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Abstract. In competitive energy markets (EMs), customers can freely
choose their energy suppliers. The electricity trade can be done in
organized markets or using forward bilateral contracts. Currently, there
are several simulation tools based on multi-agent techniques that allow
modeling, partially or globally, competitive EMs. The existing tools allow
simulating negotiation prices and volumes through bilateral contracts,
transactions in pool markets, etc. However, these tools have some
limitations, mainly due to the complexity of the electric system. In this
context, this article focuses on bilateral trading and presents the key
features of software agents able to negotiate forward bilateral contracts.
Special attention is devoted to demand response in bilateral contracting,
notably utility functions and trading strategies for promoting demand
response. The article also presents a case study on forward bilateral
contracting with demand response: a retailer agent and an industrial
customer agent negotiate a 24h-rate tariff.

Keywords: Energy markets, multi-agent systems, bilateral contracting,
demand response, trading strategies, simulation.

1 Introduction

Traditionally, the organization of the electricity sector was based on vertically
integrated electric power companies from production to sale of electricity, which
produced, transported and distributed the energy without any competition. The
deregulation process began in the earlier nineties and basically separated the
functions of electrical generation and retail from the natural monopoly functions
of transmission and distribution. This process led to the implementation of a
wholesale market, where competing generators offer their energy to retailers, and
a retail market, in which retailers ensure delivery to end customers. Customers
are able to choose their supplier of electricity depending on the best offers.
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Due to the complexity and unpredictability of Energy Markets (EMs), decision
making becomes increasingly difficult. Thus, the entities involved have been
forced to rethink their behavior and market strategies. Recent changes in
the electricity sector have come to prove that the demand side may also
have a relevant influence on the whole process, especially regarding strategic
decision making by end customers. In this new paradigm, customers and
buyers of energy can play a much more active role in EMs and, through
appropriate strategies, achieve their objectives. Several strategies are associated
to consumption efficiency and represent the actions related to the concepts of
conservation, management and rational use of energy. One of these actions, that
are expected to grow in the scope of EMs, is Demand Response (DR). DR can be
defined as the capacity to manage the electricity consumption of end customers
and in response provide appropriate conditions, including reducing the price of
electricity, improve system reliability and reduce price volatility.

However, the entities of EMs are heterogeneous and autonomous, and follow
their own goals and strategies. Usually, the production companies seek to adopt
strategies that maximize profit, while costumers adopt strategies that minimize
electricity cost. Thus, strategies have as their main objective reaching favourable
agreements between the players involved. Strategies can be applied to any type of
EMs. Several major markets are often distinguished, notably pools and bilateral
contracts [1]. A pool market is defined as a centralized marketplace that clears
the market for sellers and buyers. Electric power sellers/buyers submit bids to
the pool for the amounts of power that they are willing to trade in the market.
The bids are submitted to a market operator, whose function is to coordinate and
manage the different transactions between the participants. Bilateral contracts
are negotiable agreements on delivery and receipt of power between two traders.
These contracts have the advantage of price predictability in comparison of
uncertain pool prices.

Multi-agent systems (MAS) are essentially loosely coupled networks of
software agents that interact to solve problems that are beyond the individual
capabilities of each agent. MAS can deal with complex dynamic interactions
and support both artificial intelligence techniques and numerical algorithms.
Conceptually, a multi-agent approach is an ideal fit to the naturally distributed
domain of a deregulated electricity market.

This article is devoted to demand response in forward bilateral contracting.
It presents the key features of software agents able to negotiate forward bilateral
contracts, paying special attention to demand response programs, including
different utility functions and strategies for promoting DR. It also presents a
case study on forward bilateral contracting involving DR management: a retailer
agent (a seller) and an industrial customer agent (a buyer) negotiate a 24h-rate
tariff. Furthermore, the work presented here refines and extends our previous
work in the area of automated negotiation [2,3,4] and bilateral contracting with
demand response [6,7]. As stated, it considers demand response into bilateral
contracting, focusing on specific utility functions and DRmanagement strategies,
and describing a case study involving a 24h-rate tariff.



Bilateral Contracting in Multi-agent Energy Markets 287

2 Demand Response in Competitive Energy Markets

Demand response involves changes in electric usage by end-use customers from
their normal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce lower electricity
use at times of high wholesale market prices or when system reliability is
jeopardized [8]. The principle of DR aims to change the tendency of evolution
of the energy consumption of the end customer in order to reduce the operating
costs of the system, from the point of view of the producer or customer.

Customers participating in demand response options may adopt one (or more)
of three basic load response strategies [9]. Each of these actions involves costs and
measures taken by customers. The first option involves reducing the electricity
usage by customers at times of high prices without changing the consumption
pattern during other periods. For example, a residential customer might turn
off lights during an event, or a commercial facility might turn off some office
equipment. In both cases, this option results in a temporary loss of comfort.
The second option involves rescheduling usage away from times of high prices.
For example, a residential customer might put off running a dishwasher until
later in the day, or an industrial facility might reschedule a batch production
process to the evening hours or the next day. In the third option, customers may
respond by using onsite generation to supply some or all of their electricity needs.
However, the may experience little change in their electricity usage pattern.

Besides these options, there are different DR programs, such as Priced Based
Programs (PBP) and Incentive-Based Programs (IBP). PBP programs refer
to changes in usage by customers in response to changes in the prices they
pay and include real-time pricing, critical-peak pricing, and time-of-use rates.
IPB programs are established by utilities, load-serving entities, or a regional
grid operator. These programs give customers load-reduction incentives that are
separate from, or additional to, their retail electricity rate, which may be fixed
(based on average costs) or time-varying (see, e.g., [8,9]).

The present situation of the DR in the world is presented in [10]. Several
implementations of DR in the wholesale market are also occurring in Europe
[11], China [12] and in other places around the world [13].

3 Bilateral Contracting with Demand Response

This section describes the process of forward bilateral contracting with demand
response, involving a seller agent and a buyer agent. Negotiation includes the
determination of prices and quantities of energy, and is executed on a long
term, usually six months or more. Special attention is devoted to different
utility functions and strategies for promoting demand response. As noted earlier,
bilateral contracts are financially safer for market participants, due to the fact
that they may guarantee protection against the volatility of high prices of energy
markets in real time.
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3.1 Pre-negotiation

The pre-negotiation process involves mainly the creation of a well-laid plan
specifying the activities that negotiators should attend to before actually starting
to negotiate. These activities include [4]:

• Identifying the issues to negotiate;
• Defining limits and priorities for the issues;
• Selecting an appropriate protocol;
• Defining preferences over outcomes.

Let as denote the seller agent and ab the buyer agent. The agents define the
negotiation issues, which in this case are the prices and volumes of energy. Let[
P s
kmin

, P s
kmax

]
(k = 1..n) denote the range of values for price that are acceptable

to agent as. Also, let
[
P b
kmin

, P b
kmax

]
and

[
V b
kmin

, V b
kmax

]
(i = k..n) denote the

range of values for price and volumes that are acceptable to agent ab. Priorities
are set by ranking-order the issues, i.e., by defining the most important, the
second most important, and so on.

A protocol is a set of rules that define how the negotiation process can
progress, specifying what actions are allowed and when. We consider an
alternating offers negotiation protocol [14]. This protocol models the iterative
exchange of offers and counter-offers. At any given period of negotiation, an agent
may accept an offer, send a counter-offer, or end the negotiation. If a counter-offer
is submitted, the process is repeated until one of the agents accept or abandon
the negotiation. Thus, the agents as and ab bargain over the division of the
surplus of n ≥ 2 issues by alternately proposing offers at times in T = {1, 2, ...}.
This means that one offer is made per time period t∈T , with an agent offering
in odd periods and the other agent offering in even periods. As noted, the agents
have the ability to unilaterally opt out of the negotiation when responding to a
proposal.

Definition 1 (Proposal). Let A be the set of negotiating agents and I the set
of issues at stake in negotiation. Let T be the set of time periods. A proposal
pti→j submitted by an agent ai∈A to an agent aj ∈A in period t∈T is a vector
of issue values:

pti→j = (v1, . . . , vn)

where vk, k=1, . . . , n, is a value of an issue xk∈ I.

Definition 2 (Agreement, Possible Agreements). . An agreement is a
proposal accepted by all the negotiating agents in A. The set of possible
agreements is:

S = {(v1, . . . , vn) ∈ �n : vk ∈ Dk, for k = 1, . . . , n}

where vk is a value of an issue xk∈ I.



Bilateral Contracting in Multi-agent Energy Markets 289

Negotiators should express their own preferences to rate and compare
incoming offers and counter-offers. Let I={x1, . . . , xn} be the agenda and
D={D1, . . . , Dn} the set of issue domains. We consider that each agent ai∈A
has a continuous utility function, denoted as Ui. Accordingly, when the utility
for ai from one outcome is greater than from another outcome, we assume that
ai prefers the first outcome over the second.

Now, the additive model is probably the most widely used in multi-issue
negotiation: agents determine weights for the issues at stake, assign scores to
the different levels on each issue, and take a weighted sum of them to get an
entire offer evaluation (see, e.g., [15]). Typically, each agent ai defines a partial
(or marginal) utility function for each issue at stake in negotiation, i.e., a function
that gives the score ai assigns to a value of an issue xk. The utility of an offer is
then computed by adding the weighted scores together. For convenience, scores
are often kept in the interval [0,1].

Definition 3 (Additive Utility Function). Let A be the set of negotiating
agents and I the negotiating agenda. The utility function Ui of an agent ai∈A
to rate offers and counter-offers takes the form:

Ui(x1, . . . , xn) =
n∑

k=1

wkVk (xk)

where:

(i) wk is the weight of ai for an issue xk∈ I;
(ii) Vk(xk) is the (marginal) utility function of ai for xk, i.e., the function that

gives the score ai assigns to a value of an issue xk.

The additive model is simple and intuitive, but it is not suitable for all
circumstances. In particular, the model assumes two types of independence:

1. additive independence: the utility of an offer is simply the weighted sum of
the scores for all issues at stake;

2. utility independence: issue x is utility independent of the other issues on the
agenda, if the preference order for outcomes involving only changes in the
level of x does not depend on the levels of the remaining issues, provided
that these levels are fixed.

The additive independence assumption is usually not acceptable when there
are specific interactions among issues. For instance, two or more issues may
be complementary, leading to a combined utility for an offer that is greater
than the weighted sum of the individual scores. Also, two or more issues may
be substitutable, in the sense that they can be substitutes of one another.
The multiplicative utility function is the most well-known function handling
these types of interactions among issues (see, e.g., [16,17]). It accommodates
interdependencies by considering a specific interaction constant and interaction
terms involving the multiplication of the weighted scores together. However, for
it to be valid, every pair of issues must be utility independent of the remaining
issues.
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Definition 4 (Multiplicative Utility Function). Let A be the set of
negotiating agents and I the negotiating agenda. The multiplicative utility
function Ui of an agent ai∈A to rate offers and counter-offers takes the form:

Ui(x1, . . . , xn) =

∏n
k=1 [1 + wwkVk (xk)]− 1

w

where:

(i) wk is the weight of ai for an issue xk∈ I;
(ii) Vk(xk) is the (marginal) utility function of ai for xk, i.e., the function that

gives the score ai assigns to a value of an issue xk.

The question at this stage relates to the degree to which preferences may
be sensitive to the use of an additive rather than a multiplicative function.
The question has important practical implications, as additive functions are
clearly easier to understand and to construct. Reading of the literature suggests
that in practice the use of an additive function is likely to be adequate
in the vast majority of settings. Also, in practice, there are often many
issues under consideration, but only a few are interdependent. Certainly, in
complex negotiation settings where the additive function may be considered
inappropriate, agents should use the multiplicative function. This seems to be
the case of the present work, since agents negotiate prices and volumes of energy,
variables that are interdependent.

3.2 Actual Negotiation and Strategies for Promoting DR

The actual negotiation process involves basically an iterative exchange or offers
and counter-offers. The negotiation protocol marks branching points at which
agents have to make decisions according to their strategies. In this work, we
consider strategies for promoting demand response. The two agents have similar
structure, but opposite preferences. Thus, the seller agent is equipped with a
strategic behaviour that maximizes its benefit, while the end customer (buyer)
is equipped with a strategic behavior that allows to minimize its cost, through
DR actions.

Seller Strategy: Price Management. This strategy aims to maximize the benefit
of as. The objective problem includes the price (P s

k ) proposed by as, the
volume (V b

k ) proposed by ab, and the cost of production (Ck). The mathematical
formulation of the objective problem is as follows:

Maximize Bs =

n∑

k=1

(P s
k − Ck)× V b

k (1)

Subject to

P s
k ≥ Ck (2)

The constraint expressed by (2) has the main goal of guaranteeing that the cost
of production does not exceed the price of energy of as.
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Buyer Strategy: Volume Management. This strategy was developed with the aim
of enabling the end users of energy having a more active involvement in EMs.
Specifically, the “Volume Management” strategy has the main goal of minimizing
the energy cost of customers through DR actions. Thus, through this type of
actions, customers can manage their energy consumption in response to high
prices for different periods of the day.

Generally speaking, DR actions refer to the end-user customers participation
in the EM and are seen as a response, from them, to the price variations of
electrical energy over time. We consider that customers can respond to the
variations of retailers’ prices by transferring volume quantities from the periods
when the prices proposed by a retail agent are high to the remaining hours.

Thus, this strategy consists in determining the prices and volumes of ab. The
volumes are determined through an optimization problem that aims to minimize
the cost of ab, including the prices (P s

k ) proposed by as, and the volumes (V b
k )

proposed by ab. The mathematical formulation of the objective problem is as
follows:

Minimize Cb =
n∑

k=1

P s
k × V b

k (3)

Subject to

V b
kmin

≤ V b
k ≤ V b

kmax
(4)

n∑

k=1

V b
k = V b

tot (5)

The constraint expressed by (4) has the main goal of guaranteeing that the
quantity of volume offered by ab is in the range of its acceptable values. Also,
the constraint (5) guarantees that the total quantity of energy (V b

tot) remains
unchanged, or in a range close to the initial value.

The optimization problem is resolved through a linear programming method
called simplex using lp solve, a Mixed Integer Linear Programming (MILP)
solver.1 lp solve is a free linear (integer) programming solver based on the revised
simplex method and the Branch-and-bound method for the integers. lp solve
solves pure linear, (mixed) integer/binary, semi-continuous and special ordered
sets (SOS) models. Via the Branch-and-bound algorithm, it can handle integer
variables, semi-continuous variables and SOS.

Beyond the volumes of energy, the customer also negotiates prices. The prices
offered in a new proposal are obtained by the following formula:

P b
knew

= P b
kprevious

+ Ct× P b
kprevious

, k = 1..n (6)

where P b
knew

is the new price to send by ab, P
b
kprevious

is the previous price sent
by ab, and Ct is a constant.

1 lpsolve.sourceforge.net
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4 A Case Study on Bilateral Contracting with DR

David Colburn, representing N2K Power (a retailer or seller agent), and Tom
Britton, representing SCO Corporation (a customer agent), negotiate a 24-rate
tariff in a multi-agent electricity market. Table 4 shows the initial offers and
the price limits for the two negotiating agents, and also the load profile of the
customer agent. Some values were selected by looking up to real trading prices
associated with a pool market in an attempt to approximate the case study to
the real-world. In particular, market reference prices were obtained by analysing
the Iberian Electricity Market.2 The minimum seller prices, i.e. the limits, were
then set to these reference prices. Also, some energy quantities were based on
consumer load profiles provided by the New York State Electric & Gas.3

Negotiation involves an iterative exchange of offers and counter-offers. We
consider the following:

• Priorities are (indirectly) set for the prices of as and the volumes of ab (higher
values mean greater importance);

• Preferences are specified by using the multiplicative model;

• The customer submits the load profile;

• After receiving the load profile, the retailer submits the first proposal;

• The agents are allowed to propose only strictly monotonically—the
customer’s offers increase monotonically and the retailer’s offers decrease
monotonically;

• The acceptability of a proposal is determined by a negotiation threshold—an
agent ai∈A accepts a proposal pt−1

j→i, submitted by aj∈A at t−1, when the

difference between the benefit provided by the proposal pti→j that ai is ready
to send in the next time period t is lower than or equal to the negotiation
threshold;

• The agents are allowed to exchange only a maximum number of proposals,
denoted by maxp .

Figure 1 and tables 2 and 3 summarize the results obtained. The results show
that the agents reach agreement before the maximum limit of proposals, namely
after the seller and the buyer agents sending six proposals (three proposals each).
During the course of negotiation, the buyer agent adjusts the load profile using
the “Volume Management” strategy, in response to the prices submitted by
the seller agent, and simultaneously defines new values for the prices. Also,
the seller agent adjusts the prices using the “Price Management” strategy (and
accepts the load profile proposed by the buyer). Figure 1 shows the variation of
both prices and volumes, considering the first proposal submitted and the final
proposal accepted. Table 2 shows the cost values of the received and ready to
send proposals of the buyer agent. Table 3 shows the agreed prices and the final
load profile.

2 www.mibel.com
3 www.nyseg.com
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Table 1. Initial offers and price limits for the negotiating parties

Consumer Retailer

Hour Price Limit Energy Price Limit

(e/MWh) (e/MWh) (MWh) (e/MWh) (e/MWh)

1 45.26 49.69 16.77 51.18 43.23

2 34.85 39.52 13.56 40.45 34.72

3 33.49 37.76 7.65 39.61 32.20

4 33.45 38.70 5.96 39.55 32.15

5 33.15 37.32 5.89 39.15 32.82

6 33.45 38.70 6.02 39.55 32.15

7 40.36 44.64 25.63 46.90 40.87

8 47.51 53.89 55.92 55.57 48.86

9 45.52 50.32 77.20 53.88 45.64

10 47.51 52.89 66.08 55.57 47.86

11 49.44 55.39 82.68 58.18 50.02

12 46.51 52.89 74.30 55.57 47.86

13 46.56 52.96 44.03 55.64 47.92

14 46.51 52.89 76.91 55.57 47.86

15 44.54 49.06 74.00 51.56 44.55

16 43.65 48.90 53.88 50.35 43.55

17 36.31 41.41 17.20 42.43 36.35

18 34.47 49.02 15.41 40.93 35.29

19 32.08 37.23 15.44 38.06 33.74

20 36.00 41.00 16.21 42.00 35.00

21 44.26 49.69 16.34 51.18 43.23

22 46.22 52.52 16.50 55.18 47.54

23 46.31 52.63 16.66 55.30 48.64

24 44.03 50.68 16.49 52.21 45.09
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Fig. 1. Variation of energy prices and volumes

It is also important to mention, from the results, that the customer agent
transferred quantities of energy from the market peak periods of greater
importance, notably the periods 8, 10, 11, 12, and 13, to some periods for which
the prices of the retailer agent are lower (see Figure 1). The cost of energy has
proven to be minimal for the distribution of the volumes of the final proposal
accepted. Furthermore, the retailer agent manages its prices by slightly reducing
the price for the periods in which it has transferred a greater amount of energy.
Accordingly to the results of the simulation, the negotiation ended when the
retailer agent accepted the third proposal sent by customer, i.e. when the value
of the buyers’ Utility to send (Ucmp) showed to be greater than the value of the
cost in the received proposal (Urcv).

Table 2. Cost values of the received and new proposals of the customer

Cost (e) 1st Proposal 2nd Proposal 3rd Proposal

Received proposal 215,00 205,00 201,00

Ready to send proposal 179,00 195,00 200,00
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Table 3. Case-Study final results

Hour Price Energy Hour Price Energy

(e/MWh) (e/MWh) (MWh) (e/MWh) (e/MWh)

1 47.87 17.61 13 52.72 37.43

2 37.61 14.24 14 52.65 84.6

3 35.65 8.03 15 48.75 81.40

4 35.60 6.26 16 47.57 59.27

5 35.85 6.18 17 39.48 18.92

6 35.60 6.32 18 38.13 16.95

7 44.28 28.19 19 35.86 16.98

8 53.08 28.19 20 35.86 16.98

9 50.64 84.92 21 47.87 17.97

10 52.65 58.05 22 52.29 18.15

11 55.20 70.28 23 52.83 18.33

12 52.65 63.15 24 49.36 18.14

5 Conclusion

This paper has presented several key features of agents with DR competence
operating in a multi-agent electricity market. In particular, it has described
a model for bilateral contracting with demand response, incorporating two
negotiation strategies for DR management: a “Volume Management” strategy for
a buyer agent and a “Price Management” for a seller or retailer agent. It has also
presented the additive and multiplicative models for specifying the preferences
of the agents over the negotiation outcomes. Furthermore, it has presented a
case study on bilateral contracts involving a retailer and a customer of energy
negotiating a 24h-rate tariff.

The simulation results, obtained with the new strategies and the multiplicative
model, support the belief that the behavior of market participants is as expected
in managing energy prices and volumes. They also confirm the belief that
the simulation tool currently being developed can be important to help the
decision process of the two parties during the negotiation of bilateral contracts
in competitive EMs with demand response. In the future, we intend to perform a
number of inter-related experiments to empirically evaluate the key components
of the bilateral contracting model, notably the DR management strategies.
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