

J.-S. Pan et al. (eds.), Intelligent Data Analysis and Its Applications, Volume 2,
Advances in Intelligent Systems and Computing 298,

57

DOI: 10.1007/978-3-319-07773-4_6, © Springer International Publishing Switzerland 2014

Compact Bat Algorithm

Thi-Kien Dao1, Jeng-Shyang Pan1, Trong-The Nguyen1,
Shu-Chuan Chu2, and Chin-Shiuh Shieh1

1 Department of Electronics Engineering,
National Kaohsiung University of Applied Sciences, Taiwan

jvnkien@gmail.com
2 School of Computer Science, Engineering and Mathematics,

Flinders University, Australia

Abstract. Addressing to the computational requirements of the hardware devic-
es with limited resources such as memory size or low price is critical issues.
This paper, a novel algorithm, namely compact Bat Algorithm (cBA), for solv-
ing the numerical optimization problems is proposed based on the framework of
the original Bat algorithm (oBA). A probabilistic representation random of the
Bat’s behavior is inspired to employ for this proposed algorithm, in which the
replaced population with the probability vector updated based on single compe-
tition. These lead to the entire algorithm functioning applying a modest memory
usage. The simulations compare both algorithms in terms of solution quality,
speed and saving memory. The results show that cBA can solve the optimiza-
tion despite a modest memory usage as good performance as oBA displays with
its complex population-based algorithm. It is used the same as what is needed
for storing space with six solutions.

Keywords: Bat algorithm, compact Bat algorithm, Optimizations, Swarm intel-
ligence.

1 Introduction

Computational intelligence algorithms have also been successfully used to solve op-
timization problems in the engineering, the financial, and the management fields for
recently years. For example, genetic algorithms (GA) have been successfully various
applications including engineering, the financial, the security [1-3], particle swarm
optimization (PSO) techniques have successfully been used to construct the portfolios
of stock, human perception [3-5], ant colony optimization (ACO) techniques have
successfully been used to solve the routing problem of networks, the secure water-
marking [6, 7], artificial bee colony (ABC) techniques have successfully been used to
solve the lot-streaming flow shop scheduling problem [8], cat swarm optimization
(CSO) [9] techniques have successfully been used to discover proper positions for
information hiding [10]. Some applications require the solution of a complex optimi-
zation problem event though in limited hardware conditions. These conditions are to
use a computational device due to cost and space limitations. For example, wireless
sensor networks (WSN) are networks of small, battery-powered, memory-constraint

58 T.-K. Dao et al.

devices named sensor nodes, which have capability of wireless communication over a
restricted area [11]. Due to memory and power constraints, they need to be well
arranged to build a fully functional network. The other applications require a very fast
solution of the optimization problem due to the communication time between a con-
trol/actuator devices and an external computer, real-time necessities within the con-
trol/actuator devices. For instance, in telecommunications[12] or in industrial plants
for energy production[13]. Special applications require fault-tolerance in a high
priority and/or to avoid rebooting of the device. For example, in the space shuttle
control [14], or in communication underwater [15]. The mentioned problem is not
enough memory of computational devices to store a population composed of numer-
ous candidate solutions of those computational intelligence algorithms.

Compact algorithms are a promise answer for this problem. An efficient compro-
mise is used in compact algorithms to present some advantages of population-based
algorithms but the memory is not required for storing an actual population of solu-
tions. Compact algorithms simulate the behavior of population-based algorithms by
employing, instead of a population of solutions, its probabilistic representation. In this
way, a much smaller number of parameters must be stored in the memory. Thus, a run
of these algorithms requires much less capacious memory devices compared to their
correspondent population-based structures.

The very first implementation of compact algorithms has been the compact Genet-
ic Algorithm (cGA) [16]. The cGA simulates the behavior of a standard binary en-
coded Genetic Algorithm (GA). It can be seen that cGA has a performance almost as
good as that of GA and that cGA requires a much less capacious memory. The com-
pact Differential Evolution (cDE) algorithm has been introduced in [17]. The success
of cDE implementation is the combination of two factors. The first is that a DE scheme
seems to benefit from the introduction of a certain degree of randomization due to the
probabilistic model. The second is that the one-to-one spawning survivor selection
typical of DE (the offspring replaces the parent) can be naturally encoded into a com-
pact logic. The compact Particle Swarm Optimization (cPSO) has been defined in [18].
The implementation of cPSO algorithm benefits from the same natural encoding of the
selection scheme employed by DE and another ‘‘ingredient’’ of compact optimization,
i.e. a special treatment for the best solution ever detected and reinterpreted as an evolu-
tionary algorithms in order to propose a compact encoding of PSO.

In this paper, the behavior and the characteristic of the Bat are reviewed to improve
the Bat algorithms [19, 20] and to present the compact Bat Algorithm (cBA) based on
the framework of the original BA (oBA). According to the experimental results, our
proposed cBA presents same result in finding original Bat algorithm.

The rest of this paper is organized as follows: a briefly review of BA is given in
session 2; our analysis and designs for the cBA is presented in session 3; a series of
experimental results and the compare between oBA and cBA are discussed in ses-
sion 4; finally, the conclusion is summarized in session 5.

2 Related Works

A random walk is a mathematical formalization of a path that consists of a succession
of random steps. This work is primarily inspired by the random walk model in [21,

 Compact Bat Algorithm 59

22]. This model focused on building block for representing individual in warms.
Compact algorithms is represented the population as probability distribution based on
random steps over the set of solutions. By discretizing its probability representation,
the proposed algorithm reduces the oBA’s memory requirements. A set of frequencies
of Bats is a building block as a whole given high contribution to the fitness of an in-
dividual. There are no interactions among building blocks, so they could be solved
independently. The behavior of building blocks for solving to optimality could be
simulated by the dynamics of the random walk model[22].

In 2010, Xin-SheYang proposed a new optimization algorithm, namely, Bat
Algorithm or original Bat Algorithm (oBA), based on swarm intelligence and the
inspiration form observing the bats [19] . oBA simulates parts of the echolocation
characteristics of the micro-bat in the simplicity way. Three major characteristics of
the micro-bat are employed to construct the basic structure of BA. All bats utilize the
echolocation to detect their prey, but not all species of the bat do the same thing.
However, the micro-bat, one of species of the bat is a famous example of extensively
using the echolocation. Hence, the first characteristic is the echolocation behavior.
The second characteristic is the frequency that the micro-bat sends a fixed fre-
quency fmin with a variable wavelength λ and the loudness A0 to search for prey.

1. Bats fly randomly with velocity vi at position xi. They can adjust the wavelength
(or frequency) of their emitted pulses and adjust the rate of pulse emission r ∈ [0,
1], depending on the proximity of their target;

2. There are many ways to adjust the loudness. For simplicity, the loudness is
assumed to be varied from a positive large A0 to a minimum constant value,
which is denoted by Amin.

In Yang’s method, the movement of the virtual bat is simulated by equation (1) –
equation (3):

 (1)

 (2)

 v (3)

where f is the frequency used by the bat seeking for its prey, fmin and fmax, represent
the minimum and maximum value, respectively. xi denotes the location of the ith bat
in the solution space, vi represents the velocity of the bat, t indicates the current itera-
tion, β is a random vector, which is drawn from a uniform distribution, and β ∈[0,
1], and xbest indicates the global near best solution found so far over the whole pop-
ulation. In addition, the rate of the pulse emission from the bat is also taken to be one
of the roles in the process. The micro-bat emits the echo and adjusts the wavelength
depending on the proximity of their target. The pulse emission rate is denoted by the
symbol ri, and ri ∈[0, 1], where the suffix i indicates the ith bat. In every iteration,
a random number is generated and is compared with ri. If the random number is

60 T.-K. Dao et al.

greater than ri, a local search strategy, namely, random walk, is detonated. A new
solution for the bat is generated by equation (4):

 (4)

where ε is a random number and ε∈[-1, 1], and at represents the average loudness of
all bats at the current time step. After updating the positions of the bats, the loudness
Ai and the pulse emission rate ri are also updated only when the global near best solu-
tion is updated and the random generated number is smaller than Ai. The update of Ai
and ri are operated by equation (5) and equation (6):

 (5)

 1 (6)

where α and γ are constants. In Yang’s experiments, α = γ = 0.9 is used for the sim-
plicity. The process of oBA is depicted as follows:

Step 1. Initialize the bat population, the pulse rates, the loudness, and define the pulse
frequency
Step 2. Update the velocities to update the location of the bats, and decide whether
detonate the random walk process.
Step 3. Rank the bats according to their fitness value, find the current near best solu-
tion found so far, and then update the loudness and the emission rate.
Step 4. Check the termination condition to decide whether go back to step 2 or end the
process and output the result.

3 Compact Bat Algorithm

As mentioned above that compact algorithms process an actual population of solution
as a virtual population. This virtual population is encoded within a data structure,
namely Perturbation Vector (PV) as probabilistic model of a population of solutions.
The distribution of the individual in the hypothetical swarms must be described by a
probability density function (PDF) [23] defined on the normalized interval is from -1
to +1. The distribution of the each Bat of swarms could be assumed as Gaussian
PDF with mean μ and standard deviation σ [16]. A minimization problem is
considered in an m-dimensional hyper-rectangle in Normalization of two truncated
Gaussian curves (m is the number of parameters). Without loss of generality, the
parameters assume to be normalized so that each search interval is [-1,+1] . Therefore
PV is a vector of m×2 matrix specifying the two parameters of the PDF of each design
variable being defined as:

 , (7)

where μ and σ are mean and standard deviation values a Gaussian (PDF) truncated
within the interval [-1, +1], respectively. The amplitude of the PDF is normalized in
order to keep its area equal to 1. The apex t is time steps. The initialization of the
virtual population is generated for each design variable i, = 0 and = k where k is
set as a large positive constant (e.g. k = 10). The PDF height normalization is ob-
tained approximately sufficient in well the uniform distribution with a wide shape.
The generating for a candidate solution is produced from , . The value of

 Compact Bat Algorithm 61

mean μ and standard deviation in PV are associated equation of a truncated Gaus-
sian PDF is described as following:

 √ √ (8)

The PDF in formula (8) is then used to compute the corresponding Cumulative
Distribution Function (CDF). The CDF is constructed by means of Chebyshev poly-
nomials by following the procedure described in [24], the codomain of CDF is ar-
range from 0 to 1. The distribution function or cumulative distribution function (CDF)
describes the probability that a real-valued random variable X with a given probabili-
ty distribution will be found at a value less than or equal to CDFs are also used to
specify the distribution of multivariate random variables.

 (9)

The sampling of the design variable from PV is performed by generating a
random number rand (0, 1) from a uniform distribution and then computing the in-
verse function of CDF in rand (0, 1). The newly calculated value is .

 x =inverse(CDF) (10)

When the comparison between two design variables for individuals of the swarm
(or better two individuals sampled from PV) is performed the winner solution biases
the PV. Let us indicate with winner the vector that scores a better fitness value and
with loser the individual losing the (fitness based) comparison. Regarding the mean
values l, the update rule for each of its elements is , , .

 (11)

where Np is virtual population size. Regarding values, the update
rule of each element is given by: (12) , , (13)

The construction of formulas (11) and (12) are persistent and non-persistent
structures with tested results given in [25]. Similar to the binary cGA case, it was
impossible to assess whether one or another elitist strategy was preferable. As re-
ported in [17], it is fundamental to remember that the virtual population size Np is
parameter typical of compact algorithms and does not strictly correspond to the
population size in a population-based algorithm. The virtual population size, in real-
valued compact optimization, is a parameter which biases the convergence speed of

62 T.-K. Dao et al.

the algorithm. In [25] has been mentioned that, for a given problem (with its dimen-
sionality), this parameter should be set several times bigger than the population size
of a corresponding population-based algorithm. In elitist compact schemes, at each
moment of the optimization process, the solution displaying the best performance is
retained in a separate memory slot. If a new candidate solution is computed, the
fitness based comparison between it and the elite is carried out. If elite is a winner
solution, it biases the PV as shown in formulas (11) and (12).

1) Initialization probability vector (PV(µ, δ))
for i=1:n do µ =0; δ =k= 10;

2) Initialization parameters: pulse rate ri , the loudness Ai , = random, and = 0;
Generate global best solution x from PV; Define pulse frequency fmin, fmax as
search range;

3) Evaluate new solutions
while termination is not satisfied do
xt = generateFrom(PV)
Update velocities and locations
Use equations (1),(2), and (3)
if (β > ri)
Select a solution among the best solution,
Generate a local solution around selected best solution
endif
 [winner, loser]=compete(,)

4) Update PV
Use equations (11), and (12)

5) Global best update x =winner; µ µ
6) Accept new solutions,

 Fnew =fitness(x);
 Rank the bats and find the current best
 Update if the solution improves, or not too loud

 if (Fnew<=fmin) & (β <A)
 best=xt; fmin=Fnew;
 endif

 endwhile

Fig. 1. The pseudo code of compact Bat algorithm

The fitness value of the position xt+1 is calculated and compared with xbest to de-
termine a winner and a loser. Equation (11) and equation (12) are then applied to
update the probability vector PV. If f(xt+1) <= f(min) and β <A, the value of the global
best is then updated: fmin=Fnew and the process is repeated over for the subsequent
steps. Current values for xt+1 and vt+1 are retained for subsequent algorithm steps.
Figure 1 shows the pseudo code of algorithm working principles of cBA.

 Compact Bat Algorithm 63

4 Experimental Results

This section presents simulation results and compares the cBA with the oBA, both in
terms of solution quality and in the number of function evaluations taken. To evaluate
the accuracy and the computational speed of the proposed cBA, four benchmark
functions are chosen to use in the experiments. All experiments are averaged over
different random seeds with 25 runs. All benchmark functions are listed in equation
(14) - equation (19). ∑ 100 1 (14)

 ∑ ∑ (15) 1 ∑ ∏ √ (16) ∑ 10 10 2] (17)

The initial range and the total iteration number for all test functions
are listed in Table 1.

Table 1. The initial range and the total iteration of test standard functions

Function
Initial range Total

iteration [xmin, xmax]
 [-100,100] 5000

 [-100,100] 5000

 [-100,100] 5000

 [-5.12,5.12] 5000

The optimization goal for all of these test functions is to minimize the outcome.
The parameters setting for both cBA and oBA: are the initial loudness 0.25 (range 0.1 to 0.9), pulse rate 0.5 (range 0.5 to 0.9) the total population
size n = 20 and the dimension of the solution space M = 30, frequency minimum fmin
= the lowest of initial range function and frequency minimum fmax = the highest of
initial range function. Each function contains the full iterations of 5000 is repeated
by different random seeds with 25 runs. The final results are obtained by taking the
average of the outcomes from all runs. The results are compared with the original BA
(oBC).

4.1 Comparison Optimizing Performance Algorithms

Table 2 compares the quality of performance and time running for numerical problem
optimization between cBA and oBA. It is clearly seen that, almost cases of bench-
mark functions for optimizing in compact Bat algorithm are faster convergence.
It is special case with test function quadric has the mean of value function

64 T.-K. Dao et al.

minimum of total 25 runs is 44865 with average time running equal 3.1764 seconds
for oBA evaluation. However, for cBA this value of function minimum of total 25
runs is 36321 with time running equal 0.9936 seconds in same executing computer.
The mean of four test functions evaluation of minimum function 25 runs is 9.40E+08
with average time consuming 7.0093 for oBA but, 8.87E+08 with average time
consuming 3.5843 for cBA respectively. It improved the accuracy and the conver-
gence is up to 4%.

Table 2. The comparison between oBA and cBA in terms of quality performance evaluation
and speed

Function
Performance evaluation Time running evaluation

oBA cBA oBA cBA
 9.4E+08 8.87E+08 1.2659 1.0141
 44865 36321 3.1764 0.9936

6.5331 6.1153 1.3823 0.8845
 209.356 256.2685 1.1847 0.6921

Average value 9.40E+08 8.87E+08 7.0093 3.5843

Figure 2 shows the average of function minimum of four test functions in 25 runs
output in the same iteration of 5000. It can be clearly seen that the curves of compact
BA (red and star lines) are faster in convergence.

Fig. 2. The mean of function minimum curves in comparing cBA and oBA algorithms
for four benchmark functions

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 109 Test F1: Rosenbrock function

Iterations

T
he

 m
ea

n
F

m
in

 o
f 2

5
se

ed
s

Original BA

Compact BA

0 500 1000 1500 2000 2500 3000 3500 4000 4500

3

3.5

4

4.5

5

5.5

6

6.5

x 10
4 Test F2: Quadric function

Iterations

T
he

 m
ea

n
F

m
in

 o
f 2

5
se

ed
s

Original BA

Compact BA

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4
Test F3: Griewangk function

Iterations

T
he

 m
e

an
 F

m
in

 o
f 2

5
se

e
ds

Original BA

Compact BA

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
150

200

250

300

350

400

450

500
Test F4: Rastrigin function

Iterations

T
he

 m
ea

n
F

m
in

 o
f 2

5
se

ed
s

Original BA

Compact BA

 Compact Bat Algorithm 65

4.2 Comparison Saving-Memory and Time-Complexity Algorithms

Table 3 compares the saving-memory computations of two algorithms cBA and oBA.
It can be clearly seen that the number memory variables of cBA is smaller than that of
oBA in the same condition of computation such as iterations. The real number of
population or population size of oBA is N, but that size for cBA is only one. Even
though, the number equations used for optimizing computation in cBA is six such as
equations (1), (2), (3), (12), (13) and (14), and the number equations used for optimiz-
ing computation in oBA is only three of them such as equations (1), (2), and (3), the
computing complexity of cBA is 6×T×iteration and it for oBA is 3×T×N×iteration.
Thus, the rate of saving-memory equals the computing complexity of cBA per the
computing complexity of oBA as given: rate = 2/N.

Table 3. The saving-memory comparison between cBA and oBA

Algo-
rithms

Population
size

#Memory
variable

Equ-ations Computing
complexity

oBA N 3×N (1),(2),(3)
3×T×N

×iteration

cBA 1 6
(1),(2),(3),(12),

(13),(14)
6×T

×iteration

The considered computational times, for both the algorithms cBA and oBA, have
been calculated by means of a PC Intel Core 2 Duo 2.4 GHz with 4 GB RAM em-
ploying in Windows7-OS, with Matlab (R2011b), version 7.13.0.564 32bits. Figure 4
illustrates the comparison of executing time between cBA and oBA in 25 seed runs
with iteration 5000 for four benchmark functions. It is clearly seen that the most cases
of test functions time executing in the proposed cBA (red colored bar) are smaller
than that executing in oBA (blue colored bar). The bar of test function number 2 is
longest distance different oBA and cBA more than double time executed.

Fig. 3. Comparison two algorithms in term of time running for 6 chosen benchmark functions

0

1

2

3

4

1 2 3 4

Ti
m

e
co

ns
um

pt
io

n

Four benchmark functions

oBA

cBA

66 T.-K. Dao et al.

For the computational times, several dimensionality levels such as 5, 10, 20, 30,
and 40 dimensions should be tested in standard test functions. Figure 4 compares two
algorithms in term of different dimensions for test functions. The most of cases test
functions for convergence of cBA is smaller than that for oBA.

Fig. 4. Comparison two algorithms in term of different dimension for test functions

For variety population size of swarms N, the most cases of test functions employ-
ing in cBA is not effected much in comparison with oBA because of population size
in cBA is virtual population, so the mean of value functions test for cBA are more
stable.

5 Conclusion

This paper, a novel proposed optimization algorithm is presented, namely compact
Bat algorithm (cBA). The implementation of compact for optimization algorithms
could have important significance for the development of embedded devices with
small size, low price and being suitable for trend of ubiquitous computing today. In
new proposed algorithm, the actual design variable of solutions search space of Bat
algorithm is replaced with a probabilistic representation of the population. This fea-
ture is important for application problems characterized by a limited memory since it
allows the embedded implementation in small and cheap devices. The performance of
cBA algorithm is as good as the other previous works in literature with respect to
compact algorithms. The results of proposed algorithm on a set of various test

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9
x 108 Test F1: Rosenbrock function

Space dimensions

T
he

 m
ea

n
va

lF
un

ct
io

n
of

 2
5

se
ed

s

Original BA

Compact BA

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
x 10

5 Test F2: Quadric function

Space dimensions
T

he
 m

ea
n

va
lF

un
ct

io
n

of
 2

5
se

ed
s

Original BA

Compact BA

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25
Test F3: Griewangk function

Space dimensions

T
h

e
m

ea
n

 v
a

lF
u

nc
tio

n
o

f 2
5

 s
e

ed
s

Original BA

Compact BA

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300
Test F4: Rastrigin function

Space dimensions

T
he

 m
ea

n
va

lF
un

ct
io

n
of

 2
5

se
ed

s

Original BA

Compact BA

 Compact Bat Algorithm 67

problems show that cBA seems to be a valid alternative for optimization problems
plagued by a limited memory. Experimental results on this real-world application also
show the applicability of the proposed approach and highlight the good cBA perfor-
mance within the category of memory-saving algorithms.

Acknowledgement. The authors would like to express their sincere thanks to the
National Science Council, Taiwan (ROC), for financial support under the grants NSC
102-2221-E-151-037-.

References

1. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)
2. Wang, S., Yang, B., Niu, X.: A Secure Steganography Method based on Genetic Algo-

rithm. Journal of Information Hiding and Multimedia Signal Processing 1(1), 8 (2010)
3. Ruiz-Torrubiano, R., Suarez, A.: Hybrid Approaches and Dimensionality Reduction for

Portfolio Selection with Cardinality Constraints. IEEE Computational Intelligence Maga-
zine 5(2), 92–107 (2010)

4. Jui-Fang, C., Shu-Wei, H.: The Construction of Stock’s Portfolios by Using Particle
Swarm Optimization, pp. 390–390

5. Bajaj, P., Puranik, P., Abraham, A., Palsodkar, P., Deshmukh, A.: Human Perception-
based Color Image Segmentation Using Comprehensive Learning Particle Swarm Optimi-
zation. Journal of Information Hiding and Multimedia Signal Processing 2(3), 227–235
(2011)

6. Pinto, P.C., Nagele, A., Dejori, M., Runkler, T.A., Sousa, J.M.C.: Using a Local Discovery
Ant Algorithm for Bayesian Network Structure Learning. IEEE Transactions on Evolutio-
nary Computation 13(4), 767–779 (2009)

7. Chouinard, J.-Y., Loukhaoukha, K., Taieb, M.H.: Optimal Image Watermarking Algorithm
Based on LWT-SVD via Multi-objective Ant Colony Optimization. Journal of Information
Hiding and Multimedia Signal Processing 2(4), 303–319 (2011)

8. Pan, Q.-K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony
algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–
2468 (2011)

9. Chu, S.-C., Tsai, P.W.: Computational Intelligence Based on the Behavior of Cats. Interna-
tional Journal of Innovative Computing, Information and Control 3(1), 8 (2006)

10. Wang, Z.-H., Chang, C.-C., Li, M.-C.: Optimizing least-significant-bit substitution using
cat swarm optimization strategy. Inf. Sci. 192, 98–108 (2012)

11. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor net-
works. IEEE Communications Magazine 40(8), 102–114 (2002)

12. Gene, C., Wai-tian, T., Yoshimura, T.: Real-time video transport optimization using
streaming agent over 3G wireless networks. IEEE Transactions on Multimedia 7(4), 777–
785 (2005)

13. Pourmousavi, S.A., Nehrir, M.H., Colson, C.M., Caisheng, W.: Real-Time Energy Man-
agement of a Stand-Alone Hybrid Wind-Microturbine Energy System Using Particle
Swarm Optimization. IEEE Transactions on Sustainable Energy 1(3), 193–201 (2010)

14. Norman, P.G.: The new AP101S general-purpose computer (GPC) for the space shuttle.
Proceedings of the IEEE 75(3), 308–319 (1987)

68 T.-K. Dao et al.

15. Simpson, J.A., Hughes, B.L., Muth, J.F.: Smart Transmitters and Receivers for Underwa-
ter Free-Space Optical Communication. IEEE Journal on Selected Areas in Communica-
tions 30(5), 964–974 (2012)

16. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transac-
tions on Evolutionary Computation 3(4), 287–297 (1999)

17. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE
Transactions on Evolutionary Computation 15(1), 32–54 (2011)

18. Neri, F., Mininno, E., Iacca, G.: Compact Particle Swarm Optimization. Information
Sciences 239, 96–121 (2013)

19. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A.,
Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Sprin-
ger, Heidelberg (2010)

20. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat Algorithm Inspired Algorithm
for Solving Numerical Optimization Problems. Applied Mechanics and Materials 148-149,
134–137 (2012)

21. Pearson, K.: The Problem of the Random Walk. Nature, 72 (1905)
22. Pemantle, R.: A survey of random processes with reinforcement. Probability Sur-

veys 4(2007), 9 (2007)
23. Billingsley, P.: Probability and Measure. John Wiley and Sons (1979)
24. Cody, W.J.: Rational Chebyshev approximations for the error function. Mathematics of

Computation 23(107), 631–637 (1969)
25. Mininno, E., Cupertino, F., Naso, D.: Real-Valued Compact Genetic Algorithms for Em-

bedded Microcontroller Optimization. IEEE Transactions on Evolutionary Computa-
tion 12(2), 203–219 (2008)

	Compact Bat Algorithm
	1 Introduction
	2 Related Works
	3 Compact Bat Algorithm
	4 Experimental Results
	4.1 Comparison Optimizing Performance Algorithms
	4.2 Comparison Saving-Memory and Time-Complexity Algorithms

	5 Conclusion
	References

