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Abstract. Mining useful information or knowledge from a very large database 
to aid managers or decision makers to make appropriate decisions is a critical 
issue in recent years. In this paper, we adopted the pre-large concepts to the 
FUSP-tree structure for sequence insertion. A FUSP tree is built in advance to 
keep the large 1-sequences for later maintenance. The pre-large sequences are 
also kept to reduce the movement from large to small and vice versa. When the 
number of inserted sequences is smaller than the safety bound of the pre-large 
concepts, better results can be obtained by the proposed incremental algorithm 
for sequence insertion in dynamic databases. 
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1 Introduction 

Mining desired knowledge or information to aid mangers or decision makers for 
making the efficient decisions from a very large database is a critical issue in recent 
years. [1-4, 6, 8, 13]. Among them, sequential patterns mining considers the order 
sequence data such as Web-click logs, network flow logs or DNA sequences, which is 
the major issue in real-world applications. For basket analysis, sequential patterns 
mining can also be used to mine the purchased behaviors of customers to predict 
whether there is a high probability that when customers buy some products, they will 
buy some other products in later transactions.  
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Agrawal et al. first proposed AprioriAll algorithm [3] to level-wisely mine 
sequential patterns in a batch way. Various algorithms applied in different 
applications of sequential patterns mining have been proposed to handle the static 
database [10, 15-17]. Discovered sequential patterns may, however, become invalid 
since sequences are changed in dynamic databases. Developing an efficient approach 
to maintain and update the discovered sequential patterns is a critical issue in real-
world applications. Lin et al. proposed an incremental FASTUP algorithm [14] to 
maintain the discovered sequential patterns. Lin et al. designed a fast updated 
sequential pattern (FUSP)-tree structure and algorithms to handle the sequential 
patterns in dynamic databases [11-12].  

The FASTUP or FUSP-tree algorithms are, however, required to re-scan the 
original database if the small itemsets or sequences are necessary to be maintained 
and updated. Hong et al. then extended the pre-large concepts [7] of association-rule 
mining to level-wisely maintain the sequential patterns in dynamic databases [9]. In 
this paper, the pre-large concepts are adopted in the FUSP tree to efficiently maintain 
the discovered sequential patterns for sequence insertion. A FUSP-tree structure is 
first built to keep only large sequences in the tree, and the pre-large sequences are 
mined out and kept in a set for later maintenance. The proposed incremental 
algorithm divides the 1-sequences in the newly inserted sequences into three parts 
with nine cases. Each case is then performed by the designed algorithm to maintain 
and update the built FUSP tree. Experimental results also then show that the proposed 
algorithm has a good performance for incrementally handling new inserted sequences.  

2 Review of Related Works 

In this section, sequential patterns mining and the pre-large concepts are briefly 
reviewed.  

2.1 Sequential Patterns Mining 

In the past, Agrawal et al. designed an AprioriAll algorithm [3] to level-wisely mine 
sequential patterns in a static database. Lin et al. thus proposed an incremental 
FASTUP algorithm [14] to maintain sequential patterns in dynamic databases. The 
FASTUP algorithm is, however, required to re-scan the original database if it is 
necessary to maintain the discovered sequential pattern, which is large in the added 
sequences but small in the original database. Hong et al. extended the pre-large 
concepts of association-rule mining [7] to handle the sequential patterns whether for 
the sequence insertion [9] or deletion [5]. It is also based on Apriori-like approach [2] 
to generate-and-test the candidates for deriving the desired sequential patterns. Lin 
first designed a fast updated sequential pattern (FUSP)-tree and developed the 
algorithms for efficiently handling sequence insertion in incremental mining [11-12]. 
Based on the built FUSP tree structure, the discovered sequential patterns can be thus 
easier maintained.  
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The FUSP tree [11] is used to store customer sequences with only large 1-
sequences in the original database. Based on the FUSP tree, the complete sequential 
patterns can be derived from it without level-wisely rescanning the original database. 
An example is given to show the FUSP tree. Assume a database shown in Table 1 is 
used to build the FUSP tree. 

Table 1. An example 

CID Customer Sequence 
1 (AC)(F) 
2 (CE)(D)(H) 
3 (AB)(D) 
4 (C)(D)(EF)(H) 
5 (AC)(GI) 
6 (BC)(DEH) 
7 (A)(D)(H) 
8 (AF)(DG) 
9 (A)(D)(EH) 
10 (C)(F)(BD) 

 
Also assume that the upper support threshold is set at 60%, and the lower support 

threshold is set at 30%. The large 1-sequnces are (A), (C), and (D) from which 
Header_Table can be constructed. The pre-large 1-sequences are then kept in a set of 
Pre_Seqs = {B:3, E:4, F:4, H:5}. The built FUSP tree from the database is shown in 
Figure 1. In Figure 1, only large 1-sequences are kept in the FUSP tree. The link 
between two connected nodes is marked by the symbol s if the sequence is within the 
sequence relation in a sequence; otherwise, the link is marked by the symbol i if the 
sequence is within the itemset relation in a sequence. The built Header_Table is used 
as an index table to find appropriate items or sequences in the tree. It keeps the large 
1-sequences initially in descending order of their counts. Infrequent ones are not used 
to build the tree. After all customer sequences are processed, the FUSP tree is 
completely constructed. 

{root}

A:6

C:2 D:4

C:4

D:4

i s
s

Header_Table
Item Count

D 8

C 6

A 6

s s

 

Fig. 1. Initial constructed FUSP tree with its Header_Table 
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2.2 Pre-large Concepts 

A pre-large sequence [9] is not truly large, but has highly probability to be large when 
the database is updated. A lower support threshold and an upper support threshold are 
used to respectively define the pre-large and the large concepts. The pre-large 
concepts act like buffers to reduce the movement of sequences directly from large to 
small and vice-versa in the maintenance process. Considering an original database 
and some customer sequences are inserted into the original database, three parts with 
nine cases in Figure 2 may arise. 

Large 

Large 

Pre-large Original 
database

New 
transactions

Small 

Small 

Case 1      Case 2      Case 3  

Case 4      Case 5      Case 6

Case 7      Case 8      Case 9 

Pre-large 

Large 
sequences

Large 

Pre-large Original
customer

sequences

Newly merged
customer 
sequences

Small 

Small 

Case 1      Case 2      Case 3  

Case 4      Case 5      Case 6

Case 7      Case 8      Case 9 

Pre-large 

sequences

sequences

sequences sequences sequences

 

Fig. 2. Nine cases arising from the original database and the inserted sequences 

Cases 1, 5, 6, 8 and 9 will not affect the final large sequences. Cases 2 and 3 may 
remove existing large sequences. Cases 4 and 7 may add new large sequences. If we 
retain all large and pre-large sequences with their counts in the original database, 
cases 2, 3 and 4 can be easily handled. In the maintenance phase, the ratio of newly 
added customer sequences to original customer sequences is usually very small. This 
is more apparent when the database grows larger. It has been formally shown that the 
sequences in Case 7 cannot possibly be large in the updated database as long as the 
number of customer sequences is small compared to the number of customer 
sequences in the original database. The formula [9] is shown below. 

( )u l u

u u

S S d q S
t

S S

− × ×≤ −
− −1 1

, 

where t is the number of the newly added customer sequences, and q be the number of 
newly added customer sequences belongs to old customers, Su is the upper threshold, 
Sl is the lower threshold, and d is the number of customer sequences in the original 
database. 

3 Proposed an Incremental Algorithm 

A fast updated sequential pattern (FUSP)-tree [11] must built in advance to keep the 
large sequences from the original database before new transactions or sequences 
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come. The pre-large 1-sequences are also kept in a set for later maintenance process. 
When the sequences are inserted into the original database, the proposed incremental 
algorithm is then performed below in details. 
 
Proposed algorithm: 
INPUT: An old database consisting of (d + t) sequences, its corresponding 

Header_Table, a set of Pre_Seqs to keep the pre-large 1-sequeces, its 
corresponding FUSP tree, a lower support threshold Sl, an upper support 
threshold Su, and a set of t new inserted sequences. 

OUTPUT: An updated FUSP tree.  
STEP 1: Set b = b + q, where q number of newly inserted sequences belonging to 

old customers in the original database; 
STEP 1: Calculate the safety bound f to determine whether the original database is 

required to be re-scanned of the new inserted transactions by the formula 
as [9]:  

( )u l u

u u

S S d b S
t

S S

− × ×≤ −
− −1 1

. 

STEP 2: Scan the new sequences to get all 1-sequences with their frequencies.  
STEP 3: Divide the1-sequences in STEP 2 into three parts with nine cases 

according to whether they are large (appears in the Header_Table), pre-
large (appears in the set of Pre_Seqs) or small (not appears in the 
Header_Table either in the set of Pre_Seqs) in the original database. 

STEP 4: For each 1-sequence s which is large in the original database, do the 
following substeps (Cases 1, 2 and 3): 
Substep 4-1: Set the count SU(s) of s in the updated database as:  

SU(s) = SD(s) + ST(s), 

where SD(s) is the frequency of s in the Header_Table 
(original database) and ST(s) is the frequency of s in the 
new transactions. 

Substep 4-2: If Su ≤ SU(s)/(d+c+t-b), update the frequency of s in the 
Header_Table as SU(s); put s in the set of Insert_Seqs, 
which will be further processed in STEP 8. 
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, remove s from the 
Header_Table; connect the parent node of s to its child 
nodes directly in the FUSP tree; put s in the set of Pre_Seqs 
with its updated frequency SU(s). 
Otherwise, 1-sequence s becomes small after the database 
is updated; remove s from the Header_Table and connect 
each parent node of s directly to its child nodes in the 
FUSP tree. 

STEP 5: For each 1-sequence s which is pre-large in the original database, do the 
following substeps (Cases 4, 5 and 6): 
Substep 5-1: Set the new count SU(s) of s in the updated database as: 

SU(s) = SD(s) + ST(s). 
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Substep 5-2: If Su ≤ SU(s)/(d+c+t-b), 1-sequence s will be large after the 
database is updated; remove s from the set of Pre_Seqs; put 
s with its updated frequency in the set of Branch_Seqs; put 
s in the set of Insert_Seqs.  
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, 1-sequence s still 
remains pre-large after the database is updated; update s 
with its new frequency SU(s) in the set of Pre_Seqs. 
Otherwise, remove 1-sequence s from the set of Pre_Seqs. 

STEP 6: For each 1-sequence s which is neither large nor pre-large in the original 
database but large or pre-large in the new transactions (Cases 7 and 8), 
put s in the set of Rescan_Seqs, which is used when rescanning the 
database in STEP 7 is necessary. 

STEP 7: If t + c ≤ f - h or the set of Rescan_Seqs is null, then do nothing; 
Otherwise, do the following substeps for each1-sequence s in the set of 
Rescan_Seqs: 
Substep 7-1: Rescan the original database to decide the original count 

SD(s) of s. 
Substep 7-2: Set the new count SU(s) of s in the updated database as: 

SU(s) = SD(s) + ST(s), 
Substep 7-3: If Su ≤ SU(s)/(d+c+t-b), 1-sequence s will become large after 

the database is updated; put s in both the sets of 
Insert_Seqs and Branch_Seqs; insert the items in the 
Branch_Seqs to the end of the Header_Table according to 
the descending order of their updated frequencies. 
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, 1-sequence s will 
become pre-large after the database is update; put s with its 
updated frequency in the set of Pre_Seqs. 
Otherwise, do nothing. 

Substep 7-4: For each original transaction with a 1-sequence s existing 
in the Branch_Seqs, if s has not been at the corresponding 
branch of the FUSP tree for the transaction, insert s at the 
end of the branch and set its count as 1; otherwise, add 1 to 
the count of the node s. 

STEP 8: Insert the sequences in the Branch_Seqs to the end of Header_Table 
according to the descending order of their updated counts. For each 
original sequence with a sequence s existing in the Branch_Seqs, if s has 
not been at the corresponding branch of the FUSP tree for the processed 
sequence, insert s to its corresponding position and set its count as 1; 
otherwise, add 1 to the count of the node s. 

STEP 9: For each new transaction with a 1-sequence s existing in the Insert_Seqs, 
if s has not been at the corresponding branch of the FUSP for the new 
sequence, insert s to its corresponding position and set its count as 1; 
otherwise, add 1 to the count of the node s. 

STEP 10: If t + c > f - h, then set d = d + t + c and set c = 0; otherwise, set c = t + c.  
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In STEP 7, a corresponding branch is the branch generated from the large 1-
sequences in a transaction and corresponding to the order of 1-sequences appeared in 
the Header_Table. After STEP 10, the final updated FUSP tree is maintained by the 
proposed algorithm. The new transactions can then be integrated into the original 
database. Desired sequential patterns can then be found by the FUSP-growth mining 
algorithm [11]. 

4 An Example 

In this section, an example is given to illustrate the proposed incremental algorithm 
for maintaining the discovered sequential patterns based on the built FUSP tree [11]. 
An original database was shown in Table 1, which consists of 10 customer sequences 
with nine purchased items. In this example, an upper support Su and the lower support 
Sl were respectively set at 30% and 60%. The built FUSP tree was shown in Figure 2. 
Suppose three new customer sequences shown in Table 2 are inserted into the original 
database. The proposed incremental algorithm is then performed by the designed 
steps. The global variables c and b are initially set at 0. 

Table 2. Three added customer sequences 

CID Customer sequence 
5 (CH)(I) 

11 (A)(I)(H) 
12 (A)(G)(H) 

 
The value of the first term in Formula 1 [9] is calculated as:  

( ) (0.6 0.3) 10
7.5

1 1 0.6

u l

u

S S d
f

S

− × − ×= = =
− −

. 

Since only one customer sequence with CID = 5 in Table 2 belongs to old 
customers in Table 1, q is thus set at 1, and b = (b + q) (= 0 + 1) (= 1). The value of 
the second term in Formula 1 [9] is calculated as: 

1 0.6
1.5

1 1 0.6

u

u

b S
h

S

× ×= = =
− −

. 

The customer sequences in Table 2 are firstly scanned to get the 1-sequences  
and their counts. After that, 1-sequences in the added customer sequences are then 
divided into three parts with nine cases. The designed algorithm is then performed to 
maintain and update the built FUSP tree. The final updated FUSP tree is then shown 
in Figure 3.  
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Fig. 3. Initial constructed FUSP tree with its Header_Table 

Based on the FUSP tree in Figure 3, the desired large sequences then be found by 
the FUSP-growth approach [11]. 

5 Experimental Results 

Experiments were made to compare the performance of FUSP-TREE-BATCH 
algorithm [11], FUSP-TREE-INS algorithm [11], and the proposed incremental 
algorithm. A real database called BMSWebView-1 [18] is used to evaluate the 
performance of the proposed incremental algorithm. In the experiments, the execution 
time and the number of tree nodes are then compared to show the performance of the 
proposed incremental algorithm at different number of minimum support thresholds. 
To evaluate the performance of the proposed algorithm at different minimum support 
thresholds, Sl values are respectively set at Su values minus 0.21% for BMSWebview-
1 database. The results are respectively shown from Figures 4 to 5. 

 

Fig. 4. Comparisons of execution times 
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Fig. 5. Comparisons of tree nodes 

From Figures 4 and 5, it can obvious to see that the proposed algorithm runs faster 
than the FUSP-TREE-BATCH and FUSP-TREE-INS algorithms and generates nearly 
the same number of tree nodes compared to the other two algorithms. The proposed 
algorithm can thus acceptable in terms of execution time and number of tree nodes. 

6 Conclusion 

In this paper, a pre-large concepts are adopted for efficiently maintaining and 
updating the built FUSP tree for sequence insertion in dynamic databases. A FUSP-
tree structure is used to make the updating process become easier. From the 
experiments, the proposed incremental algorithm can thus achieve a good trade-off 
between execution time and tree complexity. 

Acknowledgement. This research was partially supported by the Shenzhen Peacock 
Project, China, under grant KQC201109020055A, by the Natural Scientific Research 
Innovation Foundation in Harbin Institute of Technology under grant 
HIT.NSRIF.2014100, by the National Science Council of the Republic of China 
under Contract no. NSC 101-2628-E-004-001-MY2, and by the Shenzhen Strategic 
Emerging Industries Program under grant ZDSY20120613125016389. 

References 

1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective. 
IEEE Transactions on Knowledge and Data Engineering 5, 914–925 (2006) 

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. 
In: The International Conference on Very Large Data Bases, pp. 487–499 (1994) 

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: The International Conference on 
Data Engineering, pp. 3–14 (1995) 

4. Chen, M.S., Han, J., Philips Yu, S.: Data mining: An overview from a database 
perspective. IEEE Transactions on Knowledge and Data Engineering 8, 866–883 (1996) 



144 C.-W. Lin et al. 

 

5. Wang, C.Y., Hong, T.P., Tseng, S.S.: Maintenance of sequential patterns for record 
deletion. In: IEEE International Conference on Data Mining, pp. 536–541 (2001) 

6. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A 
frequent-pattern tree approach. Data Mining and Knowledge Discovery 8, 53–87 (2004) 

7. Hong, T.P., Wang, C.Y., Tao, Y.H.: A new incremental data mining algorithm using pre-
large itemsets. Intelligent Data Analysis 5, 111–129 (2001) 

8. Hong, T.P., Lin, C.W., Wu, Y.L.: Incrementally fast updated frequent pattern trees. Expert 
Systems with Applications 34, 2424–2435 (2008) 

9. Hong, T.P., Wang, C.Y., Tseng, S.S.: An incremental mining algorithm for maintaining 
sequential patterns using pre-large sequences. Expert Systems with Applications 38,  
7051–7058 (2011) 

10. Kim, C., Lim, J.H., Ng, R.T., Shim, K.: Squire: Sequential pattern mining with quantities. 
Journal of Systems and Software 80, 1726–1745 (2007) 

11. Lin, C.W., Hong, T.P., Lu, W.H., Lin, W.Y.: An incremental fusp-tree maintenance 
algorithm. In: The International Conference on Intelligent Systems Design and 
Applications, pp. 445–449 (2008) 

12. Lin, C.W., Hong, T.P., Lu, W.H.: An efficient fusp-tree update algorithm for deleted data 
in customer sequences. In: International Conference on Innovative Computing, 
Information and Control, pp. 1491–1494 (2009) 

13. Lin, C.W., Hong, T.P.: A survey of fuzzy web mining. Wiley Interdisciplinary Reviews: 
Data Mining and Knowledge Discovery 3, 190–199 (2013) 

14. Lin, M.Y., Lee, S.Y.: Incremental update on sequential patterns in large databases. In: 
IEEE International Conference on Tools with Artificial Intelligence, pp. 24–31 (1998) 

15. Nakagaito, F., Ozaki, T., Ohkawa, T.: Discovery of quantitative sequential patterns from 
event sequences. In: IEEE International Conference on Data Mining Workshops, pp. 31–36 
(2009) 

16. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: 
Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE 
Transactions on Knowledge and Data Engineering 16, 1424–1440 (2004) 

17. Ren, J.M., Jang, J.R.: Discovering time-constrained sequential patterns for music genre 
classification. IEEE Transactions on Audio, Speech, and Language Processing 20, 1134–1144 
(2012) 

18. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. 
In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
pp. 401–406 (2001) 


	An Incremental Algorithm for Maintaining the Built FUSP Trees Based on the Pre-large Concepts
	1 Introduction
	2 Review of Related Works
	2.1 Sequential Patterns Mining
	2.2 Pre-large Concepts

	3 Proposed an Incremental Algorithm
	4 An Example
	5 Experimental Results
	6 Conclusion
	References




