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Abstract. In this paper, we propose a novel method to recognize human
actions based on the depth information acquired by depth-based cameras.
Representations of depth maps are learned and reconstructed using a
stacked denoising autoencoder. By adding the category constraint, the
learned features are more discriminative and able to capture the small
but significant differences between actions. Greedy layer-wise training
strategy is used to train the deep neural network. Then we use temporal
pyramid matching on the feature representation to generate temporal
representation. Finally a linear SVM is trained to classify each sequence
into actions. Our method is evaluated on MSR Action3D dataset and
show superiority over other popular methods. Experimental results also
indicate the great power of our model to restore highly noisy input data.

Keywords: Action Recognition, Feature Learning, Stacked Denoising
Autoencoders.

1 Introduction

Human action recognition has been an active field of research in computer vi-
sion. The goal of action recognition is to recognize people’s behavior from videos
in a given scenario automatically. It has many potential applications includ-
ing content-based video search, human computer interaction, video surveillance,
sports video [1, 2]. Most of these applications require high level understanding
of spatial and temporal information from videos that are usually composed of
multiple simple actions of persons.

Inferring high-level knowledge from a color video especially in a complex and
unconstrained scene is very difficult and costful. However, the recent availability
of depth cameras such as Kinect [3] has tremendously improved the abilities to
understand human activities. Depth maps have several advantages over tradi-
tional intensity sensors. First, depth sensors can obtain the holistic 3D structure
of the human body, which is invariant to color and texture. Second, color and
texture methods perform worse in the dim lighter and the shadows may bring
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ambiguity. But the depth cameras can work in total darkness. Third, depth sen-
sors greatly simplify the process of foreground extraction, removing plenty of
noise and disturbance in the background [4, 5].

Furthermore, the 3D skeleton joint positions can be estimated from the depth
map accurately following the work of Shotton et al. [3]. The extracted skeleton
joints have strong representation power, which is more discerning and compact
than depth or color sequences. Although with these benefits, depth-based action
recognition using joint features is still not an easy task [6]. Some of the estimated
joints are not reliable when the human body is partly in view. The overlapping
of human parts in some interactive actions can lead to the missing of some joint
as well. Due to the noisy joint positions, extracting robust features from skeleton
information is necessary.

Motivated by the satisfactory performance of previous work on exploring
relative 3D joint features [2, 7, 8], we propose a novel method to learn robust
and discriminative features from joint 3D features to recognize human actions.
We build a deep neural network and employ denoising autoencoders, which has
proved their strong abilities to reconstruct and denoise data, as the basic unit
of our architecture. In order to seize very subtle spatio-temporal details between
similar actions, we add the category constraint on denoising autoencoders to
fuse intra-and inter-class information into features. We stack the denoising au-
toencoders with category constraint and greedy layer-wise training strategy is
used to train the model. Then we use temporal pyramid matching on the fea-
ture representation to generate temporal representation. Finally a linear SVM
is trained to classify each sequence into actions. Experiments show that this
algorithm achieves superior results on a benchmark dataset.

The main contributions of this paper are three-fold. First, a new discriminative
feature learning algorithm is proposed to recognize depth-based videos. Second,
a novel category constraint is added into denoising autoencoders to preserve
intra-and inter class information. Third, our extensive experiments show that
our model has a strong capacity to reconstruct and denoise corrupted data.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 describes the entire flow of our methodology to recognize
actions. Section 4 discusses the experimental results. Section 8 concludes the
paper.

2 Related Work

Recently, low-level hand-crafted features have been designed to recognize hu-
man actions. Spatio-temporal salient points like STIP [9] or some local features,
like Cuboids [10] and HOG\HOF [11] have been widely used. However, directly
employ these original methods for color sequences on depth data is infeasible.
Therefore, recent methods for action recognition in depth sequences explore al-
ternative features particularly for depth-based videos. Li et al. [12] projected the
depth map into three orthogonal planes and sampled representative 3D points to
obtain a bag of 3D points. An action graph was deployed to model the dynamics
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Fig. 1. The architecture of the denoising autoencoder. The input data x is stochastic
corrupted into x̃ by mapping function q(x̃|x). The autoencoder then maps x̃ to h
and maps back h to r, the reconstruction result. L(x, r) is the reconstruction error
measurement function.

of the salient postures. Lu et al. [4] extracted spatio-temporal interest points
from depth videos and built a cuboid similarity feature. Similarly, in [5], Omar
and Zicheng quantized the 4D space and represented the possible directions for
the 4D normal in order to build a histogram in the 4D space.

As mentioned before, skeletal information has strong representation power. Lu
et al. [7] computed histograms of 3D joint locations, reprojected the extracted
features using LDA [13], and clustered them into visual words. The temporal
evolutions of these words were modeled by HMMs [14]. Jiang et al. [2] combined
skeleton and depth information to obtain Local Occupancy Patterns (LOP) at
each joint and built a Fourier Temporal Pyramid, an actionlet ensemble was
learn to represent the actions. Jiajia [6] proposed a dictionary learning algorithm
adding the group sparsity and geometry constrains, obtain an overcomplete set
of the input skeletal features. The Temporal Pyramid Matching was used for
keeping the temporal information.

Deep Learning [15–18] is a set of algorithms that attempt to learn a hierarchy
of features by building high-level features from low-level ones. Some models such
as CNN [18], DBN [16] and Autoencoders [15] have achieved surprising result in
areas like computer vision, natural language processing and speech recognition.
One reason for the success of deep learning methods is that they usually learn to
capture the posterior distribution of the underlying explanatory factors for the
data [19]. Therefore, rather than elaborately designing the hand-crafted features
as in [5], we choose to learn high level features from data. The experimental
results further prove the feasibility and validity of deep learning methods.

3 Proposed Method

In this section, we will first describe the basic Denoising Autoencoders. Next, we
will extend the model by adding the category constraint, to make the learned
features more discirminative and obtain better accuracies for recognizing actions.
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Then we introduce the stacking techniques to build a deep architecture. Finally,
we employ temporal pyramid matching to generate the temporal representation
and do classification.

3.1 Denoising Autoencoders

Autoencoders were proposed by Hinton [15] to recognize handwritten digits,
which achieved the state of the art at that time. An autoencoder is a special
kind of neural networks whose target values are equal to the input ones. A
single-layer Autoencoder comprises two parts: encoder and decoder.

Encoder : The transformation function maps an input vector x into a hidden layer
feature vector h. Its typical form is a non-linearity function. For each example
x(i) from a data set {x(1), x(2), . . . , x(n)}, we define:

fθ(x
(i)) = s(Wx(i) + b) (1)

Decoder : The parameterized function maps the hidden layer feature vector h
back to the input space, producing a reconstruction vector:

gθ(h
(i)) = s(W ′h(i) + c) (2)

The set of parameters of this model is θ = {W,W ′, b, c}, where W and W ′ are
the encoder and decoder weight matrices and b and c are the encoder and decoder
bias vectors. It is worth mentioning the input vector x(i) and the reconstruction
vector r(i) have the same dimension dx, the hidden layer h(i) has the dimension
dh, thus the size of W is the same as the size of transpose of W ′, which is dh×dx.

The basic autoencoders aim to minimize the reconstruction error of all
samples:

LAE(θ) =
∑

i

L(x(i), gθ(fθ(x
(i)))) (3)

In practice, the choice of function s is usually a sigmoid function s(x) = 1
1+e−x

or a tanh function s(x) = ex−e−x

ex+e−x and the loss function L is usually a square loss

function L(x, r) = ‖x− r‖2.
Vincent [20] proposed Stacked Denoising Autoencoders (SDA), exploring a

strategy to denoise corrupted version of input data. The input x is first corrupted
into x̃ using stochastic mapping x̃ ∼ q(x̃|x). This is like randomly selecting some
nodes of the input and blinding them, that is, every node in the input layer has
a possibility q to be switched to zero. The stochastic corrupted data is regarded
as the input of next layer, see Fig. 1. This yields the following objective function:

LDAE(θ) =
∑

i

Eq(x̃|x(i))

[
L(x(i), gθ(fθ(x

(i))))
]

(4)

where Eq(x̃|x) [·] is the expectation over corrupted examples x̃ drawn from the
corruption process q(x̃|x).
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Fig. 2. The architecture of the denoising autoencoder after adding category constraint.
c is a standard unit vector, indicating the category of the video where the frame be-
longs. The hidden layer h attempts to reconstruct x and c together, producing the
reconstruction vector rx and rc. The objective error function is L(c, rc) + λL(x, rx).

The reason why DAE can denoise corrupted data is that the training data
usually concentrate near a lower-dimensional manifold, yet most of the time the
corruption vector is orthogonal to the manifold. The model learns to project the
corrupted data back onto the manifold, thus denoising the input.

3.2 Adding the Category Constraint

Though the features learned by the denoised autoencoders can be highly expres-
sive, as we use the frame-level joint features as the input, all the temporal and
category information are discarded. Merely using the model mentioned above,
the unsupervised learned features cannot distinguish the significant small differ-
ences between similar actions. We modify the denoising autoencoders, adding the
category constraint, to make the model capable of emphasizing the imparities in
different actions.

Fig. 2 demonstrates our modified autoencoder. Based on the structure of
denoising autoencoders, we add an extra target c to the network where c is
a vector whose length equals to the action class number dc. The vector c has
only one nonzero element whose index indicates the action type of the video
where the example frame belongs. In consequence, a category vector rc has
to be reconstructed by the hidden layer h using a new mapping function gθc .
Similarly, rx is the reconstruction vector of x by the mapping function gθx . The
new training objective of the denoised autoencoder with category constraint
(DAE CC) is:

LDAE CC(θ) =
∑

i

Eq(x̃|x(i))

[
L(x(i), gθx(fθ(x

(i)))) + λL(c(i), gθc(fθ(x
(i))))

]

(5)
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Fig. 3. Fine tuning of the stacking architecture. Each layer autoencoder is trained
successively to obtain the encoding and decoding functions, which are used to initialize
the parameters of the stacking architecture. All parameters are fine tuning to minimize
the reconstruction error L(x, r), by performing gradient descent. The structure inside
the dotted box is the model to extract features and the deepest hidden layer h3 is the
final representation we seek.

where λ is a hyper-parameter controlling the strength of the category regular-
ization. It can be optimized by stochastic gradient descent, analogous to the
process of optimizing traditional autoencoders.

The reason why we use a regularization term rather than directly learn the
class labels as targets is that the input is the joint vector for one frame, yet the
class labels are for the whole video. Apparently there are some similar postures
among actions. For example, the stand and put the hands down posture appears
at the beginning of almost all actions. Training the same posture for different
labels will lead to trivial results. The regularization term establishes a trade-off
between preserving category information and reconstructing the input data.

3.3 Stacked Architecture

By stacking several layers of denoising autoencoders with the category con-
straint, we build a deep neural network with great expressive power. Greedy
layer-wise training is employed: we first train the first layer to get the encoding
function fθ1 , then apply it on the clean input to compute the output value, which
is used to train the second layer autoencoder to learn fθ2 . The process is repeated
from there. At last we fine-tune the deep neural network as in Fig. 3. We use
the output of the last autoencoder as the output for the stacked architecture.
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3.4 Temporal Representation and Classification

To add temporal information, a temporal pyramid matching (TPM) [6] is used to
represent the temporal dynamics of these features. Motived by Spatial Pyramid
Matching (SPM) [21], a max pooling function is used to generate the multi-
scale structure. We recursively partition the video sequence into increasingly
finer segments along the temporal direction and use max pooling to generate
histograms from each sub-region. Typically, 4 levels with each containing 1, 2,
4 and 8 segments are used. The final feature is the concatenation of histograms
from all segments.

After the final representation for each video is obtained, a multi-class linear
SVM [22] is used to speed up the training and testing, results will be discussed
in the next section.

4 Experimental Results

We evaluate our algorithm on a depth-based action recognition dataset, MSR
Action3D dataset [12]. We compare our algorithm with several state-of-the-art
methods on this dataset, the experimental result shows that our algorithm out-
performs these methods. We also reveal the strong denoising capability of our
method to reconstruct noisy 3D joint sequences. In all experiments, we train a
deep architecture stacking by two autoencoders, where the first one contains 200
nodes in the hidden layer and the second one contains 400 nodes in the hidden
layer. We penalize the average output h̄j of the second autoencoder and pushing
it to 0.1, in order to add some sparsity to the model and learn an over-completed
representation of joint features. The parameter λ is set to 1.5.

4.1 MSR Action3D Dataset

MSR Action3D dataset [12] is an action dataset of depth sequences captured
by a depth camera. The dataset contains 20 actions: high arm wave, horizontal
arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick,
draw circle, hand clap, two hand wave, sideboxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, pick up & throw. Each action is
performed by 10 subjects for three times. There are 567 depth map sequences in
total. The provided skeleton data is used to train and test our model. We use the
same experimental setting as in [2], half of the subjects are used for training and
the rest half for testing. We compare our algorithm with several recent methods
and report the results on Table 1. We obtain a recognition accuracy of 87.4%.
Fig. 4 shows the confusion matrix of the proposed method. Fig. 5 compares the
recognition accuracy for each action of our stacked denosing autoencoders with
and without the category constraint. The recognition rate improve from 83.3%
to 87.4% after adding the category constraint.
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Table 1. Comparison of recognition rate on MSR Action3D Dataset

Method Accuracy

Recurrent Neural Network [23] 0.425
Dynamic Temporal Warping [24] 0.54
Hidden Markov Model [14] 0.63
STIP [9] + BOW 0.696
Action Graph on Bag of 3D Points [12] 0.747
Eigenjoints [8] 0.823
Random Occupy Pattern [25] 0.865
HON4D [5] 0.859

Proposed Method 0.874
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Fig. 4. Confusion matrix of the proposed method on MSR Action3D dataset

Fig. 5. Comparison of the recognition accuracy for each action before and after adding
the category constraint
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4.2 Capability to Denoise Corrupted Data

Our model has strong capability to reconstruct realistic data from corrupted
input. The top row of Fig. 6 is an action sequence high arm wave selected from
MSR Action3D dataset. In order to better demonstrate our algorithm efficiency,
we add some Gaussian noise to the joint positions and leave out joints stochas-
ticly. The bottom row is the reconstruction action sequence, where we can ob-
serve that the missing joints are all restored via our model and the motions are
more natural and fluent than before.

Denosing

Fig. 6. Examples showing the capability of our model to denoise corrupted data. Top:
the corrupted input 3D joint sequence high arm wave from MSR Action3D dataset.
Bottom: the reconstructed 3D joint sequence.

5 Conclusion

This paper presented a novel feature learning methodology for human action
recognition with depth cameras. To better represent the 3D joint features, a deep
stacked denoising autoencoder that incorporated with the category constraint
was proposed. The proposed model is capable of capturing subtle spatio-temporal
details between actions and robust to the noises and errors in the joint positions.
The experiments demonstrated the effectiveness and robustness of the proposed
approach. In the future, we aim to integrate the temporal information into our
feature learning architecture.
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24. Müller, M., Röder, T.: Motion templates for automatic classification and retrieval of
motion capture data. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 137–146. Eurographics Association
(2006)

25. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3d action recognition
with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885.
Springer, Heidelberg (2012)


	Discriminative Feature Learning for Action Recognition Using a Stacked Denoising Autoencoder
	1 Introduction

	2 Related Work

	3 Proposed Method

	3.1 Denoising Autoencoders

	3.2 Adding the Category Constraint

	3.3 Stacked Architecture

	3.4 Temporal Representation and Classification


	4 Experimental Results

	4.1 MSR Action3D Dataset

	4.2 Capability to Denoise Corrupted Data


	5 Conclusion

	References




