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Abstract. This paper is devoted to the problem of simultaneous local-
ization and tracking (SLAT) in non-line-of-sight (NLOS) environments.
By combining a target state and a sensor node location into an aug-
mented vector, a discrete-time stochastic systems with Markov jump
parameters is used to describe the switching of LOS/NLOS. A robust
algorithm–diagonal interacting multiple model algorithm based on H∞
filtering (DIMMH) is presented for simultaneous refinement of sensors’
positions and target tracking when measurement noise is of unknown
statistics. We use a measurement model from a real mine to handle all
non-Gaussian uncertainties typical for mining environments, and ana-
lyze the performance of the classical interacting multiple model (IMM)
algorithm, the DIMM algorithm and the cubature Kalman filter (CKF).

1 Introduction

Mine tunnels are extensive labyrinths with irregularly-shaped walls, in which a
hundreds of employees are working on extraction of valuable ores and minerals.
The miners work under hazardous environmental conditions caused by the high
humidity and poor ventilation, the presence of flammable and toxic gases, corro-
sive water and dust, and the dangers of rock falls and mine collapses [1]-[3]. The
knowledge of the last location of the miners is especially important in the after-
math of the accidents such as mine collapse or explosion, but can be also used
for task optimization and traffic management. A GPS-based localization system
provides the global position of a mobile vehicle or object in outdoor environment
[4]. However, the GPS-based system has an inherent disadvantage because the
GPS signal cannot be available in indoor scenarios [5]. A wireless sensor network
(WSN) can be deployed across the mine to monitor the environmental condi-
tions such as stability, humidity and toxic gas levels. The information obtained
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from the sensors can be used to control the ventilation system, and determine
the unsafe areas and rescue paths. Beyond this ability, a WSN can be used to
track the personnel, mobile equipment and vehicles [1].

However, the state-of-the-art algorithms [3],[6],[7] assume that the positions
of the sensors are perfectly known, which is not necessarily true due to the im-
precise placement and/or sensor drops caused by vibrations or wall collapses1.
Though the miners can periodically verify if all the sensors’ positions are correct,
this approach is too costly and even infeasible in some areas due to the on-going
mining activities. An effective option is to let the sensors estimate their individ-
ual positions while tracking a target in mine tunnels. In [9], the problem of target
tracking by a network with unknown sensor positions has been addressed, which
is also defined as simultaneous localization and tracking (SLAT). In [10], by
assuming that sensors are randomly deployed, a sequential quasi-Monte Carlo-
based filter has been developed to address the problem of SLAT. A distributed
variational filter for SLAT has been proposed in [11], in which the energy con-
sumption and bandwidth consumption are considered. Although much work has
been done to SLAT, as shown in [9]-[11], almost all the proposed filters are de-
rived based on the Sequence Monte Carlo (SMC) method, which are also known
to be of high computational costs. Moreover, the received signal strength model
is used to generate measurements in the aforementioned literature, whereas the
non-line-of-sight (NLOS) effect is not considered.

In fact, there might be no direct path between a target and a sensor in a
mine tunnels environment which are extensive labyrinths with irregularly-shaped
walls. Furthermore, the propagating signal may travel excess path lengths of
hundreds of meters due to reflection and diffraction. This error is referred to the
NLOS error and may yield an estimation bias if not be addressed. To mitigate the
NLOS error, many strategies have been proposed, a two state Markov process has
been employed to describe the transition of the LOS/NLOS, and an interacting
multiple-model (IMM) approach is used to derive the target-state estimate in
[12]. Further improved results have been obtained in [13]-[15]. It is noted that
combining the state estimations and corresponding covariance according to the
scalar weights in the IMM algorithm. But in the problem of SLAT, the state
augmented vector is the combining a target state and a sensor node location,
The probability distribution of target state and sensor node location is difference,
IMM algorithm can not distinguish the effects produced by different dimensions
of the state. Moreover, simultaneuos sensor localization and target tracking in a
mine tunnel, the measurement noise is of unknown statistics.

In this paper, H∞ filtering are introduced into DIMM algorithm for SLAT in
mine tunnels. We choose H∞ filtering to deal with the state estimate problem
in view of the following advantages of H∞ estimate [16]: 1) H∞ filtering pro-
vides a rigorous method for dealing with systems that have model uncertainty.
2) H∞ filtering can be used to guarantee stability margins or minimize the worst

1 Although not available in mines nowadays, we also envision that the uncertain sen-
sors’ positions can be an outcome of some (cooperative) sensor network localization
algorithm[1],[8].
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case estimate error. 3) H∞ filtering may be more appropriate for systems whose
models change unpredictably and when it is too complex or time consuming to
model identification or gain scheduling.H∞ filtering can deal with arbitrary sig-
nals with only a requirement of bounded noise, which replaces the Kalman filter
method of modeling the noise as a random process. The results of H∞ estimate
are more robust than that in the signal models with uncertain parameters. In
the DIMM algorithm, the diagonal matrices from the optimal multi-model fusion
criterion are used as the weights of models. distinguish the effects produced by
different dimensions of the state. The original edition of the DIMM algorithm
can be found in our previous conference paper [17].

This paper is organized as follows. In section II, the problem of SLAT in
NLOS environments is formulated as state estimate of discrete-time stochastic
systems with Markov switching parameters, and IMM algorithm is reviewed and
analyzed, which provides preliminaries for the following sections. In Section III,
diagonal interacting multiple model algorithm based on H∞ filtering (DIMMH)
is presented. The conclusions are provided in Section IV.

2 Preliminaries

2.1 Markov Jump Systems Tracking Problem

Consider the following Markov jump system:

x(k + 1) = Fx(k) + T ν(k) (1)

τ(k) = gj(x)(k) + ωj(k) (2)

where the state vector x(k) is an n− dimensional vector, the observation process
z(k) is an m− dimensional vector, and the subscript j ∈ S = {1, 2} denotes
the model. The matrix functions F(·), T (·) and gj(·) are known. The model-
dependent process noise is assumed to be a Gaussian random process with:

E[ν(k)] = 0, E[ν(k)ν(k)T ] = Qj (3)

The measurement model switch between two types of the LOS and the NLOS
situations. Then, we formulate the problem of mobile location estimation into the
framework of nonlinear filtering for jump Markov systems with unknown statis-
tics noise. Without loss of generality, exogenous inputs Du(k) can be considered
in (1), but for notational convenience, here they are omitted.

– LOS case

τ(k) =
2‖x(k)− z(k)‖

c
+ τPT + ωq(k) + ωm(k) (4)

W q
t,n ∼ pq(ωq) = Unif(ωq; 0,

2D
√
3

c
),Wm

t,n ∼ pm(ωm) = N (ω; 0, σ2
w)
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– NLOS case

τt,n =
2‖xt − z(k)‖

c
+ τPT + ωq(k) + ωm(k) (5)

ωq(k) ∼ pq(ωq)=Unif(ωq; 0,
2D

√
3

c
), ωm(k) ∼ pm(ωm)=B(ω;μw, αw, γw)

where τPT is a known processing time on a target found by calibration, c =
3 · 108m/s is the speed of light, ωq(k) is quantization noise, and ωm(k) is mea-
surement noise. Note that the quantization noise is written outside the norm
using an upper bound of the triangle inequality (i.e., ‖ a + b ‖≤‖ a ‖ + ‖ b ‖),
which represents the worst case scenario. where σw is the standard deviation of
the LOS component of the noise, and B(·) is a Weibull distribution with scale
αw, shape γw, and location parameters μw (αw > 0, γw > 0, ω > μw),

Let Mk
j denotes the flight model j at time k. The model dynamics are modeled

as a finite Markov chain with known model-transitions probabilities from model
i at time k − 1 to model j at time k [18], [19].

πij � Prob{Mk
j | Mk−1

i } = P{Mk
j | Mk−1

i } (6)

0 ≤ πij ≤ 1,

s∑

j=1

πij = 1, i, j ∈ S (7)

The initial state distribution of the Markov chain is ϕ = [ϕ1, · · · , ϕs], where

0 ≤ ϕj ≤ 1,

s∑

j=1

ϕj = 1, j ∈ S (8)

This Markov chain description of the target’s models is used to model the un-
known inputs.

It is also possible to use UWB and wideband received-signal strength (RSS)
measurements using the models in [20], respectively. The noise in that case is
a mixture of two Gaussians, corresponding to LOS and NLOS, respectively.
However, RSS can only provide coarse distance estimates since it cannot exploit
the very large bandwidth of the signal [1].

2.2 IMM Algorithm

IMM algorithm is the most prevalent for the state estimate of discrete-time
stochastic systems with Markov switching parameters. The following steps are
associated with IMM algorithm [21]:

Step 1. Calculate the mixed initial probability for the filter matched to model
Mk

j (j ∈ S)
Step 2. Calculate the mixed initial state and corresponding covariance for

the filter matched to model Mk
j

Step 3. Kalman Filtering
Step 4. Combine the state estimates and corresponding covariances according

to the updated weights
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Remark 1. In IMM algorithm, updated weights of models are derived from the
hybrid of pdfs and probability masses. It is known that any probability mass
must be a value in the interval [0, 1], but any pdf has no such restriction, thus,
the two kinds of values are at different levels. The resulting outcome μk

j is just an
approximate probability. Moreover, when the measurement noise is of unknown
statistics, IMM algorithm will produces more error. It is therefore necessary to
propose a optimal filtering approach for the state estimate with uncertain noise.

3 Diagonal Interacting Multiple Model Algorithm Based
On H∞ Filtering

3.1 H∞ Filtering

Consider the systems in (1-2) in the case where the process noise ν and the mea-
surement noise ωk are assumed to be energy bounded l2 signals whose statistical
properties are unknown.

Unlike the Kalman filter which aims to give the minimum mean-square es-
timate of the state vector xk, the optimal H∞ filter tries to obtain the arbi-
trary linear combination of the state xk using the measurements Yk such that
the effect of the worst disturbance on the estimate error is minimized, namely,
zk = Lkxk where Lk is a known matrix. Here, we are interested in state estimate,
so Lk is taken as an identity matrix I. Let x̂k|k denotes the estimate of xk given
measurements Yk, and the estimate error is denoted as ek = x̂k|k − xk

3.2 Cubature Kalman Filters

Consider the filtering problem of nonlinear dynamic system (1-2) with additive
noise.

It is known that the Bayesian filter is rendered tractable when all conditional
densities are assumed to be Gaussian. In this case, the Bayesian filter solution
reduces to computing multi-dimensional integrals, whose integrands are all of the
form nonlinearfunction×Gaussian. The CKF exploits the properties of highly
efficient numerical integration methods known as cubature rules for those multi-
dimensional integrals [22]. Moreover, The CKF is numerically accurate and easily
extendable to high-dimensional problems. In this paper, we extend the CKF and
H∞ filtering to form a cubature H∞ filtering. The cubature H∞ filtering is not
only useful for multi-state estimation but it can also handle nonlinear and non-
Gaussian systems.

3.3 DIMMH Algorithm

In this section, cubature H∞ filtering is induced to receive the state estimate
instead of the Kalman filter to obtain the optimal state estimates when the noise
with unknown statistics. The following steps are associated with the DIMMH
algorithm.
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Step 1.Calculate the mixed initial diagonal-matrix-weight for the filter
matched to model Mk

j (j ∈ S):

Bi|j(k|k) � P{Mk−1
i |Mk

j , Z
k−1}

=
πijB

k−1
i

s∑

i=1

πijB
k−1
i

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πijbi1
s∑

i=1

πijbi1

· · · 0

...
. . .

...

0 · · · πijbin
s∑

i=1

πijbin

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where

Bk−1
i = diag(bi1, bi2, · · · , bin)

� P{Mk−1
i |Zk−1} (10)

Step 2.Calculate the mixed initial state and corresponding covariance for the
filter matched to model Mj(k) (j ∈ S):

x̂0j(k|k) =
s∑

i=1

Bi|j(k|k)x̂k−1
i (11)

P0j(k|k) =
s∑

i=1

Bi|j(k|k){P k−1
i + [x̂k−1

i − x̂0j(k|k)]

×[x̂k−1
i − x̂0j(k|k)]T } (12)

Step 3.Cubature H∞ filtering (j ∈ S)

x̂k|k−1 =
1

2n

2n∑

i=1

χ∗
i,k|k−1 (13)

Pk|k−1 =
1

2n

2n∑

i=1

χ∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1 + T Q̃T T (14)

x̂k
j = x̂k|k−1 +Kk(τk − τ̂k|k−1) (15)

Pk
j = Pk|k−1 −KkPττ,k|k−1K

T
k − γ−2In (16)

Kk = Pxτ,k|k−1P
−1
ττ,k|k−1 (17)
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where

χ∗
i,k|k−1 = Fχi,k−1|k−1 (18)

τi,k|k−1 = g(χi,k|k−1) (19)

χi,k|k−1 =
√
Pk|k−1ξi + x̂k|k−1 (20)

τ̂k|k−1 =
1

2n

2n∑

i=1

τi,k|k−1 (21)

Pττ,k|k−1 =
1

2n

2n∑

i=1

τi,k|k−1τ
T
i,k|k−1 − τ̂k|k−1 τ̂

T
k|k−1 (22)

Pxτ,k|k−1 =
1

2n

2n∑

i=1

χi,k|k−1τ
T
i,k|k−1 − x̂k|k−1 τ̂

T
k|k−1 (23)

Step 4.Combine of the state estimates and corresponding covariances accord-
ing to the updated diagonal-matrix-weight:

x̂D(k) =
s∑

j=1

Bk
j x̂

k
j (24)

Updated diagonal-matrix-weight of model Mk
j is

Bk
j = diag(bj1, bj2, · · · , bjn) (25)

where

[b1i, b2i, · · · , bsi] =
eT (P i)−1

eT (P i)−1e
(26)

with

e =

⎡

⎢⎣
1
...
1

⎤

⎥⎦

s×1

, P i =

⎡

⎢⎢⎣

P
(ii)
1 · · · 0
...

. . .
...

0 · · · P (ii)
s

⎤

⎥⎥⎦ (27)

and P
(ii)
j is the ith diagonal element of matrix Pj (Pj = E[x̃j x̃

T
j ]).

The error variance matrix of the optimal fusion estimate is

PD(k) = diag [PD1, PD2, · · · , PDn] (28)

where

PDi = [eT (P i)−1e]−1 (29)
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Remark 2. For solving the problem of SLAT, the state of target and a sensor
node location are combined into an augmented vector. The noise statistics is
different between tracked target and sensor node. In DIMMH algorithm, the
diagonal matrices from the optimal multi-model fusion criterion are used as the
weights of models, which can be viewed as the joint probabilities of models. That
is to say, the state vector is segmented into n scalars to carry on estimating, and
every element of diagonal matrix can be interpreted as a probability mass of the
model with dimension one. The new algorithm can not only avoid the mixture
of likelihood function and probability mass and distinguish the effects produced
by different dimensions of the state like DIMM algorithm but also deal with the
noise with unknown statistics.

Remark 3. Another difference between the proposed algorithm and the cele-
brated IMM estimator lies on the fact that the H∞ filtering and cubature rule
are combined. The cubature rule is employed to deal with the nonlinear mea-
surements in this work which is a derivative-free approximation scheme.

It is interesting to note that H∞ filtering has the same observer structure as
that of the Kalman filter, and Q̃ and R̃ play the same role as the variances of
the process noise and the measurement noise when using the Kalman filtering
[23]. Indeed, the H∞ filter is equivalent to the Kalman filter in the Krein space
and the H∞ filter exists if and only if P−1

k > 0 [24]. Specifically, the H∞ filter
is reduced to the Kalman filter when γ −→ ∞. Thus, the γ may be thought
as a tuning parameter to control the tradeoff between H∞ performance and
minimum variance performance. The optimal H∞ filter can also be interpreted
in the frequency domain as an estimate that minimizes the peak error power
whereas the Kalman filter aims to minimize the average error power or error
covariance.

4 Conclusions and Future Work

In the paper, DIMMH algorithm is presented for maneuvering target tracking.
It is principally similar to the popular IMM algorithm and DIMM algorithm
proposed in our previous paper. The difference lies in the use of filtering. To
obtain the optimal state estimates in the nonlinear switching system when the
noise with unknown statistics, H∞ filtering and cubature rule are combined
instead of the Kalman filter. In future work, we will research on how to deal
with arbitrary uncertain noise stretching beyond l2 signal and demonstrate the
computer simulations for indicate the superiority of proposed algorithms.
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