

J.-S. Pan et al. (eds.), Intelligent Data Analysis and Its Applications, Volume 1,
Advances in Intelligent Systems and Computing 297,

135

DOI: 10.1007/978-3-319-07776-5_15, © Springer International Publishing Switzerland 2014

An Incremental Algorithm for Maintaining
the Built FUSP Trees Based on the Pre-large Concepts

Chun-Wei Lin1,2, Wensheng Gan1, Tzung-Pei Hong3,4, and Raylin Tso5

1 Innovative Information Industry Research Center (IIIRC),
2 Shenzhen Key Laboratory of Internet Information Collaboration

School of Computer Science and Technology
Harbin Institute of Technology Shenzhen Graduate School

HIT Campus Shenzhen University Town, Xili, Shenzhen 518055 P.R. China
3 Department of Computer Science and Information Engineering
National University of Kaohsiung, Kaohsiung, Taiwan, R.O.C.

4 Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C.

5 Department of Computer Science
National Chengchi University, Taipei, 11605, Taiwan, R.O.C.

jerrylin@ieee.org, wsgan001@gmail.com, tphong@nuk.edu.tw,
raylin@cs.nccu.edu.tw

Abstract. Mining useful information or knowledge from a very large database
to aid managers or decision makers to make appropriate decisions is a critical
issue in recent years. In this paper, we adopted the pre-large concepts to the
FUSP-tree structure for sequence insertion. A FUSP tree is built in advance to
keep the large 1-sequences for later maintenance. The pre-large sequences are
also kept to reduce the movement from large to small and vice versa. When the
number of inserted sequences is smaller than the safety bound of the pre-large
concepts, better results can be obtained by the proposed incremental algorithm
for sequence insertion in dynamic databases.

Keywords: Pre-large concept, dynamic databases, sequential pattern mining,
sequence insertion, FUSP-tree structure.

1 Introduction

Mining desired knowledge or information to aid mangers or decision makers for
making the efficient decisions from a very large database is a critical issue in recent
years. [1-4, 6, 8, 13]. Among them, sequential patterns mining considers the order
sequence data such as Web-click logs, network flow logs or DNA sequences, which is
the major issue in real-world applications. For basket analysis, sequential patterns
mining can also be used to mine the purchased behaviors of customers to predict
whether there is a high probability that when customers buy some products, they will
buy some other products in later transactions.

136 C.-W. Lin et al.

Agrawal et al. first proposed AprioriAll algorithm [3] to level-wisely mine
sequential patterns in a batch way. Various algorithms applied in different
applications of sequential patterns mining have been proposed to handle the static
database [10, 15-17]. Discovered sequential patterns may, however, become invalid
since sequences are changed in dynamic databases. Developing an efficient approach
to maintain and update the discovered sequential patterns is a critical issue in real-
world applications. Lin et al. proposed an incremental FASTUP algorithm [14] to
maintain the discovered sequential patterns. Lin et al. designed a fast updated
sequential pattern (FUSP)-tree structure and algorithms to handle the sequential
patterns in dynamic databases [11-12].

The FASTUP or FUSP-tree algorithms are, however, required to re-scan the
original database if the small itemsets or sequences are necessary to be maintained
and updated. Hong et al. then extended the pre-large concepts [7] of association-rule
mining to level-wisely maintain the sequential patterns in dynamic databases [9]. In
this paper, the pre-large concepts are adopted in the FUSP tree to efficiently maintain
the discovered sequential patterns for sequence insertion. A FUSP-tree structure is
first built to keep only large sequences in the tree, and the pre-large sequences are
mined out and kept in a set for later maintenance. The proposed incremental
algorithm divides the 1-sequences in the newly inserted sequences into three parts
with nine cases. Each case is then performed by the designed algorithm to maintain
and update the built FUSP tree. Experimental results also then show that the proposed
algorithm has a good performance for incrementally handling new inserted sequences.

2 Review of Related Works

In this section, sequential patterns mining and the pre-large concepts are briefly
reviewed.

2.1 Sequential Patterns Mining

In the past, Agrawal et al. designed an AprioriAll algorithm [3] to level-wisely mine
sequential patterns in a static database. Lin et al. thus proposed an incremental
FASTUP algorithm [14] to maintain sequential patterns in dynamic databases. The
FASTUP algorithm is, however, required to re-scan the original database if it is
necessary to maintain the discovered sequential pattern, which is large in the added
sequences but small in the original database. Hong et al. extended the pre-large
concepts of association-rule mining [7] to handle the sequential patterns whether for
the sequence insertion [9] or deletion [5]. It is also based on Apriori-like approach [2]
to generate-and-test the candidates for deriving the desired sequential patterns. Lin
first designed a fast updated sequential pattern (FUSP)-tree and developed the
algorithms for efficiently handling sequence insertion in incremental mining [11-12].
Based on the built FUSP tree structure, the discovered sequential patterns can be thus
easier maintained.

 An Incremental Algorithm for Maintaining the Built FUSP Trees 137

The FUSP tree [11] is used to store customer sequences with only large 1-
sequences in the original database. Based on the FUSP tree, the complete sequential
patterns can be derived from it without level-wisely rescanning the original database.
An example is given to show the FUSP tree. Assume a database shown in Table 1 is
used to build the FUSP tree.

Table 1. An example

CID Customer Sequence
1 (AC)(F)
2 (CE)(D)(H)
3 (AB)(D)
4 (C)(D)(EF)(H)
5 (AC)(GI)
6 (BC)(DEH)
7 (A)(D)(H)
8 (AF)(DG)
9 (A)(D)(EH)
10 (C)(F)(BD)

Also assume that the upper support threshold is set at 60%, and the lower support

threshold is set at 30%. The large 1-sequnces are (A), (C), and (D) from which
Header_Table can be constructed. The pre-large 1-sequences are then kept in a set of
Pre_Seqs = {B:3, E:4, F:4, H:5}. The built FUSP tree from the database is shown in
Figure 1. In Figure 1, only large 1-sequences are kept in the FUSP tree. The link
between two connected nodes is marked by the symbol s if the sequence is within the
sequence relation in a sequence; otherwise, the link is marked by the symbol i if the
sequence is within the itemset relation in a sequence. The built Header_Table is used
as an index table to find appropriate items or sequences in the tree. It keeps the large
1-sequences initially in descending order of their counts. Infrequent ones are not used
to build the tree. After all customer sequences are processed, the FUSP tree is
completely constructed.

{root}

A:6

C:2 D:4

C:4

D:4

i s
s

Header_Table
Item Count

D 8

C 6

A 6

s s

Fig. 1. Initial constructed FUSP tree with its Header_Table

138 C.-W. Lin et al.

2.2 Pre-large Concepts

A pre-large sequence [9] is not truly large, but has highly probability to be large when
the database is updated. A lower support threshold and an upper support threshold are
used to respectively define the pre-large and the large concepts. The pre-large
concepts act like buffers to reduce the movement of sequences directly from large to
small and vice-versa in the maintenance process. Considering an original database
and some customer sequences are inserted into the original database, three parts with
nine cases in Figure 2 may arise.

Large

Large

Pre-large Original
database

New
transactions

Small

Small

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large

Large
sequences

Large

Pre-large Original
customer

sequences

Newly merged
customer
sequences

Small

Small

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large

sequences

sequences

sequences sequences sequences

Fig. 2. Nine cases arising from the original database and the inserted sequences

Cases 1, 5, 6, 8 and 9 will not affect the final large sequences. Cases 2 and 3 may
remove existing large sequences. Cases 4 and 7 may add new large sequences. If we
retain all large and pre-large sequences with their counts in the original database,
cases 2, 3 and 4 can be easily handled. In the maintenance phase, the ratio of newly
added customer sequences to original customer sequences is usually very small. This
is more apparent when the database grows larger. It has been formally shown that the
sequences in Case 7 cannot possibly be large in the updated database as long as the
number of customer sequences is small compared to the number of customer
sequences in the original database. The formula [9] is shown below.

()u l u

u u

S S d q S
t

S S

− × ×≤ −
− −1 1

,

where t is the number of the newly added customer sequences, and q be the number of
newly added customer sequences belongs to old customers, Su is the upper threshold,
Sl is the lower threshold, and d is the number of customer sequences in the original
database.

3 Proposed an Incremental Algorithm

A fast updated sequential pattern (FUSP)-tree [11] must built in advance to keep the
large sequences from the original database before new transactions or sequences

 An Incremental Algorithm for Maintaining the Built FUSP Trees 139

come. The pre-large 1-sequences are also kept in a set for later maintenance process.
When the sequences are inserted into the original database, the proposed incremental
algorithm is then performed below in details.

Proposed algorithm:
INPUT: An old database consisting of (d + t) sequences, its corresponding

Header_Table, a set of Pre_Seqs to keep the pre-large 1-sequeces, its
corresponding FUSP tree, a lower support threshold Sl, an upper support
threshold Su, and a set of t new inserted sequences.

OUTPUT: An updated FUSP tree.
STEP 1: Set b = b + q, where q number of newly inserted sequences belonging to

old customers in the original database;
STEP 1: Calculate the safety bound f to determine whether the original database is

required to be re-scanned of the new inserted transactions by the formula
as [9]:

()u l u

u u

S S d b S
t

S S

− × ×≤ −
− −1 1

.

STEP 2: Scan the new sequences to get all 1-sequences with their frequencies.
STEP 3: Divide the1-sequences in STEP 2 into three parts with nine cases

according to whether they are large (appears in the Header_Table), pre-
large (appears in the set of Pre_Seqs) or small (not appears in the
Header_Table either in the set of Pre_Seqs) in the original database.

STEP 4: For each 1-sequence s which is large in the original database, do the
following substeps (Cases 1, 2 and 3):
Substep 4-1: Set the count SU(s) of s in the updated database as:

SU(s) = SD(s) + ST(s),

where SD(s) is the frequency of s in the Header_Table
(original database) and ST(s) is the frequency of s in the
new transactions.

Substep 4-2: If Su ≤ SU(s)/(d+c+t-b), update the frequency of s in the
Header_Table as SU(s); put s in the set of Insert_Seqs,
which will be further processed in STEP 8.
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, remove s from the
Header_Table; connect the parent node of s to its child
nodes directly in the FUSP tree; put s in the set of Pre_Seqs
with its updated frequency SU(s).
Otherwise, 1-sequence s becomes small after the database
is updated; remove s from the Header_Table and connect
each parent node of s directly to its child nodes in the
FUSP tree.

STEP 5: For each 1-sequence s which is pre-large in the original database, do the
following substeps (Cases 4, 5 and 6):
Substep 5-1: Set the new count SU(s) of s in the updated database as:

SU(s) = SD(s) + ST(s).

140 C.-W. Lin et al.

Substep 5-2: If Su ≤ SU(s)/(d+c+t-b), 1-sequence s will be large after the
database is updated; remove s from the set of Pre_Seqs; put
s with its updated frequency in the set of Branch_Seqs; put
s in the set of Insert_Seqs.
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, 1-sequence s still
remains pre-large after the database is updated; update s
with its new frequency SU(s) in the set of Pre_Seqs.
Otherwise, remove 1-sequence s from the set of Pre_Seqs.

STEP 6: For each 1-sequence s which is neither large nor pre-large in the original
database but large or pre-large in the new transactions (Cases 7 and 8),
put s in the set of Rescan_Seqs, which is used when rescanning the
database in STEP 7 is necessary.

STEP 7: If t + c ≤ f - h or the set of Rescan_Seqs is null, then do nothing;
Otherwise, do the following substeps for each1-sequence s in the set of
Rescan_Seqs:
Substep 7-1: Rescan the original database to decide the original count

SD(s) of s.
Substep 7-2: Set the new count SU(s) of s in the updated database as:

SU(s) = SD(s) + ST(s),
Substep 7-3: If Su ≤ SU(s)/(d+c+t-b), 1-sequence s will become large after

the database is updated; put s in both the sets of
Insert_Seqs and Branch_Seqs; insert the items in the
Branch_Seqs to the end of the Header_Table according to
the descending order of their updated frequencies.
Otherwise, if Sl < SU(s)/(d+c+t-b) ≤ Su, 1-sequence s will
become pre-large after the database is update; put s with its
updated frequency in the set of Pre_Seqs.
Otherwise, do nothing.

Substep 7-4: For each original transaction with a 1-sequence s existing
in the Branch_Seqs, if s has not been at the corresponding
branch of the FUSP tree for the transaction, insert s at the
end of the branch and set its count as 1; otherwise, add 1 to
the count of the node s.

STEP 8: Insert the sequences in the Branch_Seqs to the end of Header_Table
according to the descending order of their updated counts. For each
original sequence with a sequence s existing in the Branch_Seqs, if s has
not been at the corresponding branch of the FUSP tree for the processed
sequence, insert s to its corresponding position and set its count as 1;
otherwise, add 1 to the count of the node s.

STEP 9: For each new transaction with a 1-sequence s existing in the Insert_Seqs,
if s has not been at the corresponding branch of the FUSP for the new
sequence, insert s to its corresponding position and set its count as 1;
otherwise, add 1 to the count of the node s.

STEP 10: If t + c > f - h, then set d = d + t + c and set c = 0; otherwise, set c = t + c.

 An Incremental Algorithm for Maintaining the Built FUSP Trees 141

In STEP 7, a corresponding branch is the branch generated from the large 1-
sequences in a transaction and corresponding to the order of 1-sequences appeared in
the Header_Table. After STEP 10, the final updated FUSP tree is maintained by the
proposed algorithm. The new transactions can then be integrated into the original
database. Desired sequential patterns can then be found by the FUSP-growth mining
algorithm [11].

4 An Example

In this section, an example is given to illustrate the proposed incremental algorithm
for maintaining the discovered sequential patterns based on the built FUSP tree [11].
An original database was shown in Table 1, which consists of 10 customer sequences
with nine purchased items. In this example, an upper support Su and the lower support
Sl were respectively set at 30% and 60%. The built FUSP tree was shown in Figure 2.
Suppose three new customer sequences shown in Table 2 are inserted into the original
database. The proposed incremental algorithm is then performed by the designed
steps. The global variables c and b are initially set at 0.

Table 2. Three added customer sequences

CID Customer sequence
5 (CH)(I)

11 (A)(I)(H)
12 (A)(G)(H)

The value of the first term in Formula 1 [9] is calculated as:

() (0.6 0.3) 10
7.5

1 1 0.6

u l

u

S S d
f

S

− × − ×= = =
− −

.

Since only one customer sequence with CID = 5 in Table 2 belongs to old
customers in Table 1, q is thus set at 1, and b = (b + q) (= 0 + 1) (= 1). The value of
the second term in Formula 1 [9] is calculated as:

1 0.6
1.5

1 1 0.6

u

u

b S
h

S

× ×= = =
− −

.

The customer sequences in Table 2 are firstly scanned to get the 1-sequences
and their counts. After that, 1-sequences in the added customer sequences are then
divided into three parts with nine cases. The designed algorithm is then performed to
maintain and update the built FUSP tree. The final updated FUSP tree is then shown
in Figure 3.

142 C.-W. Lin et al.

{root}

A:8

D:4

D:4

s

H:2 H:1

H:2

s

s i

Header_Table
Item Count

D 8

A 8

H 8

H:3

s

Fig. 3. Initial constructed FUSP tree with its Header_Table

Based on the FUSP tree in Figure 3, the desired large sequences then be found by
the FUSP-growth approach [11].

5 Experimental Results

Experiments were made to compare the performance of FUSP-TREE-BATCH
algorithm [11], FUSP-TREE-INS algorithm [11], and the proposed incremental
algorithm. A real database called BMSWebView-1 [18] is used to evaluate the
performance of the proposed incremental algorithm. In the experiments, the execution
time and the number of tree nodes are then compared to show the performance of the
proposed incremental algorithm at different number of minimum support thresholds.
To evaluate the performance of the proposed algorithm at different minimum support
thresholds, Sl values are respectively set at Su values minus 0.21% for BMSWebview-
1 database. The results are respectively shown from Figures 4 to 5.

Fig. 4. Comparisons of execution times

 An Incremental Algorithm for Maintaining the Built FUSP Trees 143

Fig. 5. Comparisons of tree nodes

From Figures 4 and 5, it can obvious to see that the proposed algorithm runs faster
than the FUSP-TREE-BATCH and FUSP-TREE-INS algorithms and generates nearly
the same number of tree nodes compared to the other two algorithms. The proposed
algorithm can thus acceptable in terms of execution time and number of tree nodes.

6 Conclusion

In this paper, a pre-large concepts are adopted for efficiently maintaining and
updating the built FUSP tree for sequence insertion in dynamic databases. A FUSP-
tree structure is used to make the updating process become easier. From the
experiments, the proposed incremental algorithm can thus achieve a good trade-off
between execution time and tree complexity.

Acknowledgement. This research was partially supported by the Shenzhen Peacock
Project, China, under grant KQC201109020055A, by the Natural Scientific Research
Innovation Foundation in Harbin Institute of Technology under grant
HIT.NSRIF.2014100, by the National Science Council of the Republic of China
under Contract no. NSC 101-2628-E-004-001-MY2, and by the Shenzhen Strategic
Emerging Industries Program under grant ZDSY20120613125016389.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective.
IEEE Transactions on Knowledge and Data Engineering 5, 914–925 (2006)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: The International Conference on Very Large Data Bases, pp. 487–499 (1994)

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: The International Conference on
Data Engineering, pp. 3–14 (1995)

4. Chen, M.S., Han, J., Philips Yu, S.: Data mining: An overview from a database
perspective. IEEE Transactions on Knowledge and Data Engineering 8, 866–883 (1996)

144 C.-W. Lin et al.

5. Wang, C.Y., Hong, T.P., Tseng, S.S.: Maintenance of sequential patterns for record
deletion. In: IEEE International Conference on Data Mining, pp. 536–541 (2001)

6. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and Knowledge Discovery 8, 53–87 (2004)

7. Hong, T.P., Wang, C.Y., Tao, Y.H.: A new incremental data mining algorithm using pre-
large itemsets. Intelligent Data Analysis 5, 111–129 (2001)

8. Hong, T.P., Lin, C.W., Wu, Y.L.: Incrementally fast updated frequent pattern trees. Expert
Systems with Applications 34, 2424–2435 (2008)

9. Hong, T.P., Wang, C.Y., Tseng, S.S.: An incremental mining algorithm for maintaining
sequential patterns using pre-large sequences. Expert Systems with Applications 38,
7051–7058 (2011)

10. Kim, C., Lim, J.H., Ng, R.T., Shim, K.: Squire: Sequential pattern mining with quantities.
Journal of Systems and Software 80, 1726–1745 (2007)

11. Lin, C.W., Hong, T.P., Lu, W.H., Lin, W.Y.: An incremental fusp-tree maintenance
algorithm. In: The International Conference on Intelligent Systems Design and
Applications, pp. 445–449 (2008)

12. Lin, C.W., Hong, T.P., Lu, W.H.: An efficient fusp-tree update algorithm for deleted data
in customer sequences. In: International Conference on Innovative Computing,
Information and Control, pp. 1491–1494 (2009)

13. Lin, C.W., Hong, T.P.: A survey of fuzzy web mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 3, 190–199 (2013)

14. Lin, M.Y., Lee, S.Y.: Incremental update on sequential patterns in large databases. In:
IEEE International Conference on Tools with Artificial Intelligence, pp. 24–31 (1998)

15. Nakagaito, F., Ozaki, T., Ohkawa, T.: Discovery of quantitative sequential patterns from
event sequences. In: IEEE International Conference on Data Mining Workshops, pp. 31–36
(2009)

16. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering 16, 1424–1440 (2004)

17. Ren, J.M., Jang, J.R.: Discovering time-constrained sequential patterns for music genre
classification. IEEE Transactions on Audio, Speech, and Language Processing 20, 1134–1144
(2012)

18. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 401–406 (2001)

	An Incremental Algorithm for Maintaining the Built FUSP Trees Based on the Pre-large Concepts
	1 Introduction
	2 Review of Related Works
	2.1 Sequential Patterns Mining
	2.2 Pre-large Concepts

	3 Proposed an Incremental Algorithm
	4 An Example
	5 Experimental Results
	6 Conclusion
	References

