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Abstract. Addressing to the computational requirements of the hardware devic-
es with limited resources such as memory size or low price is critical issues. 
This paper, a novel algorithm, namely compact Bat Algorithm (cBA), for solv-
ing the numerical optimization problems is proposed based on the framework of 
the original Bat algorithm (oBA).  A probabilistic representation random of the 
Bat’s behavior is inspired to employ for this proposed algorithm, in which the 
replaced population with the probability vector updated based on single compe-
tition. These lead to the entire algorithm functioning applying a modest memory 
usage. The simulations compare both algorithms in terms of solution quality, 
speed and saving memory. The results show that cBA can solve the optimiza-
tion despite a modest memory usage as good performance as oBA displays with 
its complex population-based algorithm. It is used the same as what is needed 
for storing space with six solutions. 

Keywords: Bat algorithm, compact Bat algorithm, Optimizations, Swarm intel-
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1 Introduction 

Computational intelligence algorithms have also been successfully used to solve op-
timization problems in the engineering, the financial, and the management fields for 
recently years. For example, genetic algorithms (GA) have been successfully various 
applications including engineering, the financial, the security [1-3], particle swarm 
optimization (PSO) techniques have successfully been used to construct the portfolios 
of stock, human perception [3-5], ant colony optimization (ACO) techniques have 
successfully been used to solve the  routing problem of networks, the secure water-
marking [6, 7], artificial bee colony (ABC) techniques have successfully been used to 
solve the lot-streaming flow shop scheduling problem [8], cat swarm optimization 
(CSO) [9] techniques have successfully been used to discover proper positions for 
information hiding [10]. Some applications require the solution of a complex optimi-
zation problem event though in limited hardware conditions. These conditions are to 
use a computational device due to cost and space limitations. For example, wireless 
sensor networks (WSN) are networks of small, battery-powered, memory-constraint 
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devices named sensor nodes, which have capability of wireless communication over a 
restricted area [11].  Due to memory and power constraints, they need to be well 
arranged to build a fully functional network. The other applications require a very fast 
solution of the optimization problem due to the communication time between a con-
trol/actuator devices and an external computer, real-time necessities within the con-
trol/actuator devices. For instance, in telecommunications[12] or in industrial plants 
for energy production[13]. Special applications require fault-tolerance in a high 
priority and/or to avoid rebooting of the device. For example, in the space shuttle 
control [14], or in communication underwater [15]. The mentioned problem is not 
enough memory of computational devices to store a population composed of numer-
ous candidate solutions of those computational intelligence algorithms.  

Compact algorithms are a promise answer for this problem. An efficient compro-
mise is used in compact algorithms to present some advantages of population-based 
algorithms but the memory is not required for storing an actual population of solu-
tions. Compact algorithms simulate the behavior of population-based algorithms by 
employing, instead of a population of solutions, its probabilistic representation. In this 
way, a much smaller number of parameters must be stored in the memory. Thus, a run 
of these algorithms requires much less capacious memory devices compared to their 
correspondent population-based structures. 

The very  first implementation of compact algorithms has been the compact Genet-
ic Algorithm (cGA) [16]. The cGA simulates the behavior of a standard binary en-
coded Genetic Algorithm (GA). It can be seen that cGA has a performance almost as 
good as that of GA and that cGA requires a much less capacious memory. The com-
pact Differential Evolution (cDE) algorithm has been introduced in [17]. The success 
of cDE implementation is the combination of two factors. The first is that a DE scheme 
seems to benefit from the introduction of a certain degree of randomization due to the 
probabilistic model. The second is that the one-to-one spawning survivor selection 
typical of DE (the offspring replaces the parent) can be naturally encoded into a com-
pact logic. The compact Particle Swarm Optimization (cPSO) has been defined in [18]. 
The implementation of cPSO algorithm benefits from the same natural encoding of the 
selection scheme employed by DE and another ‘‘ingredient’’ of compact optimization, 
i.e. a special treatment for the best solution ever detected and reinterpreted as an evolu-
tionary algorithms in order to propose a compact encoding of PSO.  

In this paper, the behavior and the characteristic of the Bat are reviewed to improve 
the Bat algorithms [19, 20] and to present the compact Bat Algorithm (cBA) based on 
the framework of the original BA (oBA). According to the experimental results, our 
proposed cBA presents same result in finding original Bat algorithm.  

The rest of this paper is organized as follows: a briefly  review of BA is given in 
session 2; our analysis and designs for the cBA is presented in session 3; a series of 
experimental results and the compare between oBA and cBA are discussed  in ses-
sion 4;  finally, the conclusion is summarized in session 5.  

2 Related Works 

A random walk is a mathematical formalization of a path that consists of a succession 
of random steps. This work is primarily inspired by the random walk model in [21, 
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22]. This model focused on building block for representing individual in warms. 
Compact algorithms is represented the population as probability distribution based on 
random steps over the set of solutions. By discretizing its probability representation, 
the proposed algorithm reduces the oBA’s memory requirements. A set of frequencies 
of Bats is a building block as a whole given high contribution to the fitness of an in-
dividual. There are no interactions among building blocks, so they could be solved 
independently. The behavior of building blocks for solving to optimality could be 
simulated by the dynamics of the random walk model[22].   

In 2010, Xin-SheYang proposed a new optimization algorithm,  namely, Bat  
Algorithm or original Bat Algorithm (oBA), based on swarm intelligence  and the 
inspiration form observing the bats [19] . oBA simulates parts of the echolocation 
characteristics of the micro-bat in the simplicity way. Three major characteristics of 
the micro-bat are employed to construct the basic structure of BA. All bats utilize the 
echolocation to detect their prey, but not all species of the bat do the same thing. 
However, the micro-bat, one of species of the bat is a famous example of extensively 
using the echolocation.  Hence, the first characteristic is the echolocation behavior. 
The second characteristic is the frequency that   the micro-bat sends a fixed fre-
quency fmin with a variable wavelength λ and the loudness A0 to search for prey. 

1. Bats fly randomly with velocity vi at position xi. They can adjust the wavelength 
(or frequency) of their emitted pulses and adjust the rate of pulse emission r ∈ [0, 
1], depending on the proximity of their target; 

2. There are many ways to adjust the loudness.  For simplicity, the loudness is 
assumed to be varied from a positive large A0 to a minimum constant value, 
which is denoted by Amin.  

In Yang’s method, the movement of the virtual bat is simulated by equation (1) – 
equation (3): 
 

           (1) 

       (2) 

 v      (3) 

where f is the frequency used by the bat seeking for its prey, fmin and fmax,  represent  
the minimum  and maximum value, respectively.  xi denotes the location of the ith bat 
in the solution space, vi represents the velocity of the bat, t indicates the current itera-
tion, β is a random vector, which is drawn from a uniform distribution, and β ∈[0, 
1], and xbest  indicates the global near best solution found so far over the whole pop-
ulation. In addition, the rate of the pulse emission from the bat is also taken to be one 
of the roles in the process. The micro-bat emits the echo and adjusts the wavelength 
depending on the proximity of their target. The pulse emission rate is denoted by the 
symbol ri, and ri   ∈[0, 1], where the suffix i indicates the ith bat. In every iteration, 
a random number is generated and is compared with ri. If the random number is  
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greater than ri, a local search strategy, namely, random walk, is detonated. A new 
solution for the bat is generated by equation (4):  

  (4) 

where ε is a random number and  ε∈[-1, 1], and at represents the average loudness of 
all bats at the current time step. After updating the positions of the bats, the loudness 
Ai and the pulse emission rate ri are also updated only when the global near best solu-
tion is updated and the random generated number is smaller than Ai. The update of Ai 
and ri are operated by equation (5) and equation (6): 

        (5) 

  1  (6) 

where α and γ are constants. In Yang’s experiments, α = γ = 0.9 is used for the sim-
plicity. The process of oBA is depicted as follows: 

Step 1. Initialize the bat population, the pulse rates, the loudness, and define the pulse 
frequency 
Step 2. Update the velocities to update the location of the bats, and decide whether 
detonate the random walk process. 
Step 3. Rank the bats according to their fitness value, find the current near best solu-
tion found so far, and then update the loudness and the emission rate. 
Step 4. Check the termination condition to decide whether go back to step 2 or end the 
process and output the result. 

3 Compact Bat Algorithm 

As mentioned above that compact algorithms process an actual population of solution 
as a virtual population. This virtual population is encoded within a data structure, 
namely Perturbation Vector (PV) as probabilistic model of a population of solutions. 
The distribution of the individual in the hypothetical swarms must be described by a 
probability density function (PDF) [23] defined on the normalized interval is from -1 
to +1.  The distribution of the each Bat of swarms could be assumed as Gaussian 
PDF with mean μ and standard deviation σ [16]. A minimization problem is  
considered in an m-dimensional hyper-rectangle in Normalization of two truncated 
Gaussian curves (m is the number of parameters).  Without loss of generality, the 
parameters assume to be normalized so that each search interval is [-1,+1] . Therefore 
PV is a vector of m×2 matrix specifying the two parameters of the PDF of each design 
variable being defined as: 

     ,  (7) 

where μ  and σ are mean and standard deviation values a Gaussian (PDF) truncated 
within the interval [-1, +1], respectively. The amplitude of the PDF is normalized in 
order to keep its area equal to 1. The apex t is time steps. The initialization of the 
virtual population is generated for each design variable i, = 0 and = k where k is 
set as a large positive constant (e.g.  k = 10). The PDF height normalization is ob-
tained approximately sufficient in well the uniform distribution with a wide shape. 
The generating for a candidate solution  is produced from , . The value of 
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mean μ and standard deviation  in PV are associated equation of a truncated Gaus-
sian PDF is described as following: 

                              √ √                 (8) 

The PDF in formula (8) is then used to compute the corresponding Cumulative 
Distribution Function (CDF). The CDF is constructed by means of Chebyshev poly-
nomials by following the procedure described in [24], the codomain of CDF is ar-
range from 0 to 1. The distribution function or cumulative distribution function (CDF) 
describes the probability that a real-valued random variable X with a given probabili-
ty distribution will be found at a value less than or equal to  CDFs are also used to 
specify the distribution of multivariate random variables. 

  (9) 

The sampling of the design variable  from PV is performed by generating a 
random number rand (0, 1) from a uniform distribution and then computing the in-
verse function of CDF in rand (0, 1). The newly calculated value is . 

 x =inverse(CDF)      (10) 

When the comparison between two design variables for individuals of the swarm 
(or better two individuals sampled from PV) is performed the winner solution biases 
the PV. Let us indicate with winner the vector that scores a better fitness value and 
with loser the individual losing the (fitness based) comparison. Regarding the mean 
values l, the update rule for each of its elements is , , . 

               (11) 

where Np is virtual population size.  Regarding  values, the update 
rule of each element is given by:                 (12)                , ,                          (13) 

The construction of formulas (11)  and (12)  are  persistent and non-persistent 
structures with tested results given in [25]. Similar to the binary cGA case, it was 
impossible to assess whether one or another elitist strategy was preferable. As re-
ported in [17], it is fundamental to remember that the virtual population size Np is 
parameter typical of compact algorithms and does not  strictly correspond to  the 
population size in a population-based algorithm. The virtual population size, in real-
valued compact optimization, is a parameter which biases the convergence speed of  
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the algorithm. In [25] has been mentioned that, for a given problem (with its dimen-
sionality), this parameter should be set  several times bigger than the population size  
of a corresponding population-based algorithm. In elitist compact schemes, at each 
moment of the optimization process, the solution displaying the best performance is 
retained in a separate memory slot. If a new candidate solution is computed, the 
fitness based comparison between it and the elite is carried out.  If elite is a winner 
solution, it biases the PV as shown in formulas (11) and (12). 

1) Initialization probability vector (PV(µ, δ)) 
for i=1:n do µ  =0; δ =k= 10; 

2) Initialization parameters: pulse rate ri , the loudness Ai ,  = random, and  = 0; 
Generate global best solution x  from PV; Define pulse frequency fmin, fmax as 
search range; 

3) Evaluate new solutions 
while termination is not satisfied do 
xt = generateFrom(PV) 
Update velocities and locations 
Use equations (1),(2), and (3)  
if (β > ri) 
Select a solution among the best solution,  
Generate a local solution around selected best solution  
endif 
 [winner, loser]=compete( , ) 

4) Update PV 
Use equations (11), and (12) 

5) Global best update x  =winner; µ µ       
6) Accept new solutions,  

 Fnew =fitness(x); 
      Rank the bats and find the current best 
      Update if the solution improves, or not too loud 

   if (Fnew<=fmin) & (β <A)  
    best=xt;     fmin=Fnew; 
   endif 

    endwhile 

Fig. 1. The pseudo code of compact Bat algorithm 

The fitness value of the position xt+1 is calculated and compared with xbest  to de-
termine a winner and a loser. Equation (11) and equation (12) are then applied to 
update the probability vector PV. If f(xt+1) <= f(min) and β <A, the value of the global 
best is then updated: fmin=Fnew and the process is repeated over  for  the subsequent 
steps. Current values for xt+1 and vt+1 are retained for subsequent algorithm steps. 
Figure 1 shows the pseudo code of algorithm working principles of cBA. 
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4 Experimental Results 

This section presents simulation results and compares the cBA with the oBA, both in 
terms of solution quality and in the number of function evaluations taken. To evaluate 
the accuracy and the computational speed of the proposed cBA, four benchmark  
functions are chosen to use in the experiments. All experiments are averaged over 
different random seeds with 25 runs. All benchmark functions are listed in equation 
(14) - equation (19).                                        ∑ 100 1           (14) 

        ∑ ∑     (15)                                           1 ∑ ∏ √  (16)                                         ∑ 10 10 2  ]      (17) 

The initial range and the total iteration number for all test functions  
are listed in Table 1. 

Table 1. The initial range and the total iteration of test standard functions 

Function  
Initial range Total 

iteration [xmin, xmax] 
 [-100,100] 5000 

 [-100,100] 5000 

 [-100,100] 5000 

 [-5.12,5.12] 5000 

The optimization goal for all of these test functions is to minimize the outcome.  
The parameters setting for both cBA and oBA: are the initial loudness 0.25 (range 0.1 to 0.9), pulse rate  0.5 (range 0.5 to 0.9) the total population 
size n = 20 and the dimension of the solution space M = 30, frequency minimum fmin 
= the lowest of initial range function and frequency minimum fmax = the highest of 
initial range function.  Each function contains the full iterations of 5000 is repeated 
by different random seeds with 25 runs. The final results are obtained by taking the 
average of the outcomes from all runs. The results are compared with the original BA 
(oBC).  

4.1 Comparison Optimizing Performance Algorithms 

Table 2 compares the quality of performance and time running for numerical problem 
optimization between cBA and oBA. It is clearly seen that, almost cases of bench-
mark functions for optimizing in compact Bat algorithm are faster convergence.  
It is special case with test function  quadric has the mean of value function 
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minimum of total 25 runs is 44865 with average time running equal 3.1764 seconds 
for oBA evaluation. However, for cBA this value of function minimum of total 25 
runs is 36321 with time running equal 0.9936 seconds in same executing computer. 
The mean of four test functions evaluation of minimum function 25 runs is 9.40E+08 
with average time consuming 7.0093 for oBA  but,  8.87E+08 with average time 
consuming 3.5843 for cBA respectively. It improved the accuracy and the conver-
gence is up to 4%. 

Table 2. The comparison between oBA and cBA in terms of quality performance evaluation 
and speed 

Function 
Performance evaluation Time running evaluation 

oBA cBA oBA cBA 
 9.4E+08 8.87E+08 1.2659 1.0141 
 44865 36321 3.1764 0.9936 

6.5331 6.1153 1.3823 0.8845 
 209.356 256.2685 1.1847 0.6921 

Average value 9.40E+08 8.87E+08 7.0093 3.5843 

Figure 2 shows the average of function minimum of four test functions in 25 runs 
output in the same iteration of 5000. It can be clearly seen that the curves of compact 
BA (red and star lines) are faster in convergence. 

 

Fig. 2. The mean of function minimum curves in comparing cBA and oBA algorithms  
for four benchmark functions 
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4.2 Comparison Saving-Memory and Time-Complexity Algorithms 

Table 3 compares the saving-memory computations of two algorithms cBA and oBA. 
It can be clearly seen that the number memory variables of cBA is smaller than that of 
oBA in the same condition of computation such as iterations.  The real number of 
population or population size of oBA is N, but that size for cBA is only one. Even 
though, the number equations used for optimizing computation in cBA is six such as 
equations (1), (2), (3), (12), (13) and (14), and the number equations used for optimiz-
ing computation in oBA is only three of them such as equations (1), (2), and (3), the 
computing complexity of cBA is 6×T×iteration and it for oBA is 3×T×N×iteration. 
Thus, the rate of saving-memory equals the computing complexity of cBA per the 
computing complexity of oBA as given: rate = 2/N. 

Table 3. The saving-memory comparison between cBA and oBA 

Algo-
rithms

Population 
size 

#Memory 
variable 

# Equ-ations Computing 
complexity 

oBA N 3×N (1),(2),(3) 
3×T×N 

×iteration 

cBA 1 6 
(1),(2),(3),(12), 

(13),(14) 
6×T 

×iteration 

The considered computational times, for both the algorithms cBA and oBA, have 
been calculated by means of a PC Intel Core 2 Duo 2.4 GHz with 4 GB RAM em-
ploying in Windows7-OS, with Matlab (R2011b), version 7.13.0.564 32bits. Figure 4 
illustrates the comparison of executing time between cBA and oBA in 25 seed runs 
with iteration 5000 for four benchmark functions. It is clearly seen that the most cases 
of test functions time executing in the proposed cBA (red colored bar) are smaller 
than that executing in oBA (blue colored bar). The bar of test function number 2 is 
longest distance different oBA and cBA more than double time executed. 

 

Fig. 3. Comparison two algorithms in term of time running for 6 chosen benchmark functions 
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For the computational times, several dimensionality levels such as 5, 10, 20, 30, 
and 40 dimensions should be tested in standard test functions. Figure 4 compares two 
algorithms in term of different dimensions for test functions. The most of cases test 
functions for convergence of cBA is smaller than that for oBA.   

 

 

Fig. 4. Comparison two algorithms in term of different dimension for test functions 
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problems show that cBA seems to be a valid alternative for optimization problems 
plagued by a limited memory. Experimental results on this real-world application also 
show the applicability of the proposed approach and highlight the good cBA perfor-
mance within the category of memory-saving algorithms. 
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