ln p(x, ξ) · p(x, ξ) dx = 0 ⇔

Eξ[∂ξj∂ξi ln pξ ] + gij(ξ) = 0.

This relation implies (1.6.18).
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Example 1.6.2 (Exponential Distribution) In this case p
ξ
(x) =

ξe−ξx and then ∂2ξ ln pξ
= − 1

ξ2
. Therefore

g = g11 = −E[∂2ξ ln pξ
] =

∫ ∞

0

1

ξ2
p
ξ
(x) dx =

1

ξ2
.

The length of a curve ξ = ξ(t) joining the points ξ0 = ξ(0) and
ξ1 = ξ(1) is

∫ 1

0

√
g
(
ξ̇(t), ξ̇(t)

)
dt =

∫ 1

0

√
g11ξ̇2(t) dt =

∫ 1

0

∣∣∣ ξ̇(t)
ξ(t)

∣∣∣ dt =
∣∣ ln ξ1

ξ0

∣∣.

This induces on the one-dimensional statistical model X = (0,∞)
the following hyperbolic distance function

d(x1, x2) = | ln x2 − lnx1|.

Example 1.6.3 (Exponential Family) Recall the exponential
family (1.4.7)

p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ). (1.6.19)

Using (1.4.11) and (1.4.12) we can represent the Fisher information
matrix either in terms of the functions Fi(x), or in terms of ψ

gij(ξ) = Eξ[∂i�x(ξ)∂j�x(ξ)] = Covξ(Fi, Fj), (1.6.20)

gij(ξ) = −Eξ[∂i∂j�x(ξ)] = Eξ[∂i∂jψ(ξ)] = ∂i∂jψ(ξ). (1.6.21)

It is worthy to note the role of convexity of function ψ in the positive
definiteness of gij .

Example 1.6.4 (Mixture Family) Recall the probability density
family (1.5.15)

p(x; ξ) = C(x) + ξiFi(x). (1.6.22)

From Proposition 1.5.1, part (ii), we obtain

gij(ξ) = −Eξ[∂i∂j�x(ξ)] = Eξ

[Fi(x)Fj(x)
p(x; ξ)2

]
=

∫

X

Fi(x)Fj(x)

p(x; ξ)
dx.

The next two results deal with important invariance properties of
the Fisher information metric.

Theorem 1.6.4 The Fisher metric is invariant under reparametriza-
tions of the sample space.
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Proof: Let X be a random variable with the sample space X ⊆ R
n,

whose associated density function pξ form a statistical model. Con-
sider the invertible transform of sample spaces f : X → Y ⊆ R

n,
and denote by p̃ξ(y) the density function associated with the random
variable Y = f(X). The relation between the foregoing densities and
the Jacobian of f is given by

pξ(x) = p̃ξ(y)
∣∣∣df(x)
dx

∣∣∣. (1.6.23)

Since the log-likelihood functions are given by

�̃(ξ) = ln p̃ξ(y) = ln p̃ξ
(
f(x)

)

�(ξ) = ln pξ(x) = �̃(ξ) + ln
∣∣∣df(x)
dx

∣∣∣,

and f does not depend on the parameter ξ, we have

∂ξi�(ξ) = ∂ξi �̃(ξ). (1.6.24)

Therefore, using (1.6.23) and (1.6.24), the Fisher information trans-
forms as

gij(ξ) =

∫

X
∂ξi�(ξ) ∂ξj �(ξ) pξ(x) dx

=

∫

X
∂ξi �̃(ξ) ∂ξj �̃(ξ) p̃ξ(f(x))

∣∣∣df(x)
dx

∣∣∣ dx

=

∫

Y
∂ξi �̃(ξ) ∂ξj �̃(ξ) p̃ξ(y) dy

= g̃ij(ξ),

which proves the desired invariance property.

Theorem 1.6.5 The Fisher metric is covariant under reparametriza-
tions of the parameters space.

Proof: Consider two sets of coordinates ξ = (ξ1, . . . , ξn) and θ =
(θ1, . . . , θn) related by the invertible relationship ξ = ξ(θ), i.e., ξj =
ξj(θ1, . . . , θn). Let p̃θ(x) = pξ(θ)(x). By chain rule we have

∂θi p̃θ =
∂ξk

∂θi
∂ξkpξ, ∂θj p̃θ =

∂ξr

∂θj
∂ξrpξ,
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and then

g̃ij(θ) =

∫

X

1

p̃θ(x)
∂θipθ(x) ∂θjpθ(x) dx

=

[∫

X

1

pξ(θ)(x)
∂ξkpξ(x) ∂ξrpξ(x) dx

]
∂ξk

∂θi
∂ξr

∂θj

= gkr(ξ)
∣∣∣
ξ=ξ(θ)

∂ξk

∂θi
∂ξr

∂θj
.

Theorems 1.6.4 and 1.6.5 state that the Fisher metric has two
distinguished properties:

1. gij is invariant under reparametrizations of the sample space X .

2. gij is covariant under reparametrizations of the parameters space
E (i.e., transforms as a 2-covariant tensor).

It is important to note that a metric satisfying the abovemen-
tioned properties is unique, and hence equal to the Fisher metric;
this result can be found in Corcuera and Giummolé [30].

1.7 Christoffel Symbols

The most simple connection on the statistical model S is defined by
the Christoffel symbols. If gij denotes a Riemannian metric, partic-
ularly the Fisher information matrix, then the Christoffel symbols of
first kind are given by

Γij,k =
1

2

(
∂igjk + ∂jgik − ∂kgij

)
, (1.7.25)

where we used the abbreviation ∂i = ∂ξi . Before computing the
Christoffel symbols, a few equivalent expressions for the derivative
of the Fisher information matrix are needed.

Proposition 1.7.1 With the notation � = �x(ξ), we have

(i) ∂kgij(ξ) = −Eξ[∂i∂j∂k�]− Eξ[(∂i∂j�)(∂k�)];

(ii) ∂kgij(ξ)=Eξ[(∂k∂i�)(∂j�)]+Eξ[(∂k∂j�)(∂i�)]+Eξ[(∂i�)(∂j�)(∂k�)];

(iii) ∂kgij(ξ) = 4

∫

X
∂i∂j

√
p · ∂k

√
p dx+ 4

∫

X
∂i∂k

√
p · ∂j

√
p dx.
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Proof:

(i) Differentiating in (1.6.18), we get

∂kgij(ξ) = −∂kEξ[∂i∂j�]

= −
∫

X
(∂k∂i∂j�)p(x; ξ) dx−

∫
(∂i∂j�)∂kp(x; ξ) dx

= −
∫

X
(∂k∂i∂j�)p(x; ξ) dx−

∫
(∂i∂j�)∂k� p(x; ξ) dx

= −Eξ[∂i∂j∂k�]− Eξ[(∂i∂j�)(∂k�)].

(ii) It follows from a direct application of the product rule in the def-
inition relation (1.6.16) and the use of ∂kp(x; ξ) = ∂k�(ξ)p(x; ξ):

∂kgij(ξ) =

∫

X
∂k∂i� ∂j� p(x, ξ) dx+

∫

X
∂i� ∂k∂j� p(x, ξ) dx

+

∫

X
∂i� ∂j� ∂kp(x, ξ) dx

=Eξ[∂k∂i� ∂j�] + Eξ[∂i� ∂k∂j�] + Eξ[∂i� ∂j� ∂k�].

(iii) A computation using Proposition 1.6.1 shows

∂kgij = 4∂k

∫

X
∂i
√
p · ∂j

√
p dx

= 4

∫

X
∂k∂i

√
p · ∂j

√
p dx+ 4

∫

X
∂k∂j

√
p · ∂i

√
p dx.

Proposition 1.7.2 The following equivalent expressions of the
Christoffel symbols of first type hold:

(i) 2Γij,k(ξ) = Eξ[(∂i∂j�)(∂k�)]−Eξ[(∂k∂j�)(∂i�)]−Eξ [(∂k∂i�)(∂j�)]
− Eξ[∂i∂j∂k�];

(ii) Γij,k(ξ) = Eξ[(∂i∂j�+
1

2
∂i� ∂j�)∂k�];

(iii) Γij,k(ξ) = 4

∫

X
∂i∂j

√
p(x; ξ) · ∂k

√
p(x; ξ) dx.
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Proof: It follows from relations (i), (ii), and (iii), supplied by
Proposition 1.7.1, after substituting in (1.7.25) and performing pair
cancelations.

It is worth noting that the aforementioned relations work also in
the case of a discrete sample space. For instance, formula (iii) has
the following discrete analog

Γij,k(ξ) = 4

n∑
r=1

∂ξi∂ξj
√
pξ(xr) · ∂ξk

√
pξ(xr). (1.7.26)

Example 1.7.1 We shall work out the Christoffel coefficients in the
case of the discrete probability model given by Example 1.6.1 using
(1.7.26).

If i �= j, then

Γij,k(ξ) = 4
2∑

k=1

(
∂ξi∂ξj

√
ξr︸ ︷︷ ︸

=0

·∂ξk
√
ξr
)

+4∂ξi∂ξj
√

1− ξ1 − ξ2 · ∂ξk
√

1− ξ1 − ξ2

= ∂ξi(1− ξ1 − ξ2)−1/2 · 1√
1− ξ1 − ξ2

=
1

2(1− ξ1 − ξ2)2
.

Let i = j. Since the second term of the sum is the same as above,
we have

Γii,k(ξ) = 4
2∑
r=1

∂2ξi
√
ξr · ∂ξk

√
ξr +

1

2(1− ξ1 − ξ2)2

= −1

2

2∑
r=1

δri δ
k
r

ξr2
+

1

2(1− ξ1 − ξ2)2
.

If i = j �= k the first term of the above formula vanishes, so

Γii,k(ξ) =
1

2(1 − ξ1 − ξ2)2
.

Example 1.7.2 (Exponential Family) This refers to the family
of distributions (1.4.7). We shall work out the Christoffel coefficients
in terms of the function ψ(ξ). Using relations (1.4.9), (1.4.10), and
(1.4.12) yields

Eξ[(∂i∂j�)(∂k�)] = −Eξ[(∂i∂jψ)(Fk(x)− ∂kψ)]

= −(∂i∂jψ)Eξ[Fk(x)] + (∂i∂jψ)(∂kψ)

= (∂i∂jψ)
(
∂kψ − Eξ[Fk(x)]

)
= 0.
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Substituting in Proposition 1.7.2, part (i), we find

Γij,k =
1

2
Eξ[∂i∂j∂k�] =

1

2
Eξ[∂i∂j∂kψ] =

1

2
∂i∂j∂kψ(ξ).

Example 1.7.3 (Mixture Family) Consider the family of distri-
butions (1.5.15). From Propositions 1.5.1 and 1.7.2, we have

Γij,k(ξ) = Eξ
[
(∂i∂j�+

1

2
∂i� ∂j�)∂k�

]
=Eξ

[
(−∂i� ∂j�+

1

2
∂i� ∂j�)∂k�

]

= −1

2
Eξ[∂i� ∂j� ∂k� ]=− 1

2

∫
Fi(x)Fj(x)Fk(x)

p(x; ξ)2
dx.

1.8 Levi–Civita Connection

The coefficients (1.6.16) induce a Riemannian metric on S. This is a
2-covariant tensor g defined locally by

g(Xξ , Yξ) =
n∑

i,j=1

gij(ξ)a
i(ξ)bj(ξ), pξ ∈ S

where Xξ =

n∑
i=1

ai(ξ)∂i and Yξ =

n∑
i=1

bi(ξ)∂i are vector fields in the

0-representation on S. Here, for the sake of simplicity we used the

notation abuse ∂i =
∂pξ
∂ξi

. The tensor g is called the Fisher–Riemann

metric. Its associated Levi–Civita connection is denoted by ∇(0) and
is defined by

g(∇(0)
∂i
∂j , ∂k) = Γij,k,

with Γij,k given by (1.7.25). The fact that ∇(0) is metrical connection
can be written locally as

∂kgij = Γki,j + Γkj,p.

This can be checked also directly from Propositions 1.7.1 and 1.7.2.
It is worth noting that the superscript of ∇(0) denotes a param-

eter of the connection. The same superscript convention will be also
employed for Christoffel symbols. In the next section we shall int-
roduce several connections parameterized by the parameter α. The
case α = 0 corresponds to the Levi–Civita connection induced by the
Fisher metric.
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1.9 ∇(1)-Connection

We shall introduce a new linear connection ∇(1) on the statistical
model S. Generally, to define a linear connection, it suffices to know
its components on a basis, and to have a metric g that rises and lowers
indices. Using the Fisher metric g, the ∇(1)-connection is defined by

g(∇(1)
∂i
∂j, ∂k) = Eξ[(∂i∂j�) (∂k�)]. (1.9.27)

It can also be expressed equivalently by stating directly the Christoffel
coefficients

Γ
(1)
ij,k(ξ) = Eξ[(∂i∂j�) (∂k�)]. (1.9.28)

In the following the ∇-flatness is considered with respect to the
system of coordinates ξ. The next result shows the importance of the
∇(1)-connection.

Proposition 1.9.1 The statistical model given by the exponential
family (1.4.7) is ∇(1)-flat.

Proof: We need to show that Γ
(1)
ij,k(ξ) = 0. Using (1.4.12) and Propo-

sition 1.3.2 we have

Γ
(1)
ij,k(ξ) = Eξ[(∂i∂j�) (∂k�)] = −Eξ[∂i∂jψ(ξ) (∂k�)]

= −∂i∂jψ(ξ)Eξ [(∂k�)] = 0.

As a consequence, the torsion and curvature of an exponential
family with respect to connection ∇(1) vanish everywhere.

Proposition 1.9.2 The mixture family (1.5.15) is ∇(1)-flat if and
only if is ∇(0)-flat.

Proof: Since

Γ
(0)
ij,k(ξ) = −1

2
Eξ[((∂i�) (∂j�) (∂k�)]

Γ
(1)
ij,k(ξ) = Eξ[(∂i∂j�) (∂k�)] = −Eξ[((∂i�) (∂j�) (∂k�)],

we have Γ
(0)
ij,k(ξ) = 0 if and only if Γ

(1)
ij,k(ξ) = 0. The first identity is

provided by Example 1.7.3, and the second uses Proposition 1.5.1,
part (iii).
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1.10 ∇(−1)-Connection

Using the Fisher metric g, the∇(−1)-connection on a statistical model
S is defined by

g(∇(−1)
∂i

∂j, ∂k) = Γ
(−1)
ij,k = Eξ[(∂i∂j�+ ∂i� ∂j�) (∂k�)], (1.10.29)

where � is the log-likelihood function.

Proposition 1.10.1 The mixture family (1.5.15) is ∇(−1)-flat.

Proof: It follows from the fact that in any mixture family ∂i∂j� =
−∂i� ∂j�.

The ∇(−1)-connection is related to the ∇(0) and ∇(1) connections.

Proposition 1.10.2 The relation between the foregoing three con-
nections is given by

∇(0) =
1

2

(
∇(−1) +∇(1)

)
. (1.10.30)

Proof: It suffices to show

Γ
(0)
ij,k =

1

2

(
Γ
(−1)
ij,k + Γ

(1)
ij,k

)
.

Using (1.9.28) and (1.10.29) and Proposition 1.7.2, part (ii), we find

Γ
(−1)
ij,k + Γ

(1)
ij,k = Eξ[(∂i∂j�+ ∂i� ∂j�) (∂k�)] + Eξ[(∂i∂j�)(∂k�)]

= Eξ[(2∂i∂j�+ ∂i� ∂j�) (∂k�)]

= 2Eξ[(∂i∂j�+
1

2
∂i� ∂j�) (∂k�)]

= 2Γ
(0)
ij,k.

Corollary 1.10.3 An exponential family is ∇(−1)-flat if and only if
is ∇(0)-flat.

None of the connections ∇(−1) and ∇(1) are metrical. However,
they are related to the Fisher metric g by the following duality
relation.
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Proposition 1.10.4 For any vector fields X, Y, Z on the statistical
model S = {pξ}, we have

Zg(X,Y ) = g(∇(1)
Z X,Y ) + g(X,∇(−1)

Z Y ). (1.10.31)

Proof: It suffices to prove the relation on a basis. Choosing X = ∂i,
Y = ∂j and Z = ∂k, the relation we need to show becomes

∂kgij = Γ
(1)
ki,j + Γ

(−1)
kj,i . (1.10.32)

Using (1.9.28) and (1.10.29) we get

Γ
(1)
ki,j + Γ

(−1)
kj,i = Eξ[(∂k∂i�) (∂j�)] + Eξ[(∂k∂j�+ ∂k� ∂j�) (∂i�)]

= Eξ[(∂k∂i�)(∂j�)] + Eξ[(∂k∂j�)(∂i�)]

+Eξ[(∂i�)(∂j�)(∂k�)]

= ∂kgij(ξ),

where the last identity follows from Proposition 1.7.1, part (ii).

1.11 ∇(α)-Connection

The ∇(−1) and ∇(1) are two special connections on S with respect to
which the mixture family and the exponential family are, respectively,
flat. Moreover, they are related by the duality condition (1.10.31).
Midway between these connections there is the∇(0)-connection, which
is the Levi–Civita connection with respect to the Fisher metric. Inter-
polating, we define the following 1-parameter family of connections

∇(α) =
1 + α

2
∇(1) +

1− α

2
∇(−1), (1.11.33)

with α real parameter, on the statistical model S. For α = −1, 0, 1
we obtain, respectively, the connections ∇(−1), ∇(0) and ∇(1). Using
the Fisher metric g, the connection components

Γ
(α)
ij,k = g(∇(α)

∂i
∂j , ∂k)

are given by the following result.

Proposition 1.11.1 The components Γ
(α)
ij,k can be written as

Γ
(α)
ij,k = Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]
. (1.11.34)
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Proof: From (1.11.33) written on components and using (1.9.28)
and (1.10.29), we obtain

Γ
(α)
ij,k =

1 + α

2
Γ
(1)
ij,k +

1− α

2
Γ
(−1)
ij,k

=
1 + α

2
Eξ[(∂i∂j�)(∂k�)] +

1− α

2
Eξ[(∂i∂j�+ ∂i�∂j�)(∂k�)]

= Eξ[(∂i∂j�)(∂k�) +
1− α

2
∂i�∂j�∂k�]

= Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]
.

The connection ∇(α) is symmetric. This follows directly from

Γ
(α)
ij,k = Γ

(α)
ji,k. However, ∇(α) is not metrical for α �= 0. The pair

connections ∇(α) and ∇(−α) are in the same duality relation as con-
nections ∇(1) and ∇(−1).

Proposition 1.11.2 For any vector fields X,Y,Z on the statistical
model S = {pξ}, we have

Zg(X,Y ) = g(∇(α)
Z X,Y ) + g(X,∇(−α)

Z Y ). (1.11.35)

Proof: It suffices to prove the local version of (1.11.35)

∂kgij = Γ
(α)
ki,j + Γ

(−α)
kj,i . (1.11.36)

Using (1.11.34), we write

Γ
(α)
ki,j = Eξ

[(
∂k∂i�+

1− α

2
∂k�∂i�

)
∂j�
]

Γ
(−α)
kj,i = Eξ

[(
∂k∂j�+

1 + α

2
∂k�∂j�

)
∂i�
]
.

Taking the sum and reducing terms yields

Γ
(α)
ki,j + Γ

(−α)
kj,i = Eξ[(∂k∂i�)(∂j�)] + Eξ[(∂k∂j�)(∂i�)]

+Eξ[(∂i�)(∂j�)(∂k�)]

= ∂kgij(ξ),

see Proposition 1.7.1, part (ii).

Other relations among connections ∇(0), ∇(1) and ∇(−1) are given
in the following result. The proof follows from a direct application of
relation (1.11.33).
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Proposition 1.11.3 The following relations hold

∇(α) = (1− α)∇(0) + α∇(1)

= (1 + α)∇(0) − α∇(−1)

= ∇(0) +
α

2
(∇(1) −∇(−1));

∇(0) =
1

2

(
∇(−α) +∇(α)

)
.

Corollary 1.11.4 Let S be a statistical model. Then the following
statements are equivalent:

(i) S is ∇(α)-flat for all α ∈ R;

(ii) S is both ∇(1) and ∇(−1)-flat;

(iii) S is both ∇(0) and ∇(1)-flat;

(iv) S is both ∇(0) and ∇(−1)-flat.

In general, if a model S is flat with respect to two distinct α-
connections, then is flat with respect to all α-connections.

1.12 Skewness Tensor

Generally, it is well known that the difference of two linear connec-
tions is a tensor field. For two connections, ∇(α) and ∇(β), on the
statistical model S, we define the generalized difference tensor as the
(2, 1)-type tensor

K(α,β)(X,Y ) = ∇(β)
X Y −∇(α)

X Y. (1.12.37)

Proposition 1.12.1 There is a 3-covariant, totally symmetric ten-
sor T such that for any distinct α, β we have

g
(
K(α,β)(X,Y ), Z

)
=
α− β

2
T (X,Y,Z), (1.12.38)

where g is the Fisher metric.

Proof: Using (1.11.34)

Γ
(β)
ij,k(ξ)− Γ

(α)
ij,k(ξ) = Eξ

[(
∂i∂j�+

1− β

2
∂i�∂j�

)
∂k�
]

−Eξ
[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

=
α− β

2
Eξ[∂i� ∂j� ∂k�],
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Choosing the components

Tijk(ξ) = Eξ[∂i� ∂j� ∂k�],

we find

Γ
(β)
ij,k(ξ)− Γ

(α)
ij,k(ξ) =

α− β

2
Tijk(ξ), (1.12.39)

which is the local coordinates version of equation (1.12.38). We note
that T is symmetric in any of the indices i, j, k, i.e., it is totally
symmetric.

The fact that T is covariant under parametrizations is the subject
of Problem 1.16.

The 3-covariant, symmetric tensor T with components

T (∂i, ∂j , ∂k) = Tijk = Eξ[∂i� ∂j� ∂k�]

is called the skewness tensor. This measures the expectation of the
third-order cummulants of the variations of log-likelihood function. It
is worth noting the similarity with the Fisher metric, which measures
the expectation of the second-order cummulants.

Example 1.12.1 In the case of an exponential family we find

Γ
(α)
ij,k = Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= Eξ

[(
− ∂i∂jψ(ξ) +

1− α

2
∂i�∂j�

)
∂k�
]

= −∂i∂jψ(ξ)Eξ [∂k�] +
1− α

2
Eξ[∂i�∂j�∂k�]

=
1− α

2
Tijk.

We note that Γ
(1)
ij,k = 0, and hence an exponential family is ∇(1)-flat.

Example 1.12.2 In the case of a mixture family we have

Γ
(α)
ij,k = Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= Eξ

[(
− ∂i� ∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= −Eξ
[1 + α

2
∂i�∂j�∂k�

]

= −1 + α

2
Tijk.

We have that Γ
(−1)
ij,k = 0, i.e., a mixture family is −1-flat.



1.12. Skewness Tensor 37

It is worth noting that there are statistical models, that are neither
exponential nor mixture families, which are ∇(α)-flat, for any α, see
Problem 1.15.

Example 1.12.3 Next we shall compute the skewness tensor for the
exponential distribution. Consider p(x; ξ) = ξe−ξx, ξ > 0 and x ≥ 0.

Then ∂ξ� =
1

ξ
− x and the skewness tensor is given by the following

component

T111 = Eξ[(∂ξ�)
2] =

∫ ∞

0

(1
ξ
− x

)2
p(x; ξ) dx

=
1

ξ2

∫ ∞

0
(1− ξx)3e−ξx dx = − 2

ξ3
.

The next result deals with a few useful formulas for the skewness
tensor.

Proposition 1.12.2 The skewness tensor on the statistical model
S = {pξ(x);x ∈ X , ξ ∈ E} is given by:

(a) Tijk(ξ) = 27

∫

X
∂i(p

1/3
ξ (x))∂j(p

1/3
ξ (x))∂k(p

1/3
ξ (x)) dx;

(b) Tijk(ξ) = −Eξ[∂i∂j∂k�]− Eξ[(∂j∂k�)(∂i�)]
− Eξ[(∂k∂i�)(∂j�)]− Eξ[(∂i∂j�)(∂k�)];

(c) Tijk(ξ) = 2Eξ [∂i∂j∂k�] + ∂igjk(ξ) + ∂jgki(ξ) + ∂kgij(ξ).

Proof: (a) We have

Tijk(ξ) = Eξ[(∂i�)(∂j�)(∂k�)]

=

∫

X
(∂i ln p(x))(∂j ln p(x))(∂k ln p(x))p(x) dx

=

∫

X

∂ip(x)

p(x)

∂jp(x)

p(x)

∂kp(x)

p(x)
p(x) dx

= 33
∫

X
∂i(p(x)

1/3)∂j(p(x)
1/3)∂k(p(x)

1/3) dx.

(b) Equating the two formulas of the Fisher information gij(ξ) =
Eξ[∂i�∂j�] and gij(ξ) = −Eξ[∂i∂j�], we obtain

∫

X
∂i� ∂j� p(x) dx = −

∫

X
∂i∂j� p(x) dx.
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Differentiate with respect to ξk:

∫

X
∂i∂k� ∂j� p(x) dx+

∫

X
∂i� ∂j∂k� p(x) dx+

∫

X
∂i� ∂j� ∂kp(x) dx

= −
∫

X
∂i∂j∂k� p(x) dx−

∫

X
∂i∂j� ∂kp(x) dx⇐⇒

Eξ[(∂i∂k�)(∂j�)] + Eξ[(∂i�)(∂j∂k�)] +

∫

X
∂i� ∂j� ∂k� p(x) dx

= Eξ[∂i∂j∂k�]−
∫

X
∂i∂j� ∂k� p(x) dx⇐⇒

Eξ[(∂i∂k�)(∂j�)] +Eξ[(∂j∂k�)(∂i�)] + Tijk(ξ)

= −Eξ[∂i∂j∂k�]− Eξ[(∂i∂j�)(∂k�)]

Solving for Tijk(ξ) leads to the desired formula.

(c) Applying Proposition 1.7.1 parts (i) and (ii), we have

Tijk(ξ) = Eξ[(∂i�)(∂j�)(∂k�)]

= ∂kgij(ξ)− Eξ[(∂k∂i�)(∂j�)]− Eξ[(∂k∂j�)(∂i�)]

= ∂kgij(ξ) + ∂jgki(ξ) + Eξ[∂i∂j∂k�] + ∂igjk(ξ) + Eξ[∂i∂j∂k�]

= 2Eξ[∂i∂j∂k�] + ∂igjk(ξ) + ∂jgki(ξ) + ∂kgij(ξ).

These formulas can be used to find the skewness tensor for the cases
of exponential and mixture families, see Problems 1.20. and 1.23.

It is worth noting that Tijk is covariant under reparametrizations
(see Problem 1.16.) and it is invariant under transformations of the
random variable (see Problem 1.18.).

An equivalent way of defining the skewness tensor T is to choose
β = 0 in (1.12.38)

α

2
T (X,Y,Z) = g

(
∇(0)
X Y −∇(α)

X Y,Z
)
. (1.12.40)

Until now, all definitions of the skewness tensor involved two connec-
tions. The following result derives this tensor from only one connec-
tion and the Fisher metric. Recall the following derivative formula of
a 2-covariant tensor h with respect to a linear connection ∇

(∇h)(X,Y,Z) = Xh(Y,Z) − h(∇XY,Z)− h(Y,∇XZ).

We note that∇h is a 3-covariant tensor (it acts on three vector fields).
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Theorem 1.12.3 The metric g and the tensor T are related by

αT = ∇(α)g.

Proof: We need to show that for any vector fields X,Y,Z tangent
to S, we have

αT (X,Y,Z) = Xg(Y,Z)− g(∇(α)
X Y,Z)− g(Y,∇(α)

X Z).

This can be written in local coordinates as

αTijk = ∂igjk − Γ
(α)
ij,k − Γ

(α)
ik,j. (1.12.41)

We start working out the right side using (1.11.34) and Proposi-
tion 1.7.1, part (ii)

∂igjk − Γ
(α)
ij,k − Γ

(α)
ik,j = Eξ[(∂i∂j�)(∂k�)]

+Eξ[(∂i∂k�)(∂j�)] + Eξ[(∂i�)(∂j�)(∂k�)]

−Eξ[(∂i∂j�)∂k�]−
1− α

2
Eξ[∂i� ∂j� ∂k�]

−Eξ[(∂i∂k�)∂j�]−
1− α

2
Eξ[∂i� ∂j� ∂k�]

= αEξ[∂i� ∂j� ∂k�]

= αTijk,

which is (1.12.41).

In particular, for α = 1, we obtain

T = ∇(1)g,

i.e., the skewness tensor is the ∇(1)-derivative of the Fisher metric g.

Corollary 1.12.4 For any ε > 0, the tensor T is given by

T =
∇(α+ε)g −∇(α)g

ε
·

1.13 Autoparallel Curves

Consider a smooth curve ξ(s) in the parameter space E ⊂ R
n, so

each component of ξ(s) =
(
ξ1(s), . . . , ξn(s)

)
is smooth. A curve on

the statistical model S = {pξ} is defined via

γ(s) = ι
(
ξ(s)

)
= pξ(s), s ∈ [0, T ].
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The velocity of the curve γ(s) is given by

γ̇(s) = ι∗
(
ξ̇(s)

)
=

d

ds
ι
(
ξ̇(s)

)
=

d

ds
pξ(s).

A curve γ : [0, T ] → S is called ∇(α)-autoparallel if γ̇(s) is parallel
transported along γ(s), that is, the acceleration with respect to the
∇(α)-connection vanishes

∇(α)
γ̇(s)γ̇(s) = 0, ∀s ∈ [0, T ]. (1.13.42)

In local coordinates γ(s) = (γk(s)), the autoparallelism means

γ̈k(s) + Γ
(α)
ij

k
γ̇i(s)γ̇j(s) = 0, (1.13.43)

where Γ
(α)
ij

k
= Γ

(α)
ij,lg

lk is evaluated along γ(s), and g denotes the
Fisher metric. It is worth noting that this is just a Riccati system of
ODEs. This system of equations states that the velocity vector γ̇(s)
is moving parallel to itself with respect to the connection ∇(α).

If α = 0, the autoparallel curves (1.13.42) become geodesics with
respect to the Fisher metric g. In general, the system of equations
(1.13.43) is nonlinear and hence, hard to solve explicitly. However,
there are a few particular cases when explicit solutions are possible.

Example 1.13.1 Since any exponential family model is ∇(1)-flat,
the ∇(1)-autoparallel curves satisfy γ̈(s) = 0, so γk(s) = cks+ γk(0),

and hence they are straight lines. Using Γ
(α)
ij,k =

1−α
2 Tijk, the equation

of ∇(α)-autoparallel curves becomes, after lowering the indices using
the Fisher metric g,

grkγ̈
k(s) + Γ

(α)
ij,rγ̇

i(s)γ̇j(s) = 0 ⇔

grkγ̈
k(s) +

1− α

2
Tijrγ̇

i(s)γ̇j(s) = 0.

If X is a vector field along γ(s), then multiplying by Xr and summing
over r yields

g(γ̈,X) +
1− α

2
T (γ̇, γ̇,X) = 0.

Two cases are of particular importance. If X = γ̇(s), then

g(γ̈(s), γ̇(s)) +
1− α

2
T
(
γ̇(s), γ̇(s), γ̇(s)

)
= 0.
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For α = 1, we get g(γ̈(s), γ̇(s)) = 0, i.e., the velocity is perpendicular
to acceleration. This always holds true in the case of geodesic curves.
If X = γ̈(s), then

‖γ̈(s)‖2g +
1− α

2
T
(
γ̇(s), γ̇(s), γ̈(s)

)
= 0.

If s denotes the arc length along γ, then the term κ(s) = ‖γ̈(s)‖ has
the interpretation of curvature. Hence the previous relation provides
a relationship between the curvature and skewness tensor.

Proposition 1.13.1 Let α �= β. If a curve γ(s) is both ∇(α) and
∇(β)-autoparallel, then

T (γ̇(s), γ̇(s),X) = 0,

for any vector field X along the curve γ(s).

Proof: Since ∇(α)
γ̇(s)γ̇(s) = 0 and ∇(α)

γ̇(s)γ̇(s) = 0, then subtracting
yields

K(α,β)(γ̇(s), γ̇(s)) = 0,

and hence T (γ̇(s), γ̇(s),X) = 0 by (1.12.38).

1.14 Jeffrey’s Prior

The Fisher metric induces a distribution that has proved useful in
the study of universal data compression, see Clarke and Barron [28].

Let S = {pξ; ξ ∈ E} be a statistical model, and G(ξ) = det gij(ξ)
denote the determinant of the Fisher information matrix. Assume the
volume

V ol(S) =
∫

E

√
G(ξ) dξ <∞.

Then

Q(ξ) =
1

V ol(S)
√
G(ξ)

defines a probability distribution on E, called the Jeffrey prior.

It is worth noting that this distribution is invariant under
reparametrizations of the parameters space, see Problem 1.26.
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1.15 Problems

1.1. Prove that the normalization function ψ(ξ) used in the defi-
nition of an exponential family model, see formula (1.4.6), is
convex.

1.2. A tangent vector field A to a statistical model S = {pξ} in

the 0-representation is a mapping ξ → Aξ, with Aξ = Ajξ ∂jpξ.
The set of all these vector fields forms the tangent space in

the 0-representation to S at pξ and is denoted by T
(0)
ξ S. The

vector Aξ(·) can be also considered as a function defined on the
sample space X . However, when taking the expectation Eξ[Aξ],
we consider Aξ(x) to be a random variable defined on X .

A tangent vector field B to a statistical model S = {pξ}
in the 1-representation is a mapping ξ → Bξ, with Bξ =

Bj
ξ ∂j�(ξ). The set of all these vector fields forms the tangent

space in the 1-representation to S at pξ and is denoted by

T
(1)
ξ S. Observe that {∂j(ln pξ(x))}j=1,n and {∂jpξ(x)}j=1,n are

two distinct bases of the tangent space TξS, corresponding to
the 1-representation and 0-representation, respectively.

(a) Show that the tangent space in the 0-representation is
given by

T
(0)
ξ S = {Aξ : X → R,

∫

X
Aξ(x) dx = 0}.

(b) Prove that the vector spaces T
(0)
ξ S and T

(1)
ξ S are isomor-

phic and find an isomorphism.

1.3. Let S = {pξ} be a statistical model with Fisher metric g. Con-

sider Aξ, Bξ ∈ T
(1)
ξ S vectors in the 1-representation. Show the

following:

(a) g
(
Aξ, Bξ

)
= Eξ[Aξ, Bξ];

(b) Eξ[Aξ ] = Eξ[Bξ] = 0;

(c) |Aξ|g =
√
V ar(Aξ), where | · |g denotes the vector length

with respect to g;

(d) |g
(
Aξ, Bξ

)
| ≤

√
V ar(Aξ)

√
V ar(Bξ).
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1.4. Do the results of the previous problem hold if the vector fields

are in the 0-representation, i.e., Aξ, Bξ ∈ T
(0)
ξ S?

1.5. Consider the log-likelihood function �(ξ) = ln pξ. Show the
following:

(a) ∂i∂j�(ξ) =
∂i∂jpξ
pξ

− ∂i�(ξ)∂j�(ξ);

(b) Eξ[∂i∂j�(ξ)] = −Eξ[∂i�(ξ) ∂i�(ξ)];
(c) The random variable Aξ = ∂i∂j�(ξ) + ∂i�(ξ) ∂j�(ξ) is a

tangent vector to S = {pξ} in the 1-representation, i.e.,

Aξ ∈ T
(1)
ξ S.

(d) Let Bξ = ∂k�(ξ) ∈ T
(1)
ξ S. Using g(Aξ , Bξ) = Eξ[AξBξ],

show that

Γ
(−1)
ij,k (ξ) = g

(
∂k�(ξ), ∂i∂j�(ξ) + ∂i�(ξ) ∂j�(ξ)

)
.

(e) Write the Fisher metric g(ξ) both as −Eξ[∂i∂j�(ξ)] and as
Eξ[∂i�(ξ) ∂j�(ξ)] and then prove (b).

1.6. Use the following linear approximation

∂j�(ξ + δξ) = ∂j�(ξ) + ∂i∂j�(ξ) δξ
i +O(δξi δξj)

to prove the following formulas:

(a) Eξ[∂j�(ξ + δξ)− ∂j�(ξ)] = −gij(ξ)δξi +O(δξi δξj);

(b) Eξ[∂j�(ξ+δξ)+(δξ)j ] = O((δξj)2), where (δξ)j = gij(ξ)δξ
i;

(c) Eξ[∂j�(ξ + δξ) + ∂i�(ξ) ∂j�(ξ)δξ
i] = O(δξi δξj);

(d) Let Aξ = ∂j�(ξ) +
(
∂i∂j�(ξ) + gij(ξ)

)
δξi. Show that Aξ ∈

T
(1)
ξ S;

(e) If Aξ = Arξ∂r�(ξ), show the following linear approximation

Arξ = δrj +Γ
(1)
ij (ξ) δξi, where δrj is the Kronecker’s symbol.

1.7. Let S =
{
pμ,σ(x) =

1√
2πσ

e−
(x−μ)2

2σ2 , μ ∈ R, σ > 0
}
be the statis-

tical model defined by a family of normal distributions. Con-
sider two vector fields in the 1-representation

Aξ = A1(ξ)∂μ�+A2(ξ)∂σ�

Bξ = B1(ξ)∂μ�+B2(ξ)∂σ�,
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where ξ = (μ, σ). Show that the vectors Aξ and Bξ are perpen-
dicular if and only if

A1(ξ)B1(ξ) + 2A2(ξ)B2(ξ) = 0.

1.8. Consider the statistical model given by the exponential distri-
bution S = {pξ(x) = ξe−ξx, ξ > 0, x ≥ 0}.

(a) Show that ∂1�(ξ) =
1
ξ − x, ∂1pξ = e−ξx(1− ξx);

(b) If Aξ ∈ T
(1)
ξ S is a vector in the 1-representation, show that

Aξ = A1(ξ)
(1
ξ
− x

)
.

(c) If Bξ ∈ T (0)
ξ S is a vector in the 0-representation, show that

Bξ = B1(ξ)e−ξx
(
1− ξx

)
.

(d) Let f be a smooth function on S. Find explicit formulas
for ∂1pξ(f) and ∂1�(ξ)(f).

(e) Solve part (d) in the cases when f(p) = ln p, f(p) = ep

and f(p) = p.

(f) LetAξ, Bξ ∈ T (1)
ξ (S). Find g(Aξ , Bξ), where g is the Fisher–

Riemann metric.

1.9. Consider the normal family p(x;μ, σ) = 1√
2πσ

e−
(x−μ)2

2σ2 . Show

that this is an exponential family, p(x; θ) = eθ
iFi(x)−ψ(x), with

ψ(θ) =
μ2

2σ2
+ ln(

√
2πσ), θ1 =

μ

σ2
, θ2 = − 1

2σ2
, F1(x) = x, and

F2(x) = x2.

1.10. The exponential distribution determines the Fisher–Riemann
manifold (

R+, g(x) =
1

x2

)

(a) Compute the Christoffel symbols.

(b) Find the geodesics and the induced distance.
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1.11. The two-dimensional discrete probability model determines the
Fisher–Riemann manifold (M,g(x, y)), where

M = {(x, y) ∈ R
2
+; x+ y < 1}

and

g(x, y) =

(
1
x + 1√

1−x−y
1√

1−x−y
1√

1−x−y
1
y +

1√
1−x−y

)
.

Using MAPLE facilities, compute the Christoffel symbols and
find the geodesics.

1.12. The geometric probability distribution determines the Riemann
manifold (

M,g(x) =
1

x2(1− x)

)
,

where M = {x ∈ R+;x < 1}.

(a) Compute the Christoffel symbols.

(b) Find the geodesics and the induced distance.

(c) Solve the ODE Hessg(f) = 0.

1.13. Find the subset of R3 on which the (0, 2)-tensor

gij(x) =

(
δij
xixj

+
1

1− x1 − x2

)
, x = (x1, x2, x3), i, j = 1, 2, 3

is a Riemannian metric.

1.14. Consider the product q(n)(x) =

n∏
i=1

qi(x; ξ
i) where qi(x) =

ξie−ξix, ξi > 0, x ≥ 0.

(a) Show that S = {q(n)(x, ξ), x ≥ 0; ξ ∈ R
n
+} is an expo-

nential family. Specify the expressions of C(x), Fi(x) and
ψ(ξ).

(b) Find the Fisher–Riemann metric on S.
(c) Find the distance induced by the Fisher information

between q(n)(x, ξ) and q(n)(x, θ).
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1.15. Let p(x) be a probability density function on R and consider
p(n)(x) = p(x1) . . . p(xn), x = (x1, . . . , xn) ∈ R

n. Consider a
nonsingular matrix A ∈ R

n × R
n and define

q(x;A,μ) =
1

|detA|p
(n)
(
A−1(x− μ)

)
,

with μ = (μ1, . . . , μn) ∈ R
n.

(a) Show that q(x;A,μ) is a probability density on R
n.

(b) The statistical model S = {q(x;A,μ)} is α-flat for any α
real.

(c) Show that the Fisher metric on S = {q(x;A,μ)} is the
Euclidean metric.

(d) Choose a probability density p(x) such that S={q(x;A,μ)}
is neither an exponential, nor a mixture family.

1.16. Prove that the skewness tensor Tijk = E[∂i� ∂j� ∂k�] is covari-
ant under reparametrizations, i.e., if ζa = ζa(θ1, · · · , θn) is a
reparametrization, then

T̃ijk(θ) = Tabc(ζ)
∂ζa

∂θi
∂ζb

∂θj
∂ζc

∂θk
.

1.17. Consider the reparametrization ζa = ζa(θ1, · · · , θn). Find a

formula relating Γ
(α)
ijk(ζ) and Γ̃

(α)
abc(θ). Is Γ

(α)
ijk(ζ) covariant under

reparametrizations?

1.18. Prove that the skewness tensor Tijk is invariant under trans-
formations of the random variable, i.e., if f : X → Y is an
invertible mapping (with X ,Y ⊂ R

n), and if p̃ξ(y) = pξ(x),
with y = f(x), and denote �(ξ) = ln pξ, �̃(ξ) = ln pξ, then

Tijk(ξ) = T̃ijk(ξ),

where Tijk = Eξ[∂i� ∂j� ∂k�] and T̃ijk = Eξ[∂i�̃ ∂j �̃ ∂k �̃].

1.19. (a) Prove that Γ
(α)
ij,k is invariant under transformations of the

random variable.

(b) Use part (a) to show that the skewness tensor Tijk has the
same property.

(c) Does Γ
(α) k
ij have the same invariance property?
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1.20. Consider the exponential family

p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ), i = 1, · · · , n.

(a) Show that Eξ[(∂i∂j�)(∂k�)] = 0;

(b) Prove that the skewness tensor can be written in terms of

ψ(ξ) as T
(e)
ijk(ξ) = ∂i∂j∂kψ(ξ).

1.21. Using Problem 1.20 (b), find the skewness tensor for the follo-
wing statistical models:

(a) Exponential distribution;

(b) Normal distribution;

(c) Gamma distribution;

(d) Beta distribution.

1.22. Give an example of a nontrivial statistical model with a zero
skewness tensor, Tijk(ξ) = 0.

1.23. Consider the exponential family

p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ), i = 1, · · · , n,

and denote the α-connection by ∇(α).

(a) Show that Γ
(α)
ij,k(ξ) =

1− α

2
∂i∂j∂kψ(ξ);

(b) Γ
(1)
ij,k(ξ) = 0 and Γ

(−1)
ij,k = ∂i∂j∂kψ(ξ);

(c) Show that the model is both (±1)-flat, i.e., R(1) = 0,
R(−1) = 0;

(d) Find the α-curvature tensor R(α);

(e) Assume the function ψ(ξ) is quadratic, ψ(ξ) =
∑

i,j aijξ
iξj,

with (aij) positive definite matrix. Show that Γ
(α)
ij,k = 0.

Find the geodesics.

1.24. Consider the mixture model

p(x; ξ) = C(x) + ξiFi(x), i = 1, . . . , n.
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(a) Show that the skewness tensor is

T
(m)
ijk (ξ) =

1

2
Eξ[∂i∂j∂k�].

(b) Verify the relation

T
(m)
ijk (ξ) =

∫

X

Fi(x)Fj(x)Fk(x)

p2(x; ξ)
dx.

1.25. Let S ×P be the product of two statistical models. Denote by
g(S), g(P), g(S×P) and T (S), T (P), T (S×P) the Fisher–Riemann
metrics and the skewness tensors on the statistical models S,
P and S × P, respectively.

(a) Prove that

g(S×P) =

(
g(S) 0

0 g(P)

)

(b) Compute T (S×P) in terms of T (S) and T (P);

(c) Assume T (S) = 0 and T (P) = 0. Is T (S×P) = 0?

1.26. Prove that Jeffrey’s prior is invariant under reparametrizations
of the parameters space E.

1.27. Consider S = {pξ(x)}, where pξ(x) = ξe−ξx, ξ > 0, x ≥ 0, is
the exponential distribution model. Consider the submanifold
Mc = {pξ; ξ ≥ c}. Find the Jeffrey’s prior associated with Mc.

1.28. Consider the statistical model S = P(X ), with the sample
space X = {0, 1, . . . , n}, and denote the Fisher–Riemann met-
ric by gij .

(a) Let V =
∫
E

√
det gij(ξ) dξ be the volume of S. Show that

V =
π(n+1)/2

Γ
(
n+1
2

) ·

(b) Show that the associate Jeffrey prior is the uniform distri-
bution on an n-dimensional sphere.

1.29. Consider the functions F1(x) = sinx, F2(x) = cos x on R.

(a) Show that {1, F1(x), F2(x)} are linearly independent on R;



1.15. Problems 49

(b) Let ψ(ξ) = ln
(∫

R

ex
2+ξiFi(x) dx

)
, and consider the set

E = {ξ;ψ(ξ) <∞}. Show that E = Ø.

1.30. Consider the statistical model given by the Multivariate Nor-
mal Distribution, see Example 1.3.8, with the notations therein.

(a) Verify that

∂μr�x(μ,A) = −
k∑
j=1

Arj +Ajr

2
(xj − μj).

(b) Show that
∂(detA−1)

∂Ais
=

Aij
detA

.

(c) Use (b) to prove that

∂Aαβ�x(μ,A) =
1

2
Aαβ −

1

2
(xα − μα)(xβ − μβ).



Chapter 2

Explicit Examples

This chapter presents a few examples of usual statistical models
(normal, lognormal, beta, gamma, Bernoulli, and geometric) for which
we provide the Fisher metric explicitly and, if possible, the geodesics
and α-autoparallel curves. Some Fisher metrics will involve the use
of non-elementary functions, such as the digamma and trigamma
functions.

A distinguished role is dedicated to the normal distribution, which
is associated with a manifold of negative constant curvature (hyper-
bolic space) and to the multinomial geometry, which corresponds to
a space with positive constant curvature (spherical space).

2.1 The Normal Distribution

In this section we shall determine the geodesics with respect to the
Fisher information metric of a family of normal distributions. Given
two distributions of the same family, the geodesics are curves of min-
imum information joining the distributions. We shall see that such a
curve always exists between any two distributions on a normal family.
This is equivalent with the possibility of deforming one distribution
into the other by keeping the change of information to a minimum.

2.1.1 The Fisher Metric

Recall the formula for the density of a normal family

p(x, ξ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X = R,
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with parameters (ξ1, ξ2) = (μ, σ) ∈ R×(0,∞). Using Proposition 1.6.3
we obtain the following components for the Fisher–Riemann metric.

Proposition 2.1.1 The Fisher information matrix for the normal
distribution is given by

gij =

(
1
σ2

0
0 2

σ2

)
. (2.1.1)

For the computation details see Problem 2.1. It is worth noting that
the metric does not depend on μ, i.e., it is translation invariant. This
metric is also very similar to the upper-half plane metric.

2.1.2 The Geodesics

A straightforward computation shows that the nonzero Christoffel
symbols of first and second kind are:

Γ11,2 =
1

σ3
, Γ12,1 = − 1

σ3
, Γ22,2 = − 2

σ3

Γ1
ij =

(
0 − 1

σ
− 1
σ 0

)
, Γ2

ij =

(
1
2σ 0
0 − 1

σ

)
.

Consequently, the geodesics equations (1.13.43) are solutions of a
Riccati ODE system

μ̈− 2

σ
μ̇σ̇ = 0 (2.1.2)

σ̈ +
1

2σ
(μ̇)2 − 1

σ
(σ̇)2 = 0. (2.1.3)

Separating and integrating in the first equation yields

μ̈

μ̇
=

2σ̇

σ
⇐⇒ d

ds
ln μ̇ = 2

d

ds
lnσ ⇐⇒ μ̇ = cσ2,

with c constant. We solve the equation in the following two cases:

1. The case c = 0. It follows that μ = constant, which corresponds

to vertical half lines. Then σ satisfies the equation σ̈ =
1

σ
σ̇2. Writing

the equation as
σ̈

σ̇
=
σ̇

σ
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and integrating yields ln σ̇ = ln(Cσ), with C constant. Integrating
again, we find σ(s) = KeCs. Hence, the geodesics in this case have
the following explicit equations

μ = c (2.1.4)

σ(s) = KeCs, (2.1.5)

with c, C ∈ R, K > 0 constants.

2. The case c �= 0. Substituting μ̇ = xσ2 in Eq. (2.1.3), we obtain
the following equation in σ

σσ̈ +
c2

2
σ4 − (σ̇)2 = 0. (2.1.6)

Let σ̇ = u. Then σ̈ =
du

dσ
u and (2.1.6) becomes

σ
du

dσ
u+

c2

2
σ4 − u2 = 0.

Multiplying by the integrant factor
1

σ3
leads to the exact equation

u

σ2︸︷︷︸
=M

du+
( c2

2
σ − u2

σ3︸ ︷︷ ︸
N

)
dσ = 0,

since
∂M

∂σ
=
∂N

∂u
= −2uσ−3.

Then there is a function f(σ, u) such that df = 0, with

∂f

∂u
=M,

∂f

∂σ
= N.

Integrating in the first equation yields

f(σ, u) =
u2

2σ2
+ h(σ),

with function h to be determined in the following. Differentiating
with respect to σ in the above equation,

∂f

∂σ
= −u

2

σ3
+ h′(σ),



54 Chapter 2. Explicit Examples

and comparing with

∂f

∂σ
= N =

c2

2
σ − u2

σ3
,

we get

h′(σ) =
c2

2
σ =⇒ h(σ) =

c2σ2

4
+ c0,

with c0 constant. Hence, a first integral for the system is

f(σ, u) =
u2

2σ2
+
c2σ2

4
=
E

2
,

with E positive constant. Solving for u, we obtain

u2

σ2
+
c2σ2

2
= E ⇐⇒

σ̇

σ
=

c√
2

√
C2 − σ2,

where C2 = 2E/c2. Separating and integrating, we find

∫
dσ

σ
√
C2 − σ2

= (s+ s0)
c√
2
.

Using the value of the integral

∫
dx

x
√
C2 − x2

= − 1√
C

tanh−1

√
1−

( x
C

)2
,

we obtain

− 1√
C

tanh−1

√
1−

( σ
C

)2
= (s+ s0)

c√
2
.

Solving for σ, we get

σ = c

√
1− tanh2

(√
E(s+ s0)

)
=

c

cosh
(√
E(s+ s0)

) .

In order to find μ we integrate in μ̇ = cσ2 and obtain

μ(s) =

∫
c3

cosh2
(√
E(s+ s0)

) ds = c3√
E

tanh
(√
E(s+ s0)

)
+K.
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Since we have

σ(s)2 + (μ(s)−K)2
E

c4
= c2,

the geodesics will be half-ellipses, with σ > 0.

In the case c = 0, the unknown σ satisfies

σ̇

σ
=

√
E ⇐⇒ d

ds
lnσ =

√
E

with solution

σ(s) = σ(0)e
√
Es,

while μ is constant, μ = K. The geodesics in this case are vertical
half-lines.

Proposition 2.1.2 Consider two normal distributions with equal
means, μ0 = μ1, and distinct standard deviations σ0 and σ1. Then the
smallest information transform, which deforms the first distribution
into the second one, is a normal distribution with constant mean and
standard deviation

σ(s) = σ
s/τ
1 σ

1−s/τ
0 , s ∈ [0, τ ].

Proof: The geodesic in this case is a vertical half-line with constant

mean and σ(s) = σ(0)e
√
Es. The amount

√
E can be found from the

boundary condition σ(τ) = σ1.

Let x0 = lnσ0, x1 = lnσ1, and x(s) = lnσ(s). Then x(s) =
s
τ x0+

(
1− s

τ

)
x1, which corresponds to a line segment. The minimal inf-

ormation loss during the deformation occurs when the log-likelihood
function describes a line segment.

2.1.3 α-Autoparallel Curves

A straightforward computation, using (1.11.34), yields the following
Christoffel coefficients of first kind

Γ
(α)
11,1 = Γ

(α)
21,2 = Γ

(α)
12,2 = Γ

(α)
22,1 = 0

Γ
(α)
11,2 =

1− α

σ3
, Γ

(α)
12,1 = Γ

(α)
21,1 = −1 + α

σ3
, Γ

(α)
22,2 = −2(1 + 2α)

σ3
.
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The Christoffel symbols of second kind are obtained by rising indices

Γ1
ij
(α)

= g11Γij,1
(α) + g12Γij,2

(α) = σ2Γij,1
(α)

= σ2
(

0 −1+α
σ3

−1+α
σ3

0

)
=

(
0 −1+α

σ
−1+α

σ 0

)
.

Γ2
ij
(α)

= g21Γij,1
(α) + g22Γij,2

(α)

=
σ2

2

(
1−α
σ3

0
0 −21+2α

σ3

)
=

(
1−α
2σ 0
0 −1+2α

σ

)
.

The Riccati equations (1.13.43) for the α-autoparallel curves are

μ̈− 2(1 + α)

σ
σ̇μ̇ = 0

σ̈ +
1− α

2σ
μ̇2 − 1 + 2α

σ
σ̇2 = 0.

The first equation can be transformed as in the following

μ̈

μ̇
= 2(1 + α)

σ̇

σ
⇐⇒

d

ds
ln μ̇ = 2(1 + α)

d

ds
lnσ ⇐⇒

ln μ̇ = 2(1 + α) ln σ + c0 ⇐⇒
μ̇ = c σ2(1+α),

with c constant. Substituting in the second equation yields

σ̈ +
1− α

2σ
c2σ4(1+α) − 1 + 2α

σ
σ̇2 = 0,

which after the new substitution u = σ̇ writes as

du

dσ
u+

1− α

2σ
c2σ4(1+α) − 1 + 2α

σ
u2 = 0.

Multiplying the equation by an integral factor of the form σk+1, we
obtain

σk+1u︸ ︷︷ ︸
=M

du+
( 1− α

2
c2σ4(α+1)+k − (1 + 2α)σku2

︸ ︷︷ ︸
=N

)
dσ = 0.

From the closeness condition

∂M

∂σ
=
∂N

∂u
,
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we determine k + 1 = −(4α + 2). The exact equation we need to
solve is

uσ−(4α+2) du+
(1− α

2
c2σ − (1 + 2α)u2σ−(4α+3)

)
dσ = 0.

We need to determine a function f that satisfies the system

∂f

∂u
= uσ−(4α+2)

∂f

∂σ
=

1− α

2
c2σ − (1 + 2α)u2σ−(2α+3).

From the first equation, we have

f =
u2

2
σ−(4α+2) + h(σ) =⇒ ∂f

∂σ
= −(1 + 2α)u2σ−(4α+3) + h′(σ)

and comparing with the second equation yields

h′(σ) =
1− α

2
c2σ =⇒ h(σ) =

(1− α)c2

4
σ2 + C.

Hence, a first integral of motion is given by

f =
u2

2
σ−(4α+2) +

1− α

4
c2σ2 =

E

2
,

with E constant. Next we shall solve for σ. Using that u = σ̇, we have

u2

σ2(2α+1)
+

1− α

2
c2σ2 = E ⇐⇒

(
σ̇

σ2α+1

)2

+
1− α

2
c2σ2 = E ⇐⇒

(
σ̇

σ2α+1

)2

= E − 1− α

2
c2σ2 ⇐⇒

∫
dσ

σ2α+1
√
E − 1−α

2 c2σ2
= ±s+ s0 ⇐⇒

∫
dσ

σ2α+1
√
C2 − σ2

= (±s+ s0)

√
1− α

2
c, (2.1.7)

where

C = Cα =
2E

c

1

1− α
.
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The left side integral can be transformed using the substitutions
t = σ2, v =

√
C2 − t as follows

∫
dσ

σ2α+1
√
C2 − σ2

=

∫
dt

2σ2(α+1)
√
C2 − σ2

=

∫
dt

2tα+1
√
C2 − t

=

∫ −2v dv

2tα+1v
= −

∫
dv

(C2 − v2)α+1
,

and hence (2.1.7) becomes

−
∫

dv

(C2 − v2)α+1
= (±s+ s0)

√
1− α

2
c. (2.1.8)

The μ-component is given by

μ = c

∫
σ2(1+α)(s)ds. (2.1.9)

There are a few particular values of α for which this equation can
be solved explicitly.

Case α = −1

Equation (2.1.8) becomes

−v −K = (±s+ s0)

√
1− α

2
c,

with solution

σ2(s) = C2 −
(
(±s+ s0)

√
1− α

2
c+K

)2
,

for K constant. Equation (2.1.3) easily yields

μ(s) = cs+ μ(0).

Case α = 1/2

Since ∫
dv(

C2 − v2
)3/2 =

v

C2
√
C2 − v2

,

we solve

− v

C2
√
C2 − v2

= (±s+ s0)
c

2
+K

and obtain
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σ(s) =
C√

1 +C4
(
(±s+ s0)

c
2 +K

)2 .

The μ-component is given by the integral

μ(s) = c

∫
σ3(s) ds.

2.2 Jeffrey’s Prior

In the following we shall compute the prior on the statistical model

Sμ = {pξ;E[pξ = μ], V ar[pξ] > 1} = {p(μ,σ);σ > 1}

which represents a vertical half line in the upper-half plane. The
determinant is

G(ξ) = det gij(ξ) = det

(
1
σ2

0
0 2

σ2

)
=

2

σ4
.

Then the volume is computed as

V ol(Sμ) =

∫ ∞

1

√
G(ξ) dσ =

∫ ∞

1

√
2

σ2
dσ =

√
2 <∞.

Therefore the prior on Sμ is given by

Q(σ) =

√
G(σ)

V ol(Sμ)
=

1

σ2
.

2.3 Lognormal Distribution

In the case of lognormal distribution

pμ,σ(x) =
1√

2π σx
e−

(lnx−μ)2

2σ2 , x > 0,

the Fisher information matrix (Fisher–Riemann metric) is given by

g =

(
gμμ gμσ
gσμ gσσ

)
=

(
1
σ2

0
0 2

σ2

)
.

The computation details are left for the reader and are the sub-
ject of Problem 2.2. It is worth noting that this coincides with the
Fisher metric of a normal distribution model. Hence, the associated
geodesics are vertical half lines or halfs of ellipses.
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2.4 Gamma Distribution

In this case the statistical model is defined by the following family of
densities

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β,

with (α, β) ∈ (0,∞) × (0,∞), x ∈ (0,∞). In the study of this model
we need some special functions. Let

ψ(α) =
Γ′(α)
Γ(α)

, ψ1(α) = ψ′(α) (2.4.10)

be the digamma and the trigamma functions, respectively. Differen-
tiating in the Dirichlet’s integral representation (see Erdélyi [42] vol.
I, p. 17)

ψ(α) =

∫ ∞

0
[e−t − (1 + t)−α]t−1 dt, α > 0

yields the following integral expression for the trigamma function

ψ1(α) = ψ′(α) =
∫ ∞

0

ln(1 + t)

t(1 + t)α
dt. (2.4.11)

Another interesting formula is the expression of the trigamma func-
tion as a Hurwitz zeta function

ψ1(α) = ζ(2, α) =
∑
n≥0

1

(α+ n)2
, (2.4.12)

which holds for α /∈ {0,−1,−2,−3, . . . }, relation obviously satisfied
in our case since α > 0.

Then the components of the Fisher–Riemann metric are obtained
from Proposition 1.6.3, using the relations

∫ ∞

0
p
ξ
(x) dx = 1,

∫ ∞

0
xp

ξ
(x) dx = αβ
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and the derivatives of the log-likelihood function that are asked to be
computed in Problem 2.2:

gαα = −E[∂2α�x(ξ)] =

∫ ∞

0
ψ′(α)p

ξ
(x) dx = ψ′(α) = ψ1(α),

g
ββ

= −E[∂2β�x(ξ)] = −
∫ ∞

0

( α
β2

− 2x

β3

)
p
ξ
(x) dx

= − α

β2
+

2

β3

∫ ∞

0
xp

ξ
(x) dx =

α

β2
,

g
αβ

= −E[∂αβ�x(ξ)] =

∫ ∞

0

1

β
p
ξ
(x) dx =

1

β
.

Proposition 2.4.1 The Fisher information matrix (Fisher–Riemann
metric) for the gamma distribution is

g =

(
ψ1(α)

1
β

1
β

α
β2

)
=

⎛
⎜⎝
∑
n≥0

1

(α+ n)2
1
β

1
β

α
β2

⎞
⎟⎠ .

It is worth noting that here α is the parameter for the gamma
distribution and it has nothing to do with α-connections.

2.5 Beta Distribution

The Fisher information metric for the beta distribution

pa,b =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, x ∈ [0, 1]

will be worked in terms of trigamma functions. Since the beta function

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx

can be expressed in terms of gamma functions as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

then its partial derivatives can be written in terms of digamma func-
tions, using relation (2.11.17), see Problem 2.4, part (a).

The log-likelihood function and its partial derivatives are left for
the reader as an exercise in Problem 2.4, parts (b) and (c). Since the
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second partial derivatives of �(a, b) do not depend on x, they will
coincide with their own expected values. It follows the next compo-
nents for the Fisher–Riemann metric:

gaa = −E[∂2a�(a, b)] = ψ1(a)− ψ1(a+ b)

gbb = −E[∂2b �x(a, b)] = ψ1(b)− ψ1(a+ b)

gab = gba = −E[∂a∂b�x(a, b)] = −ψ1(a+ b).

Proposition 2.5.1 The Fisher information matrix (Fisher–Riemann
metric) for the beta distribution is given by

g =

(
ψ1(a)− ψ1(a+ b) −ψ1(a+ b)

−ψ1(a+ b) ψ1(b)− ψ1(a+ b)

)
,

where ψ1 stands for the trigamma function.

2.6 Bernoulli Distribution

Consider the sample space X = {0, 1, . . . , n} and parameter space
E = [0, 1]. The Bernoulli, or binomial distribution, is given by

p(k; ξ) =
(n
k

)
ξk(1− ξ)n−k,

where the parameter ξ denotes the success probability. Then S =
{pξ; ξ ∈ [0, 1]} becomes a one-dimensional statistical model. The
derivatives of the log-likelihood function �k(ξ) = ln p(k; ξ) are pro-
posed as an exercise in Problem 2.5. Then the Fisher information is
given by the function

g11(ξ) = −Eξ[∂2ξ �(ξ)] =
n∑
k=0

p(k; ξ)∂2ξ �k(ξ)

=
n∑
k=0

k

ξ2
p(k; ξ) +

∑ (n− k)

(1− ξ)2
p(k; ξ)

=
n

ξ
+
n(1− ξ)

(1− ξ)2
=

n

ξ(1− ξ)
,

where we used that the mean of a Bernoulli distribution is nξ. Using
that the variance is nξ(1− ξ), it follows that

g11(ξ) =
n2

V ar(pξ)
,

which is a Cramér–Rao type identity corresponding to an efficient
estimator.
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2.7 Geometric Probability Distribution

Let X = {1, 2, 3, . . . }, E = [0, 1] and consider p(k; ξ) = (1 − ξ)k−1ξ,
k ∈ X , ξ ∈ E. The formulas for the partial derivatives of the log-
likelihood function are left as an exercise for the reader in Prob-
lem 2.6. Then the Fisher information becomes

g11(ξ) = −Eξ[∂2ξ �(ξ)]

=
∑
k≥1

(k − 1)p(k; ξ)

(ξ − 1)2
+
∑
k≥1

1

ξ2
p(k; ξ)

=
1

ξ2(1− ξ)
,

where we used the expression for the mean
∑

k≥1 k p(k; ξ) =
1
ξ .

2.8 Multinomial Geometry

In this section we investigate the geometry associated with the multi-
nomial probability distribution. The computation performed here is
inspired from Kass and Vos [49]. Consider m independent, identical
trials with n possible outcomes. The probability that a single trial
falls into class i is pi, i = 1, 2, . . . , n, and remains the same from trial
to trial. Since p1 + · · ·+ pn = 1, the parameter space is given by the
(n− 1)-dimensional simplex

E = {(p1, . . . , pn−1); 0 ≤ pi ≤ 1,
n−1∑
i=1

pi = 1}.

It is advantageous to consider the new parameterization

zi = 2
√
pi, i = 1, . . . , n.

Then
∑n

i=1 z
2
i = 4, and hence

z ∈ S
n−1
2,+ = {z ∈ R

n; ‖z‖2 = 4, zi ≥ 0}.

Therefore, the statistical manifold of multinomial probability dis-
tributions can be identified with S

n−1
2,+ , the positive portion of the

(n− 1)-dimensional sphere of radius 2. The Fisher information matrix
with respect to a local coordinate system (ξi) is
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grs(ξ) = 4
n∑
i=1

∂r
√
pi(ξ)∂s

√
pi(ξ)

=
n∑
i=1

∂rzi(ξ) ∂szi(ξ)

= 〈∂rz, ∂sz〉,

where ∂s = ∂ξs . Therefore, the Fisher metric is the natural metric
induced from the Euclidean metric of R

n on the sphere S
n−1
2,+ . We

note that ∂rz is a tangent vector to the sphere in the direction of ξr.
To find the information distance between two multinomial distri-

butions p and q, we need to find the length of the shortest curve on
the sphere S

n−1
2,+ , joining p and q. The curve that achieves the mini-

mum is an arc of great circle passing through p and q, and this curve
is unique.

Let zp and zq denote the points on the sphere corresponding to the
aforementioned distributions. The angle α made by the unit vectors
zp/2 and zq/2 satisfies cosα = 〈zp/2, zq/2〉. Since the distance on the
sphere is the product between the radius and the central angle, we
have

d(p, q) = 2α = 2arccos
( n∑
i=1

zip
2

ziq
2

)

= 2arccos
( n∑
i=1

(piqi)
1/2
)
.

It is worthy to note that the Euclidean distance between p and q can
be written as

‖zp − zq‖2 =
( n∑
i=1

(zip − ziq)
2
)1/2

= 2
( n∑
i=1

(zip
2

−
ziq
2

)2)1/2

= 2
( n∑
i=1

(
√
pi −

√
qi)

2
)1/2

= dH(p, q),

which is called the Hellinger distance between p and q. We shall dis-
cuss about this distance in more detail later.

The foregoing computation of the Fisher metric was exploiting
geometric properties. In the following we shall provide a direct com-
putation. We write the statistical model of multinomial distributions
by S = {p(k; ξ)}, with

p(k; ξ) =
n!

k1! . . . km!
pk11 . . . p

km−1

m−1 p
km
m ,



2.9. Poisson Geometry 65

where
X = {k = (k1, . . . km) ∈ N

m; k1 + . . . km = n},

and ξ = (ξ1, . . . , ξm−1) ∈ E = [0, 1]m−1, with ξi = pi, i = 1, . . . m− 1,
and pm = 1 − p1 − · · · − pm−1. Then a straightforward computation
shows

∂i�(k; ξ) =
ki
pi

− km
pm

∂j∂i�(k; ξ) = −
[kiδij
p2i

+
km
p2m

]
.

Using the formula for the marginal probability

∑
k

kip(k; ξ) = npi,

we have

gij(ξ) = −Eξ[∂i∂j�(k; ξ)] = E
[kiδij
p2i

+
km
p2m

]

=
δij
p2i

∑
k

kip(k; ξ) +
1

p2m

∑
k

kmp(k; ξ)

= n
[δij
pi

+
1

pm

]
= n

[δij
ξi

+
1

1− ξ1 − · · · − ξm−1

]
.

2.9 Poisson Geometry

Consider m independent Poisson distributions with parameters λi,
i = 1, . . . ,m. The joint probability function is given by the product

p(x;λ) =

m∏
i=1

pλi(xi) =

m∏
i=1

e−λi
λxii
xi!

,

with λ = (λ1, . . . , λm+1) ∈ E = (0,∞)m, and x = (x1, . . . , xm) ∈
X = (N∪ {0})m. The log-likelihood function and its derivatives with
respect to ∂j = ∂λj are

�(x;λ) = −λi + xi lnλi − ln(xi!)

∂j�(x;λ) = −1 +
xj
λj

∂k∂j�(x;λ) = −xj
λ2j
δkj .
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Then the Fisher information is obtained as

gjk(λ) = E
[xj
λ2j
δkj

]
=

1

λ2j
δkjE[xj ]

=
1

λ2j
δkj
∑
x

xjp(x;λ) =
1

λj
δkj.

Therefore the Fisher matrix has a diagonal form with positive entries.

2.10 The Space P(X )

Let X = {x1, . . . , xn} and consider the statistical model P(X ) of all
discrete probability densities on X . The space P(X ) can be imbedded
into the function space R

X = {f ; f : X → R} in several ways, as
we shall describe shortly. This study can be found in Nagaoka and
Amari [61].

For any α ∈ R consider the function ϕα : (0,∞) → R

ϕα(u) =

⎧
⎪⎨
⎪⎩

2

1− α
u

1−α
2 , if α �= 1

lnu, if α = 1.

The imbedding

P(X ) � p(x; ξ) → ϕα
(
p(x; ξ)

)
∈ R

X

is called the α-representation of P(X ). A distinguished role will be
played by the α-likelihood functions

�(α)(x; ξ) = ϕα
(
p(x; ξ)

)
.

The coordinate tangent vectors in this representation are given by

∂i�
(α)(x; ξ) = ∂ξiϕα

(
p(x; ξ)

)
.

The α-representation can be used to define the Fisher metric and
the ∇(α)-connection on P(X ).

Proposition 2.10.1 The Fisher metric can be written in terms of
the α-likelihood functions as in the following
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(i) gij(ξ) =

n∑
k=1

∂i�
(α)(xk; ξ)∂j�

(−α)(xk; ξ);

(ii) gij(ξ) = − 2

1 + α

n∑
k=1

p(xk; ξ)
1+α
2 ∂i∂j�

(α)(xk; ξ).

Proof: Differentiating yields

∂i�
(α) = p

1−α
2 ∂i�; (2.10.13)

∂i�
(−α) = p

1+α
2 ∂i�; (2.10.14)

∂i∂j�
(α) = p

1−α
2

(
∂i∂j�+

1− α

2
∂i�∂j�

)
, (2.10.15)

where �(x; ξ) = ln p(x; ξ).

(i) The previous computations and formula (1.6.16) provide

n∑
k=1

∂i�
(α)(xk; ξ)∂j�

(−α)(xk; ξ) =
n∑
k=1

p
1−α
2 ∂i�(xk)p

1+α
2 ∂j�(xk)

=
n∑
k=1

p(xk; ξ)∂i�(xk)∂j�(xk)

= Eξ[∂i� ∂j�] = gij(ξ).

(ii) Relation (2.10.15) implies

p
1+α
2 ∂i∂j�

(α)(x; ξ) = p(x; ξ)∂i∂j�(x; ξ)+
1− α

2
p(x; ξ)∂i�∂j�(x; ξ).

Summing and using (1.6.16) and (1.6.18), we have

n∑
k=1

p(xk; ξ)
1+α
2 ∂i∂j�

(α)(xk; ξ) = Eξ[∂i∂j�] +
1− α

2
Eξ[∂i� ∂j�]

= −gij(ξ) +
1− α

2
gij(ξ)

= −1 + α

2
gij(ξ).

The symmetry of relation (i) implies that the Fisher metric in-
duced by both α and −α-representations are the same.
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Proposition 2.10.2 The components of the α-connection are given
in terms of the α-representation as

Γ
(α)
ij,k =

n∑
r=1

∂i∂j�
(α)(xr; ξ) ∂k�

(−α)(xr; ξ). (2.10.16)

Proof: Combining relations (2.10.14) and (2.10.15)

n∑
r=1

∂i∂j�
(α) ∂k�

(−α) =
n∑
r=1

p(xr; ξ)
(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�(xr; ξ)

= Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= Γ
(α)
ij,k,

by (1.11.34).

The particular values α = −1, 0, 1 provide distinguished impor-
tant cases of representations of P(X ).

2.10.1 −1-Representation

If α = −1, then ϕ−1(u) = u, and �(−1)
(
p(x; ξ)

)
= p(x; ξ) is the

identical imbedding of P(X ) into R
X . Thus P(X ) is an open set of

the affine space A1 = {f : X → R;
∑n

k=1 f(xk) = 1}. Therefore, the
tangent space at any point pξ can be identified with the following
affine variety

T
(−1)
ξ (P(X )) = A0 = {f : X → R;

n∑
k=1

f(xk) = 0}.

The coordinate vector fields in this representation are given by

(∂−1
i )

ξ
= ∂ipξ.

We can easily check that

n∑
k=1

(∂−1
i )

ξ
(xk) =

n∑
k=1

∂ipξ(xk) = ∂i(1) = 0,

so (∂−1
i )

ξ
∈ Tξ(P), for any ξ.
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2.10.2 0-Representation

This is also called the square root representation. In this case ϕ0(u) =
2
√
u, and the imbedding ϕ0 : P(X ) → R

X is

p(x; ξ) → ϕ0(p(x; ξ)) = �(0)(x; ξ) = 2
√
p(x; ξ) = θ(x) ∈ R

X .

Since
∑n

k=1 θ(xk)
2 = 4, the image of the imbedding ϕ0 is an open

subset of the sphere of radius 2,

ϕ0

(
P(X )

)
⊂ {θ; θ : X → R;

∑
k

θ(xk)
2 = 4}.

The induced metric from the natural Euclidean metric of RX on this
sphere is

〈∂iθ, ∂jθ〉 =

n∑
k=1

∂iθ(xk)∂jθ(xk)

= 4

n∑
k=1

∂i
√
p(xk; ξ)∂j

√
p(xk; ξ)

= gij(ξ),

i.e., the Fisher metric on the statistical model P(X ).
The coordinate vector fields are given by

(∂0i )ξ = ∂i�
(0)(x; ξ) =

1√
p(x; ξ)

∂ip(x; ξ).

The next computation deals with the tangent space generated by
(∂0i )ξ . We have

〈θ, (∂0i )ξ〉 =
n∑
k=1

θ(xk)
1

p(xk; ξ)
∂ip(xk; ξ)

=

n∑
k=1

2
√
p(xk; ξ)

1

p(xk; ξ)
∂ip(xk; ξ)

= 2∂i

n∑
k=1

p(xk; ξ) = 0,

so that the vector (∂0i )ξ is perpendicular on the vector θ, and hence
belongs to the tangent plane to the sphere at θ. This can be identified

with the tangent space T
(0)
ξ P(X ) in the 0-representation.
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2.10.3 1-Representation

This is also called the exponential (or the logarithmic) representation,
because each distribution p(x; ξ) ∈ P(X ) is identified with
ln p(x; ξ) ∈ R

X . In this case the 1-likelihood function becomes
�(1)(x; ξ) = �(x; ξ) = ln p(x; ξ), i.e., the usual likelihood function.

The coordinate vector fields are given by

(∂1i )ξ = ∂i�
(1)(x; ξ) =

1

p(x; ξ)
∂ip(x; ξ).

In the virtue of the computation

Ep[(∂
1
i )ξ ] = Ep[∂i�

(1)(x; ξ)] =
n∑
k=1

∂ip(xk; ξ) = ∂i(1) = 0,

it follows that the tangent space in this representation is given by

T (1)
p (P(X )) = {f ; f ∈ R

X }, Ep[f ] = 0}.

It is worth noting that tangent spaces are invariant objects, that
do not depend on any representation. However, when considering
different system of parameters, tangent vectors can be described by
some particular relations, like in the cases of±1 and 0 representations.

2.10.4 Fisher Metric

Let ξi = p(xi; ξ), i = 1, . . . , n− 1, be the coordinates on P(X ). Since
p(xn; ξ) = 1 −

∑n−1
j=1 ξ

j , then the partial derivatives with respect to

ξj are

∂ip(xk; ξ) =

{
δik, if k = 1, . . . , n− 1
−1, if k = n.

Then the Fisher metric is given by

gij(ξ) = Ep[∂i� ∂j�] =
n∑
k=1

p(xk; ξ)∂i ln p(xk; ξ)∂j ln p(xk; ξ)

=
n∑
k=1

∂ip(xk; ξ)∂jp(xk; ξ)

p(xk; ξ)

=
n−1∑
k=1

δikδjk
ξk

+
1

1−
∑n−1

j=1 ξ
j

=
δij
ξj

+
1

1−
∑n−1

j=1 ξ
j
·
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2.11 Problems

2.1. Consider the statistical model given by the densities of a nor-
mal family

p(x, ξ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X = R,

with parameters (ξ1, ξ2) = (μ, σ) ∈ R× (0,∞).

(a) Show that the log-likelihood function and its derivatives
are given by

�x(ξ)= ln p(x, ξ) = −1

2
ln(2π)− lnσ−(x− μ)2

2σ2

∂σ�x(ξ) = ∂σ ln p(x, ξ) = − 1

σ
+

1

σ3
(x− μ)2

∂σ∂σ�x(ξ) = ∂σ∂σ ln p(x, ξ) =
1

σ2
− 3

σ4
(x− μ)2

∂μ�x(ξ) = ∂μ ln p(x, ξ) =
1

σ2
(x− μ)

∂μ∂μ�x(ξ) = ∂μ∂μ ln p(x, ξ) = − 1

σ2

∂σ∂μ�x(ξ) = ∂σ∂μ ln p(x, ξ) = − 2

σ3
(x− μ).

(b) Show that the Fisher–Riemann metric components are
given by

g11 =
1

σ2
, g12 = g21 = 0, g22 =

2

σ2
.

2.2. Consider the statistical model defined by the lognormal
distribution

pμ,σ(x) =
1√

2π σx
e−

(lnx−μ)2

2σ2 , x > 0.

(a) Show that the log-likelihood function and its derivatives
are given by

�(μ, σ) = − ln
√
2π − lnσ − lnx− 1

2σ2
(ln x− μ)2

∂2μ�(μ, σ) = − 1

σ2

∂2σ�(μ, σ) =
1

σ2
− 3

σ4
(lnx− μ)2

∂μ∂σ�(μ, σ) = − 2

σ3
(lnx− μ).
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(b) Using the substitution y = lnx−μ, show that the compo-
nents of the Fisher–Riemann metric are given by

gσσ =
2

σ2
, gμμ =

1

σ2
, gμσ = gσμ = 0.

2.3. Let

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β,

with (α, β) ∈ (0,∞) × (0,∞), x ∈ (0,∞) be the statistical
model defined by the gamma distribution.

(a) Show that the log-likelihood function is

�x(ξ) = ln p
ξ
= −α ln β − ln Γ(α) + (α− 1) ln x− x

β
.

(b) Verify the relations

∂β�x(ξ) = −α
β
+

x

β2

∂αβ�x(ξ) = − 1

β

∂2β�x(ξ) =
α

β2
− 2x

β3

∂α�x(ξ) = − ln β − ψ(α) + lnx

∂2α�x(ξ) = −ψ1(α),

where

ψ(α) =
Γ′(α)
Γ(α)

, ψ1(α) = ψ′(α) (2.11.17)

are the digamma and the trigamma functions, respectively.

(c) Prove that for α > 0, we have

∑
n≥0

α

(α+ n)2
> 1.

2.4. Consider the beta distribution

pa,b =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, x ∈ [0, 1].
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(a) Using that the beta function

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx

can be expressed in terms of gamma function as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

show that its partial derivatives can be written in terms of
digamma functions, as

∂a lnB(a, b) = ψ(a) − ψ(a+ b) (2.11.18)

∂b lnB(a, b) = ψ(b) − ψ(a+ b). (2.11.19)

(b) Show that the log-likelihood function is given by

�(a, b) = ln pa,b = − lnB(a, b) + (a− 1) ln x+ (b− 1) ln(1− x).

(c) Take partial derivatives and use formulas (2.11.18) and
(2.11.19) to verify relations

∂a�(a, b) = −∂a lnB(a, b) + lnx = ψ(a+ b)− ψ(a) + lnx

∂b�(a, b) = ψ(a+ b)− ψ(b) + ln(1− x)

∂2a�(a, b) = ψ′(a+ b)− ψ′(a) = ψ1(a+ b)− ψ1(a)

∂2b �(a, b) = ψ′(a+ b)− ψ′(b) = ψ1(a+ b)− ψ1(b)

∂a∂b�(a, b) = ψ′(a+ b) = ψ1(a+ b).

(c) Using the expression of trigamma functions as a Hurwitz
zeta function, show that the Fisher information matrix can be

written as a series g =
∑
n≥0

gn, where

gn =

⎛
⎜⎝

1
(a+n)2 − 1

(a+b+n)2 − 1
(a+b+n)2

− 1
(a+b+n)2

1
(b+n)2

− 1
(a+b+n)2

⎞
⎟⎠ .

2.5. Let S = {pξ; ξ ∈ [0, 1]} be a one-dimensional statistical model,
where

p(k; ξ) =
(n
k

)
ξk(1− ξ)n−k
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is the Bernoulli distribution, with k ∈ {0, 1, . . . , n} and ξ ∈ [0, 1].
Show that the derivatives of the log-likelihood function �k(ξ) =
ln p(k; ξ) are

∂ξ�k(ξ) =
k

ξ
− (n− k)

1

1− ξ

∂2ξ �k(ξ) = − k

ξ2
− (n− k)

1

(1− ξ)2
·

2.6. Consider the geometric probability distribution p(k; ξ) =
(1− ξ)k−1ξ, k ∈ {1, 2, 3, . . . }, ξ ∈ [0, 1]. Show that

∂ξ�k(ξ) =
k − 1

ξ − 1
+

1

ξ

∂2ξ �k(ξ) = − (k − 1)

(ξ − 1)2
− 1

ξ2
·

2.7. Let f be a density function on R and define the statistical
model

Sf =
{
p(x;μ, σ) =

1

σ
f
(x− μ

σ

)
;μ ∈ R, σ > 0

}
.

(a) Show that
∫
R
p(x;μ, σ) dx = 1.

(b) Verify the following formulas involving the log-likelihood
function � = ln p( · ;μ, σ):

∂μ� = − 1

σ

f ′

f
, ∂σ� = − 1

σ
− (x− μ)

σ2
f ′

f

∂μ∂σ� =
1

f2

[( f ′
σ2

+
1

σ

x− μ

σ2
f ′′
)
f − 1

σ

x− μ

σ2
(f ′)2

]
.

(b) Show that for any continuous function h we have

E(μ,σ)

[
h
(x− μ

σ

)]
= E(0,1)[h(x)].

(c) Assume that f is an even function (i.e., f(−x) = f(x)).
Show that the Fisher–Riemann metric, g, has a diagonal
form (i.e., g12 = 0).

(d) Prove that the Riemannian space (Sf , g) has a negative,
constant curvature.
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(e) Consider f(x) = 1√
2π
e−x2/2. Use the aforementioned points

to deduct the formula for gij and to show that the curva-
ture K = −1

2 .

2.8. Search the movement of the curve

(μ, σ) → pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 , μ2 + σ2 = 1

with (μ, σ, p) ∈ R× (0,∞)× (0,∞), x ∈ R, fixed, in the direc-
tion of the binormal vector field.

2.9. The graph of the normal density of probability

x→ pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2

is called Gauss bell. Find the equation of the surface obtained
by revolving the Gauss bell about:

(a) Ox axis;

(b) Op axis.

2.10. Inspect the movement of the trajectories of the vector field
(y, z, x) after the direction of the vector field

(
1, 1,

1

σ
√
2π

e−
(x−μ)2

2σ2

)
,

where μ and σ are fixed.

2.11. The normal surface

(μ, σ) → pμ,σ(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 ,

(μ, σ) ∈ R× (0,∞); x ∈ R

is deformed into pμ,σ(tx), t ∈ R. What happens with the Gauss
curvature?

2.12. The gamma surface

(α, β) → pα,β(x) =
1

βαΓ(α)
xα−1 e−

x
β

(α, β) ∈ (0,∞)× (0,∞); x ∈ (0,∞)

is deformed into ptα,β(x), t ∈ (0,∞). What happens with the
mean curvature?



Chapter 3

Entropy on Statistical
Models

Entropy is a notion taken form Thermodynamics, where it describes
the uncertainty in the movement of gas particles. In this chapter the
entropy will be considered as a measure of uncertainty of a random
variable.

Maximum entropy distributions, with certain moment constraints,
will play a central role in this chapter. They are distributions with a
maximal ignorance degree towards unknown elements of the distribu-
tion. For instance, if nothing is known about a distribution defined on
the interval [a, b], it makes sense to express our ignorance by choos-
ing the distribution to be the uniform one. Sometimes the mean is
known. In this case the maximum entropy decreases and the distribu-
tion is not uniform any more. More precisely, among all distributions
p(x) defined on (0,∞) with a given mean μ, the one with the max-
imum entropy is the exponential distribution. Furthermore, if both
the mean and the standard variation are given for a distribution p(x)
defined on R, then the distribution with the largest entropy is the
normal distribution.

Since the concept of entropy can be applied to any point of a sta-
tistical model, the entropy becomes a function defined on the statis-
tical model. Then, likewise in Thermodynamics, we shall investigate
the entropy maxima, as they have a distinguished role in the theory.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 77
DOI 10.1007/978-3-319-07779-6 3,
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3.1 Introduction to Information Entropy

The notion of entropy comes originally from Thermodynamics. It is
a quantity that describes the amount of disorder or randomness in
a system bearing energy or information. In Thermodynamics the en-
tropy is defined in terms of heat and temperature.

According to the second law of Thermodynamics, during any pro-
cess the change in the entropy of a system and its surroundings is
either zero or positive. The entropy of a free system tends to increase
in time, towards a finite or infinite maximum. Some physicists de-
fine the arrow of time in the direction in which its entropy increases,
see Hawking [43]. Most processes tend to increase their entropy in
the long run. For instance, a house starts falling apart, an apple gets
rotten, a person gets old, a car catches rust over time, etc.

Another application of entropy is in information theory, formu-
lated by C. E. Shannon [73] in 1948 to explain aspects and problems
of information and communication. In this theory a distinguished
role is played by the information source, which produces a sequence
of messages to be communicated to the receiver. The information is
a measure of the freedom of choice with which a message can be se-
lected from the set of all possible messages. The information can be
measured numerically using the logarithm in base 2. In this case the
resulting units are called binary digits, or bits. One bit measures a
choice between two equally likely choices. For instance, if a coin is
tossed but we are unable to see it as it lands, the landing information
contains 1 bit of information. If there are N equally likely choices,
the number of bits is equal to the digital logarithm of the number of
choices, log2N . In the case when the choices are not equally probable,
the situation will be described in the following.

Shannon defined a quantity that measures how much informa-
tion, and at which rate this information is produced by an informa-
tion source. Suppose there are n possible elementary outcomes of the
source, A1, . . . , An, which occur with probabilities p1 = p(A1), . . . ,
pn = p(An), so the source outcomes are described by the discrete
probability distribution

event A1 A2 . . . An
probability p1 p2 . . . pn

with pi given. Assume there is an uncertainty function, H(p1, . . . , pn),
which “measures” how much “choice” is involved in selecting an
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event. It is fair to ask that H satisfies the following properties (Shan-
non’s axioms):

(i) H is continuous in each pi;

(ii) If p1 = · · · = pn =
1

n
, then H is monotonic increasing function

of n (i.e., for equally likely events there is more uncertainty when
there are more possible events).

(iii) If a choice is broken down into two successive choices, then the
initial H is the weighted sum of the individual values of H:

H(p1, p2, . . . , pn−1, p
′
n, p

′′
n) = H(p1, p2, . . . , pn−1, pn)

+ pnH
(p′n
pn
,
p′′n
pn

)
,

with pn = p′n + p′′n.

Shannon proved that the only function H satisfying the previous
three assumptions is of the form

H = −k
n∑
i=1

pi log2 pi,

where k is a positive constant, which amounts to the choice of a unit of
measure. The negative sign in front of the summation formula implies
its non-negativity. This is the definition of the information entropy
for discrete systems given by Shannon [73]. It is remarkable that
this is the same expression seen in certain formulations of statistical
mechanics.

Since the next sections involve integration and differentiation, it
is more convenient to use the natural logarithm instead of the digital
logarithm. The entropy defined by H = −

∑n
i=1 pi ln pi is measured

in natural units instead of bits.1 Sometimes this is also denoted by
H(p1, . . . , pn).

We make some more remarks regarding notation. We write H(X)
to denote the entropy of a random variable X, H(p) to denote the
entropy of a probability density p, and H(ξ) to denote the entropy
H(pξ) on a statistical model with parameter ξ. The joint entropy of
two random variables X and Y will be denoted by H(X,Y ), while

1Since log2 x = ln x/ ln 2 = 1.44 ln x, a natural unit is about 1.44 bits.
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H(X|Y ) will be used for the conditional entropy of X given Y . These
notations will be used interchangeably, depending on the context.

The entropy can be used to measure information in the following
way. The information can be measured as a reduction in the uncer-
tainty, i.e. entropy. If X and Y are random variables that describe
an event, the initial uncertainty about the event is H(X). After the
random variable Y is revealed, the new uncertainty is H(X|Y ). The
reduction in uncertainty, H(X) −H(X|Y ), is called the information
conveyed about X by Y . Its symmetry property is left as an exercise
in Problem 3.3, part (d).

In the case of a discrete random variable X, the entropy can be
interpreted as the weighted average of the numbers − ln pi, where the
weights are the probabilities of the values of the associated random
variable X. Equivalently, this can be also interpreted as the expec-
tation of the random variable that assumes the value − ln pi with
probability pi

H(X) = −
n∑
i=1

P (X = xi) lnP (X = xi) = E[− lnP (X)].

Extending the situation from the discrete case, the uncertainty of
a continuous random variable X defined on the interval (a, b) will be
defined by an integral. If p denotes the probability density function
of X, then the integral

H(X) = −
∫ b

a
p(x) ln p(x) dx

defines the entropy of X, provided the integral is finite.
This chapter considers the entropy on statistical models as a func-

tion of its parameters. It provides examples of statistical manifolds
and their associated entropies and deals with the main properties of
the entropy regarding bounds, maximization and relation with the
Fisher information metric.

3.2 Definition and Examples

Let S = {pξ = p(x; ξ); ξ = (ξ1, . . . , ξn) ∈ E} be a statistical model,
where p(·, ξ) : X → [0, 1] is the probability density function which
depends on parameter vector ξ. The entropy on the manifold S is a
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function H : E → R, which is equal to the negative of the expectation
of the log-likelihood function, H(ξ) = −Epξ [�x(ξ)]. More precisely,

H(ξ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∫

X
p(x, ξ) ln p(x, ξ) dx, if X is continuous;

−
∑
x∈X

p(x, ξ) ln p(x, ξ), if X is discrete.

Since the entropy is associated with each distribution p(x, ξ), we shall
also use the alternate notation H

(
p(x, ξ)

)
. Sometimes, the entropy in

the continuous case is called differential entropy, while in the discrete
case is called discrete entropy.

It is worth noting that in the discrete case the entropy is always
positive, while in the continuous case might be zero or negative. Since
a simple scaling of parameters will modify a continuous distribution
with positive entropy into a distribution with a negative entropy (see
Problem 3.4.), in the continuous case there is no canonical entropy,
but just a relative entropy. In order to address this drawback, the
entropy is modified into the relative information entropy, as we shall
see in Chap. 4.

The entropy can be defined in terms of a base measure on the
space X , but for keeping the exposition elementary we shall assume
that X ⊆ R

n with the Lebesgue-measure dx.
The entropy for a few standard distributions is computed in the

next examples.

Example 3.2.1 (Normal Distribution) In this case X = R, ξ =
(μ, σ) ∈ R× (0,∞) and

p(x; ξ) =
1

σ
√
2π

e
−(x− μ)2

2σ2 .

The entropy is

H(μ, σ) = −
∫

X
p(x) ln p(x) dx

= −
∫

X
p(x)

(
− 1

2
ln(2π)− lnσ − (x− μ)2

2σ2

)
dx

=
1

2
ln(2π) + lnσ +

1

2σ2

∫

X
(x− μ)2p dx
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=
1

2
ln(2π) + lnσ +

1

2σ2
· σ2

=
1

2
ln(2π) + lnσ +

1

2

= ln(σ
√
2πe).

It follows that the entropy does not depend on μ, and is increasing
logarithmically as a function of σ, with lim

σ↘0
H = −∞, lim

σ↗∞
H = ∞.

Furthermore, the change of coordinates ϕ : E → E under which the
entropy is invariant, i.e. H(ξ) = H

(
ϕ(ξ)

)
, are only the translations

ϕ(μ, σ) = (μ+ k, σ), k ∈ R.

Example 3.2.2 (Poisson Distribution) In this case the sample
space is X = N, and the probability density

p(n; ξ) = e−ξ
ξn

n!
, n ∈ N, ξ ∈ R

depends only on one parameter, ξ. Using ln p(n, ξ) = −ξ + n ln ξ −
ln(n!), we have

H(ξ) = −
∑
n≥0

p(n, ξ) ln p(n, ξ)

= −
∑
n≥0

(
− ξe−ξ

ξn

n!
+ n ln ξe−ξ

ξn

n!
− ln(n!)e−ξ

ξn

n!

)

= ξe−ξ
∑
n≥0

ξn

n!
︸ ︷︷ ︸

=eξ

− ln ξ e−ξ
∑
n≥0

nξn

n!
+ e−ξ

∑
n≥0

ξn ln(n!)

n!

= ξ − ln ξ e−ξξeξ + e−ξ
∑
n≥0

ln(n!)

n!
ξn

= ξ(1− ln ξ) + e−ξ
∑
n≥0

ln(n!)

n!
ξn.

We note that lim
ξ↘0

H(ξ)=0 and H(x)<∞, since the series
∑
n≥0

ξn ln(n!)

n!

has an infinite radius of convergence, see Problem 3.21.

Example 3.2.3 (Exponential Distribution) Consider the expo-
nential distribution

p(x; ξ) = ξe−ξx, x > 0, ξ > 0
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with parameter ξ. The entropy is

H(ξ) = −
∫ ∞

0
p(x) ln p(x) dx = −

∫ ∞

0
ξe−ξx(ln ξ − ξx) dx

= −ξ ln ξ
∫ ∞

0
e−ξx dx+ ξ

∫ ∞

0
ξe−ξx x dx

= − ln ξ

∫ ∞

0
p(x, ξ) dx

︸ ︷︷ ︸
=1

+ξ

∫ ∞

0
xp(x, ξ) dx

︸ ︷︷ ︸
=1/ξ

= 1− ln ξ,

which is a decreasing function of ξ, with H(ξ) > 0 for ξ ∈ (0, e).

Making the parameter change λ =
1

ξ
, the model becomes p(x;λ) =

1
λe

−x/λ, λ > 0. The entropy H(λ) = 1+lnλ increases logarithmically
in λ. We note the fact that the entropy is parametrization dependent.

Example 3.2.4 (Gamma Distribution) Consider the family of
distributions

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β,

with positive parameters (ξ1, ξ2) = (α, β) and x > 0. We shall start
by showing that

∫ ∞

0
lnx p

α,β
(x) dx = ln β + ψ(α), (3.2.1)

where

ψ(α) =
Γ′(α)
Γ(α)

(3.2.2)

is the digamma function. Using that the integral of p
α,β

(x) is unity,
we have ∫ ∞

0
xα−1 e−

x
β dx = βα Γ(α),

and differentiating with respect to α, it follows

∫ ∞

0
lnxxα−1 e−

x
β dx = ln β βα Γ(α) + βα Γ′(α). (3.2.3)

Dividing by βαΓ(α) yields relation (3.2.1).
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Since

ln p
α,β

(x) = −α lnβ − ln Γ(α) + (α− 1) ln x− x

β
,

using

∫ ∞

0
p
α,β

(x) dx = 1,

∫ ∞

0
x p

α,β
(x) dx = αβ and (3.2.1), the

entropy becomes

H(α, β) = −
∫ ∞

0
p
α,β

(x) ln p
α,β

(x) dx

= α ln β + lnΓ(α)− (α− 1)

∫ ∞

0
lnx p

α,β
(x) dx

+
1

β

∫ ∞

0
x p

α,β
(x) dx

= ln β + (1− α)ψ(α) + ln Γ(α) + α.

Example 3.2.5 (Beta Distribution) The beta distribution on
X = [0, 1] is defined by the density

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1,

with a, b > 0 and beta function given by

B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx. (3.2.4)

Differentiating with respect to a and b in (3.2.4) yields

∂aB(a, b) =

∫ 1

0
lnxxa−1(1− x)b−1 dx

∂bB(a, b) =

∫ 1

0
ln(1− x)xa−1(1− x)b−1 dx.

Using

ln pa,b = − lnB(a, b) + (a− 1) ln x+ (b− 1) ln(1− x),



3.2. Definition and Examples 85

we find

H(a, b) = −
∫ 1

0
pa,b(x) ln pa,b(x) dx

= lnB(a, b)− a− 1

B(a, b)

∫ 1

0
lnxxa−1(1− x)b−1 dx

− b− 1

B(a, b)

∫ 1

0
ln(1− x)xa−1(1 − x)b−1 dx

= lnB(a, b)− (a− 1)
∂aB(a, b)

B(a, b)
− (b− 1)

∂bB(a, b)

B(a, b)

= lnB(a, b)− (a− 1)∂a lnB(a, b)− (b− 1)∂b lnB(a, b).

(3.2.5)

We shall express the entropy in terms of digamma function (3.2.2).
Using the expression of the beta function in terms of gamma functions

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

we have
lnB(a, b) = ln Γ(a) + ln Γ(b)− ln Γ(a+ b).

The partial derivatives of the function B(a, b) are

∂a lnB(a, b) = ψ(a)− ψ(a+ b) (3.2.6)

∂b lnB(a, b) = ψ(b)− ψ(a+ b). (3.2.7)

Substituting in (3.2.5) yields

H(a, b) = lnB(a, b) + (a+ b− 2)ψ(a+ b)− (a− 1)ψ(a)− (b− 1)ψ(b).
(3.2.8)

For example

H(1/2, 1/2) = ln
√
2 + ln

√
2− ψ(1) + ψ(1/2)

= ln 2 + γ − 2 ln 2− γ = − ln 2 < 0,

where we used

ψ(1) = −γ = −0.5772 . . . , ψ(1/2) = −2 ln 2− γ.

It can be shown that the entropy is always non-positive, see
Problem 3.22. For a = b = 1 the entropy vanishes

H(1, 1) = ln Γ(1) + ln Γ(1)− ln Γ(2) = 0.
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Example 3.2.6 (Lognormal Distribution) The lognormal distri-
bution

pμ,σ(x) =
1√
2πσx

e−
(lnx−μ)2

2σ2 , (μ, σ) ∈ (0,∞)× (0,∞)

defines a statistical model on the sample space X = (0,∞). First,
using the substitution y = lnx− μ, we have

∫ ∞

0
lnx pμ,σ(x) dx =

∫ ∞

0
(lnx− μ) pμ,σ(x) dx + μ

=

∫ +∞

−∞

1√
2πyσ

e−
y2

2σ2 dy + μ = μ.

∫ ∞

0
(lnx− μ)2 pμ,σ(x) dx =

∫ +∞

−∞

1√
2πσ

e−
y2

2σ2 y2 dy = σ2.

Using

ln pμ,σ = − ln(
√
2πσ)− lnx− (ln x− μ)2

1

2σ2
,

and the previous integrals, the entropy becomes

H(μ, σ) = −
∫ ∞

0
pμ,σ(x) ln pμ,σ(x) dx

= ln(
√
2πσ) +

∫ ∞

0
lnx pμ,σ(x) dx

+
1

2σ2

∫ ∞

0
(ln x− μ)2pμ,σ(x) dx

= ln(
√
2π) + lnσ + μ+

1

2
.

Example 3.2.7 (Dirac Distribution) A Dirac distribution on
(a, b) centered at x0 ∈ (a, b) represents the density of an idealized
point mass x0. This can be thought of as an infinitely high, infinitely
thin spike at x0, with total area under the spike equal to 1. The Dirac
distribution centered at x0 is customarily denoted by p(x) = δ(x−x0),
and its relation with the integral can be written informally as

(i)

∫ b

a
p(x) dx =

∫ b

a
δ(x − x0) dx = 1;

(ii)

∫ b

a
g(x)p(x) dx =

∫ b

a
g(x)δ(x − x0) dx = g(x0),
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for any continuous function g(x) on (a, b).

The k-th moment is given by

mk =

∫ b

a
xkδ(x− x0) dx = xk0 .

Then the mean of the Dirac distribution is μ = x0 and the variance
is V ar = m2 − (m1)

2 = 0. The underlying random variable, which is
Dirac distributed, is a constant equal to x0.

In order to compute the entropy of δ(x−x0), we shall approximate
the distribution by a sequence of distributions ϕε(x) for which we can
easily compute the entropy. For any ε > 0, consider the distribution

ϕε(x) =

⎧⎪⎨
⎪⎩

1

ε
, if |x| < ε/2

0, otherwise,

with the entropy given by

Hε = −
∫ b

a
ϕε(x) lnϕε(x) dx

= −
∫ x2+ε/2

x0−ε/2

1

ε
ln

1

ε
dx

= ln ε.

Since lim
ε↘0

ϕε = δ(x−x0), by the Dominated Convergence Theorem

the entropy of δ(x − x0) is given by the limit

H = lim
ε↘0

Hε = lim
ε↘0

ln ε = −∞.

In conclusion, the Dirac distribution has the lowest possible entropy.
Heuristically, this is because of the lack of disorganization of the
associated random variable, which is a constant.

3.3 Entropy on Products of Statistical
Models

Consider the statistical manifolds S and U and let S × U be their
product model, see Example 1.3.9. Any density function f ∈ S × U ,
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with f(x, y) = p(x)q(y), p ∈ S, q ∈ U , has the entropy

HS×U(f) = −
∫∫

X×Y
f(x, y) ln f(x, y) dxdy

−
∫∫

X×Y
p(x)q(y)[ln p(x) + ln q(y)] dxdy

= −
∫

Y
q(y) dy

∫

X
p(x) ln p(x) dx

−
∫

X
p(x) dx

∫

Y
q(y) ln q(y) dy

= HS(p) +HU(q),

i.e., the entropy of an element of the product model S × U is the
sum of the entropies of the projections on S and U . This can be also
stated by saying that the joint entropy of two independent random
variables X and Y is the sum of individual entropies, i.e.

H(X,Y ) +H(X) +H(Y ),

see Problem 3.5 for details.

3.4 Concavity of Entropy

Theorem 3.4.1 For any two densities p, q : X → R we have

H(αp + βq) ≥ αH(p) + βH(q), (3.4.9)

∀α, β ∈ [0, 1], with α+ β = 1.

Proof: Using that f(u) = −u lnu is concave on (0,∞), we obtain

f(αp+ βq) ≥ αf(p) + βf(q).

Integrating (summing) over X leads to expression (3.4.9).

With a similar proof we can obtain the following result.

Corollary 3.4.2 For any densities p1, . . . , pn on X and λi ∈ [0, 1]
with λ1 + · · · + λn = 1, we have

H
( n∑
i=1

λipi

)
≥

n∑
i=1

λiH(pi).

The previous result suggests to look for the maxima of the entropy
function on a statistical model.
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3.5 Maxima for Entropy

Let S = {pξ(x);x ∈ X , ξ ∈ E} be a statistical model. We can re-
gard the entropy H as a function defined on the parameters space E.
We are interested in the value of the parameter ξ for which the en-
tropy H(ξ) has a local maximum. This parameter value corresponds
to a distinguished density pξ. Sometimes, the density pξ satisfies some
given constraints, which are provided by the given observations, and
has a maximum degree of ignorance with respect to the unknown ob-
servations. This type of optimization problem is solved by considering
the maximization of the entropy with constraints. In order to study
this problem we shall start with the definition and characterization
of critical points of entropy.

Let f be a function defined on the statistical manifold S = {pξ}.
If ∂i = ∂ξi denotes the tangent vector field on S in the direction of
ξi, then

∂if =: ∂ξif := ∂ξi(f ◦ p
ξ
).

In the following the role of the function f is played by the entropy
H(ξ) = H(pξ).

Definition 3.5.1 A point q ∈ S is a critical point for the entropy
H if

X(H) = 0, ∀X ∈ TqS.

Since {∂i}i form a basis, choosing X = ∂i, we obtain that the point
q = pξ ∈ S is a critical point for H if and only if

∂iH(ξ) = 0, i = 1, 2, . . . , n.

A computation provides

∂iH = −∂i
∫

X
p(x, ξ) ln p(x, ξ) dx

= −
∫

X

(
∂ip(x, ξ) ln p(x, ξ) + p(x, ξ)

∂ip(x, ξ)

p(x, ξ)

)
dx

= −
∫

X

(
ln p(x, ξ) + 1

)
∂ip(x, ξ) dx

= −
∫

X
ln p(x, ξ) ∂ip(x, ξ) dx,

where we used that ∫

X
p(x, ξ) dx = 1
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and

0 = ∂i

∫

X
p(x, ξ) dx =

∫

X
∂ip(x, ξ) dx.

The previous computation can be summarized as in the following.

Proposition 3.5.2 The probability distribution pξ is a critical point
of the entropy H if and only if

∫

X
ln p(x, ξ) ∂ξip(x, ξ) dx = 0, ∀i = 1, . . . ,m. (3.5.10)

In the discrete case, when X = {x1, . . . , xn}, the Eq. (3.5.10) is re-
placed by the relation

n∑
k=1

ln p(xk, ξ) ∂ip(x
k, ξ) = 0, ∀i = 1, . . . ,m. (3.5.11)

Observe that the critical points characterized by the previous re-
sult do not belong to the boundary. The entropy, which is a concave
function, on a convex set (such as a mixture family) sometimes at-
tains the local minima along the boundary. Even if these points are
called critical by some authors, here we do not consider them as part
of our analysis.

The first derivative of the entropy can be also expressed in terms
of the log-likelihood function as in the following

∂iH = −
∫

X
ln p(x, ξ) ∂ξip(x, ξ) dx

= −
∫

X
p(x, ξ) ln p(x, ξ) ∂i ln p(x, ξ) dx

= −
∫

X
p(x, ξ)�(ξ) ∂i�(ξ) dx

= −Eξ[�(ξ) ∂ξi�(ξ)]. (3.5.12)

The goal of this section is to characterize the distributions pξ for
which the entropy is maximum. Minima and maxima are among the
set of critical points, see Definition 3.5.1. In order to deal with this
issue we need to compute the Hessian of the entropy H.
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The second order partial derivatives of the entropy H are

∂jiH = ∂j

∫

X
ln p(x, ξ) ∂ip(x, ξ) dx

= −
∫

X

(∂jp(x)
p(x)

∂ip(x) + ln p(x) ∂i∂jp(x)
)
dx

= −
∫

X

( 1

p(x)
∂ip(x) ∂jp(x) + ln p(x) ∂jip(x)

)
dx.

In the discrete case this becomes

∂jiH = −
n∑
k=1

(∂ip(xk, ξ) ∂jp(xk, ξ)
p(xk, ξ)

+ ln p(xk, ξ) ∂ijp(x
k, ξ)

)
.

(3.5.13)
We can also express the Hessian of the entropy in terms of the

log-likelihood function only. Differentiating in (3.5.12) we have

∂jiH = −∂j
∫

X
p(x, ξ)�(ξ) ∂i�(ξ) dx

= −
∫

X

(
∂jp(x, ξ)�(ξ) ∂i�(ξ) + p(x, ξ)∂j�(ξ) ∂i�(ξ)

+p(x, ξ)�(ξ) ∂i∂j�(ξ)
)
dx

= −Eξ[∂i� ∂j�]− Eξ[(∂j�(ξ)∂i�(ξ) + ∂i∂j�(ξ))�(ξ)]

= −gij(ξ)− hij(ξ).

We arrived at the following result that relates the entropy and the
Fisher information.

Proposition 3.5.3 The Hessian of the entropy is given by

∂i∂jH(ξ) = −gij(ξ)− hij(ξ), (3.5.14)

where gij(ξ) is the Fisher–Riemann metric and

hij(ξ) = Eξ[(∂j�(ξ)∂i�(ξ) + ∂i∂j�(ξ))�(ξ)].

Corollary 3.5.4 In the case of the mixture family (1.5.15)

p(x; ξ) = C(x) + ξiFi(x) (3.5.15)

the Fisher–Riemann metric is given by

gij(ξ) = −∂i∂jH(ξ). (3.5.16)

Furthermore, any critical point of the entropy (see Definition 3.5.1)
is a maximum point.
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Proof: From Proposition 1.5.1, part (iii) we have ∂i∂j�x(ξ)
= −∂i�x(ξ) ∂j�x(ξ) which implies hij(ξ) = 0. Substituting in (3.5.14)
yields (3.5.16). Using that the Fisher–Riemann matrix gij(ξ) is pos-
itive definite at any ξ, it follows that ∂i∂jH(ξ) is globally negative
definite, and hence all critical points must be maxima. We also note
that we can express the Hessian in terms of Fj as in the following

∂i∂jH(ξ) = −
∫

X

Fi(x)Fj(x)

p(x; ξ)
dx.

A Hessian Hess(F ) = (∂ijF ) is called positive definite if and only
if
∑

i,j ∂ijF v
ivj > 0, or, equivalently,

〈Hess(F )v, v〉 > 0, ∀v ∈ R
m.

In the following we shall deal with the relationship between the
Hessian and the second variation of the entropy H.

Consider a curve ξ(s) in the parameter space and let
(
ξu(s)

)
|u|<ε

be a smooth variation of the curve with ξu(s)|u=0 = ξ(s). Then s →
pξu(s) is a variation of the curve s → p

ξ(s)
on the statistical manifold

S. Consider the variation

ξu(s) = ξ(s) + uη(s),

so ∂uξu(s) = η(s) and ∂2uξu(s) = 0. The second variation of the
entropy along the curve s→ pξu(s) is

d2

du2
H
(
ξu(s)

)
=

d

du
〈∂ξH, ∂uξu(s)〉

= 〈 d
du
∂ξH, ∂uξ(s)〉+ 〈∂ξH, ∂2uξu(s)︸ ︷︷ ︸

=0

〉

=
d

du
(∂iH) ∂uξ

i(s)

= ∂i∂jH(ξu(s)) · ∂uξiu(s)∂uξju(s).

Taking u = 0, we find

d2

du2
H
(
ξu(s)

)
|u=0

= ∂ijH
(
ξ(s)

)
ηi(s)ηj(s)

= 〈HessH
(
ξ(s)

)
η, η〉.
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Hence d2

du2H
(
ξu(s)

)
|u=0

< 0(> 0) if and only if Hess(H) is negative

(positive) definite. Summarizing, we have:

Theorem 3.5.5 If ξ is such that pξ satisfies the critical point con-
dition (3.5.10) (or condition (3.5.11) in the discrete case), and the
Hessian Hess(H(ξ)) is negative definite at ξ, then pξ is a local max-
imum point for the entropy.

We shall use this result in the next section.

Corollary 3.5.6 Let ξ0 be such that

Eξ0 [�(ξ0)∂i�(ξ0)] = 0 (3.5.17)

and hij(ξ0) is positive definite. Then p(x, ξ0) is a distribution for
which the entropy reaches a local maximum.

Proof: In the virtue of (3.5.12) the Eq. (3.5.17) is equivalent with the
critical point condition ∂iH(ξ)|ξ=ξ0 = 0. Since gij(ξ0) is positive def-
inite, then (3.5.14) implies that ∂i∂jH(ξ0) is negative definite. Then
applying Theorem 3.5.5 ends the proof.

3.6 Weighted Coin

Generally, for discrete distributions we may identify the statistical
space S with the parameter space E. We shall present next the case
of a simple example where the entropy can be maximized. Flipping a
weighted coin provides either heads with probability ξ1, or tails with
probability ξ2 = 1 − ξ1. The statistical manifold obtained this way
depends on only one essential parameter ξ := ξ1. Since X = {x1 =
heads, x2 = tails}, the manifold is just a curve in R

2 parameterized
by ξ ∈ [0, 1]. The probability distribution of the weighted coin is given
by the table

outcomes x1 x2
probability ξ 1− ξ

We shall find the points of maximum entropy. First we write the
Eq. (3.5.11) to determine the critical points

ln p(x1, ξ) ∂ξp(x1, ξ) + ln p(x2, ξ) ∂ξp(x2, ξ) = 0 ⇐⇒
ln ξ − ln(1− ξ) = 0 ⇐⇒

ξ = 1− ξ
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and hence there is only one critical point, ξ = 1
2 .

The Hessian has only one component, so formula (3.5.13) yields

∂2ξH = −
( 1

p(x1)

(
∂ξp(x1)

)2
+ ln p(x1)∂

2
ξ p(x1)

)

−
( 1

p(x2)

(
∂ξp(x2)

)2
+ ln p(x2)∂

2
ξ p(x2)

)

= −
(1
ξ
· 1 + ln ξ · 0

)

−
( 1

1− ξ

(
∂ξ(1− ξ)

)2
+ ln(1− ξ) ∂2ξ (1− ξ)

)

= −
(1
ξ
+

1

1− ξ

)
.

Evaluating at the critical point, we get

∂2ξH|ξ= 1
2
= −4 < 0,

and hence ξ = 1
2 is a maximum point for the entropy. In this case

ξ1 = ξ2 = 1
2 . This can be restated by saying that the fair coin has

the highest entropy among all weighted coins.

3.7 Entropy for Finite Sample Space

Again, we underline that for discrete distributions we identify the
statistical space S with the parameter space E.

Consider a statistical model with a finite discrete sample space
X = {x1, . . . , xn+1} and associated probabilities p(xi) = ξi, ξi ∈
[0, 1], i = 1, . . . n+1. Since ξn+1 = 1−

∑n
i=1 ξ

i, the statistical manifold
is described by n essential parameters, and hence it has n dimensions.
The manifold can be also seen as a hypersurface in R

n+1. The entropy
function is

H = −
n+1∑
i=1

ξi ln ξi. (3.7.18)

The following result deals with the maximum entropy condition. Even
if it can be derived from the concavity property of H, see Theo-
rem 3.4.1, we prefer to deduct it here in a direct way. We note that
concavity is used as a tool to derive the case of continuous distribu-
tions, see Corollary 5.9.3.



3.7. Entropy for Finite Sample Space 95

Theorem 3.7.1 The entropy (3.7.18) is maximum if and only if

ξ1 = · · · = ξn+1 =
1

n+ 1
. (3.7.19)

Proof: The critical point condition (3.5.11) becomes

n∑
k=1

ln p(xk, ξ)∂ξip(x
k, ξ) + ln p(xn+1, ξ) ∂ξip(x

n+1, ξ) = 0 ⇐⇒

n∑
k=1

ln ξk δik + ln ξn+1 ∂ξn+1(1− ξ1 − · · · − ξn) = 0 ⇐⇒

ln ξi − ln ξn+1 = 0 ⇐⇒
ξi = ξn+1,

∀i = 1, . . . , n. Hence condition (3.7.19) follows.

We shall investigate the Hessian at this critical point. Following
formula (3.5.13) yields

Hess(H)ij = −
n∑
k=1

∂i(ξ
k) · ∂j(ξk)
ξk

− ∂i(ξ
n+1) · ∂j(ξn+1)

ξn+1

−
n∑
k=1

ln ξk ∂i∂j(ξ
k)− ln ξn+1 ∂i∂j(ξ

n+1)

= −
( n∑
k=1

δikδjk
ξk

− 1

ξn+1

)
,

where we have used ∂i(ξ
n+1) = ∂i(1 − ξ1 − · · · − ξn) = −1, for i =

1, . . . , n.

At the critical point the Hessian is equal to

Hess(H)ij |
ξk= 1

n+1

= −(n+ 1)
(
1 +

n∑
k=1

δikδjk

)
= −2(n+ 1)In,

which shows that it is negative definite. Theorem 3.5.5 leads to the
desired conclusion.

Example 3.7.2 Let ξi be the probability that a die lands with the
face i up. This model depends on five essential parameters. According
to the previous result, the fair die is the one which maximizes the
entropy.



96 Chapter 3. Entropy on Statistical Models

3.8 A Continuous Distribution Example

Let p(x; ξ) = 2ξx+3(1−ξ)x2 be a continuous probability distribution
function, with x ∈ [0, 1]. The statistical manifold defined by the above
probability distribution is one dimensional, since ξ ∈ R. There is only
one basic vector field equal to

∂ξ = 2x− 3x2,

and which does not depend on ξ. In order to find the critical points,
we follow Eq. (3.5.10)

∫ 1

0
p(x, ξ) ∂ξp(x, ξ) dx = 0 ⇐⇒

∫ 1

0
(2x− 3x2)(2ξx+ 3(1 − ξ)x2) dx = 0 ⇐⇒

2

15
ξ − 3

10
= 0 ⇐⇒ ξ =

9

4
.

Before investigating the Hessian, we note that

∂ξp(x; ξ) = 2x− 3x2, ∂2ξ p(x; ξ) = 0, p
(
x;

9

4

)
=

9

4
x− 15

4
x2,

so

∂2ξH|ξ= 9
4

= −
∫ 1

0

(1
p
(∂ξp)

2 + ln p ∂2ξ p
)
dx∣∣∣ξ= 9

4

= −
∫ 1

0

(2x− 3x2)2

9
2x− 15

4 x
2
dx < 0,

because 9
2x− 15

4 x
2 < 0 for x ∈ (0, 1].

Hence ξ = 9
4 is a maximum point for the entropy. The maximum

value of the entropy is

H
(9
4

)
= −

∫ 1

0

(9
2
x− 15

4
x2
)
ln
(9
2
x− 15

4
x2
)
dx

= −52

25
ln 3 +

47

30
+

23

25
ln 2

= −0.807514878.
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Figure 3.1: The function x→ x lnx has a global minimum value equal
to −1/e that is reached at x = 1/e

3.9 Upper Bounds for Entropy

We shall start with computing a rough upper bound for the entropy
in the case when the sample space is a finite interval, X = [a, b].
Consider the convex function

f : [0, 1] → R, f(u) =

{
u lnu if u ∈ (0, 1]

0 if u = 0.

Since f ′(u) = 1+ lnu, u ∈ (0, 1), the function has a global minimum
at u = 1/e, and hence u lnu ≥ −1/e, see Fig. 3.1.

Let p : X → R be a probability density. Substituting u = p(x)
yields p(x) ln p(x) ≥ −1/e. Integrating, we find

∫ b

a
p(x) ln p(x) dx ≥ −b− a

e
.

Using the definition of the entropy we obtain the following upper
bound.
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Proposition 3.9.1 The entropy H(p) of a probability distribution
p : [a, b] → [0,∞) satisfies the inequality

H(p) ≤ b− a

e
. (3.9.20)

Corollary 3.9.2 The entropy H(p) is smaller than half the length
of the domain interval of the distribution p, i.e.,

H(p) ≤ b− a

2
.

This implies that the entropy H(p) is smaller than the mean of the
uniform distribution.

We note that the inequality (3.9.20) becomes identity for the uni-
form distribution p : [0, e] → [0,∞), p(x) = 1/e, see Problem 3.20.
We shall present next another upper bound which is reached for all
uniform distributions.

Theorem 3.9.3 The entropy of a smooth probability distribution p :
[a, b] → [0,∞) satisfies the inequality

H(p) ≤ ln(b− a). (3.9.21)

Proof: Since the function

f : [0, 1] → R, f(u) =

{
u lnu if u ∈ (0, 1]

0 if u = 0

is convex on [0,∞), an application of Jensen integral inequality yields

f
( 1

b− a

∫ b

a
p(x) dx

)
≤ 1

b− a

∫ b

a
f
(
p(x)

)
dx⇐⇒

f
( 1

b− a

)
≤ 1

b− a

∫ b

a
p(x) ln p(x) dx⇐⇒

ln
( 1

b− a

)
≤

∫ b

a
p(x) ln p(x) dx⇐⇒

− ln(b− a) ≤ −H(p),

which is equivalent to (3.9.21). The identity is reached for the uniform
distribution p(x) = 1/(b− a).
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Figure 3.2: The inequality ln x ≤ x/e is reached for x = e

The above result states that the maximum entropy is realized only
for the case of the uniform distribution. In other words, the entropy
measures the closeness of a distribution to the uniform distribution.

Since we have the inequality

lnx ≤ x

e
, ∀x > 0

with equality only for x = e, see Fig. 3.2, it follows that the inequal-
ity (3.9.21) provides a better bound than (3.9.20).

In the following we shall present the bounds of the entropy in
terms of the maxima and minima of the probability distribution. We
shall use the following inequality involving the weighted average of n
numbers.

Lemma 3.9.4 If λ1, . . . , λn > 0 and α1, . . . , αn ∈ R, then

min
j

{αj} ≤
∑

i λiαi∑
i λi

≤ max
j

{αj}.

This says that if αj are the coordinates of n points of masses λj, then
the coordinate of the center of mass of the system is larger than the
smallest coordinate and smaller than the largest coordinate.
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Proposition 3.9.5 Consider the discrete probability distribution p =
{pj}, with p1 ≤ · · · ≤ pn. Then the entropy satisfies the double
inequality

− ln pn ≤ H(p) ≤ − ln p1.

Proof: Letting λj = pj and αj = − ln pj in Lemma 3.9.4 and using

H(p) = −
∑
j

pj ln pj =

∑
i λiαi∑
i λi

,

we find the desired inequality.

Remark 3.9.6 The distribution p = {pj} is uniform with pj =
1

n
if

and only if p1 = pn. In this case the entropy is given by

H(p) = − ln p1 = ln pn = − ln
1

n
= lnn.

The continuous analog of Proposition 3.9.5 is given below.

Proposition 3.9.7 Consider the continuous probability distribution
p : X → [a, b] ⊂ [0,∞), with pm = min

x∈X
p(x) and pM = max

x∈X
p(x).

Then the entropy satisfies the inequality

− ln p
M

≤ H(p) ≤ − ln pm.

Proof: The proof is using the following continuous analog of
Lemma 3.9.4,

min
x∈X

α(x) ≤
∫
X λ(x)α(x) dx∫

X λ(x) dx
≤ max

x∈X
α(x),

where we choose α(x) = − ln p(x) and λ(x) = p(x).

3.10 Boltzman–Gibbs Submanifolds

Let

S = {pξ : [0, 1] −→ R+;

∫

X
p
ξ
(x) dx = 1}, ξ ∈ E,

be a statistical model with the state space X = [0, 1]. Let μ ∈ R be a
fixed constant and consider the set of elements of S with the mean μ

Mμ = {pξ ∈ S;
∫

X
xp

ξ
(x) dx = μ}.

and assume that Mμ is a submanifold of S.
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Definition 3.10.1 The statistical submanifold Mμ = {pξ} defined
above is called a Boltzman–Gibbs submanifold of S.

Example 3.10.1 In the case of beta distribution, the Boltzman–
Gibbs submanifoldMμ = {pa,ka; a > 0, k = (1−μ)/μ} is just a curve.
In particular, M1 = {pa,0; a > 0}, with pa,0(x) = 1

B(a,0)x
a−1(1−x)−1.

One of the problems arised here is to find the distribution of max-
imum entropy on a Boltzman–Gibbs submanifold. Since the maxima
are among critical points, which are introduced by Definition 3.5.1,
we shall start the study with finding the critical points of the entropy

H(ξ) = H(pξ) = −
∫

X
p
ξ
(x) ln p

ξ
(x) dx

on a Boltzman–Gibbs submanifold Mμ. Differentiating with respect
to ξj in relations

∫

X
xp

ξ
(x) dx = μ,

∫

X
p
ξ
(x) dx = 1 (3.10.22)

yields
∫

X
x ∂jp(x, ξ) dx = 0,

∫

X
∂jp(x, ξ) dx = 0. (3.10.23)

A computation provides

−∂jH(ξ) = ∂j

∫

X
p
ξ
(x) ln p

ξ
(x) dx

=

∫

X

(
∂jpξ

(x) ln p
ξ
(x) + p

ξ
(x)

∂jpξ
(x)

p
ξ
(x)

)
dx

=

∫

X
∂jp(x) ln p

ξ
(x) dx+

∫

X
∂jpξ

(x) dx

︸ ︷︷ ︸
=0 by (3.10.23)

.

Hence the critical points p
ξ
satisfying ∂jH(ξ) = 0 are solutions of the

integral equation
∫
∂jp(x, ξ) ln p(x, ξ) dx = 0, (3.10.24)

subject to the constraint
∫

X
x∂jp(x, ξ) dx = 0. (3.10.25)
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Multiplying (3.10.25) by the Lagrange multiplier λ = λ(ξ) and adding
it to (3.10.24) yields

∫

X
∂jp(x, ξ)

(
ln p(x, ξ) + λ(ξ)x

)
dx = 0.

Since

∫
∂jp(x, ξ) dx = 0, it makes sense to consider those critical

points for which the term ln p(x, ξ) + λ(ξ)x is a constant function in
x, i.e., depends only on ξ

ln p(x, ξ) + λ(ξ)x = θ(ξ).

Then the above equation has the solution

p(x, ξ) = eθ(ξ)−λ(ξ)x, (3.10.26)

which is an exponential family. We still need to determine the func-
tions θ and λ such that the constraints (3.10.22) hold. This will be
done explicitly for the case when the sample space is X = [0, 1]. From
the second constraint we obtain a relation between θ and λ:

∫ 1

0
p(x, ξ) dx=1 =⇒ eθ(ξ)

∫ 1

0
e−λ(ξ)x dx = 1 ⇐⇒ 1− e−λ(ξ)

λ(ξ)
= e−θ(ξ),

which leads to

θ(ξ) = ln
λ(ξ)

1− e−λ(ξ)
.

Substituting in (3.10.26) yields

p(x, ξ) =
λ(ξ)

1− e−λ(ξ)
e−λ(ξ)x. (3.10.27)

Substituting in the constraint

∫ 1

0
xp(x, ξ) dx = μ,
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we find

λ(ξ)

1− e−λ(ξ)

∫ 1

0
xe−λ(ξ)x dx = μ⇐⇒

1−
(
1 + λ(ξ)

)
e−λ(ξ)

λ(ξ)(1 − e−λ(ξ))
= μ⇐⇒

eλ(ξ) − λ(ξ)− 1

λ(ξ)(eλ(ξ) − 1)
= μ⇐⇒

1

λ(ξ)
− 1

eλ(ξ) − 1
= μ.

Given μ, we need to solve the above equation for λ(ξ). In order to
complete the computation, we need the following result.

Lemma 3.10.2 The function

f(x) =
1

x
− 1

ex − 1
, x ∈ (−∞, 0) ∪ (0,∞),

has the following properties

i) lim
x↘0

f(x) = lim
x↗0

f(x) =
1

2
,

ii) lim
x−→∞ f(x) = 0, lim

x−→−∞ f(x) = 1,

iii) f(x) is a strictly decreasing function of x.

Proof: i) Applying l’Hôspital’s rule twice, we get

lim
x↘0

f(x) = lim
x↘0

ex − 1− x

x(ex − 1)
= lim

x↘0

ex − 1

ex − 1 + xex

= lim
x↘0

ex

ex + xex + ex
= lim

x↘0

1

2 + x
=

1

2
.

ii) It follows easily from the properties of the exponential function.

Since the function f is one-to-one, the equation f(λ) = μ has at
most one solution, see Fig. 3.3. More precisely,

• if μ ≥ 1, the equation has no solution;
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m=f(l)

l
30 20 10 10 20 30

0.2

0.4

0.6

0.8

Figure 3.3: The graph of the decreasing function f(x) =
1

x
− 1

ex − 1
and the solution of the equation f(λ) = μ with μ ∈ (0, 1)

• if μ ∈ (0, 1), the equation has a unique solution, for any ξ, i.e.,
λ is constant, λ = f−1(μ). For instance, if μ = 1/2, then λ = 0.

It follows that θ is also constant,

θ = ln
λ

1− e−λ
.

Hence the distribution becomes

p(x) = eθ−λx, x ∈ (0, 1).

3.11 Adiabatic Flows

The entropy H(ξ) is a real function defined on the parameter space
E of the statistical model S = {pξ}. The critical points of H(ξ)
are solutions of the system ∂iH(ξ) = 0. Suppose that the set C of
critical points is void. Then the constant level sets

∑
c := {H(ξ) =

c} are hypersurfaces in E. As usual, we accept the denomination of
hypersurface for

∑
c even if

∑
c ∩C consists in a finite number of

points.
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Let s −→ ξ(s), ξ(s) ∈ E, be a curve situated in one of the hyper-
surfaces

∑
c. Since H(ξ(s)) = c, it follows

d

ds
H
(
ξ(s)

)
= ∂jH

(
ξ(s)

)
ξ̇j(s) = 0. (3.11.28)

Since ξ̇j(s) is an arbitrary vector tangent to
∑

c, the vector field ∂iH
is normal to

∑
c. Consequently, any vector field X = (Xi) on E that

satisfies
∂iH(ξ)Xi(ξ) = 0

is tangent to
∑

c.

Let X = (Xi) be a vector field tangent to
∑

c. The flow ξ(s)
defined by

ξ̇(s) = Xi(ξ(s)), i = 1, . . . , n = dim S

is called adiabatic flow on
∑

c. This meansH(ξ) = c, since the entropy
is unchanged along the flow, i.e., H(ξ) is a first integral, or

∑
c is an

invariant set with respect to this flow.

Suppose now that S = {pξ} refers to a continuous distribution
statistical model. Then

∂jH
(
ξ(s)

)
=

∫

X
ln p

(
x, ξ(s)

)
∂jp
(
x, ξ(s)

)
dx

=

∫

X
�x(ξ(s))∂j�x(ξ(s)) dx,

and combining with (3.11.28) we arrive at the following result:

Proposition 3.11.1 The flow ξ̇i(s) = Xi(ξ(s)) is adiabatic if and
only if ∫

X
�x(ξ(s))

d

ds
�x(ξ(s)) dx = 0.

Example 3.11.1 If in the case of the normal distribution the en-
tropy along the curve s −→ pσ(s),μ(s) is constant, i.e.,

H
(
σ(s), μ(s)

)
= ln

(
σ(s)

√
2πe

)
= c

then σ(s) =
ec√
2πe

, constant. Hence the adiabatic flow in this case

corresponds to the straight lines

{σ = constant, μ(s)},
with μ(s) arbitrary curve.

For more information regarding flows the reader is referred to Udriste
[80, 82, 83].
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3.12 Problems

3.1. Use the uncertainty function axioms to show the following re-
lations:

(a) H
(1
2
,
1

3
,
1

6

)
= H

(1
2
,
1

2

)
+

1

2
H
(2
3
,
1

3

)
.

(b) H
(1
2
,
1

4
,
1

8
,
1

8

)
= H

(3
4
,
1

4

)
+

3

4
H
(2
3
,
1

3

)
+

1

4
H
(1
2
,
1

2

)
.

(c) H(p1, . . . , pn, 0) = H(p1, . . . , pn).

3.2. Consider two events A = {a1, . . . , am} and B = {b1, . . . , bn},
and let p(ai, bj) be the probability of the joint occurrence of
outcomes ai and bj. The entropy of the joint event is defined by

H(A,B) = −
∑
i,j

p(ai, bj) log2 p(ai, bj).

Prove the inequality

H(A,B) ≤ H(A) +H(B),

with identity if and only if the events A and B are independent
(i.e., p(ai, bi) = p(ai)p(bj)).

3.3. If A = {a1, . . . , am} and B = {b1, . . . , bn} are two events,
define the conditional entropy of B given A by

H(B|A) = −
∑
i,j

p(ai, bj) log2 pai(bj),

and the information conveyed about B by A as

I(B|A) = H(B)−H(B|A),

where pai(bj) =
p(ai, bj)∑
j p(ai, bj)

is the conditional probability of

bj given ai. Prove the following:

(a) H(A,B) = H(A) +H(B|A);
(b) H(B) ≥ H(B|A). When does the equality hold?

(c) H(B|A)−H(A|B) = H(B)−H(A);

(d) I(B|A) = I(A|B).
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3.4. Let X be a real-valued continuous random variable on R
n,

with density function p(x). Define the entropy of X by

H(X) = −
∫

Rn

p(x) ln p(x) dx.

(a) Show that the entropy is translation invariant, i.e.,H(X) =
H(X + c), for any constant c ∈ R.

(b) Prove the formula H(aX) = H(X) + ln |a|, for any con-
stant a ∈ R. Show that by rescaling the random variable
the entropy can change from negative to positive and vice
versa.

(c) Show that in the case of a vector valued random variable
Y : Rn → R

n and an n× n matrix A we have

H(AY ) = H(Y ) + ln |detA|.

(d) Use (c) to prove that the entropy is invariant under
orthogonal transformations of the random variable.

3.5. The joint and conditional entropies of two continuous random
variables X and Y are given by

H(X,Y ) = −
∫∫

p(x, y) log2 p(x, y) dxdy,

H(Y |X) = −
∫∫

p(x, y) log2
p(x, y)

p(x)
dxdy,

where p(x) =

∫
p(x, y) dy is the marginal probability of X.

Prove the following:

(a) H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y );

(b) H(Y |X) ≤ H(Y ).

3.6. Let α(x, y) be a function with α(x, y) ≥ 0,

∫

R

α(x, y) dx =
∫

R

α(x, y) dy = 1. Consider the averaging operation

q(y) =

∫

R

α(x, y)p(x) dx.

Prove that the entropy of the averaged distribution q(y) is
equal to or greater than the entropy of p(x), i.e., H(q) ≥ H(p).
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3.7. Consider the two-dimensional statistical model defined by

p(x, ξ1, ξ2) = 2ξ1x+ 3ξ2x2 + 4(1 − ξ1 − ξ2)x3, x ∈ (0, 1).

(a) Compute the Fisher metric gij(ξ).

(b) Compute the entropy H(p).

(c) Find ξ for which H is critical. Does it correspond to a
maximum or to a minimum?

3.8. Find a generic formula for the informational entropy of the
exponential family p(ξ, x) = eC(x)+ξiFi(x)−φ(ξ), x ∈ X .

3.9. (The change of the entropy under a change of coordinates.)
Consider the vector random variables X and Y , related by
Y = φ(X), with φ : Rn → R

n invertible transformation.

(a) Show that

H(Y ) = H(X) − E[ln Jφ−1 ],

where Jφ−1 is the Jacobian of φ−1 and E[ · ] is the expec-
tation with respect to the probability density of X.

(b) Consider the linear transformation Y = AX, with A ∈
R
n×n nonsingular matrix. What is the relation expressed

by part (a) in this case?

3.10. Consider the Gaussian distribution

p(x1, . . . , xn) =

√
detA

(2π)n/2
e−

1
2
〈Ax,x〉,

where A is a symmetric n× n matrix. Show that the entropy
of p is

H =
1

2
ln[(2πe)n detA].

3.11. LetX = (X1, . . . ,Xn) be a random vector in R
n, with E[Xj ] =

0 and denote by A = aij = E[XiXj ] the associated covariance
matrix. Prove that

H(X) ≤ 1

2
ln[(2πe)n detA].

When is the equality reached?
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3.12. Consider the density of an exponentially distributed random
variable with parameter λ > 0

p(x, λ) = λe−λx, x ≥ 0.

Find its entropy.

3.13. Consider the Cauchy’s distribution on R

p(x, ξ) =
ξ

4π

1

x2 + ξ2
, ξ > 0.

Show that its entropy is

H(ξ) = ln(4πξ).

3.14. Find a generic formula for the informational energy of the
mixture family p(ξ, x) = C(x) + ξiFi(x), x ∈ X .

3.15. Let f(x) =
x

σ2
e−

x2

2σ2 , x ≥ 0, σ > 0, be the Rayleigh distribu-

tion. Prove that its entropy is given by

H(σ) = 1 + ln
σ√
2
+
γ

2
,

where γ is Euler’s constant.

3.16. Show that the entropy of the Maxwell–Boltzmann distribution

p(x, a) =
1

a3

√
2

π
x2e−

x2

2a2 , a > 0, x ∈ R

is H(a) = 1
2 − γ − ln(a

√
2π), where γ is Euler’s constant.

3.17. Consider the Laplace distribution

f(x, b, μ) =
1

2b
e−|x−μ|/b, b > 0, μ ∈ R.

Show that its entropy is

H(b, μ) = 1 + ln(2b).
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3.18. Let μ ∈ R. Construct a statistical model

S = {pξ(x); ξ ∈ E, x ∈ X}

such that the functional F : S −→ R,

F (p(·)) =
∫

X
xp(x) dx− μ

has at least one critical point. Is Mμ = F−1(0) a submanifold
of S?

3.19. Starting from the Euclidean space (Rn+, δij), find the Hessian
metric produced by the Shannon entropy function

f : Rn+ → R, f(x1, · · · , xn) = 1

k2

n∑
i=1

ln(k2xi).

3.20. Show that the inequality (3.9.20) becomes identity for the uni-
form distribution p : [0, e] → [0,∞), p(x) = 1/e, and this is
the only distribution with this property.

3.21. (a) Let an(x) = ξn ln(n!)
n! . Show that lim

n→∞

∣∣∣an+1(x)

an(x)

∣∣∣ = 0 for

any x;

(b) Show that the series
∑
n≥0

ξn ln(n!)

n!
has an infinite radius of

convergence;

(c) Deduce that the entropy for the Poisson distribution is
finite.

3.22. Show that the entropy of the beta distribution

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1

is always non-positive, H(α, β) ≤ 0, for any a, b > 0. For which
values of a and b does the entropy vanish?



Chapter 4

Kullback–Leibler Relative
Entropy

Even if the entropy of a finite, discrete density is always positive,
in the case of continuous density the entropy is not always posi-
tive. This drawback can be corrected by introducing another concept,
which measures the relative entropy between two given densities. This
chapter studies the Kullback–Leibler relative entropy (known also as
the Kullback–Leibler divergence) between two probability densities
in both discrete and continuous cases. The relations with the Fisher
information, entropy, cross entropy, ∇(1)-connection are emphasized
and several worked out examples are presented. The chapter ends
with the study of some variational properties.

Let p, q : X → (0,∞) be two probability densities on the same
statistical model S, in the same family (e.g., exponential, mixture,
etc.) or not.

4.1 Definition and Basic Properties

The Kullback–Leibler relative entropy is a non-commutative measure
of the difference between two probability densities p and q on the
same statistical manifold, and it is defined by
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D
KL

(p||q) = Ep

[
ln
p

q

]
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
xi∈X

p(xi) ln
p(xi)

q(xi)
, if X is discrete;

∫

X
p(x) ln

p(x)

q(x)
dx, if X is continuous.

In information theory the density p is considered to be the true den-
sity determined from observations, while q is the theoretical model
density. The Kullback–Leibler relative entropy can be used to find a
goodness of fit of these two densities given by the expected value of
the extra-information required for coding using q rather than using p.

Sometimes, the Kullback–Leibler relative entropy is regarded as
a measure of inefficiency of assuming data distributed according to
q, when actually it is distributed as p.

The following inequalities will be useful.

Lemma 4.1.1 (i) If p = {p1, . . . , pn, . . . } and q = {q1, . . . , qn, . . . }
are two strictly positive discrete densities on X , then

∑
i≥1

pi ln pi ≥
∑
i≥1

pi ln qi.

(ii) If p and q are two strictly positive continuous densities on X ,
then ∫

X
p(x) ln p(x) dx ≥

∫

X
p(x) ln q(x) dx.

The previous inequalities become equalities when the densities
are equal.

Proof:

(i) Using the inequality lnx ≤ x− 1, x > 0, we find

∑
i

pi ln qi −
∑
i

pi ln pi =
∑
i

pi ln
qi
pi

≤
∑
i

pi

( qi
pi

− 1
)

=
∑
i

qi −
∑
i

pi = 0.

The equality is reached for qi/pi = 1, i.e., the case of equal
densities.
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(ii) It is similar to (i) since an integral mimics the properties of a
sum.

Proposition 4.1.2 Let S be a statistical manifold.

(i) The relative entropy D
KL

(· || ·) is positive and non-degenerate:

D
KL

(p||q) ≥ 0, ∀p, q ∈ S, with D
KL

(p||q) = 0 if and only if
p = q.

(ii) The relative entropy is symmetric, i.e., D
KL

(p||q) = D
KL

(q||p)
if and only if

∫

X
(p(x) + q(x)) ln

p(x)

q(x)
dx = 0.

(iii) The relative entropy satisfies the triangle inequality

D
KL

(p||q) +D
KL

(q||r) ≥ D
KL

(p||r)

if and only if

∫

X
(p(x)− q(x)) ln

q(x)

r(x)
dx ≤ 0.

Proof: (i) Applying Lemma 4.1.1, we obtain

D
KL

(p||q) =

∫

X
p(x) ln

p(x)

q(x)
dx

=

∫

X
p(x) ln p(x) dx−

∫

X
p(x) ln q(x) dx ≥ 0,

with equality for p = q.
(ii) and (iii) are obtained by direct computations.

Examples 4.2.1 and 4.2.2 provide non-symmetrical Kullback–
Leibler relative entropies, which do not satisfy the triangle inequality.

The previous proposition shows that the Kullback–Leibler rela-
tive entropy does not satisfy all the axioms of a metric on the man-
ifold S. It is worth noting that the non-symmetry can be removed
by defining a symmetric version of the relative entropy, D(p, q) =
1
2

(
DKL(p||q) +DKL(q||p)

)
, called quasi-metric. However, in general,

the triangle inequality cannot be fixed.
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4.2 Explicit Computations

First, we shall compute the Kullback–Leibler relative entropy for
pairs of densities in the same class.

Example 4.2.1 (Exponential Distributions) Consider two expo-
nential densities

p1(x) = ξ1e−ξ
1x, p2(x) = ξ2e−ξ

2x.

Since

ln
p1(x)

p2(x)
= ln

ξ1

ξ2
+ (ξ2 − ξ1)x,

we find

D
KL

(p1||p2) =

∫ ∞

0
p1(x) ln

p1(x)

p2(x)
dx

=

∫ ∞

0
ln
ξ1

ξ2
p1(x) dx + (ξ2 − ξ1)

∫ ∞

0
xp1(x) dx

= ln
ξ1

ξ2
+ (ξ2 − ξ1)

1

ξ1

=
ξ2

ξ1
− ln

ξ2

ξ1
− 1.

Hence

D
KL

(p1||p2) = f
(ξ2
ξ1

)
,

with f(x) = x−lnx−1 ≥ 0. This yields D
KL

(p1||p2) ≥ 0, the equality
being reached if and only if ξ1 = ξ2 i.e. if p1 = p2.

We also have D
KL

(p1||p2) = f
(
ξ2

ξ1

)
�= f

(
ξ1

ξ2

)
= D

KL
(p2||p1). The

condition (iii) can be written as

f
(ξ2
ξ1

)
+ f

(ξ3
ξ2

)
�≥ f

(ξ3
ξ1

)

which becomes after cancelations

ξ2

ξ1
+
ξ3

ξ2
�≥ ξ3

ξ1
.

One can see that this relation does not hold for any ξ1, ξ2, ξ3 > 0.
Hence Proposition 4.1.2 is verified on this particular case.
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Example 4.2.2 (Normal Distributions) Let

p1(x) =
1√
2πσ1

e
− (x−μ1)

2

2σ2
1 , p2(x) =

1√
2πσ2

e
− (x−μ2)

2

2σ2
2

be two normal densities. Since

ln
p1(x)

p2(x)
= ln

σ2
σ1

− (x− μ1)
2

2σ21
+

(x− μ2)
2

2σ22
,

then

D
KL

(p1||p2) =

∫ ∞

0
p1(x) ln

p1(x)

p2(x)
dx (4.2.1)

= ln
σ2
σ1

− 1

2σ21

∫
(x− μ1)

2p1(x) dx

+
1

2σ22

∫ ∞

0
(x− μ2)

2p1(x) dx.

The second integral term can be computed as

1

2σ21

∫ ∞

0
(x− μ1)

2p1(x) dx =
1

2σ21

1√
2πσ1

∫ ∞

0
(x− μ1)

2e
− (x−μ1)

2

2σ2
1

=
1

2σ21

1√
2πσ1

∫ ∞

0
y2e

− y2

2σ2
1 dy =

1

2
,

see also formula (6.5.26). Let Δμ = μ1 − μ2. Then the third integral
term is computed as

1

2σ22

∫ ∞

0
(x− μ2)

2p1(x) dx

=
1

2σ22

∫ ∞

0
(x− μ1 +Δμ)2

1√
2πσ1

e
− (x−μ1)

2

2σ2
1 dx

=
1

2σ22

∫ ∞

0
(y +Δμ)2

1√
2πσ1

e
− y2

2σ2
1 dx

=
1

2
√
2πσ1σ22

[∫ ∞

0
y2e

− y2

2σ2
1 dy + 2Δμ

∫ ∞

0
ye

− y2

2σ2
1 dy

+(Δμ)2
∫ ∞

0
e
− y2

2σ2
1 dy

]

=
1

2
√
2πσ1σ

2
2

[√
2πσ31 + 0 + (Δμ)2

√
2πσ1

]

=
1

2σ22

(
σ21 +Δμ2

)
.
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Substituting in (4.2.1), we obtain

D
KL

(p1||p2) = ln
σ2
σ1

− 1

2
+

1

2

(σ1
σ2

)2
+

Δμ2

2σ22

=
1

2

[(σ1
σ2

)2
− ln

(σ1
σ2

)2
− 1

]
+

(μ1 − μ2)
2

2σ22
.

Using the inequality ln x ≤ x− 1, we find D
KL

(p1||p2) ≥
(μ1 − μ2)

2

2σ22
,

the equality being reached for σ1 = σ2.

Example 4.2.3 (Poisson Distributions) Consider the Poisson
distributions

p(n, ξ) = e−ξ
ξn

n!
, p(n, ξ0) = e−ξ0

ξn0
n!
, n = 0, 1, 2, . . . .

Since

ln
p(n, ξ)

p(n, ξ0)
= ξ0 − ξ + n ln

ξ

ξ0
,

the Kullback–Leibler relative entropy is

DKL(pξ||pξ0) =
∑
n≥0

p(n, ξ) ln
p(n, ξ)

p(n, ξ0)

= (ξ0 − ξ)
∑
n≥0

p(n, ξ) + ln
ξ

ξ0

∑
n≥0

np(n, ξ)

= ξ0 − ξ + ln
ξ

ξ0
ξe−ξ

∑
k≥0

ξk

k!

= ξ0 − ξ + ξ ln
ξ

ξ0
.

We shall consider next a pair of densities in different classes and
compute their Kullback–Leibler relative entropy.

Example 4.2.4 To simplify, we consider a pair consisting in a Pois-
son distribution

q(n, ξ0) = e−ξ0
ξn0
n!
, n = 0, 1, 2, . . .

and a geometric distribution

p(n, ξ) = ξ(1− ξ)n−1, n = 1, 2, . . .
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The pairing can be done for n = 1, 2, . . . . We assume for convenience
that p(0, ξ) = 0. Then, we obtain

ln
p(n, ξ)

q(n, ξ0)
= ln ξ + (n− 1) ln(1− ξ)− (−ξ0 + n ln ξ0 − lnn!).

It follows

DKL(pξ||qξ0) =
∑
n≥0

p(n, ξ) ln
p(n, ξ)

q(n, ξ0)

= ξ ln ξ
∑
n≥1

(1− ξ)n−1 + ξ ln(1− ξ)
∑
n≥1

(n− 1)(1 − ξ)n−1

+ ξ0ξ
∑
n≥1

(1− ξ)n−1 − ξ ln ξ0
∑
n≥1

n(1− ξ)n−1

+ ξ
∑
n≥1

(lnn!)(1 − ξ)n−1

= ln ξ − ln(1− ξ) + ξ0 −
1

ξ
ln ξ0 + ξ

∑
n≥1

(ln n!)(1− ξ)n−1.

The last series is convergent for 0 < ξ ≤ 1.

4.3 Cross Entropy

Consider two densities p and q on the sample space X and denote
by Ep[ · ] the expectation with respect to p. Let �q = ln q be the log-
likelihood function with respect to q. The cross entropy of p with
respect to q is defined as S(p, q) = −Ep[�q]. More precisely,

S(p, q) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

X
p(x) ln q(x) dx, if X is continuous

−
∑
x

p(x) ln q(x), if X is discrete.

The cross entropy is an information measure that can be regarded as
an error metric between two given distributions.

Let H(p) be the entropy of p. Then we have the following result:

Proposition 4.3.1 The relative entropy DKL(p||q), the entropy H(p)
and the cross entropy S(p, q) are related by

S(p, q) = DKL(p||q) +H(p).
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Proof: From the definition of the Kullback–Leibler relative entropy
it follows that

DKL(p||q) =

∫

X
p(x) ln

p(x)

q(x)
dx =

∫

X
p(x) ln p(x) dx

−
∫

X
p(x) ln q(x) dx = −H(p)− Ep[�q]

= −H(p) + S(p, q).

The following result shows that the cross entropy is minimum
when the two distributions are identical.

Corollary 4.3.2 The entropy H(p) and the cross entropy S(p, q)
satisfy the inequality

H(p) ≤ S(p, q),

with equality if and only if p = q.

Proof: It follows from DKL(p||q) ≥ 0 and previous proposition. We
can also state the result as min

q
S(p, q) = H(p).

It is worth noting that the Kullback–Leibler relative entropy can
be also written as a difference of two log-likelihood functions

DKL(p||q) = Ep[�p]− Ep[�q].

4.4 Relation with Fisher Metric

We shall start with an example. The Kullback–Leibler relative en-
tropy of two exponential densities pξ0 and pξ is

DKL(pξ0 ||pξ) =
ξ

ξ0
− ln

ξ

ξ0
− 1, ξ0, ξ > 0,

see Example 4.2.1. The first two derivatives with respect to ξ are

∂ξDKL(pξ0 ||pξ) =
1

ξ0
− 1

ξ
, ∂2ξDKL(pξ0 ||pξ) =

1

(ξ)2
.

We note that the diagonal parts of these partial derivatives, obtained
for ξ = ξ0, are

∂ξDKL(pξ0 ||pξ)|ξ=ξ0 = 0, ∂2ξDKL(pξ0 ||pξ)ξ=ξ0 = g11(ξ0),

where g11 is the Fisher metric. These two relations are not a coinci-
dence, as the following results will show.
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Proposition 4.4.1 The diagonal part of the first variation of the
Kullback–Leibler relative entropy is zero,

∂iDKL(pξ0 ||pξ)|ξ=ξ0 = 0.

Proof: Differentiating in the definition of the Kullback–Leibler rela-
tive entropy yields

∂iDKL(pξ0 ||pξ) = ∂i

∫

X
pξ0(x) ln pξ0(x) dx − ∂i

∫

X
pξ0(x) ln pξ(x) dx

= −
∫

X
pξ0(x)∂i ln pξ(x) dx = −

∫

X
pξ0(x)∂i�x(ξ) dx,

and hence

∂iDKL(pξ0 ||pξ)|ξ=ξ0 = −
∫

X
pξ0(x)∂i�x(ξ0) dx = −Eξ0 [∂i�x(ξ0)] = 0,

by Proposition 1.3.2.

Proposition 4.4.2 The diagonal part of the Hessian of the Kullback–
Leibler relative entropy is the Fisher metric

∂i∂jDKL(pξ0 ||pξ)|ξ=ξ0 = gij(ξ0).

Proof: Differentiating in the definition of the Kullback–Leibler rela-
tive entropy implies

∂i∂jDKL(pξ0 ||pξ) = ∂i∂j

∫

X
pξ0 ln pξ0 dx− ∂i∂j

∫

X
pξ0 ln pξ dx

= −
∫

X
pξ0∂i∂j ln pξ dx = −

∫

X
pξ0∂i∂j�x(ξ) dx.

(4.4.2)

Taking the diagonal value, at ξ = ξ0, yields

∂i∂jDKL(pξ0 ||pξ)|ξ=ξ0 = −
∫

X
pξ0(x)∂i∂j�x(ξ0) dx

= −Eξ0 [∂i∂j�x(ξ0)] = gij(ξ0),

by Proposition 1.6.3.

Proposition 4.4.1 states that pξ0 is a critical point for the mapping
pξ → DKL(pξ0 ||pξ). Using Proposition 4.4.2 leads to the following
result, which is specific to distance functions:
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Proposition 4.4.3 The density pξ0 is a minimum point for the func-
tional pξ → DKL(pξ0 ||pξ).

Proof: Since gij is positive definite everywhere, the point pξ0 is a min-
imum. From the non-negativity of the Kullback–Leibler divergence it
follows that pξ0 is in fact a global minimum.

The next result deals with the quadratic approximation of the
Kullback–Leibler relative entropy in terms of the Fisher metric.

Theorem 4.4.4 Let Δξi = ξi − ξi0. Then

DKL(pξ0 ||pξ) =
1

2

∑
i,j

gij(ξ0)Δξ
iΔξj + o(‖Δξ‖2), (4.4.3)

where o(‖Δξ‖2) denotes a quantity that tends to zero faster than
‖Δξ‖2 as Δξ → 0.

Proof: Let f : E → R be a function given by f(ξ) = DKL(pξ0 ||pξ),
and consider its quadratic approximation

f(ξ) = f(ξ0)+
∑
i

∂f

∂ξi
(ξ0)Δξ

i+
1

2

∑
i,j

∂2f

∂ξi∂ξj
(ξ0)Δξ

iΔξj+o(‖Δξ‖2).

(4.4.4)
Using Propositions 4.1.2, 4.4.1, and 4.4.2, we have

f(ξ0) = DKL(pξ0 ||pξ0) = 0

∂f

∂ξi
(ξ0) = ∂ξiD(pξ0 ||pξ)|ξ=ξ0 = 0

∂2f

∂ξi∂ξj
(ξ0) = ∂ξi∂ξjD(pξ0 ||pξ)|ξ=ξ0 = gij(ξ0).

Substituting into (4.4.4) yields (4.6.8).

Let p, q ∈ S be two points on the statistical model S. The Fisher
distance, dist(p, q), represents the information distance between den-
sities p and q. It is defined as the length of the shortest curve on
S between p and q, i.e., the length of the geodesic curve joining p
and q. Next we shall investigate the relation between the Kullback–
Leibler relative entropy DKL(p||q) and the Fisher distance dist(p, q).
We shall start with an example.

From Examples 1.6.2 and 4.2.1, the Fisher distance and the
Kullback–Leibler relative entropy between two exponential densities
are



4.4. Relation with Fisher Metric 121

Figure 4.1: The geodesic γ(s) between densities p and q

dist(pξ0 , pξ) = ln
( ξ
ξ0

)

DKL(pξ0 ||pξ) =
ξ

ξ0
− ln

( ξ
ξ0

)
− 1,

where 0 < ξ0 < ξ. We have

lim
ξ↘ξ0

D
KL

(pξ0 ||pξ)
1
2 dist(pξ0 , pξ)

2
= lim

ξ↘ξ0

ξ
ξ0

− ln
(
ξ
ξ0

)
− 1

1
2

(
ln
(
ξ
ξ0

))2 = lim
x↘1

x− lnx− 1
1
2(ln x)

2

= lim
u↘0

eu − u− 1
1
2u

2
= 1,

by l’Hôspital’s rule. Hence the asymptotics of DKL(pξ0 ||pξ) as ξ → ξ0
is 1

2 dist(pξ0 , pξ)
2. This result will hold true in a more general frame-

work. The next result is a variant of Theorem 4.4.4.

Theorem 4.4.5 Let d = dist(p, q) denote the Fisher distance be-
tween the densities p and q and DKL(p||q) be the Kullback–Leibler
relative entropy. Then

DKL(p||q) =
1

2
d2(p, q) + o

(
d2(p, q)

)
(4.4.5)
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Proof: Consider a geodesic γ(s) on the statistical model S joining
densities p and q; this satisfies γ(s) = ι(ξ(s)) = pξ(s), with γ(0) =
pξ0 = p and γ(t) = pξ = q. Since the arc length along the geodesic
is the Riemannian distance, we have t = dist(p, q). The curve ξ(s)
belongs to the parameter space and has the endpoints ξ(0) = ξ0 and
ξ(t) = ξ, see Fig. 4.1.

Consider the function ϕ(s) = f(ξ(s)), with f(ξ) = DKL(pξ0 ||pξ).
A second order expansion of ϕ about t = 0 yields

ϕ(t) = ϕ(0) + tϕ′(0) +
t2

2
ϕ′′(0) + o(t2). (4.4.6)

Using Propositions 4.1.2, 4.4.1, and 4.4.2, we have

ϕ(0) = f(ξ(0)) = DKL(pξ0 ||pξ0) = 0

ϕ′(0) =
∑
i

∂f

∂ξi
(ξ0)ξ̇(0) = 0

ϕ′′(0) =
∑
i,j

∂2f

∂ξi∂ξj
(ξ0)ξ̇

i(0)ξ̇j(0) +
∑
i

∂f

∂ξi
(ξ0)ξ̈

i(0)

=
∑
i,j

gij(ξ0)ξ̇
i(0)ξ̇j(0).

Substituting in (4.4.6) yields

ϕ(t) =
t2

2

∑

i,j

gij(ξ0)ξ̇
i(0)ξ̇j(0)+o(t2) =

t2

2
g(γ̇(0), γ̇(0))+o(t2) =

t2

2
+o(t2) =

1

2
d2+o(t2),

since geodesics parameterized by the arc length are unit speed curves.
Expressing the left side as ϕ(t) = f(ξ(t)) = DKL(p||q) leads to the
desired result.

Corollary 4.4.6 Let d = dist(p, q) denote the Fisher distance be-
tween the densities p and q and D(p, q) be the Kullback–Leibler quasi-
metric

D(p, q) = DKL(p||q) +DKL(q||p).

Then

D(p, q) = d2(p, q) + o(d2(p, q)). (4.4.7)
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4.5 Relation with ∇(1)-Connection

The Kullback–Leibler relative entropy induces the linear connection

∇(1). Its components, Γ
(1)
ij,k = g(∇(1)

∂i
∂j , ∂j), are given in terms of the

Kullback–Leibler relative entropy as in the following.

Proposition 4.5.1 The diagonal part of the third mixed derivatives
of the Kullback–Leibler relative entropy is the negative of the Christof-
fel symbol

−∂ξi∂ξj∂ξk0DKL(pξ0 ||pξ)|ξ=ξ0 = Γ
(1)
ij,k(ξ0).

Proof: The second derivatives in the argument ξ are given by (4.4.2)

∂ξi∂ξjDKL(pξ0 ||pξ) = −
∫

X
pξ0(x)∂ξi∂ξj �x(ξ) dx,

and differentiating in ξk0 yields

−∂ξk0 ∂ξi∂ξjDKL(pξ0 ||pξ) = ∂ξk0

∫

X
pξ0(x)∂ξi∂ξj �x(ξ) dx

=

∫

X
pξ0(x)∂ξk0

�x(ξ0)∂ξj �x(ξ) dx.

Then considering the diagonal part

−∂ξk0∂ξi∂ξjDKL(pξ0 ||pξ)|ξ=ξ0 = Eξ0 [∂i∂j�(ξ) ∂k�(ξ)]

= Γ
(1)
ij,k(ξ0),

where we considered α = 1 in formula (1.11.34).

4.6 Third Order Approximation

This section contains a refinement of the result given by Theorem 4.4.4.
This deals with the cubic approximation of the Kullback–Leibler rel-
ative entropy.

Theorem 4.6.1 Let Δξi = ξi − ξi0. Then

DKL(pξ0 ||pξ) =
1

2
gij(ξ0)Δξ

iΔξj +
1

6
hijk(ξ0)Δξ

iΔξjΔξk + o(‖Δξ‖3),
(4.6.8)
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where gij(ξ0) is the Fisher–Riemann metric and

hijk = ∂kgij + Γ
(1)
ij,k,

and o(‖Δξ‖3) denotes a quantity that vanishes faster than ‖Δξ‖3 as
Δξ → 0.

Proof: Following the line of the proof of Theorem 4.4.4, consider the
function f(ξ) = DKL(pξ0 ||pξ) and write its cubic approximation

f(ξ) = f(ξ0)︸ ︷︷ ︸
=0

+
∂f

∂ξi
(ξ0)

︸ ︷︷ ︸
=0

Δξi +
1

2

∂2f

∂ξi∂ξj
(ξ0)

︸ ︷︷ ︸
=gij(ξ0)

ΔξiΔξj

+
1

6
hijk(ξ0)Δξ

iΔξjΔξk + o(‖Δξ‖3).

The third coefficient can be computed as

hijk(ξ0) =
∂3f

∂ξi∂ξj∂ξk
(ξ0) = ∂ξi∂ξj∂ξkDKL(pξ0 ||pξ)|ξ=ξ0

= −∂ξi∂ξj∂ξk
∫

X
pξ0(x) ln pξ(x) dx|ξ=ξ0

= −∂ξi∂ξj∂ξk
∫

X
pξ0(x)�x(ξ) dx|ξ=ξ0

= −Eξ0 [∂i∂j∂k�] = ∂kgij(ξ0) + Eξ0 [(∂i∂j�)(∂k�)]

= ∂kgij(ξ0) + Γ
(1)
ij,k(ξ0),

where we used Proposition 1.7.1, part (i), and let α = 1 in for-
mula (1.11.34).

4.7 Variational Properties

This section deals with inequalities and variational properties of the
Kullback–Leibler relative entropy.

Proposition 4.7.1 For any two continuous density functions p and
q, we have

(i)

∫

X

p2(x)

q(x)
dx ≥ 1;

(ii)

∫

X
(p(x)− q(x)) ln

p(x)

q(x)
dx ≥ 0.
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Proof:

(i) Using the non-negativity of the Kullback–Leibler relative en-
tropy and properties of logarithmic function we find

0 ≤ DKL(p||q) =

∫

X
p(x) ln

p(x)

q(x)
dx ≤

∫

X
p(x)

(p(x)
q(x)

− 1
)
dx

=

∫

X

p2(x)

q(x)
dx−

∫

X
p(x) dx =

∫

X

p2(x)

q(x)
dx−1,

which implies the desired inequality.

(ii) Using the properties of the Kullback–Leibler relative entropy,
we have

0 ≤ D
KL

(p||q) +D
KL

(q||p) =
∫

X
p ln

p

q
dx+

∫

X
q ln

q

p
dx

=

∫

X
(p − q) ln p dx−

∫

X
(p − q) ln q dx =

∫

X
(p− q) ln

p

q
dx.

Example 4.7.1 We check (i) of Proposition 4.7.1 in the case of ex-
ponential densities p = ξ1e

−ξ1x and q(x) = ξ2e
−ξ2x, x > 0. We have

∫ ∞

0

p2(x)

q(x)
dx =

∫ ∞

0

ξ21e
−2ξ1x

ξ2e−ξ2x
dx =

ξ21
ξ2

∫ ∞

0
e−(2ξ1−ξ2) dx

=
ξ21
ξ2

· 1

2ξ1 − ξ2
≥ 2ξ1ξ2 − ξ22

2ξ1ξ2 − ξ22
= 1,

where we used

ξ21 ≥ 2ξ1ξ2 − ξ22 ⇐⇒ (ξ1 − ξ2)
2 ≥ 0.

In the following S will denote the manifold of all continuous den-
sities on X . One way of defining the distance between two densities
p, q ∈ S is using the L2-norm

d(p, q) = ‖p− q‖2 =
√∫

X
|p(x)− q(x)|2 dx,

provided the L2-norm is finite.
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Given two densities p, r ∈ S, we shall ask the question of finding a
density q ∈ S such that the sum F (q) = d(p, q)+ d(q, r) is minimum.

This occurs when the density q realizes the equality in the triangle
inequality d(p, q) + d(q, r) ≥ d(p, r). Since Minkowski’s integral in-
equality becomes equality for proportional integrands, it follows that
the density q is a convex combination

q(x) =
λ

1 + λ
r(x) +

1

1 + λ
p(x),

with λ ∈ [0, 1]. Hence, the minimum of the sum F (q) is realized for
all the densities between p and r.

We obtain a different result in the case when the distance d(p, q)
is replaced by the Kullback–Leibler relative entropy D

KL
(p||q), or by

the Hellinger distance

dH(p, q) = 2

∫

X

(√
p(x)−

√
q(x)

)2
dx.

In the following we deal with several similar variational problems.

Problem: Given two distinct densities p, r ∈ S, find all densities
q ∈ S for which the sum G(q) = D

KL
(p||q)+D

KL
(q||r) is minimum.

We shall employ the method of Lagrange multipliers considering
the functional with constraints

q �−→
∫

X
L(q) dx = G(q) + λ

(∫

X
q dx− 1

)
,

where the Lagrangian is

L(q) = p ln
p

q
+ q ln

q

r
+ λq.

The density q, which realizes the minimum of G(q) ≥ 0, satisfies the
Euler–Lagrange equation

∂L
∂q

= 0 ⇐⇒

ln q − p

q
= ln r − λ− 1 ⇐⇒

ln q − ln p− p

q
= ln r − ln p− λ− 1 ⇐⇒

ln
p

q
+
p

q
= 1 + λ+ ln

p

r
.
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Exponentiating yields
p

q
ep/q =

p

r
e1+λ,

which after making the substitution u = p/q becomes the Lambert
equation

ueu =
p

r
e1+λ,

with the solution
u =W

(p
r
e1+λ

)
,

where W ( · ) is the Lambert function.1 Hence the minimum for the
functional G(q) is reached for the density

q =
p

W
(p
re

1+λ
) , (4.7.9)

with the constant λ determined from the unitary integral constraint∫
X q(x) dx = 1. The value of λ is unique sinceW (x) is increasing with
W (0+) = 0, and W (∞) = ∞ and

lim
λ→−∞

∫

X

p(x)

W
(p(x)
r(x)e

1+λ
) dx =

∫
X p dx
W (0+)

= +∞;

lim
λ→∞

∫

X

p(x)

W
(p(x)
r(x)e

1+λ
) dx =

∫
X p dx
W (∞)

= 0.

Hence there is only one density q that minimizes the sum D
KL

(p||q)
+D

KL
(q||r), and it is given by formula (4.7.9).

In the case p = r, we have the following result.

Proposition 4.7.2 Let p be a fixed density. Then the symmetric rel-
ative entropy

DKL(p||q) +DKL(q||p)
achieves its minimum for q = p, and the minimum is equal to zero.

Proof: Since we haveDKL(p||q) ≥ 0 andDKL(q||p) ≥ 0, with identity
achieved for p = q, it follows that DKL(p||q) + DKL(q||p) ≥ 0 with
identity for p = q.

Curious enough, swapping the arguments of the relative entropy,
we obtain a different variational problem with a much nicer solution.

1Named after Johann Heinrich Lambert; it is also called the Omega function.
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Problem: Given two densities p, r ∈ S, find all distributions
q ∈ S for which the sum F (q) = D

KL
(p||q) + D

KL
(r||q) is

minimum. Using the method of Lagrange multipliers we consider
the functional with constraints

q �−→
∫

X
L(q) dx = F (q) + λ

( ∫

X
q dx− 1

)
,

with the Lagrangian

L(q) = p ln
p

q
+ r ln

r

q
+ λq.

The density q, which realizes the minimum of F (q) ≥ 0, satisfies the
Euler–Lagrange equation

∂L
∂q

= 0 ⇐⇒

−p
q
− r

q
+ λ = 0 ⇐⇒

p+ r

q
= λ⇐⇒

q =
1

λ
(p+ r).

The multiplier λ is determined from the integral constraint

1 =

∫

X
q dx =

1

λ

∫

X
(q + r) dx =

2

λ
=⇒ λ = 2.

Hence, the density that minimizes the sum DKL(p||q) +DKL(r||q) is

q(x) =
1

2

(
p(x) + r(x)

)
.

Using the same idea of proof, one can easily generalize the previous
result:

Given n distinct densities p1, . . . , pn ∈ S, the density which min-
imizes the functional

q �−→
n∑
k=1

D
KL

(pk||q)

is the average of the densities

q(x) =
p1(x) + · · ·+ pn(x)

n
·
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4.8 Problems

4.1. (a) Let q be a fixed density on (−∞,∞). Show that for any
α ∈ [0, 1]\{1/2}, there is a unique number a such that

∫ a

−∞
q(x) dx = α,

∫ ∞

a
q(x) dx = 1− α.

(b) Define

p(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1

2α
q(x), if x < a

1

2(1− α)
q(x), if x ≥ a.

Verify that p(x) is a probability density on R.

(c) Consider the symmetric difference of Kullback–Leibler rel-
ative entropies

Δ(α) = DKL(p||q)−DKL(q||p).

(d) Show that

Δ(α) =
(
α+

1

2

)
ln

1

2α
+
(3
2
− α

)
ln

1

2(1 − α)
·

(e) Prove that Δ(α) �= 0 for α �= 1/2, and deduct that
D

KL
(p||q) �= D

KL
(q||p).

4.2. Let α ∈ R and p, pi, q, qi density functions on X . Prove the
following algebraic properties of the cross entropy function:

(a) S(p1 + p2, q) = S(p1, q) + S(p2, q)

(b) S(αp, q) = αS(p, q)

(c) S(p, q1q2) = S(p, q1) + S(p, q2)

(d) S(p, qα) = S(αp, q).

4.3. Let q be a fixed density on R, and consider the set of all den-
sities which have a constant cross entropy with respect to q,

Mq(k) = {p;S(p, q) = k}.

Show that the maximum of the entropy function, H(p), on the
set Mk(q) is realized for p = q, and in this case max

p
H(p) = k.



130 Chapter 4. Kullback–Leibler Relative Entropy

4.4. Use the inequality ln x ≤ x− 1, ∀x > 0, to show the following
inequality satisfied by the cross entropy:

S(p, q) ≥ 1−
∫

X
p(x)q(x) dx.

4.5. Consider the exponential distributions p(x) = ξe−ξx and q(x) =
θe−θx, x ≥ 0, ξ, θ > 0. Compute the cross entropy S(p, q).

4.6. Consider the Poisson distribution p(n, ξ) = e−ξ ξ
n

n! , with n =
0, 1, 2, . . . .

(a) Show that

DKL(pξ||pξ0)+DKL(pξ0 ||pξ1)−DKL(pξ||pξ1)=(ξ0−ξ) ln
ξ0
ξ1
.

(b) Which conditions must be satisfied by ξ, ξ0, ξ1 such that
the triangle inequality for the Kullback–Leibler holds?

(c) When does the triangle inequality for the Kullback–Leibler
become identity?

4.7. Use Proposition 4.4.2 to find the Fisher information metric
starting from the Kullback–Leibler relative entropy for the
following statistical models:

(a) Poisson distribution.

(b) exponential distribution.

(c) normal distribution.

(d) gamma distribution.

4.8. Use Proposition 4.5.1 to find the Christoffel symbol Γ
(1)
ij,k start-

ing from the Kullback–Leibler relative entropy for the follo-
wing statistical models:

(a) Poisson distribution.

(b) exponential distribution.

(c) normal distribution.

(d) gamma distribution.
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4.9. Find the dual contrast function of the Kullback–Leibler rela-
tive entropy (see Sect. 11.4) and then compute the coefficient

Γ
(−1)
ij,k using Proposition 4.5.1 for the following distributions:

(a) Poisson distribution.

(b) exponential distribution.

(c) normal distribution.

(d) gamma distribution.

4.10. Let pa,b(x) and pa′,b′(x) be two gamma distributions. Show
that the Kullback–Leibler relative entropy is

DKL(pa,b, pa′,b′) =(a− a′)ψ(a) − ln Γ(a) + ln Γ(a′)
+ a′ ln(b/b′) + a(b′ − b)/b,

where ψ(x) denotes the digamma function.

4.11. Let pa,b(x) and pa′,b′(x) be two beta distributions.

(a) Show that the Kullback–Leibler relative entropy is

DKL(pa,b, pa′,b′) = ln
B(a′, b′)
B(a, b)

+(a− a′)ψ(a)+(b− b′)ψ(b)

+ (a′ − a+ b′ − b)ψ(a+ b).

(b) Show that the cross entropy is given by

S(pa,b, pa′,b′) = lnB(a′, b′)− (a′ − 1)ψ(a) − (b′ − 1)ψ(b)

+ (a′ + b′ − 2)ψ(a + b).



Chapter 5

Informational Energy

The informational energy is a concept inspired from the kinetic en-
ergy expression of Classical Mechanics. From the information theory
point of view, the informational energy is a measure of uncertainty or
randomness of a probability system, and was introduced and studied
for the first time by Onicescu [67, 68] in the mid-1960s.

The informational energy and entropy are both measures of ran-
domness, but they describe distinct features. This chapter deals with
the informational energy in the framework of statistical models. The
chapter contains the main properties of informational energy, its first
and second variation, relation with entropy, and numerous worked-
out examples.

5.1 Definitions and Examples

Let S = {pξ = p(x; ξ)|ξ = (ξ1, . . . , ξn) ∈ E} be a statistical model.
The informational energy on S is a function I : E → R defined by

I(ξ) =

∫

X
p2(x, ξ) dx. (5.1.1)

Observe that the energy is convex and invariant under measure pre-
serving transformations, properties similar to those of entropy.
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In the finite discrete case, when X = {x1, . . . , xn}, formula (5.1.1)
is replaced by

I(ξ) =

n∑
k=1

p2(xk, ξ). (5.1.2)

While (5.1.2) is obviously finite, we need to require the integral (5.1.1)
to be finite. However, if X = R, we have the following result.

Proposition 5.1.1 Let p(x) be a probability density on R satisfying:

(i) p(x) is continuous

(ii) p(x) → 0 as x→ ±∞.

Then the informational energy of p is finite, i.e., the following integral
is convergent

I(p) =

∫ ∞

−∞
p2(x) dx <∞.

Proof: Let 0 < a < 1. Then there is number A > 0 such that p(x) < a
for |x| > A. This follows from the fact that p(x) ↘ 0 as |x| → ∞, see
Fig. 5.1. Writing

I(p) =

∫ −A

−∞
p2(x) dx+

∫ A

−A
p2(x) dx+

∫ ∞

A
p2(x) dx,

we note that

∫ −A

−∞
p2(x) dx < a

∫ −A

−∞
p(x) dx = aF (a) < a

∫ ∞

A
p2(x) dx < a

∫ ∞

A
p(x) dx = a(1− F (a)) < a,

where F (x) denotes the distribution function of p(x). Since the func-
tion p(x) is continuous, it reaches its maximum on the interval [−A,A],
denoted by M . Then we have the estimation

∫ A

−A
p2(x) dx < M

∫ A

−A
p(x) dx =M

(
F (A)− F (−A)

)
< 2M.

It follows that I(p) ≤ 2a+ 2M <∞, which ends the proof.
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A--- A
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Figure 5.1: The graph of y = p(x); p(x) < a < 1 for |x| > A

We make the remark that the continuity of p(x) is essential. For
instance

p(x) =

{
1

2
√
x
, if 0 < x < 1

0, otherwise.

is discontinuous and has an infinite informational energy.
Observe that condition (ii) is independent of condition (i). For

instance, the following infinite mixture of Gaussians

p(x) =
6

π2

∞∑
k=1

1

k2
· k3√

2π
exp

(
− (x− k)2k6

2

)

is a continuous density which does not satisfy condition (ii), since
p(k) ≥ 6k√

2ππ2
·

Example 5.1.1 (Discrete Finite Distribution) Consider an ex-
periment with the following probability distribution table

event x1 x2 . . . xn

probability p1 p2 . . . pn
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where the probabilities p1, . . . , pn sum up to 1. The first n−1 probabil-
ities can be taken as parameters ξ1, . . . , ξn−1. Then the informational
energy is given by

I =

n∑
i=1

p2i = (ξ1)2 + . . .+ (ξn−1)2 + (1− ξ1 − . . .− ξn−1)2

= 1 + 2
[∑

j

(ξj)2 −
∑
j

ξj −
∑
i =j

ξiξj
]
. (5.1.3)

Example 5.1.2 (Constant Discrete Finite Distribution) If an
experiment has n outcomes which are equiprobable, i.e., they have the
same probability p = 1/n, then the informational energy is I = 1/n.
This follows easily from

I =
n∑
i=1

p2i =
1

n2
+ . . .+

1

n2
=

n

n2
=

1

n
.

We note that the informational energy is bounded from below and
above by 0 and 1, respectively. The informational energy tends to
have an opposite variation to entropy, fact known in Thermodynam-
ics as the third principle. If the entropy of a system decreases, its
informational energy increases, and vice versa. We shall deal with a
more general case in the next section. We shall sketch the idea in the
case of a discrete distribution in the next example.

In the infinite discrete case, when X = {x1, . . . , xn, . . .}, for-
mula (5.1.1) is replaced by

I(ξ) =
∞∑
k=1

p2(xk, ξ). (5.1.4)

only if the series
∑∞

k=1 p
2(xk, ξ) is convergent for any x ∈ X and

ξ ∈ E.

In the next example the concept of randomness refers to the lack
of predictability of the outcomes of a tossed coin.

Example 5.1.3 The informational energy increases when the ran-
domness decreases.

We shall give the explanation on a very particular case. A similar pro-
cedure can be carried over in the general case. Consider an experiment
with two random outcomes x1 and x2. The maximum randomness is
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achieved when none of the outcomes is more likely to occur. This cor-
responds to equal probabilities P (x1) = p1 =

1
2 and P (x2) = p2 =

1
2 .

This can be thought of as flipping a fair coin. If the coin is weighted,
then the randomness decreases, because the side with less weight will
be more likely to land up. In the case of a weighted coin consider
the new probabilities p′1 = p1 − x and p′2 = p2 + x where x is a
number between 0 and 1

2 . The probability distribution table in both
situations is

T H

p 1
2

1
2

p′ 1
2 − x 1

2 + x

The informational energy for the fair coin is I = p21 + p22 = 1
2 . The

informational energy for the weighted coin can be written as

I ′ = p′21 + p′22 =
(1
2
− x

)2
+
(1
2
+ x

)2

=
1

4
+ x2 − x+

1

4
+ x2 + x

=
1

2
+ 2x2 >

1

2
= I.

Therefore I ′ > I, i.e., the informational energy for the weighted coin
is larger than for the fair coin.

Both informational energy and entropy are measures of random-
ness. However, it is worthy to note that the two notions of random-
ness captured by the entropy and informational energy are distinct.
Otherwise, it would suffice to study only one of the concepts. It is
easy to construct examples of distributions with the same entropy
and distinct informational energy, and vice versa. Therefore, study-
ing both energy and entropy provides a more complete picture of the
randomness of a distribution.

The following property deals with the bounds of the informational
energy in the discrete finite case.

Proposition 5.1.2 The informational energy of a system with n
elementary outcomes is bounded above by 1 and below by 1/n, i.e.,

1

n
≤ I ≤ 1.

The minimum of the informational energy is reached in the case when
all the outcomes have the same probability. This minimum is 1/n.
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Proof: The upper bound comes from the estimation

1 = (p1 + . . . + pn)
2 =

n∑
i=1

p2i

︸ ︷︷ ︸
=I

+
n∑
i =j

pipj ≥ I.

For the lower bound part, we shall assume that x1, . . . , xn are the
outcomes of an experiment and p1 = P (x1), . . . , pn = P (xn) are the
associated probabilities. Since pi is not necessarily equal to 1/n, it
makes sense to consider the differences

xi = pi −
1

n
, i = 1, . . . , n.

Since
∑n

i=1 pi = 1 we obtain

n∑
i=1

xi = (p1 + . . . + pn︸ ︷︷ ︸
=1

)− (
1

n
+ . . .

1

n︸ ︷︷ ︸
n times

) = 1− 1 = 0.

Using the definition of the informational energy yields

I = p21 + . . . + p2n

=
( 1
n
+ x1

)2
+ . . . +

( 1
n
+ x1

)2

=
( 1

n2
+ 2

1

n
x1 + x21

)2
+ . . .+

( 1

n2
+ 2

1

n
xn + x2n

)2

=
( 1

n2
+ . . .+

1

n2︸ ︷︷ ︸
=1/n

)
+

2

n

(
x1 + . . .+ xn︸ ︷︷ ︸

=0

)
+ (x21 + . . . + x2n︸ ︷︷ ︸)

=
1

n
+ (x21 + . . .+ x2n︸ ︷︷ ︸

≥0

) ≥ 1

n
.

The equality in the above inequality is reached when all xi = 0. In

this case pi =
1

n
+ xi =

1

n
and the informational energy reaches the

minimum value I = 1
n . Here we also notice that while for pi =

1
n the

informational energy reaches the minimum, the entropy H reaches
its maximum.

In the following we shall present an alternate proof of the fact that
the minimum of the informational energy is realized for the uniform
distribution. Let the distribution q = {qi}, qi = pi + si, i = 1, . . . , n



5.1. Definitions and Examples 139

be the perturbed distribution of p = {pi}. Since
∑n

i=1 si =
∑n

i=1 qi−∑n
i=1 pi = 0, then sn = −

∑n−1
i=1 si, and hence the informational en-

ergies

I(p) =

n−1∑
i=1

p2i + p2n,

I(q) =

n−1∑
i=1

(pi + si)
2 + (pn + sn)

2

=

n−1∑
i=1

(pi + si)
2 + (pn −

n−1∑
i=1

si)
2

are functions of the n− 1 variables s1, . . . , sn−1. The distribution p is
a minimum point for the informational energy if

∂I

∂si

∣∣∣
s1=...=sn−1=0

= 0, ∀i = 1, . . . , n− 1,

and the Hessian ∂2I
∂si∂sj

∣∣∣
s1=...=sn−1=0

is positive definite. We have

∂I

∂si
= 2(pi + si)−

(
pn −

n−1∑
k=1

sk

)
=⇒

∂I

∂si

∣∣∣
s1=...=sn−1=0

= 0 ⇐⇒ pi = pn, i = 1, . . . , n− 1.

Hence the uniform distribution is a critical point for the informational
energy. The Hessian is given by the following (n−1)× (n−1) matrix

Hn =

⎛
⎜⎜⎜⎝

4 2 . . . 2
2 4 . . . 2
...

...
. . .

...
2 2 . . . 4

⎞
⎟⎟⎟⎠ = 2

⎛
⎜⎜⎜⎝

2 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2

⎞
⎟⎟⎟⎠ = 2Dn.

To compute detDn, we add all the rows to the first row, we extract
the factor n, and then subtract the first row from all the other rows
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to obtain an upper diagonal determinant with the entries on the main
diagonal equal to 1. We have explicitly

detDn = det

⎛
⎜⎜⎜⎝

n n . . . n
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2

⎞
⎟⎟⎟⎠ = n det

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2

⎞
⎟⎟⎟⎠

= n det

⎛
⎜⎜⎜⎝

1 1 . . . 1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ = n, ∀n ≥ 2.

Consequently, the Hessian matrix Hn is non-degenerate. Moreover,
the Hessian is positive definite. It follows that the uniform distribu-
tion realizes the minimum for the informational energy.

The next properties deal with bounds for the informational energy
functional in the case of continuous distributions p : [a, b] → [0,∞).

Proposition 5.1.3 The informational energy functional, defined on
continuous distributions on [a, b], satisfies the inequality

1

b− a
≤ I(p).

The minimum of the informational energy functional is reached in
the case of the uniform distribution p(x) = 1/(b− a).

Proof: If we let q = 1 in the following Cauchy’s integral inequality

∫ b

a
|p(x)q(x)| dx ≤

(∫ b

a
p2(x) dx

)1/2 ( ∫ b

a
q2(x) dx

)1/2
,

we find

1 =

∫ b

a
p(x) dx ≤

(∫ b

a
p2(x) dx

)1/2
(b− a)1/2,

which leads to the desired inequality after dividing by (b− a)1/2 and
taking the square. The equality is reached when the functions p(x)
and q(x) = 1 are proportional, i.e., when p(x) is constant. This cor-
responds to the case of a uniform distribution.
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As an alternate proof, we can apply Jensen integral inequality for
the convex function g(u) = u2:

g
( 1

b− a

∫ b

a
p(x) dx

)
≤ 1

b− a

∫ b

a
g
(
p(x)

)
dx⇐⇒

1

(b− a)2
≤ 1

b− a

∫ b

a
p2(x) dx⇐⇒

1

b− a
≤

∫ b

a
p2(x) dx⇐⇒

1

b− a
≤ I(p).

Again, the equality is reached for a constant function p, which corre-
sponds to the uniform distribution.

Among all distributions defined on [a, b], the uniform distribu-
tion is the one with the smallest informational energy. Hence the
informational energy provides a measure of closeness of an arbitrary
distribution to the uniform one.

We shall compute the informational energy for a few particular
cases.

Example 5.1.4 (Poisson Distribution) Since in the case of the
Poisson distribution the statistical manifold is one-dimensional, the
informational energy depends only on the variable ξ:

I(ξ) =
∑
n≥0

p2(n, ξ) = e−2ξ
∑
n≥0

ξ2n

(n!)2
= e−2ξI0(2ξ),

where

I0(z) =
∑
n≥0

(z/2)2n

(n!)2

is the modified Bessel function of order 0. We note the informational
energy decreases to zero as ξ → ∞, and I(ξ) < I(0) = 1, for any
ξ > 0, see Fig. 5.2.

Example 5.1.5 (Normal Distribution) In this case the informa-
tional energy can be computed explicitly

I(μ, σ) =

∫

R

p(x;μ, σ)2 dx =
1

2πσ2

∫

R

e−
(x−μ)2

σ2 dx

=
1

2πσ2
· σ

√
π =

1

2σ
√
π
.
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Figure 5.2: The graph of x→ e−xI0(x)

The function I(μ, σ) does not depend on the mean μ, and it is a
decreasing function of σ.

Example 5.1.6 (Exponential Distribution) This is another case
when the informational energy can be worked out explicitly

I(ξ) =

∫ ∞

0
p(x, ξ)2 dx =

∫ ∞

0
ξ2e−2ξx dx =

ξ

2
,

which is increasing in terms of ξ.

Example 5.1.7 (Gamma Distribution) The model is defined by
the family of distributions

p
ξ
(x) = p

α,β
(x) =

1

βαΓ(α)
xα−1e−x/β,

with parameters ξ = (ξ1, ξ2) = (α, β) ∈ (0,∞) × (0,∞) and sample
space X = (0,∞). Assuming α > 1/2, with the substitution a =
2α− 1 and b = β/2, the informational energy becomes

I(ξ) =

∫ ∞

0
p2
α,β

(x) dx =

∫ ∞

0

1

β2αΓ(α)2
x2α−2 e−2x/β dx

=
1

β2αΓ(α)2
baΓ(a)

∫ ∞

0

1

baΓ(a)
xa−1e−

x
b dx
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=
1

β2αΓ(α)2
baΓ(a)

∫ ∞

0
p
a,b
(x) dx

=
1

β2αΓ(α)2
· β

2α−1

22α−1
Γ(2α − 1)

=
1

β 22α−1
· Γ(2α)

2α− 1
· 1

Γ(α)2
.

The case α ≤ 1/2 is eliminated by the divergence of the improper
integral. Using the Legendre’s duplication formula

Γ(2α) =
22α−1

√
π

Γ(α)Γ(α + 1/2), (5.1.5)

the computation can be continued as

I(ξ) =
1

β(2α − 1)
√
π
· Γ(α+ 1/2)

Γ(α)
=

1

β(2α− 1)
· Γ(α+ 1/2)

Γ(1/2)Γ(α)

=
1

β(2α − 1)

1

B(α, 1/2)
,

where

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt

is the beta function, and we used that Γ(1/2) =
√
π. Hence

I(α, β) =
1

β(2α− 1)B(α, 1/2)
.

Example 5.1.8 (Beta Distribution) The density of a beta distri-
bution on the sample space X = [0, 1] is

pa,b(x) =
1

B(a, b)
xa−1(1− x)b−1,

with a, b > 0. Let α = 2a − 1 > 0 and β = 2b − 1 > 0. Then the
informational energy is

I(a, b) =

∫ 1

0
p2a,b(x) dx =

1

B2(a, b)

∫ 1

0
x2a−1(1− x)2b−2 dx

=
1

B2(a, b)

∫ 1

0
xα−1(1− x)β−1 dx

=
B(α, β)

B2(a, b)
=
B(2a− 1, 2b− 1)

B2(a, b)
.
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Using the expression of beta function in terms of gamma functions
and the Legendre’s duplication formula (5.1.5), the energy can be
also written as

I(a, b) =
1

(2a− 1)(2b − 1)
· Γ(2a)Γ(2b)

Γ(2a+ 2b− 2)
· Γ(a+ b)2

Γ(a)2Γ(b)2

=
(a+ b− 1/2)(a + b− 1)

(a− 1/2)(b − 1/2)
· Γ(2a)Γ(2b)
Γ(2a+ 2b)

· Γ(a+ b)2

Γ(a)2Γ(b)2

=
(a+ b− 1/2)(a + b− 1)

(a− 1/2)(b − 1/2)
· Γ(a+ 1/2)Γ(b + 1/2)Γ(a + b)

2
√
πΓ(a+ b+ 1/2)

.

Example 5.1.9 (Lognormal Distribution) Consider the distribu-
tion

pμ,σ(x) =
1√

2π σx
e−

(lnx−μ)2

2σ2

with sample space X = (0,∞) and positive parameters μ and σ.
Using the substitution y = lnx− μ yields

I(μ, σ) =

∫ ∞

0
p2μ,σ(x) dx

=
1

2πσ2

∫ ∞

0

1

x2
e−

(lnx−μ)2

σ2 dx

=
1

2πσ2

∫ ∞

−∞
e−

y2

σ2−y−μ dy

=
1

2σ
√
π
e

σ2

4
−μ,

where we used that

∫

R

e−ay
2+by+c dy =

√
π

a
e

b2

4a
+c.

Example 5.1.10 (Dirac Distribution) Consider the family of den-
sity functions

ϕε(x) =

{
1/ε, if x0 − ε/2 < x < x0 + ε/2
0, otherwise.

Since the Dirac distribution centered at x0 can be written as the
limit, see Example 3.2.7

δ(x − x0) = lim
ε↘0

ϕε(x), a < x < b,
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p1

p2

G1

G2

2I(p1)

2I(p2)
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0.8

1.0

Figure 5.3: The distribution with the lower centroid has the smaller
informational energy

then by the Dominated Convergence Theorem

I(δ(x − x0)) = lim
ε↘0

I(ϕε) = lim
ε↘0

∫ x0+ε/2

x0−ε/2

1

ε2
dx = lim

ε↘0

1

ε
= +∞.

Hence the Dirac distribution δ(x−x0) has infinite information energy.

5.2 Informational Energy and Constraints

Consider a density function p(x) defined on the interval [a, b]. The
coordinates of the center of mass, G, of the subgraph region

{(x, y); y ≤ p(x), a ≤ x ≤ b}

are given by the well-known formulas

xG =

∫ b

a
xp(x) dx, yG =

1

2

∫ b

a
p2(x) dx.

It follows that xG = μ and yG = 1
2I(p). Hence the informational

energy measures the height of the center of mass associated with the
subgraph of the density function. On the other side, the energy is
more or less insensitive to the changes of the mean.
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Since the informational energy measures the y-coordinate of the
centroid, it follows that the distribution of a statistical model S =
{pξ} with the smallest informational energy corresponds to the most
“stable” subgraph (here “stable” has a gravitational connotation).
In Fig. 5.3 there are represented two densities, p1 and p2. Since the
centroid G2 is lower than G1, it follows that the energy of p2 is smaller
than the energy p1.

The next result deals with the case when we consider a constraint
on the mean. If the mean is fixed, we are looking for the distribution
with the subgraph centroid, G, having a fixed x-coordinate and the
lowest possible y-coordinate.

Proposition 5.2.1 Let μ ∈ (a, b). Among all probability densities
defined on (a, b) with given mean μ, there is only one distribution
with the smallest informational energy. This has the form

p(x) = λ1x+ λ2,

with

λ1 =
12
(
μ− a+b

2

)

(b− a)3
(5.2.6)

λ2 =
12
(
μ(a+ b)− (a2 − ab+ b2)/3

)

(b− a)3
· (5.2.7)

Proof: Following a constrained optimization problem, we need to
minimize the objective functional

1

2
I(p) =

1

2

∫ b

a
p2(x)dx,

subject to constraints
∫ b

a
xp(x)dx = μ,

∫ b

a
p(x) dx = 1. (5.2.8)

This leads to the following optimization problem with constraints

p→
∫ b

a
p2(x)dx− 2λ1

(∫ b

a
xp(x)dx− μ

)
− 2λ2

(∫ b

a
p(x)dx− 1

)
,

where λi denote the Lagrange multipliers. The associated Lagrangian
is

L(p) = p2(x)− 2λ1xp− 2λ2p.



5.4. Onicescu’s Correlation Coefficient 147

The critical point condition ∂L
∂p = 0 provides the linear density

p(x) = λ1x+ λ2.

The parameters λ1, λ2 are determined from the constraints (5.2.8)
and are given by formulas (5.2.6)–(5.2.7).

5.3 Product of Statistical Models

Let S × U be a product of statistical manifolds, see Example 1.3.9,
and consider f ∈ S × U , with f(x, y) = p(x)q(y), p ∈ S, q ∈ U . Then

IS×U(f) =

∫∫

X×Y
p2(x)q2(y) dxdy

=

∫

X
p2(x) dx

∫

Y
p2(y) dy

= IS(p)IP (q),

i.e., the informational energy of an element of S × U is the product
of the informational energies of the projections on S and U .

5.4 Onicescu’s Correlation Coefficient

Given two distributions p, q ∈ S, the correlation coefficient introduced
by Onicescu is

R(p, q) =

∫
X p(x)q(x) dx√

I(p)I(q)
,

if the distributions are continuous, and

R(p, q) =

∑
k p(xk)q(xk)√
I(p)I(q)

,

if the distributions are discrete.

Proposition 5.4.1 The correlation coefficient has the following pro-
perties:

(i) R(p, q) = R(q, p);

(ii) R(p, q) ≤ 1, with identity if p = q.
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Proof:

(i) It follows from the symmetry of the definition relations.

(ii) For the continuous case we use the Cauchy’s integral inequality

( ∫
p(x)q(x) dx

)2
≤
∫
p2(x) dx

∫
q2(x) dx,

while the discrete distributions use the inequality

( n∑
k=1

p(xk)q(xk)
)2

≤
n∑
k=1

p2(xk)

n∑
k=1

q2(xk).

The identity in both inequalities is reached when the distribu-
tions are proportional, i.e., p(x) = λq(x). This easily implies
λ = 1.

5.5 First and Second Variation

The following result deals with the first variation of the informational
energy on a statistical manifold S={pξ=p(x; ξ)|ξ=(ξ1, . . . , ξn)∈E}.

Proposition 5.5.1 A point ξ = (ξ1, . . . , ξn) is a critical point for
the integral function I if and only if

∫

X
p(x, ξ) ∂ξip(x, ξ) dx = 0. (5.5.9)

In the discrete case this becomes
∑
k

p(xk, ξ) ∂ξip(xk, ξ) = 0.

Proof: The critical points ξ ∈ E for the energy I satisfy the equation
∂ξiI(ξ) = 0. Then from

∂ξiI(ξ) = ∂ξi

∫
p2(x, ξ) dx = 2

∫
p(x, ξ) ∂ξip(x, ξ) dx

we obtain the desired conclusion.

We note that the first variation formula (5.5.9) can be also written
as an expectation

Eξ[∂ξip] = 0, ∀i = 1, . . . , n. (5.5.10)
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Since {∂ξ1p, . . . , ∂ξnp} is a basis of the tangent space TpS, then any
vector X ∈ TpS can be written as a linear combination

X = αi ∂ξip, αi ∈ R.

Using (5.5.10) yields

Eξ[X] = Eξ
[
αi∂ξip

]
= αiEξ

[
∂ξip

]
= 0.

We arrive at the following reformulation of the above result:

Proposition 5.5.2 A critical point for the informational energy is
a point ξ such that

Eξ[X] = 0, ∀X ∈ TpξS.

This means that at critical points of I(ξ) the expectation vanishes in
all directions.

The Hessian coefficients of the informational energy are given by

∂ξjξiI(ξ) = 2∂ξj

∫

X
p(x, ξ) ∂ξip(x, ξ) dx

= 2

∫

X

(
∂ξjp(x, ξ) ∂ξip(x, ξ) + p(x, ξ) ∂ξjξip

)
dx,

which in the discrete case takes the following form

∂ξiξiI(ξ) = 2
∑
k

(
∂ξjp(xk) ∂ξip(x

k) + p(xk) ∂ξiξjp(xk)
)
.

In the following we shall apply the first and second variations to
the discrete finite distribution, see Example 5.1.1. The informational
energy is given by formula (5.1.3). We have

∂I

∂ξj
(ξ) = 2ξj +

∂

∂ξj
(1− ξ1 − . . .− ξn−1)2

= 2ξj − 2(1− ξ1 − . . .− ξn−1)

= 2(ξj − ξn).

Hence
∂I

∂ξj
(ξ) = 0 if and only if ξj = ξn, for all j = 1, . . . , n. The

Hessian coefficients are given by

∂ξiξjI(ξ) = 2

n−1∑
k=1

(
∂ξj (ξk)∂ξi(ξk) + ξk ∂ξiξj (ξk)︸ ︷︷ ︸

=0

)

= 2

n−1∑
k=1

(δjkδik) = 2In−1,



150 Chapter 5. Informational Energy

which is positive definite everywhere. Hence

ξ1 = . . . = ξn−1 = ξn =
1

n

is a minimum point for the informational energy I(ξ). We thus
recovered part of Proposition 5.1.2.

5.6 Informational Energy Minimizing Curves

Given two distributions p0 and p1 on a statistical manifold S with
finite dimensional parameter space, we are interested in finding a
smooth curve on S joining the distributions and having the smallest
cumulative informational energy along the curve. More precisely, we
are looking for a curve γ : [0, 1] −→ S with γ(0) = p0 and γ(1) = p1,
which minimizes the action integral

ξ →
∫ 1

0
I(ξ(u)) ds =

∫ 1

0
I(ξ(u))

√
gij(ξ(u))ξ̇i(u)ξ̇j(u) du

with the square of arc-element ds2 = gij(ξ)dξ
idξj, where the Fisher–

Riemann metric is denoted by gij(ξ). There are a couple of examples
where we can describe the curves of minimum information energy
explicitly.

Example 5.6.1 (Exponential Distribution) From Examples
1.6.2 and 5.1.6 the information energy and the Fisher information
metric are

I(ξ) =
ξ

2
, g11(ξ) =

1

ξ2
.

The action becomes

ξ →
∫ 1

0
I(ξ(u)) ds =

∫ 1

0

1

2
ξ(u)

√
1

ξ2
ξ̇2(u) du

=
1

2

∫ 1

0
|ξ̇(u)| du,

which is half the length of the curve ξ(u). The minimum is reached
for the linear function ξ(u) = au+ b, with a, b constants.

Example 5.6.2 (Normal Distribution) Partial explicit computa-
tions can be carried out in the case of normal distribution. In this
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case ξ1 = μ ∈ R, ξ2 = σ > 0. Since the informational energy is given

by I(μ, σ) =
1

2σ
√
π
, see Example 5.1.5, and the Fisher information

matrix is

gij =

(
1
σ2

0
0 2

σ2

)
,

the action that needs to be minimized becomes

(μ, σ) →
∫ 1

0

1

2σ2(u)
√
π

√
μ̇2(u) + 2σ̇2(u) du

=

∫ 1

0

1√
πν2(u)

√
μ̇2(u) + ν̇2(u) du,

where we substituted ν = σ
√
2. The minimum informational curves

satisfy the Euler–Lagrange equations with the Lagrangian

L(μ, μ̇, ν, ν̇) =
1

ν2

√
μ̇2 + ν̇2.

Since
∂L

∂μ
= 0, there is a constant C such that

∂L

∂μ̇
= C, or

Cν2
√
μ̇2 + μ̇2 = μ̇.

Using this relation, we obtain the following relations

∂L

∂ν̇
=
Cν̇

μ̇

∂L

∂ν
= − 2

ν3

√
μ̇2 + ν̇2 = − 2μ̇

Cν5
.

Hence, the Euler–Lagrange equation
d

du

(∂L
∂ν̇

)
=
∂L

∂ν
becomes

C2
( ν̇
μ̇

)·
+

2μ̇

ν5
= 0.

In the case C = 0 we obtain μ = constant, which corresponds to
vertical lines.
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Figure 5.4: The curve γ(s) = p
ξ(s)

on the statistical manifold S

5.7 The Laws of Thermodynamics

This section deals with an informational version of the second and
third law of Thermodynamics.

Thermodynamic Processes. We consider a process that is de-
scribed at each instance of time by a probability distribution. This
state is specific, for instance, to the quantum particles that are char-
acterized by a wave function, which is a probability density. The time
evolution of the state is a curve, called a Thermodynamic process. In
the case of statistical manifolds a Thermodynamic process is a regular
curve on the statistical model S = {pξ; ξ ∈ E}. This is a differentiable
mapping of an interval (a, b) into S

(a, b) � s −→ p
ξ(s)

∈ S,
where (a, b) � s −→ ξ(s) is a smooth curve in the parameters space
E, see Fig. 5.4.
Let γ(s) = p

ξ(s)
be a process. For each s ∈ (a, b), the curve γ(s) is a

probability distribution on X . The velocity along γ(s) is

γ̇(s) =
d

ds
p
ξ(s)

=
∑
i

∂ξipξ(s)
ξ̇i(s). (5.7.11)

We note that∫

X
γ̇(s) dx =

∫

X

d

ds
p
ξ(s)

(x) dx =
d

ds

∫

X
p
ξ(s)

(x) dx = 0. (5.7.12)

The parameter s can be regarded as time, flowing from lower to
larger values. Let p

ξ0
∈ S be fixed, and consider a curve γ starting

at p
ξ0
, i.e., γ(s) = p

ξ(s)
, γ(0) = p

ξ(0)
= p

ξ0
.
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The Second Law of Thermodynamics. Let H(p
ξ0
) be the en-

tropy at p
ξ0
. The second law of Thermodynamics states that the en-

tropy of an isolated system tends to increase over time. In our case,
the entropy tends to increase along the curve γ if

H(p
ξ0
) < H(p

ξ(s)
)

for s > 0. This means the derivative to the right is positive

lim
s↘0

H(p
ξ(s)

)−H(p
ξ0
)

s− 0
> 0.

This condition can be stated in a couple of ways.

Proposition 5.7.1 The entropy increases along the curve γ(s) =
p
ξ(s)

if either one of the following conditions is satisfied:

(i)
∫
X γ̇(s)(x) ln γ(s)(x) dx < 0.

(ii) D
KL

(
γ(s)||γ(s+ ε)

)
≥
∫
X (γ(s+ ε)−γ(s)) ln γ(s+ ε)(x) dx,

for ε > 0 sufficiently small, where D
KL

stands for the Kullback–
Leibler relative entropy.

Proof:

(i) Differentiating in the formula of entropy, and using (5.7.12), we
have

0 <
d

ds
H
(
p
ξ(s)

)
= − d

ds

∫

X
p
ξ(s)

(x) ln p
ξ(s)

(x) dx

= −
∫

X

( d
ds
p
ξ(s)

(x) ln p
ξ(s)

(x)+
d

ds
p
ξ(s)

(x)
)
dx

= −
∫

X

d

ds
p
ξ(s)

(x) ln p
ξ(s)

(x) dx

= −
∫

X

d

ds
p
ξ(s)

(x) ln p
ξ(s)

(x) dx

= −
∫

X
γ̇(s)(x) ln γ(s)(x) dx,

which leads to the desired inequality.

(ii) We have the following sequence of equivalences:

H
(
p
ξ(s)

)
≤ H

(
p
ξ(s+ε)

)

⇐⇒
∫
p
ξ(s)

ln p
ξ(s)

≥
∫
p
ξ(s+ε)

ln p
ξ(s+ε)



154 Chapter 5. Informational Energy

2 4 4 0 2 4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

0.6

24 02

4 2 0 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.5

0.6

Figure 5.5: The change in the shape of the probability density of a
normal distribution as the entropy increases

⇐⇒ D
KL

(
p
ξ(s)

||p
ξ(s+ε)

)
≥

∫ (
p
ξ(s+ε)

− p
ξ(s)

)
ln p

ξ(s+ε)

⇐⇒ D
KL

(
γ(s)||γ(s + ε)

)
≥

∫

X
(γ(s+ ε)− γ(s))

ln γ(s+ ε)(x) dx.

Example 5.7.1 (The Normal Distribution) The entropy of a
normal distribution increases over time as the standard deviation σ
increases, see Fig. 5.5. When the times gets large, then σ → ∞, and
hence, the probability density tends to zero.

Example 5.7.2 (The Exponential Distribution) The entropy
of an exponential distribution, 1 − ln ξ, tends to infinity as ξ ↘ 0,
i.e., when the mean 1

ξ → ∞. In this case the density function tends
to zero, see Fig. 5.6.

The Third Law of Thermodynamics. This law says that the
entropy and the kinetic energy of an isolated Thermodynamical sys-
tem have opposite variations. More precisely, this means that if the
entropy of a system increases during a Thermodynamic process, then
its kinetic energy tends to decrease during the same process. Here the
role of kinetic energy is played by the informational energy.
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Figure 5.6: The shape of the probability density of an exponential
distribution as the entropy increases

The opposite variations of the entropy and informational energy
along the curve γ(s) = p

ξ(s)
can be written in our case as

(
H(p

ξ(s+ε)
)−H(p

ξ(s)
)
)(
I(p

ξ(s+ε)
)− I(p

ξ(s)
)
)
< 0,

for ε > 0. The instantaneous relation

d

ds
H(p

ξ(s)
) · d
ds
I(p

ξ(s)
) < 0 (5.7.13)

can be written as
∫

d

ds
p
ξ(s)

(x) ln p
ξ(s)

(x) dx ·
∫

d

ds
p
ξ(s)

(x) p
ξ(s)

(x) dx > 0. (5.7.14)

Definition 5.7.2 A statistical manifold S = {p
ξ
; ξ ∈ E} satisfies the

third law of Thermodynamics if the inequality (5.7.14) is satisfied for
all curves on the model.

Next we shall encounter a few examples of statistical manifolds
that satisfy the third law of Thermodynamics.

Example 5.7.3 (Exponential Distribution) In this case the sta-
tistical manifold S = {p

ξ
; ξ ∈ E} is given by p

ξ
= ξe−ξx, E = (0,∞),

and X = (0,∞). Using Examples 3.2.3 and 5.1.6 we have
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d

ds
H(p

ξ(s)
) · d
ds
I(p

ξ(s)
) =

d

ds

(
1− ln ξ(s)

) d
ds

ξ(s)

2
= − ξ̇(s)

2

2ξ(s)
< 0,

which is the condition (5.7.13).

Example 5.7.4 (Normal Distribution) The statistical manifold

is parametrized by p
ξ
= 1√

2πσ
e−

(x−μ)2

2σ2 , with ξ = (μ, σ) ∈ R× (0,∞).

Using Examples 3.2.1 and 5.1.5, we have

d

ds
H(p

ξ(s)
) · d
ds
I(p

ξ(s)
)=

d

ds
ln
(
σ(s)

√
2πe

) d
ds

1

2σ(s)
√
π
=− σ̇(s)2

σ(s)2
< 0,

which recovers condition (5.7.13).

The previous two examples show that any process curve γ(s) satisfies
the third law of Thermodynamics. In general, on an arbitrary sta-
tistical manifold, there might be some processes for which this does
not hold. The processes for which the third law of Thermodynamics
holds are some distinguished curves on the statistical model, corre-
sponding to some natural evolution processes. It is interesting to note
that in the case of exponential and normal distributions, any curve
is natural.

5.8 Uncertainty Relations

In Quantum Mechanics there is a tradeoff between the accuracy of
measuring the position and the velocity of a particle. This section
deals with a similar tradeoff between the entropy and the informa-
tional energy of a system. This will be shown by considering lower
bounds for the sum between the aforementioned measures.

Lemma 5.8.1 For any number p > 0 we have

1 + ln p ≤ p,

with equality if and only if p = 1.

Proof: Let f(p) = 1 + ln p − p. Then f(0+) = −∞, f(∞) = −∞,
and f(1) = 0. Since f ′(p) = 1−p

p , then f is increasing on (0, 1) and
decreasing on (1,∞). Then p = 1 is a maximum point and hence
f(p) ≤ f(1) = 0, for all p > 0, which is equivalent with the desired
inequality.
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Figure 5.7: The inequality p ln p ≤ p2 − p for p > 0

Theorem 5.8.2 Let p be a discrete or continuous distribution. Then

H(p) + I(p) ≥ 1. (5.8.15)

Proof: We shall do the proof in the following three distinct cases:

The discrete case: Let X = {x1, . . . , xn}, with n finite or infinite, and
pi = P (xi). From Lemma 5.8.1 we have 1 + ln pi ≤ pi, and hence
pi ln pi ≤ p2i − pi, for i = 1, . . . , n. Summing over i yields

−H(p) =

n∑
i=1

pi ln pi ≤
n∑
i=1

p2i −
n∑
i=1

pi

= I(p)− 1,

which leads to (5.8.15).

The continuous case: From Lemma 5.8.1, we have 1+ ln p(x) ≤ p(x),
for any x ∈ X . Then p(x) ln p(x) ≤ p2(x)− p(x), see Fig. 5.7.
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Integrating yields

−H(p) =

∫

X
p(x) ln p(x) dx ≤

∫

X
p2(x) dx−

∫

X
p(x) dx

= I(p)− 1,

which yields relation (5.8.15).

Corollary 5.8.3 In the case of a discrete distribution, the entropy
is always non-negative.

Proof: Let p be a discrete probability distribution. From Proposi-
tion 5.1.2 we have I(p) ≤ 1. Using (5.8.15), we get

H(p) ≥ 1− I(p) ≥ 0.

The next consequence states that the entropy is positive if the
informational energy is small.

Corollary 5.8.4 If p is a continuous distribution with an informa-
tional energy I(p) ∈ (0, 1), then H(p) > 0.

Next we shall verify relation (5.8.15) in two particular cases.

Example 5.8.1 Consider the case of the exponential distribution
p(x, ξ) = ξe−ξx, with x ∈ X = (0,∞) and ξ ∈ E = (0,∞). By
Examples 3.2.3 and 5.1.6, the entropy and the informational energy
are, respectively, given by

H = 1− ln ξ, I =
ξ

2
.

Making use of the well-known inequality
lnx

x
≤ 1

e
for x > 0, and

using e > 2, yields

lnx ≤ x

e
<
x

2
.

This implies

H + I = 1− ln ξ +
ξ

2
≥ 1.

Example 5.8.2 Consider the case of the normal distribution with
mean μ and variance σ2. From Examples 3.2.1 and 5.1.5 the entropy
and the informational energy are

H = ln(σ
√
2πe), I =

1

2σ
√
π
.
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Denoting by u =
1

2σ
√
π
, we have

H + I = ln
( 1
u

√
e

2

)
+ u

= u− lnu+
1

2
ln
e

2
> 1 +

1

2
ln
e

2
> 1,

since e > 2 and u ≥ 1 + lnu for u > 0.

The next concept is an analog of the kinetic energy. Define the
adjusted informational energy of a distribution by

J(p) =
1

2
I(p) =

1

2

∫

X
p2(x) dx.

The next result shows that the sum between the entropy and the
adjusted informational energy has a positive lower bound.

Proposition 5.8.5 For any distribution p, we find

H(p) + J(p) ≥ 1− ln 2.

Proof: Using that the function f(u) = 1
2u − lnu has a minimum

at u = 2 and the minimum value is f(2) = 1 − ln 2, we have the
estimation

H(p) + J(p) = −
∫
p(x) ln p(x) dx+

1

2

∫
p2(x) dx

=

∫
p(x)

(1
2
p(x)− ln p(x)

)
dx

≥ (1− ln 2)

∫
p(x) dx = 1− ln 2.

Theorem 5.8.6 In the case of a discrete distribution, we have

e−H(p1,...,pn) ≤ I(p1, . . . , pn).

Proof: If in the Jensen’s inequality, with f convex,

f
( n∑
i=1

pixi

)
≤

n∑
i=1

pif(xi),

we let f(u) = eu, xi = ln pi, then we have

e−H = eΣpi ln pi <
∑
i

pie
xi =

∑
i

p2i = I.
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Remark 5.8.7 Theorem 5.8.2 provides a lower bound for the en-
tropy in terms of informational energy as

H(p1, . . . , pn) > 1− I(p1, . . . , pn) > 0.

However, Theorem 5.8.6 provides the better lower bound

H(p1, . . . , pn) > − ln I(p1, . . . , pn) > 1− I(p1, . . . , pn) > 0.

5.9 A Functional Extremum

We end this chapter with a result regarding the minimum of an inte-
gral action depending on a probability density. The next result gen-
eralizes several inequalities regarding the entropy and informational
energy.

Proposition 5.9.1 Let F be a smooth convex function (F ′′ > 0) on
the interval [a, b]. Then the functional

p �−→
∫ b

a
F
(
p(x)

)
dx

has a minimum that is reached only when p is the uniform distribution

on [a, b], and this minimum is equal to (b− a)F
( 1

b− a

)
.

Proof: Since F is convex, Jensen’s integral inequality can be writ-
ten as

F
( 1

b− a

∫ b

a
p(x) dx

)
≤ 1

b− a

∫ b

a
F
(
p(x)

)
dx,

which after using that

∫ b

a
p(x)dx = 1 becomes

(b− a)F
( 1

b− a

)
≤
∫ b

a
F
(
p(x)

)
dx.

The expression in the left side does not depend on the distribution
p(x). Since the Jensen inequality becomes identity only in the case
when p(x) = constant, it follows that the right side of the aforemen-
tioned inequality reaches its minimum for the uniform distribution
on [a, b].
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Variant of proof: We can also show the above result by using the
method of Lagrange multipliers. Adding the constraint

∫ b
a p(x) dx −

1 = 0, the variational problem will apply now to the functional

p �−→
∫ b

a
F
(
x, p(x)

)
dx− λ

( ∫ b

a
p(x) dx− 1

)
=

∫ b

a
L
(
p(x)

)
dx,

where λ is a Lagrange multiplier and

L
(
p(x)

)
= F

(
p(x)

)
− λ

(
p(x)− 1

b− a

)

is the Lagrangian. In order to find the critical points of the aforemen-
tioned functional, we consider a smooth variation pε of the function
p, with p0 = p. Differentiating with respect to ε and equating to 0,
yields

0 =
d

dε

∫ b

a
L
(
p(x)

)
dx
∣∣∣
ε=0

=

∫ b

a

dL
dp

dpε
dε

(x) dx
∣∣∣
ε=0

=

∫ b

a

dL
dp

(p(x)) η(x) dx,

for any variation η(x) =
dpε(x)

dε

∣∣∣
ε=0

. Hence p satisfies the Euler–

Lagrange equation
dL
dp

(p(x)) = 0,

which becomes
F ′(p) = λ.

Since G(u) = F ′(u) is increasing, the equation G(p) = λ has the
unique solution p(x) = G−1(λ), which is a constant. Using the con-

straint

∫ b

a
p(x)dx = 1, it follows that p(x) =

1

b− a
, which is the

uniform distribution. The minimality follows from the sign of the
second derivative,

d2

dp2

∫ b

a
L(p(x)) dx =

∫ b

a
F ′′(p) > 0.

Corollary 5.9.2 The informational energy functional, on smooth
distributions over [a, b], satisfies

1

b− a
≤ I(p),

with the equality reached for the uniform distribution.
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Proof: Choose F (u) = u2 and apply Proposition 5.9.1.

Corollary 5.9.3 The entropy of a smooth distribution on [a, b] sa-
tisfies

H(p) ≤ ln(b− a),

with the identity reached for the uniform distribution.

Proof: Choose F (u) = u lnu. Since F ′′(u) = 1/u > 0 on (0,∞), the
function F is convex. Applying Proposition 5.9.1, we have

(b− a)F
( 1

b− a

)
≤

∫ b

a
p(x) ln p(x) dx⇐⇒

ln
1

b− a
≤ −H(p),

which is equivalent with the desired inequality.

5.10 Problems

5.1. Show that the informational energy is convex, i.e., for any two
densities p, q : X → R we have

I(αp + βq) ≤ αI(p) + βI(q),

∀α, β ∈ [0, 1], with α+ β = 1.

5.2. Find the Onicescu correlation coefficient R(pξ, pθ), where pξ(x)
= ξe−ξx and pθ(x) = θe−θx, x ≥ 0, ξ, θ > 0 are two exponential
distributions.

5.3. Consider two discrete distributions p, q : {x1, x2} → [0, 1], with
p(x1) = p(x2) = 1/2, q(x1) = ξ1, and q(x2) = ξ2, with ξ1 +
ξ2 = 1, ξi ≥ 0. Show that the Onicescu correlation coefficient

is R(p, q) =
1√

2((ξ1)2 + (ξ2)2)
·

5.4. Show that the density

p(x) =

{
1

2
√
x
, if 0 < x < 1

0, otherwise.

is discontinuous and has an infinite informational energy.
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5.5. Show that the following infinite mixture of Gaussians

p(x) =
6

π2

∞∑
k=1

1

k2
· k3√

2π
exp

(
− (x− k)2k6

2

)

is a continuous density satisfying p(k) ≥ 6k√
2ππ2

·

5.6. Construct two distributions such that:

(a) they have the same entropy and distinct informational en-
ergies.

(b) they have the same informational energy and distinct en-
tropies.

5.7. Can you find two distinct distributions with the same entropy
and informational energy?

5.8. Show the following inequality between the cross entropy, S(p, q),
of two densities and their informational energies

S(p, q) ≥ 1− I(p)1/2I(q)1/2.



Chapter 6

Maximum Entropy
Distributions

This chapter is dedicated to the study of entropy maximization under
moment constraints. We present results of entropy maximization under
constraints of mean, variance, or any N moments. The solution of
these variational problems belongs to the exponential family. How-
ever, explicit solutions exist only in a few particular cases. A dis-
tinguished role is played by the study of the Maxwell–Boltzmann
distribution.

6.1 Moment Constraints

Sometimes just looking at data we can infer the underlying distri-
bution. This may occur in simple distributions cases, like normal,
exponential, lognormal, etc. However, if the underlying distribution
is complicated, we cannot guess it, especially if it is not one of the
usual distributions. In this case we need to approximate the distribu-
tion by one of the well-known distributions, which matches well the
data and is the most unbiased. This problem can be formalized as in
the following:

Given the data x1, x2, . . . , xN , which is the most natural distribution
that fits the data?

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 165
DOI 10.1007/978-3-319-07779-6 6,
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If m̂1, m̂2, . . . , m̂k are the estimations of the first k moments from
data, we shall consider the distribution that matches the first k
moments to the data

m1 = m̂1, m2 = m̂2, . . . ,mk = m̂k,

and has a maximum ignorance for the rest of the moments. We shall
assume that the maximum ignorance distribution is the one with
the maximum entropy. The problem will be treated under its both
existence and uniqueness aspects, which usually depend on the sample
space structure.

We shall start the study with the general case of matching N
moments. The sample space X is considered to be either a finite or
an infinite interval.

6.2 Matching the First N Moments

This section deals with the general problem of finding the density
p of maximum entropy subject to the first N moment constraints.
Given the numbers m1,m2, . . . ,mN , we are interested in finding the
distribution p that maximizes the following entropy functional with
Lagrange multipliers

J(p) = −
∫

X
p(x) ln p(x) dx+

N∑
j=0

λj

( ∫

X
xjp(x) dx−mj

)
,

where we choose for convenience m0 = 1. Taking the functional
derivative with respect to p(x) and equating to zero yields

− ln p(x)− 1 +

N∑
j=0

λjx
j = 0.

This implies that the maximum entropy distribution belongs to the
following exponential family

p(x) = e−1+λ0+λ1x+λ2x2+...+λNx
N
= Ceλ1x+λ2x

2+...+λNx
N
, (6.2.1)

with the normalization constant given by C = e−1+λ0 , and Lagrange
multipliers λj determined from the moment constraints. However,
solving the constraint system for λj is a non-trivial job for N ≥ 2.
The explicit computation of the Lagrange multipliers in the cases
N = 0, 1, 2 will be covered in the next sections.
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Even if the uniqueness is a complicated problem for general N ,
the existence can be always proved for any number of constraints. We
shall deal with this problem in the following.

It suffices to show that among all distributions q(x) that satisfy
the moment constraints

∫

X
xjq(x) dx = mj , j = 0, 1, . . . , N,

with m0 = 1, the maximum entropy is realized for the distribu-
tion p(x) given by (6.2.1). The following computation uses the non-
negativity and non-degeneracy of the Kullback–Leibler relative en-
tropy, see Proposition 4.1.2, part (i)

DKL(q||p) ≥ 0

with DKL(q||p) = 0 if and only if q = p. Then we have

H(q) = −
∫

X
q ln q = −

∫

X
q ln

(q
p
p
)
= −

∫

X
q ln

q

p
−
∫

X
q ln p

= −DKL(q||p)−
∫
q ln p ≤ −

∫

X
q ln p

= −
∫

X
q(x)(−1 + λ0 + λ1x+ . . .+ λNx

N ) dx

= −(−1 + λ0 + λ1m1 + . . .+ λNmN )

= −
∫

X
p(x)(−1 + λ0 + λ1x+ . . .+ λNx

N ) dx

= −
∫

X
p ln p = H(p).

Therefore, for any density q satisfying the moment constraints, we
have H(q) ≤ H(p), with equality when q = p. Hence the density p
achieves the maximum entropy. This does not exclude the existence
of another maximum entropy distribution, different than p(x).

The fact that the maximizing entropy distribution is unique will
be proved in the next sections for the particular case N ≤ 2. This
will be done by showing the uniqueness of the Lagrange multipliers
λj satisfying the given constraints.
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6.3 Case N = 0: Constraint-Free Distribution

Consider a random variable for which we have absolutely no informa-
tion on its probability distribution. Then the best one can do in this
case is to consider the underlying distribution to be the uniform dis-
tribution. The reason for this choice is that this distribution achieves
the maximum entropy. The result in this case is given in the following:

Proposition 6.3.1 Among all distributions defined on the finite in-
terval (a, b), the one with the largest entropy is the uniform distribu-
tion.

Proof: Since in this case there is only one constraint

∫ b

a
p(x) dx = m0(= 1), (6.3.2)

formula (6.2.1) becomes

p(x) = e−1+λ0 = C,

constant. Using (6.3.2) yields the unique value of the Lagrange multi-
plier λ0 = 1− ln(b−a). Hence, the uniform distribution is the unique
distribution with maximum entropy.

We note that this result was proved in a different way in Chap. 4.

6.4 Case N = 1: Matching the Mean

Consider some data x1, x2, . . . , xN , which take values in the finite
interval (a, b). One can estimate the data mean by

m1 =
x1 + x2 + . . . + xN

N
,

and look for a continuous probability distribution p : (a, b) → [0,+∞)
with mean

μ =

∫ b

a
xp(x) dx (6.4.3)

such that

(1) μ = m1;

(2) the probability distribution p has the maximum entropy subject
to the constraint (1).
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In order to solve the problem we set up a variational problem with
constraints like in Sect. 6.2. The maximum entropy density function
given by (6.2.1) can be written in the simple form

p(x) = eλ1x+λ0−1. (6.4.4)

The constants λ1 and λ0 can be determined from the condition
constraints

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ b

a
xp(x) dx = m1

∫ b

a
p(x) dx = 1

⇔

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eλ0−1

∫ b

a
xeλ1x dx = m1

eλ0−1

∫ b

a
eλ1x dx = 1

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eλ0−1

[
beλ1b − aeλ1a

λ1
− ebλ1 − eaλ1

λ21

]
= m1

eλ0−1 e
λ1b − eλ1a

λ1
= 1.

Dividing the equations, we eliminate λ0,

beλ1b − aeλ1a

eλ1b − eλ1a
− 1

λ1
= m1.

Dividing by eλ1b, after some algebraic manipulations we obtain the
following equation satisfied by λ1

a+
b− a

1− eλ1(a−b)
= m1 +

1

λ1
. (6.4.5)

We shall prove that the Eq. (6.4.5) has a unique solution λ1. First,
consider the functions

f(x) = a+
b− a

1− e(a−b)x
(6.4.6)

g(x) = m1 +
1

x
, (6.4.7)

and study the solutions of the equation f(x) = g(x).
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Lemma 6.4.1 The equation f(x) = g(x) has a unique solution x∗.

(a) If m1 >
a+ b

2
, the solution is x∗ > 0;

(b) If m1 <
a+ b

2
, the solution is x∗ < 0;

(c) If m1 =
a+ b

2
, the solution is x∗ = 0.

Proof: The asymptotic behavior of f(x) as x→ 0 is given by

f(x) =
1

x
+
a+ b

2
+

1

12
(b− a)2x+O(x2)

= g(x) +
(a+ b

2
−m1

)
+

1

12
(b− a)2x+O(x2).

(a) If m1 >
a+ b

2
, by continuity reasons, there is an ε > 0 such

that
(a+ b

2
−m1

)
+

1

12
(b− a)2x+O(x2) < 0, ∀ 0 < x < ε.

Hence f(x) < g(x) for 0 < x < ε.

On the other side, since lim
x→∞ f(x) = b > lim

x→∞ g(x) = m1, we

have f(x) > g(x), for x large. Since f(x) and g(x) are contin-
uous, by the Intermediate Value Theorem, there is an x∗ > 0
such that f(x∗) = g(x∗).

(b) If m1 <
a+ b

2
, in a similar way, there is an ε > 0 such that

f(x)−g(x)=
(a+b

2
−m1

)
+

1

12
(b−a)2x+O(x2)>0, ∀ −ε<x<0.

Hence f(x) > g(x) for −ε < x < 0.

Since lim
x→−∞ f(x) = a < lim

x→−∞ g(x) = m1, there is an x∗ < 0

for which f(x∗) = g(x∗).

(c) If m1 =
a+ b

2
, then

f(x)− g(x) =
1

12
(b− a)2x+O(x2)

and hence f(0) = g(0).
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We conclude with the following existence and uniqueness result:

Theorem 6.4.2 Given m1 ∈ (a, b), there is only one probability dis-
tribution p on [a, b] with maximum entropy and having the mean equal
to m1.

If m1 �= a+b
2 , then the distribution is an exponential distribution;

If m1 =
a+b
2 , then the distribution is an uniform distribution.

Proof: The proof follows from the fact that there are unique solutions
λ1, λ0 satisfying the constraints. The first of the Lagrange multipliers
is λ1 = x∗, where x∗ is the unique solution of the equation f(x) =
g(x). The other multiplier, λ0, depends on λ1 in the unique way

eλ0−1 =
λ1

eλ1b − eλ1a
·

The resulting probability density p is given by expression (6.4.4)

p(x) = eλ1x+λ0−1.

In the case λ1 = 0 (i.e., for m1 =
a+b
2 ), the distribution becomes the

uniform distribution p(x) = a+b
2 .

Using that p′(x) = λ1p(x), the following can be inferred about
the shape of the distribution:

(a) if m1 <
a+b
2 , then x∗ = λ1 > 0 and hence p(x) is increasing,

and skewed to the left.

(b) if m1 >
a+b
2 , then x∗ = λ1 < 0 and hence p(x) is decreasing,

and skewed to the right.

(c) if m1 = a+b
2 , then x∗ = λ1 = 0 and hence p(x) is the uniform

distribution, p(x) = a+b
2 .

All probability distributions with the same mean on a statistical
manifold form a Boltzman–Gibbs submanifold, see Sect. 3.10. The
previous result states the existence and uniqueness of the maximum
entropy distribution on a Boltzman–Gibbs submanifold, where the
state space is the compact interval [a, b].

However, solving for λ1 and λ0 in a direct way is in general diffi-
cult, and not always possible. We shall end this section by providing
a non-constructive variant of proof for Theorem 6.4.2, which is based
on the Inverse Function Theorem. Setting
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F1(λ0, λ1) =

∫ b

a
xeλ1xeλ0−1 dx, F2(λ0, λ1) =

∫ b

a
eλ1xeλ0−1 dx,

we need to show that the system of constraints

F1(λ0, λ1) = m1, F2(λ0, λ1) = 1

has a unique solution (λ0, λ1). Since

∂F1

∂λ1
=

∫ b

a
x2p(x) dx = m2,

∂F1

∂λ0
= F1(λ1, λ0) = m1,

∂F2

∂λ1
=

∫ b

a
xp(x) dx = m1,

∂F2

∂λ0
= F (λ1, λ0) = 1,

then we can evaluate the determinant of partial derivatives as in the
following

Δ =

∣∣∣∣∣∣∣∣∣

∂F1

∂λ1

∂F1

∂λ0

∂F2

∂λ1

∂F2

∂λ0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
m2 m1

m1 1

∣∣∣∣∣∣
= m2 − (m1)

2 = V ar(p) > 0,

Applying the Inverse Function Theorem, the aforementioned system
of constraints has a unique solution for any value of m1. Hence, there
are unique smooth functions G1 and G0 defined on the interval (a, b)
such that λ1 = G1(m1) and λ0 = G0(m1).

It is worth noting that Δ = 0 if and only if the variance of p
vanishes. This occurs when p is a Dirac distribution on (a, b), see
Example 3.2.7.

In the following we treat the case when a = 0 and b = ∞.

Theorem 6.4.3 Among all distributions on (0,∞), with given pos-
itive mean μ, the one with the largest entropy is the exponential dis-

tribution p(x) =
1

μ
e−

x
μ .
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Proof: The functional with constraints which needs to be maximized
in this case is

J(p) = −
∫ ∞

0
p(x) ln p(x) dx+ λ1

[ ∫ ∞

0
xp(x) dx− μ

]

+λ0

[ ∫ ∞

0
p(x) dx− 1

]
,

where λ1, λ0 are Lagrange multipliers. The maximum entropy density
given by (6.2.1) in this case takes the form

p(x) = Ceλ1x, C = eλ0−1,

with the constants C and λ1 to be determined from the constraints
∫ ∞

0
p(x) dx = 1,

∫ ∞

0
xp(x) dx = μ.

We obtain C =
1

μ
, λ1 = − 1

μ
and hence the distribution p(x) becomes

the exponential distribution. The maximum value of the entropy is
reached for the aforementioned distribution and it is equal to 1+lnμ,
see Example 3.2.3.

6.5 N = 2: Matching Mean and Variance

Sometimes we need to match the first two moments of a distribution
to a sample data and express maximum of ignorance for the higher
moments. Consider the data x1, x2, . . . , xN that take values in the
interval (a, b). The estimators for the mean and variance are given by

μ̂ =
x1 + x2 + . . .+ xN

N

σ̂2 =
1

N − 1

N∑
j=1

(xj −m1)
2.

We are interested in the probability distribution p : (a, b) → [0,+∞)
of maximum entropy that has the mean and variance equal to the
mean and variance of the previous sample, i.e.,

μ = μ̂, σ2 = σ̂2. (6.5.8)

This problem is equivalent with the one of finding the probability
density p(x) of maximum entropy which has prescribed values for the
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first two moments, m1 and m2, as described in Sect. 6.2. The maxi-
mum entropy density, which is given by (6.2.1), in this case becomes

p(x) = eλ2x
2+λ1x+λ0−1, a < x < b. (6.5.9)

The constants λ0, λ1, and λ2 are the solutions of the following system
of constraints

∫ b

a
eλ2x

2+λ1x+λ0−1 dx = 1 (6.5.10)

∫ b

a
xeλ2x

2+λ1x+λ0−1 dx = m1 (6.5.11)

∫ b

a
x2eλ2x

2+λ1x+λ0−1 dx = m2. (6.5.12)

We shall treat the problem in the following two distinct cases: (i)
(a, b) = (−∞,+∞) and (ii) (a, b) finite.

The Case a = −∞, b = +∞

In this case the integrals on the left side of the system (6.5.10)–
(6.5.12) can be computed explicitly. The computation uses the follo-
wing well-known evaluation of improper integrals

∫ ∞

−∞
e−αx

2+βx dx =

√
π

α
e

β2

4α (6.5.13)

∫ ∞

−∞
xe−αx

2+βx dx =

√
π

α

( β
2α

)
e

β2

4α (6.5.14)

∫ ∞

−∞
x2e−αx

2+βx dx =

√
π

α

1

2α

(
1 +

β2

2α

)
e

β2

4α , (6.5.15)

where α > 0. We note that if α < 0, the integrals diverge.

Substituting λ2 = −α and λ1 = β we obtain

∫ ∞

−∞
eλ2x

2+λ1x+λ0−1 dx =

√
π

−λ2
e

λ21
−4λ2 eλ0−1

∫ ∞

−∞
xeλ2x

2+λ1x+λ0−1 dx =

√
π

−λ2

( λ1
−2λ2

)
e

λ21
−4λ2 eλ0−1

∫ ∞

−∞
x2eλ2x

2+λ1x+λ0−1 dx =

√
π

−λ2

( 1

−2λ2

)(
1− λ21

2λ2

)
e

λ21
−4λ2 eλ0−1,
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where we supposed λ2 < 0. Then the system of constraints (6.5.10)–
(6.5.12) becomes

1 =

√
−λ2
π

e
λ21
4λ2 e1−λ0 (6.5.16)

− λ1
2λ2

= m1

√
−λ2
π

e
λ21
4λ2 e1−λ0 (6.5.17)

− 1

2λ2

(
1− λ21

2λ2

)
= m2

√
−λ2
π

e
λ21
4λ2 e1−λ0 . (6.5.18)

Dividing (6.5.16) and (6.5.17) yields the following relationship be-
tween multipliers

λ1 = −2λ2m1. (6.5.19)

Dividing (6.5.18) to (6.5.17), we obtain

λ1

1− λ21
2λ2

=
m1

m2
,

and using (6.5.19) yields the following equation in λ1

λ1m1

1 +m1λ1
=
m2

1

m2
,

with the solution
λ1 =

m1

m2 −m2
1

. (6.5.20)

Substituting back in (6.5.19), and assuming m1 �= 0, we find

λ2 =
−1

2(m2 −m2
1)
. (6.5.21)

We note that the denominator of the previous expression, being a
variance, is always positive, and hence λ2 < 0.

The multiplier λ0 can be found from (6.5.16). Substituting the
values of λ2 and λ1 yields

λ0 =
λ21
4λ2

+ 1 =
1

2
ln
( π

−λ2

)

=
−m2

1

2(m2 −m2
1)

− 1− 1

2
ln
(
2π(m2 −m2

1)
)
.

We shall treat next the casem1 = 0. Then (6.5.19) implies λ1 = 0 and
the other multipliers are given by λ2 = − 1

2m2
and λ0 = 1− 1

2 ln(πm2).
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We note that m2 �= 0, because otherwise the variance vanishes, which
is an excluded case.

Since the values of the multipliers are unique, then the exponential
distribution (6.5.9) is also unique. The following result shows that this
is actually a normal distribution.

Theorem 6.5.1 Among all distributions on R, with given mean μ
and variance σ2, the one with the largest entropy is the normal dis-

tribution p(x) =
1

σ
√
2π
e−

(x−μ)2

2σ2 .

Proof: It suffices to minimize the following action with constraints

p �−→
∫ ∞

−∞
L
(
p(x), x

)
dx

= −
∫ ∞

−∞
p(x) ln p(x) dx− γ

[ ∫ ∞

−∞
(x− μ)2p(x) dx− σ2

]

−β
[ ∫ ∞

−∞
xp(x) dx− μ

]
+ α

[ ∫ ∞

−∞
p(x) dx− 1

]
,

with the Lagrange multipliers α, β, γ. Collecting the Lagrangian, we
get

L = −p ln p− γ(x− μ)2p− β(x− μ)p+ αp+ γσ2 − α.

The Euler–Lagrange equation
∂L
∂p

= 0 can be written as

ln p = −γ(x− μ)2 − β(x− μ) + c, c = α− 1,

and hence the distribution takes the form

p(x) = ec e−γ(x−μ)
2−β(x−μ). (6.5.22)

The constants c, β, γ will be determined from the constraints

∫ ∞

−∞
p(x) dx = 1,

∫ ∞

−∞
xp(x) dx = μ,

∫ ∞

−∞
(x− μ)2p(x) dx = σ2.

(6.5.23)
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The following integral formulas will be useful in the next computa-
tion. They are obtained from (6.5.13) and (6.5.15) substituting β = 0:

∫ ∞

−∞
e−ay

2
dy =

√
π

a
(6.5.24)

∫ ∞

−∞
ye−ay

2+by dy =

√
π

a

( b

4a

) b2

4a
(6.5.25)

∫ ∞

−∞
y2e−ay

2
dy =

√
π

a

1

2a
. (6.5.26)

Using the second constraint of (6.5.23), formula (6.5.25), and the
expression (6.5.22) yields

0 =

∫ ∞

−∞
xp(x) dx− μ =

∫ ∞

−∞
(x− μ)p(x) dx

= ec
∫ ∞

−∞
(x− μ) e−γ(x−μ)

2−β(x−μ) dx

= ec
∫ ∞

−∞
ye−γy

2−βy dy = ec
√
π

γ

(−β
2γ

)β2

4γ
,

so β = 0 and substituting in (6.5.22) we get

p(x) = ece−γ(x−μ)
2
. (6.5.27)

Then using the first constraint of (6.5.23), formula (6.5.24), and
(6.5.27), we have

1 =

∫ ∞

−∞
p(x) dx = ec

∫
e−γ(x−μ)

2
dx

= ec
∫ ∞

−∞
e−γy

2
dy = ec

√
π

γ
,

so

ec =

√
γ

π
. (6.5.28)

The third constraint of (6.5.23), formulas (6.5.26), and (6.5.28) yield

σ2 =

∫ ∞

−∞
(x− μ)2p(x) dx = ec

∫ ∞

−∞
(x− μ)2e−γ(x−μ)

2
dx

= ec
∫ ∞

−∞
y2e−γy

2
dy = ec

√
π

γ

1

2γ
=

1

2γ
,
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and hence

γ =
1

2σ2
. (6.5.29)

Substituting in (6.5.28), we find

ec =
1

σ
√
2π
. (6.5.30)

Using the values of the constants provided by (6.5.29) and (6.5.30),
the expression (6.5.27) becomes

p(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 ,

which is the normal distribution. The maximum value of the entropy
in this case is ln(σ

√
2πe), see Example 3.2.1.

The Case a <∞, b <∞

In this case the integrals on the left side of system (6.5.10)–(6.5.12)
cannot be computed in terms of elementary functions, and hence ex-
plicit formulas for the multipliers λi in terms of the momenta mi

are not available. In this case we shall approach the existence and
uniqueness of the solutions of system (6.5.10)–(6.5.12) from a quali-
tative point of view. Setting

F1(λ0, λ1, λ2) =

∫ b

a
eλ2x

2+λ1x+λ0−1 dx

F2(λ0, λ1, λ2) =

∫ b

a
xeλ2x

2+λ1x+λ0−1 dx

F3(λ0, λ1, λ2) =

∫ b

a
x2eλ2x

2+λ1x+λ0−1 dx,

the system (6.5.10)–(6.5.12) becomes

F1(λ0, λ1, λ2) = 1 (6.5.31)

F2(λ0, λ1, λ2) = m1 (6.5.32)

F3(λ0, λ1, λ2) = m2. (6.5.33)

Assume the nonvanishing condition Δ = det
(
∂Fi
∂λj

)
�= 0. Then,

by the Inverse Function Theorem, the aforementioned system of con-
straints has a unique solution for any values of m1 and m2, i.e., there
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are unique smooth functions G0, G1 and G2 defined on the interval
(a, b) such that λj = Gj(m1,m2), j ∈ {0, 1, 2}.

Now we go back to the nonvanishing condition. A computation
shows that

Δ =

∣∣∣∣∣∣∣∣∣∣

m2 m1 1

m3 m2 m1

m4 m3 m2

∣∣∣∣∣∣∣∣∣∣
= m3

2 +m2
1m4 +m2

3 − (m2m4 + 2m1m2m3)

= m3
2 +m2

3 −m4σ
2 − 2m1m2m3,

where mk =

∫ b

a
xkp(x) dx is the k-th moment and σ2 = m2 −m2

1 is

the variance. The condition Δ �= 0 is equivalent to

m3
2 +m2

3 �= m4σ
2 + 2m1m2m3. (6.5.34)

Relation (6.5.34) is a necessary condition for the existence and unique-
ness of the distribution with maximum entropy on the sample space
(a, b).

6.6 The Maxwell–Boltzmann Distribution

This section deals with a distribution describing the equilibrium state
in statistical mechanics, see Rao [71]. Consider the n-dimensional
phase space described by the coordinate system x1, . . . , xn. Consider
the particles density function p(x1, . . . , xn) as the limit ratio of num-
ber of particles in a small volume Δv around the point (x1, . . . , xn)
to Δv.

Assume that the particle with coordinates (x1, . . . , xn) has the
potential energy V (x1, . . . , xn). One restriction, which is imposed on
the particle system, is that the average potential energy per particle
to be constant, i.e.,

∫

X
V (x)p(x) dx = k, (6.6.35)

where we consider dx = dx1 . . . dxn, X a subdomain of Rn, V : X →
R+ a smooth function, and k > 0 a positive constant.

The particle system is said to be in equilibrium if, given the kine-
matic constraint (6.6.35), the distribution of particles is as close as
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possible to the uniform distribution. One way of approaching this
problem is to look for the distribution p(x) with the maximum en-
tropy, which satisfies the restriction (6.6.35). The resulting probabil-
ity density is given in the following result.

Theorem 6.6.1 Among all distributions defined on X with a given
expected value k of the potential V , the one with the largest entropy
is the Maxwell–Boltzmann distribution p(x) = ceβV (x). The constants
c and β are uniquely determined from the distribution constraints.

Proof: In order to maximize the entropy −
∫

X
p(x) ln p(x) dx, with

dx = dx1 . . . dxn, subject to the constraints
∫

X
p(x) dx = 1,

∫

X
V (x)p(x) dx = k,

we shall consider the action

p −→ −
∫

X
p(x) ln p(x) dx + β

[ ∫

X
V (x)p(x) dx − k

]
+ γ

[ ∫

X
p(x) dx − 1

]
.

The Euler–Lagrange equation for the Lagrangian

L = −p ln p+ βV (x)p + γp

is ln p = βV (x) + γ − 1, with the solution

p(x) = ceβV (x), c = eγ−1.

The constants c and β are determined from the following constraints

∫

X
p(x) dx = 1 ⇐⇒ c =

(∫

X
eβV (x) dx

)−1

(6.6.36)

∫

X
V (x)p(x) dx = k ⇐⇒

∫

X
V (x)eβV (x) dx =

k

c
. (6.6.37)

Relation (6.6.36) shows that c depends uniquely on β. Substitut-
ing (6.6.36) into (6.6.37) yields the following equation in β

∫

X
eβV (x) dx

∫

X
V (x)eβV (x) dx = k. (6.6.38)

Consider

Φ(β) =

∫

X
eβV (x) dx

∫

X
V (x)eβV (x) dx,
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which is an increasing function of β. Since

lim
β→+∞

Φ(β) = +∞, lim
β→−∞

Φ(β) = 0,

the continuity of Φ(β) implies that the equation (6.6.38) has a solu-
tion and this is unique. Hence there is a unique pair (c, β) satisfying
the problem constraints. Therefore, the Maxwell–Boltzmann distri-
bution is unique.

We shall provide in the following another proof which does not
use the variational principle. The next argument follows Rao [71].
Using the inequality between two density functions

DKL(p||q) =
∫

X
p(x) ln

p(x)

q(x)
dx ≥ 0,

we can write

−
∫

X
p(x) ln p(x) dx ≤ −

∫

X
p(x) ln q(x) dx

= −
∫

X
p(x)

(
βV (x) + λ

)
dx = −

(
βk + λ

)

where we choose ln q(x) = βV (x) + λ, and we used the constraint
(6.6.35). Then −

(
βk + λ

)
is a fixed upper bound for the entropy

H(p), which is reached for the choice p(x) = eβV (x)+λ = ceβV (x). The
constant c = eλ and β are determined from the following constraints

1 =

∫

X
p(x) dx =

∫

X
ceβV (x) dx (6.6.39)

k =

∫

X
V (x)p(x) dx =

∫

X
cV (x)eβV (x) dx. (6.6.40)

Let

F1(c, β) =

∫

X
ceβV (x) dx, F2(c, β) =

∫

X
cV (x)eβV (x) dx.

Then

Δ(F1, F2)

Δ(c, β)
=

∣∣∣∣∣∣∣∣∣

∂F1

∂c

∂F1

∂β

∂F2

∂c

∂F2

∂β

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1

c
k

k

c

∫

X
V 2p

∣∣∣∣∣∣∣∣∣

=
1

c

[ ∫

X
V 2(x)p(x) dx−

( ∫

X
V (x)p(x) dx

)2]

=
1

c
V ar

(
V (x)

)
�= 0.
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By the Inverse Function Theorem, the system (6.6.39)–(6.6.40) has a
unique solution.

Next we shall consider a few particular cases of Maxwell–
Boltzmann distributions.

Example 6.6.1 Let X = [0,∞) and V (x) = x. In this case we
recover the exponential distribution p(x) = 1

ke
−x

k , see Theorem 6.4.3.

Example 6.6.2 Let X = R and V (x) = x2. In this example k > 0
and β < 0. The constraints can be solved in this case as follows

1 =

∫

R

ceβx
2
dx = c

√
π

−β =⇒ c =

√
−β
π

(6.6.41)

k =

∫

R

ceβx
2
x2 dx = c

√
π

−β

( 1

−2β

)

= − 1

2β
=⇒ β = − 1

2k
. (6.6.42)

Substituting back into (6.6.41) yields c =

√
1

2πk
, and we obtain

the distribution p(x) =
1√
2πk

e−
x2

2k . Hence, the Maxwell–Boltzmann

distribution associated with the quadratic potential V (x) = x2 is the
normal distribution with mean zero and variance k.

Example 6.6.3 Let X = R
2 and consider the quadratic potential

V (x1, x2) = x21 + x22, and denote α = −β. Since we have

∫∫

R2

e−α(x
2
1+x

2
2) dx1dx2 =

π

α∫∫

R2

(x21 + x22)e
−α(x21+x22) dx1dx2 =

π

4α3
,

substituting in the constraints yields

c
π

α
= 1, c

π

4α3
= k.

Solving for α and c we obtain

α =
1

2
√
k
, c =

1

2π
√
k
.
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Hence the Maxwell–Boltzmann distribution associated with the
quadratic potential V (x) = x21 + x22 is the bivariate normal distri-
bution

p(x) =
1

2π
√
k
e

−(x21+x22)

2
√

k .

Example 6.6.4 (Maxwell’s Distribution of Velocities) In this
example the coordinates of velocities of gas particles in three or-
thogonal directions are denoted by x1, x2, x3. The sample space is
X = R

3 and the quadratic potential is V (x1, x2, x3) = x21 + x22 + x23.
The Maxwell–Boltzmann distribution is given by

p(x) = ce−(x21+x
2
2+x

2
3),

where the constant c is obtained by integration using spherical coor-
dinates

1

c
=

∫∫∫

R3

e−(x21+x
2
2+x

2
3) dx1dx2dx3

=

∫ ∞

0

∫ 2π

0

∫ π

0
e−ρ

2
ρ2 sinφdφdθ dρ = 4π

∫ ∞

0
e−ρ

2
ρ2 dρ

= 2π

∫ ∞

0
e−tt

3
2
−1 dt = 2πΓ

(3
2

)
= π3/2 =⇒ c = π−3/2.

Hence, the Maxwell distribution of velocities is given by

p(x) = π−3/2e−(x21+x
2
2+x

2
3). (6.6.43)

In the following we shall compute the entropy of this probability
density. We start with the integral

J =

∫∫∫

R3

e−(x21+x
2
2+x

2
3)(x21 + x22 + x23) dx1dx2dx3

=

∫ ∞

0

∫ 2π

0

∫ π

0
e−ρ

2
ρ2ρ2 sinφdφdθ dρ = 4π

∫ ∞

0
e−ρ

2
ρ4 dρ

= 2π

∫ ∞

0
e−tt

5
2
−1 dt = 2πΓ

(5
2

)
= 2π

3

2

1

2
Γ
(1
2

)
=

3

2
π3/2.

The entropy of the distribution given by (6.6.43) becomes

H(p) = −
∫

X
p(x) ln p(x) dx = − ln(π−3/2)

∫

X
p(x) dx+ π−3/2J

= − ln(π−3/2) +
3

2
=

3

2
(lnπ + 1).
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The next result deals with a variational property where the en-
tropy is replaced by the relative entropy.

Proposition 6.6.2 Let p be a given distribution on X . Among all
distributions on X , with given positive mean μ, the one with the
smallest Kullback–Leibler relative entropy DKL(q||p) is the distribu-
tion given by q(x) = p(x)e−ax−b, with the constants a, b determined
from the constraints

∫
X q(x) dx = 1,

∫
X xq(x) dx = μ.

Proof: Consider the following variational problem with constraints

q �−→
∫

X
q(x) ln

q(x)

p(x)
dx+λ1

[ ∫

X
xq(x) dx−μ

]
+λ2

[ ∫

X
q(x) dx−1

]
.

The associated Lagrangian is given by

L(q) = q ln q − q ln p+ λ1xq + λ2q,

and the solution of the Euler–Lagrange equation is

∂L

∂q
= 0 ⇐⇒ q = pe−λ1x−λ2−1.

Making the substitutions a = λ1, b = λ2+1, we get the desired result.
The uniqueness of the constants a, b follows from an application

of the Inverse Function Theorem for the functions

F1(a, b) =

∫

X
p(x)e−ax−b dx, F2(a, b) =

∫

X
p(x)xe−ax−b dx,

and using the nonzero value of their Jacobian

Δ(F1, F2)

Δ(a, b)
=
( ∫

X
xq(x) dx

)2
−
∫

X
x2q(x) dx = −V ar(q) �= 0.

6.7 Problems

6.1. (a) Prove that among all one-dimensional densities p(x) on R

with the same standard deviation, the one with the maxi-
mum entropy is the Gaussian distribution.
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(b) If p(x1, . . . , xn) is an n-dimensional density, define the sec-
ond order moments by

Aij =

∫

R

. . .

∫

R

xixjp(x1, . . . , xn) dx1 . . . dxn.

Find the density p(x1, . . . , xn) with the maximum entropy
and given second order moments Aij .

6.2. Let D = {(μ, σ);μ2 + σ2 < 1}. Verify if the normal density of
probability

p(x;μ, σ) =
1

σ
√
2π

e−
(x−μ)2

2σ2 , (μ, σ) ∈ D

is an extremal of the functional

I(p(·)) = 1

2

∫ ∫

D
(p2μ + p2σ − 48xyp) dμdσ,

with a suitable ϕ(μ, σ) satisfying the constraint

μ
∂p

∂μ
− σ

∂p

∂σ
= ϕ(μ, σ) p.

6.3. Determine the densities of probability, localized in [0, 1]2, which
are extremals of the functional

I(z(·)) = 1

2

∫ ∫

[0,1]2
(z2x + z2y) dxdy,

constrained by zxzy − z = 0.

6.4. Determine the positive functions g11(x, y) şi g22(x, y) such that
the density of probability z(x, y) = A

(
(x− y)3 + ex+y

)
to be

an extremal of the functional

I(z(·)) = 1

2

∫ ∫

[0,1]2
(g11(x, y)z

2
x + g22(x, y)z

2
y) dxdy,

constrained by ∂2z
∂x2 − ∂2z

∂y2 = 0.
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6.5. Let Ω = [0, 1]2. Find the extremals of the functional

I(u(·)) = 1

2

∫

Ω
(u2x + u2y) dxdy,

knowing that uxuy is a density of probability and u(0, 0) = 0,
u(1, 1) = 1.

6.6. Let Ω = [0, 1]2. Find the extremals of the functional

I(u(·)) = 1

2

∫

Ω
(u2t − u2x) dtdx,

knowing that ut+ux is a density of probability and u(0, 0) = 0,
u(1, 1) = 1.

6.7. Can you construct a density function for which relation (6.5.34)
does not hold?

The total entropy along the curve γ(t) = p
ξ(t)

, t ∈ [0, 1], is
defined by

Hγ =

∫

γ
H
(
ξ
)
ds =

∫ 1

0
H
(
ξ(t)

)√
gij
(
ξ(t)

)
ξ̇i(t)ξ̇j(t) dt,

where ds2 = gij
(
ξ(t)

)
ξ̇i(t)ξ̇j(t) is the square arc element.

6.8. Show that in the case of the exponential distribution the en-
tropy along a curve depends on its end points only. More pre-
cisely, if consider the curve γ(t) = ξ(t)e−ξ(t)x, t ∈ [0, 1], with
ξ(0) = ξ0, ξ(1) = ξ1, show that

Hγ =

∫

γ
H
(
ξ
)
ds =

∣∣∣ ln ξ1
ξ0

∣∣∣
(
1− ln

√
ξ0ξ1

)
,

which is independent of the curve ξ(t).

6.9. Let p : [a, b] → [0,∞) be a probability density and consider
the transformation ϕ : [a, b] → [a, b], ϕ(x) = a + b− x. Denote
p̂ = p ◦ ϕ.

(a) Show that p̂ is a probability distribution on [a, b].

(b) Prove that H(p̂) = H(p).
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(c) Let m1, m̂1 denote the means of p and p̂, respectively. Show
that

m̂1 = a+ b−m1.

Note the means are symmetric with respect to the median
a+b
2 .

(d) Let V and V̂ denote the variances of p and p̂, respectively.
Prove that V̂ = V .



Part II

Statistical Manifolds



Chapter 7

An Introduction
to Manifolds

This chapter contains a brief introduction to the classical theory of
differential geometry. The fundamental notions presented here deal
with differentiable manifolds, tangent space, vector fields, differen-
tiable maps, 1-forms, tensors, linear connections, Riemannian man-
ifolds, and the Levi–Civita connection. The material of this chapter
forms the basis for next chapters.

7.1 The Concept of Manifold

A manifold is a multidimensional geometric object that can be consid-
ered as a space which is locally similar to the Euclidean space. Since
differentiation is a locally defined property, then the differentiation
can be defined on a manifold in a similar way as it is defined on the
Euclidean space. A point on a manifold can be described by several
sets of parameters, which are regarded as local coordinate systems.

The advantage of working on a manifold is that one can con-
sider and study those geometric concepts (functions, invariants, vec-
tor fields, tensor fields, connections, etc.) that make sense globally
and can also be described quantitatively in local coordinate systems.
This property initially made sense in Physics and Relativity Theory,
where each coordinate system corresponds to a system of reference.
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Therefore, the main objects of study in that case are velocity, accel-
eration, force, matter fields, momenta, etc., i.e., objects that remain
invariant under a change of the system of reference. This means that
while these objects make sense globally, they can be described quan-
titatively in terms of local coordinates.

The earth’s surface is one of the most suggestive examples of
manifolds. One is aware of this manifold only locally, where it resem-
bles a piece of plane. A local observer situated on earth’s surface can
measure coordinates at any point by choosing an origin and a unit
of measure, the result of this work being a local map of the region.
Even if drawn at different scales, any two maps of overlapping regions
are correlated, in the sense that one can “understand” their relation-
ship. If these maps constitute an entire cartography1 of the planet,
then they form an atlas. Nowadays people are more familiar with the
googlemaps system. The maps can be transformed by translation,
contraction, or dilation, which move from one map to another, the
transformation being smooth and assuring the correlation between
maps. The local knowledge of the earth surface contained in an atlas
forms the notion of manifold.

Consider now the system of artificial satellites rotating around the
earth. Each satellite can cover a certain region of the earth surface.
All satellites are supposed to cover the entire earth surface, with some
overlap. The information retrieved from the satellites forms an atlas
and the manifold notion emerges again.

Suppose now that a certain country is monitored by a grid of
cellular phone towers, each tower servicing a specific region. This is an
example that can be considered as a manifold again, each tower region
being considered as a local chart. In general, the manifold notion
emerges when we can describe only locally an entire global object.
The word “local” in this case describes a region one can encompass
with the eye, or an area which can be covered by the local cellular
phone tower.“Global” describes either an entire country or continent
or even the whole earth surface.

There are two distinct points of view when studying a manifold.
One is the intrinsic point of view of a local observer, situated on
the manifold, whose knowledge is bound to a local chart, or system
of reference. For instance, digging a ditch or measuring the distance
between a house and a nearby tree is an intrinsic activity. The other

1Cartography is the study and practice of making maps.
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point of view is called extrinsic. The extrinsic knowledge is acquired
by an observer while elevating himself above the manifold and looking
at it from outside. The information about the earth surface obtained
by a monkey climbing an eucalypt tree that grows on the earth sur-
face, is extrinsic, while the point of view of a microorganism living
on the ground is intrinsic. The notions of intrinsic and extrinsic can
be described geometrically by considering either only the metric of
the manifold, or taking into account also the normal vector to the
manifold. There are some geometrical notions that can be described
exclusively in an extrinsic way. Since the round shape of the earth was
recently fully mapped by satellites, understanding the shape of the
earth is an extrinsic feature. However, this should not be mistaken
with curvature, which can be described intrinsically in terms of the
local metric (Gauss’ Egregium Theorem).

A useful tool used in describing some geometric objects on a man-
ifold is the concept of tensor. Many physical quantities, such as force,
velocity, acceleration, work, etc., can be described successfully as ten-
sors. Their main feature of a tensor is that it can be described quan-
titatively in a local chart, and its coordinates transform by a matrix
multiplication when changing charts. Therefore, if a tensor vanishes
in one chart, then it vanishes in all charts. Since it turns out that the
difference of two tensors is also a tensor, the last two features allow
for a very powerful method of proving relations between tensors by
checking them in a suitable local chart. The work in local coordi-
nates used to prove global relations has been proved extremely useful
and has been developed into the so-called tensorial formalism. For
instance, if one needs to show that the tensors T and P are equal,
it suffices to only show that their components are equal in a chart,
Tij = Pij .

Many geometrical objects studied in differential geometry are ten-
sors; however, they are called by distinct names, such as metric, vector
field, 1-form, volume form, curvature, etc. All these are objects in-
dependent of the system of coordinates and can be defined globally
but may be written locally in a local system of coordinates using lo-
cal components. For example, a vector field is an object that may be

written in local coordinates as V =
∑
V i ∂

∂xi
, where

{
∂
∂xi

}
i=1,...,n

is

a basis of the local system of coordinates chosen. This means that
its components measured in this system of reference are given by
V 1, . . . , V n. Similarly, a 1-form is an object that can be written in
local coordinates as ω =

∑
ωidx

i, where {dxi}i=1,...,n is a basis of
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the 1-forms of the local system of coordinates chosen. A metric is a
tensor written as g =

∑
gijdx

i ⊗ dxj , where ⊗ is an operation called
tensorial product.

7.2 Manifold Definition

This section presents the precise definition of manifolds. All manifolds
considered in this book are real, i.e., the local model is the Euclidean
space R

n.
The construction of a manifold starts with a metric space (the

underlying structure of the manifold), i.e., a space on which is defined
a distance function.

Definition 7.2.1 Let M be a set of points. A distance function is a
mapping d :M ×M → [0,∞) with the following properties:

(i) non-degenerate: d(x, y) = 0 if and only if x = y;

(ii) symmetric: d(x, y) = d(y, x), for all x, y ∈M ;

(iii) satisfies the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for
all x, y, z ∈M .

The pair (M,d) is called a metric space.

Example 7.2.2 Let M = R
n and consider x, y ∈ M , with x =

(x1, . . . , xn), y = (y1, . . . , yn). Then the Euclidean distance is given

by dE(x, y) =
[ n∑
k=1

(xk − yk)2
]1/2

. The metric space (M,dE) is called

the Euclidean space.

Example 7.2.3 The mapping dT : R
n × R

n → [0,∞) given by

dT (x, y) =

n∑
k=1

|xk − yk| is called the taxi-cab distance. It bears its

name after the distance followed by a cab in a city with perpendicular
and equidistant streets such as New York city.

Definition 7.2.4 Let (M,d) be a metric space. Consider x ∈M and
r > 0. The ball of radius r and centered at x is the set Br(x) = {y ∈
M ; d(x, y) < r}. A subset U of M is called open if for any x ∈ U ,
there is a r > 0 such that Br(x) ⊂ U .
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The equivalence of the definitions of functions continuity in the
framework of metric spaces is stated as in the following.

Proposition 7.2.5 Let f : (M,dM ) → (N, dN ) be a mapping be-
tween two metric spaces. The following are equivalent:

(a) For any open set V in N , the pullback f−1(V ) = {x ∈M ; f(x) ∈
V } is an open set in M .

(b) For any convergent sequence xn → x in M , (i.e., dM (xn, x) →
0, n → ∞) we have f(xn) → f(x) in N , (i.e., dN

(
f(xn), f(x)

)
→ 0, n→ ∞).

A function f : M → N is called continuous if any of the foregoing
parts (a) or (b) holds true. If f is invertible and both f and f−1 are
continuous, then f is called a homeomorphism between M and N .

Definition 7.2.6 Let U ⊂M be an open set. Then the pair (U, φ) is
called a chart (coordinate system) on M , if φ : U → φ(U) ⊂ R

n is
a homeomorphism of the open set U in M onto an open set φ(U) of
R
n. The coordinate functions on U are defined as xj : U → R, and

φ(p) = (x1(p), . . . , xn(p)), namely xj = uj ◦ φ, where uj : Rn → R,
uj(a1, . . . , an) = aj is the jth projection.

The integer n is the dimension of the coordinate system. Roughly
speaking, the dimension is the number of coordinates needed to de-
scribe the position of a point in M .

Definition 7.2.7 An atlas A of dimension n associated with the
metric space M is a collection of charts {(Uα, φα)}α such that

1) Uα ⊂M , ∀α,
⋃
α Uα =M (i.e., Uα covers M),

2) if Uα ∩ Uβ �= Ø, the restriction to φα(Uα ∩ Uβ) of the map

Fαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is differentiable from R
n to R

n (i.e., the systems of coordinates
overlap smoothly), see Fig. 7.1.

There might be several atlases on a given metric spaceM . Two atlases
A and A′ are called compatible if their union is an atlas on M . The
set of compatible atlases with a given atlas A can be partially ordered
by inclusion. Its maximal element is called the complete atlas A. This
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Figure 7.1: Correlated charts on a differential manifold

atlas contains all the charts that overlap smoothly with the charts of
the given atlas A. The dimension n of the space R

n, which models
the manifold structure, is called the dimension of the atlas A.

Definition 7.2.8 A differentiable manifold M is a metric space en-
dowed with a complete atlas. The dimension n of the atlas is called
the dimension of the manifold.

We owe a remark about the completeness of an atlas. The com-
pleteness feature is required to assure for maximum chartographic
information, in the sense that any considered chart is already filed in
the atlas; equivalently, no new charts can be considered besides the
ones that are already part of the atlas.

However, in practice it suffices to supply an arbitrary atlas (usu-
ally not the maximal one), the maximal atlas resulting from the com-
bination of all atlases.

7.3 Examples of Manifolds

In this section we supply a few examples of useful manifolds.



7.3. Examples of Manifolds 197

1) The simplest differentiable manifold is the Euclidean space it-
self, Rn. In this case the atlas has only one chart, the identity
map, Id : Rn → R

n, Id(x) = x.

2) Any open set U of Rn is a differential manifold, with only one
chart, (U, Id).

3) Any non-intersecting curve c : (a, b) → R
n, with ċ(t) �= 0, is a

one-dimensional manifold. In this case M = c
(
(a, b)

)
and the

atlas consists of only one chart (U, φ), with U = c
(
(a, b)

)
, and

φ : U → (a, b), φ = c−1
|U .

4) The sphere S2 = {x = (x1, x2, x3) ∈ R
3 ; (x1)2+(x2)2+(x3)2 =

1} is a differentiable manifold of dimension 2. We shall supply
in the following two atlases. The first atlas contains six charts,
being given by A = {Ui, φi}i=1,3 ∪ {Vi, ψi}i=1,3, where

U1 = {x ; x1 > 0} , φ1 : U1 → R
2 , φ1(x) = (x2, x3),

V1 = {x ; x1 < 0}, ψ1 : V1 → R
2, ψ1(x) = (x2, x3),

U2 = {x ; x2 > 0} , φ2 : U2 → R
2 , φ2(x) = (x1, x3),

V2 = {x ; x2 < 0}, ψ2 : V2 → R
2, ψ2(x) = (x1, x3),

U3 = {x ; x3 > 0} , φ3 : U3 → R
2 , φ3(x) = (x1, x2),

V3 = {x ; x3 < 0}, ψ3 : V3 → R
2, ψ3(x) = (x1, x2).

The second atlas is A′ = {(U, φN ), (V, φS)}, where U = S
2\

{(0, 0, 1)}, V = S
2\{(0, 0,−1)}, and the stereographic projec-

tions φN : U → R
2, φS : V → R

2, see Fig. 7.2, are given by

φN (x
1, x2, x3) =

( 2x1

1− x3
,

2x2

1− x3

)
,

φS(x
1, x2, x3) =

( 2x1

1 + x3
,

2x2

1 + x3

)
.

It can be shown as an exercise that the atlases A and A′ are
compatible, so they can be extended to the same complete atlas,
i.e., the differential manifold structures induced by A and A′

are the same.
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Figure 7.2: The stereographic projection from the north pole

5) Let M = GL(n,R) be the set al all nonsingular n×n matrices.
M is a metric space with the metric

d(A,B) =
[ n∑
i,j

(aij − bij)
2
]1/2

, ∀A,B ∈M,

where A = (aij) and B = (bij). Then M becomes a differ-
ential manifold with an atlas consisting of one chart, namely
φ :M → R

n2
,

φ(A) = (a11, a12, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann).

We note that φ(M) is open in R
n2
. This follows from considering

the continuous mapping ρ : Rn
2 → R given by ρ(a11, . . . , ann) =

detA. Write φ(M) = ρ−1(R\{0}) for the pre-image of ρ for all
nonzero real numbers. Using Proposition 7.2.5, part (a), implies
φ(M) open in R

n2
.

6) If M , N are differentiable manifolds of dimensions m and n,
respectively, then M × N can be endowed with a structure of
differentiable manifold, called the product manifold. If AM and
AN are atlases on M and N , respectively, then an atlas AM×N
on M ×N can be constructed by considering the charts

(
U ×

V,Ψ
)
, with Ψ : U × V → R

n+m, Ψ(x, y) =
(
φ(x), ψ(y)

)
, where

(U, φ) ∈ AM and (V, ψ) ∈ AN .
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Figure 7.3: By the Implicit Functions Theorem xi = g(x̂) for any
x ∈W

The torus T
2 = S

1 × S
1 and the cylinder S

1 × (0, 1) are two
usual examples of product manifolds.

7) Consider the set M = f−1(0) = {x ∈ R
n+1; f(x) = 0}, where

f : Rn+1 → R is a C∞-differentiable function (i.e., a function
for which the partial derivatives exist for any order), such that

(grad f)(x) =
( ∂f
∂x1

(x), . . . ,
∂f

∂xn+1
(x)
)
�= 0, ∀x ∈M.

Then M is a differentiable manifold of dimension n, called the
hypersurface defined by f .

The charts in this manifold are constructed as in the following.
Consider a point x0 ∈ M . Since (grad f)(x0) �= 0, there is an

i ∈ {1, . . . , n + 1} such that
∂f

∂xi
(x0) �= 0. By the Implicit Function

Theorem, there is an open set V around x0 such that the equation
f(x1, . . . , xn+1) = 0 can be solved uniquely for xi as xi = g(x̂), where
x̂ = (x1, . . . , xi−1, xi+1, . . . , xn+1) and g : V̂ → R is a differentiable
function, see Fig. 7.3. Let U = V ∩M , and consider φ : I → R

n given
by φ(x) = x̂. Then (U, φ) is a chart about the point x0. The set of
all charts of this type produces an atlas on M . The compatibility
between these charts is left as an exercise to the reader.

This is an effective and practical way of constructing differentiable
manifolds. For instance, if consider f(x1, . . . , xn+1) =

∑n
k=1(x

k)2−1,
then Sn = f−1(0) is the n-dimensional sphere of radius 1.
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Figure 7.4: The cone is not a differentiable manifold

It is worth noting that the regularity condition (grad f)(x) �=
0, for all x ∈ M , in general cannot be waived. For instance, if
f(x1, x2, x3) = (x1)2 + (x2)2 − (x3)2, then C = f−1(0) is a cone in
R
3. We have that (grad f)(x) = (2x1, 2x2,−2x3) vanishes for x = 0.

As a consequence, the cone C = {(x1)2 + (x2)2 = (x3)2} is not nec-
essarily differentiable manifold. We investigate this by considering a
chart (U, φ) around the origin (0, 0, 0). Then V = U\(0, 0, 0) has two
connected components, while φ(V ) = φ(U)\φ(0, 0, 0) has only one
component, fact that leads to a contradiction, see Fig. 7.4. Hence the
cone C is not a differentiable manifold.

7.4 Tangent Space

Before defining the concept of tangent vector, we need to introduce
the notion of differentiable function on a manifold. We assume well-
known from Calculus the concept of a differentiable function on R

n.
Since the differentiability has a local character, in the case of differ-
entiable manifolds the function is required to be differentiable in a
local chart.

Definition 7.4.1 A function f : M → R is said to be differentiable
if for any chart (U, φ) on M the function f ◦ φ−1 : φ(U) → R is
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differentiable. The set of all differentiable functions on the manifold
M will be denoted by F(M).

The notion of “differentiable” is not made too precise on the degree
of smoothness. It can mean C∞ or just Ck-differentiable, for some
k ≥ 1, which depends on the nature of the problem.

Since a vector on R
n at a point can serve as a directional derivative

of functions in F(Rn), a similar idea can be used when defining the
tangent vector on a manifold.

Definition 7.4.2 A tangent vector of M at a point p ∈ M is a
function Xp : F(M) → R such that

i) Xp is R-linear

Xp(af + bg) = aXp(f) + bXp(g),∀a, b ∈ R,∀f, g ∈ F(M);

ii) the Leibniz rule is satisfied

Xp(fg) = Xp(f)g(p) + f(p)Xp(g), ∀f, g ∈ F(M). (7.4.1)

Definition 7.4.3 Consider a differentiable curve γ : (−ε, ε) → M
on the manifold M , with γ(0) = p. The tangent vector

Xp(f) =
d(f ◦ γ)
dt

(0), ∀f ∈ F(M) (7.4.2)

is called the tangent vector to γ(−ε, ε) at p = γ(0) and is denoted
by γ̇(0).

We note that the derivative in formula (7.4.2) is the usual derivative
of the real-valued function f ◦ γ : (−ε, ε) → R. Also, Xp satisfies
the conditions from the definition of the tangent vector. Condition i)
follows from the linearity of the derivative d/dt, while condition ii)
is an application of the product rule. Sometimes, the vector γ̇(0) is
called the velocity vector of γ at p.

Now consider the particular case of the ith coordinate curve γ.
This means there is a chart (U, φ) around p = γ(0) in which φ

(
γ(t)

)
=

(x10, . . . , x
i, . . . , xn0 ), where φ(p) = (x10, . . . , x

i
0, . . . , x

n
0 ). Then the tan-

gent vector to γ

γ̇(0) =
∂

∂xi

∣∣∣
p
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Figure 7.5: The geometric interpretation of the coordinate vector field
∂

∂xi |p

is called a coordinate tangent vector at p, see Fig. 7.5. This can be
defined equivalently as a derivation

∂

∂xi

∣∣∣
p
(f) =

∂(f ◦ φ−1)

∂ui
(φ(p)), ∀f ∈ F(M), (7.4.3)

where φ = (x1, . . . , xn) is a system of coordinates around p and
u1, . . . , un are the coordinate functions on R

n.

Definition 7.4.4 The set of all tangent vectors at p to M is called
the tangent space of M at p, and is denoted by TpM .

TpM is a vectorial space of dimension n with a basis given by the

coordinate tangent vectors
{ ∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

}
. For a detailed proof

of this fact the reader can consult, for instance, Millman and Parker
[58]. The tangent space TpM can be also visualized geometrically as
the set of velocities at p along all curves passing through this point.

Using the aforementioned basis any vector V ∈ TpM can be written
locally as V =

∑
i V

i ∂
∂xi

∣∣
p
, where V i = V (xi) ∈ R are called the com-

ponents of V with respect to the system of coordinates (x1, . . . , xn).
It is worth noting that if the vector V is written with respect to a

new system of coordinates (x̄1, . . . , x̄n) as V =
∑

i V̄
i ∂
∂x̄i

∣∣
p
, then the

components in the two coordinates systems are related by

V̄ k =

n∑
i=1

∂x̄k

∂xi
V i. (7.4.4)
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It is also worthy to note that the change of coordinates matrix(∂x̄k
∂xi

)
i,k

is nonsingular, fact implied by the nonvanishing Jacobian2

of a diffeomorphism, as stated by the Inverse Function Theorem.
The tangent vector Xp acts on differentiable functions f on M as

Xpf =

n∑
i=1

Xi(p)
∂f

∂xi |p
.

Definition 7.4.5 A vector field X on M is a smooth map X that as-
signs to each point p ∈M a vector Xp in TpM . For any function f ∈
F(M) we define the real-valued function (Xf)p = Xpf . By “smooth”
we mean the following: for each f ∈ F(M) then Xf ∈ F(M).

Vector fields can be visualized as fields of forces on velocities for
ocean currents, air currents, or convection currents, or river flows.
They are important geometric objects used to model the dynamics
on a manifold.
The set of all vector fields on M will be denoted by X (M). In a local

system of coordinates a vector field is given by X =
∑

Xi ∂

∂xi
, where

the components Xi ∈ F(M) because they are given by Xi = X(xi),
1 ≤ i ≤ n, where xi is the ith coordinate function of the chart.

We show next that to each vector field we can associate a family of
non-intersecting curves. Given a vector field X, consider the ordinary
differential equations system

dck

dt
(t) = Xk

c(t), 1 ≤ k ≤ n. (7.4.5)

Standard theorems of existence and uniqueness of ODEs imply that
the system (7.4.5) can be solved locally around any point x0 = c(0).

Theorem 7.4.6 Given x0 ∈ M and a nonzero vector field X on an
open set U ⊂ M , then there is an ε > 0 such that the system (7.4.5)
has a unique solution c : [0, ε) → U satisfying c(0) = x0.

The solution t → c(t) is called the integral curve associated with
the vector field X through the point x0. The integral curves play

2If φ(x) = (φ1(x), . . . , φn(x)) is a function of n variables x1, . . . , xn, the Jaco-

bian is the determinant of the matrix
( ∂φj

∂xk

)

jk
.



204 Chapter 7. An Introduction to Manifolds

an important role in describing the evolution of a dynamical system
modeled on the manifold. An effective description of the evolution
of a dynamical system is usually done using conservation laws, i.e.,
relations whose value remains invariant along the integral curves of
a vector field.

Definition 7.4.7 A function f ∈ F(M) is called a first integral of
motion for the vector field X if it remains constant along the integral
curves of X, i.e,

f
(
c(t)

)
= constant, 0 ≤ t ≤ ε,

where c(t) verifies (7.4.5).

Proposition 7.4.8 Let f ∈ F(M), with M differentiable manifold.
Then f is a first integral of motion for the vector field X if and only
if Xc(t)(f) = 0.

Proof: Consider a local system of coordinates (x1, . . . , xn) in which
the vector field writes as X =

∑
kX

k ∂
∂xk

. Then

Xc(t)(f) =
∑
k

Xk
c(t)

∂f

∂xk
=
∑
k

dck

dt
(t)

∂f

∂xk

=
d

dt
f
(
c(t)

)
.

Then Xc(t)(f) = 0 if and only if d
dtf
(
c(t)

)
= 0, which is equivalent to

f
(
c(t)

)
= constant, 0 ≤ t ≤ ε, with ε small enough such that c((0, ε))

is included in the initially considered chart.

7.5 Lie Bracket

This section deals with an important operation on vector fields, called
the Lie bracket, which is given by [ , ] : X (M)× X (M) → X (M),

[X,Y ]pf = Xp(Y f)− Yp(Xf), ∀f ∈ F(M), p ∈M. (7.5.6)

The Lie bracket will be used in later sections of the chapter to
define the concepts of torsion and curvature of a linear connection,
as well as the differential of a 1-form.

The vector fields X and Y commute if [X,Y ] = 0. The Lie bracket
[X,Y ], which at first sight looks to be a differential operator of second
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degree, turns out to be a vector field (a first order differential opera-
tor), which measures the noncommutativity between vector fields. In
local coordinates, the Lie bracket takes the form (see Problem 7.3.)

[X,Y ] =

n∑
i,j=1

(∂Y i

∂xj
Xj − ∂Xi

∂xj
Y j
) ∂

∂xi
. (7.5.7)

The bracket satisfies the following properties

1) R-bilinearity:

[aX + bY, Z] = a[X,Z] + b[Y,Z],

[Z, aX + bY ] = a[Z,X] + b[Z, Y ], ∀a, b ∈ R;

2) Skew-symmetry:

[X,Y ] = −[Y,X];

3) The cyclic sum is zero (Jacobi identity):

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0;

4) The Lie bracket is not F(M)-linear, because [fX, gY ] �=
fg[X,Y ]. We have instead

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X , ∀f, g ∈ F(M).

Example 7.5.1 Consider on R
2 the vector fields X = ∂x1 , Y =

x1∂x2, called the Grushin vector fields. Then [X,Y ] = ∂x2 �= 0, and
hence X and Y do not commute.

7.6 Differentiable Maps

The concept of differentiability on a manifold is defined locally with
respect to charts.

Definition 7.6.1 A map F :M → N between two manifolds M and
N is differentiable about p ∈ M if for any charts (U, φ) on M about
p and (V, ψ) ∈ N about F (p), the map ψ ◦ F ◦ φ−1 is differentiable
from φ(U) ⊂ R

m to ψ(V ) ⊂ R
n, see Fig. 7.6.
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Figure 7.6: The diagram of a differentiable function

Definition 7.6.2 Let F :M → N be a differentiable map. For every
p ∈M , the differential map dF at p is defined by

dFp : TpM → TF (p)N

(dFp)(v)(f) = v(f ◦ F ) , ∀v ∈ TpM , ∀f ∈ F(N). (7.6.8)

The picture can be seen in Fig. 7.7. A few important properties of the
differential of a map at a point, dFp, are given in the following:

1) dFp is an R-linear application between the tangent spaces TpM
and TF (p)N :

dFp(v + w) = dFp(v) + dFp(w), ∀v,w ∈ TpM ;

dFp(λv) = λdFp(v), ∀v ∈ TpM, ∀λ ∈ R.

2) Let
{

∂
∂xj
∣∣p
}
and

{
∂
∂yj
∣∣F (p)

}
be bases associated with the tan-

gent spaces TpM and TF (p)N . Consider the function

F=(F 1, . . . , Fn) and denote by Jkj =
∂F k

∂xj
the Jacobian matrix

of F with respect to the charts (x1, . . . xm) and (y1, . . . , yn) on
M and N , respectively. Then dFp can be represented locally by

dFp

( ∂

∂xj |p

)
=

n∑
k=1

Jkj(p)
∂

∂yk |F (p)

. (7.6.9)
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Figure 7.7: The differential of a map

3) Assume dimM = dimN = n. Then the following conditions
are equivalent:

(i) dFp : TpM → TF (p)N is an isomorphism of vectorial spaces;

(ii) F is a local diffeomorphism in a neighborhood of p;

(iii) There are two charts (x1, . . . , xn) and (y1, . . . , yn) on M
around p and on N around F (p), respectively, such that
the associated Jacobian is non-degenerate, i.e. det Jkj(p)
�= 0.

The foregoing assertion is usually called the Inverse Func-
tion Theorem on manifolds. For a proof the reader can
consult the comprehensive book of Spivak [77].

4) Let F : M → N be a differentiable map. Then the differential
dF commutes with the Lie bracket

dFp[v,w] = [dFp(v), dFp(w)], ∀v,w ∈ TpM.

7.7 1-Forms

The differential of a function f ∈ F(M) is defined at any point p by
(df)p : TpM → R,

(df)p(v) = v(f) ∀v ∈ TpM. (7.7.10)



208 Chapter 7. An Introduction to Manifolds

In local coordinates (x1, . . . , xn) this takes the form df =
∑

i
∂f
∂xi
dxi,

where {dxi} is the dual basis of { ∂
∂xi

} of TpM , i.e.

dxi
( ∂

∂xj

)
= δij ,

where δij denotes the Kronecker symbol. The space spanned by

{dx1, . . . , dxn} is called the cotangent space ofM at p, and is denoted
by T ∗

pM . The elements of T ∗
pM are called covectors. The differential

df is an example of 1-form.
In general, a one form ω on the manifold M is a mapping which

assigns to each point p ∈M an element ωp ∈ T ∗
pM . A 1-form can be

written in local coordinates as

ω =

n∑
i=1

ωi dx
i, (7.7.11)

where ωi = ω( ∂
∂xi

) is the ith coordinate of the form with respect to
the basis {dxi}. The set of all 1-forms on the manifold M will be
denoted by X ∗(M).

The interested reader can find more details about differential
forms in DoCarmo [36].

7.8 Tensors

Let TpM and T ∗
pM be the tangent and the cotangent spaces of M at

p. We adopt the following useful notations

(T ∗
pM)r = T ∗

pM × · · · × T ∗
pM︸ ︷︷ ︸

r times

, (TpM)s = TpM × · · · × TpM︸ ︷︷ ︸
s times

.

Definition 7.8.1 A tensor of type (r, s) at p ∈M is an F(M)-multi-
linear function T : (T ∗

pM)r × (TpM)s → R.
A tensor field T of type (r, s) is a differential map, which assigns to
each point p ∈M an (r, s)−tensor Tp on M at the point p.

Since {dxj1 ⊗ · · · ⊗ dxjr}j1<···<jr and { ∂
∂xi1

⊗ · · · ⊗ ∂
∂xis

}i1<···<is
are bases in the vectorial spaces (T ∗

pM)r and (TpM)s, respectively,
the tensor field T can be written using local coordinates as (with
summation over repeated indices)

T = T i1i2...ir
j1j2...js

dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
, (7.8.12)
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where “⊗” stands for the usual tensorial product. This means that
T acts on r 1-forms and s vector fields as

T (ω1, . . . , ωr,X1, . . . ,Xs)

= T i1i2...ir
j1j2...js

dxj1(X1)⊗ · · · ⊗ dxjs(Xs)⊗
∂

∂xi1
(ω1)⊗ . . .⊗ ∂

∂xir
(ωr)

= T i1...ir
j1...js

Xj1
1 . . . Xjs

s ω
1
i1 . . . ω

r
ir .

We say the tensor T is s covariant and r contravariant. It is worth
noting the following particular examples of tensors:

1. Any 1-form ω is a tensor of type (0, 1). For any vector field X

ω(X) = ωidx
i(X) = ωidx

i(Xj ∂

∂xj
) = ωiX

i,

with summation in the repeated index. In particular, the dif-
ferential of a function, df , is a (0, 1)-tensor.

2. Any vector field X is a (1, 0)-tensor on M , with

X(ω) = ω(X) = ωiX
i, ∀ω.

3. An s-differentiable form is a skew-symmetric tensor of type
(0, s). In particular, a 2-form is a 2-covariant tensor Ω whose
coordinates satisfy Ωij = −Ωji

4. A volume form on an n-dimensional manifold is an n-form, i.e.,
a skew-symmetric tensor of type (0, n).

In order to show that T is a tensor, in practice we check the
F(M)-linearity in each argument. For instance, if T is 2-covariant,
then we need to show that for any f1, f2 ∈ F(M) and vector fields
X1,X2, Y1, Y2 we have

T (f1X1, f2X2) = f1f2T (X1,X2)

T (X1 + Y1,X2) = T (X1,X2) + T (Y1,X2)

T (X1,X2 + Y2) = T (X1,X2) + T (X1, Y2).

In the case of a symmetric tensor, T (X,Y ) = T (Y,X), it suffices to
show the previous relations only in the first argument.

If we like to show that a tensor, or a tensorial expression vanishes,
then in the virtue of the previous properties it suffices to show that
it vanishes in just one system of coordinates.
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7.9 Riemannian Manifolds

A Riemannian manifold is a manifold on which one is able to measure
distances between points, angles between vectors, length of curves and
volumes. Roughly speaking, it is a manifold endowed with a metric
structure. The precise definitions are stated in the following.

Definition 7.9.1 A Riemannian metric g on a differentiable mani-
fold M is a symmetric, positive definite 2-covariant tensor field.
A Riemannian manifold is a differentiable manifold M endowed with
a Riemannian metric g.

A Riemannian manifold will be denoted from now on by the pair
(M,g). The Riemannian metric g can be considered as a positive def-
inite scalar product gp : TpM ×TpM → R that depends differentially
on the point p ∈M . In local coordinates we write

g = gij dx
idxj , (7.9.13)

with gij = gji = g(∂i, ∂j). The Riemannian metric g acts on a pair of
vector fields as g(X,Y ) = gijX

iY j , where we assume the summation
convention over the repeated indices.

The most obvious example of Riemannian manifold is the n-
dimensional Euclidean space En = (Rn, δij), which induces the scalar
product 〈X,Y 〉 =

∑
iX

iY i.

It can be proved that any differentiable manifold has a Rieman-
nian metric structure. The idea of this construction is that a Rieman-
nian manifold can be seen as a collection of local charts that resemble
the Euclidean space E

n. Using methods of global analysis, one can
unify this local metrics into a global defined metric tensor, see, for
instance, Auslander and MacKenzie [9].

A metric g induces a natural bijective correspondence between 1-
forms and vector fields on a Riemannian manifoldM . If X is a vector
field, then one may associate with it the 1-form ω such that

ω(Y ) = g(Y,X), ∀Y ∈ X (M). (7.9.14)

In local coordinates this becomes ωk = gjkX
j , where ω = ωidx

i and
X = Xj ∂

∂xj
.
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7.10 Linear Connections

A linear connection allows differentiation of a function, a vector field,
or, in general, a tensor with respect to a given vector field. It can be
seen as an extension of the directional derivative from the Euclidean
case. The precise definition follows. Recall that X (M) denotes the set
of vector fields on M .

Definition 7.10.1 A linear connection ∇ on a differentiable man-
ifold M is a map ∇ : X (M) × X (M) → X (M) with the following
properties:

1) ∇XY is F(M)-linear in X;

2) ∇XY is R-linear in Y ;

3) it satisfies the Leibniz rule:

∇X(fY ) = (Xf)Y + f ∇XY, ∀f ∈ F(M).

For fixed vector fields X and Y , the object ∇XY is also a vector field
on M , which measures the vector rate change of Y in the direction
of X. In a local coordinates system (x1, . . . , xn) we can write

∇∂i∂j = Γkij∂k,

where Γkij are the coordinates of the connection with respect to the

local base {∂i}, where ∂i =
∂

∂xi
. If X = Xi∂i and Y = Y j∂j , then a

straightforward computation provides the formula

∇XY = (∇XY )k∂k,

where (∇XY )k = Xi
(
∂iY

k + Y jΓkij

)
, with summation over i and j.

An example of a linear connection on the Euclidean space R
n is

given by ∇XY = X(Y j)ej , where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth
basis vector on R

n and Y = (Y 1, . . . , Y n) = Y jej . The coordinates

of this connection are zero, Γ
k
ij = 0.

A connection can be also used to differentiate tensors. If T is an
r-covariant tensor field, we may differentiate it along a vector field X
with respect to the linear connection ∇ as

(∇XT )(Y1, . . . , Yr) = X T (Y1, . . . , Yr)−
n∑
i=1

T (Y1, . . . ,∇XYi, . . . , Yr).

(7.10.15)
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In particular, we have the following concept:

Definition 7.10.2 Let g be the Riemannian metric tensor. A linear
connection ∇ is called metric connection if g is parallel with respect
to ∇, i.e.,

∇Z g = 0, ∀Z ∈ X (M). (7.10.16)

This can be stated equivalently as

Z g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ), ∀X,Y,Z ∈ X (M).
(7.10.17)

Let X = ∂i, Y = Y j∂j and Z = Zk∂k. Choosing X =
∂

∂xi
, Y =

∂

∂xj
,

and Z =
∂

∂xk
, a straightforward computation transforms (7.10.17)

into

∂kgij = Γpkigpj + Γrkjgir. (7.10.18)

It is worth noting that given the metric coefficients gij, there are
n2(n+1)

2 linear equations in Γpki of type (7.10.18). The total number
of unknowns Γpki is n3, where n is the dimension of the manifold.

The excess ε(n) = n3 − n2(n+1)
2 = n2(n−1)

2 represents the number
of arbitrary functions the family of linear connections depends on.
For instance, on a curve there is only one linear connection, because
ε(1) = 0, but on a surface, the family of linear connections depends
on ε(2) = 2 arbitrary functions.

A linear connection is described by two other tensors, the torsion
and curvature, which are defined shortly.

Definition 7.10.3 Let ∇ be a linear connection. The torsion is de-
fined as

T : X (M)× X (M) → X (M)

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (7.10.19)

The torsion measures the noncommutativity of the derivation with
respect to two vector fields. The last term, [X,Y ], is necessary because
it confers tensorial properties to T (·, ·):

T (fX, hY ) = fhT (X,Y ), ∀X,Y,Z ∈ X (M),∀f, h ∈ F(M)

T (X,Y + Z) = T (X,Y ) + T (X,Z).
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Since T (X,Y ) = −T (Y,X), then T is a 2-covariant skew-symmetric
tensor. Since in local coordinates we have

Tij = T (∂i, ∂j) = ∇∂i∂j −∇∂j∂i − [∂i, ∂j ]︸ ︷︷ ︸
=0

=
(
Γkij − Γkji

)
∂k,

it follows that the torsion coordinates are given by T kij = Γkij − Γkji.
A connection ∇ is called torsion-free if T = 0. This can be described
equivalently as Γkij = Γkji, which is a symmetry relation for the con-
nection coefficients. This is the reason why these type of connections

are also called symmetric. There are exactly n2(n−1)
2 equations of type

T kij = T kji, which is exactly the excess ε(n). If these are considered as
constraints applied to the linear system of equations (7.10.18), it fol-
lows that there is only one solution to this system. This leads to a
unique linear connection, which is both symmetric and metric. We
shall get in more detail regarding this issue later, when discussing the
Levi–Civita connection.

Definition 7.10.4 The curvature of the linear connection ∇ is
given by

R : X (M)× X (M)× X (M) → X (M)

R(X,Y,Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (7.10.20)

If we write the curvature as

R(X,Y,Z) =
(
[∇X ,∇Y ]−∇[X,Y ]

)
Z,

it follows that R is a measure of the noncommutativity of the con-
nections with respect to X and Y . It can be shown that R satisfies
the following properties

R(f1X, f2Y, f3Z) = f1f2f3R(X,Y,Z)

R(X1 +X2, Y, Z) = R(X1, Y, Z) +R(X2, Y, Z)

R(X,Y1 + Y2, Z) = R(X,Y1, Z) +R(X,Y2, Z)

R(X,Y,Z1 + Z2) = R(X,Y,Z1) +R(X,Y,Z2),

for all fi ∈ F(M) and Xi, Yj, Zk ∈ X (M), so that R becomes a 3-
covariant tensor field. The tensor R is skew-symmetric in the first
pair of arguments, i.e., R(X,Y,Z) = −R(Y,X,Z). Since the first
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pair is more special, the curvature tensor is sometimes denoted by
R(X,Y )Z. In a local system of coordinates we write

R
( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
= Rpijk

∂

∂xp
.

Definition 7.10.5 The Ricci curvature associated with the linear
connection ∇ is given by

Ric : X (M)× X (M) → F(M),

Ric(Y,Z) = Trace
(
X → R(X,Y )Z

)
.

This means that if {E1, . . . En} is an orthonormal set of tangent vec-
tors at p, then Ric(X,Y )p =

∑n
j=1 g

(
R(Ej ,X, Y ), Ej

)
. In local co-

ordinates we write Rij = Ric(∂i, ∂j). We can show that Rij = Rkikj ,
with summation over k, see Problem 7.14. It is worth noting that Ric
is a 2-covariant tensor. It will play an important role in the study of
equiaffine connections in Chap. 9.

7.11 Levi–Civita Connection

One of the most remarkable facts of Riemannian geometry is the
existence and uniqueness of a metric connection that has zero torsion.
This is called the Levi–Civita connection of the Riemannian manifold
(M,g), see, for instance, O’Neill [66]. Sometimes this is also called the
Riemannian connection and will be denoted throughout the book by
∇(0). For the purpose of this section we shall keep the notation ∇.

The next theorem, also known as the fundamental lemma of Rie-
mannian geometry, provides the Levi–Civita connection as an explicit
expression in terms of the Riemannian metric g. This is an useful re-
sult that allows to eliminate the connection from a formula and write
it in terms of the Riemannian metric only.

Theorem 7.11.1 On a Riemannian manifold there is a unique
torsion-free, metric connection ∇. Furthermore, ∇ is given by the
following Koszul formula

2g(∇XY,Z) = X g(Y,Z) + Y g(X,Z) − Z g(X,Y )

+g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z],X).

(7.11.21)
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Proof: The proof has two parts, the existence and uniqueness.

Existence: We shall show that connection ∇ defined by formula
(7.11.21) is a metric and torsion-free connection.

First we need to show that ∇ is a linear connection. Using the
properties of vector fields and Lie brackets we can show by a direct
computation that

2g(∇fXY,Z) = 2fg(∇XY,Z), ∀Z ∈ X (M),

so ∇fXY = f∇XY , ∀X,Y ∈ X (M), i.e., ∇ is F(M)-linear in the
first argument. Next we check the second property of connections:

2g(∇X (fY ), Z) = X g(fY,Z) + fY g(X,Z) − Z g(X, fY )

+g([X, fY ], Z)− g([X,Z], fY )− g([fY,Z],X)

= X(f)g(Y,Z) + fXg(Y,Z) + fY g(X,Z)

−Z(f)g(X,Y )− fZg(X,Y )

+fg([X,Y ], Z) +X(f)g(Y,Z) − fg([X,Z], Y )

−fg([Y,Z],X) + Z(f)g(Y,X)

= 2f g(∇XY,Z) + 2X(f)g(Y,Z)

= 2g(f∇XY +X(f)Y,Z).

Dropping the Z-argument yields Leibniz formula. Therefore, ∇ is a
linear connection.

The next computation verifies that the connection is torsion-free.
Using (7.11.21) yields

2g(T (X,Y ), Z)) = 2g(∇XY,Z)− 2g(∇YX,Z)− 2g([X,Y ], Z)

= Xg(Y,Z) + Y g(X,Z) − Zg(X,Y )

+g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z],X)

−Y g(X,Z) −Xg(Y,Z) + Zg(Y,X)

−g([Y,X], Z) + g([Y,Z],X) + g([X,Z], Y )

−2g([X,Y ], Z)

= g(2[X,Y ]− 2[X,Y ], Z) = 0, ∀Z ∈ X (M).

Dropping the vector field Z and using that g(·, ·) is non-degenerate
yields T (X,Y ) = 0, for all X,Y ∈ X (M).
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Applying formula (7.11.21) twice and then cancelling in pairs, we
have

2g(∇ZX,Y ) + 2g(X,∇ZY )

= Z g(X,Y ) +X g(Z, Y )− Y g(Z,X) + g([Z,X], Y )

−g([Z, Y ],X) − g([X,Y ], Z)

+Z g(Y,X) + Y g(Z,X) −X g(Z, Y ) + g([Z, Y ],X)

−g([Z,X], Y )− g([Y,X], Z)

= 2Zg(X,Y ).

Therefore g(∇ZX,Y ) + g(X,∇ZY ) = Zg(X,Y ), i.e., ∇ is a metric
connection.

Uniqueness:We need to prove that any metric and symmetric connec-
tion ∇ is given by formula (7.11.21). It suffices to do the verification
in a local system of coordinates (x1, . . . , xn). Let X = ∂i, Y = ∂j ,
Z = ∂k. Using Γkij = g(∇∂i∂j , ∂k) and gij = g(∂i, ∂j), then formula
(7.11.21) becomes

2Γpijgpk = ∂igjk + ∂jgik − ∂kgij . (7.11.22)

Writing that ∇ is a metric connection in three different ways, using
cyclic permutation of indices, see formula (7.10.18), we have

∂igjk = Γpijgpk + Γrikgjr

∂jgki = Γpjkgpi + Γrjigkr

∂kgij = Γpkigpj + Γrkjgir.

Adding the first two equations and subtracting the last, using the
symmetry Γkij = Γkji, yields exactly the Eq. (7.11.22). This ends the
proof of uniqueness.

Solving for the connection coefficient in (7.11.22) we obtain

Γpij =
1

2
gpk
(
∂igjk + ∂jgik − ∂kgij

)
, (7.11.23)

where (gpk) denotes the inverse matrix of (gij). The coordinates Γpij
of the Levi–Civita connection, see (7.11.23), are called the Christof-
fel symbols of second kind. The Christoffel symbols of first kind are
obtained lowering the indices

Γij,k = Γpijgpk.
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Conversely, if the coordinates of a linear connection on a Riemannian
manifold (M,g) are given by formula (7.11.23), then the connection
has to be the Levi–Civita connection.

The curvature tensor of type (1, 3) associated with the Levi–Civita
connection by formula (7.10.20) is called the Riemann curvature ten-
sor of type (1, 3). If in local coordinates we have R(∂i, ∂j)∂k = Rpijk∂p,

then the coordinate RPijk can be expressed in terms of Christoffel sym-
bols as

Rrijk = ∂iΓ
r
jk − ∂jΓ

r
ik + ΓrihΓ

h
jk − ΓrjhΓ

h
ik.

In Riemannian geometry the following (0, 4)-type curvature tensor is
also useful

R : X (M)× X (M)× X (M)× X (M) → F(M),

R(X,Y,Z,W ) = g(R(X,Y,Z),W ).

If in local coordinates we write R(∂i, ∂j , ∂k, ∂l) = Rijkl, then we have
Rijkl = Rpijkgpl. The coordinates Rijkl satisfy several relations, the
most useful being provided in the following:

1. Skew symmetry in the first and second pair:

Rijkl = −Rjikl = −Rijlk.

2. Interchange symmetry between pairs: Rijkl = Rklij.

3. First Bianchi identity: Rijkl +Riklj +Riljk = 0.

Another important 2-covariant tensor is the Ricci tensor, which
is defined by the contraction

Ric(X,Y ) = Trace
(
V → R(X,V, Y )

)
=Trace

(
V → R(V,X, Y )

)
.

It can be shown that the Ricci tensor associated with the Levi–Civita
connection is symmetric, R(X,Y ) = R(Y,X).

For more details about Calculus and Differential Geometry on
differentiable manifolds the reader may consult Spivak [77, 78], and
doCarmo [34, 35].
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7.12 Problems

7.1. Let p ∈M be a point on the differentiable manifoldM , and let
Vp be a neighborhood of p. Show that there is a differentiable
function f ∈ F(M) such that f(p) = 1 and f(x) = 0 if x /∈ Vp.

7.2. Let p be a point on the differentiable manifoldM . If f ∈ F(M)
has a local extremum at p, then Xp(f) = 0, for any tangent
vector Xp at p.

7.3. (a) Let X,Y ∈ X (M) be two vector fields on the differen-
tiable manifold M . Prove that the Lie bracket [X,Y ] is
a vector field on M , which in local coordinates can be
written as

[X,Y ] =

n∑
i,j=1

(∂Y i

∂xj
Xj − ∂Xi

∂xj
Y j
) ∂

∂xi
,

where X =
∑

iX
i ∂
∂xi

and Y =
∑

i Y
i ∂
∂xi

.

(b) Let M = R
2 and consider the vector fields X = x1x2 ∂

∂x1

and Y = x2 ∂
∂x2

. Show that [X,Y ] = −x1x2 ∂
∂x1

.

7.4. Let (M,g) be a Riemannian manifold. If ω = ωidx
i is a 1-form,

define the vector filed ω# = ωk∂xk , where ω
kgkr = ωr. Show

that g(ω#,X) = ω(X), ∀X ∈ X (M).

7.5. Show that the following properties of tangent vectors, Xp ∈
TpM , hold:

(i) Xp(c) = 0, for any constant c;

(ii) Xp(f
2) = 2fXp(f), ∀f ∈ F(M);

(iii) If f, g ∈ F(M) such that f(p) = g(p) = 0, then Xp(fg)=0;

7.6. Let M � R
n2

be the manifold of square n × n-matrices, and
Xa(x) = a · x, Ya(x) = a · x− x · a be two vector fields on it,
where a, x ∈M .

(a) Compute the flow of the field Va. Find first integrals for
this flow.

(b) Compute the commutator [Xa,Xb] for two vector fields Xa

and Xb, defined by two matrices a, b ∈M .
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(c) The same questions relative to the vector field Va(x).

7.7. A vector field X on a manifold M is called complete, if any
of its trajectory can be infinitely continued forward and back-
ward.

(a) Prove that on a compact manifold any vector field is com-
plete.

(b) Show that on any manifold M and any vector field X on
it, there exists a positive function f ∈ C1(M) such that
the vector field fX is complete.

7.8. Let (M,g) be a Riemannian manifold and the corresponding
volume form ω ∈ Λn(M). Prove that for any 2n vector fields
X1, · · · ,Xn, Y1, · · · , Yn, we have

ω(X1, · · · ,Xn) · ω(Y1, · · · , Yn) = det[g(Xi, Yj)].

7.9. (Hessian of Rosenbrok’s banana function) Let us consider the
Riemannian manifold (R2, g), with the metric

g(x1, x2) =

(
1 + 4(x1)2 −2x1

−2x1 1

)
.

Show that the Hessian of the Rosenbrok’s banana function

f : R2 → R, f(x1, x2) = 100(x2 − (x1)2) + (1− x1)2

is a Riemannian metric.

7.10. Let f : Rn → R be a C3-function such that its HessianHess(f)
is positive definite. From the Euclidean space (Rn, δij) we pass
to the Riemannian manifold (R2,Hess(f)). Show that the
equations of geodesics in this new manifold are

2
∂2f

∂xi∂xk
(x(t)) ẍi(t) +

∂3f

∂xi∂xj∂xk
(x(t)) ẋi(t) ẋj(t) = 0.

7.11. (a) Find the Christoffel coefficients on the Riemannian mani-

fold (R2
+, g), where g = diag

(
1

x2
,
1

y2

)
.
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(b) Compute the Hessian of the function

f : R2
+ → R, f(x, y) =

1

x
+

√
x+

1

y
+

√
y,

with respect to g.

(c) Find the geodesics of the Riemannian manifold (R2
+,

Hessg(f)).

7.12. Find the geodesics of the Riemannian manifold

(R2
+, g(x, y)),

when g is a posinomial metric

g(x, y) =

(
a11x

α11yβ11 a12x
α12yβ12

a12x
α12yβ12 a22x

α22yβ22

)
.

7.13. Let (M,g) be a Riemannian manifold.

(a) Show that Rrijk = −Rrjik.
(b) Assume dimM = 1. Show that M is flat, i.e., R = 0.

7.14. Let Rij = Ric(∂i, ∂j) be the components of the Ricci tensor
in local coordinates. Show that Rij = Rkikj , with summation
over k.

7.13 Historical Remarks

Differential Geometry started with the study of curves since around
1700s. Among the first mathematicians who had investigated the the-
ory of curves were Euler, Monge, Venant, Serret, and Darboux. In
1827 Gauss published his celebrated work Disquisitiones generales
circa superficies curvas, where he introduced the first and the sec-
ond fundamental forms on surfaces in R

3 and had shown that they
characterize the surface up to a rigid motion. Gauss proved that the
curvature is an intrinsic invariant of the surface, result that is called
Theorema Egregium. The name emphasizes its profound philosophical
implications, since the curvature is usually perceived as an extrinsic
object.

Gauss’ ideas of intrinsic geometry of a surface influenced his pupil,
Riemann, who at only 28, presents his Ph.D. dissertation Ueber die
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Hypothesen welche der Geometrie zu Grunde liegen at Göttingen in
1954. Riemann associated a metric with each hypersurface, fact that
led to the concept of Riemannian manifold later. These results flour-
ished into an elegant theory, which generalized Gauss’ results on man-
ifolds.

However, this theory requires laborious computations, fact that
needed the construction of the tensorial formalism. Ricci developed
the tensorial calculus on manifolds and Levi–Civita introduced the
linear connection with the same name in 1900s.

Differential geometry has important consequences and applica-
tions. First, it closed the celebrated problem of the 5th postulate of
Euclid. This was accomplished by finding examples of non-Euclidean
spaces among Riemannian manifolds.

Another application is the use of differential geometry to Gen-
eral Theory of Relativity. Einstein’s theory published in 1917 used
tensorial calculus to write the equations of space-time invariantly.
This way, the concept of inertial system from Newtonian mechanics
is generalized and the new theory was able to explain the Mercury’s
perihelion advance and the light deflection about sun.

If Lorentz geometry, which is the geometry of a manifold endowed
with a space-time type metric, is a good environment for relativ-
ity theory, then Riemannian geometry was proved to be suited for
the Classical Mechanics, see Abraham and Marsden [1] or Calin and
Chang [22]. The conservation laws of Newtonian Physics can be writ-
ten in an elegant way in terms of the Riemannian Geometry language.

Another direction where Differential Geometry has recently been
applied is the geometric theory of differential equations. Each differ-
ential operator is associated with a principal symbol, which can be
considered as a Hamiltonian. This defines a metric on an associated
manifold. The study of heat kernels and fundamental solutions can
be geometrically based on the study of geodesics on the associated
Riemannian manifold. The interested reader can consult this topic in
Calin et al. [23] and [24]. For convex functions and optimization meth-
ods on Riemannian manifolds the reader is referred to Udriste [81].

Another related branch of Riemannian Geometry has been de-
veloped over the last several decades. It is known under the names
of SubRiemannian Geometry, Non-holonomic geometry, or Carnot-
Carathéodory geometry. It is related with Quantum Mechanics be-
havior of particles and Thermodynamics, see Calin and Chang [23].
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The goal of the present book is to deal with one of the branches
of Differential Geometry which applies to Information Theory, Prob-
ability and Statistics. This is known under the name of Information
Geometry. Its main object of study is the statistical manifold, which
is a Riemannian manifold that holds a dualistic structure and studies
the relationship between dual geometric objects. All the next chap-
ters deal with notions which culminate with the study of statistical
manifolds.



Chapter 8

Dualistic Structure

Statistical manifolds are abstract generalizations of statistical models.
Even if a statistical manifold is treated as a purely geometric object,
however, the motivation for the definitions is inspired from statistical
models. In this new framework, the manifold of density functions is
replaced by an arbitrary Riemannian manifold M , and the Fisher
information matrix is replaced by the Riemannian metric g of the
manifold M . The dual connections ∇(−1) and ∇(1) are replaced by
a pair of dual connections ∇ and ∇∗. The skewness tensor, which
measures the cummulants of the third order on a statistical model,
is replaced by a 3-covariant skewness tensor.

There are at least three equivalent ways of defining a statistical
manifold. One of them is to define a pair of dual connections ∇ and
∇∗ on a Riemannian manifold (M,g), so the statistical manifold is
represented by the quadruplet (M,g,∇,∇∗). Another way is to first
define a totally symmetric skewness tensor C on a Riemannian man-
ifold (M,g), and then define the statistical manifold by the triplet
(M,g,C). In this case the dual connections are deduced from the
skewness tensor C. A third way of introducing a statistical structure
is to deduct the Riemannian metric and the conjugate connections
from a given a contrast function, which is a non-symmetrical “prox-
imity” measure between points. We shall deal with all these different
approaches in the next few chapters of the book.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 223
DOI 10.1007/978-3-319-07779-6 8,
© Springer International Publishing Switzerland 2014

223



224 Chapter 8. Dualistic Structure

The main idea of this chapter is to study the relationship between
geometric objects induced by dual connections, such as dual curvature
tensors, dual Hessians, dual Laplacians, dual volume elements, dual
divergences, etc. There are interesting properties emerging from the
comparison of the aforementioned dual geometric objects, and this
constitutes our main method of approach.

8.1 Dual Connections

In this section we shall define and investigate the main properties of
dual connections. These connections were first introduced by A. P.
Norden in affine differential geometry literature under the name of
“conjugate connections,” see Simon [76]. They had also been indepen-
dently introduced by Nagaoka and Amari [61] and used by Lauritzen
[54] in the definition of statistical structure. Recall that linear con-
nections are introduced in Chap. 7, Definition 7.10.1.

Definition 8.1.1 Let (M,g) be a Riemannian manifold. Two linear
connections ∇ and ∇∗ onM are called dual, with respect to the metric
g, if

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ), ∀X,Y,Z ∈ X (M).

(8.1.1)

In local coordinates (x1, . . . , xn) the duality condition can be ex-
pressed as

∂xkgij = Γki,j + Γ∗
kj,i, (8.1.2)

where Γki,j = gjmΓ
m
ki and Γ∗

kj,i = gimΓ
∗m
kj are the coordinate compo-

nents of connections ∇ and ∇∗, respectively. We note that the PDE
system (8.1.2) must be completely integrable.

We note that dual connections are a weaker version of metrical
connections, see Definition 7.10.2, Chap. 7. In particular, a metrical
linear connection is self-dual.

It is worth noting that since g is parallel neither with respect to ∇
nor to ∇∗, then raising and lowering indices with g does not commute
with the covariant derivative produced by ∇, respectively ∇∗.

The triple (g,∇,∇∗) is called a dualistic structure on M . A sta-
tistical manifold is a Riemannian manifold endowed with a dualistic
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structure, i.e., it is a quadruple (M,g,∇,∇∗). For instance, any sta-
tistical model S with the Fisher metric g and a pair of α-connections,(
∇(α), ∇(−α)), is a statistical manifold.

The next few results deal with basic properties of dual connec-
tions, such as existence, uniqueness, involutivity, torsion, and curva-
ture tensors.

Proposition 8.1.2 Given a linear connection ∇ on the Riemannian
manifold (M,g), there is a unique connection ∇∗ dual to ∇.

Proof: It suffices to prove the property locally, in a coordinates chart.
Existence: Since the connection ∇ is given, its components, Γij,l, are
known. Define Γ∗

ij,l = ∂xiglj − Γil,j and Γ∗k
ij = Γ∗

ij,lg
lk, and construct

the dual connection by

∇∗
∂xi
∂xj = Γ∗k

ij ∂xk .

In the virtue of relation (8.1.2), it follows that ∇∗ is dual to ∇.
Uniqueness: From relation (8.1.2) the connection components Γ∗

kj,i of
∇∗ are uniquely determined given the metric gij and the connection
coefficients Γki,j of ∇.

Proposition 8.1.3 (i) Duality is involutive, i.e., (∇∗)∗ = ∇.

(ii) ∇ is a metrical connection on the Riemannian manifold (M,g)
if and only if ∇ = ∇∗.

Proof:

(i) It follows from the symmetry in the indices i and j of the equa-
tion (8.1.2).

(ii) The fact that ∇ is a metrical connection is written as

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ), ∀X,Y,Z ∈ X (M),
(8.1.3)

Then subtracting (8.1.1) and (8.1.3) yields

g(X,∇ZY ) = g(X,∇∗
ZY ), ∀X,Y,Z ∈ X (M),

which is equivalent to ∇ = ∇∗.
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Let ∇ be a general connection. Recall the (1, 2)-torsion field and
the (1, 3)–curvature tensor field, which are defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

R(X,Y,Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

These can be written locally as

T kij = Γkij − Γkji (8.1.4)

Rrijk = ∂iΓ
r
jk − ∂jΓ

r
ik + ΓrihΓ

h
jk − ΓrjhΓ

h
ik, (8.1.5)

with the tensor components given by

T (∂i, ∂j) = T kij∂k, R(∂i, ∂j , ∂k) = Rrijk∂r,

where we used the notation ∂i = ∂xi .
Recall that a connection ∇ has the constant curvature K if for

any vector fields X, Y , Z the following relation holds

R(X,Y )Z = K{g(Y,Z)X − g(X,Z)Y }. (8.1.6)

The relationship between the curvatures of two dual connections is
given by the next result.

Proposition 8.1.4 Let R and R∗ be the curvature tensors of ∇ and
∇∗, respectively. Then

(i) g(R(X,Y )Z,W ) + g(R∗(X,Y )W,Z) = 0.

(ii) (M,g,∇) has constant curvature if and only if (M,g,∇∗) has
constant curvature, and in this case the curvature tensors are
equal. In particular, R = 0 if and only if R∗ = 0.

Proof:

(i) Since the relation is linear in the arguments X,Y,W, and Z,
it suffices to prove it only on a basis. Therefore we assume
X,Y,W,Z ∈ { ∂

∂x1
, . . . , ∂

∂xn }, and take computational advantage
of the following vanishing Lie brackets

[X,Y ] = [Y,W ] = [W,Z] = · · · = 0.
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From the definition of the curvature tensor and Eq. (8.1.1), we
find the following equivalences

0 = g(R(X,Y )Z,W ) + g(R∗(X,Y )W,Z) ⇐⇒
0 = g

(∇X∇Y Z −∇Y ∇XZ,W
)
+ g

(∇∗
X∇∗

Y W −∇∗
Y ∇∗

XW,Z
)⇐⇒

0 = g
(∇X∇Y Z,W

)− g
(∇Y ∇XZ,W

)
+ g

(∇∗
X∇∗

Y W,Z
)

−g
(∇∗

Y ∇∗
XW,Z

)⇐⇒
0 = Xg

(∇Y Z,W
)− g

(∇Y Z,∇∗
XW

)− Y g
(∇XZ,W

)

+g
(∇XZ,∇∗

Y W
)

+Xg
(∇∗

Y W,Z
)− g

(∇∗
Y W,∇XZ

)− Y g
(∇∗

XW,Z
)

+g
(∇∗

XW,∇Y Z
)⇐⇒

0 = Xg
(∇Y Z,W

)− Y g
(∇XZ,W

)
+Xg

(∇∗
Y W,Z

)

−Y g
(∇∗

XW,Z
)⇐⇒

0 = XY g
(
Z,W

)−Xg
(
Z,∇∗

Y W
)− Y Xg

(
Z,W

)− Y g
(
Z,∇∗

XW
)

+Xg
(∇∗

Y W,Z
)− Y g

(∇∗
XW,Z

)⇐⇒
0 = [X, Y ]g

(
Z,W

)
,

which holds true, since [X,Y ] = 0.

(ii) Assume (M,g,∇) has the constant curvature equal to K. Then
using (i), we have

−g
(
R∗(X,Y )W,Z

)
= g

(
R(X,Y )Z,W

)

= K
(
g
(
Y,Z

)
g
(
X,W

)− g
(
X,Z

)
g
(
Y,W

))

= −K
(
g
(
Y,W

)
g
(
X,Z

)− g
(
X,W

)
g
(
Y,Z

))
.

Dropping the argument Z yields

R∗(X,Y )W = K
(
g
(
Y,W

)
X − g

(
X,W

)
Y
)
,

which means that the tensor (M,g,∇∗) has constant curvature K.

Remark 8.1.5 (i) The connection ∇ has zero curvature if and
only if the dual connection ∇∗ has zero curvature.

(ii) In local coordinates we have Rijkl = −R∗
ijlk. We note that the

antisymmetry works for the exchange in the first pair of indices,
Rijkl = −Rjikl, R∗

ijkl = −R∗
jikl, but it doesn’t work for the

second pair of indices.
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8.2 Dual Flatness

A connection ∇ is called flat in a given system of coordinates if its
components vanish, i.e., Γkij = 0. Therefore, if X = Xi∂i and Y =

Y j∂j are two vector fields, then the covariant derivative with respect
to a flat connection is

∇XY = Xi(∂iY
k + Y jΓkij)∂k = Xi∂iY

k∂k = X(Y k)∂k.

Relations (8.1.4)–(8.1.5) imply that the torsion and the curvature of a
flat connection are zero. It can be shown that the converse is partially
true in the following sense: if the torsion and curvature are zero,
T = 0, R = 0, then for any point p, there is an open neighborhood U
of p such that ∇ is flat on U .

A statistical manifold (S, g,∇,∇∗) is called dually flat if both
dual connections ∇ and ∇∗ are flat. Consequently, on a dually flat
manifold we have T = T ∗ = 0 and R = R∗ = 0.

Proposition 8.2.1 Let (S, g,∇,∇∗) be a dually flat statistical man-
ifold.

(i) Then, in any local coordinate system, the metric coefficients gij
are constant.

(ii) If γ is either a ∇- or ∇∗-autoparallel curve, then γk(s) = αks+
βk, with αk, βk constants.

Proof:

(i) Substituting Γkij = Γ∗k
ij = 0 in relation (8.1.2) yields ∂kgij = 0,

and hence the metric coefficients gij do not depend on x.

(ii) The ∇-autoparallel curves are characterized by the equation
γ̈k(s) + Γkij(γ(s))γ̇

i(s)γ̇j(s) = 0, which becomes γ̈k(s) = 0; this

implies the degree one in s for each component γk(s).

8.3 Dual Connections in Strong Sense

Asking for two dual connections to be both torsion-free sounds like
a strong requirement. This section tries to relax this condition by
assuming that dual connections satisfy a dual symmetry relation that
replaces the torsion-free conditions for each connection. However, we
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shall show that all dual connections, which are also dual symmetric,
coincide with the Levi–Civita connection, and hence their study does
not bring any novelty to the theory. This is the reason why the dual
symmetry concept will be dropped in the next sections and replaced
by torsion-free dual connections.

The following definition can be seen as an extension of the defi-
nition of the Levi–Civita connection.

Definition 8.3.1 The connection ∇ is dual to ∇∗ in strong sense,
with respect to the metric g, if

(1) Zg(X,Y ) = g
(
∇ZX,Y

)
+ g

(
X,∇∗

ZY
)

(2) ∇XY −∇∗
YX = [X,Y ], for all X,Y,Z ∈ X (M).

The second condition can be interpreted as a dual symmetry be-
tween the connections ∇ and ∇∗.

It follows that the relations between the connection components
of a pair of dual connections in strong sense is given by

∂xkgij = Γki,j + Γ∗
kj,i (8.3.7)

Γij,k = Γ∗
ji,k. (8.3.8)

Let T and T ∗ be the torsion tensors associated with the connec-
tions ∇ and ∇∗. From the torsion formula and the definition of dual
connections in strong sense, we have

T (X,Y ) + T ∗(X,Y ) = ∇XY −∇YX − [X,Y ]

+∇∗
XY −∇∗

YX − [X,Y ]

=
(
∇XY −∇∗

YX − [X,Y ]
)

−
(
∇YX −∇∗

XY − [Y,X]
)

= 0.

In the following we shall show that, in fact, each of the foregoing
torsions vanishes. This will imply that dual symmetry is a stronger
condition than torsion-freeness for both connections.

Proposition 8.3.2 If ∇ has a dual connection ∇∗ in strong sense,
then its torsion is zero.
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Proof: Let ∇∗ be the dual connection of ∇ in strong sense. Then

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY )

= g(∇ZX,Y ) + g(X,∇Y Z + [Z, Y ]) (8.3.9)

Zg(Y,X) = g(∇ZY,X) + g(Y,∇∗
ZX)

= g(∇ZY,X) + g(Y,∇XZ + [Z,X]). (8.3.10)

Subtracting relations (8.3.9) and (8.3.10) yields

0 = g(∇ZX −∇XZ − [Z,X], Y ) + g(X,∇Y Z −∇ZY − [Y,Z])

= g(T (Z,X), Y ) + g(X,T (Y,Z)).

By cyclic permutations, we have

g(X,T (Y,Z)) + g(Y, T (Z,X)) = 0

g(Y, T (Z,X)) + g(Z, T (X,Y )) = 0

g(Z, T (X,Y )) + g(X,T (Y,Z)) = 0.

Adding the first two relations and subtracting the third one yields

2g(Y, T (Z,X)) = 0, ∀Y ∈ X (M),

which implies T (Z,X) = 0 for any vector fields X and Z. This leads
to the desired result, T = 0.

Corollary 8.3.3 If ∇ and ∇∗ are dual in strong sense, then T =
T ∗ = 0.

The Levi–Civita connection ∇ is strong auto-dual, i.e., ∇∗ = ∇ in
the strong sense. The next result shows that the converse statement
also holds true.

Theorem 8.3.4 If ∇ and ∇∗ are dual connections in strong sense,
then ∇ = ∇∗, and hence ∇ is the Levi–Civita connection.

Proof: From Proposition 8.3.2 we have T = 0, or

∇XY −∇YX = [X,Y ].

From the definition of dual connections in strong sense we have

∇XY −∇∗
YX = [X,Y ].
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Subtracting the last two relations yields ∇YX = ∇∗
YX, for all vector

fields X and Y . Hence ∇ = ∇∗. Then ∇ is a metrical and torsion-free
connection, i.e., it is the Levi–Civita connection.

The previous proof was based on Proposition 8.3.2. In the follo-
wing we supply a direct proof using local coordinates. Substituting
(8.3.8) into (8.3.7) yields

∂xkgij = Γki,j + Γjk,i.

By circular permutations we have two similar relations

∂xigjk = Γij,k + Γki,j,

∂xjgki = Γjk,i + Γij,k.

Adding the last two relations and subtracting the first, after cance-
lations we get

Γij,k =
1

2

(
∂xigjk + ∂xjgki − ∂xkgij

)
,

which are the Christoffel symbols of first type associated with the

metric g. This means that Γij,k = Γ
(0)
ij,k, i.e., ∇ is the Levi–Civita

connection.

Theorem 8.3.4 inferres that the concept of strong duality is too
restrictive since it always implies the connection to be Levi–Civita.
This is the reason why in the following we shall assume that the
connections are just dual, but not dual in strong sense.

8.4 Relative Torsion Tensors

Consider two connections ∇ and ∇∗, which are not dual in strong
sense. Then it makes sense to define the nonzero amount

U(X,Y ) = ∇XY −∇∗
YX − [X,Y ].

Since U is R-linear in both variables, then for any smooth function
f ∈ F(M) we have

U(fX, Y ) = ∇fXY −∇∗
Y (fX)− [fX, Y ]

= f∇XY−f∇∗
YX−Y (f)X−

(
fXY − Y (f)X − fY X

)

= f
(
∇XY −∇∗

YX − [X,Y ]
)

= fU(X,Y ),
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U(X, fY ) = fU(X,Y ),

then the mapping U becomes a (1, 2)-type tensor on M .
The conjugate tensor to U is defined by

U∗(X,Y ) = ∇∗
XY −∇YX − [X,Y ].

The tensors U and U∗ are called the relative torsion tensors of
connections ∇ and ∇∗.

Proposition 8.4.1 The following properties hold:

(i) U∗(X,Y ) = −U(Y,X).

(ii) U∗∗ = U .

(iii) U + U∗ = T + T ∗, where T and T ∗ stand for the torsions of ∇
and ∇∗.

Proof:

(i) We have

U∗(X,Y ) = ∇∗
XY −∇YX − [X,Y ]

= −
(
∇YX −∇∗

XY + [X,Y ]
)

= −U(Y,X).

(ii) Using (1) yields

U∗∗(X,Y ) =
(
− U(Y,X)

)∗
= −U∗(Y,X)

= U(X,Y ).

(iii) Subtracting the relations

U(X,Y ) = ∇XY −∇∗
YX − [X,Y ]

U∗(X,Y ) = ∇∗
XY −∇YX − [X,Y ],

we find

(U + U∗)(X,Y ) =
(
∇XY −∇YX − [X,Y ]

)

+
(
∇∗
XY −∇∗

YX − [X,Y ]
)

= (T + T ∗)(X,Y ),

for any vector fields X and Y .
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Corollary 8.4.2 We have U + U∗ = 0 if and only if T + T ∗ = 0.

We note that the connections ∇, ∇∗ are dually symmetric if
U = 0. Then Theorem 8.3.4 can be reformulated equivalently as:

Proposition 8.4.3 If ∇ and ∇∗ are dual connections and U = 0,
then ∇ = ∇∗, so ∇ is the Levi–Civita connection.

In the rest of the chapter we shall assume that connections ∇ and
∇∗ are both torsion-less. We have seen that two dual connections,
which are dually symmetric, have zero torsions. The next result deals
with a partial converse of this result.

Proposition 8.4.4 Let ∇ and ∇∗ be two dual torsion-free connec-
tions, T = T ∗ = 0. Then the following symmetry relation holds

g
(
U∗(X,Y ), Z

)
= g

(
U∗(X,Z), Y

)
= g

(
U∗(Z, Y ),X

)

= g
(
U∗(Y,X), Z

)
.

The proof follows from the formula g
(
U∗(X,Y ), Z

)
= C(X,Y,Z)

and the total symmetry of C, facts proved at the end of Sect. 8.8.

8.5 Dual α-Connections

Let ∇ and ∇∗ be two dual torsion-free connections, with respect to
the metric g. Consider the one-parameter family of connections given
by the convex combination of the foregoing dual connections, i.e.,

∇(α) =
1 + α

2
∇∗ +

1− α

2
∇, α ∈ R. (8.5.11)

∇(α) will be called the α-connection, and will play a central role in
the study of statistical manifolds.

Proposition 8.5.1 ∇(α) and ∇(−α) are dual connections with re-
spect to the metric g.
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Proof: Using the duality of connections ∇ and ∇∗ and the definition
(8.5.11), we find

g(∇(α)
Z X,Y ) =

1 + α

2
g(∇∗

ZX,Y ) +
1− α

2
g(∇ZX,Y )

=
1 + α

2

(
Zg(X,Y )− g(X,∇ZY )

)

+
1− α

2
g(∇ZX,Y )

=
1 + α

2
Zg(X,Y )− 1 + α

2
g(X,∇ZY )

+
1− α

2
g(∇ZX,Y ). (8.5.12)

Similarly,

g(∇(−α)
Z Y,X)=

1− α

2
Zg(Y,X)−1 − α

2
g(Y,∇ZX)+

1 + α

2
g(∇ZY,X).

(8.5.13)
Adding (8.5.12) and (8.5.13) yields

g(∇(α)
Z X,Y ) + g(∇(−α)

Z Y,X) = Zg(X,Y ),

which shows that ∇(α) and ∇(−α) are dual connections.

Using (8.5.11), we have the following relations among the connec-
tion coefficients:

Γ
(α)
ij,k =

1 + α

2
Γ∗
ij,k +

1− α

2
Γij,k

=
1 + α

2

(
∂xigjk − Γik,j

)
+

1− α

2
Γij,k

=
1 + α

2
∂xigjk −

1 + α

2
Γik,j +

1− α

2
Γij,k. (8.5.14)

If ∇ is a flat connection, i.e., Γij,k = 0, then the coefficients of the
α-connection become

Γ
(α)
ij,k =

1 + α

2
∂xigjk. (8.5.15)

If ∇∗ is flat, then using (8.1.2) yields Γki,j = ∂xkgij and hence, by
using (8.5.14), we have

Γ
(α)
ij,k =

1 + α

2
∂xigjk −

1 + α

2
∂xigkj +

1− α

2
∂xigjk

=
1− α

2
∂xigjk. (8.5.16)
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The following particular values of α are of distinguished impor-
tance. Making α = −1, 0, 1 in (8.5.11) yields the following connec-
tions:

∇(1) = ∇∗, ∇(−1) = ∇, ∇(0) =
1

2
(∇+∇∗). (8.5.17)

These connections can be used to generate any α-connection. This
can be seen from the next result.

Proposition 8.5.2 The α-connection can be written in one of the
following equivalent forms

∇(α) = (1− α)∇(0) + α∇(1) (8.5.18)

= (1 + α)∇(0) − α∇(−1) (8.5.19)

= ∇(0) +
1

2
α
(
∇(1) −∇(−1)

)
. (8.5.20)

Proof: A straightforward computation, using (8.5.11) and the afore-
mentioned connections given by (8.5.17) produces the following rela-
tions

∇(α) =
1 + α

2
∇∗ +

1− α

2
∇

=
1 + α

2
∇∗ +

(1− α

2
∇+

1− α

2
∇∗
)
− 1− α

2
∇∗

= α∇∗ + (1− α)∇(0),

and hence (8.5.18) holds true. Also

∇(α) =
1 + α

2
∇∗ +

1− α

2
∇

=
(1 + α

2
∇∗ +

1 + α

2
∇
)
− 1 + α

2
∇+

1− α

2
∇

= (1 + α)∇(0) − α∇,

which leads to (8.5.19). Then

∇(α) =
1 + α

2
∇∗ +

1− α

2
∇ =

1

2
(∇∗ +∇) +

α

2
(∇∗ −∇)

= ∇(0) +
α

2
(∇(1) −∇(−1)),

and hence we have shown relation (8.5.20).
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Proposition 8.5.3 (i) If ∇ and ∇∗ are dual connections, with re-
spect to the metric g, then ∇(0) is a metrical connection.

(ii) If ∇ and ∇∗ are torsion-free dual connections, then ∇(0) is the
Levi–Civita connection.

Proof:

(i) Adding the following two relations

g(∇(0)
Z X,Y ) =

1

2
g(∇ZX,Y ) +

1

2
g(∇∗

ZX,Y )

g(X,∇(0)
Z Y ) =

1

2
g(X,∇ZY ) +

1

2
g(X,∇∗

ZY )

after using (8.1.1) yields

g(∇(0)
Z X,Y ) + g(X,∇(0)

Z Y ) =
1

2
Zg(X,Y ) +

1

2
Zg(X,Y )

= Zg(X,Y ),

which means that ∇(0) is a metrical connection.

(ii) The fact that ∇ and ∇∗ are torsion-free implies that ∇(0) has
the same property. Then using that the Levi–Civita connec-
tion is the only torsion-free and metrical connection, see Theo-
rem 7.11.1, we obtain the desired result.

8.6 Difference Tensor

Let ∇ and ∇∗ be two torsion-free dual connections. We define the
difference (1, 2)-tensor by

K(X,Y ) = ∇∗
XY −∇XY. (8.6.21)

For the definition and properties of tensors the reader is referred to
Sect. 7.8, Chap. 1.

The tensor K is symmetric since

K(X,Y )−K(Y,X) = (∇∗
XY −∇∗

YX) + (∇YX −∇XY )

= [X,Y ] + [Y,X] = 0.
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The symmetry and the tensor properties of K can be combined as

K(fX, Y ) = K(Y, fX) = K(X, fY ) = K(fY,X) = fK(X,Y ),

for any smooth function f .

The difference tensor K can be also expressed in terms of the
Levi–Civita connection ∇(0) = 1

2(∇ +∇∗) as in the following

K(X,Y ) = 2(∇(0)
X Y −∇XY ) = 2(∇∗

XY −∇(0)
X Y ).

Using

∇(−α) −∇(α) =
(1− α

2
∇+

1 + α

2
∇∗
)
−
(1 + α

2
∇+

1− α

2
∇∗
)

= α(∇∗ −∇) = αK,

it follows that the difference tensor can be written as

K(X,Y ) =
1

α

(
∇(−α)
X Y −∇(α)

X Y
)
.

Taking α→ 0 yields

K(X,Y ) = −2
d

dα
∇(α)|α=0,

which expresses the difference tensor as a derivative with respect to
parameter α.

The components of the difference tensor can be expressed in local
coordinates as K(∂i, ∂j) = Kk

ij∂k, where

Kk
ij = Γ∗

ij
k − Γkij = 2

(
Γ∗
ij
k − Γ

(0)
ij

k)
= 2

(
Γ
(0)
ij

k
− Γkij

)
.

Using (8.1.2) the previous relation can be further expressed as

Kk
ij = glk∂xigjl − Γkij − glkΓil,j.

8.7 Curvature Vector Field

The curvature vector field K associated with a pair of dual connec-
tions (∇,∇∗) is defined as the trace of the difference tensor

K = Trace
(
(X,Y ) → K(X,Y )

)
. (8.7.22)

If K = K�∂x	 is a representation of the curvature vector field in local
coordinates, then

K� = gijK�
ij = gij

(
Γ∗
ij
� − Γ�ij

)
. (8.7.23)

The vector fieldK will be used later in the formula of the α-Laplacian.
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8.8 Skewness Tensor

The (0, 3)-skewness tensor on the Riemannian manifold (M,g) with
respect to the linear connection ∇ is defined by C = ∇g, i.e.,

C(X,Y,Z) = (∇g)(X,Y,Z) = Xg(Y,Z) − g(∇XY,Z)− g(Y,∇XZ).
(8.8.24)

Componentwise, we have

Cijk = ∂xigjk − Γij,k − Γik,j, (8.8.25)

where Cijk = C(∂xi , ∂xj , ∂xk).
The following result deals with the tensorial relationship between

the difference tensor K and the skewness tensor C.

Proposition 8.8.1 The skewness tensor and the difference tensor
are related by

C(X,Y,Z) = g
(
K(X,Y ), Z

)
. (8.8.26)

Proof: We have on components

Kk
ij = Γ∗k

ij − Γkij

Cijk = ∂xigjk − Γij,k − Γik,j.

Contracting with the metric tensor yields

gklK
k
ij = Γ∗

ij,l − Γij,l = ∂xigjl − Γil,j − Γij,l = Cijl,

which is relation (8.8.26) in local coordinates.

Proposition 8.8.2 The skewness tensor is totally symmetric, i.e.,

Cijk = Cikj = Cjik = Cjki = Ckij = Ckji.

Proof: It suffices to prove only the symmetry in the first pair, Cijk =
Cjik, and the last pair, Cijk = Cikj. The symmetry in the first pair is
a consequence of the torsion-freeness of the dual connections. Since
the difference tensor K is symmetric, we have

Cijk − Cjik = g
(
K(∂i, ∂j), ∂k

)
− g

(
K(∂j , ∂i), ∂k

)

= g
(
K(∂i, ∂j)−K(∂j , ∂i), ∂k

)
= 0.
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In order to show the symmetry in the last pair, we write

Cijk − Cikj = g
(
K(∂i, ∂j), ∂k

)
− g

(
K(∂i, ∂k), ∂j

)

= g
(
∇∗
∂i∂j , ∂k

)
− g

(
∇∂i∂j , ∂k

)
− g

(
∇∗
∂i∂k, ∂j

)

+g
(
∇∂i∂k, ∂j

)

=
[
g
(
∇∗
∂i
∂j , ∂k

)
+ g

(
∂j ,∇∂i∂k

)]

−
[
g
(
∇∂i∂j , ∂k

)
+ g

(
∂j,∇∗

∂i∂k
)]

= ∂ig(∂j , ∂k)− ∂ig(∂j , ∂k) = 0,

where we used the definitions of dual connections and difference
tensor.

The total symmetry of the skewness tensor C can be written
also as

C(X,Y,Z) = C(X,Z, Y ) = C(Z, Y,X) = C(Y,X,Z),

for all tangent vector fields X,Y,Z ∈ X (M).

Corollary 8.8.3 We have

Kp
ikgpj = Kp

ijgpk, (8.8.27)

with summation over p.

Proof: The expression on the left is equal to Cikj, while the one on
the right to Cijk. Using the total symmetry of tensor C yields the
desired result.

Now we go back to the proof of Proposition 8.4.4. It is worthy
to make the point that the relative torsion tensor and the difference
tensor are related in the following way

U∗(X,Y ) = ∇∗
XY −∇YX − [X,Y ] = ∇∗

YX −∇YX = K(Y,X).

Therefore

g
(
U∗(X,Y ), Z

)
= g

(
K(Y,X), Z

)
= C(Y,X,Z).

Since C is totally symmetric, we obtain

g
(
U∗(X,Y ), Z

)
= g

(
U∗(X,Z), Y

)
= g

(
U∗(Z, Y ),X

)

= g
(
U∗(Y,X), Z

)
,

which is the relation claimed by Proposition 8.4.4.
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Proposition 8.8.4 Let ∇ be a torsion-free connection. Then ∇∗ de-
fined by

g(Y,∇∗
XZ) = Xg(Y,Z) − g(∇XY,Z) (8.8.28)

is a torsion-free linear connection, dual to ∇. Furthermore, ∇∗ satis-
fies

(∇∗g)(X,Y,Z) = −C(X,Y,Z).

Proof: First we show that ∇∗ is a linear connection. For any smooth
function f we have

g(Y,∇∗
fXZ) = fXg(Y,Z)− g(∇fXY,Z)

= f
(
Xg(Y,Z) − g(∇XY,Z)

)

= f g(Y,∇∗
XZ) = g(Y, f∇∗

XZ),

which yields ∇∗
fXZ = f∇∗

XZ. Next we check the Leibniz property in
the second argument

g(Y,∇∗
XfZ) = Xg(Y, fZ)− g(∇XY, fZ)

= X(f)g(Y,Z) + f Xg(Y,Z)− f g(∇XY,Z)

= g
(
Y,X(f)Z

)
+ f g(Y,∇∗

XZ)

= g
(
Y,X(f)Z + f∇∗

XZ
)
.

Since ∇ is torsion-free, Γij,k = Γji,k, then the symmetry of the tensor
C in the first two arguments yields

Cijk = Cjik ⇐⇒
∂xigjk − Γij,k − Γik,j = ∂xjgik − Γji,k − Γjk,i ⇐⇒

∂xigjk − Γik,j = ∂xjgik − Γjk,i ⇐⇒
Γ∗
ij,k = Γ∗

ji,k,

which shows that ∇∗ is torsion-free. The duality follows from relation
(8.8.28).

The last relation will be also shown in local coordinates. Substi-
tuting

Γij,k = ∂xigjk − Γ∗
ik,j

Γik,j = ∂xigkj − Γ∗
ij,k

into
Cijk = ∂xigjk − Γij,k − Γik,j,
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after canceling the term ∂xigjk, yields

Cijk = −(∂xigkj − Γ∗
ik,j − Γ∗

ij,k) = −(∇∗g)ijk,

and hence ∇∗g = −C.

Corollary 8.8.5 1
2 (∇+∇∗) is a metrical connection.

Proof: We have 1
2 (∇+∇∗)g = 1

2∇g+
1
2∇∗g = 1

2C− 1
2C = 0.

The following two results presents the relation between the α-
connection and the skewness tensor.

Proposition 8.8.6 We have the following relation

g(∇(α)
X Y,Z) = g(∇(0)

X Y,Z) +
α

2
C(X,Y,Z). (8.8.29)

Proof: From Proposition 8.5.2

∇(α) = ∇(0) +
α

2
(∇∗ −∇)

and hence
∇(α)
X Y = ∇(0)

X Y +
α

2
K(X,Y ).

Then using (8.8.26) yields

g(∇(α)
X Y,Z) = g(∇(0)

X Y,Z) +
α

2
C(X,Y,Z).

Proposition 8.8.7 We have ∇(α)g = −αC, i.e.,

−αC(X,Y,Z) = Xg(Y,Z) − g(∇(α)
X Y,Z)− g(Y,∇(α)

X Z).

Proof: Using the definition of the α-connection (8.5.11) and Propo-
sition 8.8.4 yields

∇(α)g =
1 + α

2
∇∗g +

1− α

2
∇g

=
1 + α

2
(−C) +

1− α

2
C

= −αC.
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8.9 Relative Curvature Tensor

In this section we define the relative curvature tensor of two connec-
tions ∇(α) and ∇(β) and study its main properties. This can be seen
as an extension to α-connections of the curvature tensor introduced
in Chap. 7, Definition 7.10.4.

For any α, β ∈ R define

R(α,β)(X,Y,Z) = [∇(α)
X ,∇(β)

Y ]Z −∇(α)
[X,Y ]Z

= ∇(α)
X ∇(β)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
[X,Y ]Z,

(8.9.30)

which measures the non-commutativity of connections ∇(α) and∇(β).
It is easy to check that R(α,β) is R-linear and F(M)-linear in each
of the arguments. For instance, we shall check the F(M)-linearity in
the first argument. Using [fX, Y ] = f [X,Y ]− Y (f)X, we have

R(α,β)(fX, Y, Z) = f∇(α)
X ∇(β)

Y Z −∇(β)
Y (f∇(α)

X Z)−∇(α)
[fX,Y ]

= f∇(α)
X ∇(β)

Y Z − Y (f)∇(α)
X Z − f∇(β)

Y ∇(α)
X Z

−∇(α)
f [X,Y ] +∇(α)

Y (f)XZ

= f
{
∇(α)
X ∇(β)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
[X,Y ]

}

= fR(α,β)(X,Y,Z).

Similar computations lead to R(α,β)(X, fY,Z) = fR(α,β)(X,Y,Z)
and R(α,β)(X,Y, fZ) = fR(α,β)(X,Y,Z). Hence R(α,β) is a (3, 1)-
tensor, called the relative curvature tensor of∇(α) with respect to∇(β).

A relation which shows the lack of discrimination between indices
α and β is

R(α,β)(X,Y,Z) +R(β,α)(X,Y,Z) = −
(
∇(α)

[X,Y ] +∇(β)
[X,Y ]

)
Z.

A few familiar curvature tensors can be retrieved as particular cases:

R(α,α) = R(α), R(1,1) = R(1) = R∗

R(0,0) = R(0), R(−1,−1) = R(−1) = R.

The following two relative curvature tensors will play a distin-
guished role:
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(i) The relative curvature tensor of ∇, with respect to its dual
connection ∇∗, that is

R(−1,1)(X,Y,Z) = ∇X∇∗
Y Z −∇∗

X∇Y Z −∇[X,Y ].

(ii) The relative curvature tensor of ∇∗, with respect to ∇, that is

R(1,−1)(X,Y,Z) = ∇∗
X∇Y Z −∇X∇∗

Y Z −∇∗
[X,Y ].

The role of the aforementioned tensors is given by the following
result.

Proposition 8.9.1 Any relative curvature tensor can be written as
a combination of the aforementioned particular curvature tensors as

4R(α,β) = (1 + α)(1 + β)R∗ + (1− α)(1 − β)R

+(1 + α)(1 − β)R(1,−1) + (1− α)(1 + β)R(−1,1).

Proof: The following computation is based on the linear algebra of
connections. We have

∇(α)
X ∇(β)

Y Z =
(1 + α

2
∇∗
X +

1− α

2
∇X

)(1 + β

2
∇∗
Y +

1− β

2
∇Y

)
Z

=
(1 + α)(1 + β)

4
∇∗
X∇∗

Y Z +
(1 + α)(1 − β)

4
∇∗
X∇Y Z

+
(1− α)(1 + β)

4
∇X∇∗

Y Z+
(1− α)(1− β)

4
∇X∇Y Z.

∇(β)
Y ∇(α)

X Z =
(1 + β

2
∇∗
Y +

1− β

2
∇Y

)(1 + α

2
∇∗
X +

1− α

2
∇X

)
Z

=
(1 + α)(1 + β)

4
∇∗
Y∇∗

XZ +
(1− α)(1 + β)

4
∇∗
Y∇XZ

+
(1 + α)(1− β)

4
∇Y∇∗

XZ+
(1− α)(1− β)

4
∇Y∇XZ.

∇(α)
[X,Y ]Z =

1 + α

2
∇∗

[X,Y ]Z +
1− α

2
∇[X,Y ]Z.
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Then

R(α,β)(X,Y,Z) = ∇(α)
X ∇(β)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
[X,Y ]

=
(1 + α)(1 + β)

4
(∇∗

X∇∗
Y −∇∗

Y∇∗
X)Z

+
(1 + α)(1 − β)

4
(∇∗

X∇Y −∇Y∇∗
X)Z

+
(1− α)(1 + β)

4
(∇X∇∗

Y −∇∗
Y∇X)Z

+
(1− α)(1 − β)

4
(∇X∇Y −∇Y∇X)Z

−1 + α

2
∇∗

[X,Y ]Z − 1− α

2
∇[X,Y ]Z.

Writing the expression in the parenthesis in terms of curvature ten-
sors, we obtain

R(α,β)(X,Y,Z) =
(1 + α)(1 + β)

4

[
R∗(X,Y,Z) +∇∗

[X,Y ]Z
]

+
(1 + α)(1 − β)

4

[
R(1,−1)(X,Y,Z) +∇∗

[X,Y ]Z
]

+
(1− α)(1 + β)

4

[
R(−1,1)(X,Y,Z) +∇[X,Y ]Z

]

+
(1− α)(1 − β)

4

[
R(−1,−1)(X,Y,Z) +∇∗

[X,Y ]Z
]

−1 + α

2
∇∗

[X,Y ]Z − 1− α

2
∇[X,Y ]Z.

Performing all cancelations, we get

R(α,β)(X,Y,Z) =
(1 + α)(1 + β)

4
R∗(X,Y,Z)

+
(1− α)(1 − β)

4
R(X,Y,Z)

+
(1 + α)(1 − β)

4
R(1,−1)(X,Y,Z)

+
(1− α)(1 + β)

4
R(−1,1)(X,Y,Z),

which is the desired result.
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Making α = 1 and then β = 1, we obtain the following two
particular cases of relative curvatures:

R(α,1)(X,Y,Z) =
1 + α

2
R∗(X,Y,Z) +

1− α

2
R(−1,1)(X,Y,Z)

R(1,β)(X,Y,Z) =
1 + β

2
R∗(X,Y,Z) +

1− β

2
R(1,−1)(X,Y,Z).

Corollary 8.9.2 In the case of dually flat connections, i.e., R =
R∗ = 0, we have

4R(α,β) = (1 + α)(1− β)R(1,−1) + (1− α)(1 + β)R(−1,1).

The next goal is to write the relative curvature tensor R(α,β) in
terms of the difference tensor K(X,Y ). Recall the generalized differ-
ence tensor (1.12.37)

K(α,β)(X,Y ) = ∇(β)
X Y −∇(α)

X Y. (8.9.31)

This can be written in terms of the regular difference tensorK(X,Y )=
∇∗
XY −∇XY as in the following:

Lemma 8.9.3 (i) We have

K(α,β)(X,Y ) =
β − α

2
K(X,Y ).

(ii) The iterated difference tensor is given by

K(α,β)
(
X,K(α,β)(Y,Z)

)
=

(α− β)2

4
K
(
X,K(Y,Z)

)
.

Proof:

(i) Using the linear combination (8.5.11), we obtain

K(α,β)(X,Y ) = ∇(β)
X Y −∇(α)

X Y
[1 + β

2
∇∗
XY +

1− β

2
∇XY

]

−
[1 + α

2
∇∗
XY +

1− α

2
∇XY

]

=
β − α

2
∇∗
XY − β − α

2
∇XY=

β − α

2
K(X,Y ).
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(ii) Using (i) twice leads to

K(α,β)
(
X,K(α,β)(Y,Z)

)
=

β − α

2
K
(
X,K(α,β)(Y,Z)

)

=
(β − α)2

4
K
(
X,K(Y,Z)

)
.

Proposition 8.9.4 The following relation holds:

R(α)(X,Y,Z) +R(β)(X,Y,Z) = R(α,β)(X,Y,Z) +R(β,α)(X,Y,Z)

+
(α− β)2

4

{
K
(
X,K(Y,Z)

)

−K
(
Y,K(X,Z)

)}
.

Proof: From (8.9.31), we have

K(β,α)
(
X,K(β,α)(Y,Z)

)
= K(β,α)

(
X,∇(α)

Y Z −∇(β)
Y Z

)

= K(β,α)
(
X,∇(α)

Y Z
)
−K(β,α)

(
X,∇(β)

Y Z
)

= ∇(α)
X ∇(α)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
X ∇(β)

Y Z

+∇(β)
X ∇(β)

Y Z.

From Lemma 8.9.3, part (ii), the previous relation becomes

(α− β)2

4
K
(
X,K(Y,Z)

)
= ∇(α)

X ∇(α)
Y Z −∇(β)

X ∇(α)
Y Z

−∇(α)
X ∇(β)

Y Z +∇(β)
X ∇(β)

Y Z.

(8.9.32)

Swapping X and Y yields

(α− β)2

4
K
(
Y,K(X,Z)

)
= ∇(α)

Y ∇(α)
X Z −∇(β)

Y ∇(α)
X Z

−∇(α)
Y ∇(β)

X Z +∇(β)
Y ∇(β)

X Z.

(8.9.33)
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Subtract (8.9.32) and (8.9.33) and then use the curvature definition
to get

(α− β)2

4

{
K
(
X,K(Y,Z)

)
−K

(
Y,K(X,Z)

)}

= R(α)(X,Y,Z) +R(β)(X,Y,Z)− {[∇(α)
X ,∇(β)

Y ]Z −∇(α)
[X,Y ]Z}

−{[∇(β)
X ,∇(α)

Y ]Z −∇(β)
[X,Y ]Z}

= R(α)(X,Y,Z) +R(β)(X,Y,Z)−R(α,β)(X,Y,Z)

−R(β,α)(X,Y,Z).

Making α = 1 and β = −1 in Proposition 8.9.4, we obtain the
following consequence that will be useful in later applications.

Corollary 8.9.5 The following relation holds

R(1,−1)(X,Y,Z) +R(−1,1)(X,Y,Z) = R∗(X,Y,Z) +R(X,Y,Z)

−
{
K
(
X,K(Y,Z)

)

−K
(
Y,K(X,Z)

)}
.

8.10 Curvature of α-Connections

This section deals with the relationship among curvaturesR(α), R and
R∗ associated, respectively, with connections ∇(α), ∇ and ∇∗. The
following formula for R(α) was computed in Zhang [87].1 We shall
present it here as a consequence of the relative curvature developed
in the previous section.

Proposition 8.10.1 The curvature R(α) satisfies the equation

R(α)(X,Y,Z) =
1 + α

2
R∗(X,Y,Z) +

1− α

2
R(X,Y,Z)

+
1− α2

4

(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))
.

Proof: Making α = β in Proposition 8.9.1 yields

4R(α) = (1 + α)2R∗ + (1 − α)2R+ (1− α2)R(1,−1)

+(1− α2)R(−1,1)

= (1 + α)2R∗ + (1 − α)2R+ (1− α2)
(
R(1,−1) +R(−1,1)

)
.

1In our case the roles of R and R∗ are reversed.
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Substituting the last term from Corollary 8.9.5, we obtain

4R(α)(X,Y,Z) = (1 + α)2R∗(X,Y,Z) + (1− α)2R(X,Y,Z)

+(1− α2)R∗(X,Y,Z) + (1− α2)R(X,Y,Z)

−(1− α2)
{
K
(
X,K(Y,Z)

)
−K

(
Y,K(X,Z)

)}

= 2(1 + α)R∗(X,Y,Z) + 2(1− α)R(X,Y,Z)

+(1− α2)
(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))
,

which after dividing by 4 leads to the desired relation.

Corollary 8.10.2 The following relation holds

R(α)(X,Y,X) −R(−α)(X,Y,X) = α
(
R∗(X,Y,X) −R(X,Y,X)

)
.

(8.10.34)

Proof: Writing the equations for R(α) and R(−α), after subtraction
we have

R(α)(X,Y,X) −R(−α)(X,Y,X) =
(1 + α

2
− 1− α

2

)
R∗(X,Y,X)

+
(1− α

2
− 1 + α

2

)
R(X,Y,Z)

= α
(
R∗(X,Y,X) −R(X,Y,X)

)
.

It is worth noting that if connections ∇ and ∇∗ have zero curva-
ture tensors, R = R∗ = 0, then R(α) = R(−α). However, the curvature
tensor of the connection ∇(α) does not necessarily vanish, its expres-
sion being given by

R(α)(X,Y,Z) =
1− α2

4

(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))
.

It follows that a necessary condition for all α-connections to have
zero curvature tensors is that

K
(
Y,K(X,Z)

)
= K

(
X,K(Y,Z)

)
. (8.10.35)

This can be written in terms of the skewness tensor as

C(K(X,Z), Y,W ) = C(X,K(Y,Z),W ), ∀X,Y,Z,W ∈ X (M).
(8.10.36)

The next result is an extension of Proposition 8.1.4 to α-connections.
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Proposition 8.10.3 We have

g
(
R(α)(X,Y,Z),W

)
+ g

(
R(−α)(X,Y,W ), Z

)

=
1− α2

4

{
C
(
K(X,Z), Y,W

)
+ C

(
K(X,W ), Y, Z

)

−C
(
X,K(Y,Z),W

)
− C

(
X,K(Y,W ), Z

)}
.

Proof: Applying Proposition 8.10.1 for α and −α, we have, respec-
tively,

g
(
R(α)(X,Y,Z),W

)

=
1 + α

2
g
(
R∗(X,Y,Z),W

)
+

1− α

2
g
(
R(X,Y,Z),W

)

+
1− α2

4

{
C
(
Y,K(X,Z),W

)
− C

(
X,K(Y,Z),W

)}
;

g
(
R(−α)(X,Y,W ), Z

)

=
1− α

2
g
(
R∗(X,Y,W ), Z

)
+

1 + α

2
g
(
R(X,Y,W ), Z

)

+
1− α2

4

{
C
(
Y,K(X,W ), Z

)
− C

(
X,K(Y,W ), Z

)}
.

Using

g
(
R(X,Y,Z),W

)
+ g

(
R∗(X,Y,W ), Z

)
= 0

g
(
R∗(X,Y,Z),W

)
+ g

(
R(X,Y,W ), Z

)
= 0,

see Proposition 8.1.4, part (i), then adding the previous two expres-
sions leads to the formula claimed by the proposition.

8.11 Statistical Manifolds

Statistical manifolds have been introduced by several authors (see
Lauritzen [54] and Simon [76]) in a few equivalent ways at different
moments in time. In this section we show how starting from the skew-
ness tensor C one can construct the geometry of dual connections and
the family of α-connections of a statistical manifold.
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A statistical structure is a triple (M,g,C), where C is a 3-covariant,
totally symmetric tensor on the Riemannian manifold (M,g), called
the skewness tensor. We shall show how to construct a statistical
manifold (M,g,∇,∇∗) starting from the triple (M,g,C).

First, we consider the Levi–Civita connection ∇(0) associated with
the Riemannian metric g, which is the unique metrical and torsion-
free linear connection on (M,g). This is given by the Koszul formula,
see Theorem 7.11.1,

2g(∇(0)
X Y,Z) = X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

+g([X,Y ], Z)− g([Y,Z],X) − g([X,Z], Y ).

The previous formula is equivalent locally with the fact that the con-
nection components can be expressed in terms of the metric coeffi-
cients by

Γlij =
1

2
gkl
(
∂xigkj + ∂xjgik − ∂xkgij

)
,

which is nothing else but the formula for the Christoffel symbols.

The next result introduces a pair of dual connections.

Proposition 8.11.1 The geometric objects ∇, ∇∗ defined by

g(∇XY,Z) = g(∇(0)
X Y,Z)− 1

2
C(X,Y,Z)

g(∇∗
XY,Z) = g(∇(0)

X Y,Z) +
1

2
C(X,Y,Z), ∀X,Y,Z ∈ X (M)

are torsion-less dual connections.

Proof: We need to show first that ∇ and ∇∗ are torsion-less linear
connections. It suffices to show this for the first connection, since a
similar argument applies to the second one. Obviously ∇XY is R–
linear in both arguments. For any smooth function f on M , we have

g(∇fXY,Z) = g(∇(0)
fXY,Z)−

1

2
C(fX, Y, Z)

= g(f∇(0)
X Y,Z)− 1

2
fC(X,Y,Z)

= f{g(∇(0)
X Y,Z)− 1

2
C(X,Y,Z)}

= fg(∇XY,Z), ∀Z ∈ X (M),
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so∇fXY = f∇XY . Next we check the Leibniz property in the second
argument,

g(∇X(fY ), Z) = g(∇(0)
X (fY ), Z)− 1

2
C(X, fY,Z)

= g(f∇(0)
X Y +X(f)Y,Z)− 1

2
fC(X,Y,Z)

= f{g(∇(0)
X Y,Z)− 1

2
C(X,Y,Z)} + g(X(f)Y,Z)

= fg(∇XY,Z) + g(X(f)Y,Z)

= g(f∇XY +X(f)Y,Z), ∀Z ∈ X (M),

which implies ∇X(fY ) = f∇XY +X(f)Y .
The torsion-less property of ∇ follows from the next computation:

g(∇XY −∇YX − [X,Y ], Z)

= g(∇XY,Z)− g(∇YX,Z)− g([X,Y ], Z)

= g(∇(0)
X Y,Z)− 1

2
C(X,Y,Z)− {g(∇(0)

Y X,Z)− 1

2
C(Y,X,Z)}

−g([X,Y ], Z)

= g(∇(0)
X Y −∇(0)

Y X − [X,Y ], Z) = 0,

where the last identity uses that ∇(0) is torsion-less.
In the following we show that ∇ and ∇∗ are dual connections.

Since ∇(0) is a metrical connection and C is a totally symmetric
tensor, we have

g(∇XY, Z) + g(Y,∇∗
XZ) = g(∇(0)

X Y, Z)− 1

2
C(X,Y, Z)

+g(Y,∇(0)
X Z) +

1

2
C(X,Y, Z)

= Xg(Y, Z) +
1

2
{C(X,Z, Y )− C(X,Y, Z)}

= Xg(Y, Z).

Corollary 8.11.2 The dual connections ∇, ∇∗ and the skewness
tensor C are related by

g(∇∗
XY,Z) = g(∇XY,Z) + C(X,Y,Z).
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The skewness tensor C can be used to introduce the α-connection
as in the following

g(∇(α)
X Y,Z) = g

(1− α

2
∇XY +

1 + α

2
∇∗
XY,Z

)

=
1− α

2
g(∇XY,Z) +

1 + α

2
g(∇∗

XY,Z)

=
1− α

2
{g(∇(0)

X Y,Z)− 1

2
C(X,Y,Z)}

+
1 + α

2
{g(∇(0)

X Y,Z) +
1

2
C(X,Y,Z)}

= g(∇(0)
X Y,Z) +

α

2
C(X,Y,Z).

Hence the α-connection can be introduced by the formula

g(∇(α)
X Y,Z) = g(∇(0)

X Y,Z) +
α

2
C(X,Y,Z). (8.11.37)

Proposition 8.11.3 The covariant derivatives of the metric tensor
g, with respect to connections ∇, ∇∗, and ∇(α), respectively, are re-
lated to the skewness tensor C by

(i) ∇g = C;

(ii) ∇∗g = −C;

(iii) ∇(α)g = −αC.

Proof: Using the definition of the covariant derivative of a tensor and
Corollary 8.11.2, we have

(∇g)(X,Y,Z) = Xg(Y,Z)− g(∇XY,Z)− g(Y,∇XZ)

= g(Y,∇∗
XZ)− g(Y,∇XZ)

= g(Y,∇∗
XZ)− g(Y,∇XZ) = C(X,Y,Z).

The other two relations can be proved using a similar argument.

8.12 Problems

8.1. Let ∇ be a metrical connection on the Riemannian manifold
(M,g). If γ(s) is a curve on M and X,Y ∈ X (M) such that X
and Y are parallely transported along the curve γ with respect
to ∇, show that

g(X|γ(t), Y|γ(t)) = g(X|γ(0), Y|γ(0)).
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8.2. Let (M,g,∇,∇∗) be a statistical manifold and γ : [0, T ] →M
be a differentiable curve. Consider the vector fields X,Y ∈
X (M) such that

∇γ̇X = 0, ∇∗
γ̇Y = 0. (8.12.38)

Show that

g(X|γ(t), Y|γ(t)) = g(X|γ(0), Y|γ(0)). (8.12.39)

8.3. Let γ : [0, T ] → M be a smooth curve on a manifold, and
consider the vector field X ∈ X (M) such that ∇γ̇X = 0. Show
that

Xj
|γ(t) = Xj

|γ(0) − t
(
Γj�pγ̇

�Xp
|γ(t)

)
|t=0

+O(t2).

8.4. Show that if relation (8.12.39) holds for any two vector fields
X,Y ∈ X (M) that satisfy (8.12.38), then ∇∗ is the conjugate
connection of ∇.

8.5. Let R and R∗ be the Riemannian curvature tensors associated
with dual connections ∇ and ∇∗. Show that

(a) Rijkl = R∗
ikjl +R∗

ilkj;

(b) R∗
ijlk = Riklj +R∗

iljk.

8.6. Two coordinate systems (xi) and (ζj) on a Riemannian mani-
fold (M,g) are called dual if g(∂xi , ∂ζj ) = δij , where ∂xi =

∂
∂xi

and ∂ζj =
∂
∂ζj

are the coordinate vector fields associated with

the systems (xi) and (ζj), respectively. Let (xi) and (ζj) be
dual coordinate systems on (M,g).

(a) Show that we have

∂xi =
∂ζj
∂xi

∂ζj , ∂ζj =
∂xk

∂ζj
∂xk .

(b) Denote by gij(x) = g(∂xi , ∂xj ) and gij(x) = g(∂ζi , ∂ζj ).
Show that

gij(x) =
∂ζj
∂xi

, gij(ζ) =
∂xj

∂ζi
.
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(c) Show that gij(x) and gij(ζ) are each other matrix inverse,
i.e.

∑
j gij(x)gjk(ζ) = δik.

(d) Show that there are two functions ψ(x) and ϕ(ζ) such that

xi = ∂ζiϕ(ζ), ζj = ∂xjψ(x).

The functions ψ(x) and ϕ(ζ) are called potentials.

(e) Show that ψ and φ are related by the following Legendre
transform

ϕ(ζ) = xiζi − ψ(x).

(f) Verify that the Riemannian metric can be written as a
Hessian:

gij(x) = ∂xi∂xjψ(x), gij(ζ) = ∂ζi∂ζjϕ(ζ).

(g) Give a reason why the potential functions ψ(x) and ϕ(ζ)
are convex functions.

(e) Prove the following maximization property

ψ(x) = max
ζ

(
xiζi − ϕ(ζ)

)
, ϕ(ζ) = max

x

(
xiζi − ψ(x)

)
.

8.7. Let (M,g) be a Riemannian manifold. Assume there are locally
defined two convex functions ψ(x) and ϕ(ζ) such that

gij(x) = ∂xi∂xjψ(x), gij(ζ) = ∂ζi∂ζjϕ(ζ).

Show that xi = ∂ζiϕ(ζ) and ζj = ∂xjψ(x) are dual coordinate
systems.

8.8. Let (M,g,∇,∇∗) be a dually flat statistical manifold. Prove
that there is a pair of dual coordinate systems (xi) and (ζα)
such that (xi) is ∇-affine and (ζα) is ∇∗-affine.

8.9. Two coordinate systems (xi) and (ζα) are called affine if ζα =
ajαx

j + bα, where (ajα) is an n × n real matrix and bα are
constants.

Let Γkij(x) and Γγαβ(ζ) be the coefficients of the connection ∇
in the aforementioned affine systems of coordinates, i.e.,

∇∂
xi
∂xj = Γkij(x)∂xk , ∇∂ζα

∂ζβ = Γγαβ(ζ)∂ζγ .



8.12. Problems 255

(a) Verify the following change of coefficients formula

Γγαβ∂ζγx
k =

(
∂ζαx

i
)(
∂ζβx

j
)
Γkij + ∂ζα∂ζβx

k.

(b) Show that if the connection ∇ is flat with respect to both
coordinates systems, then (xi) and (ζα) are affine coordi-
nates systems.

8.10. Let (xi) and (ζα) be dual coordinate systems.

(a) Show that if a connection ∇ is flat with respect to the
coordinate system (xi), then the coefficients of the dual
connection ∇∗ are given by

Γ∗
ij,k = ∂xi∂xj∂xkψ(x),

where ψ(x) is the potential associated with ζ.

(b) Find the coefficients of connection ∇ in terms of (xi), (ζα)
and ψ(x).

8.11. Let (xi) and (ζα) be dual coordinate systems, such that the
connection ∇ is flat in (xi). Show that the dual connection ∇∗

is flat with respect to (ζα).

8.12. Show that

Γ
(α)
ij,k + Γ

(−α)
ij,k = ∂xigjk − Γik,j + Γij,k.

8.13. If ω is a 1-form on the Riemannian manifold (M,g) and ∇ a
linear connection, define ∇ω by

(∇Y ω)(X) = Y ω(X)− ω(∇YX), ∀X,Y ∈ X (M).

Let ∇∗ be the dual connection of ∇. Show the following rela-
tions:

(a) (∇Y ω)(X) = g(∇∗
Y ω

#,X);

(b) (∇Y ω)
# = ∇∗

Y ω
#;

(c) ω is ∇-parallel if and only if ω# is ∇∗-parallel.



Chapter 9

Dual Volume Elements

This chapter defines the volume elements associated with two dual
connections and investigates their relationship. First, we define the
Riemannian volume element and show that it is parallel with respect
to the Levi–Civita connection. Since the converse is also true, this pro-
vides an alternate definition for the volume element used in defining
volume elements associated with other connections. In particular, we
define and study the volume element associated with an α-connection.
The volume elements for the exponential model and mixture model
are computed, as examples of distinguished importance in the theory.

The necessary and sufficient condition for a torsion-free connec-
tion to admit a parallel volume form was found by Nomizu and
Sasaki [62]. They described this condition in terms of the symmetry
of the associated Ricci tensor. These type of connections are called
equiaffine connections. A sufficient condition was found by Takeuki
and Amari [79], who also developed an expression for the α-parallel
volume form for the exponential family. Further sufficient conditions
have been investigated by Matsuzoe et al. [55].

It is also worth noting the relation with Bayesian statistics. From
the differential geometry point of view, Jeffrey’s prior in Bayesian
statistics is the parallel volume form with respect to the Levi–Civita
connection of the Fisher metric. This explains why the Riemannian
volume form has traditionally been taken as Jeffrey’s prior. Follo-
wing this idea, Takeuki and Amari [79], and later Matsuzoe et al.
[55] advanced the idea of an α-parallel prior, which is a volume form
that is parallel with respect to the ∇(α) connection, for general α.
The value α = 0 recovers Jeffrey’s prior from Bayesian inference.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 257
DOI 10.1007/978-3-319-07779-6 9,
© Springer International Publishing Switzerland 2014
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9.1 Riemannian Volume Element

Let (M,g) be an oriented Riemannian manifold. For any point p ∈M ,
let {ei, i = 1, . . . , n}p be an orthonormal basis in TpM , with respect to
the metric g. Denote by {e∗i } the associated dual basis, i.e., e∗i (ej)=δ

i
j .

The n-form dv defined by

dv|p = e∗1(p) ∧ · · · ∧ e∗n(p)

is called the Riemannian volume form on M .

It is useful to write the form dv in local coordinates. Let (U, x) be
a local chart. Then {∂x1(p), . . . , ∂xn(p)} is a local basis of TpM and
the coefficients of the Riemannian metric are given by

gij(p) = g(∂xi(p), ∂xj (p)).

Let ∂xi(p) = aki e
∗
k with the matrix A = (aki ). Using the definition of

the wedge product we have

dvp
(
∂x1(p), . . . , ∂xn(p)

)
= e∗1(p) ∧ · · · ∧ e∗n(p)

(
∂x1(p), . . . , ∂xn(p)

)

= det
(
e∗i
(
∂xj (p)

))
(p)

= det gp

(
e∗i , ∂xj (p)

)

= det gp

(
e∗i , a

k
j e

∗
k

)
= det

(
akj gp(e

∗
i , e

∗
k)
)

= det(akj δ
i
k) = det(aij) = detA. (9.1.1)

On the other side

det(gij) = det g
(
∂xi(p), ∂xj (p)

)
= det

(
ak
i a

l
jg(e

∗
k, e

∗
l )
)
= det(ak

i a
l
jδkl)

= det(AAT ) = (detA)2. (9.1.2)

From (9.1.1) and (9.1.2) we obtain

dv
(
∂x1(p), . . . , ∂xn(p)

)
=
√

det(gij) ,

and hence the Riemannian volume element in local coordinates is

dv =
√

det g dx1 ∧ · · · ∧ dxn , (9.1.3)

where g = (gij).

The next result shows that the volume element form dv is parallel
with respect to the covariant derivation realized by the Levi–Civita
connection. This will provide in the sequel an alternate way of defining
volume elements associated with linear connections.
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Lemma 9.1.1 The Riemannian volume element is parallel with

respect to the Levi–Civita connection, i.e., ∇(0)
Y dv = 0 for all

Y ∈ X (M).

Proof: Since ∇(0)
Y = Y i∇(0)

∂xi
it suffices to show that

∇(0)
∂xi
dv = 0, ∀i = 1, . . . , n.

The following computation is based on the definition of the covariant
derivative of an n-form and a manipulation of the matrix (gij) and
the relation between its inverse and its determinant. We have

(∇(0)
∂xi
dv)(∂x1 , . . . , ∂xn)

= ∂xi dv(∂x1 , . . . , ∂xn)− dv(∇(0)
∂xi
∂x1 , ∂x2 , . . . , ∂xn)

− · · · − dv(∂x1 , . . . , ∂xn−1 ,∇(0)
∂xi
∂xn)

= ∂xi
√

det g − dv
(
Γ
(0)k1
i1 ∂xk1 , ∂x2 , . . . , ∂xn

)

− · · · − dv
(
∂x1 , . . . , ∂xn−1 ,Γ

(0)kn
in

∂xkn
)

= ∂xi
√

det g − Γ
(0)k1
i1 δ1,k1

√
det g − · · · − Γ

(0)kn
in

δn,kn
√

det g

= ∂xi
√

det g −
(
Γ
(0)1
i1 + · · ·+ Γ

(0)n
in

)√
det g

= ∂xi
√

det g − Γ
(0)j
ij

√
det g

= ∂xi
√

det g − 1

2
gjp
(∂gip
∂xj

+
∂gjp
∂xi

− ∂gij
∂xp

)√
det g

= ∂xi
√

det g − 1

2
gjp

∂gjp
∂xi

√
det g

=
1

2

1√
det g

∂(det g)

∂xi
− 1

2
gjp

∂gjp
∂xi

√
det g

=
1

2

1√
det g

∂(det g)

∂xi
− 1

2(det g)

∂(det g)

∂gjp

∂gjp
∂xi

√
det g = 0.

The next result states that the only n-form that is parallel to the
Levi–Civita connection is proportional to the Riemannian volume
element. Let Λn(M) denote the space of n-forms on the manifold M .

Lemma 9.1.2 If ω ∈ Λn(M) and ∇(0)ω = 0, then there is a constant
C such that ω = C dv.
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Proof: Since ω and dv are both n-forms, they are proportional, i.e.,
there is a function f ∈ F(M) such that

ω = f dv.

For any vector field Y ∈ X (M), we have

0 = ∇(0)
Y ω = ∇(0)

Y (fdv) = f ∇(0)
Y dv︸ ︷︷ ︸
=0

+Y (f)dv,

where the first term vanishes in the virtue of Lemma 9.1.1. Hence
Y (f) = 0, for all Y ∈ X (M), i.e., f is a constant function.

Theorem 9.1.3 Let ω ∈ Λn(M). Then

∇(0)
Y ω = 0, ∀Y ∈ X (M)

if and only if ω = Cdv, with C ∈ R.

Proof: The proof is a straightforward consequence of Lemmas 9.1.1
and 9.1.2. However, for the sake of completeness we shall give next a
direct proof.

Since ω ∈ Λn(M), there is a function f ∈ F(M) such that locally
we have

ω = fdx1 ∧ · · · ∧ dxn.

A computation similar with the one done in the proof of Lemma 9.1.1
yields

0 = (∇(0)
∂xi
ω)(∂x1 , . . . , ∂xn) = ∂xif(x)− f(x)Γ

(0)j
ij

= ∂xif − 1

2
f
1

g

∂(det g)

∂gjp

∂gjp
∂xi

= ∂xif − 1

2
f∂xi(ln(det g)).

Hence, the function f satisfies the following PDE

∂xif − 1

2
f∂xi(ln(det g)) = 0.

Multiplying by the integrating factor g−1/2, we find

∂xi
( f√

det g

)
= 0, ∀i = 1, . . . , n,
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so f = C
√
g, with C constant. Hence

ω = fdx = C
√
det g dx1 ∧ · · · ∧ dxn = Cdv, C ∈ R.

Inspired by the previous theorem, we shall introduce the following
volume concept.

Definition 9.1.4 The α-volume element is an n-form ω ∈ Λn(M)
such that

∇(α)ω = 0.

We notice that ω is defined up to a scaling factor.
Taking α = 1 and α = −1 we obtain the following two distin-

guished cases
∇∗ω∗ = 0, ∇ω = 0.

The next two sections provide explicit calculations for the α-
volume elements in the case of the following distributions

(i) the exponential model

p(x, ξ) = eC(x)+ξiFi(x)−ψ(ξ);

(ii) the mixture model

p(x; ξ) = C(x) + ξiFi(x).

9.2 α-Volume Element for Exponential Model

Since any two n-forms are proportional, it suffices to determine a
function f ∈ F(M) such that ∇(α)ω = 0 with ω = f dv. The equation

∇(α)
∂xi
ω = 0 becomes the following PDE

(∂xif)dv + f∇(α)
∂
xi
dv = 0. (9.2.4)

Since ∇(α)
∂xi

: Λn(M) → Λn(M), there are n functions hαi such that

∇(α)
∂
xi
dv = hαi dv, (9.2.5)

and hence (9.2.4) becomes ∂xif + fhαi = 0 for any 1 ≤ i ≤ n. This
can be written as

∂xi(ln f) = −hαi , i = 1, . . . , n. (9.2.6)
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Before integrating the Eq. (9.2.6), we shall compute the functions hαi
in terms of functions h1i . Using the decomposition

∇(α) = (1− α)∇(0) + α∇(1), (9.2.7)

and applying Lemma 9.1.1, we have

∇(α)
∂xi
dv = α∇(1)

∂xi
dv. (9.2.8)

Substituting in (9.2.5), we find

α∇(1)
∂xi
dv = hαi dv. (9.2.9)

Making α = 1 in (9.2.5), we have

∇(1)
∂xi
dv = h1i dv (9.2.10)

and by comparison with (9.2.9), we get

hαi = αh1i . (9.2.11)

Hence, it suffices to compute only h1i . We shall do this by applying
both terms of Eq. (9.2.10) on the n-uple (∂x1 , . . . , ∂xn), i.e.,

(∇(1)
∂
xi
dv)(∂x1 , . . . , ∂xn) = h1i dv(∂x1 , . . . , ∂xn).

The right side writes

(h1i dv)(∂x1 , . . . , ∂xn) = h1i
√
det g, (9.2.12)

while the left side can be computed as

(∇(1)
∂
xi
dv)(∂x1 , . . . , ∂xn) = ∂xi dv(∂x1 , . . . , ∂xn)

−dv
(
∇(1)
∂
xi
∂x1 , ∂x2 , . . . , ∂xn

)

− · · · − dv
(
∂x1 , . . . , ∂xn−1 ,∇(1)

∂xi
∂xn

)

= ∂xi
√

det g − Γ∗j
ij

√
det g

=
(1
2

1

det g
∂xi(det g)− Γ∗j

ij

)√
det g

=
(
∂xi
(
ln
√

det g
)
− Γ∗j

ij

)√
det g.

(9.2.13)
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Equating (9.2.12) and (9.2.13) yields

h1i = ∂xi(ln
√

det g)− Γ∗j
ij . (9.2.14)

Using (9.2.11) relation (9.2.6) implies

∂xi(ln f) = −α∂xi(ln
√

det g) + αΓ∗j
ij ,

which can be also written as

∂xi ln(f (det g)
α/2) = αΓ∗j

ij . (9.2.15)

In the case of exponential model the right side of the above exp-
ression is zero. This follows from Example 1.12.1, part (i), which
states that exponential models are ∇∗-flat, so Γ∗j

ij = 0. Therefore
(9.2.15) becomes the exact equation

∂xi ln(f(det g)
α/2) = 0, ∀i = 1, . . . , n.

with solution f = C(det g)−α/2, where C is a nonzero constant. We
obtain the α-volume element for the exponential model

ω = fdv = C(det g)−α/2(det g)1/2dx1 ∧ · · · ∧ dxn
= C(det g)

1−α
2 dx1 ∧ · · · ∧ dxn.

When C = 1 and α = 0, we obtain the Riemannian volume element
dv = (det g)1/2dx1 ∧ · · · ∧ dxn. Replacing xi by the local coordinates
ξi, we conclude with the following result:

Proposition 9.2.1 The α-volume element on an exponential model
is locally given by

ω = (det g)
1−α
2 dξ1 ∧ · · · ∧ dξn.

9.3 α-Volume Element for Mixture Model

Formulas (9.2.4)–(9.2.6) developed in the previous section are still
valid in the case of the mixture model. The decomposition formula
(9.2.7) is replaced in this case by

∇(α) = (1 + α)∇(0) − α∇(−1) (9.3.16)

and (9.2.8) becomes

∇(α)
∂xi
dv = −α∇(−1)

∂xi
dv. (9.3.17)
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Substituting in (9.2.5), we get

− α∇(−1)
∂xi

dv = hαi dv. (9.3.18)

Let α = −1 in (9.2.5) to obtain

∇(−1)
∂xi

dv = h−1
i dv.

Comparing with (9.3.18) yields

hαi = −αh−1
i . (9.3.19)

In the following we shall compute the function h−1
i . Relation (9.2.12)

becomes
(h−1
i )(∂x1 , . . . , ∂xn) = h−1

i

√
det g, (9.3.20)

while (9.2.13) is reduced to

(
∇(−1)
∂
xi
dv
)
(∂x1 , . . . , ∂xn) =

(
∂xi(ln

√
det g)− Γjij

)√
det g. (9.3.21)

From (9.3.20) and (9.3.21), we have

h−1
i = ∂xi(ln

√
det g)− Γjij . (9.3.22)

Substituting in (9.3.19) yields

hαi = −α∂xi(ln
√

det g) + αΓjij

= ∂xi
(
ln(det g)−α/2

)
+ αΓjij

and hence (9.2.5) becomes

∂xi(ln f) = −∂xi(ln(det g)−α/2)− αΓjij ⇐⇒
∂xi ln(f(det g)

−α/2) = −αΓjij . (9.3.23)

Since a mixture model is ∇−1-flat, see Example 1.12.2, part (ii), then

we have Γjij = gjkΓ
(−1)
ij,k = 0. Hence, (9.3.23) can be written as

∂xi ln(f(det g)
−α/2) = 0, ∀1 ≤ i ≤ n,

with the solution f = C(det g)α/2, C nonzero constant. Replacing xi

by ξi we arrive at the following result:

Proposition 9.3.1 The α-volume element for a mixture model is
given by

ω = (det g)
1+α
2 dξ1 ∧ · · · ∧ dξn.
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9.4 Dual Volume Elements

We have found that the volume elements associated with the exponen-
tial and mixture models are proportional to the form dx1 ∧ · · · ∧ dxn,
with the proportionality functions C1(det g)

1+α
2 and C2(det g)

1−α
2 ,

respectively. We note that the product of these functions is indepen-
dent of α, i.e.,

C1(det g)
1+α
2 · C2(det g)

1−α
2 = C

√
det g.

The goal of this section is to prove a similar relation for the general
case of two dual connections on a statistical manifold.

Theorem 9.4.1 Let ∇ and ∇∗ be two dual connections on the Rie-
mannian manifold M . Let ω and ω∗ be volume elements that are
parallel to the above connections, i.e.,

∇ω = 0, ∇∗ω∗ = 0.

Then there is a nonzero function f and a constant C > 0 such that

ω = f dv, ω∗ =
C

f
dv.

Proof: Since ω, ω∗ are n-forms, there are two functions f, f∗ ∈ F(M)
such that ω = fdv and ω∗ = f∗dv. Applying ∇∂xi

to ω and ∇∗
∂xi

to

ω∗ yields

(∂xif)dv + f∇∂xi
dv = 0

(∂xif
∗)dv + f∗∇∗

∂xi
dv = 0.

Let hi, h
∗
i be such that

∇∂xi
dv = hi dv, ∇∗

∂xi
dv = h∗i dv,

so the aforementioned equations become

∂xif + f hi = 0, ∂xif
∗ + f∗ hi = 0,

or, equivalently

∂xi(ln f) = −hi, ∂xi(ln f
∗) = −h∗i .

Adding yields
∂xi
(
ln(f f∗)

)
= −(hi + h∗i ). (9.4.24)
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Since ∇(0) =
1

2
(∇ + ∇∗) is the Levi–Civita connection, using

Lemma 9.1.1 we have

0 = ∇0
∂
xi
dv =

1

2

(
∇∂xi

dv +∇∗
∂xi
dv
)

=
1

2
(hi + h∗i )dv,

so hi + h∗i = 0. Substituting in (9.4.24) yields ln(ff∗) = k, i.e.,
ff∗ = ek > 0, constant. Hence f∗ = C/f , with C = ek.

9.5 Existence and Uniqueness

Let ∇ be a given linear connection on the manifold M and ω be an
n-form. We shall investigate the conditions under which the equation

∇ω = 0

has solutions. Using that the n-forms ω and dv =
√
det g dx1∧· · ·∧dxn

are proportional, we write ω = fdv, where f is a function subject to
be found out. We have

0 = ∇∂xi
ω = ∇∂xi

(fdv) = (∂xif)dv + f(∇∂xi
dv).

Applying the above equation to the n-uple (∂x1 , . . . , ∂xn) yields

0 = (∂xif)
√

det g + f(∇∂xi
)(∂x1 , . . . , ∂xn). (9.5.25)

By the first part of the proof of Lemma 9.1.1, we find

(∇∂xi
dv)(∂x1 , . . . , ∂xn) = ∂xi

√
det g −

√
det g Γjij,

so (9.5.25) becomes

0 = (∂xif)
√
det g + f

(
∂xi
√

det g −
√

det g Γjij

)
.

Dividing by f
√
det g yields

∂xif

f
+
∂xi

√
det g√

det g
= Γjij ⇐⇒

∂xi(ln f) + ∂xi(ln
√

det g) = Γjij ⇐⇒

∂xi
(
ln(f

√
det g)

)
= Γjij.
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Let ϕ = ln(f
√
det g) and ρi =

∑
j Γ

j
ij . Then the last equation becomes

∂xiϕ = ρi, i = 1, . . . , n. (9.5.26)

Equation (9.5.26) has solutions if and only if the following exactness
conditions hold locally

∂xkρi = ∂xiρk,

which can be written equivalently as

∂k

(∑
j

Γjij

)
= ∂i

(∑
j

Γjkj

)
. (9.5.27)

Lemma 9.5.1 We have

Rij = Rji ⇔ ∂j(
∑
r

Γrir) = ∂i(
∑
r

Γrjr).

Proof: See Problem 9.2.

From Lemma 9.5.1 and formula (9.5.27) we obtain that Rij = Rji,
i.e., the Ricci tensor is symmetric.

Solving for the function f we obtain f =
eϕ√
det g

and hence the

volume element is

ω = fdv = eϕdx1 ∧ · · · ∧ dxn.

We conclude the previous computation with the following exis-
tence result:

Theorem 9.5.2 The equation ∇ω = 0 has solutions in the space of
n-forms if and only if the Ricci tensor associated with the connection
∇ is symmetric.

Corollary 9.5.3 The Ricci tensor of ∇ is symmetric if and only if
the Ricci tensor of ∇∗ is symmetric, i.e.,

Rij = Rji ⇔ R∗
ij = R∗

ji.

Proof: “⇒” Assume Rij = Rji and let ω = fdv be a solution
of ∇ω = 0. Then ω∗ = C

f dv is a solution of ∇∗ω∗ = 0 and by
Theorem 9.5.2 we get R∗

ij = R∗
ji. The converse has a similar proof.

The uniqueness is stated by the following proposition.
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Proposition 9.5.4 Let M be a connected manifold. Then the equa-
tion ∇ω = 0 has at most one solution, which is unique up to a scaling
constant.

Proof: Assume the Eq. (9.5.26) has two solutions ϕ1 and ϕ2. Then
ϕ̃ = ϕ2 − ϕ1 satisfies the equation ∂xiϕ̃ = 0 and hence ϕ̃ = C
constant. Then ω1 = eϕ1dx and ω2 = eϕ2dx = eCeϕ1dx = eCω1.
It follows that the solution is unique up to a multiplicative positive
constant.

9.6 Equiaffine Connections

If there is an n-form ω that is parallel with respect to the connection
∇, i.e.,∇ω = 0, then the connection∇ is called equiaffine and the pair
(∇(α), ω) is called an equiaffine structure. The study of the equiaffine
structures is done in Nomizu and Sasaki [62].

Therefore, Theorem 9.5.2 can be equivalently stated by saying
that a necessary and sufficient condition for a connection to be
equiaffine is that its Ricci curvature tensor is symmetric. Therefore,
in order to check the equiaffinity of ∇(α)-connections it suffices to
verify the symmetry of the associated Ricci tensor Ricα.

We start by recalling the relation provided by Proposition 8.10.1

R(α)(X,Y,Z) =
1 + α

2
R∗(X,Y,Z) +

1− α

2
R(X,Y,Z)

+
1− α2

4

(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))
.

Zhang [87] used this formula to show that connection∇(α) is equiaffine
on a dually flat statistically manifold. Applying the contractions

Tr {X → R(X,Y )Z} = TrR(·, Y )Z = Ric(Y,Z)

Tr {X → R∗(X,Y )Z} = TrR∗(·, Y )Z = Ric∗(Y,Z),

we obtain an analogous relation in terms of Ricci curvature tensors

Ric(α)(Y,Z) =
1 + α

2
Ric∗(Y,Z) +

1− α

2
Ric(Y,Z)

+
1− α2

4
Q(Y,Z), (9.6.28)

where

Q(Y,Z) = TrK
(
Y,K(·, Z)

)
− TrK

(
·,K(Y,Z)

)
. (9.6.29)



9.6. Equiaffine Connections 269

Lemma 9.6.1 The 2-covariant tensor Q is symmetric, i.e.,
Q(Y,Z) = Q(Z, Y ), for any two vector fields Y and Z.

Proof: Since the difference tensor K is symmetric, then

TrK
(
·,K(Y,Z)

)
= TrK

(
·,K(Z, Y )

)
.

Therefore, it remains to show only the symmetry of the first term,
i.e.

TrK
(
Y,K(·, Z)

)
= TrK

(
Z,K(·, Y )

)
.

By linearity, it suffices to show this relation only on a basis. In local
coordinates

K
(
∂i,K(∂j , ∂l)

)
= K

(
∂i,K

k
jl∂k

)
= Kk

jlK(∂i, ∂k) = Kk
jlK

p
ik∂p,

with summation over k and p. Taking the contraction

TrK
(
∂i,K(·, ∂l)

)
=

∑
j,p

g(Kk
jlK

p
ik∂p, ∂j) = Kk

jlK
p
ikgpj

= Kk
jlK

p
ijgpk, (9.6.30)

in the virtue of relation (8.8.27). Similarly, we arrive at

TrK
(
∂l,K(·, ∂i)

)
= Kk

jiK
p
ljgpk, (9.6.31)

with summation over p, k, j. The symmetry of tensors K and g show
the identity between relations (9.6.30) and (9.6.31)

Kk
jlK

p
ijgpk = Kk

ljK
p
jigpk = Kp

ljK
k
jigkp = Kp

ljK
k
jigpk = Kk

jiK
p
ljgpk.

Therefore TrK
(
∂i,K(·, ∂l)

)
=TrK

(
∂l,K(·, ∂i)

)
, and hence the tensor

Q is symmetric.

Proposition 9.6.2 The following equivalencies hold:

∃α0 �= 0 with Ric(α0)(Y,Z) = Ric(α0)(Z, Y ) ⇐⇒
∀α Ric(α)(Y,Z) = Ric(α)(Z, Y ) ⇐⇒

Ric(Y,Z) = Ric(Z, Y ) ⇐⇒
Ric∗(Y,Z) = Ric∗(Z, Y ),

for any vector fields Y , Z.
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Proof: From relation (9.6.28) and symmetry of Q, see Lemma 9.6.1,
we obtain by subtraction

Ric(α)(Y,Z)−Ric(α)(Z, Y ) =
1 + α

2

(
Ric∗(Y,Z)−Ric∗(Z, Y )

)

+
1− α

2

(
Ric(Y,Z) −Ric(Z, Y )

)
.

Let α = 0 to obtain

Ric(0)(Y,Z)−Ric(0)(Z, Y ) =
1

2

(
Ric(Y,Z)−Ric(Z, Y )

)

+
1

2

(
Ric∗(Y,Z)−Ric∗(Z, Y )

)
.

(9.6.32)

Since the Ricci tensor, Ric(0), associated with the Levi–Civita con-
nection ∇(0) is symmetric, the previous relation becomes

Ric(Y,Z)−Ric(Z, Y ) = Ric∗(Z, Y )−Ric∗(Y,Z). (9.6.33)

This implies that Ric is symmetric if and only if Ric∗ is symmetric.
Denote by β = β(Y,Z) = −β(Z, Y ) the value of expression (9.6.33).
Substituting in (9.6.32) yields

Ric(α)(Y,Z)−Ric(α)(Z, Y ) =
1 + α

2
β +

1− α

2
(−β)

=
αβ

2
. (9.6.34)

If there is α0 �= 0 such that Ric(α0) is symmetric, substituting in

(9.6.34) yields
αβ

2
= 0, and hence β = 0. This means that both Ricci

tensors Ric and Ric∗ are symmetric. Substituting back β = 0 into
relation (9.6.34) provides

Ric(α)(Y,Z)−Ric(α)(Z, Y ) = 0, α �= 0,

i.e., Ric(α) is symmetric. The symmetry of Ric(α) for α = 0 is obvious.

Even if, in general, neither Ric nor Ric∗ are symmetric tensors,
their sum is always symmetric:

Corollary 9.6.3 For any vector fields Y , Z we have

Ric(Y,Z) +Ric∗(Y,Z) = Ric(Z, Y ) +Ric∗(Z, Y ). (9.6.35)
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Proof: It follows from relation (9.6.33).

Since a necessary and sufficient condition for a connection to be
equiaffine is the symmetry of the Ricci tensor, the previous result can
be stated equivalently as in the following, see Takeuchi and Amari
[79] and Matsuzoe et al. [55]:

Theorem 9.6.4 The following conditions are equivalent:

(i) ∇(α) is equiaffine for any α;

(ii) there is an α0 �= 0 such that ∇(α0) is equiaffine;

(iii) ∇ is equiaffine;

(iv) ∇∗ is equiaffine.

Corollary 9.6.5 If ∇, ∇∗ are dually flat, then ∇(α) is equiaffine for
any α.

Proof: If ∇, ∇∗ are dually flat, then the curvature tensors vanish,
and hence the Ricci tensors also vanish, Ric = Ric∗ = 0. Since a zero
tensor is symmetric by default, if follows that∇ and∇∗ are equiaffine.
Then Theorem 9.6.4 implies that ∇(α) is equiaffine for any α.

A variant of proof can be done using the formula (9.6.28) in local
coordinates

R
(α)
ij =

1 + α

2
R∗
ij +

1− α

2
Rij +

1− α2

4
Qij. (9.6.36)

If the connections ∇,∇∗ are dually flat, then R∗
ij = Rij = 0, so

R
(α)
ij = 1−α2

4 Qij. Since the tensor Q is symmetric, see Lemma 9.6.1,

then R(α) is also symmetric. Then applying Theorem 9.6.4 yields that
∇(α) is equiaffine for any α.

The following necessary condition for equiaffinity can be found in
Min et al. [59].

Theorem 9.6.6 If there is an α0 �= 0 such that Ric(α0) = Ric(−α0),
then

(i) Ric(α) = Ric(−α) for any α;

(ii) the connection ∇(α) is equiaffine for any α.
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Proof:

(i) Using Qij = Qji, from (9.6.36) we obtain by subtraction

R
(α)
ij −R

(−α)
ij = α(R∗

ij −Rij). (9.6.37)

Therefore, if there is an α0 �= 0 for which the left side vanishes,
then R∗

ij = Rij , and hence the left side has to be zero for any
α �= 0, i.e.,

R
(α)
ij −R

(−α)
ij = 0.

The identity for α = 0 follows from the symmetry of the Ricci
tensor associated with the Levi–Civita connection ∇(0).

(ii) Substituting Rij = R∗
ij back into formula (9.6.36) leads to

R
(α)
ij = Rij +

1− α2

4
Qij , ∀α. (9.6.38)

Then making α = 0 and solving for Rij we obtain

Rij = R
(0)
ij − 1

4
Qij.

Since R
(0)
ij and Qij are symmetric, then so will be Rij . Looking

back to formula (9.6.38), it follows that R
(α)
ij is symmetric, for

any α. Hence the connection ∇(α) is equiaffine for all α.

The next notion was introduced by Lauritzen [54]:

Definition 9.6.7 A statistical manifold (M,g,∇,∇∗) is said to be
conjugate symmetric if the curvatures of the pair of conjugate con-
nections are equal, i.e.

R(X,Y,Z) = R∗(X,Y,Z),

for any vector fields X,Y,Z.

Proposition 9.6.8 Let M be a conjugate symmetric manifold. Then
R(α) is an even function of α, i.e.

R(α)(X,Y )Z = R(−α)(X,Y )Z,

for any vector fields X,Y,Z on M .
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Proof: Writing the relation provided by Proposition 8.10.1 for α
and −α, we have

R(α)(X,Y,Z) =
1 + α

2
R∗(X,Y,Z) +

1− α

2
R(X,Y,Z)

+
1− α2

4

(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))

R(−α)(X,Y,Z) =
1− α

2
R∗(X,Y,Z) +

1 + α

2
R(X,Y,Z)

+
1− α2

4

(
K
(
Y,K(X,Z)

)
−K

(
X,K(Y,Z)

))
,

and then subtracting yields

R(α)(X,Y,Z) −R(−α)(X,Y,Z) = α
(
R∗(X,Y,Z)−R(X,Y,Z)

)
.

(9.6.39)

If the manifold is conjugate symmetric, the right side is equal to zero,
and hence R(α) = R(−α).

The following more restrictive concept was introduced in Min
et al. [59].

Definition 9.6.9 A statistical manifold (M,g,∇,∇∗) is called con-
jugate Ricci-symmetric if

Ric(Y,Z) = Ric∗(Y,Z)

for all Y,Z vector fields on M .

The above condition can be written in local coordinates as Rij = R∗
ij .

It is worth noting that if M is conjugate symmetric, then it is conju-
gate Ricci-symmetric.

Theorem 9.6.10 Let (M,g,∇,∇∗) be a conjugate Ricci-symmetric
statistical manifold. Then the connection ∇(α) is equiaffine for any α.

Proof: If M is conjugate Ricci-symmetric manifold, then formula
(9.6.37) implies

R
(α)
ij −R

(−α)
ij = α(R∗

ij −Rij) = 0 (9.6.40)

for any α �= 0, and hence R
(α)
ij = R

(−α)
ij . Applying Theorem 9.6.6

yields that ∇(α) is equiaffine for any α �= 0. The case α = 0 is covered
by the fact that the Levi–Civita connection ∇(0) is equiaffine (the
Riemannian volume element is parallel with respect to ∇(0)).
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Corollary 9.6.11 Let (M,g,∇,∇∗) be a conjugate symmetric
statistical manifold. Then the connection ∇(α) is equiaffine for any α.

The next section deals with a distinguished particular type of
conjugate symmetric manifolds.

9.7 Manifolds with Constant Curvature

Recall that a connection ∇ on the manifold (M,g) has the constant
curvature K if relation (8.1.6) holds, i.e.,

R(X,Y )Z = K{g(Y,Z)X − g(X,Z)Y }, ∀X,Y,Z ∈ X (M).
(9.7.41)

Let (M,g,∇,∇∗) be a statistical manifold. As it had been shown in
Proposition 8.1.4, part (ii), if the connection ∇ has constant curva-
ture, then its dual connection, ∇∗, also has constant curvature, and
the curvatures of ∇ and ∇∗ are equal. On this basis we consider the
following concept.

Definition 9.7.1 (M,g,∇,∇∗) is a statistical manifold of constant
curvature if the dual connections ∇ and ∇∗ have equal constant cur-
vatures.

The main properties of these type of manifolds are contained in
the following result.

Theorem 9.7.2 Let (M,g,∇,∇∗) be a statistical manifold of con-
stant curvature. Then

(i) M is a conjugate symmetric manifold;

(ii) M is a conjugate Ricci-symmetric manifold;

(iii) Ric(α) = Ric(−α), for any α;

(iv) Ric∗(α) = Ric∗(−α), for any α;

(v) ∇(α) is equiaffine for any α.

Proof:

(i) Writing relation (9.7.41) for both tensors R and R∗ and using
that K = K∗, see Proposition 8.1.4, part (ii), we have

R(X,Y )Z = K{g(Y,Z)X − g(X,Z)Y }
= K∗{g(Y,Z)X − g(X,Z)Y }
= R∗(X,Y )Z, ∀X,Y,Z ∈ X (M).
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(ii) It follows by contracting the relation R(X,Y )Z = R∗(X,Y )Z
over X to obtain Ric(Y,Z) = Ric∗(Y,Z).

(iii) It is an obvious application of Proposition 9.6.8.

(iv) It is implied by (iii) and formula (9.6.39).

(v) Apply Theorem 9.6.6.

The following result was previously noticed by Takeuki and
Amari [79]. We obtain it here as a consequence of the previous
analysis.

Corollary 9.7.3 Let (M,g,∇,∇∗) be a dually flat statistical mani-
fold. Then ∇(α) is equiaffine for any α ∈ R.

Proof: A dually flat statistical manifold has the constant curvature
equal to zero. Then apply Theorem 9.7.2, part (v).

In the end of this topic we make a few concluding remarks. The
subject of equiaffine connections is of outgrowing interest and several
other authors have brought their contributions to this topic.

Uohashi [84] introduced in 2002 the notion of α-transitive flat
connections. A connection ∇(α) is called α-transitive flat if ∇ = ∇(−1)

is curvature-free (we also note that∇∗ = ∇(1) is curvature-free). Then
Uohashi result can be restated as “all α-transitive flat connections are
equiaffine.”

Zhang [87] proves that if two torsion-free connections ∇, ∇̃ are
equiaffine, with corresponding parallel volume forms ω, ω̃, then the
connection given by their convex combination a∇ + b∇̃, a + b = 1,
is equiaffine for all a ∈ R, with parallel volume form given by (up to
a scaling constant) ωaω̃b. It is worth noting that the result follows
from the formula Γlil = ∂i(lnω) and the logarithm properties. As an
application, Zhang shows that the α-volume form of ∇(α) satisfies

ω(α) = (ω)
1−α
2 (ω)∗

1+α
2 ,

where ∇∗ = ∇(1), ∇ = ∇(−1). An alternative expression is provided
by Matsuzoe et al. [55] in terms of the Levi–Civita connection ∇(0)

via formula

ω(α) = e−
α
2
φω(0),
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where φ = log
ω∗

ω
. From here one can easily infer that

ω(α)ω(−α) = ωω∗ = (ω(0))2,

which is a result first stated in Simon [76], p.913.
Another issue investigated in [87] is the relation between the

α-scalar curvature and the difference tensor Kij . More precisely, if
the scalar curvature is defined as the contraction of the Ricci ten-
sor, σ = gjlRlj, then the scalar curvature of ∇(α) is related to ∇ via
formula

σ(α) = σ +
1− α2

4
gij(Km

ikK
k
jm −Km

ijK
k
km).

Last, but not least, dual connections support several generaliza-
tions, see Calin et al. [25]. For instance, connections ∇ and ∇∗

are
called generalized conjugate if there is a 1-form τ such that

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ)− τ(X)g(Y,Z)

for all vector fields X,Y,Z. It is shown in [25] that if ∇ and ∇∗
are

torsion-free, then ∇ is equiaffine (or equivalently ∇∗
is equiaffine)

if and only if τ is an exact 1-form. If τ = dϕ, let ω, ω∗ be the
parallel volume elements with respect to the generalized conjugate
connections ∇ and ∇∗

. Then there is a constant C > 0 such that

ωω∗ = Cenϕ,

where n is the dimension of the statistical manifold.

9.8 Divergence of a Vector Field

The concept of divergence of a vector field helps with modeling the
evolution of the volume element along the integral curves of the vector
field. In other words, the divergence of a vector field defines the speed
of contraction–dilation of volumes by the corresponding local flow.
This section is concerned with the divergence taken with respect to a
pair of dual connections and the relations between them. The relation
between the divergence and the volume element is also emphasized.

Definition 9.8.1 Let ∇ be a linear connection on the Riemannian
manifold (M,g) and let X ∈ X (M) be a C1-vector field. The diver-
gence of X is defined as the trace of the covariant derivative ∇X,
i.e.,

divX = Trace
(
Y → g(∇YX,Y )

)
. (9.8.42)
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This can be expressed in local coordinates as

divX =
∂Xi

∂xi
+ ΓiijX

j , (9.8.43)

where X(x) = Xk(x)∂xk .

Let Γ
(0)k
ij denote the Christoffel symbols of second kind associated

with the Levi–Civita connection ∇(0). The divergence with respect to
∇(0) is called the Riemannian divergence and is denoted by div(0).

The following equivalent formulas hold for Riemannian diver-
gences, see Calin and Chang [22], p.19.

Lemma 9.8.2 The Riemannian divergence can be expressed in the
following equivalent ways

div(0)X =
1√
det g

∂

∂xj
(
√

det gXj)

=
∂Xi

∂xi
+

1√
det g

X(
√

det g)

=
∂Xi

∂xi
+ Γ

(0)i
ij Xj .

The next result holds for any divergence.

Lemma 9.8.3 For any C1-vector field X and any C1-function f , we
have

div(fX) = fdiv(X) + g(X, grad f)

= fdiv(X) +X(f).

Proof: Since ∇Y (fX) = f∇YX + Y (f)X, we find

g
(
∇Y (fX), Y

)
= fg(∇YX,Y ) + Y (f)g(X,Y ).

Taking the trace yields

div(fX) = Trace
(
Y → g(∇Y (fX), Y )

)

= Trace
(
Y → fg(∇YX,Y )

)
+ Trace

(
Y → Y (f)g(X,Y )

)

= f T race
(
Y → g(∇YX,Y )

)
+ g

(
X,Trace

(
Y → Y (f)Y )

)

= fdiv(X) + g(X, grad f).

Denote by divX and div∗X the divergence of the vector field X
with respect to the dual connections ∇ and ∇∗. The following result
will be useful shortly.
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Lemma 9.8.4 We have

1

2
gij∂kgij = Γ

(0)i
ki .

Proof: Since

Γ
(0)i
jk =

1

2
gil
(∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

)
,

using the symmetry in the lower indices, yields

Γ
(0)i
ji =

1

2
gis
(∂gjs
∂xi

+
∂gis
∂xj

− ∂gji
∂xs

)
=

1

2
gis
∂gis
∂xj

.

Proposition 9.8.5 The Riemannian divergence is the average of
dual divergences

div(0)X =
1

2
(divX) +

1

2
(div∗X).

Proof: Taking the trace in the formula ∇(0) = 1
2∇ + 1

2∇∗ and using
(9.8.42) yields the desired result.

For the sake of completeness, we shall perform in the following
a computation in local coordinates using formula (9.8.43). Since ∇
and ∇∗ are dual connections, the relation between the connection
components is

∂xkgij = Γki,j + Γ∗
kj,i.

Contracting by
1

2
gij and applying Lemma 9.8.4 we obtain

Γ
(0)i
ki =

1

2
Γiki +

1

2
Γ∗
ki
i

and hence for any vector field X we have

Γ
(0)i
ki X

k =
1

2
ΓikiX

k +
1

2
Γ∗
ki
iXk.

Adding ∂Xi

∂xi
on both sides yields

∂Xi

∂xi
+ Γ

(0)i
ki X

k =
1

2

(∂Xi

∂xi
+
∑
k

ΓikiX
k
)

+
1

2

(∂Xi

∂xi
+
∑
k

Γ∗
ki
iXk

)
,
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which, in the virtue of (9.8.43), becomes

div(0)X =
1

2
(divX) +

1

2
(div∗X).

Corollary 9.8.6 Let (∇,∇∗) and (∇′,∇′′) be two pairs of dual con-
nections, with respect to the metric g. Then

divX − div′X = div∗X − div′′X, ∀X ∈ X (M),

i.e., the variation in the divergence of two connections is the same as
the variation in the divergence of the dual connections.

In the following we shall assume that there is a volume element ω
associated with the connection ∇, i.e., an n-form which satisfies the
equation ∇ω = 0. Necessary and sufficient conditions for the existence
of ω are given by the Theorem 9.5.2.

The following result states the relationship between the diver-
gences associated with ∇ and ∇(0).

Proposition 9.8.7 If ω = fdv is the volume element associated with
∇ and X is a C1-vector field, then we have

divX =
1

f
X(f) + div(0)X. (9.8.44)

Proof: The parallelism of the volume element ω, given by ∇Xω = 0,
becomes

X(ln f) = −X(ln
√

det g) + ΓjijX
i

=
(
− X(

√
det g)√
det g

− ∂Xi

∂xi

)
+

(
∂Xi

∂xi
+ ΓjijX

i

)

= −div(0)X + divX, (9.8.45)

by Lemma 9.8.2 and formula (9.8.43). Substituting X(ln f) =
X(f)

f
in (9.8.45) yields the desired result.

In the following we shall recover Theorem 9.4.1, and also a result
proved in Zhang [87].
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Proposition 9.8.8 Let ω = fdv and ω∗ = f∗dv be the volume
elements parallel with respect to the connections ∇,∇∗, respectively.
Then ff∗ = C, constant.

Proof: Equation (9.8.44) applied to ω and ω∗ provides

divX =
1

f
X(f) + div(0)X

div∗X =
1

f∗
X(f∗) + div(0)X.

Adding the previous relations and using Proposition 9.8.5 yields

1

f
X(f) +

1

f∗
X(f∗) = 0.

Multiplying by ff∗ and using that X satisfies Leibniz rule, we obtain

X(ff∗) = 0, ∀X ∈ X (M),

which is equivalent to ff∗ = C, constant.

Corollary 9.8.9 For any C1-vector field X and any functions f , f∗

in the relation ff∗ = C, we have

divX =
1

f
div(0)(fX)

div∗X =
1

f∗
div(0)(f∗X) = fdiv(0)

( 1
f
X
)
.

Proof: Lemma 9.8.3 provides

div(0)(fX) = fdiv(0)X +X(f).

Dividing by f yields

1

f
div(0)(fX) = div(0)X +

1

f
X(f) = divX.

The second part results from f∗ = C/f

div∗X =
1

f∗
div(0)(f∗X) =

f

C
div(0)

(C
f
X
)
= fdiv(0)

( 1
f
X
)
.

The α-divergence is the divergence taken with respect to the ∇α-
connection. This can be computed as in the following.
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Lemma 9.8.10 For any C1-vector field X, we find

div(α)X =
1 + α

2
div∗X +

1− α

2
divX.

Proof: Using (8.5.11), we obtain

g(∇α
YX,Y ) =

1 + α

2
g(∇YX,Y ) +

1− α

2
g(∇∗

YX,Y ).

Taking the trace with respect to Y yields the desired result.

The relation between the α-divergence and the dual volume ele-
ments is given below. The functions f , f∗ are the ones defined by the
volume elements ω = f dv and ω∗ = f∗ dv.

Proposition 9.8.11 For any C1-vector field X, the α-divergence
can be expressed as

div(α)(X) = −αX(ln f) + div(0)X (9.8.46)

= αX(ln f∗) + div(0)X. (9.8.47)

Proof: Combining Lemma 9.8.10 and Proposition 9.8.7, we write

div(α)(X) =
1 + α

2
div∗X +

1− α

2
divX

=
1 + α

2

1

f∗
X(f∗) +

1− α

2

1

f
X(f) + div(0)X

= X(ln f∗
1+α
2 ) +X(ln f

1−α
2 ) + div(0)X

= X
(
ln(f∗

1+α
2 f

1−α
2 )
)
+ div(0)X

= X
(
ln(Cf

−1−α
2 f

1−α
2 )
)
+ div(0)X

= −αX
(
ln f

)
+ div(0)X.

The second relation is a consequence of the formula f∗ = C/f , with
C constant.

The reason that makes divergence worthy to be studied is its
geometric significance. It is used to describe the evolution (expansion
or contraction) of the volume element along the integral curves of a
vector field. This approach involves the study of the Lie derivative
and is the subject of the next section.
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9.9 Lie Derivative of a Volume Element

The Lie derivative is a useful tool in studying the behavior of some
geometric objects evolving under the one-parameter group of diffeo-
morphisms generated by a vector field X on a manifold M . If T is
a covariant tensor of order p on M , the pull-back of T under the
diffeomorphism ϕ :M →M is defined by

(ϕ∗T)x(u1, . . . , up) = Tϕ(x)(dϕ(u1), . . . , dϕ(up))

where ui ∈ TxM and dϕ denotes the differential map of ϕ, see
Sect. 7.6.

The Lie derivative of the tensor T, with respect to a vector fieldX,
is the derivative along the integral curves of X, i.e.,

(LXT)(Y1, . . . , Yp) = lim
t→0

1

t

(
(ϕ∗

tT)(Y1, . . . , Yp)− T(Y1, . . . , Yp)
)
,

(9.9.48)

where (ϕt) is the one-parameter group of diffeomorphisms of X.
The Lie derivative of the tensor T of order p can be expressed

invariantly by the following formula

(LXT)(Y1, . . . , Yp) = X
(
T(Y1, . . . , Yp)

)
−

p∑
i=1

T(Y1, . . . , [X,Yi], . . . , Yp).

(9.9.49)
In particular, if T = ω is a 1-form, then

(LXω)(Y ) = Xω(Y )− ω([X,Y ]).

If T is a vector field Y , then LXY = [X,Y ], the Lie bracket of X
and Y . If p = 0, then T becomes a function f and hence

LXf = X(f).

Among other properties of the Lie derivative we quote the following:

L[X,Y ] = LXLY − LY LX = [LX , LY ],

LX(fω) = (LXf)ω + fLXω,

LX(df) = d(Xf), ∀f ∈ F(M),

LaX+bY = aLX + bLY , ∀a, b ∈ R,X, Y ∈ X (M).

The evolution of the volume element along the integral curves of X
is described by the Lie derivative with respect to X. In the case of
Riemannian geometry we have the following result.
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Proposition 9.9.1 Let dv be the Riemannian volume element and
X be a C1-vector field on M . Then

LXdv = (div(0)X)dv. (9.9.50)

Proof: It suffices to verify the formula on a basis. Applying relation
(9.9.49) to the n-form T = dv =

√
det g dx1 ∧ · · · ∧ dxn and taking

Yj = ∂j yields

(LXdv)(∂1, . . . , ∂n)

= Xdv(∂1, . . . , ∂n)−
n∑
i=1

dv
(
∂1, . . . , [X

j∂j , ∂i], . . . , ∂n)

= X(
√

det g)−
∑
i

dv
(
∂1, . . . ,−

∂Xj

∂xi
∂j , . . . , ∂n

)

= X(
√

det g) +
∑
i

∂Xj

∂xi
dv
(
∂1, . . . , ∂j , . . . , ∂n

)

= X(
√

det g) +
∂Xi

∂xi

√
det g

=
√

det g
(∂Xi

∂xi
+

1√
det g

X(
√

det g)
)

=
√

det g div(0)X,

by Lemma 9.8.2. On the other side, we have

(div(0)X)dv(∂1, . . . , ∂n) =
√

det g div(0)X,

which proves the desired identity.

As a consequence of formula (9.9.48) and Proposition 9.9.1, the
Riemannian volume element dv expands (or contracts, or is invariant)
along the integral curves of X if and only if div(0)X > 0 (or < 0, or
= 0, respectively).

In the following we deal with a similar result for the volume
element ω and divergence associated with an arbitrary linear con-
nection ∇.

Proposition 9.9.2 For any C1-vector field X and any volume ele-
ment ω, we have

LXω = (divX)ω.
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Proof: Let ω = fdv. Using that LX acts as a derivation, we have

LXω = LX(fdv) = (LXf)dv + f(LXdv)

= X(f)dv + f(div0X)dv

=
1

f
X(f)ω + (div(0)X)ω

=
( 1
f
X(f) + div(0)X

)
ω

= (divX)ω,

by Propositions 9.8.7 and 9.9.1.

We shall compute the divergence of a vector field in two important
particular cases.

Example 9.9.3 In the case of the exponential model, the α-volume

element has the coefficient f = C(det g)
−α
2 , see Proposition 9.2.1,

and hence

div(α)expX =
1

f
X(f) + div(0)X

=
−α
2

1

det g
X(det g) + div(0)X

=
−α
2
X(ln(det g)) + div(0)X.

Example 9.9.4 The volume element in the case of the mixture model
is given by Proposition 9.3.1. The α-divergence in this case takes the
following form

div
(α)
mixtX =

α

2
X(ln(det g)) + div(0)X.

The next section will deal with α-volume elements in more detail.

9.10 α-Volume Elements

Let ∇ and ∇∗ be two dual connections, with respect to the met-
ric g, and consider the ∇(α)-connection defined by (8.5.11). Proposi-
tion 9.6.2 can be restated equivalently as:
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The following conditions are equivalent:

(i) The Ricci tensor associated with ∇(α) is symmetric;

(ii) The Ricci tensor associated with ∇ is symmetric;

(iii) The Ricci tensor associated with ∇∗ is symmetric.

Therefore, in the virtue of Theorem 9.5.2, if the volume element
exists for the connection ∇, then it also exists for the connections ∇∗

and ∇α. This was first shown by Takeuchi and Amari [79] and noted
in Matsuzoe et al. [55].

In the following we shall assume that the aforementioned volume
elements exist and we shall investigate their relationship using the
concept of divergence. Let ω(α), ω(1) = ω∗, and ω(−1) = ω be the
volume elements corresponding to connections ∇(α), ∇(1) = ∇∗, and
∇(−1) = ∇, respectively:

∇(α)ω(α) = ∇∗ω(1) = ∇ω(−1) = 0.

Since the previous volume elements are n-forms, they are propor-
tional, so we can write

ω(α) = f1ω
∗ = f−1ω,

with f1 and f−1 nonvanishing functions on M . The next result pro-
vides explicit formulas for the coefficients f1 and f−1.

Theorem 9.10.1 The coefficients f1 and f−1 can be written in terms
of f and f∗ as follows

f1 = C(f∗)α−1 = Cf1−α

f−1 = C(f∗)α+1 = Cf−(1+α),

with C real positive constant.

Proof: Let X be a C1-vector field on M . Proposition 9.9.2 applied
to the n-forms ω, ω∗ and ω(α) provides

LXω = (divX)ω

LXω
∗ = (div∗X)ω∗

LXω
(α) = (div(α)X)ωα. (9.10.51)
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We shall compute both sides of (9.10.51). For the right side we use
Proposition 9.8.11

(div(α)X)ωα =
(
αX(ln f∗) + div(0)X

)
ωα. (9.10.52)

Using the properties of Lie derivative, the left side of (9.10.51) be-
comes

LXω
(α) = LX(f1ω

∗) = X(f1)ω
∗ + f1LXω

∗

=
1

f1
X(f1)ω

(α) + f1(div
∗X)ω∗

= X(ln f1)ω
(α) + (div∗X)ω(α)

= [X(ln f1) +X(ln f∗) + div(0)]ω(α), (9.10.53)

where the last identity used the second relation of Proposition 9.8.11,
with α = 1. Equating (9.10.52) and (9.10.53) yields

X(ln f1) +X(ln f∗) = αX(ln f∗)
X(ln f1) = X(ln (f∗)α−1)

X
(
ln

f1

(f∗)α−1

)
= 0, ∀X ∈ X (M),

so there is a constant c such that ln
f1

(f∗)α−1 = c. And then choosing

C = ec, we have f1 = C(f∗)α−1. Since ff∗ = constant, the previous
formula can be written also as f1 = Cf1−α.

A similar computation is used to find the coefficient f−1. In this
case the right and left sides of (9.10.51) become

(div(α)X)ω(α) =
(
− αX(ln f) + div(0)X

)
ω(α), (9.10.54)

and

LXω
(α) = LX(f−1ω) = X(f−1)ω+f−1LXω

=
(
X(ln f−1)+X(ln f)+div(0)X

)
ω(α). (9.10.55)

Equating (9.10.54) and (9.10.55) leads to

X
(
ln(f−1f

α+1)
)

= 0, (9.10.56)

whence f1f
α+1 = C, with C > 0. We note that the constants C that

appears in the formulas of f1 and f−1 are generic constants, and they
are not necessarily equal.

The relationship between the coefficient functions f1 and f−1 is
given in the next result.
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Corollary 9.10.2 We have

f
1+α
2

1 f
1−α
2−1 = C,

where C is a positive constant.

Proof: It is a direct computation using Theorem 9.10.1. We have

f
1+α
2

1 = Cf (1−α)(1+α)/2 = Cf (1−α
2)/2

f
1−α
2−1 = Cf (1+α)(α−1)/2 = Cf (α

2−1)/2,

and multiplying, we get

f
1+α
2

1 f
1−α
2−1 = C.

It is worth to mention the particular case α = 0, which recovers
a well-known result. In this case ω(0) = dv and dv = f1ω

∗ = f−1ω, so
f∗ = 1/f1 and f = 1/f−1, where f and f∗ are defined by ω∗ = f∗dv
and ω = fdv. Corollary 9.10.2 writes as f1f−1 = C, constant, which
implies f∗f = C.

9.11 Problems

9.1. Find explicit formulas for the α-volume elements in the case of
the following distributions:

(a) exponential; (b) normal; (c) gamma; (d) beta.

9.2. Let∇ be a linear connection on a manifoldM , with components
Γrij. In the following we assume Einstain summation convention.

(a) Contract with r = k in formula of Rrikj, and use Prob-
lem 1.14 to show the following formula for the Ricci tensor:

1

2
Rij = ∂rΓ

r
ji − ∂jΓ

r
ri + Γr�rΓ

�
ji − Γrj�Γ

�
ri.

(b) Prove that

Rij = Rji ⇔ ∂j(Γ
r
ir) = ∂i(Γ

r
jr).

(c) If ∇ is the Levi–Civita connection, prove that Rij = Rji.
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9.3. Let τ be a 1-form and ∇, ∇∗
two torsion-free connections on a

Riemannian manifold (M,g) satisfying the condition

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ)− τ(X)g(Y,Z) (9.11.57)

for all X,Y,Z ∈ X (M).

(a) Show that
∂kgij = Γkij + Γ

∗
kji − τkgij ,

where τ = τkdx
k, ∇∂i∂j = Γkij∂k, and ∇∗

∂i∂j = Γ
∗k
ij ∂k.

(b) Given a 1-form τ and a linear connection ∇, show that
there is a unique linear connection ∇∗

satisfying relation
(9.11.57).

(c) Assume ∇ is a torsion-free, equiaffine connection and τ is
exact (i.e., there is a function f on M such that τ = df).
Prove that ∇∗

is equiaffine.

(d) Assume the connections ∇, ∇∗
are torsion-free and equi-

affine. Show that the 1-form τ is exact.

9.4. Let X be a vector field on X = R
n and ω = dx1 ∧ · · · ∧ dxn be

the associated volume form. Show that the flow

ẋ(t) = X(x(t))

conserves the volume if divX(x) = 0.

9.5. The continuity PDE

∂f

∂t
(x, t) = − ∂

∂xi
(f(x, t)Xi(x))

describes the dynamics induced by a probability density f(x, t)
on the associated phase space.

(a) Prove that for an incompressible flow (conservation of vol-
ume), the continuity PDE rewrites as

∂f

∂t
(x, t) = −Xi(x)

∂f

∂xi
(x, t).

This means that the probability density f(x, t) is constant
along the flow, i.e., f(x, t+ dt) = f(x−X(x)dt, t).

(b) Show that the function ln f(x, t) is also a solution of the
previous continuity PDE.
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(c) Show that, for any continuous function h, the integral

H(f) =

∫

X
h(f(x, t))ω

does not change in time, provided the probability density
f(x, t) satisfies the continuity PDE and the flow X(x) con-
serves the phase volume.

(d) For h(f) = −f ln f , the foregoing integral gives the classi-
cal Boltzmann–Gibbs–Shannon entropy functional

S(f) = −
∫

X
f(x, t) ln(f(x, t))ω.

Prove that, for flows with conservation of volume, the en-

tropy is conserved, i.e.,
dS

dt
= 0.

9.7. Suppose the phase volume is not invariant with respect to the
given flow and f∗(x) is a steady-state solution (equilibrium
point) of the continuity PDE, i.e.,

∂

∂xi
(f∗Xi)(x) = 0.

Check the following:

(a) in this case, instead of invariant phase volume form ω, we
have another invariant volume form, namely η = f∗(x)ω;

(b) in case of volume conservation, we have

∂

∂t

f(x, t)

f∗(x)
= −Xi(x)

∂

∂xi
f(x, t)

f∗(x)
.

The function f(x,t)
f∗(x) is constant along the flow and the mea-

sure η is invariant.

(c) for any continuous function h(f), the integral

H(f) =

∫

X
h

(
f(x, t)

f∗(x)

)
η

does not change in time, if the probability density f(x, t)
satisfies the continuity PDE. Now we take h(f) = −f ln f .
We obtain the Kullback entropy functional

SK(f) = −
∫

X
f(x, t) ln

f(x, t)

f∗(x)
ω.
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We note that this situation does not differ significantly
from the entropy conservation in systems with conserva-
tion of volume. It is just a kind of change of variables.

9.8. If f(x, t) is a probability density satisfying the continuity PDE,
then the Boltzmann–Gibbs–Shannon entropy functional satis-
fies

d

dt
S(f) =

∫

X
f(x, t) divX(x)ω

if the left hand side exists.

(Hint: This entropy production formula can be proven for small
phase drops with constant density, and then for finite sums
of such distributions with positive coefficients. After that, we
obtain the foregoing formula by limit transition.)

9.9. Show that, for a regular invariant density f∗(x) (equilibrium),
the entropy S(f∗) exists, and for this distribution d

dtS(f) = 0
and consequently

∫

X
f∗(x) divX(x)ω = 0.



Chapter 10

Dual Laplacians

Each linear connection induces a divergence, which is used to define
a Laplacian. Dual connections yield to dual Laplacians. This chapter
deals with the definition and main properties of dual Laplacians
and α-Laplacians. Their relationship with Hessians, curvature vec-
tor fields, and dual volume elements is emphasized.

In this chapter (M,g,∇,∇∗) is a manifold M structured by a
metric g, and endowed with a pair of dual connections ∇ and ∇∗.

10.1 Definition of Hessian

The Hessian of a function f ∈ F(M) taken with respect to the linear
connection ∇ is the covariant derivative of the 1-form df , i.e.,

Hf (X,Y ) = (∇df)(X,Y ). (10.1.1)

Using the covariant differentiation formula for 1-forms

(∇ω)(X,Y ) = Xω(Y )− ω(∇XY ),

then relation (10.1.1) provides the explicit formula

Hf (X,Y ) = Xdf(Y )− df(∇XY ) = XY (f)− (∇XY )f. (10.1.2)

The local coordinates representation is Hf (X,Y ) = XiY jHf
ij, where

Hf
ij =

∂2f

∂xi∂xj
− Γkij

∂f

∂xk
.

It is worth noting thatHf is symmetric if and only if ∇ is torsion-free,
i.e., Γkij = Γkji (symmetric).
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In the following the gradient vector field of f is taken with respect
to the Riemannian metric g. This means

g(grad f,X) = X(f), ∀X ∈ X (M),

which in local coordinates is equivalent to (grad f)j = gjk∂xkf .

The relation between the Hessian and gradient is given by the
next result.

Lemma 10.1.1 If ∇, ∇∗ are dual connections, then

Hf (X,Y ) = g
(
∇∗
X(grad f), Y

)
, ∀X,Y ∈ X (M).

Proof: Using the definition of Hessian, gradient and dual connections,
we have

Hf (X,Y ) = X
(
Y (f)

)
−(∇XY )f

= Xg(grad f, Y )−g(grad f,∇XY )

= g(∇∗
X(grad f), Y )+g(grad f,∇XY )−g(grad f,∇XY )

= g(∇∗
X(grad f), Y ).

10.2 Dual Hessians

Let ∇, ∇∗ be a pair of torsion-free dual connections on the Rieman-
nian manifold (M,g). For each smooth function f onM , we associate
a pair of Hessians Hf and H∗f given by

Hf (X,Y ) = (∇df)(X,Y )

H∗f (X,Y ) = (∇∗df)(X,Y ).

The dual Hessian has the components given by

H∗f
ij =

∂2f

∂xi∂xj
− Γ∗k

ij

∂f

∂xk
,

and, according to Lemma 10.1.1, we can write

H∗f (X,Y ) = g
(
∇X(grad f), Y

)
, ∀X,Y ∈ X (M).

The relation with the difference tensor K(X,Y ) is given by the next
result.
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Proposition 10.2.1 For any C2-function f , the Hessians Hf , H∗f

and the difference tensor K are related by

Hf (X,Y )−H∗f (X,Y ) = K(X,Y )(f).

Proof: Using (10.1.2) we have

Hf (X,Y )−H∗f (X,Y ) = XY (f)− (∇XY )f

−
(
XY (f)− (∇∗

XY )f
)

= (∇∗
XY )f − (∇XY )f = K(X,Y )f.

The relation with skewness tensor C(X,Y,Z) is found in the next
result.

Proposition 10.2.2 For any C2-function f , the Hessians Hf , H∗f

and the skewness tensor C are related by

Hf (X,Y )−H∗f (X,Y ) = C(grad f,X, Y ).

Proof: Using Lemma 10.1.1 and Proposition 8.8.1, we obtain

Hf (X,Y )−H∗f (X,Y ) = g
(
∇∗
X(grad f), Y

)
− g

(
∇X(grad f), Y

)

= g
(
(∇∗

X −∇X)(grad f), Y
)

= g
(
K(X, grad f), Y

)

= C(X, grad f, Y ) = C(grad f,X, Y ).

The last identity follows from the symmetry of C.

10.3 The Laplacian

For every linear connection ∇, any metric g and any C2-function f ,
we define the operator

Δf = div(grad f),

called Laplacian, where div is taken with respect to ∇, see formula
(9.8.42).

Proposition 10.3.1 The Laplacian is given by the trace of the dual
Hessian

Δf = Trace
(
(X,Y ) → H∗f (X,Y )

)
.
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Proof: From Lemma 10.1.1

H∗f (X,Y ) = g
(
∇X(grad f), Y

)
, ∀X,Y ∈ X (M).

Taking the trace and using the divergence formula (9.8.42) yields

Trace
(
(X,Y ) → H∗f (X,Y )

)
= Trace

(
(X,Y ) → g

(
∇X(grad f), Y

))

= div(grad f) = Δf.

The previous formula can be written locally as

Δf = gijH∗f
ij = gij

( ∂2f

∂xi∂xj
− Γ∗k

ij

∂f

∂xk

)
.

10.4 Dual Laplacians

Let div and div∗ be divergences taken with respect to dual connec-
tions ∇, ∇∗ and the metric g. This induces a pair of dual Laplacians

Δf = div(grad f)

Δ∗f = div∗(grad f).

The relationship between Δ and Δ∗ is given below.

Proposition 10.4.1 Let K denote the curvature vector field associ-
ated with dual connections ∇ and ∇∗, see formula (8.7.22). Then

Δ∗f = Δf −K(f). (10.4.3)

Proof: Using Propositions 10.3.1 and 10.2.1 together with formula
(8.7.23) yields

Δ∗f −Δf = TraceHf − TraceH∗f = Trace(Hf −H∗f )

= −gijKk
ij

∂f

∂xk
= −Kk ∂f

∂xk
= −K(f).

Corollary 10.4.2 A function f is constant along the curvature vec-
tor field, K(f) = 0, if and only if Δf = Δ∗f .

Corollary 10.4.3 Let Δ(0) be the Laplacian with respect to the Levi–
Civita connection ∇(0). Then

Δ(0) =
1

2

(
Δ+Δ∗).
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10.5 α-Laplacians

Let div(α) be the divergence with respect to the α-connection ∇(α),
see (9.8.42), on a Riemannian manifold (M,g). For any C2-function f ,
the α-Laplacian is defined as

Δ(α)f = div(α)(grad f).

Assuming the convention ∇∗ = ∇(1), ∇ = ∇(−1), write

∇(α) = ∇(0) +
α

2
(∇∗ −∇).

Taking the trace yields

div(α) = div(0) +
α

2
(div∗ − div).

Applying it to grad f , we get

Δ(α)f = Δ(0)f +
α

2
(Δ∗f −Δf).

Using (10.4.3) yields the following formula for the α-Laplacian

Δ(α)f = Δ(0)f − α

2
K(f). (10.5.4)

Taking the values α = 1 and α = −1 yields the pair of dual Laplacians

Δ∗ = Δ(0) − 1

2
K (10.5.5)

Δ = Δ(0) +
1

2
K. (10.5.6)

Consequently, we have

1

2
(ΔΔ∗ +Δ∗Δ) = Δ(0)Δ(0) − 1

4
KK.

10.6 Hopf’s Lemma

Let us use the manifold (M,g,∇).

Proposition 10.6.1 The Laplacian Δ satisfies the condition

Δ(f2) = 2fΔf + 2‖grad f‖2g .
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Proof: Let X = grad f in Lemma 9.8.3 and obtain

Δ(f2) = div(grad f2) = div(2fgrad f)

= 2fdiv(grad f) + 2g(grad f, grad f)

= 2fΔf + 2‖grad f‖2g.

In the following dv denotes the Riemannian volume element on
(M,g).

Proposition 10.6.2 Let (M,g) be a compact Riemannian manifold,
with ∂M = Ø. Consider a nonconstant C2-function f such that
Δf = 0 on M. Then ∫

M
K(f2) dv > 0. (10.6.7)

Proof: Making Δf = 0 in Proposition 10.6.1 yields

Δ(f2) = 2‖grad f‖2g.

Using (10.5.6), we have

Δ(0)(f2) +
1

2
K(f2) = 2‖grad f‖2g .

Integrating we obtain
∫

M
Δ(0)(f2) dv +

1

2

∫

M
K(f2) dv = 2

∫

M
‖grad f‖2g dv > 0. (10.6.8)

Since ∂M = Ø, the first integral vanishes from the divergence theo-
rem ∫

M
Δ(0)(f2) dv =

∫

M
div(grad f2) dv = 0,

and hence (10.6.8) yields the inequality (10.6.7).

It is worth noting that the condition Δ∗f = 0 implies the reverse
of inequality (10.6.7).

10.7 Laplacians and Volume Elements

This section deals with the relationship between the Laplacian and
the volume element associated with the underlying connection. An
explicit formula for the curvature vector field K is provided as the
gradient of a potential depending on the volume element.
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To formulate our theory, we shall use the statistical manifold
(M,g,∇,∇∗).

Consider two dual connections ∇, ∇∗, the Levi–Civita connection
∇(0), and their associated volume elements

ω = φdv ω∗ = φ∗dv ω(0) = dv.

Proposition 10.7.1 Let f ∈ F(M). Then the dual Laplacians can
be written in terms of the volume element as

Δf = Δ(0)f + g
(
grad f, grad(ln φ)

)
(10.7.9)

Δ∗f = Δ(0)f − g
(
grad f, grad(ln φ)

)
. (10.7.10)

Proof: Substituting f = φ and X = grad f in (9.8.44) yields

Δf = div(grad f) =
1

φ
(grad f)(φ) + div(0)(grad f)

= Δ(0)f +
1

φ
g
(
grad f, gradφ

)

= Δ(0)f + g
(
grad f, grad(ln φ)

)
.

A similar computation provides

Δ∗f = Δ(0)f + g
(
grad f, grad(ln φ∗)

)

= Δ(0)f + g
(
grad f, grad(ln

C

φ
)
)

= Δ(0)f − g
(
grad f, grad(ln φ)

)
.

The curvature vector field, K, was defined in Sect. 8.7 as the trace
of the difference tensor. The curvature vector appeared in formulas
(10.4.3), (10.5.4)–(10.5.6) and Propositions 10.6.2 and 10.9.3. In the
following we shall prove that K is a gradient vector field.

Theorem 10.7.2 The curvature vector field is a gradient vector field
given by

K = grad(ln φ2). (10.7.11)

Proof: Subtracting the relations (10.7.9) and (10.7.10), we obtain

Δ∗f = Δf − 2g
(
grad f, grad(ln φ)

)
.
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Comparing with relation (10.4.3) yields

K(f) = 2g
(
grad f, grad(ln φ)

)

= 2grad(ln φ)(f) = grad(ln φ2)(f).

Dropping the argument f leads to Eq. (10.7.11).

Remark 10.7.3 Consider two dual connections ∇,∇∗ with the cur-
vature vector field K. Then

K = 0 ⇐⇒ φ = constant,

i.e., the forms ω and ω∗ are equal, up to a scaling factor, to the volume
form dv.

10.8 Divergence of Tensors

The fundamental ingredient is the statistical manifold (M,g,∇,∇∗).
Let T be a 2-covariant symmetric C1-tensor. Its divergence (with
respect to connection ∇) is the vector field div(T ) = (div T )i ∂

∂xi
,

with components given by

(div T )i = ∇∂
xj
T ji.

Two torsion-free dual connections, ∇ and ∇∗, induce the dual diver-
gences div(T ) and div∗(T ). The α-divergence is defined as the convex
combination

div(α)T =
1 + α

2
div∗T +

1− α

2
divT.

Then the divergence with respect to the Levi–Civita connection, ∇(0),
is the average of dual divergences, i.e.,

div(0)T =
1

2
(divT + div∗T ).

We shall investigate in the following the relation between the afore-
mentioned divergences for the case of the metric tensor.
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10.9 Divergence of the Metric Tensor

It is well known that the divergence of the metric tensor g vanishes
if the divergence is taken with respect to the Levi–Civita connec-
tion ∇(0). In the following we deal with the divergence of the metric
tensor g with respect to a pair of dual connections ∇ and ∇∗, as well
as to the α-connection ∇(α).

First, we compute the covariant derivative

(∇∂ig)jk = (∇∂ig)(∂j , ∂k)

= ∂ig(∂j , ∂k)−g(∇∂i∂j , ∂k)−g(∂j ,∇∂i∂k)

= g(∇∗
∂i∂j , ∂k)+g(∂j ,∇∂i∂k)−g(∇∂i∂j, ∂k)−g(∂j ,∇∂i∂k)

= g(∇∗
∂i∂j −∇∂i∂j , ∂k) = g

(
K(∂i, ∂j), ∂k

)

= C(∂i, ∂j , ∂k) = Cijk, (10.9.12)

which is the skewness tensor. The computation used the definitions
of dual connections, difference and skewness tensors. Raising indices
in (10.9.12) we obtain

(
∇∂ig

)lr
=

(
∇∂ig

)
jk
gjlgkr

= Cijkg
jlgkr = K l

ikg
kr.

Then making r = i, and summing over i provides

(
∇∂ig

)li
= K l

ikg
ik = K l,

which is the p-th component of the curvature vector field. Using the
divergence definition

(div g)p =
(
∇∂ig

)pi
,

we arrive at the following result.

Proposition 10.9.1 The divergence of the metric tensor g with re-
spect to ∇ is equal to the curvature vector field K, i.e.,

div g = K l∂l. (10.9.13)

Similar computations applied to the dual connection lead to

(∇∗
∂ig)jk = −Cijk. (10.9.14)

Following the same lines of computation as before, we arrive at the
dual result.
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Proposition 10.9.2 The divergence of the metric tensor g, with
respect to ∇∗, is equal to the negative curvature vector field K,

div∗ g = −K l∂l. (10.9.15)

As a consequence, the metric tensor has opposite divergences with
respect two dual connections, i.e., div∗ g = −div g.

The next result deals with the α-divergence, which is taken with
respect to the ∇(α)-connection.

Proposition 10.9.3 The α-divergence of the metric tensor is related
to the curvature vector by

div(α) g = −αK. (10.9.16)

Proof: Writing the α-divergence as a linear combination of dual di-
vergences, using (10.9.13) and (10.9.15) we get

div(α) g =
1 + α

2
div∗ g +

1− α

2
div g

=
1 + α

2
(−K) +

1− α

2
K

= −αK.

It is worthy to observe that for α = 0 we recover the well-known
result of Riemannian geometry div(0) g = 0, quoted in the beginning
of this section.

Corollary 10.9.4 The α-Laplacian has the following expression

Δ(α)f = Δ(0)f +
1

2
(div(α) g)(f). (10.9.17)

Proof: It follows from (10.5.4) and (10.9.16). We note that the dif-
ference

Δ(α) − 1

2
(div(α) g)

is independent of α.
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10.10 Problems

10.1. Consider the statistical model pμ,σ(x) = 1√
2πσ

e−
(x−μ)2

2σ2 , σ >

0, μ ∈ R and the function f(μ, σ) = 1
2 (σ

2 + μ2). Find the
Hessians Hf and H∗f .

10.2. Consider the statistical model pξ(x) = ξe−ξx, ξ > 0, x ∈ R.

(a) Find the dual Laplacians Δ, Δ∗.

(b) Deduct the curvature vector field K, and find the poten-
tial function φ such that K = d

dξ

(
lnφ2(ξ)

)
.

(c) Verify the relation Δ(0) = 1
2 (Δ +Δ∗).

(d) Find the expression for the α-Laplacian.

10.3. (a) Solve the equation H∗f
ij (ξ) = 0 in the case of the expo-

nential family.

(b) Solve the equation Hf
ij(ξ) = 0 in the case of the mixture

family.

10.4. Find the Laplacians Δ0, Δ, and Δ∗ in the following cases:

(a) exponential distribution.

(b) normal distribution.

10.5. Find the curvature vector field K and the potential function
φ in the case of the normal distribution.

10.6. Let (M,g,∇,∇∗) be a statistical manifold. Define the
α-Hessian of the smooth function f by H(α)f = ∇(α)df .

(a) Show that in a local system of coordinates we have

H(α)f =
∂2f

∂xi∂xj
− ∂f

∂xk
Γ
(α)k
ij .

(b) Verify the relation Δ(α)f = Trace
(
H(α)f

)
.

10.7. Let (M,g,∇(α)) be a statistical manifold and f : M → R

a differentiable function. Consider γ : (a, b) → M a ∇(α)-
autoparallel curve on M .

(a) Compute
d

ds
f
(
γ(s)

)
.
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(b) Show that

d2

ds2
f
(
γ(s)

)
= H

(α)f
|γ(s)γ̇

i(s)γ̇j(s).

(c) Show that

d3

ds3
f
(
γ(s)

)
=
∂H

(α)f
ij

∂xk
γ̇k(s)γ̇i(s)γ̇j(s) + 2H

(α)f
|γ(s)γ̇

i(s)γ̈j(s),

with

∂H
(α)f
ij

∂xk
=

∂3f

∂xi∂xj∂xk
− ∂2f

∂xk∂xr
Γ
(α)r
ij − ∂f

∂xr
∂Γ

(α)r
ij

∂xk
.

(d) Write formulas (a)–(c) in the case when M is the statis-
tical model defined by an exponential family and α = 1.

10.8. Consider the statistical manifold (M,g,∇(α)). Let p ∈ M
and γ1, . . . , γn be ∇(α)-autoparallel curves on M such that
γj(0) = p, γ̇j(0) = vj, with {v1, . . . , vn} orthonormal system
in TpM . Prove that for any function f ∈ F(M) we have

Δ(α)f =

n∑
j=1

d2

ds2
f
(
γj(s)

)
|s=0

.

10.9. Let (M,g) be a Riemannian manifold where the metric is
given as a Hessian, gij(ξ) = ∂ξi∂ξjϕ(ξ), with ϕ(ξ) strictly
convex. Show that:

(a)
Hϕ
ij

∂xk
= Cijk, where Cijk denotes the skewness tensor.

(b) Let γ(s) be a ∇-autoparallel curve on M . Show that

d3

ds3
ϕ
(
ϕ(s)

)
= C(γ̇(s), γ̇(s), γ̇(s)) + 2〈Hϕγ̇(s), γ̈(s)〉.

10.10. Let (M,g,∇,∇∗) be a statistical manifold endowed with an
equiaffine structure.

(a) Prove that div
(
Ric(0)−1

2R
(0)g

)
=0, whereR(0) = Ric

(0)
ij g

ij .

(b) Find a formula for div
(
Ric(α) − 1

2R
(α)g

)
, where R(α) =

Ric
(α)
ij g

ij .



Chapter 11

Contrast Functions
Geometry

Contrast functions, called also divergence functions, are distance-like
quantities which measure the asymmetric “proximity” of two proba-
bility density functions on a statistical manifold or statistical model S.
A contrast function, D(p||q), for density functions p, q ∈ S, is a
smooth, non-negative function that vanishes for p = q. Eguchi
[38, 39, 41] has shown that a contrast functionD induces a Riemannian
metric by its second order derivatives, and a pair of dual connections
by its third order derivatives.

This chapter introduces contrast functionals on statistical mani-
folds, which are natural extensions of Kullback–Leibler relative entropy
from statistical models, and analyzes their corresponding geometric
structures and how these interact with the dualistic structure of a sta-
tistical manifold. The chapter also investigates the geometry gener-
ated by a contrast functional on the space of probability distributions
of a statistical model and provides examples of contrast functions.

It has been shown in Chap. 4 that Kullback–Leibler relative ent-
ropy is positive, non-degenerate, its first variation along the diagonal
ξ0 = ξ vanishes, and the Hessian along the diagonal defines the Fisher
metric.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 303
DOI 10.1007/978-3-319-07779-6 11,
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The contrast functions mimic the aforementioned properties of
the Kullback–Leibler relative entropy. The only difference in the new
context is that there are no density functions and no formula of
expectation type can be used here.

We overcome this flaw by defining the contrast functions abs-
tractly in two stages: (i) on an open set of R

k; (ii) on a smooth
manifold S.

11.1 Contrast Functions on R
k

Consider an open set E in R
k, and let ξ1, ξ2 ∈ E. A contrast function

on E is a smooth function D( · ‖ · ) : E×E → R satisfying the following
properties:

(i) positive: D(ξ1||ξ2) ≥ 0, ∀ξ1, ξ2 ∈ E;

(ii) non-degenerate: D(ξ1||ξ2) = 0 ⇐⇒ ξ1 = ξ2;

(iii) the first variation along the diagonal {ξ1 = ξ2} vanishes:

∂ξi1
D(ξ1||ξ2)|ξ1=ξ2 = ∂ξi2

D(ξ1||ξ2)|ξ1=ξ2 = 0;

(iv) the Hessian along the diagonal ξ0 = ξ

gij(ξ1) = ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1

is strictly positive definite and smooth with respect to ξ1.

Some comments regarding the notation are worthy to make. Even
if the function D(ξ1||ξ2) is not a distance (the symmetry and the tri-
angle inequality are not satisfied), it is a useful distance-like measure
of the separation between two points ξ1, ξ2. The separation notation
is represented by the symbol ||.

Another observation worthy to make is the redundancy of part
(iii) of the definition; this is a consequence of parts (i) and (ii) as
follows:

lim
ε↘0

D(ξ1 + ε||ξ1)−D(ξ1||ξ1)
ε

= lim
ε↘0

D(ξ1 + ε||ξ1)
ε

≥ 0

lim
ε↗0

D(ξ1 + ε||ξ1)−D(ξ1||ξ1)
ε

= lim
ε↗0

D(ξ1 + ε||ξ1)
ε

≤ 0,

which implies the limit equal to 0. We assumed ξ1 ∈ R for the sake of
notation simplicity, but the result holds true in multiple dimensions.

We note two facts, which are direct consequences of the definition:
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(1) The point ξ0 is a global minimum of the map ξ → D(ξ0||ξ).

(2) The quadratic approximation of a contrast function is given by

D(ξ1||ξ2) =
1

2

∑
i,j

gij(ξ1)(ξ
i
1 − ξi2)(ξ

j
1 − ξj2) + o(‖Δ(ξ1 − ξ2)‖2)

(11.1.1)

when ξ2 − ξ1 → 0.

Hence, for any two close enough neighbor vectors ξ1, ξ2 ∈ E, the
contrast function is approximated by half the length of their difference
measured in the inner product induced by the matrix gij

D(ξ1||ξ2) ≈
1

2
〈ξ1 − ξ2, ξ1 − ξ2〉g =

1

2
‖ξ1 − ξ2‖2g.

In the following we show how a contrast function can be induced
by a strictly convex function.

Proposition 11.1.1 Let ϕ : E → R be a strictly convex function.
Then

D(ξ0||ξ) = ϕ(ξ) − ϕ(ξ0)−
∑
j

∂jϕ(ξ0)(ξ
j − ξj0) (11.1.2)

= ϕ(ξ) − ϕ(ξ0)− 〈∂ϕ(ξ0), ξ − ξ0〉

is a contrast function on E.

Proof:

(i) Positivity: since the graph of the strictly convex function ϕ is
above the tangent plane at each point, we have

ϕ(ξ) ≥ ϕ(ξ0) +
∑
j

∂jϕ(ξ0)(ξ
j − ξj0). (11.1.3)

This implies D(ξ0||ξ) ≥ 0.

(ii) Non-degenerate: Since the equality in (11.1.3) occurs only for
ξ = ξ0, it follows that D(ξ0||ξ) = 0 implies ξ = ξ0.

(iii) Differentiating with respect to ξi yields

∂ξiD(ξ0||ξ) = ∂ξiϕ(ξ)− ∂ξiϕ(ξ0),

and hence ∂ξiD(ξ0||ξ)|ξ=ξ0 = 0.
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(iv) Since the function ϕ is strictly convex, and

∂ξi∂ξjD(ξ0||ξ) = ∂ξi∂ξjϕ(ξ) (11.1.4)

it follows that ∂ξi∂ξjD(ξ0||ξ) is strictly positive definite. Hence
D(ξ0||ξ) satisfies the properties of a contrast function.

We shall discuss in the following a few particular cases.

Example 11.1.2 (Exponential Model) Consider the convex func-
tion ϕ(ξ) = − ln ξ, with ξ > 0. The induced contrast function is
given by

D(ξ0||ξ) =
ξ

ξ0
− ln

ξ

ξ0
− 1,

which is exactly the Kullback–Leibler relative entropy for the exp-
onential distribution. It is worth noting that the convex function
ϕ(ξ) = ξ − ln ξ induces the same contrast function. Hence, there is
no one-to-one correspondence between convex functions and contrast
functions.

Example 11.1.3 The convex function ϕ(ξ) = ξ2 − ln ξ, with ξ > 0,
induces the contrast function

D(ξ0||ξ) = (ξ − ξ0)
2 +

ξ

ξ0
− ln

ξ

ξ0
− 1.

Example 11.1.4 If consider ϕ(ξ) = ξ2, with ξ > 0, the induced
contrast function is

D(ξ0||ξ) = (ξ − ξ0)
2.

Not all contrast functions are induced by strictly convex functions.
For instance, one can show that

D(ξ0||ξ) =
(ξ − ξ0)

2

ξ0ξ2

is a contrast function on (0,∞)2, which cannot be written in the
form of formula (11.1.2). We make the note that this contrast func-
tion is related to the problem of minimum chi-squared estimator, as
described in Kass and Vos [49], p.244. There are many other con-
trast functions that are not in the form (11.1.2), for instance most
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f -divergences, see Sect. 12.2. It can be shown that a contrast function
derived from a strictly convex function by formula (11.1.2) is a dually
flat contrast function.

It is worth noting that the definition of the contrast function
adopted by Kass and Vos [49], p.240, is slightly modified, replacing
condition (iv) by the following condition:

(iv′) the matrix
gij(ξ1) = ∂ξi1

∂
ξj1
D(ξ1||ξ2)

is positive definite and a smooth function of ξ1 alone.

The contrast function given by formula (11.1.2) is sometimes called
Bregman divergence, see Bregman [20], and it is widely used in convex
optimization, see Bauschke [14], Bauschke and Combettes [16], and
Bauschke et al. [15].

The term of “contrast function” has been defined slightly different
by other authors, and under different names (divergence, yoke, etc.)
see Eguchi [40], Rao [72] and Barndorff-Nielsen [11].

11.2 Contrast Functions on a Manifold

Let S be a smooth manifold. A contrast function on S is a smooth
mapping DS( · ‖ · ) : S × S → R, such that any parametrization φ :
E → S makes

D(ξ1||ξ2) = DS
(
φ(ξ1)||φ(ξ2)

)

a contrast function on E. This definition was given for the first time
in Amari [5].

We note the local character of a contrast function on a manifold.
If p1, p2 ∈ S belong to the same coordinate chart, there are ξ1, ξ2 ∈ E

such that φ(pi) = ξi and then we have D(ξ1||ξ2) = DS
(
p1||p2

)
. Since

there might be no coordinate charts to include both points p1, p2, then
the contrast function DS( · ‖ · ) makes sense only locally. In general,
there might be no global defined contrast functions on a manifold S.

The invariance of the contrast function with respect to charts is
given in the following result.

Theorem 11.2.1 Consider two local parametrizations φ : Eξ → U ,
ϕ : Eη → V on the manifold S. If

D(ξ1||ξ2) = DS
(
φ(ξ1)||φ(ξ2)

)
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Figure 11.1: The parameterizations φ and ϕ on a manifold S

is a contrast function on the parameter space Eξ, then

D(η1||η2) = DS
(
ϕ(η1)||ϕ(η2)

)

is also a contrast function on the parameter space Eη.

Proof: For any two points p1, p2 ∈ U ∩ V ⊂ S denote p1 = φ(ξ1) =
ϕ(η1), p2 = φ(ξ2) = ϕ(η2). Let ψ : Eξ → Eη, ψ(ξ) = η be the
change of parametrization map, which is invertible as a composition
of invertible maps ψ = ϕ−1 ◦ φ, see Fig. 11.1.

(i) The positivity follows obviously from

D(η1||η2) = DS
(
p1||p2

)
= D(ξ1||ξ2) ≥ 0.

(ii) To check the non-degeneracy we note that D(η1||η2) = 0 implies
D(ξ1||ξ2) = 0, and hence ξ1 = ξ2, or ψ

−1(η1) = ψ−1(η2). Since
ψ−1 is one-to-one, we obtain η1 = η2.

(iii) The fact that the first variation along the diagonal {η1 = η2}
vanishes is a consequence of (i) and (ii).

(iv) We investigate first how does gij change when changing the
parameter ξ into η

gij(ξ) = g(∂ξi , ∂ξj ) = g
(∂ηr
∂ξi

∂ηr ,
∂ηk

∂ξj
∂ηk
)

=
∂ηr

∂ξi
∂ηk

∂ξj
g(∂ηr , ∂ηk) =

∂ηr

∂ξi
∂ηk

∂ξj
ḡrk(η),
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and hence

gij(ξ) =
∂ηr

∂ξi
∂ηk

∂ξj
ḡrk(η). (11.2.5)

Consider the points p1 and p2 infinitesimally close. Then writ-
ing the quadratic approximation formula (11.1.1) in differential
form for D(ξ1||ξ2) and D(η1||η2) and combining with (11.2.5)
and the chain rule yields

D(ξ1||ξ2) =
1

2

∑
i,j

gij(ξ1)dξ
idξj

=
1

2

∑
i,j

∑
r,k

ḡrk(η1)
∂ηr

∂ξi
∂ηk

∂ξj
dξidξj (11.2.6)

D(η1||η2) =
1

2

∑
r,k

hrk(η1)dη
rdηk

=
1

2

∑
i,j

∑
r,k

hrk(η1)
∂ηr

∂ξi
∂ηk

∂ξj
dξidξj . (11.2.7)

Comparing (11.2.6) and (11.2.7) yields ḡrk(η) = hrk(η). Since
ḡrk(η) is strictly positive definite, then hrk(η) is the same. Hence
D(η1, η2) verifies all the conditions of a contrast function.

Corollary 11.2.2 The diagonal part of the Hessians

gij(ξ1) = ∂ξi2∂ξj2
D(ξ1||ξ2)|ξ2=ξ1

hij(η1) = ∂ηi2
∂
ηj2
D(η1||η2)|η2=η1

are related by the following relation

gij(ξ1) =
∂ηr

∂ξi
∂ηk

∂ξj
hrk(η1). (11.2.8)

11.3 Induced Riemannian Metric

One of the useful consequences of the invariance property given by
Theorem 11.2.1 is that a contrast function provides a unique Rie-
mannian metric on the manifold S. This metric is the inner product
gp : TpS × TpS → R defined in a particular chart as
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gp(∂i, ∂j) = ∂ξi2∂ξj2
D(ξ1||ξ2)|ξ2=ξ1 , (11.3.9)

for any coordinate vector fields ∂i, ∂j on S about p.

In the following we shall develop two formulas equivalent with
(11.3.9). Consider the notation ρ(ξ1, ξ2) = D(ξ1||ξ2). By (ii) we have

∂ξi1
ρ(ξ1, ξ2)|ξ1=ξ2=ξ = ∂ξi1

ρ(ξ, ξ) = 0

∂ξi2
ρ(ξ1, ξ2)|ξ1=ξ2=ξ = ∂ξi2

ρ(ξ, ξ) = 0.

Denote ∂j =
∂
∂ξj

. Differentiating the function ϕ(ξ) = ∂ξi1
ρ(ξ, ξ) with

respect to ∂j we get

0 = ∂jϕ(ξ) = ∂
ξj1
∂ξi1ρ(ξ, ξ) + ∂

ξj2
∂ξi1ρ(ξ, ξ),

which implies
∂
ξj1
∂ξi1
ρ(ξ, ξ) = −∂

ξj2
∂ξi1
ρ(ξ, ξ). (11.3.10)

Differentiating the function φ(ξ) = ∂ξi2ρ(ξ, ξ) with respect to ∂j
we obtain

0 = ∂jφ(ξ) = ∂
ξj1
∂ξi2
ρ(ξ, ξ) + ∂

ξj2
∂ξi2
ρ(ξ, ξ),

which implies
∂
ξj2
∂ξi2
ρ(ξ, ξ) = −∂

ξj1
∂ξi2
ρ(ξ, ξ). (11.3.11)

Assuming ρ(· , ·) smooth enough, the partial derivatives commute and
using (11.3.10) and (11.3.11) we arrive at the following equivalent
local formulas for the induced Riemannian metric:

gij(ξ) = ∂ξi1
∂
ξj1
D(ξ1||ξ2)|ξ2=ξ1 (11.3.12)

= ∂ξi2
∂
ξj2
D(ξ1||ξ2)|ξ2=ξ1 (11.3.13)

= −∂ξi1∂ξj2D(ξ1||ξ2)|ξ2=ξ1 (11.3.14)

= −∂
ξj1
∂ξi2D(ξ1||ξ2)|ξ2=ξ1 . (11.3.15)

Another relation which will be useful in a later section is obtained
by differentiating with respect to ∂k(=

∂
∂ξk

) in relation (11.3.11) and
applying the chain rule

∂k∂ξj2
∂ξi2
ρ(ξ, ξ) = −∂k∂ξj1∂ξi2ρ(ξ, ξ) ⇐⇒

∂ξk1
∂
ξj2
∂ξi2
ρ(ξ, ξ) + ∂ξk2

∂
ξj2
∂ξi2
ρ(ξ, ξ) = −∂ξk1 ∂ξj1∂ξi2ρ(ξ, ξ)

−∂ξk2 ∂ξj1∂ξi2ρ(ξ, ξ).
(11.3.16)
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The following notation is adopted for the representation of a
vector field X on S with respect to two local coordinate systems
(ξi1) and (ξi2)

X(ξ1) =
∑
i

Xi(ξ1)∂ξi1
, X(ξ2) =

∑
i

Xi(ξ2)∂ξi2
.

We note that for any vector field X we have

X(ξ1)D(ξ1||ξ2)|ξ1=ξ2 = X(ξ2)D(ξ1||ξ2)|ξ1=ξ2 = 0.

Next we provide the global definition of the induced Riemannian
metric.

Proposition 11.3.1 The inner product of two vector fields is given
by the following equivalent formulas

g(X,Y ) = X(ξ1)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2
= X(ξ2)Y(ξ2)D(ξ1||ξ2)|ξ1=ξ2
= −X(ξ1)Y(ξ2)D(ξ1||ξ2)|ξ1=ξ2
= −X(ξ2)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2 .

Proof: The proof follows from the bilinearity of g and an application
of relations (11.3.12)–(11.3.15). For instance, the first relation can be
shown as

g(X,Y ) =
∑
i,j

XiY jg(∂i, ∂j)

=
∑
i,j

XiY j∂ξi1
∂
ξj1
D(ξ1||ξ2)|ξ1=ξ2

= X(ξ1)Y(ξ1)D(ξ1||ξ2)|ξ1=ξ2 .

11.4 Dual Contrast Function

If D is a contrast function on R
k, then the associated dual contrast

function is defined by

D∗(ξ1||ξ2) = D(ξ2||ξ1).

The fact that D∗ satisfies properties (i)–(iv) from the definition of a
contrast function follows obviously from the fact that D satisfies the
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same properties. Similarly, we can define the dual contrast function
on a manifold by

D∗
S(p||q) = DS(q||p), ∀p, q ∈ S.

It is worthy to note that the contrast functions D and D∗ induce the
same Riemannian metric on the manifold S. However, the connections
induced by D and D∗ play a central role in the geometry of contrast
functions, as we shall see in the next couple of sections.

11.5 Induced Primal Connection

Let g be the Riemannian metric on S induced by the contrast func-
tion DS . Consider the operator ∇(D) given by

g(∇(D)
X Y,Z) = −X(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2 , (11.5.17)

for any vector fields X,Y,Z defined on the overlap of the chart
neighborhoods associated with the coordinate systems (ξi1) and (ξi2).
We shall check that ∇(D) satisfies the properties of a connection.
The R-bilinearity is obvious. Let f ∈ F(S) be an arbitrary smooth
function. Then

g(∇(D)
fX Y,Z) = −fX(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2 = g(f∇(D)

X Y,Z),

and dropping the Z-argument implies ∇(D)
fX Y = f∇(D)

X Y . Next we
check Leibniz rule in the second argument

g(∇(D)
X fY,Z) = −X(ξ1)(fY(ξ1))Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2

= −fX(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2
−X(ξ1)(f) Y(ξ1)Z(ξ2)D(ξ1||ξ2)|ξ1=ξ2

= fg(∇(D)
X fY,Z) +X(ξ1)(f)g(Y,Z)

= g(f∇(D)
X fY +X(f)Y,Z),

so ∇(D)
X fY = f∇(D)

X fY +X(f)Y .

Writing formula (11.5.17) in local coordinates we obtain the compo-
nents of the linear connection ∇(D) as in the following

Γ
(D)
ij,k = g(∇(D)

∂i
∂j , ∂k) = −∂ξi1∂ξj1∂ξk2D(ξ1||ξ2)|ξ1=ξ2 . (11.5.18)
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The commutativity of the partial derivatives imply Γ
(D)
ij,k = Γ

(D)
ji,k, and

hence the connection ∇(D) has zero torsion. We can arrive to the
same result in the following equivalent way. Starting from the global
definition of the connection and Riemannian metric we write

g(∇(D)
X Y −∇(D)

Y X,Z) = −X(ξ1)Y(ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2
+Y(ξ1)X(ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2

= −[X,Y ](ξ1)Z(ξ2)D(ξ1||ξ2)ξ1=ξ2
= g([X,Y ], Z).

Dropping the Z-argument implies ∇(D)
X Y −∇(D)

Y X = [X,Y ], i.e., the
torsion of connection ∇(D) is zero.

11.6 Induced Dual Connection

The dual connection ∇(D∗) is the connection induced by the dual
contrast function D∗, i.e., it is given by

g(∇(D∗)
X Y,Z) = −X(ξ2)Y(ξ2)Z(ξ1)D

∗(ξ2||ξ1)|ξ1=ξ2
= −X(ξ2)Y(ξ2)Z(ξ1)D(ξ1||ξ2)|ξ1=ξ2 ,

for any vector fields X,Y,Z. This can be written locally as

Γ
(D∗)
ij,k = g(∇(D∗)

∂i
∂j , ∂k) = −∂ξi2∂ξj2∂ξk1D(ξ1||ξ2)|ξ1=ξ2 .

Theorem 11.6.1 The connections ∇(D) and ∇(D∗) are torsion-less
dual connections.

Proof: The fact that the torsions vanish follows from the symmetry

in the first two indices of the connection components Γ
(D)
ij,k = Γ

(D)
ji,k

and Γ
(D∗)
ij,k = Γ

(D∗)
ji,k . The duality relation will be shown in local coor-

dinates. Differentiating with respect to ∂k = ∂ξk in relation gij(ξ) =
−∂ξi1∂ξj2D(ξ||ξ) we obtain

∂kgij = −∂ξk1 ∂ξi1∂ξj2D(ξ||ξ)
−∂ξk2 ∂ξi1∂ξj2D(ξ||ξ)

= Γ
(D)
ki,j + Γ

(D∗)
kj,i ,

which is equivalent with the duality of D and D∗.
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Therefore, a contrast function D on a manifold S induces a
statistical structure (g,∇(D),∇(D∗)). Hence, (S, g,∇(D),∇(D∗))
becomes the statistical manifold induced by the contrast function D.

Proposition 11.6.2 The Levi–Civita connection of the Riemannian
space (S, g) is given by

∇(0) =
1

2

(
∇(D) +∇(D∗)).

Proof: Since ∇(D) and ∇(D∗) have zero torsion, the same applies
to ∇(0). Using the duality relation we show that ∇(0) is a metrical
connection

Xg(Y,Z) =
1

2
Xg(Y,Z) +

1

2
Xg(Y,Z)

=
1

2

{
g(∇(D)

X Y,Z) + g(Y,∇(D∗)
X Z)

}

=
1

2

{
g(∇(D∗)

X Y,Z) + g(Y,∇(D)
X Z)

}

= g
(∇(D)

X Y +∇(D∗)
X Y

2
, Z
)
+ g

(
Y,

∇(D)
X Z +∇(D∗)

X Z

2

)

= g(∇(0)
X Y,Z) + g(Y,∇(0)

X Z).

11.7 Skewness Tensor

Besides a Riemannian metric g and a pair of dual connections ∇(D),
∇(D∗), a contrast function D also induces the skewness tensor by

C(D)(X,Y,Z) = g
(
∇(D∗)
X Y −∇(D)

X Y,Z
)

=
(
X(ξ1)Y(ξ1)Z(ξ2) −X(ξ2)Y(ξ2)Z(ξ1)

)
D(ξ1||ξ2)|ξ1=ξ2 .

In local coordinates this becomes

C
(D)
ijk = Γ

(D∗)
ij,k − Γ

(D)
ij,k

= ∂ξi1
∂
ξj1
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2 − ∂ξi2
∂
ξj2
∂ξk1

D(ξ1||ξ2)|ξ1=ξ2 .

In the virtue of identities (11.3.12)–(11.3.15), the tensor C
(D)
ijk be-

comes completely symmetric.
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11.8 Third Order Approximation of D(p|| ·)
This section will present the third order approximation of a contrast
function DS on a manifold S. Let p, q ∈ S be two points in the
same chart with coordinates ξ1 = φ−1(p) and ξ2 = φ−1(q). Denote
Δξi = ξi2 − ξi1. The third order approximation of DS(p|| ·) about p is
given by

DS(p||q) = DS(p||p) + ∂ξi2D(ξ1||ξ2)|ξ1=ξ2=ξΔξi

+
1

2
∂ξi2∂ξj2

D(ξ1||ξ2)|ξ1=ξ2=ξΔξiΔξj

+
1

6
∂ξi2
∂
ξj2
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2=ξΔξiΔξjΔξk + o(‖Δξ‖2),

where o(‖Δξ‖2) is a term which converges to 0 faster than ‖Δξ‖2
does, as p → q. Since from the definition of a contrast function the
first two terms are zero, then

DS(p||q) =
1

2
gij(ξ1)Δξ

iΔξj +
1

6
hijk(ξ1)Δξ

iΔξjΔξk + o(‖Δξ‖2),

where gij is the induced Riemannian metric. It suffices to compute
the coefficients

hijk(ξ1) = ∂ξi2
∂
ξj2
∂ξk2

D(ξ1||ξ2)|ξ1=ξ2=ξ.

Writing relation (11.3.16) in terms of the induced connections com-
ponents, see formula (11.5.18), we have

−Γ∗
ij,k + hijk = Γjk,i + Γ∗

ik,j

from where

hijk = Γ∗
ij,k + Γjk,i + Γ∗

ik,j

= ∂jgik + Γ∗
ik,j

= ∂kgij + Γ∗
ij,k.

The last two identities follow from formula (8.1.2). A similar argu-
ment can be used to show also the relation

hijk = ∂igkj + Γ∗
jk,i.

This relations imply the total symmetry of hijk

hijk = hikj = hkji = hjik.
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It is worthy to mention that if D(· || ·) induces a dually flat statistical
manifold (i.e., Γ = Γ∗ = 0), then hijk = 0.

We have seen that any contrast function induces a dualistic struc-
ture (g(D),∇(D),∇(D∗)) on S. Next we consider the converse implica-
tion, which states that any triple (g,∇,∇∗), which consists in a metric
and two dual torsion-free connections, is induced from a divergence.
The divergence can be given locally by

D(p||q) = 1

2
gij(p)Δξ

iΔξj +
1

6
hijk(p)Δξ

iΔξjΔξk, (11.8.19)

where Δξi = ξi(q) − ξi(p) and hijk = ∂igkj + Γ∗
jk,i. The existence of

a globally defined contrast function is proved in Matumoto [56].

However, the contrast function is not unique. An alternative con-
struction for (11.8.19) is

D(p||q) = 1

2
gij(p)Δξ

iΔξj − 1

6
h∗ijk(p)Δξ

iΔξjΔξk,

where h∗ijk = ∂igjk + Γ∗
jk,i.

11.9 Hessian Geometry

Assume now that there is a local coordinate chart with respect to
which the contrast functionDS is induced locally by a convex function
ϕ via formula (11.1.2). We make the remark that it is not necessarily
true that there is always a local system of coordinates in which the
contrast function is induced by a convex function. However, when
this occurs, it defines a dually flat structure of statistical manifold,
as we shall see next. This type of contrast function is sometimes
called Bregman divergence, see Bregman [20], and it is widely used
in convex optimization, see Bauschke [14–16]. For a generalization of
this contrast function to an α-family, see Zhang [86].

Using (11.1.4) we obtain that the metric is given by the Hessian
of the strictly convex potential function ϕ

gij(ξ) = ∂ξi∂ξjϕ(ξ). (11.9.20)

A straightforward computation shows that the components of the
induced dual connections ∇(D) and ∇(D∗) are given by

Γ
(D)
ij,k(ξ) = 0, Γ

(D∗)
ij,k (ξ) = ∂ξi∂ξj∂ξkϕ(ξ). (11.9.21)
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A further computation shows that the Riemann curvature tensors are
R = R∗ = 0, i.e., the connections are dually flat.

It is worth noting that there are topological obstructions to the
existence of dually flat structures. Ay and Tuschmann [10] proved
that if (S, g,∇,∇∗) is dually flat and S is compact, then the first
fundamental group π1(S) must be finite.

The skewness tensor is given by the third order derivatives as

C
(D)
ijk = ∂ξi∂ξj∂ξkϕ(ξ).

This geometry is commonly referred to in the literature as the Hessian
geometry. Some authors considered weaker conditions than strictly
convexity for the potential function ϕ, see Shima [74] and Shima and
Yagi [75]. For more details on hessian metrics, the reader is referred
to Bercu [17] and Corcodel [29].

11.10 Problems

11.1. Let γ : (a, b) → (M,g) be a regular curve, i.e., γ̇ �= 0. Define

D(s||t) =
∫ t

s
(t− u)|γ̇(u)|2g du.

Show that D( · || · ) is a contrast function on (a, b).

11.2. Let S be a statistical model and consider two distributions
p0, p1 ∈ S. Define the following curves in S

p
(m)
t = (1− t)p0 + tp1, p

(e)
t = Ctp

1−t
0 pt1, 0 ≤ t ≤ 1,

where Ct is a normalization function. Denote by g(m)(t) and
g(e)(t) the Fisher metrics along the aforementioned curves.
Let

D(m)(p1||p0) =
∫ 1

0
(1− s)g(m)(s) ds,

D(e)(p1||p0) =
∫ 1

0
(1− s)g(e)(s) ds.

(a) Prove that D(m)( · || · ) and D(e)( · || · ) are contrast func-
tions on S.

(b) What is the relationship between D(m)( · || · ) and
D(e)( · || · )?
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11.3. Let (M,g,∇,∇∗) be a dually flat statistical manifold and (xi)
and (ζα) a pair of dual coordinate systems associated with
potentials ϕ and ψ (i.e., xi = ∂ζiϕ(ζ), ζj = ∂xjψ(x)). Define
D :M ×M → R as

D(p||q) = ψ
(
x(p)

)
+ ϕ

(
ζ(q)

)
− xi(p)ζi(q).

(a) Prove that D( · || · ) is a contrast function (called the
canonical divergence of (M,g,∇,∇∗)).

(b) Find the dual contrast function D∗( · || · ).
(c) Show that for any p, q, r ∈M the following relation holds

D(p||q) +D(q||r) = D(p||r) −
(
xi(q)− xi(p)

)(
ζi(q)− ζi(q)

)
.

(d) Let θ be the angle made at q by the ∇-geodesic joining
p and q, γpq, and the ∇∗-geodesic joining q and r, γ∗qr.
Show that

D(p||q) +D(q||r) = D(p||r)− ‖γ̇pq‖ · ‖γ̇∗qr‖ cos(π − θ).

(e) If θ =
π

2
show the following Pythagorean relation:

D(p||r) = D(p||q) +D(q||r).

(f) Find the skewness tensor associated with D( · || · ).

11.4. Consider the Euclidean space (M,g) = (Rn, δij), with∇ = ∇∗

given by ∇UV = U(V j)ej , for any U, V ∈ X (M).

(a) Show that the Euclidean coordinates system is self-dual,
i.e., xi = ζi.

(b) Show that in this case the potential functions are given
by

ψ(x) =
1

2

∑
i

(xi)2, φ(x) =
1

2

∑
i

(ζi)
2.

(c) Prove that the canonical divergence is given by
D(p||q) = 1

2d
2
E(p, q), where dE(p, q) denotes the Euclidean

distance between p and q.

11.5. How many of the previous requirements still hold on a
Riemannian manifold (M,g,∇) with a flat Levi–Civita con-
nection ∇?
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11.6. Let (M,g,∇,∇∗) be a dually flat statistical manifold, and
denote by D( · || · ) the associated canonical divergence. Con-
sider the D-sphere centered at p ∈M of radius ρ, defined by

S(D) = {q ∈M ;D(p||q) = ρ}.

Show that every ∇-geodesic starting at the center p intersects
S(D) orthogonally.

11.7. Consider the exponential family p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ),
x ∈ X , with {Fi(x)} linearly independent on X . Define ηj =
Eξ[Fj ], 1 ≤ j ≤ n.

(a) Show that ηj = ∂jψ(ξ).

(b) Prove that (ξi) and (ηj) are dual systems of coordinates.

(c) Verify that (ξi) is a 1-affine coordinate system and (ηj) is
a (−1)-affine coordinate system.

(d) Let ϕ(η) be the potential associated with ξ, i.e., ξj =
∂ηjϕ(η). Show that ϕ(η) = Eξ[ln pξ(x)− C(x)].

(e) Let H(p) be the entropy of distribution p. Validate the
relation

H(pξ) = −ϕ(ξ)− Eξ[C(x)].

(f) Let η̂j = Fj(x). Show that η̂ is an unbiased estimator
for η, and that the covariance matrix provides the Fisher
metric, i.e., Vη(η̂) = gij .

(g) Find the contrast function given by the canonical diver-
gence associated with the dual system of coordinates (ξi),
(ηi). What is its relationship with the Kullback–Leibler
relative entropy?

11.8. Consider the statistical model given by the Poisson distribu-
tion p(x; ξ) = e−ξ ξ

x

x! , x ∈ {0, 1, 2, . . . }, ξ > 0. Consider η = ξ
and θ = ln ξ.

(a) Prove that η and θ are dual coordinates.

(b) Find the canonical divergence associated with the above
dual coordinates.

11.9. Consider the statistical model given by the normal family

p(x; ξ) =
1√
2πσ

e−
(x−μ)2

2σ2 , μ ∈ R, σ > 0.
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Show that (θi) are (ηi) are dual systems of coordinates, where

η1 = μ, η2 = μ2 + σ2

θ1

2θ2
= −μ, (θ1)2 − 2θ2

4(θ2)2
= μ2 + σ2.

11.10. Consider the statistical model given by the exponential dis-
tribution p(x; ξ) = ξe−ξx, x ≥ 0, ξ > 0.

(a) Find a pair of dual coordinates on the above statistical
model.

(b) Find the potentials ψ and ϕ associated with the dual coor-
dinates obtained at (a).

(c) Deduct the expression for the Fisher metric.

(d) Find the canonical divergence associated with the dual
coordinates obtained at (a).



Chapter 12

Contrast Functions
on Statistical Models

This chapter deals with some important examples of contrast
functions on a space of density functions, such as: Bregman diver-
gence, Kullback–Leibler relative entropy, f -divergence, Hellinger
distance, Chernoff information, Jefferey distance, Kagan divergence,
and exponential contrast function. The relation with the skewness
tensor and α-connection is made. The goal of this chapter is to pro-
duce hands-on examples for the theoretical concepts introduced in
Chap. 11.

12.1 A First Example

We start with a suggestive example of Bregman divergence. We show
that the Kullback–Leibler relative entropy on a statistical model is a
particular example of Bregman divergence.

Let S = P(X ), where X = {x1, . . . , xn+1} and consider the global
chart φ : S → E ⊂ R

n

φ(p) = (ln p1, . . . , ln pn) = (ξ1, . . . , ξn),

with the parameter space

E = {(ξ1, . . . , ξn); ξk > 0,
n∑
k=1

ξk < 1}.

O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics, 321
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The contrast function on S is then given by

DS(p||q) = DS
(
φ−1(p)||φ−1(q)

)

= D(ξ1||ξ2),

where D(· || ·) is the Bregman divergence on E induced by the convex
function ϕ(ξ) =

∑n
i=1 e

ξi , i.e.,

D(ξ1||ξ2) = ϕ(ξ2)− ϕ(ξ1)−
n∑
i=1

∂iϕ(ξ1)(ξ
i
2 − ξi1).

Therefore

DS(p||q) = D(ξ1||ξ2)
=

∑
i

eξ
i
2 −

∑
i

eξ
i
1 −

∑
i

eξ
i
1(ξi2 − ξi1)

=
∑
i

pi −
∑
i

qi −
∑
i

pi ln
qi
pi

=
∑
i

pi ln
pi
qi

= DKL(p||q).

Hence, the induced contrast function DS on P(X ) in this case is the
Kullback–Leibler relative entropy.

12.2 f-Divergence

An important class of contrast functions on statistical models was
introduced by Csiszár [31, 32]. Let f : (0,∞) → R be a function
satisfying the following conditions

(a) f is convex;

(b) f(1) = 0;

(c) f ′′(1) = 1.

For each probability distributions p, q, consider

Df (p||q) = Ep

[
f
(q(x)
p(x)

)]
=

∫

X
p(x)f

(q(x)
p(x)

)
dx. (12.2.1)
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We shall assume that the previous integral converges and we can
differentiate under the integral sign.

Proposition 12.2.1 The operator Df (· || ·) is a contrast function on
the statistical model S = {pξ}.

Proof: We check the properties of a contrast function.

(i) positive: Jensen’s inequality applied to the convex function f
provides

Df (p||q) = Ep

[
f
(q(x)
p(x)

)]
≥ f

(
Ep

[q(x)
p(x)

])

= f
(∫

X
p(x)

q(x)

p(x)
dx
)
= f(1) = 0.

(ii) non-degenerate: Let p �= q. Since f is strictly convex at 1, then

Df (p||q) = Ep

[
f
(q(x)
p(x)

)]
> f

(
Ep

[q(x)
p(x)

])
= f(1) = 0,

and hence D(p||q) �= 0, which implies the non-degenerateness.

(iii) The vanishing property of the first variation along the diagonal
{ξ1 = ξ2} is a consequence of (i) and (ii).

(iv) Let p = p
ξ0

and q = p
ξ
. We shall compute the Hessian of

Df (pξ0
||p

ξ
) =

∫

X
p
ξ0
(x)f

( p
ξ
(x)

p
ξ0
(x)

)
dx (12.2.2)

along the diagonal ξ0 = ξ. Differentiating we have

∂ξjf
( p

ξ

p
ξ0

)
= f ′

( p
ξ

p
ξ0

) 1

p
ξ0

∂ξjpξ

∂ξi∂ξjf
( p

ξ

p
ξ0

)
= f ′′

( p
ξ

p
ξ0

)( p
ξ

p
ξ0

)2
∂ξi(ln pξ

)∂ξj (ln pξ
)

+f ′
( p

ξ

p
ξ0

) 1

p
ξ

∂ξi∂ξjpξ
.
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Differentiating under the integral we get

∂ξi∂ξjDf (pξ0
||p

ξ
)|ξ=ξ0 = f ′′(1)

∫
p
ξ0
∂ξi ln pξ

∂ξj ln pξ dx|ξ=ξ0

+f ′(1)∂ξi∂ξj
∫
p
ξ
(x) dx

= f ′′(1)Eξ [∂ξi�(ξ)∂ξj �(ξ)]
= Eξ[(∂ξi�)(∂ξj �)] = gij(ξ),

which is strictly positive definite, since it is the Fisher–Riemann
information matrix. Hence Df (· || ·) is a contrast function.

Theorem 12.2.2 The Riemannian metric induced by the contrast
function Df (· || ·) on the statistical model S = {p

ξ
} is the Fisher–

Riemann information matrix

gij(ξ) = ∂ξi∂ξjDf (pξ0
||p

ξ
)|ξ=ξ0 .

Proof: It follows from the calculation performed in the part (iv)
above.

Let f∗(u) = uf
(
1
u

)
. Since

f∗(1) = f(1) = 0

f∗′′(u) =
1

u3
f ′′
(1
u

)
≥ 0

f∗′′(1) = f ′′(1) = 1,

then f∗ satisfies properties (a)–(c), and hence Df∗(· || ·) is a contrast
function, which defines the same Riemannian metric as Df (· || ·).

Proposition 12.2.3 The contrast function Df∗(· || ·) is the dual of
Df (· || ·).

Proof: Consider the dual D∗
f (p||q) = Df (q||p). Then we have

Df∗(p||q) =

∫

X
p(x)f∗

(q(x)
p(x)

)
dx

=

∫

X
p(x)

q(x)

p(x)
f
(p(x)
q(x)

)
dx

=

∫

X
q(x)f

(p(x)
q(x)

)
dx

= Df (q||p) = D∗
f (p||q), ∀p, q ∈ S.

Therefore Df∗ = D∗
f .
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In the following we shall find the induced connections. Let ∇(f)

be the linear connection induced by the contrast function Df (· || ·),
and denote by Γ

(f)
ij,k its components on a local basis.

Proposition 12.2.4 We have

Γ
(f)
ij,k(ξ) = Eξ

[(
∂i∂j�− (f ′′′(1) + 1)∂i∂j�

)
∂k�
]
. (12.2.3)

Proof: From formula (11.5.18) we find

Γ
(f)
ij,k(ξ) = −∂ξi0∂ξj0∂ξkDf (pξ0

||p
ξ
)|ξ=ξ0 . (12.2.4)

We shall compute the derivatives on the right side. Differentiating in
(12.2.2) yields

∂ξkDf (pξ0
||p

ξ
) =

∫

X
f ′
( p

ξ

p
ξ0

)
p
ξ
∂ξk�(ξ) dx. (12.2.5)

Before continuing the computation we note that

∂
ξj0
f ′
( p

ξ

p
ξ0

)
= f ′′

( p
ξ

p
ξ0

)(−p
ξ

p
ξ0

)
∂
ξj0
�(ξ0)

∂ξi0∂ξj0
f ′
( p

ξ

p
ξ0

)
= f ′′′

( p
ξ

p
ξ0

) p2
ξ

p2
ξ0

∂ξi0�(ξ0)∂ξj0
�(ξ0)

+f ′′
( p

ξ

p
ξ0

) p
ξ

p
ξ0

∂ξi0
�(ξ0)∂ξj0

�(ξ0)

−f ′′
( p

ξ

p
ξ0

) p
ξ

p
ξ0

∂ξi0
∂
ξj0
�(ξ0).

Applying now ∂ξi0
∂
ξj0

to (12.2.5), using the foregoing formulas, and

taking ξ0 = ξ, yields

∂ξi0∂ξj0
∂ξkDf (pξ0

||p
ξ
)|ξ=ξ0 =

∫

X

[
(f ′′′(1) + f ′′(1))p

ξ
(∂ξi�)(∂ξj �)(∂ξk�)

−f ′′(1)(∂ξi∂ξj �)(∂ξk�)
]
dx

= Eξ

[(
∂ξi∂ξj �− (f ′′′(1) + 1)∂ξi∂ξj �

)
∂ξk�

]
.

Applying (12.2.4) we arrive at (12.2.3).

The relation with the geometry of α-connections is given below.
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Theorem 12.2.5 The connection induced by Df (· || ·) is an
α-connection

∇(f) = ∇(α),

with α = 2f ′′′(1) + 3.

Proof: It suffices to show the identity in local coordinates. Recall first
the components of the α-connection given by (1.11.34)

Γ
(α)
ij,k = Eξ

[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]
. (12.2.6)

Comparing with (12.2.3) we see that Γ
(f)
ij,k = Γ

(α)
ij,k if and only if α =

2f ′′′(1) + 3.

We make the remark that ∇(f∗) = ∇(−α), which follows from the
properties of dual connections induced by contrast functions. We shall
show shortly that for any α there is a function f satisfying (a)–(c)
and solving the equation α = 2f ′′′(1) + 3.

Proposition 12.2.6 The skewness tensor induced by the contrast
function Df (· || ·) is given in local coordinates by

T
(f)
ijk = (2f ′′′(1) + 3)Eξ [(∂i�)(∂j�)(∂k�)].

Proof: Using Theorem 12.2.5, formula (12.2.6) and the aforemen-
tioned remarks, we have

T
(f)
ijk = Γ

(f∗)
ijk − Γ

(f)
ijk = Γ

(−α)
ijk − Γ

(α)
ijk

= Eξ

[(
∂i∂j�+

1 + α

2
∂i�∂j�

)
∂k�
]

−Eξ
[(
∂i∂j�+

1− α

2
∂i�∂j�

)
∂k�
]

= αEξ [(∂i�)(∂j�)(∂k�)]

= (2f ′′′(1) + 3)Eξ [(∂i�)(∂j�)(∂k�)].

12.3 Particular Cases

This section presents a few classical examples of contrast functions as
particular examples of Df (· ||· ). These are constructed by choosing
several examples of functions f that satisfy conditions (a)–(c) and



12.3. Particular Cases 327

verify the equation α = 2f ′′′(1) + 3. We make the remark that if f is
such a function, then fc(u) = f(u)+c(u−1), c ∈ R, is also a function
that induces the same contrast function, Dfc = Df . Therefore, the
correspondence between functions f and contrast functions is not
one-to-one.

12.3.1 Hellinger Distance

Consider f(u) = 4(1 −√
u) and the associated contrast function

Df (p||q) = 4

∫

X
p(x)

(
1−

√
q(x)

p(x)

)
dx = 4

(
1−

∫

X

√
p(x)q(x) dx

)

= 2
(
2−

∫

X
2
√
p(x)q(x) dx

)

= 2

∫

X

(
p(x)− 2

√
p(x)q(x) + q(x)

)
dx

= 2

∫

X

(√
p(x)−

√
q(x)

)2
dx

= H2(p, q).

H(p, q) is called the Hellinger distance, and is a true distance on the
statistical model S = {p

ξ
}. Since in this case α = 2f ′′′(1) + 3 = 0,

the linear connection induced by H2(p, q) is exactly the Levi–Civita
connection, ∇(0), on the Riemannian manifold (S, g).
Example 12.3.1 Consider two exponential distributions, p(x) =
αe−αx and q(x) = βe−βx, x ≥ 0, α, β > 0. Then

H2(p, q) = 4− 4

∫ ∞

0

√
p(x)q(x) dx

= 4− 4
√
αβ

∫ ∞

0
e−

α+β
2
x dx

= 4− 8
√
αβ

α+ β
,

hence the Hellinger distance is H(p, q) = 2

√
1− 2

√
αβ

α+ β
.

The Hellinger distance can also be defined between two discrete
distributions p = (pk) and q = (qk), replacing the integral by a sum

H(p, q) = 2
(
1−

∑
k≥0

√
pkqk

)1/2
=
(
2
∑
k≥0

(√
pk −

√
qk
)2)1/2

.
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Example 12.3.2 Consider two Poisson distributions, pk =
αk

k!
e−α

and qk =
βk

k!
e−β , k ≥ 0. Then

∑
k≥0

√
pkqk =

∑
k≥0

(
√
αβ)k

k!
e−

α+β
2

= e−
α+β
2 e

√
αβ
∑
k≥0

(
√
αβ)k

k!
e−

√
αβ

= e
√
αβ−α+β

2 .

Hence, the Hellinger distance becomes

H(p, q) = 2
(
1−

∑
k≥0

√
pkqk

)1/2
= 2

√
1− e

√
αβ−α+β

2 .

12.3.2 Kullback–Leibler Relative Entropy

The contrast function associated with function f(u) = − lnu is
given by

Df (p||q) =

∫

X
p(x) ln

p(x)

q(x)
dx = DKL(p||q),

which is the Kullback–Leibler information or the relative entropy. In
this case α = 2f ′′′(1)+3 = −1, so the associated connection is ∇(−1).

It is worthy to note that the convex function f(u) = u lnu induces
the contrast function

Df (p||q) =

∫

X
q(x) ln

q(x)

p(x)
dx = DKL(q||p) = D∗

KL(p||q),

which is the dual of the Kullback–Leibler information, see [51, 53].
Since α = 2f ′′′(1) + 3 = 1, the induced connection is ∇(1).

12.3.3 Chernoff Information of Order α

The convex function

f (α) =
1

1− α2
(1− u

1+α
2 ), α �= ±1
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induces the contrast function

D(α)(p||q) = 4

1− α2

{
1−

∫

X
p(x)

1−α
2 q(x)

1+α
2 dx

}
,

see Chernoff [27]. For the computation of D(α) in the case of expo-
nential, normal and Poisson distributions, see Problems 12.9., 12.10.
and 12.11. We note that for α = 0 we retrieve the squared Hellinger
distance, D(0)(p||q) = H2(p, q).

12.3.4 Jeffrey Distance

The function f(u) = 1
2 (u− 1) ln u induces the contrast function

J(p, q) = Df (p||q) =
1

2

∫

X
p(x)

(
1− q(x)

p(x)

)
ln
p(x)

q(x)
dx

=
1

2

∫

X

(
p(x)− q(x)

)(
ln p(x)− ln q(x)

)
dx,

see Jeffrey [47]. A computation shows that α = 0, so the induced
connection is the Levi–Civita connection ∇(0). In fact, the Jeffrey
contrast function is the same as the symmetric Kullback–Leibler rel-
ative entropy

J(p, q) =
1

2

∫

X
p(x)

(
1− q(x)

p(x)

)
ln
p(x)

q(x)
dx

=
1

2

∫

X
p(x) ln

p(x)

q(x)
+

1

2

∫

X
q(x) ln

q(x)

p(x)
dx

=
1

2

(
DKL(p||q) +DKL(q||p)

)
.

12.3.5 Kagan Divergence

Choosing f(u) = 1
2 (1− u)2 yields

Dχ2(p||q) = Df (p||q) =
1

2

∫

X
p(x)

(
1− q(x)

p(x)

)
dx

=
1

2

∫

X

(p(x)− q(x))2

q(x)
dx,

called the Kagan contrast function, see Kagan [48]. In this case α =
2f ′′′(1) + 3 = 3, and therefore the induced connection is ∇(3). It is
worth noting the relation with the minimum chi-squared estimation
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in the discrete case, see Kass and Vos [49], p.243. In this case the
Kagan divergence becomes

Dχ2(p, q) =
1

2

n∑
i=1

(pi − qi)
2

qi
.

12.3.6 Exponential Contrast Function

The contrast function associated with the convex function f(u) =
1
2(ln u)

2 is

E(p||q) = Df (p||q) =
1

2

∫

X
p(x)

(
ln p(x)− ln q(x)

)2
dx.

The induced connection in this case is ∇(−3).
We note that all function candidates of the form f(u) = K(lnu)2k

are convex, but the condition f ′′(1) = 1 is verified only for k = 1, 2
(with appropriate constants K).

12.3.7 Product Contrast Function with (α, β)-Index

The following 2-parameter family of contrast functions is introduced
and studied in Eguchi [40]

Dα,β(p||q) =
2

(1− α)(1− β)

∫ {
1−
(p(x)
q(x)

) 1−α
2
}{

1−
(p(x)
q(x)

) 1−β
2
}
dx,

and is induced by the function

fα,β(u) =
2

(1− α)(1 − β)
(1− u

1−α
2 )(1− u

1−β
2 ).

This connects to the previous contrast functions, see Problem 12.3.
It is worthy to note that the contrast function Dα,β(· || ·) can be

written as the following convex combination of Chernoff informations,
see Problem 12.3, part (e).

We end this section with a few suggestive examples. The computa-
tions are left as exercises to the reader.

Example 12.3.1 Consider the statistical model S = {pμ;μ ∈ R
k},

where

pμ(x) = (2π)−k/2e−
‖x−μ‖2

2 , x ∈ R
k

is a k-dimensional Gaussian density with σ = 1. Problem 12.4 pro-
vides exact formulas for the aforementioned contrast functions in
terms of the Euclidean distance ‖ · ‖.
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Example 12.3.2 (Exponential Model) Let S = {pξ}, where

pξ = ξe−ξx, ξ > 0, x > 0.

A computation shows

DKL(pξ||pξ′) =
ξ′

ξ
− ln

ξ′

ξ
− 1

J(pξ, pξ′) =
(ξ′ − ξ)2

2ξξ′

H2(pξ, pξ′) =
4(
√
ξ −

√
ξ′)2

ξ + ξ′

D(α)(pξ||pξ′) =
4

1− α2

{
1− ξ

1−α
2 ξ′

1+α
2

1+α
2 ξ′ + 1−α

2 ξ

}

Dχ2(pξ||pξ′) =
1

2

[
1(

2− ξ
ξ′

)
ξ
ξ′

− 1

]

E(pξ||pξ′) =
1

2

{ξ′
ξ
− ln

ξ′

ξ
− 1

}
.

It is worthy to note that all these contrast functions provide the
same Riemannian metric on S given by g11 = 1

ξ2
, which is the Fisher

information. The induced distance between pξ and pξ′ is a hyperbolic

distance, i.e., dist(pξ, pξ′) = | ln ξ
ξ′ |.

12.4 Problems

12.1. Consider the exponential family

p(x; ξ) = eC(x)+ξiFi(x)−ψ(ξ), i = 1, · · · , n,

with ψ(ξ) convex function, and define

D(ξ0||ξ) = ψ(ξ)− ψ(ξ0)− 〈∂ψ(ξ0), ξ − ξ0〉.

(a) Prove that D(·||·) is a contrast function;

(b) Find the dual contrast function D∗(·||·);
(c) Prove that the Riemann metric induced by the contrast

functionD(·||·) is the Fisher–Riemann metric of the expo-
nential family. Find a formula for it using the function ψ(ξ);
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(d) Find the components of the dual connections ∇(D) and
∇(D∗) induced by the contrast function D(·||·);

(e) Show that the skewness tensor induced by the contrast
function D(·||·) is Tijk(ξ) = ∂i∂j∂kψ(ξ).

12.2. Prove that the Hellinger distance

H(p, q) =

√
2

∫

X
(
√
p(x)−

√
q(x))2 dx

satisfies the distance axioms.

12.3. Consider the Eguchi contrast function

Dα,β(p||q) =
2

(1− α)(1 − β)

∫ {
1−
(p
q

) 1−α
2
}{

1−
(p
q

) 1−β
2
}
dx.

Let H(·, ·), D(α)(·||·), J(·, ·), E(·||·) be the Hellinger distance,
the Chernoff information of order α, the Jefferey distance,
and the exponential contrast function, respectively. Prove the
following relations:

(a) D0,0(p||q) = H2(p, q)

(b) D−α,α(p||q) =
1

2

(
D(α)(p||q) +D(−α)(p||q)

)

(c) lim
α→1

D−α,α(p||q) = J(p, q)

(d) lim
α→−1

Dα,α(p||q) = E(p||q)

(e) Dα,β(p||q) = λ1D
(−α) + λ2D

(−β) + λ3D
( 1−α−β

2
),

where

λ1 =
1 + α

2(1− β)
, λ2 =

1 + β

2(1 − α)
, λ3 = −(α+ β)(2 − α− β)

2(1− α)(1 − β)
,

and show that λ1 + λ2 + λ3 = 1.

12.4. Consider the statistical model defined by the k-dimensional
Gaussian family, S = {pμ;μ ∈ R

k},

pμ(x) = (2π)−k/2e−
‖x−μ‖2

2 , x ∈ R
k.
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Prove the following relations:

(a) DKL(pμ||pμ′) =
1

2
‖μ− μ′‖2

(b) J(pμ, pμ′) =
1

2
‖μ− μ′‖2

(c) H2(pμ, pμ′) = 4
[
1− e−

‖μ−μ′‖2
8

]

(d) D(α)(pμ||pμ′) =
4

1− α2

[
1− e−

1−α2

8
‖μ−μ′‖2

]

(e) E(pμ||pμ′) =
1

2
‖μ − μ′‖2

[
1 +

1

4
‖μ− μ′‖2

]
,

where ‖ · ‖ denotes the Euclidean norm on R
k.

12.5. Let Df ( · || · ) be the f -divergence. Prove the following con-
vexity property

Df

(
λp1+(1− λ)p2||λq1+(1−λ)q2

)
≤ λDf (p1||q1)

+(1 − λ)Df (p2||q2),

∀λ ∈ [0, 1] and p1, p2, q1, q2 distribution functions.

12.6. Prove the formulas for the contrast function in the case of the
exponential distribution presented by Example 12.3.2.

12.7. Consider the normal distributions p(x) = 1√
2πσ1

e
− (x−μ1)

2

2σ2
1 and

q(x) = 1√
2πσ2

e
− (x−μ2)

2

2σ2
2 .

(a) Show that

∫ ∞

−∞

√
p(x)q(x) dx =

√
2σ1σ2
σ21 + σ22

eA−B,

where

A =

(
μ1
2σ21

+ μ2
2σ22

)2

1
σ21

+ 1
σ22

, B =
μ21
4σ21

+
μ22
4σ22

.

(b) Find the Hellinger distance H(p, q).
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12.8. Find the Hellinger distance between two gamma distribu-
tions.

12.9. Consider two exponential distributions, p(x) = ae−ax and
q(x) = be−bx, x ≥ 0. Show that the Chernoff information of
order α is

Dα(p||q) = 4

1− α2

{
1− 2a

1−α
2 b

1+α
2

a(1− α) + b(1 + α)

}
, α �= ±1.

12.10. Consider the normal distributions p(x) = 1√
2πσ1

e
− (x−μ1)

2

2σ2
1 and

q(x) = 1√
2πσ2

e
− (x−μ2)

2

2σ2
2 . Show that the Chernoff information

of order α is

Dα(p||q) = 4

1− α2

{
1−A

√
π

a
e

b2

4a
−c
}
, |α| < 1,

where

a =
1− α

4σ21
+

1 + α

4σ22

b =
μ1(1− α)

2σ21
+
μ2(1 + α)

2σ22

c =
μ21(1− α)

4σ21
+
μ22(1 + α)

4σ22
.

12.11. The Chernoff information of order α for discrete distributions
(pn) and (qn) is given by

D(α)(p||q) = 4

1− α2

{
1−

∑
n≥0

p
1−α
2

n q
1+α
2

n

}
.

Let pn =
λn1
n! e

−λ1 and qn =
λn2
n! e

−λ2 be two Poisson distribu-
tions.

(a) Show that

D(α)(p||q) = 4

1−α2

{
1−eλ

(1−α)/2
1 λ

(1+α)/2
2 −λ1(1−α)/2−λ2(1+α)/2

}
.

(b) Show that the square of the Hellinger distance is given
by

H2(p, q) = 4{1− e
√
λ1λ2−λ1+λ2

2 }.



Chapter 13

Statistical Submanifolds

This chapter studies the geometric structure induced on a submanifold
by the dualistic structure of a statistical manifold. This includes the
study of the first and second fundamental forms, curvatures, mean
curvatures, and the relations among them.

This material adapts the well-known theory of submanifolds to
the statistical manifolds framework and consists mainly in the con-
tributions of the authors.

13.1 First Fundamental Form

Let M and S be two manifolds, and consider the immersion ι : M →
S, i.e., a one-to-one map, onto on its image, with ι∗ isomorphism of
TpM into the image ι∗(TpM) ⊂ Tι(p)S. This implies dimM ≤ dimS.
Then the manifold M is called an immersed submanifold of S. In
the case when ι is a homeomorphism onto its image in the induced
topology, then M is called an imbedded submanifold of S.

If (S, g) is a Riemannian manifold, then the immersion ι : M →
S induces a Riemannian metric h on the submanifold M by h =
ι∗(g), i.e.,

h(X,Y ) = g(ι∗X, ι∗Y ), ∀X,Y ∈ X (M). (13.1.1)

For the sake of simplicity, it is useful to consider M as a subset
of S, and the imbedding ι as the canonical inclusion. This assumption
simplifies notations. For instance, both the vector X ∈ TpM and its
image ι∗(X)p ∈ Tι(p)S will be denoted by X; whether X is considered
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tangent toM or to S is to be understood from the context. Therefore,
in the virtue of the previous assumption, relation (13.1.1) becomes

h(X,Y ) = g(X,Y ), ∀X,Y ∈ X (M).

The tensor h is called the first fundamental form on M. The pair
(M, h) becomes a Riemannian manifold with the metric and topo-
logical structure induced by (S, g).

13.2 Induced Dual Connections

Let (M, h) be a submanifold of (S, g,∇,∇∗), where ∇, ∇∗ are dual,
torsion-free connections on S. Each tangent space of S has the ort-
hogonal decomposition

TpS = TpM⊕Np,

where Np = {Y ; g(Y,X) = 0,∀X ∈ TpM}. This way, any vector
Z ∈ TpS can be written in a unique way as Z = ZT + ZN , with
ZT ∈ TpM and ZN ∈ Np.

Applying the previous decomposition, for any X,Y ∈ X (M) we
have

∇XY = DXY + L(X,Y ) (13.2.2)

∇∗
XY = D∗

XY + L∗(X,Y ), (13.2.3)

where

DXY = (∇XY )T , D∗
XY = (∇∗

XY )T (13.2.4)

L(X,Y ) = (∇XY )N , L∗(X,Y ) = (∇∗
XY )N . (13.2.5)

These formulas define the maps D, D∗, L, and L∗.

Theorem 13.2.1 The maps D,D∗ : X (M) × X (M) → X (M) are
torsion-free dual connections on (M, g).

Proof: First, we note that D and D∗ are well defined and R-bilinear.
Then we check the F(M)-linearity in the first argument and the
Leibnitz’ rule in the second as follows

DfXY = (∇fXY )T = (f∇XY )T = f(∇XY )T = fDXY

DX(fY ) = (∇XfY )T = (X(f) + f∇XY )T = X(f) + fDXY,
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∀X,Y ∈ X (M), so D is a linear connection on M. Since ∇ is
torsion-free and [X,Y ] is tangent to M, we find

DXY −DYX = (∇XY −∇YX)T = [X,Y ]T = [X,Y ],

so D is torsion-free (symmetric). A similar approach shows that D∗

is a torsion-free connection. For any X,Y,Z ∈ X (M), we have

Zh(X,Y ) = Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY )

= g
(
(∇ZX)T , Y ) + g

(
X, (∇∗

ZY )T
)

= g
(
DZX,Y ) + g

(
X,D∗

ZY
)
,

which shows that D and D∗ are dual connections on (M, h).

Therefore, a dualistic structure on S, i.e., a quadruple (S, g,∇,∇∗),
induces a natural dualistic structure (M, h,D,D∗) on M, which is
called a statistical submanifold of (S, g,∇,∇∗).

The ∇(α)-connection of S

∇(α) =
1− α

2
∇+

1 + α

2
∇∗

induces a D(α)-connection on M as in the following

D
(α)
X Y = (∇(α)

X Y )T =
1− α

2
(∇XY )T +

1 + α

2
(∇∗

XY )T

=
1− α

2
DXY +

1 + α

2
D∗
XY, ∀X,Y ∈ X (M).

Similarly, we can define the L(α) operator by taking the normal
part of the α-connection

L(α)(X,Y ) = (∇(α)
X Y )N =

1− α

2
(∇XY )N +

1 + α

2
(∇∗

XY )N

=
1− α

2
L(X,Y ) +

1 + α

2
L∗(X,Y ), ∀X,Y ∈ X (M).

13.3 Dual Second Fundamental Forms

The operators L and L∗ defined by (13.2.5) have tensor-like proper-
ties, even if they are not tensors on M (their image is not a vector
field on M).
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Theorem 13.3.1 The mappings L,L∗ : X (M)×X (M) → X (S) are
symmetric, i.e.,

L(X,Y ) = L(Y,X), L∗(X,Y ) = L∗(Y,X),

and F(M)-bilinear. In particular ∀f1, f2 ∈ F(M), we have

L(f1X, f2Y ) = f1f2L(X,Y ), L∗(f1X, f2Y ) = f1f2L(X,Y ).

Proof: Using the torsion-free property of ∇ and D, we get

L(X,Y ) = ∇XY −DXY = ∇YX + [X,Y ]− (DYX + [X,Y ])

= ∇XY −DXY = L(Y,X).

Using the symmetry, we find

L(f1X,Y ) = ∇f1XY −Df1XY = f1(∇XY −DXY ) = f1L(X,Y )

L(X, f2Y ) = L(f2Y,X) = f2L(Y,X) = f2L(X,Y ),

whence L(f1X, f2Y ) = f1f2L(X,Y ). A similar approach applies
for L∗.

Corollary 13.3.2 The operator

L(α)(X,Y ) =
1− α

2
L(X,Y ) +

1 + α

2
L∗(X,Y ), ∀X,Y ∈ X (M)

is symmetric and F(M)-bilinear.

The operators L and L∗ are called dual second fundamental forms of
(M, h,D,D∗) with respect to (S, g,∇,∇∗). Sometimes, they are also
referred to as embedding curvatures (see Amari [8] p.23), since they
describe how the submanifold M is curved inside of S with respect
to the dual connections ∇,∇∗.

The submanifold M is called ∇-autoparallel if L(X,Y ) = 0 for all
X,Y ∈ X (M). The submanifold M is called dual-autoparallel if it is
both ∇- and ∇∗-autoparallel, i.e., if L(X,Y ) = L∗(X,Y ) = 0 for all
X,Y ∈ X (M). Finally, the submanifold M is called geodesic if it is
∇(0)-autoparallel.

Let (M, h,D,D∗) be a statistical submanifold of (S, g,∇,∇∗).
The following statements:

(a) M is ∇-autoparallel in S;

(b) M is ∇∗-autoparallel in S;
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(c) S has R = 0;

(d) S has R∗ = 0;

(e) M has RM = 0;

(f) M has R∗
M = 0.

(g) RM(X,Y,Z) = R(X,Y,Z), ∀X,Y,Z ∈ X (M);

(h) R∗
M(X,Y,Z) = R∗(X,Y,Z), ∀X,Y,Z ∈ X (M)

are related as in the next lemma.

Lemma 13.3.3 The following relations hold:

(a) ⇒ (g), (b) ⇒ (h), (c) ⇔ (d), and (e) ⇔ (f).

Proof: Assume (a) holds true. Then L = 0, and hence ∇XY = DXY
for any tangent vector fields X,Y to M. This implies

RM(X,Y,Z) = [DX ,DY ]Z −D[X,Y ]Z

= [∇X ,∇Y ]Z −∇[X,Y ]Z

= R(X,Y,Z), ∀X,Y,Z ∈ X (M),

and hence RM = R, which is (g). The implication (b) ⇒ (h) can be
proved similarly. The equivalences (c) ⇔ (d) and (e) ⇔ (f) follow
from Proposition 8.1.4.

Lemma 13.3.4 Let S be ∇-flat. Then any ∇-autoparallel submani-
fold M of S is D-flat.

Proof: Since M is ∇-autoparallel we have L(∂i, ∂j) = 0 and then
∇∂i∂j = D∂i∂j for ∂i, ∂j tangent vector fields to M. Using that S is
∇-flat, we find

h(D∂i∂j , ∂k) = g(D∂i∂j , ∂k) = g(∇∂i∂j , ∂k) = 0,

which implies that M is D-flat.

The following result can be found in Amari [8], p.58.

Theorem 13.3.5 Let (S, g,∇,∇∗) be a dually flat statistical mani-
fold and (M, h,D,D∗) be a submanifold. If (M, h,D,D∗) is either
∇-autoparallel or ∇∗-autoparallel, then (M, h,D,D∗) is a dually flat
statistical manifold.
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Proof: Let {∂i}1≤i≤m be local coordinate vector fields on M. Since
∇ and ∇∗ are dually flat connections, we have

∂kg(∂i, ∂j) = g(∇∂k∂i, ∂j) + g(∂i,∇∗
∂k
∂j) = 0.

It follows that ∂kh(∂i, ∂j) = ∂kg(∂i, ∂j) = 0. Combining with the
duality of D and D∗ yields

0 = ∂kh(∂i, ∂j) = g(D∂k∂i, ∂j) + g(∂i,D
∗
∂k
∂j). (13.3.6)

Assume M is ∇-autoparallel. Then Lemma 13.3.4 implies that M
is D-flat, i.e., g(D∂k∂i, ∂j) = 0. Substituting in (13.3.6) implies that
g(∂i,D

∗
∂k
∂j) = 0, i.e. M is also D∗-flat.

We formulate next a partial converse of the previous result.

Theorem 13.3.6 Let (M, h,D,D∗) be a dually flat statistical sub-
manifold of (S, g,∇,∇∗). If S is either ∇-flat or ∇∗-flat, then S is
dually flat.

Proof: Let {∂1, . . . , ∂m} be local coordinate vector fields on M. Since
∂kg(∂i, ∂j) = ∂kh(∂i, ∂j), then the duality relations imply

g(∇∂k∂i, ∂j) + g(∂i,∇∗
∂k
∂j) = g(D∂k∂i, ∂j) + g(∂i,D

∗
∂k
∂j).

Since M is dually flat we have g(D∂k∂i, ∂j) = 0, g(∂i,D
∗
∂k
∂j) = 0.

Substituting in the previous relation yields

g(∇∂k∂i, ∂j) + g(∂i,∇∗
∂k
∂j) = 0.

If S is ∇-flat, then g(∇∂k∂i, ∂j) = 0, and using the previous relation
we get g(∂i,∇∗

∂k
∂j) = 0, i.e., S is ∇∗-flat. The same argument applies

if assume first that S is ∇∗-flat.

13.4 Generalized Shape Operator

Let (M, h,D,D∗) be a statistical submanifold of (S, g,∇,∇∗). Con-
sider

∇(α) =
1− α

2
∇+

1 + α

2
∇∗

L(β) =
1− β

2
L+

1 + β

2
L∗,
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and define the generalized shape operator

S(α,β)(X,Y,Z,W ) = g
(
∇(α)
X L(β)(Y,Z),W

)
, ∀X,Y,Z,W ∈ X (M).

(13.4.7)

The tensor S(α,β) measures the projection of the covariant deriva-
tive of the β-second fundamental form, which is normal to M, with
respect to the α-connection. The following result shows that S(α,β)

is a (0, 4)-type tensor on M that measures the angle made by two
fundamental forms, i.e., describes the shape of the submanifold M.

Proposition 13.4.1 For any real numbers α, β and any X,Y,Z,W ∈
X (M), we find

S(α,β)(X,Y,Z,W ) = −g
(
L(β)(Y,Z), L(−α)(X,W )

)
. (13.4.8)

Proof: Using that ∇(α) and ∇(−α) are dual connections, we have

S(α,β)(X,Y,Z,W ) = g
(
∇(α)
X L(β)(Y,Z),W

)

= X g
(
L(β)(Y,Z),W

)
︸ ︷︷ ︸

=0

−g
(
L(β)(Y,Z),∇(−α)

X W
)

= −g
(
L(β)(Y,Z),D

(−α)
X W + L(−α)(X,W )

)

= −g
(
L(β)(Y,Z), L(−α)(X,W )

)
,

where we used the orthogonality of L(β)(Y,Z) and D
(−α)
X W .

We note that the F(M)-bilinearity of g and L implies that S(α,β)

is F(M)-multilinear, and hence it is a tensor on M. The symmetry
of the second fundamental form implies that S(α,β) is symmetric in
the inner and exterior pairs

S(α,β)(X,Y,Z,W ) = S(α,β)(X,Z, Y,W ) (13.4.9)

S(α,β)(X,Y,Z,W ) = S(α,β)(W,Y,Z,X). (13.4.10)

It is worth noting that S(α,β) is also symmetric under the inversion
order of arguments

S(α,β)(X,Y,Z,W ) = S(α,β)(W,Z, Y,X) (13.4.11)

Proposition 13.4.2 The following index symmetry holds

S(α,β)(X,Y,Z,W ) = S(−β,−α)(Z,W,X, Y ), ∀X,Y,Z,W ∈ X (M).
(13.4.12)
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Proof: Proposition 13.4.1, the symmetry of g and L infer

S(α,β)(X,Y,Z,W ) = −g
(
L(β)(Y,Z), L(−α)(X,W )

)

= −g
(
L(β)(Z, Y ), L(−α)(W,X)

)

= −g
(
L(−α)(W,X), L(β)(Z, Y )

)

= S(−β,−α)(Z,W,X, Y ).

Different particular cases of α and β lead to the following formulas
of the shape operator:

Corollary 13.4.3 We have

S(−1,−1)(X,Y,Z,W ) = −g
(
L(Y,Z), L∗(X,W )

)

S(1,−1)(X,Y,Z,W ) = −g
(
L(Y,Z), L(X,W )

)

S(−1,1)(X,Y,Z,W ) = −g
(
L∗(Y,Z), L∗(X,W )

)

S(1,1)(X,Y,Z,W ) = −g
(
L∗(Y,Z), L(X,W )

)
.

Denote by L(0) the second fundamental form associated with the
Levi–Civita connection, i.e.,

L(0)(X,Y ) = (∇(0)
X Y )N , ∀X,Y ∈ X (M).

Using

L(0) =
1

2
(L+ L∗) =

1

2
(L(β) + L(−β)),

Proposition 13.4.1 and the linearity leads to another particular value
for the shape operator

S(α,0) =
1

2
(S(α,β) + S(α,−β)). (13.4.13)

13.5 Mean Curvature Vector Fields

Consider (M, h,D,D∗) a statistical submanifold of (S, g,∇,∇∗). Let
{E1, . . . , Em} be an orthonormal basis in TpM, with m = dimM.
The mean curvature vector fields with respect to ∇ and ∇∗ are
defined as

Hp =
1

m
δijL(Ei, Ej)

H∗
p =

1

m
δijL∗(Ei, Ej),
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with summation in the repeated indices. Here δij denotes the
Kronecker’s delta symbol. The manifold M is called ∇-minimal (res-
pectively, ∇∗-minimal) if Hp = 0 (respectively H∗

p = 0) at every point
p ∈ M. The vector fields H and H∗ are normal to the manifold M.

The relation between L and L∗ is given by following result.

Proposition 13.5.1 The fundamental forms L and L∗ are related by

g
(
∇XL(Y,Z),W

)
= g

(
∇∗
Y L

∗(X,W ), Z
)
, ∀X,Y,Z,W ∈ X (M).

(13.5.14)

Proof: From the definition of the shape tensor and relations (13.4.12)
and (13.4.11), we have

g
(
∇XL(Y,Z),W

)
= S(−1,−1)(X,Y,Z,W ) = S(1,1)(Z,W,X, Y )

= S(1,1)(Y,X,W,Z) = g
(
∇∗
Y L

∗(X,W ), Z
)
.

A similar argument can be used to prove the more general relation

g
(
∇(α)
X L(β)(Y,Z),W

)
= g

(
∇(−β)
Y L(−α)(X,W ), Z

)
,

∀ X,Y,Z,W , tangent vector fields to M.

Proposition 13.5.1 has a couple of interesting applications.

Proposition 13.5.2 Let (M, h,D,D∗) be a submanifold of the sta-
tistical manifold (S, g,∇,∇∗).

(i) If M is ∇∗-autoparallel, then ∇XL(Y,Z) = 0, ∀X,Y,Z,
W ∈ X (M), i.e., L(Y,Z) is parallel with respect to ∇;

(ii) If M is ∇-autoparallel, then ∇∗
XL

∗(Y,Z) = 0, ∀X,Y,Z,
W ∈ X (M), i.e., L∗(Y,Z) is parallel with respect to ∇∗.

Proof:

(i) Assume that M is ∇∗-autoparallel, so L = 0. Substituting in
(13.5.14) yields

g
(
∇XL(Y,Z),W

)
= 0, ∀X,Y,Z,W ∈ X (M),

so ∇XL(Y,Z) = 0, i.e., L(Y,Z) is parallel with respect to ∇.
Part (ii) has a similar proof.
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Proposition 13.5.3 Let (M, h,D,D∗) be a submanifold of the
statistical manifold (S, g,∇,∇∗) and denote by H and H∗ the dual
mean curvature vector fields.

(i) divL(Y,Z) = 0, ∀Y,Z ∈ X (M) if and only if H∗ is parallel
with respect to ∇∗;

(ii) div∗L∗(Y,Z) = 0, ∀Y,Z ∈ X (M) if and only if H is parallel
with respect to ∇.

Proof:

(i) Let {E1, . . . , Em} be an orthonormal basis in TpM. Making
X =W = Ei in relation (13.5.14) yields

g
(
∇EiL(Yp, Zp), Ei

)
= g

(
∇∗

Yp
L∗(Ei, Ei), Zp

)
, ∀Yp, Zp ∈ Tp(M).

(13.5.15)

Summing over i, we obtain

divL(Y,Z) = mg
(
∇∗
YH

∗, Z
)
, Y, Z ∈ X (M).

Hence divL(Y,Z) = 0 if and only if ∇∗
YH

∗ = 0, Y,Z ∈
X (M).

(ii) Changing the roles of ∇ and ∇∗ and applying a similar argu-
ment leads to the desired result.

We deal next with the ∇- and ∇∗-minimality of the submani-
fold M.

Corollary 13.5.4 We have:

(i) If H∗ = 0, then divL(Y,Z) = 0, ∀Y,Z ∈ X (M);

(ii) If H = 0, then div∗L∗(Y,Z) = 0, ∀Y,Z ∈ X (M).

Proof: It follows from Proposition 13.5.3 by considering eitherH = 0,
or H∗ = 0.

The relation between divergences of dual mean curvature vector
fields is given by the next result.

Lemma 13.5.5 For any submanifold M of S, we have

divH = div∗H∗.
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Proof: Let {E1, . . . , Em} be an orthonormal basis in TpM. Then
relation (13.5.14) can be written as

g
(
∇EiL(Ej , Ej), Ei

)
= g

(
∇∗
Ej
L∗(Ei, Ei), Ej

)
. (13.5.16)

Summing over i and j yields divH = div∗H∗.

Lemma 13.5.6 Let {E1, . . . , Em} be an orthonormal basis in TpM.
Then

g(Hp,H
∗
p ) = − 1

m2

∑
i,j

S(−1,−1)(Ej , Ei, Ei, Ej)

= − 1

m2

∑
i,j

S(1,1)(Ej , Ei, Ei, Ej).

Proof: From the definition of mean curvature vector field and Propo-
sition 13.4.1, we get

g(Hp,H
∗
p ) =

1

m2
g
(∑

i

L(Ei, Ei),
∑
j

L∗(Ej , Ej)
)

=
1

m2

∑
i,j

g
(
L(Ei, Ei), L

∗(Ej, Ej)
)

= − 1

m2

∑
i,j

S(−1,−1)(Ej , Ei, Ei, Ej).

The second identity follows from relation (13.4.12).

The next result contains an unexpected relation.

Theorem 13.5.7 The divergences of the mean curvature vector fields
are related to their inner product by

divH = div∗H∗ = −mg(H,H∗). (13.5.17)

Proof: Assume {E1, . . . , Em} is an orthonormal basis in TpM. The
divergence of Hp with respect to the ∇-connection is given by

divHp =
∑
i

g(∇EiH,Ei) =
1

m

∑
i,j

g
(
∇EiL(Ej , Ej), Ei

)

=
1

m

∑
i,j

S(−1,−1)(Ei, Ej , Ej , Ei),

and applying Lemma 13.5.6 yields divHp = −mg(Hp,H
∗
p ). Using

Lemma 13.5.5, we get div∗H∗
p = −mg(Hp,H

∗
p ).
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Corollary 13.5.8 The following statements are equivalent:

(i) H and H∗ are orthogonal vector fields;

(ii) divH = 0;

(iii) div∗H∗ = 0.

13.6 Gauss–Codazzi Equations

Let (M, h,D,D∗) be a statistical submanifold of (S, g,∇,∇∗).
Denote by RS and R∗

S the curvature tensors on S with respect to
connections ∇ and ∇∗. Similarly, RM and R∗

M denote the curvature
tensors on M with respect to connections D and D∗. The equations
of Gauss and Codazzi will be deducted from the following lemma.

Lemma 13.6.1 For any X,Y,Z ∈ X (M), we find

RS (X,Y,Z) = RM(X,Y,Z) + L(X,DY Z)− L(Y,DXZ)

+L([X,Y ], Z) +∇XL(Y,Z)−∇Y L(X,Z).

(13.6.18)

R∗
S (X,Y,Z) = R∗

M(X,Y,Z) + L∗(X,DY Z)− L∗(Y,DXZ)

+L∗([X,Y ], Z) +∇∗
XL

∗(Y,Z)−∇∗
Y L

∗(X,Z).
(13.6.19)

Proof: It suffices to prove the first relation, the second resulting by
duality. Using the decomposition of a connection into its tangent and
normal part, we have

∇X∇Y Z = ∇X

(
DY Z + L(Y,Z)

)
= ∇XDY Z +∇XL(Y,Z)

= DXDY Z + L(X,DY Z) +∇XL(Y,Z)

∇Y∇XZ = DYDXZ + L(Y,DXZ) +∇Y L(X,Z)

∇[X,Y ]Z = D[X,Y ]Z − L
(
[X,Y ], Z

)
.

Subtracting the second and third relation from the first one provides

RS (X,Y,Z) = RM(X,Y,Z) + L(X,DY Z)− L(Y,DXZ)

+L([X,Y ], Z) +∇XL(Y,Z)−∇Y L(X,Z),

which is (13.6.18).
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Corollary 13.6.2 (i) If M is a ∇-autoparallel submanifold of S,
then

RS (X,Y,Z) = RM(X,Y,Z), ∀X,Y,Z ∈ X (M).

(ii) If M is a ∇∗-autoparallel submanifold of S, then

R∗
S (X,Y,Z) = R∗

M(X,Y,Z), ∀X,Y,Z ∈ X (M).

Proof: It follows from (13.6.18) and (13.6.19) by making L = 0 and
L∗ = 0.

Theorem 13.6.3 (Gauss’ Equation) For any X,Y,Z,W ∈ X (M),
we have

RS (X,Y,Z,W ) = RM(X,Y,Z,W ) + g
(
L(X,Z), L∗(Y,W )

)

−g
(
L(Y,Z), L∗(X,W )

)
(13.6.20)

R∗
S (X,Y,Z,W ) = R∗

M(X,Y,Z,W ) + g
(
L∗(X,Z), L(Y,W )

)

−g
(
L∗(Y,Z), L(X,W )

)
. (13.6.21)

Proof: Taking the scalar product with respect to W in (13.6.18) and
using that L is normal to the submanifold M, we have

RS (X,Y,Z,W ) = g
(
RS (X,Y,Z),W

)
= g

(
RM(X,Y,Z),W

)

+g
(
∇XL(Y,Z),W

)
− g

(
∇Y L(X,Z),W

)

= g
(
RM(X,Y,Z),W

)
+ S(−1,−1)(X,Y,Z,W )

−S(−1,−1)(Y,X,Z,W )

= RM(X,Y,Z,W ) + g
(
L(X,Z), L∗(Y,W )

)

−g
(
L(Y,Z), L∗(X,W )

)
,

where in the last identity we used Corollary 13.4.3. The second rela-
tion is proved using a similar argument applied to (13.6.19).

We deal next with a few straightforward applications of Gauss’
formula.

Proposition 13.6.4 (i) If S is ∇-flat, then

RM(X,Y, Z,W ) = g
(
L(Y, Z), L∗(X,W )

)
− g

(
L(X,Z), L∗(Y,W )

)
.
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(ii) If S is ∇∗-flat, then

R∗
M(X,Y, Z,W ) = g

(
L∗(Y, Z), L(X,W )

)
− g

(
L∗(X,Z), L(Y,W )

)
.

(iii) If S is dually flat, then

RM(X,Y, Z,W ) = −R∗
M(X,Y,W,Z).

Proof:

(i) It follow from making RS = 0 in formula (13.6.20).

(ii) Similarly, put R∗
S = 0 in formula (13.6.21).

(iii) It follows from (i) and (ii). It is worth noting the equivalence
R = 0 ⇐⇒ R∗ = 0.

Proposition 13.6.5 Assume the submanifold M has the property
that L and L∗ are perpendicular, i.e.,

g
(
L(X,Y ), L∗(Z,W )

)
= 0, ∀X,Y,Z,W ∈ X (M).

Then for any X,Y,Z,W ∈ X (M), we get

RS (X,Y,Z,W ) = RM(X,Y,Z,W ); (13.6.22)

R∗
S (X,Y,Z,W ) = R∗

M(X,Y,Z,W ). (13.6.23)

Proof: It is a direct consequence of Gauss’ equation.

The same argument applied to the α-connection yields the follo-
wing α-version of Gauss’ equation:

R(α)
S (X,Y,Z,W ) = R(α)

M (X,Y,Z,W )+g
(
L(α)(X,Z), L(−α)(Y,W )

)

−g
(
L(α)(Y,Z), L(−α)(X,W )

)
, (13.6.24)

for any X,Y,Z,W ∈ X (M).

The following formula regarding the coefficients of the second fun-
damental form and their covariant derivatives is known under the
name of Codazzi equation.

Theorem 13.6.6 (Codazzi Equation) Assume S is ∇-flat.
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(i) Then for any X,Y,Z ∈ X (M),

(
∇Y L(X,Z)

)N −
(
∇N
XL(Y,Z)

)N
= L(X,DY Z)− L(Y,DXZ)

+L([X,Y ], Z).

(ii) Assume S is ∇(α)-flat. Then

(
∇(α)
Y L(α)(X,Z)

)N −
(
∇(α)
X L(α)(Y,Z)

)N

= L(α)(X,D
(α)
Y Z)− L(α)(Y,D

(α)
X Z) + L(α)([X,Y ], Z).

Proof:

(i) Make RS = 0 in (13.6.18) and then consider the equation given
by the normal components.

(ii) A similar argument applies.

Proposition 13.6.7 Assume S is ∇-flat. If M is a ∇∗-autoparallel
submanifold of S, then

L(X,DY Z)− L(DYX,Z) = L(Y,DXZ)− L(DXY,Z);

L(X,DY Z)− L(D∗
YX,Z) = L(Y,DXZ)− L(D∗

XY,Z).

Proof: From Proposition 13.5.2, we get ∇XL(Y,Z) = 0. In this case
the Codazzi equation becomes

L(X,DY Z)− L(Y,DXZ) + L([X,Y ], Z) = 0.

Using that D is symmetric, we substitute [X,Y ] = DXY −DYX in
the previous equation and obtain the first desired relation. Using the
symmetry of D∗, [X,Y ] = D∗

XY −D∗
YX, leads to the second relation.

13.7 Induced Skewness Tensor

Let (M, h,D,D∗) be a statistical submanifold of (S, g,∇,∇∗). For
any tangent vector fields X, Y on M, consider the difference tensors
on S and M, respectively,

K(X,Y ) = ∇∗
XY −∇XY

K(X,Y ) = D∗
XY −DXY.
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It follows that

K(X,Y ) = K(X,Y ) + L∗(X,Y )− L(X,Y ). (13.7.25)

More precisely,

K(X,Y )T = K(X,Y ), K(X,Y )N = L∗(X,Y )− L(X,Y ).

Denote by C and C the skewness tensors on manifolds (S, g,∇,∇∗)
and, respectively, on (M, h,D,D∗). The next result states that the
submanifold and the manifold share the same skewness tensor.

Proposition 13.7.1 The restriction of skewness tensor C to M is
the tensor C, i.e.,

C(X,Y,Z) = C(X,Y,Z), ∀X,Y,Z ∈ X (M).

Proof: The proof is a consequence of Proposition 8.8.1 and relation
(13.7.25). For any X,Y,Z tangent vector fields to M, we find

C(X,Y,Z) = g(K(X,Y ), Z) = g(K(X,Y ), Z) + g(L∗(X,Y ), Z)

−g(L(X,Y ), Z)

= g(K(X,Y ), Z) = h(K(X,Y ), Z)

= C(X,Y,Z),

where we used that both L(X,Y ) and L∗(X,Y ) are orthogonal to M.

In general, the difference tensors K and K are distinct, but in the
following particular case they coincide.

Proposition 13.7.2 If the submanifold M is dual-autoparallel, then
K(X,Y ) = K(X,Y ), for any X,Y ∈ X (M).

Proof: Since M is dual-autoparallel, then L = L∗ = 0. Substituting
in (13.7.25) yields the desired result.

The next result shows that the restriction of ∇(α)g to M is D(α)h.

Proposition 13.7.3 For any vector fields X,Y,Z ∈ X (M), we have

(∇g)(X,Y,Z) = (Dh)(X,Y,Z)

(∇∗g)(X,Y,Z) = (D∗h)(X,Y,Z)
(∇(α)g)(X,Y,Z) = (D(α)h)(X,Y,Z).
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Proof: We shall prove the first relation, the others being similar. We
follow, step by step, the computation

(∇g)(X,Y,Z) = Xg(Y,Z) − g(∇XY,Z)− g(Y,∇XZ)

= Xh(Y,Z) − g(DXY,Z)− g(Y,DXZ)

= Xh(Y,Z) − h(DXY,Z)− h(Y,DXZ)

= (Dh)(X,Y,Z).

The skewness can be recovered from one of the submanifold con-
nections and the Riemannian metric h.

Corollary 13.7.4 The skewness tensor C on M is given by any of
the following relations

Dh = C, D∗h = −C, D(α)h = −αC.

Proof: From Propositions 8.8.1 and 13.7.3, we obtain

C(X,Y,Z) = (∇g)(X,Y,Z) = (Dh)(X,Y,Z), ∀X,Y,Z ∈ X (M).

Using Proposition 13.7.1, the previous relations imply C(X,Y,Z) =
(Dh)(X,Y,Z). The other two relations are proved by a similar
argument.

We end this section with a relation between the skewness tensor
on S and the shape tensor.

Proposition 13.7.5 For any X,Y,Z,W ∈ X (M) we have

C
(
X,L(Y,Z),W

)
= S(1,−1)(X,Y,Z,W ) − S(−1,−1)(X,Y,Z,W )

C
(
X,L∗(Y,Z),W

)
= S(1,1)(X,Y,Z,W ) − S(−1,1)(X,Y,Z,W ).

Proof: Using the definitions of skewness, difference, and shape tensors
we have

C
(
X,L(Y,Z),W

)
= g

(
K(X,L(Y,Z)),W

)

= g
(
∇∗
XL(Y,Z),W

)
− g

(
∇XL(Y,Z),W

)

= S(1,−1)(X,Y,Z,W ) − S(−1,−1)(X,Y,Z,W ).

The second relation has a similar proof.
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13.8 Curve Kinematics

Let γ(s) be a curve contained in (M, h,D,D∗), which is a statistical
submanifold of (S, g,∇,∇∗). The acceleration of γ(s) in the manifold
S can be measured with respect to both connections. This is the sum
between the acceleration in M and the associated normal curvature
term

∇γ̇ γ̇ = Dγ̇ γ̇ + L(γ̇, γ̇) (13.8.26)

∇∗
γ̇ γ̇ = D∗

γ̇ γ̇ + L∗(γ̇, γ̇). (13.8.27)

The “angle” between the accelerations, measured with respect to con-
nections ∇ and ∇∗ on S, is

Ω(γ̇) = g(∇γ̇ γ̇,∇∗
γ̇ γ̇),

while a similar measure with respect to connections D and D∗ on M
is given by

ω(γ̇) = h(Dγ̇ γ̇,D
∗
γ̇ γ̇).

It is easy to see that if the curve γ is either ∇- or ∇∗-autoparallel,
then Ω(γ̇) = 0. Similarly, if γ is either D- or D∗-autoparallel, then
ω(γ̇) = 0. The relation between these two measures is computed using
the normal decompositions (13.8.26)–(13.8.27):

Ω(γ̇) = g(∇γ̇ γ̇,∇∗
γ̇ γ̇) = g

(
Dγ̇ γ̇ + L(γ̇, γ̇),D∗

γ̇ γ̇ + L∗(γ̇, γ̇)
)

= h
(
Dγ̇ γ̇,D

∗
γ̇ γ̇
)
+ g

(
L(γ̇, γ̇), L∗(γ̇, γ̇)

)

= ω(γ̇) + g
(
L(γ̇, γ̇), L∗(γ̇, γ̇)

)
,

and hence

Ω(γ̇)− ω(γ̇) = g
(
L(γ̇, γ̇), L∗(γ̇, γ̇)

)
. (13.8.28)

Proposition 13.8.1 Let (S, g,∇,∇∗) be a dually flat manifold.

(i) Then the magnitude of the acceleration of a curve γ contained
in the submanifold M is given by

‖γ̈‖2g = ω(γ̇) + g
(
L(γ̇, γ̇), L∗(γ̇, γ̇)

)
.

(ii) If γ is either D- or D∗-autoparallel, then

‖γ̈‖2g = g
(
L(γ̇, γ̇), L∗(γ̇, γ̇)

)
.
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(iii) If γ is either D- or D∗-autoparallel and has one of the normal
curvature equal to zero (either L(γ̇, γ̇) = 0 or L∗(γ̇, γ̇) = 0),
then

γk(s) = αks+ βk, 1 ≤ k ≤ dimS,

with αk and βk constants.

Proof:

(i) If S is dually flat, then Γkij = Γ∗k
ij = 0, and hence ∇γ̇ γ̇ =

∇∗
γ̇ γ̇ = γ̈k∂k. Therefore Ω(γ̇) = g(γ̈k∂k, γ̈

l∂l) = g(γ̈, γ̈) = ‖γ̈‖2g.
Substituting in (13.8.28) leads to the required relation.

(ii) If γ is either D- or D∗-autoparallel, then ω(γ̇) = 0. Then
an application of the relation from part (i) yields the claimed
relation.

(iii) Applying (ii) yields ‖γ̈‖g = 0. This implies γ̈k∂k = 0 and hence
γ̈(s) = 0, which implies the linearity of component functions.

13.9 Problems

13.1. Prove that Lα is symmetric, i.e., Lα(X,Y ) = Lα(Y,X), for all
X,Y ∈ X (M).

13.2. Let (M, h,D,D∗) be a dual autoparallel submanifold of
(S, g,∇,∇∗).

(a) Show that L(α) ≡ 0.

(b) Verify that S(α,β) ≡ 0 for all α, β.

13.3. (a) Show that the shape operator satisfies the equation

S(α,0) =
1

2

(
S(α,β) + S(α,−β)

)
.

(b) Formulate and prove a similar relation for S(0,β).

13.4. Let (S, g,∇,∇∗) be a statistical manifold, where

S = {p(x;μ, σ) = 1√
2πσ

e−
(x−μ)2

2σ2 ;x ∈ R, μ ∈ R, σ > 0},
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g is the Fisher–Riemann metric, and ∇ = ∇(−1), ∇∗ = ∇(1).
Consider the submanifold

M = {p(x;μ, σ) ∈ S;μ = 0, σ > 0}.

(a) Find the Fisher–Riemann metric h on M induced from
(S, g).

(b) Find an expression for the induced dual connections D,
D∗ on (M, h).

(c) Find an expression for the connection D(α).

(d) Compute the second fundamental forms L, L∗, and L(α).

(e) Find the Riemann curvature tensors RM and R∗
M. Is M

dually flat?

(f) Compute the mean curvature vectors Hp andH
∗
p . Is (M,h)

a minimal submanifold?

(g) Is there any value of α for which (M,h) is α-autoparallel?

13.5. Consider the statistical manifold (S, g,∇,∇∗), where

S = {p(x;α, β) = 1

βαΓ(α)
xα−1e−x/β;x ∈ [0,∞), α, β > 0},

g is the Fisher–Riemann metric, and ∇ = ∇(−1), ∇∗ = ∇(1).
Let

M = {p(x;α, β) ∈ S;α = 1, β > 0}.

(a) Find the Fisher–Riemann metric h on M induced from
(S, g).

(b) Is (M, h) a flat submanifold?

(c) Is there any value of α for which (M,h) is α-autoparallel?

13.6. Define the α-mean curvature vector of a submanifold (M, h,
D,D∗) of the statistical manifold (S, g,∇,∇∗) as

H(α)
p =

1

m
TraceL(α)

p , ∀p ∈ M.

(a) Express H(α) in terms of H and H∗.
(b) Find a relation between the equation div(α)L(α) = 0 and

the fact that the vector field H(α) is parallel with respect
to ∇(α).
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(c) Prove or disprove: div(α)H(α) = div(−α)H(−α), ∀α.
(d) Find a formula for g

(
H

(α)
p ,H

(β)
p

)
in terms of the general-

ized shape operator S(α,β).

13.7. Prove the following α-version of Gauss’ equation:

R(α)
S (X,Y,Z,W )=R(α)

M (X,Y,Z,W )+g
(
L(α)(X,Z),L(−α)(Y,W )

)

− g
(
L(α)(Y,Z), L(−α)(X,W )

)
,

for any X,Y,Z,W ∈ X (M).

13.8. Let S be an exponential family andM a statistical submanifold
of S. Show that the following statements are equivalent:

(a) M is an exponential family.

(b) M is ∇(1)-autoparallel in S.

13.9. Let S be a mixture family and M a statistical submanifold
of S. Show that the following statements are equivalent:

(a) M is an mixture family.

(b) M is ∇(−1)-autoparallel in S.



Appendix A
Information Geometry
Calculator

The book comes with a software companion, which is an Information
Geometry calculator. The software is written in C# and runs on
any PC computer endowed with .NET Framework. The use of this
software does not involve having installed any other softwares such
as Maple, Mathematica, Matlab, or Excel.

The following instructions apply to the software version 1.1. To
open the program double click on the IGS icon, and then enter
the password Springer 2014. The software computes the following
information geometry measures for the most used probability
distributions:

• Entropy

• Informational Energy

• Cross Entropy

• Contrast Functions.
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A.1 Entropy

Select from the menu the Entropy tab and choose one of the follo-
wing probability distributions:

• Normal Distribution

• Exponential Distribution

• Lognormal Distribution

• Gamma Distribution

• Beta Distribution

• Poisson Distribution

The pop-up window can graph the probability distribution and
compute the entropy. There are two ways of computing the entropy:

1. Fill in manually the editable fields, which correspond to the
parameters of the distribution. For instance, in the case of the
normal distribution, there are two parameters: the mean μ and
the standard deviation σ. Enter the desired values in the edi-
table boxes. Then click the Entropy button and obtain the
entropy in the nearby box. If the chosen values do not belong
to the MIN/MAX range, adjust the range before clicking the
Entropy button. Otherwise, the same effect is obtained if the
Entropy button is clicked twice.

2. Using sliders is a more dynamical way of watching how the
entropy changes while the graph of the probability density def-
orms. Each parameter value can be changed by a slider. The
minima and maxima values of the slider are editable. The ver-
tical slider modifies the scale. If the graph is out of range, then
a smaller scale will make the graph to get in the desired range.
Similarly, if the graph is too small, then the scale slider can be
used to enlarge the graph.

The variant 1 is useful when the parameters values are either too
large or too small. In this case the graph might not shown well on
the canvas.

The Help button provides a window with explanations about the
window’s functions. The Close Window button closes the window,
while the Print button prints the graph of the distribution, param-
eter values and entropy.
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A.2 Informational Energy

The use of this tab is similar with the Entropy tab. It can be used
to compute the informational energy for the following distributions:
normal, exponential, lognormal, gamma, beta, and Poisson.

The use of sliders as well as Help, Close Window, and Print
buttons are similar as in the case of the Entropy tab.

A.3 Cross Entropy

This computes the cross entropy between the following pairs of dis-
tributions: normal, exponential, Poisson, and beta. The sliders cor-
responding to the first distribution are pink while the sliders for the
second are blue. The corresponding graphs of the distributions are
also pink and blue.

A new feature here is the level bar. In order to display it, click
on the Show Level button. This bar provides a visual measure of
the cross entropy between the distributions. By modifying the sliders
one can see how the level of the cross entropy increases or decreases.
There is an editable box for the maximum of the level bar, while the
minimum is left to 0 by default. Whenever modifying the maximum
level field, clicking the Cross Entropy button adjusts the level bar
to the new level.

All the other functional features (Help, Close Window, and
Print buttons) are similar with the ones of the previous tabs
(Entropy, Informational Energy).

A.4 Contrast Functions

The software computes the following three types of contrast functions:

• Kullback–Leibler divergence

• Hellinger Distance

• Chernoff Information of order α.

The functional behavior for each of these features is similar with the
Cross Entropy’s functions. The only difference is that in the case of
the Chernoff Information there is one more editable field, the order
α, which takes values between −1 and 1.



360 Appendix A Information Geometry Calculator

A.5 Examples

This section presents a few examples which show how the main fea-
tures of the software work.

1. Find the entropy of a Poisson distribution with parameter
ξ = 14.432.
From the Entropy tab choose Poisson Distribution. In the
pop-out window type the value 14.432 in the text-box next to
“ξ =” and then click the Entropy button. The value of the
entropy is displayed in the box next to the entropy button:
2.748.

2. Find the value of the parameter ξ of a Poisson distribution
which has the entropy equal to 3.5.
Open the same pop-up window as in 1. Then move the slider
until the entropy value is 3.5. Since the MAX value is 60 by de-
fault, and the corresponding entropy for this value is just 3.465,
we need to adjust the MAX value. Type the value 70 in the text-
box under MAX. Then move the slider until the entropy value
becomes 3.500. The corresponding value of ξ is 64.343.

3. An exponential distribution p has ξ = 0.03. Find all exponential
distributions q with the cross entropy S(p, q) < 5.
From the Cross Entropy tab choose p, q Exponential Dis-
tributions. In the pop-out window type the value 0.03 in the
text-box next to “ξ1 =” and then click the Cross Entropy
button. Click the Show level button to see the cross entropy
level. Move the second slider left and right to realize that the
cross entropy increases when the slider values decreases. When
the value of parameter ξ0 is 0.019 the cross entropy value is 5.
Therefore, the distributions q with S(p, q) < 5 are the exponen-
tial distributions with parameter ξ0 > 0.019.

4. Consider a Poisson distribution with parameter ξ1 = 30. Find
all Poisson distributions q with the informational energy I(q) <
0.045 such that DKL(p||q) < 1.5
From the Informational Energy tab choose Poisson Distri-
bution. In the pop-out window click the Show level button
and move the slider to realize that I(q) < 0.045 for λ > 38.7.

From the Contrast Functions tab choose Kullback–Leibler
Divergence > p,q Poisson Distributions. In the pop-out
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window enter the value 30 in the box next to “λ1 =”. Then click
the Show level button and move the blue slider to realize that
DKL(p||q) < 1.5 for 21.027 < λ0 < 39.975. The sharp bounds
are obtained in the following way. Consider, for instance, the
lower bound. At a first approximation we have something like
21.99 < λ0. Then “zoom in” by typing 20 in the MIN box and
22 in the MAX box of the blue slider. Moving the slider we have
DKL(p||q) < 1.500 for 21.027 < λ0.

Intersecting the intervals we obtain the solution interval

(38.7,+∞) ∩ (21.027, 39.975) = (38.7, 39.975).

Hence, for all Poisson distributions q with 38.7 < λ < 39.975
we have I(q) < 0.045 and DKL(p||q) < 1.5.



Bibliography

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics (Addison-
Wesley, Reading, 1994)

[2] H. Akaike, in On Entropy Maximization Principle, ed. by
P.R. Krishnaiah, Applications of statistics (North-Holland,
Amsterdam, 1977), pp. 27-41

[3] E. Akin, The Geometry of Population Genetics. Lecture Notes
in Biomathematics, vol. 31 (Springer, New York, 1979)

[4] C. Akinson, A.F. Mit, Rao’s Distance Measure. Sankhya Indian
J. Stat. A 43, 345–365 (1981)

[5] S. Amari, Differential-Geometric Methods in Statistics (Lecture
Notes in Statistics, 28) (Springer, New York, 1885). Reprinted
in 1990

[6] S. Amari, Theory of information spaces - a geometrical founda-
tion of statistics. POST RAAG Report 106, 1980

[7] S. Amari, Differential geometry of curved exponential families -
curvature and information loss. Ann. Stat. 10, 375–385 (1982)

[8] S. Amari, H. Nagaoka, Methods of Information Geometry. AMS
monographs, vol. 191 (Oxford University Press, Oxford, 2000)

[9] L. Auslander, R.E. MacKenzie, Introduction to Differentiable
Manifolds (Dover Publications, New York, 1977)

[10] N. Ay, W. Tuschmann, Dually flat manifolds and global informa-
tion geometry. Open Syst. Inform. Dynam. 9(2), 195–200 (2002)

[11] O.E. Barndorff-Nielsen, Differential geometry and statistics:
Some mathematical aspects. Indian J. Math. 29, 335–350 (1987)
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[25] O. Calin, H. Matsuzoe, J. Zhang, Generalizations of Conjugate
Connections. Trends in Differential Geometry, Complex Analysis
and Mathematical Physics (World Scientific, Singapore, 2009),
pp. 24–34

[26] N.N. Chentsov, Statistical Decision Rules and Optimal Infer-
ence (AMS, Rhode Island, 1982) (originally published in Rus-
sian, Nauka, Moscow, 1972)

[27] H. Chernoff, A measure of asymptotic efficiency for tests of a
hypothesis based on a sum of observations. Ann. Math. Stat.
23, 493–507 (1952)

[28] B.S. Clarke, A.R. Barron, Information theoretic asumptotics of
Bayes methods. IEEE Trans. Inform. Theory 36, 453–471 (1990)

[29] C. Corcodel, Hessian structures, special functions and evolution
metrics. Ph.D. Thesis, University Polytehnica of Bucharest, 2010
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