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Preface

This multidisciplinary book brings together leading researchers in the STEAM-
H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and
Health) to present their own work in the perspective to advance their specific fields,
and in a way to generate a genuine interdisciplinary interaction transcending disci-
plinary boundaries. All chapters therein were carefully edited, peer-reviewed; they
are reasonably self-contained and pedagogically exposed for a multidisciplinary
readership.

Contributions are invited only, and reflect the most recent advances delivered in
a high standard, self-contained. The goals are:

1. To foster student interest in science, technology, engineering, agriculture, math-
ematics, and health.

2. To enhance multidisciplinary understanding between the disciplines, including
through a participative seminar series by showing how some new advances in a
particular discipline can be of interest to the other discipline, or how different
disciplines contribute to a better understanding of a relevant issue at the interface
of mathematics and the sciences.

3. To promote the spirit of inquiry so characteristic of mathematics for the advances
of the natural, physical, and behavioral sciences by featuring leading experts and
outstanding presenters.

4. To encourage diversity in the attendees and readers’ background and expertise,
while at the same time structurally fostering genuine interdisciplinary interac-
tions and networking.

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different buildings on
university campuses, publish in journals specific to their field, and attend different
scientific meetings. Existing scientific meetings usually fall into either small
gatherings specializing on specific questions, targeting specific and small group
of scientists already aware of each other’s work and potentially collaborating, or
large meetings covering a wide field and targeting a diverse group of scientists but
usually not allowing specific interactions to develop due to their large size and a
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crowded program. Traditional departmental seminars are becoming so technical
as to be largely inaccessible to anyone who did not coauthor the research being
presented. Here contributors focus on how to make their work intelligible, accessible
to a diverse audience, which in the process enforces mastery of their own field of
expertise.

This volume strongly advocates multidisciplinarity with the goal to generate new
interdisciplinary approaches, instruments, and models including new knowledge,
transcending scientific boundaries to adopt a more holistic approach. For instance, it
should be acknowledged, following Nobel laureate and president of the UK’s Royal
Society of Chemistry, Professor Sir Harry Kroto, “that the traditional chemistry,
physics, biology departmentalised university infrastructures—which are now clearly
out-of-date and a serious hindrance to progress—must be replaced by new ones
which actively foster the synergy inherent in multidisciplinarity.” The National
Institutes of Health and the Howard Hughes Medical Institute have strongly
recommended that undergraduate biology education should incorporate mathemat-
ics, physics, chemistry, computer science, and engineering until “interdisciplinary
thinking and work become second nature.” Young physicists and chemists are
encouraged to think about the opportunities waiting for them at the interface with
the life sciences. Mathematics is playing an ever more important role in the physical
and life sciences, engineering, and technology, blurring the boundaries between
scientific disciplines.

This book will be a reference of choice for established interdisciplinary scientists
and mathematicians, and a source of inspiration for a broad spectrum of researchers
and research students, graduate and postdoctoral fellows; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis including within and beyond
mathematics. As such the volume promotes mathematical sciences, physical and
life sciences, engineering, and technology education, as well as interdisciplinary,
industrial, and academic genuine cooperation.

Towards such goals the following chapters are featured in the current volume.

Chapter “Controlling Chaos in the Heart: Some Mathematics Behind Ter-
minating Cardiac Arrhythmia” by John W. Cain describes two vastly different
methods for controlling cardiac arrhythmia and how those methods can be modeled
mathematically. The traditional method, point stimulation, involves the delivery
of spatially localized electrical shocks through the tip of an electrode, and is the
basis for medical devices such as the implantable cardioverter defibrillator ICD). A
newer approach, known as far-field pacing (FFP), involves application of a pulsed
electric field across the entire heart. FFP exploits tissue heterogeneity, such as
interfaces between regions of healthy cells and dead (electrically non-conducting)
ones, as a means of creating “virtual electrodes.”

Chapter “ Working Memory and Transfer: Theoretical and Practical Consider-
ations” by Susanne M. Jaeggi and Martin Buschkuehl provides evidence for the
efficacy of several working memory interventions developed in their laboratories
and reviews the emerging literature from other groups. It discusses data that
demonstrate transfer to non-trained tasks throughout the lifespan, that is, in young
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adults, in old adults, in typically developing children, as well as children with
Attention-Deficit Hyperactivity Disorder (ADHD). It also presents the neural
correlates that underlie improvements observed with working memory training.
The authors argue that, even though transfer effects can be elusive, and some of
the effects seemingly not easy to replicate, instead of taking inconsistencies as a
proof for a lack of efficacy, researchers need to develop innovative approaches to
move the cognitive training literature beyond the simple question of whether or not
training is effective, and to address questions of underlying mechanisms, individual
differences, and training features and parameters that might mediate and moderate
the efficacy of training.

Chapter “Partial Functional Differential Equations, Reduction of Complexity
and Applications” by Khalil Ezzinbi aims at reducing the complexity of partial
functional differential equations, assuming that the undelayed part is not necessarily
densely defined and satisfies the Hille-Yosida condition. The delayed part is
continuous. The author proves the dynamic of solutions are obtained through an
ordinary differential equation that is well-posed in a finite dimensional space. He
then shows the existence of almost automorphic solutions for partial functional
differential equations. For illustration, he provides an application to the Lotka-
Volterra model with diffusion and delay.

Chapter “Characterizations of Convex Quadrics in Terms of Midsurfaces and
Shadow-Boundaries” by Valeriu Soltan discusses the middle points of any family
of parallel chords of a real quadric surface in the Euclidean space R" known to
belong to a hyperplane, property holding as well for the shadow-boundaries of
that surface. The author reviews the existing results and adds some new ones
which characterize convex quadrics among convex hypersurfaces in R", possibly
unbounded, in terms of plane quadric sections, hyperplanarity of their midsurfaces
and shadow-boundaries.

Chapter “Classifying Normal, Nevus, and Primary Melanoma Skin Samples
Using Penalized Ordinal Regression” by Kellie J. Archer, Jiayi Hou, and André A.A.
Williams looks into translational research that is developing multigenic classifiers
using data from high-throughput genomic experiments. While often the class to
be predicted is nominal, sometimes it may be inherently ordinal. For example,
tissue samples may be collected with the goal of classifying them as normal < pre-
malignant < malignant. In this case, molecular features monotonically associated
with the ordinal response may be important to disease development. While one
can apply nominal response classification methods to ordinal response data, in so
doing some information is lost that may improve the predictive performance of
the classifier. The authors developed an R package, glmpathcr, capable of fitting a
penalized continuation ratio model when the outcome to be predicted is ordinal. And
they demonstrate application of their method by predicting progression to melanoma
using microarray gene expression data.

Chapter “Structure—Activity Relationship Analysis of 7-Deazaadenosines as
Anticancer Agents” by Josue A. Nava-Bello, Ewa Wasilewski, Angelica M. Bello,
and Alejandro A. Nava-Ocampo considers the lengthy and costly complex process
to develop a successful therapeutic. In order to accelerate this process, molecular
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modeling has become a key component of drug design. Methods used in computa-
tional chemistry vary from ab initio quantum chemistry methods to semi-empirical
calculations and molecular mechanics. A study of the anticancer activity of a
series of 7-aryl- and 7-hetaryl-7-deazaadenosines showed that nucleosides with
5-member heterocycles at the position 7 were more potent in vitro cytostatic agents
against hematological and solid tumor cell lines than molecules with 6-member
heterocycles. The authors present a quantitative structure—activity relationship
(QSAR) analysis of these chemical moieties in order to have a better understanding
of their structural properties and identify their molecular descriptors explaining
their biological activities. They found that 5-member cyclic structures have three
energy molecular descriptors that were negatively correlated to their biological
activity, in particular, compounds with higher energies had higher biological potency
represented by lower ICsy values. CLogP, a parameter of lipophilicity, was also
found to be positively correlated to their biological activity, i.e., compounds with
lower CLogP values had higher biological potency represented by lower concentra-
tions inhibiting the growth of cancer cells by 50 %. Qualitatively, 5-member-ring
heterocycles of 7-deazaadenosine had lower steric hindrance, i.e., were structurally
smaller, than their 6-member counterparts. They made the case that, such a context,
a QSAR analysis could be extraordinarily helpful in studying the mode of action of
molecules with potential pharmacological or toxicological relevance.

Chapter “More than an African American Facilitator and a Prayer: Integrating
Culture and Community into HIV Prevention Programs for African American Girls”
by Faye Z. Belgrave, Jasmine Abrams, Sarah Javier, and Morgan Maxwell focuses
on the need for prevention and intervention programs to address health disparity
within a culturally sensitive and developmentally appropriate framework, in the
case of sexually active African American adolescent females at a heightened risk
for contracting sexually transmitted infections including HIV/AIDS. Research has
shown that culturally integrated interventions can be effective at reducing HIV risk
The goals of this chapter are to: (1) define culture, cultural competency, and cultural
integration; (2) discuss community integration in HIV prevention programs; and (3)
discuss ways in which culture can be attended to and integrated in prevention and
intervention efforts. The chapter addresses each goal in order, beginning with an
overview of relevant concepts.

Chapter “Dynamics of Niche Construction in Models ‘Consumers-Renewable
Resource’ and ‘Prey-Predators-Renewable Resource’” by Faina S. Berezovskaya
and Georgiy P. Karev deals with the question of “how much over-consumption a
renewable resource can tolerate” using mathematical models, where a consumer
population compete for the common resource, can contribute to resource restoration,
and is subject to attacks of predators. The bifurcation analysis of the systems shows
that well-adapted predators can keep the system in a stable equilibrium even for
“strong” prey over-consumption, when the initial system of resource-consumer
goes extinct. It means that predators may extend the domain of the total system
coexistence.
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Chapter “Recent Advances in Approaches to the Study of Gene Locus Control
Regions” by Benjamin D. Ortiz contributes to the decades long investigation
into the regulation of gene transcription in vertebrates, with the locus control
region (LCR) emerging as perhaps the most powerful cis-acting regulatory DNA
element that one can envision. An LCR element is unique in that it supports
both specific spatiotemporal regulation of transcription during development and a
poorly understood “insulation capacity” that prevents genomic interference with
the gene regulatory program it would impose upon a linked transgene. As such,
it represents a complete, compact, and portable package of the DNA sequence
information required to establish an independently and predictably regulated gene
locus in native chromatin of a whole animal. Both in vivo and cell culture models
have contributed significantly to building the field of LCRs. Nevertheless, the
gold standard experimental approach to LCR study is transgenic mice, which has
been dominant in the progress made in the field over the past 25 years. However,
recent technological advances are resulting in a re-emergence of cell culture-based
approaches to LCR study, portending a coming era of more rapid progress in this
significant but understudied field. The investigation of the unique and powerful gene
regulatory activities supported by LCR elements offers unparalleled opportunities
to gain insight into cis-mediated transcriptional regulation at the single gene locus
level. Furthermore, such insights are critical to advancing the safety and efficacy of
gene therapy.

Chapter “Dynamical Roles of Jacobian Feedback Loops and Qualitative Mod-
eling” by Bourama Toni presents a mathematical methodology for the qualitative
modeling of differential systems using the feedback loops encoded in the Jacobian
matrix, and described by the products of the Jacobian entries under cyclic per-
mutations of the indices. The technique is easy to implement and could quickly
demarcate both parameter and phase spaces into exciting regions (limit cycle,
multiple equilibria, chaotic behavior), non-exciting ones (single stable fixed points),
hard-instance regions (ergodic behavior). As such it could be useful in surveying
dynamical responses of models simulating physico-chemical, biological, biochem-
ical, economical systems and game theory. It efficiently asserts the possibility
of multistationarity, periodicity, self-sustained oscillations, chaotic behavior using
strictly the qualitative relations and assumptions of the systems, to achieve primarily
qualitative understanding rather than quantitative numerical prediction. To illustrate
the author includes a complete loop analysis of the celebrated Lorenz and Rossler
systems predicting their global dynamics.

Chapter “Forecasting of Time Series Data Using Multiple Break Points and
Mixture Distribution” by Rajan Lamichhane, Norou Diawara, and Cynthia M.
Jones deals with special classes of stochastic processes with time series of sparse
data. Studies in such cases focus on the analysis, construction, and prediction in
parametric models. Here, the authors assume several nonlinear time series with
additive noise components, and the model fitting is proposed in two stages. The first
stage identifies the density using all the clusters information, without specifying
any prior knowledge of the underlying distribution function of the time series. In
the second stage, they partition the time series into consecutive non-overlapping
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intervals of quasi stationary increments where the coefficients shift from one stable
regression relationship to a different one using a breakpoints detection algorithm.
These breakpoints are estimated by minimizing the likelihood from the residuals.
The authors approach time series prediction through the mixture distribution of
combined error components. Parameter estimation of mixture distribution is done
by using the EM algorithm. The method is then applied to a simulated data.

Chapter “Direct Differentiation of Human Pluripotent Stem Cells into Advanced
Spermatogenic Cells: In Search of an In Vitro System to Model Male Factor
Infertility” by Charles A. Easley, Calvin R. Simerly, and Gerald Schatten focuses on
Assisted Reproductive Technology (ART) which has gained worldwide acceptance,
and on Intracytoplasmic Sperm Injection (ICSI) which has aided couples with
severe male factor infertility to achieve pregnancies. While ICSI has circumvented
some defects in in vitro fertilization (IVF), numerous patients still fail to achieve
pregnancies. Even with patients with known causes for male factor infertility
(Klinefelter Syndrome, Sertoli Cell Only Syndrome, DAZ family deletions, etc.),
root causes are still being investigated, although there is no in vitro model for
human spermatogenesis to examine intracellular root causes. Differentiation of
stem cells into spermatogenic lineages in vitro provides a unique window into the
biological mechanisms responsible for driving pluripotent stem cells into essential
progeny—haploid spermatids and viable sperm—as well as provides an innovative
approach for determining novel root causes for male infertility. Our recent work
outlined a novel approach for differentiating human embryonic stem cells (hESCs)
and induced pluripotent stem cells (hiPSCs) into advanced spermatogenic lineages
including haploid spermatids with correct parent-of-origin genomic imprints on two
loci. The work provides herein a foundation for building a true in vitro model for
human spermatogenesis with which to model, diagnose, and potentially treat male
factor infertility.

Chapter “Stepanov-Like Pseudo-Almost Periodic Functions in Lebesgue Spaces
with Variable Exponents LP®” by Toka Diagana and Mohamed Zitane introduces
and studies a new class of functions called Stepanov-like pseudo-almost periodic
spaces with variable exponents, which generalizes in a natural way the space of
Stepanov-like pseudo-almost periodic spaces. Basic properties of these new spaces
are established. The existence of pseudo-almost periodic solutions to some first-
order differential equations with SP9®)-pseudo-almost periodic coefficients will also
be studied.

Chapter “Group Circle Systems on Conics” by Raymond R. Fletcher studies
a group circle system, a collection of points and circles in the Euclidean plane
determined by the elements of an abelian group mapped injectively to the plane,
where no five points in the range set are cocyclic. Here the attention is confined to
group circle systems all of whose points (or vertices) lie on a noncircular conic.

Chapter “Remanufacturing Processes, Planning and Control” by Jianzhi Li and
Zhenhua Wu provides a summary of critical issues in remanufacturing process and
its planning and control. The chapter starts with an introduction of the special
characteristics and the associated problems in remanufacturing. Typical remanu-
facturing processes such as cleaning, testing, and disassembly are then discussed in
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detail. The chapter also provides a discussion of process sequencing for product
disassembly to minimize cost and energy consumption. Due to the stochastic
nature in the material arrival process, production planning represents another main
challenge for remanufacturers. Based on a case study of a business in Austin TX, a
simulation model with a prioritized stochastic batch arrival mechanism, considering
factors that affect the total profit, is also discussed. The chapter also presents a
genetic algorithm (GA) to optimize the production planning and control policies
for dedicated remanufacturing.

The concluding chapter “Viscous Interfacial Motion: Analysis and Computation”
by Jin Wang considers the interfacial flows between two viscous incompressible
fluids. After formulating the mathematical framework, the author first presents
analytical solutions to the linearized problem, discusses some results from linear
asymptotic analysis, and then describes a numerical method for computing the
nonlinear motion which ensures a high accuracy on and near the moving interface.
Simulation results on viscous Stokes waves are presented to demonstrate the
advantages of this method. In addition, as an example of nonlinear asymptotic
study, the authors conduct a perturbation series analysis for Stokes waves with small
viscosity, the results of which provide an analytical justification to the numerical
observation.

The book as a whole will certainly enhance the overall objective of the series
(seminars and previous volumes), that is, to foster student interest and enthusiasm
in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Math-
ematics and Health), stimulate graduate and undergraduate research, and generate
collaboration among researchers on a genuine interdisciplinary basis.

Virginia State University is in an area that is socially, economically, intellectually
very dynamic, and home to some of the most important research centers in the USA,
including NASA Langley Research Center, manufacturing companies (Rolls-Royce,
Canon, Chromalloy, Sandvik, Siemens, Sulzer Metco, NN Shipbuilding, Aerojet)
and their academic consortium (CCAM), University of Virginia, Virginia Tech,
the Virginia Logistics Research Center (CCAL), Virginia Nanotechnology Center,
Aerospace Corporation, C31 Research and Development Center, Defense Advanced
Research Projects Agency, Naval Surface Warfare Center, National Accelerator
Facility, and the Homeland Security Institute. The series, the seminars and the
written thematic continuation published by Springer a world-renowned publisher,
is now well established and is expected to become a national and international
reference in interdisciplinary STEAM-H education and research.

Petersburg, VA, USA Bourama Toni
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Controlling Chaos in the Heart: Some
Mathematics Behind Terminating
Cardiac Arrhythmias

John W. Cain

Abstract Precisely coordinated rhythmic contraction of heart muscle tissue is
essential for the effective pumping of blood, and abnormal cardiac rhythms (arrhyth-
mias) can be fatal. Patients with certain types of arrhythmias receive surgically-
implanted devices which are designed to intervene when severe abnormalities are
detected.

Here, we shall describe two vastly different methods for controlling cardiac
rhythm and how those methods can be modeled mathematically. The traditional
method, point stimulation, involves the delivery of spatially localized electrical
shocks through the tip of an electrode, and is the basis for medical devices such
as the implantable cardioverter defibrillator (ICD). A newer approach, known as
far-field pacing (FFP), involves application of a pulsed electric field across the
entire heart. FFP exploits tissue heterogeneity, such as interfaces between regions
of healthy cells and dead (electrically non-conducting) ones, as a means of creating
“virtual electrodes.” Importantly, studies suggest that FFP can successfully termi-
nate arrhythmias such as fibrillation using far less energy than point stimulation,
potentially sparing patients from the excruciating pain associated with traditional
ICD intervention.
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2 J.W. Cain
1 Introduction

Closed-loop feedback can be an incredibly useful and powerful tool for guiding
dynamical systems towards desirable equilibrium states that might otherwise be
unstable. Ott, Grebogi, and Yorke (OGY) [18] designed a feedback control tech-
nique which has been used successfully to suppress both periodic and aperiodic
responses in physical systems. Subsequent experimental and theoretical analy-
ses [20, 21, 26, 27] have advanced more robust methods for controlling bifurca-
tions and chaos. Adaptations of the OGY method have been used by numerous
authors [3-5,9, 10, 12] as a means of preventing bifurcations that lead to cardiac
arrhythmias.

Our primary interest in feedback control lies in its ability to terminate oscillatory
or chaotic behavior in cardiac rhythm—behavior that can be catastrophic if left
unchecked. The principal idea underlying OGY control and its variants is that, by
applying small perturbations to an accessible system parameter p, it is sometimes
possible to force the dynamical variables x to converge to an equilibrium x* that
would be unstable in the absence of control. Here are three examples to illustrate
what we have in mind:

* The upward vertical position of a pendulum is an example of an unstable
equilibrium. In order to stabilize that equilibrium using feedback control, we
might apply a sequence of small “kicks”, pushing the pendulum clockwise
whenever it attempts to fall counterclockwise and vice-versa. If control is
successful, both the angular velocity of the pendulum and the magnitude of the
kicks should tend to zero, leaving the pendulum precariously balanced along the
upward vertical. Stabilizing an inverted pendulum is actually a classic feedback
control problem; see, for example, [15].

* Suppose that quasi-static variation of the parameter y causes a supercritical Hopf
bifurcation in which x* loses stability, leading to “undesirable” oscillations.
It may be possible to stabilize x* via tiny perturbations to u, ultimately
terminating the oscillatory behavior. See also [1] for an alternative approach!
toward controlling Hopf bifurcations.

* A discrete-time, purely academic example: The discrete logistic mapping

Xn+1 = /‘L*xn(l — Xn), (D

where pu* € [0, 4] and x € (0, 1), is among the best-known examples of system
with chaotic solutions. The fixed point x* = 1— (u*)~! is asymptotically stable
for 1 < u* < 3.1If u* is increased quasi-statically, a cascade of period-doubling

'Some readers may be familiar with general nonlinear control systems x’ = f(x, u) where x is
a state variable, u is a control, and f depends smoothly on both arguments. Let us emphasize:
in this article, we shall not consider continuous controls u(x), and feedback is always applied by
perturbing a parameter.



Controlling Chaos in the Heart: Some Mathematics Behind Terminating. . . 3

a b1

no control: y=R=0 u, =3.7
O | | | 0

0 10 20 30 40 0 10 20 30 40
n n

ETDAS y=30 R=05 u, =37
| | |

Fig. 1 (a) Chaotic behavior of iterates of the mapping (1) for the particular choice of u* = 3.7.
(b) Termination of chaos via ETDAS feedback control

bifurcations occurs, the first at ©* = 3 and the second at u* = 1 + /6. The
sequence of bifurcation values of ©* has an accumulation point at approximately
3.5699, beyond which chaotic solutions can exist. For u* € [3,4], OGY-type
feedback control can be used to stabilize x* via small perturbations to u*, even
if the “baseline” p* happens to lie in the chaos regime. Figure 1 illustrates the
use of a specific feedback control algorithm (see next section) as a means of
achieving the desired results.

Throughout this survey article, there are two different aspects of cardiac arrhyth-
mia control that we shall consider, one involving the timing of the electrical
“shocks” applied by a medical device and the other involving the actual exper-
imental setup for applying those shocks. Regarding the former, in Sect. 2 we
shall describe a specific feedback control algorithm known as extended time-delay
autosynchronization (ETDAS) [26] that will serve as our basis for timing the
shocks. Regarding the latter, Sect. 1.1 provides preliminary descriptions of two
vastly different experimental setups for delivering the shocks: point stimulation
and far-field pacing. Results of numerical simulations of both setups are reported
in Sect. 4. In order to understand (a) how ETDAS works and (b) the important
distinctions between point stimulation and far-field pacing, it will be helpful
to model tissue samples of different dimensions: “zero-dimensional” single-cell
samples (Sect. 3), “one-dimensional” fibers of cells joined end-to-end (Sect. 4.1),
and “two-dimensional” thin sheets of cardiac tissue (Sect. 4.2).

We focus on a particular rhythm known as APD alternans, a beat-to-beat
alternation of action potential duration (APD) (see Fig. 2). APD alternans is
believed to serve as a substrate through which cardiac rhythm can degrade into
potentially deadly rhythms such as ventricular fibrillation [2, 6, 14, 19, 22,25]. In
the language of nonlinear dynamics, high-amplitude alternans can induce breakup
of spiral waves of propagating action potentials, which can degrade into turbulent
patterns. Turbulent electrical wave patterns cause the cardiac muscle tissue to
quiver erratically, preventing coordinated contraction of the tissue and impairing
or preventing the heart’s ability to pump blood.
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Fig. 2 Schematic action potentials in a periodically stimulated cardiac cell. Brief stimuli (indi-
cated by dots on the time axis) are applied with period B*, resulting in a sequence of action
potentials (prolonged elevation of voltage across the cell membrane). (a) If B* is large, the result
is a sequence if identical action potentials. (b) If B* is short, APD alternans can occur

The onset of APD alternans is typically associated with an instability that occurs
when the heart rate becomes critically fast. More exactly, if a patch of cells is
paced (stimulated periodically) with period B*, then one of several [approximate]
steady-state responses may occur. If B* is large, then the sequence of APD values
typically converges” to some limit A*. This steady-state APD value is a function of
B*, a feature of cardiac tissue known as APD restitution. If heart rate becomes
faster (i.e., if B* decreases), then A* may lose stability via a period-doubling
bifurcation [17] or a border-collision bifurcation [23], resulting in the period-2
response of alternans. Further decreasing B* can lead to pattern known as 2:1
conduction block: every 2 stimuli elicit only one action potential—the cells ignore
every other stimulus because the rapid pacing does not given them sufficient time to
recover their excitability.

1.1 Point-Stimulation vs. Far-Field Pacing

Most previous attempts to control alternans with OGY-type methods involve the use
of an electrode that applies stimuli in a localized region of tissue, a technique that we
will refer to as point stimulation. The intent of the electrode is to “reset” the heart’s
native electrical activity when an abnormal rhythm is detected. In circumstances

2Throughout this article, we neglect small beat-to-beat variations in APD due to background noise.
This simplifying assumption gives us license to adopt deterministic models as opposed to stochastic
ones, facilitating mathematical analysis and computer simulations.
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Fig. 3 Schematic diagram of E
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when pacing with period B* induces alternans, control can be applied by having
the electrode perturb B* on a beat-to-beat basis. The perturbations are typically
chosen proportional to the difference between the two preceding APD values, and
experiments (see, for example, Hall and Gauthier [10]) have shown that point
stimulation can terminate alternans in tiny, “zero-dimensional” patches of cardiac
cells. In Sect. 3, we explain how routine linear stability analysis of a single-cell
alternans model can be used to approximate the ranges of parameter values under
which ETDAS control is expected to succeed.

In spatially extended tissue, using point stimulation with feedback control
applied to the pacing period B* appears to be far less effective. For example,
Echebarria and Karma [5] performed numerical simulations in which each cell
in a “one-dimensional” fiber (consisting of cells joined end-to-end) experienced
alternans. They found that when a special case of ETDAS is implemented via point
stimulation at some specific spatial location along the fiber, alternans could only be
suppressed in the cells within some small distance from the [simulated] electrode.
Later experiments appeared to confirm the predictions in [5], calling into question
whether point-stimulation could ever be effective enough to achieve whole-heart
control. In Sect. 4.1, we will show results indicating that the findings in [5] are still
observed even when the [full, unrestricted] ETDAS method is used.

A recent study of Fenton et al. [8] offers an alternative to point stimulation—
an alternative that appears to be quite successful in terminating arrhythmias in
the whole heart. Far-field pacing (FFP) is a technique in which a pulsed electric
field is applied across the entire heart, using two plate electrodes, a cathode and
an anode (see Fig. 3). The idea behind FFP is that any anatomical obstacles (e.g.,
regions of dead, non-conducting tissue) in the heart can be turned into “virtual”
electrodes. The field depolarizes cells on one side of an obstacle and hyperpolarizes
cells on another side and, if the field is sufficiently strong, the depolarized cells will
fire a propagating action potential. In [8], the authors note that FFP successfully
terminated atrial fibrillation in 69 of 74 occurrences in 8 experimental preparations
on canine hearts. The impressive success rate is only one noteworthy aspect of
their study. Importantly, their electric field strengths involve energies that are
near the “pain threshold”, far weaker than the high-energy, pain-inducing anti-
fibrillation pacing associated with the implantable defibrillators that some patients
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receive. Regarding the timing of the electric field pulses, the authors of [8] used
overdrive pacing to combat the atrial fibrillation. That is, they issued a very rapid
train of electric field pulses at a frequency designed to overdrive the dominant
frequency of the spatiotemporal chaos associated with fibrillation. In doing so,
they “reset” the electrical behavior of the tissue, the idea being that the heart’s
native pacemaker cells would subsequently take over and resume a normal rhythm.
Because overdrive pacing could cause tissue fatigue not to mention reduced battery
life for an implantable device, one might ask whether there are equally-successful
alternative ways to administer trains of FFP pulses. In Sect. 4.2, we briefly describe
some numerical experiments in which ETDAS, as opposed to overdrive pacing, is
used to automate the timing of those pulses.

2 ETDAS for Discrete Systems

The ETDAS method was originally introduced in [26]. Although ETDAS can be
used to stabilize unstable equilibria of differential equations, here we will use it to
stabilize unstable fixed points of discrete-time systems (as we shall be regarding
individual heartbeats as discrete-time events).

2.1 One-Dimensional Mappings

Consider a one-dimensional mapping x,+1 = f.(x,) where f, is a continuously
differentiable function of the variable x, and the parameter ;. Assume that the
mapping has an isolated fixed point x*, the value of which may depend on wu.
Further suppose that a period-doubling bifurcation occurs at some critical value of
W, at which point x* loses stability and a stable 2-cycle is born. ETDAS attempts
to terminate the alternation and stabilize x* by perturbing p to u + €,, with the
perturbations €, chosen according to the rule

€ =Y (-xn - xn—l) + RE,,. (2)

The parameter y is sometimes referred to as the feedback gain. The effect of the
parameter R is more subtle: it adjusts the perturbations according to the history of
all previous iterates [26] and, in addition to offering added robustness, the added
flexibility it offers relative to the original OGY schemes is valuable in reducing
sensitivity to noise [3]. It is instructive to inspect Eq. (2) in the special case that
R = 0 and y # 0. In that case, ETDAS merely modifies the parameter p by
an amount proportional to the difference between the two previous iterates—the
magnitude of the perturbations is based upon the amplitude of the alternation.

The beauty of ETDAS and most other techniques adapted from the original OGY
formalism is that they do not require advance knowledge of the value of x*, the
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unstable fixed point being targeted for stabilization, and they do not “move” the
fixed point. As an academic example, consider the discrete logistic mapping (1)
with u* € (3.4). In that parameter regime, the fixed point x* = 1 — (u*)~! is
unstable. If we apply ETDAS control by modifying p* according to (2), we obtain

X1 = (U° + €)X, (1 — xp)

3

ent1 =y [(W* + €)xn(1 — x,) — x| + Rey. ®
The application of ETDAS increases the dimension of the original mapping by 1.
The new system has fixed point (x*, 0) which, if y and R are chosen suitably, can
be stabilized even if u* > 3. Linearizing (3) about this fixed point, we may predict
the region of y-R parameter space in which ETDAS may successfully stabilize the
fixed point. If J denotes the Jacobian matrix associated with the right-hand side
of (3) evaluated at (x*, 0), requiring that each eigenvalue of J have modulus less
than 1 guarantees local asymptotic stability of the fixed point. The following Lemma
applies:

Lemma 2.1. IfJ is a 2 x 2 matrix, then its eigenvalues have modulus less than 1 if
and only if (i) det(J) < 1; (ii) tr(J) — det(J) < 1, and (iii) tr(J) + det(J) > —1.

Applying those criteria to our academic example (3) with u* = 3.7, we obtain
inequalities on R and y that yield the region sketched in Fig. 4. Note that the
[uncontrolled] discrete logistic mapping (1) has chaotic solutions when u* = 3.7.
By picking an (R, y) pair as suggested by Fig. 4, we may actually control the chaos
for stabilize x* as illustrated in Fig. 1.

2.2 Higher-Dimensional Mappings

Using ETDAS for prevention of bifurcations and chaos in higher-dimensional
mappings is equally straightforward, and comes with the relatively minor expense
of raising the dimension of the underlying system by 1. In the next section, we will
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demonstrate the success of feedback control in a two-dimensional system of the
form

Xn+1 = flt(xn’ Yn)

Yn+1 = gu(xny Yn),

“

where p is a parameter and the functions f and g are continuously differentiable
with respect to their arguments as well as p. Assuming that the [uncontrolled]
system (4) has an isolated fixed point (x*, y*) that loses stability as u is varied,
ETDAS aims to prevent oscillation of the iterates x, by perturbing p to u + €,
with €, chosen as in (2) above. The resulting system has three dynamical variables,
(Xn, Yn, €n) and a fixed point (x*, y*, 0). Linearizing about that fixed point leads to
a 3 x 3 Jacobian matrix J, and our goal is to choose R and y in such a way that all
eigenvalues of J move into the open unit disc in the complex plane. For reference,
we state a Lemma that can help in our exploration of parameter space:

Lemma 2.2. If J is a 3 x 3 matrix, then its eigenvalues satisfy the characteristic
equation

pA) =1 +aA* +ad + a3 =0,

where ay = —tr(J), a3 = —det(J), and

a, = % [(tr(]))* — tr(J?)].

The eigenvalues lies in the open unit disc of the complex plane if and only if (i)
p(1) > 0; (ii) p(—1) < 0; (iii) 3+a—ar—3a; > 0; and (iv) 1 +a a3 —a,—a3 > 0.

3 Restitution and ETDAS in Zero Dimensions

Often, analysis of cardiac rhythm is distilled to the problem of examining sequences
of time intervals that represent when a cell can be regarded as “excited” (i.e.,
transmembrane voltage v elevated above some threshold vy,) or “recovered” (v <
vir). Given a threshold reference voltage vy, slightly above the cell’s resting
potential, action potential duration APD can be regarded as the amount of time that
v > vy, in a given beat. As indicated in Fig. 2, we will let A, denote? the duration of
the action potential following the nth electrical stimulus. The diastolic interval (DI)
essentially measures the amount of recovery time that the cell is allowed between
the end of an action potential and the application of the next stimulus. We let D,

3Henceforth, we shall use one-letter abbreviations when mathematical notation is required,
preferring A, and D, to APD,, and DI,,.
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Fig. 5 (a) Example of a restitution curve from Eq. (5). (b) Bifurcation to alternans in Eq. (6) using
the restitution function from Eq. (5)

denote the DI that follows the nth action potential. When pacing is periodic, we
will let B* denote the pacing period, sometimes referred to as the basic cycle length
(BCL). Notice that A, + D,, = B* for each n.

There is a vast literature dedicated to models of the cardiac action potential,
most of which are based upon the formalism originally posed by Hodgkin and
Huxley [11] in their model of the nerve action potential in giant squid axon.
The differential equations in those sorts of models track the voltage v as well as
the various currents associated with passage of sodium, potassium, and calcium
ions across the cell membranes. That level of detail is often not necessary for
the purposes of analyzing and/or controlling rhythm, and bifurcations leading to
alternans are more easily understood by extracting mappings that relate A, to A,,.
Restitution of APD can be defined as the tendency for steady-state APD, A*, to
decrease with faster pacing (shorter B*). It can also be thought of as the tendency
for APD to increase if the preceding DI is increased: allowing a cell more time to rest
prolongs the duration of its next action potential. Mathematically, this relationship
can be written [17] in the form A,+; = f(D,), and the graph of f is called a
restitution curve. An example of a restitution curve

Ant1 = f(Dy) = 392 — 525 exp(—D,/40), &)

that was fit to bullfrog restitution data [10] is graphed in Fig. 5a (all quantities
measured in milliseconds). Notice that lengthening DI yields diminished return on
the investment of additional recovery time.

The restitution relationship A, +; = f(D,) can be written as a one-dimensional

mapping
Antt = f(Dy) = f(B* = Ay). (©)

For the restitution function given in Eq.(5), a period-doubling bifurcation to
alternans occurs when B* = 455, as shown in Fig. 5b.
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Fig. 6 Domain in which R+1
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3.1 ETDAS in a Restitution Mapping

Applied to the restitution mapping (6), ETDAS modifies the pacing period B* on a
beat-to-beat basis according to

An+1 = f(B* + €, — An)a (7)
and the perturbations €, are updated recursively by
€nt1 = ]/[f(B* + € _An)_An] + Re,. 3

If B* is large enough that alternans does not occur, control is turned off by setting
y = R = 0 and the sequence of APD values converges to a stable steady-state A*.
Routine linear stability analysis of the uncontrolled map predicts that this will occur
if | f/(B* — A*)| < 1; i.e., if the slope of the restitution function f has magnitude
smaller than 1. If the slope exceeds 1, alternans may occur, with APD alternating
between two numbers Ajong and Aghor that lie on either side of A*. Linearizing
Eqgs. (7) and (8) about (A*, 0) and applying Lemma 2.1, it is possible to predict the
ranges of y and R for which ETDAS is predicted to stop alternans. In fact, one may
show that this domain is defined by the inequalities 0 < R < 1 and

(ﬂ)(l—l)<y<R+l, ©)]
2 K} K

where s = f/(B* — A*) measures the slope of the restitution function. The details
of that calculation appear in [3], and the results are summarized in Fig. 6. Notice
that as the slope s becomes steeper, the region in parameter space in which control
is projected to succeed shrinks.
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3.2 ETDAS with Memory

The restitution mapping (6) is sometimes a useful predictive tool when studying
cardiac rthythm, but using a one-dimensional mapping as a caricature for a high-
dimensional system like the heart is bound to have limitations. Indeed, it is
well-known [13, 28, 29] that APD is influenced not only by the preceding DI,
but also by the recent pacing history of the tissue. In other words, A, +; should
really be regarded as a function of A,,A,—1,...,A,—x+1 for some k > 1, a
phenomenon known as short-term memory. Schaeffer et al. [24] use asymptotic and
perturbation methods to derive a k = 2-dimensional restitution mapping model
from a differential equation model of the action potential. Their two-dimensional
model can exhibit a surprisingly rich variety of dynamical behavior, capturing far
more of the physiologically relevant phenomena than one might expect from such a
low-dimensional mapping. With the Schaeffer restitution model as a basis, ETDAS
is implemented just as easily as in the previous subsection. Again, ETDAS raises
the dimension of the mapping by 1, this time resulting in a 3 x 3 system. Linear
stability analysis coupled with Lemma 2.2 leads to a system of four inequalities
which indicate how R and y should be chosen for control to succeed.

Example. The Fox-Bodenschatz-Gilmour memory model for cardiac restitution is
given by

An+l = (1 - O(Mn-l—l)G(B* - An)

* (10)
M, 1=[1-(1- Mn)e—An/r]e—(B —An)/r7
where
E
6 = A+ T o (1)

the memory variable M), and the parameter « are dimensionless, and the parameters
A, C, D, and E have units of time (milliseconds, in our case). We have written
the equations in the form that appears in [29] and, in order to have a large window
of alternans, we adapt their parameters as follows: « = 0.2, A = 88, C = 280,
D =28, E = 250, and 7 = 1,000. Alternans occurs if B* between approximately
340 and 615, as illustrated in the “bubble” bifurcation diagram of Fig. 7. In order to
control alternans, we apply ETDAS replacing B* with B* + ¢, as in the previous
subsection. The results of ETDAS with R = 0.3, y = 0.4 (selected under the
guidance of our aforementioned linear stability analysis) are also shown in Fig. 7.
Observe that alternans is completely suppressed throughout the window in which it
had previously occurred.



12 J.W. Cain

Fig. 7 Bifurcation diagram 350

for the memory model (10) control off
both with and without vy=R=0
control. ETDAS (R = 0.3,

y = 0.4) completely g 250 |-

suppresses alternans 3
throughout the window o
<

340 < B* < 615 150 [—
control on
v=0.4,
R=0.3
50 1 1 1
300 400 500 600 700

B* (ms)

4 Control in Spatially Extended Systems

As we explained in the Introduction, studies indicate that point stimulation con-
trol of alternans in one-dimensional fibers of cardiac cells succeeds only within
some limited distance from the pacing electrode. In their numerical simulations,
Echebarria and Karma [5] applied OGY control via point stimulation to one end
of a fiber that initially exhibited alternans at every point along the fiber. For their
particular choice of feedback gain and cell membrane model, they found that it
was only possible to suppress alternans in cells whose distance from the stimulus
electrode was on the order of 0.5-1.0cm. In their simulations, they use a restrictive
special case of ETDAS in which the parameter R is set to 0, and their simple model
of the cell membrane is unable to exhibit short-term memory. Here, we recreate their
numerical experiments, but using the full ETDAS method with two different models
of the action potential—one without memory [16] and one with memory [7].

4.1 ETDAS Via Point Stimulation in One-Dimensional Fibers

Following Echebarria and Karma [5], we use a standard cable model of action
potential propagation in one spatial dimension. Assuming that one end of the fiber
is subjected to point stimulation via a pacing electrode, we will let x > 0 denote
the distance along the fiber to the pacing site, measured in centimeters. The cable
equation

dv 9% Lion + Lstim
—_ =p_—_ o 77 12
ot 0x2 Cpn (12)

models the transmembrane voltage v = v(x,¢) in each cell along the fiber. The
membrane capacitance C,, is a constant that can be measured experimentally, and
the diffusion coefficient D incorporates the cell surface-to-volume ratio and the
intracellular resistivity. We test two different formulations of the ionic currents I;,,,,
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one obtained by solving the differential equations of a memoryless two-current
model [16] and another obtained from an adaptation of the Fenton-Karma model [7]
appearing in the appendix of [30]. The stimulus current I, is chosen to be a
periodic (period B*) train of square-wave impulses, each of duration 1.0 ms. Stimuli
are applied via a simulated electrode to cells in the 1-mm wide region 0 < x < 0.1,
and the amplitude of Iy;;,, is chosen sufficiently strong to elicit a propagating action
potential during each stimulus, provided that B* is not too small.

Although we have not yet performed a comprehensive search of parameter space,
we discuss our preliminary findings regarding the ability of ETDAS to suppress
alternans in a fiber. Because the results were independent of whether the model
exhibited memory (as in [7]) or did not (as in [16]), we report the results from the
latter. Guided by the bifurcation diagrams in [16], we selected model parameters
that would induce alternans in a pacing period of B* = 300 ms. Then, we initiated
alternans in the fiber modeled by Eq. (12) by using a stimulus current I, with
period 300 ms. If the fiber is sufficiently long (we used a fiber of length 10 cm), the
fiber exhibits spatially discordant alternans after several beats: at some distance
from the pacing site x = 0, the cells abruptly transition from long-short APD
alternation to short-long APD alternation. This behavior is illustrated in Fig. 8,
which shows the last two seconds out of 40 beats of discordant alternans without
ETDAS control (y = R = 0). The left panel shows a space-time plot of wave fronts
(approximately straight lines) and wave backs (curves with noticeable oscillations)
of those last few action potentials. APD can be measured from the vertical gap
between a wave front and the subsequent wave back, and clearly APD oscillates
as a function of distance x from the pacing site. The right panel of Fig. 8 shows a
graph of (APD — A*) as a function of x during the last two beats of this discordant
alternans pattern. Note the presence of several “nodes” marking transition points
between regions of long-short and short-long APD alternans.

In order to simulate the use of ETDAS control, we repeated the simulations that
were used to generate Fig. 8 except that after 20 beats, ETDAS was implemented
using y = 0.6 and R = 0.3. The results are shown in Fig. 9, which parallels
the previous figure. Within a distance of approximately 1 cm of the pacing site
(x = 0), ETDAS does manage to suppress alternans. The pattern of discordant
alternans resumes for x > 1, with fewer nodes than in the absence of control. Our
results appear to confirm the limited applicability of point stimulation described
in [5], and we are not optimistic that a more comprehensive exploration of y — R
parameter space would do anything to change this.

4.2 Point Stimulation Versus FFP in Two-Dimensional Sheets

The simulations in Sect. 4.1 indicate that the primary finding of Echebarria and
Karma [5] holds even when tissue memory is taken into account and a more
robust feedback control method (ETDAS) is applied. Namely, point stimulation
does a poor job of achieving whole-heart control of discordant alternans. Given
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Fig. 8 Left panel: Space-time plot of wave fronts (nearly straight lines) and wave backs (curves
with noticeable oscillations) of action potentials during spatially discordant alternans without
ETDAS control (y = R = 0). The last two seconds out of 40 beats with B* = 300 ms are
shown, out to a distance of 10 cm from the stimulus site. Right panel: Deviation of APD from A*
during the last two beats
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Fig. 9 Same as Fig. 8 except that after 20 beats without control (y = R = 0), ETDAS is applied
during beats 21-40 using y = 0.6 and R = 0.3. Although APD alternans is terminated close to
the stimulus site x = 0, discordant alternans persists elsewhere

the previously-reported [8] effectiveness of FFP as an alternative, we turn our
attention to the problem of automating the timing of the electric field pulses.
Modeling the implementation of FFP requires more care: the effects of pulsed
electric field stimulation near a non-conducting obstacle are best understood if the
extracellular and intracellular potentials v; and v, are tracked separately. (Note:
The transmembrane voltage v that we considered previously is defined as v; — v,.)
To model propagation of action potentials in a 2-D sheet of tissue with a non-
conducting obstacle in the center, we begin with the bidomain model which appears
in [8]:

a(vi —v
Cm% = VDiV(Vi _Ve) — Iion

U J S

13)

As before, C,, denotes cell membrane capacitance. The intracellular and extracellu-
lar spaces in the tissue are each equipped with their own diffusion tensors D; and
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Fig. 10 Regions of high (red) and low (blue) transmembrane potential v = v; — v, in simulated
square, 2-D sheets of tissue with circular, non-conducting obstacles (dark circles) near the middle
of the sheet. (a) Spatiotemporal chaos reminiscent of fibrillation. (b) Resetting the sheet in panel
(a) by using FFP with stimuli timed according to ETDAS

D,. No-flux boundary conditions are used around the outer boundary of a square
domain, and non-conducting obstacles can be simulated by setting the diffusion
coefficients to 0 in some region near the center of the sheet.

Previous implementations of FFP used overdrive pacing, a rapid train of electric
field impulses, to reset the electrical activity when an abnormal rhythm was
detected. Here, we attempted an alternative to overdrive pacing in which ETDAS is
used to time the field pulses. In order to determine an “effective” pacing period B*
amidst spatiotemporal chaos, the dominant pacing frequency can be extracted by use
of Fourier transform methods and a power spectral density plot. Setting B* to be the
period corresponding to the dominant frequency, we apply ETDAS with B* as the
reference pacing period.* The perturbations €, are chosen based upon the difference
between the two previous APD values in the cells used to approximate B*.

Figure 10 illustrates the use of FFP to reset spatiotemporally chaotic electrical
activity in a sheet of tissue. In panel (a), disorganized electrical activity occurs in a
sheet containing an anatomical obstacle that is non-conducting (dark circle near
middle of sheet). After measuring the effective B* as explained in the previous
paragraph, a train of 20 FFP pulses was applied, timed according to the ETDAS
protocol. Panel (b) shows the results: complete resetting of the electrical activity. It
is unclear whether this encouraging result is robust, or whether it was a consequence
of luck—many more simulations would be required to determine which is the case.
Supposing optimistically that ETDAS can achieve the resetting shown in Fig. 10b
for a broad range of y and R values, there are important follow-up questions. Can
ETDAS reset the tissue using the same number of stimuli that overdrive pacing
would require? If so, the [lower-frequency] ETDAS protocol ought to avoid tissue
fatigue associated with the [higher-frequency] overdrive pacing protocol. Does
either protocol perform better if the dominant period B* is reduced? In any case,

4 Admittedly, this method of approximating B* would require measurement of a long time series
of APD and DI, wasting precious time in the event of a life-threatening rhythm.
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it is worthwhile to perform numerical simulations of various pacing protocols (not
only ETDAS) that might provide an alternative to overdrive pacing.

5 Discussion

We have surveyed some of the mathematical aspects of feedback control of
abnormal cardiac rhythms, using APD alternans and fibrillation as test cases. We
described two very different experimental setups for delivering electrical stimuli to
terminate abnormal rhythms: point stimulation and FFP. The former is the basis
for traditional implantable pacemaker devices such as the implantable cardioverter
defibrillator, while the latter may someday offer a new breed of devices which
reduce discomfort to the patient and have improved battery life. In our simulations
of both point stimulation and FFP, we used ETDAS feedback control as way to
time the application of the electrical stimuli. The relative simplicity of ETDAS
makes it amenable to mathematical analysis, and the size of the control domain
(Fig. 6) compared to those of its predecessors suggests that ETDAS is quite robust. It
remains to be seen whether these sorts of feedback control algorithms might provide
a “smart” alternative to overdrive FFP pacing.
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transfer effects can be elusive, and that some of the effects do not seem to be easily
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1 Introduction

The study of transfer and brain plasticity is currently one of the hot topics in cogni-
tive science but it has been an issue in educational research for many years. Transfer
generally refers to the application of learning and skills in other contexts and new
situations, and more specifically, in the context of cognitive interventions, transfer
refers to performance improvements in tasks that were not part of the intervention.
While some have argued that there is no evidence for transfer as a function of
cognitive training, we and others have pointed out that certain kinds of interventions
can be, indeed, effective, but that there are important boundary conditions that have
to be taken into account when evaluating training success. In this chapter, we will
provide evidence for the efficacy of several working memory (WM) interventions
developed in our laboratories and review the emerging literature from other groups.
We will discuss data that demonstrate transfer to non-trained tasks throughout the
lifespan, that is, in young adults, in older adults, in typically developing children,
as well as children with Attention-Deficit Hyperactivity Disorder (ADHD). We will
also briefly discuss the neural correlates that underlie improvements observed as a
function of WM training. In addition to describing successful instances of transfer,
we will also point out that transfer effects can be elusive, and that some of the effects
do not seem to be easily replicated. We argue that instead of taking inconsistencies
as a proof for a lack of efficacy, researchers need to develop innovative approaches to
move the cognitive training literature beyond the simple question of whether or not
training is effective, and to address questions of underlying mechanisms, individual
differences, and training features and parameters that might mediate and moderate
the efficacy of training.

2 On Transfer

There are numerous commercial training interventions claiming to make us smarter.
Some of the available interventions are increasingly used in the classroom envi-
ronment with the hope of improving the users’ cognitive ability and scholastic
achievement. The common assumption and hope of those interventions are that the
skills and knowledge acquired by playing such games and tasks will generalize
and become applicable in new situations and domains, a process that is called
‘transfer’. Transfer is an essential concept in the domain of education and learning
because the main goal of education is to teach new generations of students to master
professional and life demands, and not just to solve a specific math problem or
know how to conjugate French verbs. But what do we mean by ‘transfer’? Consider
the following analogy—a driver might become proficient in backing up the car she
is used to drive with in her narrow driveway. Now, if she borrows her neighbor’s
car, which is bigger, the driver may be able to apply her driving skills to the
new situation. Although her parking may not be as fast or precise as it is in her
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own vehicle, she will probably still be successful. However, things would become
very difficult if she would be asked to back up a trailer truck—although there are
clearly similarities between a car and a trailer truck (steering wheel, break, gas,
etc.), the trailer truck has other features which will make the transition difficult
(e.g. the fact that there is a trailer that makes backing up decidedly harder for most
people). Another example is if you would start to exercise on a regular basis by
going running. As a consequence, you would not only improve in running, but as
you are strengthening your cardiovascular system and leg muscles, you would also
improve other functions that rely on a healthy cardiovascular system and stronger
leg muscles, such as climbing stairs, biking, or swimming (e.g. [151]).

Although the existence of transfer in the physical domain is hardly surprising to
anyone, demonstrating transfer in the cognitive domain has been difficult, and for
over 100 years, arguments have been made about whether transfer exists or not [40,
113, 126, 128, 161]. Nonetheless, as Perkins and Salomon [117] have pointed out,
any learning involves transfer in at least a trivial sense: there is no such thing as
learning if there is no demonstration of the learning outcome in a different context,
even if the context is very similar. The main question is thus how to distinguish
between trivial transfer and transfer in which there is a meaningful generalization
effect. Usually, researchers conceptually divide transfer into categories of “near”
and “far” [128, 142, 170]. Near transfer refers to an effect of the trained task on
a non-trained task that is closely related to it; far transfer refers to an effect of the
trained task on a non-trained task that is quite different, perhaps sharing very few
features (applying the concept to the car driving analogy, near transfer would refer to
parking your car vs. your neighbor’s car, and far transfer would refer to parking your
car vs. parking a trailer truck). Unfortunately, there is neither a formal definition nor
an operational method to measure the distance of transfer, although there are some
attempts to do so [8]. Nevertheless, it may be most useful to understand near and
far transfer effects as two points on a continuum and to use the distinction as a
descriptive means to get at an intervention’s impact [173].

Why should transfer occur in the first place? We and others have argued that
transfer depends on the degree of process-overlap between the training task and
the outcome measures—the more similar processes there are between the tasks,
the higher the chances for transfer, which also relates to the argument of near
and far transfer above [34, 71, 100]. Those overlaps can occur neurally in the
form of shared brain areas or networks between training and outcome measures.
Cognitively, such overlaps can occur in the form of common processing demands
(e.g. attentional control), similar strategies that can be applied in the training and
the transfer tasks (e.g. chunking), or an acquired “mindset” during training which
facilitates transfer (e.g. increased self-confidence). Of course, those overlaps are
not easily disentangled, and transfer can occur due through either one, or through a
combination of different mechanisms [128].
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3 Brain Training and Transfer: The Case of Working
Memory

In this chapter, we will not focus on education in the broad sense as a means to
investigate transfer, but rather, on a relatively narrow set of interventions that aim
to improve certain specific cognitive skills over a relatively short timeframe. Such
interventions are often referred to as ‘brain training’ tools, and there is a growing
demand and market for such products (cf. [139]). Unfortunately, the scientific
evidence demonstrating the efficacy of commercial interventions is rather sparse
in that the effects (if they are assessed at all) rarely go beyond tasks that were
specifically trained (cf. [63, 104] for recent meta-analyses). Nevertheless, there is
accumulating evidence that certain cognitive interventions may indeed be effective.
For example, there are a number of studies that demonstrated improvements in non-
trained cognitive tasks after some form of WM, executive function, or attention
training (see e.g. [20, 41, 70] for recent reviews). Not surprisingly, performance
improvements are most often observed in tasks that are quite closely related to
the trained task. For example, interventions designed to target WM skills typically
result in improvements in non-trained measures of WM, i.e. they show near transfer
effects ([98, 114], e.g. [66, 96, 127]). Nonetheless, there is also work demonstrating
evidence for far transfer, for example, there is an accumulating number of studies
reporting improvements in measures of fluid intelligence (Gf) after training on WM
and related skills (see e.g. [77] for a recent overview). The concept of Gf has been
introduced by Cattell [25] in that he described Gf as the ability to reason and
to solve novel, abstract problems without relying on previously acquired skills or
knowledge. Gf is contrasted with crystallized intelligence (Gc), i.e. the ability to
use skills, knowledge, and experience. It has been argued that Gf facilitates learning
in a general sense. Indeed, there is a lot of empirical evidence showing that Gf
is the most reliable predictor for achievement, that is, individual differences in
Gf predict successful performance in educational and professional settings (e.g.
[38, 53]). As such, developing means to improve Gf is of particular relevance.
Of course, improvements in Gf tasks can be easily obtained by practicing the Gf
test themselves; however, such effects are highly specific and the tests lose their
predictive value for other tasks [158], and furthermore, such improvements would
not be considered as transfer but practice effects.

Researchers have used a wide variety of measures to assess improvements
in Gf as a function of cognitive training, but most commonly, they have used
visuospatial matrix reasoning measures such as Raven’s progressive matrices [121].
The reason for this interest in matrices tests is because they are seen as being the
most representative of Spearman’s g [143], that is, a global measure of cognitive
ability [55]. Nonetheless, other measures have been used in WM training studies
as well, for example more verbal measures, such as analogies or inferences [76].
Furthermore, WM training research has begun to use multiple measures to assess
Gf as a composite measure in order to reduce task-specific variance (e.g. [32, 76,
123,131, 146]). Although the number of studies finding improvements in measures
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of Gf is still relatively small, a pattern seems to emerge revealing larger effect sizes
in the visuospatial domain as compared to the verbal domain [22, 32, 77, 146]. This
dissociation might have emerged as a function of the tests used (along with their
psychometric properties), by the participants’ familiarity with the material [77], or
more generally by the fact that one domain might be more malleable to change than
another (e.g. [86]). At the present stage of research, however, further work is needed
to clarify this issue.

Apart from improvements in Gf, researchers have also observed transfer to basic
attentional skills and visual processes [56, 57], language-related skills [29, 46, 99,
111], arithmetic and numeracy skills [94, 172], measures of academic achievement
[63, 138], or even to self-regulatory behavior such as ADHD symptoms or drinking
behavior in alcoholics and delay discounting in stimulant addicts [10, 14, 66, 93].
Thus, at the current stage of research, it seems like interventions that target skills
related to WM and attentional control can be effective tools to improve higher
cognitive skills—why might that be?

WM is the cognitive mechanism that supports active maintenance of task-
relevant information during the performance of a cognitive task [6]. WM underlies
the performance of virtually all complex cognitive activities [136]. Imagine yourself
mentally calculating the 18 % tip for your dinner, participating in a conversation
with your parents while simultaneously texting to your friend, or reading a complex
paragraph in your History textbook. All of these tasks rely on deliberate WM
processes in that they require multiple processing steps and temporary storage
of intermediate results, going back and forth between different tasks, as well
as resisting distracting information. People differ in how much information they
can hold in WM, and how well they can maintain that information in the face
of distraction [43, 84]. These individual differences predict how well individuals
perform in school-relevant tasks such as mathematics and reading comprehension
(e.g. [37, 49, 116]). WM capacity is also crucial for our ability to acquire new
knowledge and skills [118]. Research has shown that WM is a better predictor of
scholastic achievement than intelligence, especially in young children [2]. Deficits
in WM are considered a primary source of cognitive impairment in numerous
special-needs populations ranging from ADHD to mathematics disability [105].
WM also has significant effects on classroom behavior. For example, teachers are
more likely to rate children with poor WM capacity as disruptive and inattentive
[3, 48].

In sum, WM is a fundamental cognitive system that is highly relevant for success
in and out of schools. Given the relevance of WM to daily life and educational
settings, it is not surprising that many cognitive interventions target WM skills with
the ultimate goal to obtain transfer in relevant areas such as scholastic achievement.
Referring back to the analogy in the physical domain described earlier, we can
characterize WM as taking the place of the cardiovascular system that underlies
performance of many different activities. Thatis, we see WM as an underlying entity
that determines the performance of a multitude of tasks, and thus, strengthening WM
skills should lead to performance improvements in tasks that rely on the functioning
of the WM system [85].
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This idea of strengthening underlying processes to improve general performance
is not new at all. Indeed, over 120 years ago, William James proposed that improving
attention could have high practical importance by stating that'

“An education which would improve attention would be the education par excellence”
(James, 1890, The Principles of Psychology, Vol. 1, p. 424).

James explained the importance of strengthening attentional skills by referring
to the crucial role of attentional control for human performance:

“(...) the faculty of voluntarily bringing back a wandering attention, over and over again,
is the very root of judgment, character, and will. (...)” (p. 424).

He also pointed out some of the major practical difficulties that accompany the
design of interventions, and he suggested that the most promising approach would
be to somehow capture a person’s interest and motivation, one of the critical features
of programs that aim to keep participants training for longer than just one or two
sessions [74].

Klingberg and colleagues were among the first to use a WM training based on the
premises outlined above [92, 93; but see 1 for a very early and pioneering example].
They developed an intervention that consisted of a battery of computerized tasks
targeting mainly WM processes. Those tasks were embedded into an interesting
videogame environment to make the intervention engaging and motivating. Another
critical feature was that their tasks were adaptive. That is, the tasks became
incrementally harder as the participants improved, and rewards were provided based
on performance. The authors targeted children with ADHD as training population
because WM deficits are often among the core symptoms in ADHD [169]. The
authors’ rationale was that training WM should reduce ADHD symptoms, and
in addition, yield transfer to other tasks that rely on WM. Indeed, both studies
demonstrated that a 5-week intervention resulted in reduced ADHD symptoms,
as well as in transfer effects to non-trained variants of the trained tasks, in a
measure of executive control (the Stroop task), and, finally, to Ravens’ matrix
reasoning, a common proxy for Gf. Since then, this intervention has been further
developed and used by other researchers, and it is currently marketed under the
name ‘Cogmed’ (most recently distributed by Pearson). Unfortunately, although
near transfer effects on non-trained measures of WM are consistently observed
using this particular intervention, the far transfer effects do not seem to be easily
replicated, neither by the Klingberg group [13, 160], nor by other groups using the
same program [18, 64, 65]. Nonetheless, there is a recent study by an independent
group that replicated the improvement on parent-rated ADHD symptoms [10], the
improvements on Gf [124], and another recent study even reported improvements in
scholastic achievement measures in an applied school setting [63]. Taken together,

'Note that by referring to James’ quote it is not our intention to equate WM with attention without
a proper and detailed discussion of the matter. Instead we want to emphasize the idea entailed in
the quote that training underlying processes is likely to affect not only the trained process but all
other cognitive functions that rely at least in part on those functions.
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it seems that the training regimen developed by Klingberg and colleagues does
have important benefits, even though those benefits are most consistently expressed
as near transfer effects (see also [104]). From an applied point of view, however,
near transfer effects can be very useful given the importance of WM for scholastic
achievement.

In terms of ameliorating ADHD symptoms, one of the major goals of the
intervention program, a recent review classified Cogmed as a ‘Possibly Efficacious
Treatment for youth with ADHD’ using established evidence-based treatment crite-
ria as proposed by the Society for Clinical Child and Adolescent Psychology [28].
Nonetheless, despite the promising effects, the intervention remains controversial
as documented in a recent special issue on the topic that appeared in the Journal of
Applied Research in Memory and Cognition (Volume 1; see e.g. [140]). Although
we agree that the evidence for Cogmed’s efficacy to date is mixed, we have argued
that it is probably too early for a final verdict, especially since there are over 60
ongoing studies using the program [76]. Furthermore, the few studies that have been
published have populations that are rather diverse and hardly comparable across
studies (e.g. ranging from typically developing children to stroke patients), and
often, the outcome measures were not comparable either. Thus, we have emphasized
that it is likely that those factors along with individual differences could account for
the mixed effects observed to date [137]. On another level, the intervention has
also been criticized as ‘kitchen sink approach’ as it contains many different tasks,
which might or might not contribute to transfer, and as such, it is not possible to
get at the underlying mechanisms of transfer. Such a criticism also applies to other
interventions that rely on a diverse battery of tasks ([131], e.g. [90]). This critique is
certainly appropriate from an experimental standpoint, however, such an approach
has merits from a practical point of view since it is certainly more interesting for
participants to train on a diverse battery of task rather than repeating the same
task over and over again [69, 76]. Thus, if researchers are interested in generalized
improvements and do not necessarily care why the improvements occur, it might be
better to rely on the combination of multiple components, hoping that one or more
of them will be successful.

On the other hand, other research groups have taken a different approach by
relying on a more narrow set of tasks, for example on so-called WM capacity tasks
such as reading span tasks [16, 22, 29, 99, 164]. Those interventions are usually
adaptive as well in that they adjust to the participants’ performance. All of those
interventions consistently observed transfer within the trained WM domain. In addi-
tion, some report far transfer effects, e.g. to reading-related processes [29, 99], or
to measures of intelligence [16, 166]. However, improvements in fluid intelligence
are not consistently observed [29, 99], and it has been argued that such span-type
interventions might be restricted in their generalizing ability.

Although we have used span-type interventions in some of our studies as well
[22, 99], more often we have been taking yet another approach by relying on an n-
back task as the intervention vehicle. In this task, participants are required to process
a continuous stream of stimuli (e.g. letters, shapes, or locations; presented in 3 s
intervals) and decide for each stimulus whether or not it matches the one that was
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presented n items previously. For example, if participants are asked to do a 2-back
task, the following letter stream contains two targets: L-K-P-K-F-R-K-R-R (i.e., the
second K and the second R; highlighted in bold for illustration purposes). This task
has been widely used in the neuroimaging literature to investigate the underlying
mechanisms of WM load (cf. [112] for a meta-analysis). For our interventions, we
have made the task adaptive in that its difficulty (i.e. load) varies from one block
of trials to another by changing the level of n [83]. That is, adjustments are made
continuously based on the trainee’s performance: As performance improves, the
level of n will be increased in the next block (for example, from a 2-back to a 3-
back); as it worsens, the level of n will be decreased in the next block (for example,
from a 2-back to a 1-back). As such, the task always remains demanding and tailored
to individual performance (cf. [71] for a first description of the intervention). We
have argued that some of the task’s features are highly relevant for the concept
of training, that is, this task involves multiple WM processes, such as storage, but
also interference resolution, attentional control, as well as sustained attention [83,
152]. We found the n-back task to be promising as a training vehicle because n-back
performance reliably predicts Gf and measures of executive control [55, 72, 73,
87], and furthermore, it is highly predictive for academic achievement and teacher-
reported behavioral problems such as impulsivity and hyperactivity (e.g. [5]).

To date, we have used our adaptive n-back intervention in multiple studies with
young adults, and we observed improvements in various matrix reasoning tasks
that are strongly related to Gf [71, 73, 77]. We have also shown that the longer
participants train on the task, the more improvements they show in Gf, that is, we
have demonstrated a dose-response effect of training. Recently, we have replicated
this finding in a sample of healthy older adults [146]. In addition, several other
research groups have successfully replicated transfer to measures of Gf using the
n-back task as training vehicle [32, 78, 120, 125, 134, 147, 155], and others have
observed performance improvements in other domains as well, such as executive
control and WM capacity [4, 96, 98, 127].

More recently, we adapted an adult version of the n-back task for children
and created a video game-like context by incorporating features garnered from
the video-game literature such as points, high scores, and appealing graphics and
themes [50, 101, 119, 144]. We found that this video-game-like intervention led to
improvements in non-trained measures of WM, but also in measures of sustained
attention and inhibition in typically developing children and children with ADHD
[75]. In addition, we also found transfer to matrix reasoning tasks, but critically, only
in children who showed considerable gains in the training task [74]. Similar patterns
have also been observed by Zhao and colleagues who trained typically developing
children on a WM updating task related to n-back, that is, they demonstrated
improvements in Gf, which correlated with the improvement in the training task
[175]. Finally, another group has demonstrated a relationship between training
performance and outcome in the domain of language skills in young adults [111], in
sum, training quality seems to be an important feature to determine training success.

As for the interventions discussed further above, this work is not without
controversy either (see e.g. [141]). For example, there are a few studies from other
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research groups that fail to show transfer to Gf after n-back training. Notably,
there are two studies that fail to find improvements in Gf, however, they observe
transfer in other non-trained measures, and the failure to find group differences in
Gf could be attributed to either the selection of the control task, or the fact that
the intervention time was too short ([96, 127]; cf. [77] for further discussion).
But there are also studies that did not observe transfer in any of their outcome
measures [30, 123, 159]. Those studies are difficult to interpret since there are
of course many reasons that could give rise to null-effects, such as sample size,
population differences, the selection of outcome measures, measurement issues (e.g.
lack of reliability in the outcome measures), lack of training quality (i.e. lack of
training improvement), individual differences, motivational or other issues (cf. [77]
for further discussion). Nonetheless, such null-effects can be informative to further
investigate important boundary conditions and to get at the underlying mechanisms
of training and transfer; issues that we will address in the next sections.

4 Why is There Transfer? In Search of Underlying
Mechanisms

Despite the accumulating evidence that there are generalizing effects after WM
training, we only have a very vague idea why transfer effects occur. Thus, to
date we can only speculate about the possible underlying mechanisms of training
and transfer. As Chein and Morrison pointed out [29], there are many reasons
why participants could perform better after training, such as changes in strategies,
improved executive control, speed of processing, pre-existing individual differences
and motivational factors, or simply familiarity with the stimuli and improved test-
taking skills. What makes it even more difficult for research is the fact that transfer
could also occur by a combination of those factors. Nonetheless, the question is
whether we can derive some general principles from the existing literature that might
shed some light on the underlying mechanisms. In the following, we will separately
describe potential cognitive and neural mechanisms, although we acknowledge that
the two domains are certainly intertwined.

5 Cognitive Mechanisms

We and others have argued that in order for transfer to occur, one important
mechanism might be that training and transfer tasks need to share a common
processing basis [71, 82]. What could be the common cognitive mechanism that
could drive transfer effects from n-back training to such diverse tasks such as
executive control and reasoning? One prominent feature of the n-back task is that
participants have to resolve interference in that they frequently encounter so-called
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“lure” trials. For example, a stimulus that appeared three or one items back during a
2-back task is considered a lure. Going back to our earlier example of a 2-back task,
L-K-P-K-F-R-K-R-R, the third K as well as the third R are lure trials (indicated in
italics for illustration purposes). That is, those are items that were presented three
and/or one positions back in the sequence rather than the required two back, and
thus, they promote a sense of familiarity that participants have to suppress.

Due to the restricted set of unique stimuli that we have been using in our task
versions (6 or 8), lure trials are a frequent occurrence, and thus, the participants
are required to resolve interference and resist distraction while doing the task. It is
conceivable that the participants’ ability to resolve interference is strengthened by
our form of training, which in turn, might be responsible for the transfer to other
domains that require interference resolution, such as matrix reasoning. Indeed, in
matrix reasoning tasks, such as Ravens, participants have to discriminate between
target patterns and patterns that are quite similar but are missing one or two
important components of the correct solution. In addition to pattern discrimination,
the Ravens task also requires participants to discriminate between current rules and
rules that are no longer relevant. Thus, as in the n-back task, performing well in
Ravens requires resisting distraction and interference resolution [36, 168]. This
hypothesis is further strengthened by previous findings showing that individual
differences in Gf are predicted by lure interference in n-back tasks [54, 87]. More
direct evidence for such a model comes from recent intervention work showing
that training on an n-back task with a controlled (and high) number of lure trials
predicted performance on a reading task which explicitly required interference
resolution (i.e. decoding garden path sentences), a result which was not present
in a group that trained on an n-back task without lures [111]. Another issue
that might drive the generalization effect is the ability for sustained attention and
response inhibition, both of which are presumably involved in successful n-back
performance. Consistent with this notion, we have repeatedly found robust training-
related improvements in n-back lure trials, in addition to sustained attention and
response inhibition tasks such as the continuous performance test (CPT) in both
typically developing children as well as children with ADHD [75].

Of course, there might be other underlying cognitive mechanisms that drive
transfer from n-back to higher cognitive functions. The two potential mechanisms
might not be the only mechanisms driving transfer, but they are the ones that we
are currently exploring in our ongoing research. Additional research from other
groups will hopefully contribute to shed more light on the underlying cognitive
mechanisms of transfer and ultimately provide models that can be used to further
refine the existing interventions.

6 Neural Mechanisms

Another path to investigate underlying mechanisms of WM training is provided
by the field of neuroscience using various methods. It is currently assumed that
chances for transfer increase if the training task activates identical or at least
comparable brain areas as the transfer task, which is a similar assumption as the one
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discussed in the previous section concerning cognitive mechanisms. And indeed,
it has been demonstrated that transfer occurs if the training and the transfer task
engage overlapping brain regions, but not if the training and transfer task engage
different brain regions [34].

In terms of quantitative brain activation changes as a result of WM training, there
are currently different hypotheses concerning the direction of the effects (cf. [21]).
For example, it is conceivable that the same brain areas are active before and after
training, but as a result of the intervention, there is less activation in these areas
after training which suggests an increase in neural efficiency. Another possible
outcome is that the same brain areas are active as well, but now there is more
activation after training, suggesting that the brain cells are now working harder. A
third possibility is a combination of these two potential effects, i.e., a simultaneous
increase and decrease of activations, which could vary by brain region. Such an
outcome could reflect practice-related changes in cortical representations in task-
related areas resulting in an activation increase in those areas, whereas activation
decreases in other brain areas that serve more general processes such as attentional
control could reflect more automatic and more efficient processing. Another and
last potential outcome is that as a result of training, old and new brain areas are
active, suggesting that the training induced new ways to deal with a task, for
example by developing new task-related strategies. An excellent discussion of these
hypothesized effects can be found in Kelly et al. [88].

To date, there are only a handful of published studies that examined activation
changes as a result of n-back training [23, 60, 132, 133, 135]. These studies
seem to provide converging evidence in two ways. First, n-back training leads to
activation changes mainly in prefrontal and also parietal brain regions (especially
right Brodmann areas 40, 6 and 9); regions that are assumed as being part of the
WM network as well as in reasoning and attentional control. Second, activations
seem to increase in the beginning of the training, i.e., when the training task is still
fairly new to participants (for example, in the first 1-2 weeks of training), but they
decrease with prolonged training (for example in the final 3—4 weeks of training).
This pattern suggests that at the beginning of training, the brain has to work harder to
cope with the task demands, but with increased time on task, the neural processing
becomes more efficient [23].

Besides investigating activation changes with fMRI methods, researchers have
also been investigating other neural correlates of cognitive training, such as changes
in functional connectivity (e.g. [96]), volume changes in gray matter (e.g. [154]),
changes in fiber tracts via diffusion tensor imaging (DTI) (e.g. [153]), changes in
dopaminergic functions (e.g. [103]), or even the effects of certain genotypes or
polymorphisms on training outcome (e.g. [12, 19]).

Despite the emerging literature, there are still relatively few studies available that
use neuroscience methods to get at the underlying mechanisms of WM training.
Additionally, the training and transfer tasks used in these studies vary considerably,
and therefore, the current result patterns are still rather inconclusive (cf. [21, 68, 80]
for recent reviews). Further research is clearly needed to elucidate the neural
correlates of training, but we see neuroimaging as an invaluable approach to deepen
our understanding of the underlying mechanisms of WM training and transfer.
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7 How Can We Make Training Effective? Issues
for Future Research

What are the critical conditions that have to be met in order for training to be
successful? Apart from further investigating the underlying mechanisms of training
and transfer, there are other factors that will deserve the attention of future research.
We have already discussed the importance of targeting WM and related processes
as underlying mechanism for complex cognition, and further, we have outlined the
beneficial effects of targeting multiple processes during training as it will increase
the chances for process and neural network overlap, and as such, the chances for
transfer. But there are also other factors that might be important for transfer to occur,
and we will outline a few of those factors in the following.

7.1 Minimizing Strategy Use and Maximizing Variability

As outlined above, our intervention approach can be described as ‘process-specific’,
that is, rather than improving a strategy or practicing a specific task to perfection, it
has been our aim to improve the underlying processing system, and in particular,
WM skills [100]. That is, we have argued that in order to obtain transfer, the
intervention should minimize the development of explicit strategies and skills that
are specific to the task in question. Indeed, it has been shown that strategy training
usually only leads to very narrow transfer ([44, 108, 109], but see [24, 145]).

A related principle is that there should be variability during training so that
individuals may develop more flexible ways to approach the task in contrast to
developing strategies that are only applicable to one training task [52, 130]. For
example, participants could be exposed to different tasks in different contexts in
order to maximize transfer. This principle may account for some of the success of
intervention studies that rely on batteries of tasks as training interventions (such as
[13,93, 102, 131, 160]), however, as discussed above, this kitchen-sink approach is
not ideal from an experimental point of view.

Another approach to induce task variability within the same task is to incorporate
various difficulty levels [71, 73, 77], as well as varying material and contexts within
the same training task [74]. This can be achieved by implementing an adaptive
training method that adjusts the training difficulty to the performance of each subject
(see [156] for a pioneering study). This principle adds to the motivational features
of the task by keeping it constantly challenging across the entire intervention period.
The balance of task engagement and challenge of this principle may be important
for training success. That is, the goal of our adaptive procedure has been to make
sure that the task is not too easy for participants in order to avoid repeated practice
and automaticity, which would trigger the development of specific strategies, and
further, it has been our aim to prevent participants from becoming bored with
the task. But on the other hand, we make sure that the task is not becoming too
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difficult either, in order to prevent that participants are overwhelmed and become
discouraged and lose motivation to train. Indeed, studies that have not used adaptive
training programs failed to show transfer (cf. [92, 93]—control groups, [33, 97]).

7.2 Distribution of Training

Another open question concerns the optimal scheduling and duration of training.
We and others have shown that there is a dose-response effect of training in
which larger transfer effects occur with longer training time [9, 35, 71, 146].
Interventions that last about a month are most frequently used, although there are
shorter WM interventions that have proved to be beneficial as well (e.g. [16, 99,
176]). Overall, the optimal duration and spacing of a successful intervention is
still largely unknown, and to our knowledge, there are no studies to date that have
investigated the role of spacing and frequency of WM training, although the role
of spacing has been extensively investigated in the domain of skill acquisition and
learning (see e.g. [27, 27], for reviews).

7.3  Motivation

It makes intuitive sense that motivation should play an important role in any kind
of training. For example, let us consider we wanted to get in better cardiovascular
shape. In order to substantially improve our fitness level, it is not enough to just
walk, we actually have to run. We believe that the same principle applies to cognitive
training as well. Thus, if you do not want to engage and get better, you will likely
not improve as much as someone who puts a lot of effort into training. As we
discussed before, both training quantity and quality are important. Only children
who improve in the training task demonstrate transfer [74], and transfer increases
with increasing training time [9, 35, 71, 146]. Therefore, intrinsic motivation and
persistence is necessary in order to achieve a high quality of training over a long
period of time. One of the challenges for intervention developers is to design the
tasks so that the participants remain interested and motivated to stay engaged for
more than one session. However, the development of motivational features is not an
easy endeavor, as we want to avoid participants to be motivated only by extrinsic
factors, which ultimately, is detrimental for performance [39, 77].

In a similar vein, self-efficacy beliefs and beliefs in the malleability of intel-
ligence seem important for training success [77]. Previous research found that
individuals who believe that intelligence is fixed are more likely to disengage
and withdraw from tasks that are perceived as being too challenging. In contrast,
individuals with a malleable mindset about intelligence are more likely to pull
through challenging tasks (e.g. [15], see also [42]).
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7.4 The Role of Age and Individual Differences

Transfer effects following WM training have been observed over a wide population
range, from typically developing preschoolers (e.g. [13, 160]), school-aged children
(e.g. [74, 99, 175]), to young adults (e.g. [29, 71, 73, 77, 147]), and older adults
(e.g. [16, 22, 34, 97, 131, 146, 176]). Further, there is evidence that WM training
is also effective in special-needs populations with pre-existing WM deficits, such as
ADHD (e.g. [65, 93]), learning disabilities (e.g. [64, 124, 164]), Cochlear Implant
users [95], and Schizophrenia [102]. The question is whether there is a particular
population for whom the training might work best (cf. [20, 74]). For example, it
seems harder to demonstrate transfer in older than young adults, and furthermore,
there are even differences within old age in that the effect sizes decrease as a
function of age [17, 34, 97, 131, 176]. Age-related limitations in plasticity might be
arestricting factor for training and transfer. Consequently, it might be that transfer is
more likely in younger adults and children [47], and also for those participants who
are still highly functioning (cf. [165]). However, the successful training studies with
special needs populations and children with WM deficits have thus far suggested
otherwise, and further, our own and other groups’ research has shown that it is
usually those individuals who start off with the lowest scores who profit the most,
presumably because they have more room to improve [71, 74, 146, 163, 176].
Those findings are of particular interest when it comes to the application of this
line of work in older adults. What we have to consider is that even though there
is reduced plasticity in old age, it does not mean that the brain and cognition are
not malleable after a certain age. As has been shown in various studies now, there is
ample evidence that it is still possible to improve cognition in old age, and that those
improvements are maintained over several years, and a lot of this evidence comes
from the ACTIVE study ([171], e.g. [81]). Nonetheless, the differential training and
transfer effects that are observed across age groups can serve as a model to study
developmental trajectories and further inform the design of targeted interventions
that can be modified to reach specific age groups [68].

In addition to age and pre-existing ability, there might be other factors that
drive training success, such as personality, need for cognition, and beliefs in the
malleability of intelligence (e.g. [77, 150]). To conclude, the issue of individual
differences and training has been largely overlooked until very recently [137].

8 How Broad Is the Transfer?

Unfortunately, to date, there is minimal evidence that WM training extends beyond
laboratory tasks to direct measures of scholastic achievement or real-world out-
comes. Nonetheless, there are notable exceptions in important clinical domains
related to executive control, such as symptom reductions in ADHD, alcohol abuse,
or psychosocial functioning in schizophrenia (e.g. [10, 66, 92, 93, 102, 124]).
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Furthermore, there is evidence for improved reading skills in typically developing
children and adults [29, 46, 99, 111], and there are studies that have demonstrated
improvements in scholastic achievement after training on WM or attentional
skills involving executive control [63, 89, 138, 172], or, finally, there are reports
demonstrating improvements in daily living activities in older adults [122, 171].
Nonetheless, such reports are still rare, and future research will have to further
determine the real-life applications of brain training. Translating WM training from
the laboratory into the real world, for example by bringing it into the classroom
and by assessing its efficacy with measures of scholastic achievement will be a
challenging undertaking: The application in classroom settings will come with
unique problems and will certainly have an impact on training quality and fidelity,
which are among the key issues for transfer to occur [77]. But as others have shown,
this endeavor is not impossible [63].

9 How Long Do the Effects Last?

Unfortunately, we still do not know whether transfer effects last beyond the training
period, and if so, for how long. Only a handful of studies have tested the long-term
effects of training by re-testing the experimental and control groups several months
or even years after training completion [16, 22, 74, 93, 122, 164, 171, 176]. The
few studies that have looked into this issue provide encouraging evidence that some
of the effects are long lasting. More difficult to interpret are a set of studies that
found transfer effects only at follow-up several months after training completion
while there were no effects at post-test right at the end of the intervention [64, 164].
The mechanisms of such effects have been described as “sleeper effects”, although
it is not clear how they arise and further research in needed to elucidate this issue.
It has been argued that transfer might be maintained or even increased by cascading
effects, for example by improved self-efficacy beliefs, which are then applicable
in various situations [59, 91]. On the other hand, if we assume that WM training
processes are comparable to processes that occur with cardiovascular training, the
longevity of the effects will probably be limited: If you stop running on a regular
basis, your fitness levels will dissipate quicker than one might hope. Therefore, a
potential approach to maximize long-term retention is to include booster sessions
after training completion (e.g. [7, 11, 26, 58, 167]). However, future research will
have to determine the frequency and duration of such booster session in order to
maximize retention effects.

10 Could There Be Negative Effects of Training?

Given the many positive effects that might accompany WM training, there is a
legitimate question of whether there are any downsides of training WM skills as
well. One could argue that WM training might take away precious time from other
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important activities, such as physical exercise, socializing with your friends, or
practicing your musical instrument. And of course, it will be certainly more efficient
to just sit down and study your multiplication table or study for the LSAT instead of
training WM, and we are by no means suggesting that n-back training should replace
any of those approaches. But on the other hand, if WM training is used in addition
to those activities, it might be indeed a valuable endeavor to facilitate learning, and
in our various approaches, our daily training time has been limited to as little as
10 min a day [74]; hardly a significant time investment even if it would turn out not
to be working for an individual, which is of course always a possibility. Another
downside might be the cost of some of the marketed products, that is, training WM
might come with a significant financial investment. Nonetheless, there are many free
or very affordable alternatives available either online or as applications.?

Other potential downsides have been suggested as well, for example, whether
improving cognitive control could potentially reduce performance of other functions
that require less cognitive control, such as creativity or early language development
[68]. As discussed above, there are developmental periods that might have to be
taken into consideration as which might influence training efficacy, however, at the
current stage of research, very little is known about those issues, and so far, we are
not aware of any detrimental effects of WM training on cognition.

11 Conclusion

In sum, current research indicates that there is good reason to conclude that training
WM skills can be beneficial, not only to improve WM skills themselves, but also
to improve skills that rely on the integrity of WM functions, such as attentional
control, language-related abilities, Gf, or scholastic achievement. Nonetheless, there
are many open questions when it comes to the underlying mechanisms of transfer, as
well as the extent of transfer and the longevity of the effects. Furthermore, there have
been some concerns regarding the effect sizes and replicability of far transfer effects.
Thus, one of the foremost goals of future research should be to shed light on those
issues by systematically exploring the underlying mechanisms and determining the
variables that make an intervention most effective, as well as disentangling the
mediators (why participants benefit) and moderators (who might benefit) of training
and transfer. Furthermore, it is still an open question to what extent WM training
affects measures of academic achievement and daily life.

It is important to note that we are not suggesting that there is anything “magical”
about WM training, that is, it requires hard work and engagement from both,
participants and researchers in order to be effective. To reiterate our analogy

ZNote that we are neither supporting nor endorsing any of the marketed products. The software
that we developed in our laboratory and that is described in published articles is freely available
for research purposes.
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from physical training, it is certainly not enough to leisurely stroll to improve
cardiovascular fitness, but rather, you have to run and challenge yourself. We think
that the same is true in the domain of WM and general cognitive function.

Finally, we would like to emphasize that we do not want to imply that WM
training is the only approach to improve cognition. WM training has been serving
as our model to explore near and far transfer effects, as well as to determine
the relationship between WM and higher cognitive function. That said, there are
certainly other approaches that are just as valuable. While education seems to be
by far the most effective approach to improve cognitive ability (cf. [69]), there
are other interventions that might serve as supplement to boost and/or maintain
cognitive function, either separately, or in combination with other approaches (cf.
also [41]). Examples for such approaches are cognitive enrichment and stimulation
[45, 61, 106, 110, 115, 148, 162], musical training [107, 129], physical exercise
[31], mediation [79, 157], social interaction [174], but also nutrition [51], or
pharmacological interventions [149]. To conclude, WM training is one of many
approaches that could be used to improve cognitive function. There is certainly
no one-size-fits-it-all approach in the domain of cognitive improvement, and future
research will hopefully shed more light on what interventions work best for which
individual, and under which particular circumstances.
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Partial Functional Differential Equations:
Reduction of Complexity and Applications

Khalil Ezzinbi

Abstract The aim of this work is to reduce the complexity of partial functional
differential equations. We suppose that the undelayed part is not necessarily densely
defined and satisfies the Hille-Yosida condition. The delayed part is continuous.
We prove the dynamic of solutions are obtained through an ordinary differential
equations that is well-posed in a finite dimensional space. The powerty of this
results is used to show the existence of almost automorphic solutions for partial
functional differential equations. For illustration, we provide an application to the
Lotka-Volterra model with diffusion and delay.

1 Introduction

Partial functional differential equations are an important area of research in applied
mathematics, since many phenomenas in physical and biological systems are
modeled using the history of the system. Then a system using delay is well-posed
in infinite dimensional spaces and many classical results in differential equations
well-posed in finite dimensional spaces cannot be applied. The aim of this chapter
is to reduce the complexity of partial functional differential equations. We prove the
existence of an ordinary differential equation that is well-posed in finite dimensional
spaces and give all the fundamental properties on the qualitative analysis for the
whole partial functional differential equations. Recall that the theory of partial
functional differential equations was initiated in [23], for more details we refer to
the book [25].
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Here we are concerned with the following partial functional differential equation
with finite delay

%u(t) = Au(t) + L(u;) + f(z) for t >0,
uy=¢ € C := C([-r,0], X),

ey

where A is a linear operator on a Banach space X not necessarily densely defined
and satisfies the Hille-Yosida condition: there exist M > 0, w € R such that
(w, +00) C p(A), and

[R(A, A)"| < L for n € Nand A > o,
(A — )"
where p(A) is the resolvent set of A and R(A, A) = (A — A)~!, C is the space of
continuous functions from [—r, 0] to the observable X endowed with the uniform
norm topology. L is a bounded linear operator from C into X and f is an almost
automorphic function from R to X, the history function u; € C is defined by

u(0) =u(t +0) for 6 € [-r,0].

As an example of Eq. (1), we propose the following model arising in many
problems in population dynamics and physical systems

9 32 0
Ev(t,x) = @V(I,x)+/ GO)v(t+0,x)d0 + h(t,x) fort > 0and x € [0, 7],

u(t,x) =0forx =0,7and ¢ > 0,

u(f,x) = ¢(0,x) for 6 € [-r,0] and x € [0, 7],

We use the reduction of complexity to prove that the existence of almost
automorphic solution of Eq. (1) is equivalent to the existence of a bounded solution
on R*. To achieve this goal, we use the variation of constants formula obtained in
[2] and we develop new fundamental results about the spectral decomposition of
solutions.

Almost automorphic functions are more general than almost periodic functions
and they were introduced by S. Bochner [6], for more details about this topics we
refer to the recent book [18] where the author give an important overview about
the theory of almost automorphic functions and their applications to differential
equations. The existence of almost automorphic solutions for differential equations
in infinite dimensional space has been studied by several authors. For example
in [19], the author studied the existence of almost automorphic solutions for the
following semilinear abstract differential equation

%x(l) = Cx(t) + 6(1) fort > 0, )
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where C generates an exponentially stable semigroup on a Banach space Y and 6
is an almost automorphic function from R to Y. The author proved that the only
bounded mild solution of Eq. (2) on R is almost automorphic.

Recently in [10], the authors studied the existence of almost automorphic
solutions for the following partial functional differential equations with infinite
delay

Z—);(Z) =Dx(t) + L(t)x, + K(¢) for t > 0,
X0 = ¢ € B,

3)

where D is the generator of a strongly continuous semigroup of linear operators on
a Banach space E which is equivalent by Hille-Yosida’s theorem that D satisfies
the Hille-Yosida condition and D(D) = E. The phase space B is a linear space of
functions mapping (—oo, 0] into E satisfying some axioms introduced by Hale and
Kato [10], for all # > 0, L(¢) is a bounded linear operator form B to E and periodic
in ¢. For every ¢t > 0, the history function x; € B is defined by

x:(0) = x(t + ) for 6 < 0.

The function K is an almost automorphic function from R to E. The authors proved
that the existence of a bounded mild solution on R of Eq. (3) is equivalent to the
existence of an almost automorphic solution.

2 Variation of Constants Formula for Partial Functional
Differential Equations with Finite Delay

Throughout this chapter, we suppose that
(Hy) A satisfies the Hille-Yosida condition.
We consider the following definition and results which are taken from [1].

Definition 2.1 ([1]). We say that a continuous function u from [—r, 00) into X is
an integral solution of Eq. (1), if the following conditions hold

@) /tu(s)ds € D(A) fort >0,
0 t t
(i) u@) = p(0) + A/ u(s)ds +/ [L(us) + f(s)]ds fort >0,
0 0
(iii) uo = ¢.

If D(A) = X, the integral solutions coincide with the known mild solutions. We
can see that if u is an integral solution of Eq. (1), then u(¢) € D(A) forall ¢+ > 0,
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in particular ¢(0) € D(A). Let us introduce the part Ay of the operator A in D(A)
defined by

D(4g) = {x e D(A): Ax e D (A)}
Aox = Ax for x € D(Ap).

Lemma 2.2 ([4, Lemma 3.3.12, pp. 140]). A, generates a strongly continuous
semigroup (To(1)):>0 on D(A).

For the existence of the integral solutions, one has the following result.

Theorem 2.3 ([1]). Assume that (Hy) holds, then for all ¢ € C such that ¢(0) €
D(A), Eq. (1) has a unique integral solution u on [—r, +00). Moreover u is given by

ut) = To()eO) + lim /Ot To(r — ) Br[L(us) + f(s)]ds forz = 0,

where By, = AR(A, A) for A > w.

In the sequel of this work, we call integral solutions as solutions
Let Cy be the phase space of Eq. (1):

Co = {(p €C:90) € D(A)}.
For each t > 0, we define the linear operator I/(¢) on Cy by

Ut)p = vi(., ),

where v(., ¢) is the solution of the following linear equation

d
EV(Z) = Ay(t) + L(y,) fort > 0,
vo=¢ € C,

Proposition 2.1 ([11). The family (U(t)),>, is a strongly continuous semigroup of
linear operators on Cy:

(i) forallt = 0,U(t) is a bounded linear operator on Cy,
@ii) U©O) =1,
@@ii) U +5) =UQ@)U(s, forallt,s > 0,
(iv) forall ¢ € Cy, U(t)g is a continuous function of t > 0 with values in Cy.
Moreover,
(v) (U(1)),>( satisfies, for t > 0 and 0 € [—r,0), the following translation
property
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UE+0)p)0) ift+6>0
U@)p) (0) =
ot +0) ift +6<0.
Theorem 2.5 ([2, Theorem 3]). Let A, be defined on Cy by
D(A,) = {(/) € C'([-r,0]; X) : 9(0) € D(A), ¢'(0) € D(A) and ¢'(0)
= 49p(0) + L(p)|
Ao = ¢’ for ¢ € D(A,).

Then A, is the infinitesimal generator of the semigroup (U(t)),q on Co.

In order to give a variation of constants formula, we need to recall some notations
and results which are taken from [2]. Let (X)) be the space defined by

(X()):{X()CZCEX},

where the function Xyc is defined by

i | 0if 8 e[-r,0),
Xo) @) =1 ¢ ir g — 0,
The space Co @ (Xo) is equipped with the norm | + Xoc|| = [p|c + [c] for

(¢.c) € Cy x X, is a Banach space and consider the extension .4;; of the operator
A, defined on Cy @ (Xo) by

D (Ay) = {p € C'((=r.0]: X) : 9(0) € D (4) and ¢/(0) € D(A)} .
Aup = ¢' + Xo (Ap(0) + Ly — ¢'(0)).

Lemma 2.6 ([2, Theorem 13 and Lemma 15]). Assume that ~(HO). Then Au
satisfies the Hille-Yosida condition on Cy @ (Xo): there exists M > 0, @ € R
such that (&, +00) C p(Ay), and

~ M
|R()L,.Az,{)"| <———fornelN,A >
A—a)

where RO\, Ay) = (A — Ay)~". Moreover, the part of Ay on D (,Zlu) = Cyis
exactly the operator A,.
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Theorem 2.7 ([2, Theorem 16]). Assume that (Hy) holds. Then for all ¢ € Cy, the
solution u of Eq. (1) is given by the following variation of constants formula

u=U@1) ¢+ l_lil}rloo/OIU (t —5) By (Xo f (5))ds fort = 0,

where By = AR(A, Ay) for A > &.

3 Reduction of Complexity for Functional Differential
Equations with Finite Delay

In the following, we assume that:
(H;) The operator Ty(¢) is compact on D(A) for every ¢ > 0.
Theorem 3.1. Assume that (H,) and (H,) hold, then U(t) is compact for t > r.

As a consequence from the compactness property and [8, Theorem 5.3.7,
pp- 333], we have the following spectral decomposition result.

Corollary 3.2 ([2]). Cy is decomposed as follows:
Ch=SaV,
where S is U-invariant and there are positive constants o and N such that
U (@) plc < Ne ™ |¢|c for each t >0 and ¢ € S. 4)

V' is a finite dimensional space and the restriction of U to V becomes a group.

In the sequel, U* () and U" (¢) denote the restriction of U (¢) respectively on S
and V' which correspond to the above decomposition.

Let d = dimV with a basis vectors ® = {¢,...,¢s}. Then, there exist d-
elements {{1, ..., ¥4} in CJ such that

(vi. ;) = 68, 5)
(i, ¢) =0forall ¢ € Sandi € {1,...,d},

where (., .) denotes the duality pairing between C" and Cy and

C(lifi=

5 = 0ifi # j
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Let ¥ = col {¥,...,¥aq}, (¥, D) is a d x d-matrix, where the (i, j)-component
is (wi o) j). Denote by IT* and IT" the projections respectively on .S and V. For each
¢ € Cy, we have

M = ® (P, ¢).

d
In fact, for ¢ € Cy, we have ¢ = IT°¢ + IT"p with [T'p = > o;¢; and o; € R.
i=1

By (5), we conclude that

a = (Vi, ).
Hence
d
Mo =" (Yi.0)¢
i=1
=0 (V,¢).

Since (U (1)), is a group on V, then there exists a d X d-matrix G such that
U (1) ® = de'“fort € R.

Moreover, o (G) = {A € 0 (4,) : Re (1) > 0}.
For n,ny € N suchthatn > ny > @ andi € {l,...,d}, we define the linear
mapping x;°, by

x*, (@ = (Vi, B, Xoa)fora € X.
Since \l?n | < nf—&]\;l , for any n > ny, then xl-*ﬁ is a bounded linear operator from X

to R with

n

x5, | < M |y;| forany n > ny.

n—no

Define the d-column vector x,; = col (xin, ... ,x;’n), then
(xy.a) = (v, BnXoa)fora eX,

with

(xy.,a), = (1//,-,l§nX0a)fori =1,...,danda € X.
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Consequently,

sup |x;| < oo,
n>=ngo

which implies that (x,’f )n>n0 is a bounded sequence in £(X,R?). We have the
following important result of this work.

Theorem 3.3. There exists x* € L(X, Rd), such that (x:)n
to x* in the sense that

S, COTVETgES weakly

(xy,x) > (x*,x) as n — oo for all x € X.

For the proof, we need the following fundamental Theorem in functional
analysis.

Theorem 3.4 ([24, pp. 776] (Banach-Alaoglu-Bourbaki)). Let Y be any separa-

ble Banach space and (z,f)neN any bounded sequence in Y*. Then there exists a

subsequence (sz) ven o (z: )n e Which converges weakly in Y *in the sense that

there exists 7* € Y™ such that

(.. x) > (", x)as n — oo forall x €Y.

Proof. Let Z, be any closed separable subspace of X . Since (x,,*) , is a bounded

n2n

sequence, then by Theorem 3.4 we get that the sequence (x,,*) . has a subsequence

(x;k)keN

(x; )nZno converges weakly to xz) in Zy. In fact, we proceed by contradiction and

n>n
which converges weakly to some x}o in Z,. We claim that all the sequence

*

suppose that there exists a subsequence (xnp) of (x,*,‘)n>n0 which converges
pEN =

weakly to some X; with X7 7 x7 .Letu(.,0, ¢, f) denote the solution of Eq. (1).
Then

M (., 0,0, f) = n_lirfoo/ U (t —E)TT" (B, Xo £(£)) dE,
and

" (B, Xo f(§)) = ®(¥, B, Xo f(§)) =  (x7, f(§)).

It follows that

M'u (0,0, f) = lim @ / et (W, B, X, f(£))dE,

a

_ lm © / "8G (5 £(6)) d.

n—>-+o00
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For any a € Z,, set f(.) = a, then

!
lim =80 (xx
k—>+o00 J s e’

t
a)dé = lim =90 (x:p,a>d§ fora € Z,,

p—>+o0 J,

which implies that

t t
/ A2 (x}o,a)dé = / e —8G (i}o,a)dé fora € Z,,
o o

consequently x}o = )?}0, which gives a contradiction. We conclude that the whole
sequence (x;)nZno converges weakly to x}o in Zy. Let Z; be another closed
separable subspace of X, by using the same argument as above, we get that (x;)nZno
converges weakly to x}l in Z,. Since Zyp N Z is a closed separable subspace of X,
we getthat x7 = x7 in Zo N Z;. Forany x € X, we define x* by

(x*,x) = (x7.x).

where Z is any closed separable subspace of X such that x € Z. Then x* is well
defined on X and x* is a bounded linear from X to R¢ such that

[x*] < sup |x;| < oo,
nzng

and (x:)n>n0 converges weakly to x* in X.
As a consequence, we conclude that
Corollary 3.5. For any continuous function h : R — X, we have
t t
lim / U (t — &) I (By Xoh(£)) dE = c1>/ TG (x* h(&))dE forall t,0 € R.
o o

n—-+00

Theorem 3.6. Assume that (Hy) and (H,) hold. Let u be a solution of Eq. (1) on R.
Then z (t) = (Y, u;) is a solution of the ordinary differential equation

%z ) =Gz (@) + (x*, f@))fort e R. (6)

Conversely, if f is a bounded function on R and z is a solution of Eq. (6) on R, then
the function u given by

) = oz -+ tim_ -6 1 (BuXof ©) dé| o <

is a solution of Eq. (1) on R.
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Let u be a solution of Eq. (1) on R. Then
Uy = H‘Yuf + Hvuf forallt € R,

and
t
My, =U"(t —0o) Tus + lim / u’ @ —¢&1m (BnXof (€))dE fort,o € R.
n—>+00 J,
Since IT"u; = ® (W, u,;) and by Corollary 3.5, we get that

O(W,u,) = U (1 —0) D (W, uy) + q>/te<f—f>6 (x*, f(£)) dE fort,o € R,

o

t
= ®e G (W u,) + @/ e HG (x* f(£))dE fort,o € R.

o

Letz () = (¥, u;). Then

2(1) = e (0) + /t G (x* f(§))dE fort,o € R.

a

Consequently, z is a solution of the ordinary differential equation (6) on R. Con-
t

versely, assume that f is bounded on R, then / Ut —-§&I11° (l?,, Xof (E)) d&is
well defined on R. Let z be a solution of (6) on_ﬁoand v be defined by

v(t) = &z (1) + nl}I—IFloo /t u (—-&I (BnXof (s)) d& fort € R.
Since

2(t) = e %%(0) + / =86 (x*, f(§)) dE fort,o € R,

a

Using Corollary 3.5, the function v; given by
vi(t) = Oz (¢) fort € R,

satisfies

vi(t) = U’ (t — o) vi(0) + ii‘foo/t“v (t —&) TV (B, Xof (£)) dE fort,o €R.
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Moreover, the function v, given by

v = lim / W -5 T (B Xof (§)dEfort € R,
satisfies
) =U{t —0o)v, (o) + _lll}rloo /rw (t—§&11° (EnXof (E)) d€forallt > 0.

Then, for all t > o with ¢, 0 € R, one has

U —o)v(o)=U ({t —o)vi(o) +U* (t — o) v(0),

— 0= tim [ U -9 (B Xof (©)dE + a0~

lim [ U (t— €T (B, Xof (§)) dE,

n—>+o00 J

= ()~ tim_ / Ut — &) (BuXof () dE.

Therefore
vit)=U({t—0o)v(o)+ _1114‘[_1 /tZ/l(t —£) (l?nXof (5))§f0rt > 0.

By Theorem 2.7, we obtain that the function u defined by u(tr) = v(¢) (0) is a
solution of Eq. (1) on R.

4 Partial Functional Differential Equations with Infinite
Delay and Variation of Constants Formula

The first part of this work is to establish a new variation of constants formula for the
following partial functional differential equation with infinite delay

%x (t) = Ax () + Lx; + f (¢t)fort > 0,

Xo=¢ € B, ™
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where A : D (A) — X is anondensely defined linear operator on a complex Banach
space (X, |.|), B is a normed linear space of functions mapping (—oo, 0] into X and
satisfying some fundamental Axioms, x; is an element of B defined by

X (0) =x(t +6) for 6 € (—o0,0],

L is a bounded linear operator from B into X, and f is a continuous X -valued
function on R*. We assume that A4 is a Hille-Yosida operator.

Variation of constants formulas for partial functional differential equations plays
an important role to study qualitative analysis for this kind of equations. We refer
to [25] in the case of finite delay and to [13] in the case of infinite delay. Recently,
in [2] it has been established a new variation of constants formula for neutral partial
functional differential equations. This formula has been used to get some behavior
results of solutions. In this work we will use the same method and techniques used
in [2] to establish the same formula for partial functional differential equations with
infinite delay whose linear part is nondensely defined. The variation of constants
formula will be used in order to study the existence of almost periodic solutions
when f is almost periodic. We establish the equivalence between the existence of
an almost periodic solution for Eq. (7) on R and the existence of a bounded solution
on R™T. In this direction, Hino et al. [14, 16] have established a new variation of
constants formula for Eq. (7) where A is densely defined and generates a strongly
continuous semigroup on X . Let x; (o, ¢) be the mild solution of Eq. (7). Then they
proved that x; (o, ¢) is represented by this formula

t
X (o,0) =U(t —0)p + li)m / U@—s)T" f(s)ds for t > o, 8)
n o0 o
where I'” f (s) is defined by

né+1) f(s) for—

1<60<0,
Oforf < —%,

(T £ ()) (0) = {

and (U (¢)),>( is the solution semigroup of Eq.(7) with f = 0. Recall that if
B satisfies the Hale and Kato’s Axioms then I f (s) € B. The authors used
formula (8) in order to establish the existence of almost periodic solution of Eq. (7).
This work presents an extension of the works [14] and [16]. We will show that
the density of the domain D (A) is not needed here to get a new variation of
constants formula, when B is a uniform fading memory space we establish a spectral
decomposition of B which allows us to study the existence of bounded solutions.
The problem of finding periodic and almost periodic solutions of differential
equations has been studied by several authors we refer to [5,9, 15-17,21] and the
references therein. Consider the case of ordinary differential equations of the form

%x (t) =Bx(t)+g(t)fort e R, 9)
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where B is a n x n matrix, and g is a continuous function from R to X. Bohr and
Neugebauer established in [9], that if f is almost periodic, then the existence of
a bounded solution on R of Eq. (9) is equivalent to the existence of an almost
periodic solution of Eq. (9). Moreover every bounded solution on the whole line R
is almost periodic, for more details we refer to [9, Th.5.8]. For functional differential
equations in finite dimensional space with finite delay r, the existence of a bounded
solution is equivalent to the existence of periodic or almost periodic solutions,
since the solution semigroup becomes compact whenever ¢ > r. See [11]. The last
condition becomes false for more general partial functional differential equations.
In the case of infinite dimensional state space and finite delay, Travis and Webb
[23] have shown that the compactness of the solution semigroup for ¢ > r remains
true when A generates a compact semigroup, this property could be used in order
to prove the existence of periodic or almost periodic solutions. When the delay is
infinite, the compactness is not enough to deal with the existence of periodic or
almost periodic solutions, we have to make more assumptions on the abstract phase
space, like “uniform fading memory space”, recently in [21], the authors studied
the existence of a periodic solution of Eq.(7), where A generates a compact Cy-
semigroup on X and f is periodic, using Hale and Chow fixed point Theorem, the
authors proved that the Poincare map has at least one fixed point which gives a
periodic solution.

In this work, we employ an axiomatic definition of the phase space I3 which has
been introduced at first by Hale and Kato [12]. In the following, we assume that B
is a normed space of functions mapping | — 0o, 0] into X satisfying the following
fundamental axioms:

(A): There exist a positive constant N, a locally bounded functions M (-) on
[0, 400) and a continuous function K (-) on [0, 400, such that if x
]—o00,a] — X is continuous on [0, a] with x, € B, for some ¢ < a, then
forall ¢t € [o,a],

(i) x; € B,

(ii) t + x; is continuous with respect to the norm of B on [0, a],

@) Nlx ()] = |x| =K@ —0) sup |x(s)]+ M (1 —0)|xs].
o<s<t

(B) : Bis a Banach space.
We assume that

(Dy) @ if (¢n),>0 is a sequence in B such that ¢, — 0in B as n — 400, then for
all@ <0, (¢, (0)),>( converges to 0 in X .
Let C (] —00,0], X) be the space of continuous functions from | — oo, 0]
into X. We make the following assumptions:

(D2): BC C(]—00,0], X),

(D3): there exists Ag € R such that, for all A € C with ReA > Ay and x € X, we
have that e*x € B and



58 K. Ezzinbi

erx
¥ x|

Ky := sup
ReA>1p, xeX le
xF#0

< 00,

where (¢*'x) (8) = ¢*x for 6 €] — 00, 0] and x € X.
The following results are taken from [3].

Definition 4.1 ([3]). A function u : R — X is called an integral solution of Eq. (7)
on R if the following conditions hold

(i) uis continuous on Rt
(i7) Uy = ¢,
(iii) / u(s)ds € D (A) fort >0,
0

@iv) u(t) =¢(O)+A/()tu(s)ds—i-/otLusds+/0tf(s)dsfort > 0.

If the operator A is densely defined, then the integral solution coincides with the
mild solution given in [14].

Theorem 4.2 ([3, pp. 336]). Assume that B satisfies (A) and (B). Then for all ¢ €
B such that ¢ (0) € D (A), Eq. (7) has a unique integral solution u(.,¢, L, f) on
R* given by

Ty (1) ¢ (0) ﬂETOO/OITO (t —$)AR (A, A) [Lug + f (s)]ds fort >0,
() for t<0.

u(lt) =

A continuous function u on R is said to be an integral solution of Eq. (7) on R if
u, € Bfors € R and

u)="Ty(t—o)u (o) +llil-‘11-loo/tT0(Z_S)AR (A, A)[Lus+ f (s)] ds for any t > o.

Let B4 := {d) eB:¢(0)e D (A)} be the phase space corresponding to Eq. (7).
Define U (¢) fort > 0 by

U@ ¢ =u(.¢.L)for¢ € By,

where u (-, ¢, L) is the integral solution of Eq. (7) with f = 0.

Proposition 4.3 ([3, Proposition 2]). (U (¢)),5 is a strongly continuous semi-
group on By, that’s

(i) U0) =1d,
@) Ut +s)=U@)U(s) fort,s =0,
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(iii) forall ¢ € By, t — U(t)¢ is continuous.
Moreover (U(t)); o satisfies the translation property

U(t + 0)p(0) fort +6 >0
Un)¢) (0) =
¢t +0)fort +6 <0.

In order to establish a new variation of constant formula, we follow the same
approach used in [2]. Before we need to recall the following results.
Lemma 4.4 ([3, Proposition 5]). Let B satisfy Axioms (A), (B), (D) and (D).
Then the infinitesimal generator Ay of (U (1)), is given by:

peCl(—00,0,X)NBy: ¢ €Bag(0) e D(A)and

D (4y) = ¢ (0) = Ap (0) + L () ’

Ay =¢'.

By Axiom (D3), we define for each complex number A such that Re(1) > Ao, the
linear operator A (1) : D (A) — X by

AQ)=A—A—L(e]).

Consider the space X := B4 & (Xj), where (Xp) = {Xox : x € X} and Xpx is a
function defined by

0 if 6 €] —o00,0],

X)) =) it g —o.

Then X endowed with the norm ||¢ + Xox| = ||¢|| + |x| is a Banach space.

Theorem 4.5. Assume that B satisfies Axioms (A), (B), (D1), (D2) and (D3). Then
the extension Ay of the operator Ay defined on X by

{ D (Ay) = {¢ € Ba: ¢’ € Ba.and ¢ (0) € D (4)},

Avp  =9¢'+ Xo(4¢(0) + Lo —¢'(0)),

is a Hille-Yosida operator on X.

For the proof we need the following fundamental lemma.

Lemma 4.6. There exist w; > Ay and M € R such that for A > w; we have
(i) A (A) is invertible and }A M7 < A]KI_B)I .

(ii) D(Ay) = D (Ay) ® (e*), where

(el') = {ek'x :xeD (A)} .
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(iii) L € p(ij), and forn € N*, (¢,x) € B4 x X, one has
R(AA0)" (¢ + Xox) = R, Au)" ¢ + R (A, Au)'™ (eFA ()7 x).

Proof of the Lemma. a) For A > w := max{0, wy, Ao}, one has

AQ)=A—A—L (") = (AIl—A) (I- R (A, A) L (e"T)),

and
IR, A) L (e¥x)| < i”i'il x| < Aiolf—ocl“ x| for x € X.
Consequently
|[R(A,A) L (eMT)] < A_Mwo <1 forallA > w =+ M,

where M := MK |L|. We conclude that the operator (I —R(AA)L (ek'I)) is
invertible, and

—1 1 A —wy
INE < —.
1—|RAA)L(AM)| ~ A—wp—M

(1= RG. AL (1

Consequently, A () is invertible for A > w; and

M,
s

AWM <
b) Let A > w; and (eA'x) e D(Ay)N (ek'). Then Ax = Ax + L (eA'x) , that is
A()x = 0.

Since A () is invertible for A > w;, we conclude that D (4y) N {e*') = {0}. On
the other hand, let { € D (Ay) and ¥ given by

Y =9 +e"AQ) T (AP (0) + LY — ¥ (0)).
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Then

AY(0) + Ly = AY(0) + LY + AAQ) ™" (AP(0) + LY — ¥'(0))
+ L (AN (AY(0) + LY = (0)
= AY(0) + LY — AQAR) ™" (49/(0) + LY — 7 (0))
+AAM) T (AY(0) + LY — ¥'(0))
=9’ (0) + AAQ) ™' (A (0) + LY — ' (0))
= ¥/(0).

Hence ¥ € D (Ay), which implies that D (:47/) =D (Ay) & (eA').

¢) Let A > w; and ¥ € X. Then v/ = Y + Xox for some ¢ € By and x € X.
We seek for ¢ = ¢ + e*a € D (AU) such that (AI— AU)q; =V, where
¢ € D (Ay)anda € D (A). We have (AI - 1’47]) ((;5 + eA'a) = ¥ + Xox, which
is equivalent to find (a, ¢) € D (A) x D (Ay) such that

Al—Ay)¢p =,
A(A)a = X.

For w; large enough, it follows that, (AI — ;17/)_1 exists for A > wy, and

(A= 40) ™ (¥ + Xox) = A= Ap) 'y + A M) .

Consequently, for n € N*, we have
R(A A7) (¥ + Xox) = R4, Ap)" ¥ + R (A, Ap)"™" (e*'A ) x) . O

Proof of Theorem 4.5. Since Ay is the generator of the semigroup (U(#);>0) on B,
by Hille and Yosida’s Theorem [20] there exists a positive constant M such that

sup  |(A—w)" R(A, Av)"| < M.

neN, A>w

By Lemma 4.6, there exist w; and M; > 0 such that

sup  |(A—w)"R(A, 1’47/)”

neN, A>w

< M. O

Lemma 4.7. The part 0f1’47/ in D (:47]) is the operator Ay .

Proof. From Lemma 4.4, the operator A, generates a strongly continuous semi-
group on B4, by Hille and Yosida’s Theorem D (Ay) = By. Since, D (Ay) C
D (AU) C By, then

D (Ay) = D (Ay) = Ba.
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Let C be the part of Ay in D (Ay), which is defined by
%D(C)={¢eD(ZJ):Z&¢eBA},
C¢ = Aup.

Then D(Ay) € D(C) and Ay = C¢ forall ¢ € D(Ay).
Conversely, let ¢ € D (C). Then

%qbeCl(]—oo,O],X)ﬂBA, ¢' € Ba. ¢ (0) € D (A4)
¢" + Xo (4 (0) + Lo — ¢"(0) € Ba.

By assumption (D), it follows that
¢ € D (Ay) and ¢’ (0) = A (0) + L¢
Cop=¢'.
From which we conclude that C = Ay. O

Consider the following evolution equation

6 = ToEW + Xof W) for1 20 )
0 =dex

Definition 4.8. A continuous function & : [0, +00[ — By is called an integral
solution of Eq. (10) if

(i) /Otg(s)ds e D (Ay) fort > 0,

(ii) g(z)=<;§+A~U/Og(s)ds+/oxof(s)dsfortzo.

Theorem 4.9. Assume that (D), (D2) and (D) hold. If u is an integral solution
of Eq.(7), then the function given by & (t) = u;, t > 0, is an integral solution of
Eq.(10) for ¢ = ¢. Conversely, if € is an integral solution of Eq. (10) with q; =g,
then the function u defined by

§E@W©O)ifr=0

“(’)z{w) if1=0

is an integral solution of Eq. (7).

Proof. Let ¢ € B, and u be the integral solution of Eq. (7). Define & : [0,00) —
BA by

£(t) = u, fort > 0.
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To compute the integral in B in term of the integral in X, we need the following
lemma.

Lemma 4.10 ([3]). Assume that (Dy) holds, and F : [0,a] — B is continuous,
then

(/aF(s)ds) ) =/aF(s)(9)ds forall 6 < 0.
0 0

By Lemma 4.10, we have

d t d t
([ was)or = 5 ([ ws+oa)
d t+6
:@</9 u(s)ds)

=u (0) —¢(0).

Then

217,(/0 E(s)ds):uf—qﬁ—}-Xo(A/O u(s)ds—i—L(/O usds)—u(t)—q&(O)).

Since u is an integral solution of Eq. (7), it follows that

u(t)=<;5(0)+A/0 u(s)ds+L(/0 usds)—i-/o f(s)ds,

which implies that

g(r)=¢+A~U/O s(s)ds+X0/0 f(s)ds fort > 0.

Consequently § is an integral solution of Eq. (10). Conversely, let § be an integral
solution of Eq. (10) for ¢ = ¢. Then £ satisfies the following translation property

E(+0)0)ift+0 >0,

E(z)(9)=% G +0) ift+0<0,

In fact, fort +6 > 0,

0O =UOHO+ Tim [ UE=92RETD) X0f 4) @) ds.
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Then

1+6 ~
saxm=<va+m¢xm+dgﬂyﬁ (U +6—5) AR (A A7) Xof (5))

t

x (0)ds + lim (U (t —s) AR (A, Av) Xo f (5)) (0) ds.

—>+00 Ji10

Since
t
lim (U (t —s)AR (/\,AU)XOf (s)) ) ds
A—>too )i 1g
t

= lim (AR (X, Ay) Xo f (5)) (t — s + 6) ds
A—>+00Ji10

t
= lim =D AA M) £ (s)ds
A—>+00 )i +6
=0.

which gives that

SOM®=(UO+®¢M®+Q§;AH%UO+9—ﬂMNLZ»%f®D
x (0) ds
=50 +6)(0).
If we consider the function

£(1)(0)ift >0,

”(t):{ o) ifr<o0.

Then & (t) = u, forall ¢ 0 and

t 1
Mr=¢+AU(/ ust)—i-/Xof(s)dsfortzO.
0 0

Which implies that « is an integral solution of Eq. (7). |

Theorem 4.11. Assume that (D), (D7) and (D3) hold. Then the integral solution
x of Eq. (7) is given by the following variation of constants formula

x=U@)¢+ liT /IU(Z—S)E;(XOf(s))dsfort20, (11)
n—>-1+oo 0

~\ —1

where E; =n (n — A,,)
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Proof. This theorem is a consequence from Theorem 4.9 and the following lemma.

Lemma 4.12 ([22]). Let C be a Hille-Yosida operator on a Banach space Y and
o : Rt — Y be a continuous function. Consider the following problem

{ Lx(t) = Cx(t) +a(t)fort >0,
X (0) = Xp € Y.

If xg € D (C), then there exists a unique continuous function x such that
t
@) / x(s)ds e D (C)fort >0
0
1 1
(ii) x(t) = xo —i—C/ x(s)ds +/ a(s)ds fort = 0.
0 0
Moreover, x is given by

t
x(t):So(Z)xo—f—kliI}_l / So(t —s)Chra (s)ds fort >0,
—>1+00 0

where Cy, := A (Al — C)™" and (S, (t));>0 is the semigroup generated by the
part of C in D (C).

5 Reduction of Complexity of Partial Functional Differential
Equations in Fading Memory Spaces

Let Cyo be the space of X -valued continuous function on | — oo, 0] with compact
support.

(C) : If a uniformly bounded sequence (¢,),cn in Coo converges to a function ¢
compactly on | — 0o, 0], then ¢ is in 5 and |¢, — ¢| — 0 as n — oo.

Let (So (1)), be the strongly continuous semigroup defined on the subspace
By :={p € B:¢(0) =0}
by

o +0)ift+6<0,

(So@ P& =1 if 1 +6>0.

Definition 5.1. Assume that the space B satisfies Axioms (B) and (C). B is said to
be a fading memory space if for all ¢ € By,

So (1) ¢ — 0in By,
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Moreover, 13 is said to be a uniform fading memory space if

|So (£)] —> 0, with respect to the operator norm.
—>00

Lemma 5.2 ([13, pp 190]). The following statements hold:

(i) If B is a fading memory space, then the functions K (-) and M (-) in axiom (A)
can be chosen to be constants.
(ii) If B is a uniform fading memory space, then we can choose the function K(-)
constant and the function M (-) such that M(t) — 0 as t — oo.

Proposition 5.3 ([13]). If the phase space B is a fading memory space, then the
space BC (] — 00, 0], X) of bounded continuous X -valued functions on | — 00, 0]
endowed with the uniform norm topology is continuously embedding in B. In
particular B satisfies (D3), for Ag > 0.

In this section, we assume that
(H;) B is auniform fading memory space.

Let V' be a bounded subset of a Banach space Y, the Kuratowski measure of
noncompactness o (V') of V' is given by

d > 0 such that there exists a finite number of sets V7, ..., V, with

a (v) = inf diam (V;) < d such that V C QlVi ’

and for a bounded linear operator F on Y, we define |F|, by |Fls =
inf{tk >0: a(F (V)) <ka(V),forallboundedsetVofY}. For a strongly
continuous semigroup (S (¢)),>o, we define the essential growth bound we;s (S)
by

1
Wess (8) = tl_lglo; log[S (1), -

Theorem 5.4 ([5]). Assume that B satisfies Axioms (A), (B), (D) and assumptions
(Hy), (Hy), (Hy) hold. Then

Wess (U) < 0.
From [8, Corollary IV.2.11], it follows that
oy (Au) :={A €0 (Ay) :Re () = 0}
is a finite subset and 54 is decomposed as follows:

Byj=SaV,
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where S, V are two closed subspaces of B4 which are invariant by (U (7)),,. Let
U* (t) be the restriction of U (¢) on S, then there exist positive constants N and
such that

(US (1) §| < Ne™ |¢] forall ¢ € S,

V is a finite dimensional space and the restriction UY () of U (¢) on V) becomes a
group. Let IT¢ and ITY denote the projections on S and V respectively. Let d =
dimV and take a basis {¢1, ..., s} in V. Then there exist d-elements {, ..., ¥4}
in the dual space B of B4, such that (1//,-, ¢j) = §;j, where

g o JLifi=]
YOOloifi #

and ¥; = 0 on S, where (-, -) denotes the canonical pairing between the dual space
and the original space. Denote by ® := (¢y,...,¢s) and ¥ is the transpose of
(Y1, ..., ¥q), in particular one has

VO = Ipa,

where Ipa is the identity d x d matrix. For each ¢ € By, I1V¢ is computed by:

V¢ = @ (¥, ¢)
d
=> (Vi.0) ¢r.
i=1
Let & (¢t) := (&1 (t),....Lq (t)) be the component of ITVx;, in the basis vector ®,

then
MVx, = ®C(t),and £ (1) = (W, x;) .

Since (U v (t)) ;>0 18 @ group on a finite dimensional space V, then there exists a
d x d matrix G such that

UY (t)¢p = e (W, ¢)forallt e Rand ¢ € V),
which means that
UY (1) ® = ®e% forallr €R.
Forn > wy andi € {1,...,d}, we define the functional x;’ by

(x¥ x) = (%,E (Xox)) forall x € X,

n
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Then x* is a bounded linear operator on X with \x;i | < KoM, |{;|. Define
the d-column vector x; as an element of £(X, R?) (the space of bounded linear
operator from X into RY) given by the transpose of (x;" L ,x;,"d). Then, for all
n>1l,xekX

(xr,x) = (W, B, (Xox))and sup |x;| < KoM, sup [y;] < oo.

S
nzwi i=l,..d

Theorem 5.5. The sequence (x,;" )n> converges weakly in L(X,R?), in the sense

that

0

(x¥,x) — (x*,x)forallx € X.
n—>0o0
Let Yy be any separable closed subspace of X. By Theorem 3.4, the restriction
Yy ] it
(xno )nZO of (x;l")nZO in Yy has a subsequence (xn,‘j )kzo such that

*

lim (x,fg ,y> - (xYo*,y>for all y € Yo,
k—o00

y*

where x¥0 € Y,". We claim that the whole sequence (xn

) converges weakly in
n>0

Y, to x¥o . We proceed by contradiction and assume that there exists a subsequence
* * Yy* Yy* . . * Yy*

(xi ) of (xf ) such that x,,, — x,° weakly in Y, with xto #£ x,°.
) n>0 k—00

To conclude we need the following lemma.
Lemma 5.6. For any continuous function h : Rt — X one has:

t t
lim [ UY (t —s) 1Y (B, (Xoh(s))) ds = ® lim / eU™6 (x* h (s)) ds.
n—o00 0

n—>oo 0

Proof of the Lemma. In fact, we have
t —~
lim | UY (t —s) 1Y (B, (Xoh(s))) ds
n—o0 0

t

= lim [ (UY(t —s) @) (¥, B, (Xoh(s)))ds,

t
= lim | ®e"™C (x* h(s))ds,

n—00 0

t
= ®lim [ "™ (x* h(s))ds.

n—00 0
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Let i () = y forany y € Y,. Then
t . t -
/ eI=9G (xYO ,y> ds = / A <x1" ,y>ds for any y € Y.
0 0

This is true if and only if <xY0*, y> = <xf° ,y>, for all y € Yy, which gives a
contradiction. Consequently the whole sequence (x,f‘) ) . converges weakly in
n>
LYy, RY) to x¥o'.
Let Y| be another separable closed space of X. Then the restriction (x,f ! ) . of
n>

(v

: Y * Yo Y
o )nZO in Y| converges weakly to some x"t € Y*, and we get that x'o = x"1 in

Yo N Y. Since (x: )no converges weakly in Yy N Y}, and by the uniqueness of the
limit we obtain that x¥o = x¥" in ¥, N Y;. Let x* be the operator defined by

(x*,x) = (xY*,x>,

for any separable closed space Y of X such that x € Y. Then x* is well defined and
belongs to £(X,R?). Moreover

(xy,x) — (x*,x) forall x € X. O

n—o0

Consequently, we get the following.

Corollary 5.7. For any continuous function h : [0,a] — X:
t _ t
lim UY (t —s)TTY (By (Xoh(s))) ds = cp/ UG (x* i (s)) ds for all t € [0,al.

Theorem 5.8. Assume that (A), (B), (D), (D,), (Hy), (H;) and (Hy) hold. Let
u be an integral solution of Eq. (7) on R. Then ¢ (t) = (W, u;), t € R is a solution
of the following ordinary differential equation

E(t) = GE(t) + (x*, f (1)) fort € R. (12)
Conversely, if f is bounded and { is a solution of Eq. (12), then the function

(cb@ () + nLiToo/ L US (-5 11 (B, (Xof(5)) ds) © a3

is an integral solution of Eq. (7) on R.
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Proof. Using the variation of constants formula (11), we obtain that forz > o

() = (0.0 =05 + (v tim [0 —5) (B (o) ds).

= =G (W, x,) + lim | "6 (W, (B, (Xof(5))))ds,

—
n—>oo [

t
= =90 (W, x,) + lim | =6 (x¥, f (s)) ds,

n—oo

t
— =70 (9, x,) + / et (x*, f (s)) ds,

o

which means that ¢ () = (W, x;), t € R is a solution of the ordinary differential
equation (12). Conversely, if we assume that f is bounded on R, then formula (13)
is well defined, since the restriction of the solution semigroup on S is exponentially
stable. Let y be defined by:

y (1) := AETOO/_I US (t —5) 1% (B, (X0 f(s5))) ds for t € R.

Then fort > o,

t

US(@-0)y (o) + tim [ U501 (B (Xuf () ds

= lim (/a US (t —s) 1S (B, (Xo f(5))) ds + (14)

n—-+00

t

[0 e—9m (B s o) ds)
=y ().
Moreover the solution ¢ of Eq. (12) is given by
t
t(t) = e (o) + / "0 (x* £ (s))ds fort >o.
Corollary 5.7, gives that
t
¢ (1) = ©e"%¢ (0) + lim / UY(t —s) 1Y (B, (X0 f(s))) ds fort > o,
n—>oo o
and

Ot (1) = UY (t—0) ¥ (0) + lim n /t UY (t—s) 1Y (B, (X0 f(5))) ds fort > 0.
’ (15)
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Set£(t) = ©¢(¢t) + y (t) on R, by (14) and (15), we obtain that

§(0) =U(—-0)(®¢(0) +y(0))

t

+nli>nolon/ U (t — ) [T1Y + 1] (B, (X0 f(s))) ds fort > 0.

= U(t—o)é(o)+nli>nolo/tU(t—s) (B, (Xof(5)))ds fort >o.

From Theorem 4.9, we conclude that the function

(d>§ 1)+ tim_ / L US () TS (B, (X £ ) ds) ©)

is an integral solution of Eq. (7).

6 Almost Automorphic Solutions for Eq. (1)

We recall some properties about almost automorphic functions. Let BC(R, X) be
the space of all bounded continuous functions from R to X, provided with the
uniform norm topology. Let 7 € BC(R, X) and t € R, we define the function
h. by

h:(s) = h(z + s) for all s € R.

Definition 6.1 ([9, Definition 1.1.1, pp.1]). A bounded continuous function % :
R — X is said to be almost periodic if

{h: : T € R}is relatively compact in BC(R, X).
Definition 6.2 (Bochner, [18, Theorem 5.8, pp. 86]). A continuous function /4 :
R — X is said to be almost automorphic if for every sequence of real numbers
(s))n there exists a subsequence (s,), such that
lim h(t + s,) = k(¢) exists for all # in R
n—o0
and

lim k(¢ —s,) = h(¢) for allz in R.
n—o0

Remark. 1f the convergence in the both limits is uniform, then % is almost periodic.
The concept of almost automorphy is much larger than almost periodicity. By
the pointwise convergence, the function k is just measurable and not necessarily
continuous.
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Definition 6.3 (Bochner, [18, Theorem 5.8, pp. 86]). A continuous function % :
R — X is said to be compact almost automorphic if for every sequence of real
numbers (s),),, there exists a subsequence (s, ), such that

lim lim A(t 4 s, — s»,) = h(¢) exists uniformly on any compact set in R.
m—>oon—>00

Theorem 6.4 ([18]). If we equip AA(X), the space of almost automorphic X -
valued functions with the sup norm, then AA(X) turns out to be a Banach space.

Consider the following ordinary differential equation
d
Ex(t) =Gx(t)+e()fort eR (16)

where G is a constant 7 X n-matrix and e : R — R” is a continuous function.

Theorem 6.5 ([18, Theorem 5.8, pp. 86]). Assume that e is an almost automorphic
function. Then the following are equivalent:

i) existence of a bounded solution on R* of Eq. (16),
ii) existence of an almost automorphic solution of Eq. (16).
Moreover every bounded solution of Eq.(16) on the whole line is almost
automorphic.

In the following, we assume that:
(H;3) f is an almost automorphic function.

Consider now the following equation in the whole line R

%u(t) = Au(t) + L(u;) + f(¢t) fort e R. an

Theorem 6.6. Assume that (Hy), (H;) and (H3) hold. If there exists ¢ € C
such that Eq. (1) has a bounded solution on RY. Then Eq. (17) has an almost
automorphic integral solution.

Proof. Let u be a bounded solution of Eq.(1) on RT. Then by Theorem 3.6,
the function z(t) = (W, u,) for + > 0, is a solution of the ordinary differential
equation (6) and z is bounded on R™. Moreover, the function

o(t) = (x*, f (¢)) fort € R,
is almost automorphic from R to R?. By Theorem 6.5, we get that the reduced

system (6) has an almost automorphic solution z. Consequently ®z(.) is an almost
automorphic function on R. By Theorem 3.6, the function u(¢) = v(¢)(0), where

V(D) = PE() + lim / Cw (t —&) T° (B, Xo f (€)) dE fort € R,
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is a solution of Eq.(17) on R. We claim that v is almost automorphic. In fact,
consider the function y by

y() = lim /_ too U (1 — ) T (B, Xof (§)) dE fort € R,
Since f is almost automorphic, then for any sequence of real numbers (O{;)p>0
there exists a subsequence (oc P)pzo of (a/p)pzo such that
pli)nolof(t +a,) =h(t)forallt e R
and
pli)ngoh(t —ap) = f(t) forallt € R.
Now

oy, -
y(t +a,) = lim / U (t+a,—§) IT° (B, Xof (§))d& fort € R,

n—>+00 J_

which gives that

t
Yt +a,) = n—lil—li-loo/;oous t-¢&11° (BnXof (E+ ap)) d§ fort e R,
By the Lebesgue’s dominated convergence theorem, we get that
y(t +ap) = w(t) as p — oo,
where w is given by
t ~
w(t) = lim / U (t —§) I1° (B, Xoh (€)) d& fort € R.
n—>+00 J_

Using the same argument as above, we prove that

wit —ap) — lim /r U (t —E)TT* (B, Xo f (£)) dE as p — oo,

which implies that y is almost automorphic. Consequently, v is an almost automor-
phic integral solution of Eq. (17).
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7 Lotka-Volterra Equation

In order to apply the previous results, we consider the model of Lotka-Volterra with
diffusion which is taken from [23] and [25]

a 32 0
Ev(t,x) = ﬁv(t,x) + GO+ 6,x)d60 + h(t,x) fort > 0and x € [0, 7],
X

—-r
u(t,x) =0forx =0,randt > 0,

u(6,x) = @y(0,x) for 8 € [-r,0] and x € [0, ],

(18)
where G : [-1,0] > R, ¢o : [-r,0] x [0,7] > Rand % : R x [0,7] — R are
continuous functions.

Let X = C ([0, 7];R) be the space of continuous functions from [0, 7] to
R endowed with the uniform norm topology. Define the operator A : D(A) C
X — X by

D(A) = {y € C*([0,x];R) : y(0) = y(w) = 0},
Ay =y".
Lemma 7.1 ([7, Proposition 14.6 , pp. 319-320]).

1

(0, +00) C p(A) and ‘(x — A)_l‘ < — ford > 0.

>|

Moreover,

D(A) ={y € X : y(0) = y(7) = 0}.

This Lemma implies that condition (H,) is satisfied.
We introduce L : C := C([-r,0],X) — X by

0

L($)(x) = / G(0)$(0)(x)do for x € [0, 7]and ¢ € C.

f : R —> X is defined by
f(@)(x) =h(t,x) fort € Rand x € [0, n].
The initial data ¢ € C is provided by

0(0)(x) = @o(0, x) for (8, x) € [—r, 0]x[0, ]



Partial Functional Differential Equations: Reduction of Complexity and Applications 75

L is a bounded linear operator from C to X and by form continuity of /, we get that
f is a continuous function from R to X. Equation (18) takes the following abstract
form

%M(l) = Au(t) + L(u;) + f(¢) fort > 0,
uy =¢ € C.

19)

Let Ay be the part of A in D(A). Then, Ay is given by

D(4g) = {y € C2 (0, 7];R) : y(0) = y(m) = " (0) = ¥ () = 0},
Agy = Ay for y € D(Ap).

It is well known from [8, Example 1.4.34 , pp. 123], that A, generates a strongly
continuous compact semigroup (7o(¢)):>o on D(A) and

|To(t)| < e 'fort > 0,
Let 99 € C([—r, 0] x [0, 7] ; R) be such that
%0(0,0) = ¢o(0,7) = 0.
Then by Theorem 2.3, we deduce that Eq. (19) has a unique integral solution on
[—r, +00).

In order to study the existence of an almost automorphic solution of the following
equation

%u(t) = Au(t) + L(u)) + f(t) fort € R. (20)

We suppose that

(Hy) A is almost automorphic in ¢ uniformly for x € [0, 7], which means that
there exists a measurable function g : R x [0, 7] — R such that

lim A(t + s,,x) = g(¢, x) exists for all ¢ in R uniformly in x € [0, ]
n—od
and
lim g(¢t — s,,x) = h(t, x) for all ¢ in R uniformly in x € [0, 7]
n—o0

Moreover, we suppose that:
(H;) there exists a constant § € (0, 1) such that

0
/ G(©)]d6 < (1—B).

-r
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Proposition 7.2. Assume that (Hy) and (Hs) hold. Then there exists ¢ € C such
that Eq. (19) has a bounded solution on R™. Consequently Eq. (20) has an almost
automorphic solution.

Proof. The first goal is to prove that Eq. (19) has a bounded solution on RT. Let

p= (1 + |f%),where | floo = sup| f(s)|. Consider ¢ € Cy suchthat|p|, < p.
SER

We claim that
lu(t)] < pforallt > 0. 21

We proceed by contradiction. Let #y be the first time such that (21) is not true. Then

to =1inf{t > 0: |u(t)| > p}.
By continuity of u, one has

|u ()| = p.

and there exists a positive constant & > 0 such that

lu(t)| > pfort € (¢, to + ¢).

We have,

0w = Towp©) + tim [ Tolo =) BalLw) + f0)lds

which implies that

1o 0
il =ep [ | [ 16O G+ )16+ 171 | s

Since |u ()| < pfort < ty. Then
lu@)| < pfort € [—r, 1].

Therefore

0
ol =+ (=) | [ 16@1as -+ 111

t

Condition (Hs) implies that

(o) <e™p+ (1=e™)[(1=B)p+ 1Sl
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and

lu(o) <e™p+(1—e™)p+(1—e ) [-Bp+ | flool-

Consequently, we obtain that

lu) <p—(1—e)B <p.

by continuity of u, there exists a positive &y such that

lu(@)| < pfort € (to, to + o),

which gives a contradiction and we deduce that Eq. (19) has a bounded integral
solution # on R™, and by Theorem 6.6, we get that Eq. (20) has an almost
automorphic solution.

Acknowledgements The author would like to thank Professor Ovide Arino from whom he has
learnt a lot about the theory of partial functional differential equations and its application. This
work is dedicated to his memory.

References

10.

11.

. Adimy, M., & Ezzinbi, K. (1999). Existence and linearized stability for partial neutral

functional differential equations. Differential Equations and Dynamical Systems, 7, 371-417,

. Adimy, M., Ezzinbi, K., & Laklach, M. (2001). Spectral decomposition for partial neutral

functional differential equations. Canadian Applied Mathematics Quarterly, 9(1), 1-34.
Spring.

. Adimy, M., Bouzahir, H., & Ezzinbi, K. (2002). Local existence and stability for some partial

functional differential equations with infinite delay. Nonlinear Analysis, Theory, Methods and
Application, 48, 323-348.

. Arendt, W., Batty, C. J. K., Hieber, M., & Neubrander, F. (2001). Vector valued laplace

transforms and cauchy problems. Monographs in Mathematics, vol. 96. Basel: Birkhéuser.

. Benkhalti, R., Bouzahir, H., & Ezzinbi, K. (2001). Existence of periodic solutions for some

partial functional differential equations with infinite delay. Journal of Mathematical Analysis
and Applications, 256, 257-280.

. Bochner, S. (1964). Continuous mappings of almost automorphic and almost automorphic

functions. Proceedings of the National Academy of Sciences of the USA, 52, 907-910.

. Da Prato, G., & Sinestrari, E. (1987). Differential operators with nondense domains. Annali

Scuola Normale Superiore di Pisa, 14(2), 285-344.

. Engel, K. J., & Nagel, R. (1986) One-parameter semigroups of positive operators. Lecture

Notes in Mathematics, vol. 1184. Berlin/New York: Springer-Verlag.

. Fink, A. (1974). Almost periodic differential equations. Lectures Notes, vol. 377. New York:

Springer-Verlag.

Hino, Y., & Murakami, S. (2003). Almost automorphic for abstract functional differential
equations. Journal of Mathematical Analysis and Applications, 286, 741-752.

Hale, J. K. (1977). Theory of functional differential equations. New York: Springer-Verlag.



78

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

K. Ezzinbi

Hale, J., & Kato, J. (1978). Phase spaces for retarded equations with unbounded delay. Funkcia
Ekvac, 21, 11-41.

Hino, Y., Murakami, S., & Naito, T. (1991). Functional differential equations with infinite
delay. Lectures Notes in Mathematics, vol. 1473. Berlin-New York: Springer.

Hino, Y., Murakami, S., Naito, T., & Minh, N. V. (2002). A variation of constants formula for
abstract functional differential equations in the phase spaces. Journal of Differential Equations,
179, 336-355.

Massera, J. L. (1950). The existence of periodic solutions of systems of differential equations.
Duke Mathematical Journal, 17, 457-475.

Murakami, S., Naito, T., & Minh, N. V. (2004). Massera theorem for almost periodic solutions
of functional differential equations. Journal of the Mathematical Society of Japan, 56(1),
247-268.

Naito, T., Van Minh, N., & Son Shin, J. (2001). New spectral criteria for almost periodic
solutions of evolution equations. Studia Mathematica, 142, 97-111.

N’Guérékata, G. M. (2001). Almost automorphic and almost automorphic functions in abstract
spaces. Amesterdam: Kluwer.

N’Guérékata, G. M. (2001). Almost auotmorphy, almost periodicity and stability of motions in
Banach spaces. Forum Maths, 13, 581-588.

Pazy, A. (1983). Semigroups of linear operators and applications to partial differential
equations. Applied Math. Sciences, vol. 44. New York: Springer-Verlag.

Shin, J. S., & Naito, T. (1999). Semi-Fredholm operators and periodic solutions for linear
functional differential equations in Banach spaces. Journal of Differential Equations, 153,407—
441.

Thieme, H. R. (1990). Semiflows generated by Lipschitz perturbations of non-densely defined
operators. Differential and Integral Equations, 3(6), 1035-1066.

Travis, C. C., & Webb, G. F. (1974). Existence and stability for partial functional differential
equations. Transactions American Mathematical Society, 200, 395-418.

Zeidler, E. (1993). Nonlinear functional analysis and it’s applications, tome I, fixed point
theorem. New York: Springer-Verlag.

Wu, J. (1996). Theory and applications of partial functional differential equations. New York:
Springer-Verlag.



Characterizations of Convex Quadrics in Terms
of Plane Quadric Sections, Midsurfaces,
and Shadow-Boundaries

Valeriu Soltan

Abstract It is well known that the middle points of any family of parallel chords of
areal quadric surface Q in the Euclidean space R” belong to a hyperplane, and that a
similar property holds for the shadow-boundaries of Q. In this article we review the
existing results and add some new ones which characterize convex quadrics among
convex hypersurfaces in R”, possibly unbounded, in terms of plane quadric sections,
hyperplanarity of their midsurfaces and shadow-boundaries.

Mathematics Subject Classification (2000) Primary: 52A20

1 Introduction

In a standard way, a quadric (or a second degree surface) in the Euclidean space R”,
n > 2, is the locus of points x = (&1, ..., &,) which satisfy a quadratic equation

F(x)= ) aukibi +2) b +¢ =0, (0

ik=1 i=1

where not all a;; are zero. We say that a quadric O C R” is a hypersurface provided
its complement R” \ Q contains at least two components. The latter happens if and
only if either F(x) is a complete square describing a hyperplane or both open sets
{x eR": F(x) <0}and {x € R" : F(x) > 0} are nonempty.
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Fig. 1 Midsurface of a

convex body a
! b
E

In what follows, an r-dimensional plane in R” is a translate of an r-dimensional
subspace, a hyperplane is a plane of dimension n — 1. Given a pair of distinct points
a,c € R", the line (a, c) through a, ¢ and the segment [a, c] with endpoints a, ¢ are
defined, respectively, by

(@) ={(1—A)a+Ac:AeR}, [a,c]={(1—Na+Ac:0<i<I}

It is easy to see that, given a quadric Q and a line / in R”, either / lies within
Q or Q N[ contains at most two points. If the line / meets Q at precisely two
points, a and c, then the segment [a, c] is called a chord of Q. It is a matter of
common knowledge that the middle points of any family of parallel chords of a real
quadric Q C R” (called the midsurface of Q) belong to a hyperplane. (For reader’s
convenience, we provide the proof of this statement in Theorem 1 below.)

Similarly, we say that a line / supports the quadric hypersurface 9 C R”,
described by (1), provided @ # Q N/ # [ and [ lies in one of the closed sets
{x e R": F(x) <0} and {x € R" : F(x) > 0}. (This definition can be modified
to accommodate the case when Q is any real quadric, assuming that / lies in the
smallest plane containing Q.) The set of all points (possibly, empty) at which the
quadric hypersurface Q is supported by translates of a given line / is called the
shadow-boundary of Q with respect to [ and is denoted S;(Q). It is known that
each shadow-boundary of Q lies in a hyperplane (see Theorem 2).

The concepts of midsurface and shadow-boundary can be easily illustrated. For
example, the middle points of all chords of an ellipse E, which are parallel to a given
line /, fulfill the line segment [a, b], while the shadow-boundary S;(E) consists of
a and b (Fig. 1).

One might ask whether the hyperplanarity of midsurfaces or shadow-boundaries
characterizes quadric hypersurfaces within a certain family . of hypersurfaces in
R”. There is a variety of results addressing this question for the cases when . is (i)
the family of sufficiently regular hypersurfaces, or (ii) the family of bounded convex
hypersurfaces.

The purpose of this article is to survey the existing results and to provide new
statements which characterize convex quadrics within the family of all convex,
possibly unbounded, hypersurfaces in R”. The article may be considered as a sequel
to the paper [42] (previously published in this series) which describes convex
quadrics and their characteristic properties in terms of plane quadric sections. The
main content of this article is divided into the following sections.

2. Properties of quadric surfaces
3. Convex quadrics and their plane sections



Characterizations of Convex Quadrics 81

4. Convex hypersurfaces with hyperplanar midsurfaces
5. Convex hypersurfaces with hyperplanar shadow-boundaries
6. Orthogonal projections of convex quadrics

This paper is based on a talk given at the interdisciplinary Seminar on Mathe-
matical Sciences and Applications of Virginia State University.

2 Properties of Quadric Surfaces

This section contains some results about geometric properties of quadric surfaces in
R”, which are further used throughout the text. Although these properties are often
viewed as commonly known, their proofs are hardly accessible in mathematical
literature, or are given in a more restricted setting. For reader’s convenience, we
provide proofs of these results.

Theorem 1. The middle points of all chords of a real quadric surface Q C R”
which are parallel to a given chord [a, c] of Q belong to a hyperplane.

Proof. Assume that Q is given by (1). The line / through a and ¢ can be expressed as
[ ={z+1tv:teR}, with v #o, 2)

where z is the middle point of [a, ¢] and v = ¢ — a. Equivalently, x = (§1,...,§,)
belongs to [ if and only if

& =¢;+tv;, t eR, forall i =1,...,n, 3)
where z = (¢1,...,¢,) and v = (vy,...,v,). To determine the values of ¢ for
which x € Q N/, we substitute &, ..., &, from (3) into (1) and arrange the powers

of ¢. The result is a quadratic equation in ¢,

AW) 2 +2B(v,2)t + C(z) = 0, “
where
AW) = ) apvivi, B, =3 %8, C@ = F(@). (5)
ik=1 i=l1

Then a and ¢ correspond to opposite non-zero solutions, zy and —fy, of (4), which
is possible if and only if A(v) C(z) < 0 and B(v, z) = 0. The equality

n n

Z( aixdr + b,-)u,- = B(v,7) =0,
1

i=1 k=
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re-written in the form

n

(iaikvi>¢k + Xn:bivi =0 (6)

k=1 i=1 i=1

and interpreted as an equation in ¢y, .. ., ¢,, (6) describes a hyperplane, H . Indeed,
at least one of the scalars

n
= E airvi, k=1,...,n,

i=1

is distinct from zero, since otherwise
AWV)=civi+ ...+ v, =0,

which is impossible because of A(v) # 0.
If [@’, ¢] is a chord of Q parallel to [, ¢], then v is a nonzero multiple of ¢/ — a’,
implying that the line [’ through a’ and ¢’ is given by

I!={7 +1tv:teR},

where 7 = (¢],...,¢,) is the middle point of [a’, ¢']. Repeating the argument
above, we obtain that ¢[,...,¢, satisfy (6), which gives 7 € H. Hence the
midsurface of Q corresponding to [a, c] lies in H.

Theorem 2. Each shadow-boundary of a quadric hypersurface Q C R”" lies in a
hyperplane.

Proof. Let ! be aline in R” supporting Q. As in the proof of Theorem 1, we assume
that Q is given by (1), and (2) describes /, where z € Q N /. Equivalently, the
coordinates of any point x € [ are given in (3), and the values of ¢ for which x €
Q N1 are the solutions of the quadratic equation (4). Without loss of generality, we
suppose that / lies in the set {x € R” : F(x) > 0}. Then the quadratic polynomial

f(t) = AW) > +2B(v.2)t + C(2)

is non-negative over R and is not identically zero. Hence ¢+ = 0 is a unique solution
of (4), due to the inclusion z € Q N [. The latter is possible if and only if A(v) #
0 and B(v,z) = C(z) = 0, where A(v), B(v,z), and C(z) are given by (5). In
particular, the set Q N[ is a singleton.

Similarly to the proof of Theorem 1, the Eq. (6) describes a hyperplane, H,
containing z. If I’ is a translate of / supporting Q, then I’ can be expressed as

I'!={7 +tv:te€R}, where 7 €Qnl.
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Repeating the argument above, we obtain the inclusion 7/ € H. Hence the shadow-
boundary S;(Q) lies in H.

Theorem 3. Let E| and E, be non-degenerate quadric curves in R3, which lie,
respectively, in distinct planes L, and L, of R? such that E; N E, consists of a
pair of points. For any point v € R3\ (L1 U L,), there is a unique quadric surface
containing {v} U E1 U E,.

Proof. Let p and g be the points of intersection of E; and E, and ¢ be the middle
point of [p, g]. Denote by [ the line through p and ¢, and by /; the axis of affine
symmetry of E; which contains ¢ and is distinct from [, i = 1,2. Clearly, L;
contains /; U [, i = 1,2. Choose suitable coordinates &, &, £ in R? such that
¢ = o, and /1,1, are, respectively, the coordinate &;-, &-, and &3-axes. A point
v = (v1, vy, v3) belongs to R? \ (L; U L) if and only if vjv, # 0.

Re-scaling the unit vectors along the coordinate axes, we may suppose that p =
(0,0,1),¢ = (0,0,—1), and E; are given by one of the following equations.

1. If E; is an ellipse, then
£} + £ —20:5 —1=0, & =0, where 0; >0, i,/ € {1,2}, i #j. (7)
2. If E; is a parabola, then
E2—&—1=0, & =0, where i,/ €{1,2}, i # j. (8)
3. If E; is a hyperbola, then
£ 2285 -1=0, £ =0, where i,j € {1,2}, i #j.  (9)

By symmetry, the may assume that E; and E, are combined as follows.

(a) Both E| and E) are ellipses, given by (7), withi = 1,j =2andi =2,j =1,
respectively. Then the quadric surface containing {v} U E| U E, is described by
the equation

§+85+ 5+ phh 206 - 205 - 1=0,
where 1 = (201v; + 20202 — v — v —vI + 1)/ (v112).
(b) E; is an ellipse given by (7), withi = 1, j = 2, and E, is a parabola given

by (8), withi = 2, j = 1. Then the quadric surface containing {v} U E| U E;
is described by the equation

El 4+ E7 + pn&ibr— 2006 — 5 —1 =0,

where u = (201v1 + v, — v —vi 4+ 1)/ (v112).
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(c) E; is an ellipse given by (7), withi = 1, j = 2, and E; is a hyperbola given
by (9), withi = 2, j = 1. Then the quadric surface containing {v} U E| U E;
is described by the equation

2 4+ 4 ubie— 206 —2v26-1=0,

where u = (20yv; + 22 v, — v12 + v22 — v32 + 1)/ (vivy).

(d) Both E| and E; are parabolas, given by (8), withi =1,j =2andi =2, =
1, respectively. Then the quadric surface containing {v} U E; U E; is described
by the equation

E+ubie—6-65-1=0,

where u = (vi + v, — v§ + 1)/ (viva).

(e) E; is a parabola given by (8), withi = 1, j = 2, and E> is a hyperbola given
by (9), with i = 2, j = 1. Then the quadric surface containing {v} U E; U E;
is described by the equation

-8 tuseh—6 -2V26-1=0,

where it = (v + 2423 + v —v2 + 1)/(v112).

(f) Both E; and E, are hyperbolas, given by (9), withi = 1,j = 2 andi =
2,j = 1, respectively. Then the quadric surface containing {v} U E; U E; is
described by the equation

2 -8 4 ubie —2v28 —2V25-1=0,

where y = Q2V2v + 2420, + vlz + v% — v:,% + 1)/ (viva).

The proof of Theorem 4 below uses the following well-known fact of analytical
geometry. Since the determinant

an an b
detQ = |ay ax» by
bl b2 C
is an invariant of a quadratic form
fEn) = an® + 2anén + ann® + 2biE +2bn+c =0 (10)

with respect to orthogonal transformations of the plane, the classification of quadra-
tic curves implies that the real quadric Q C R? described by (10) is non-degenerate
(that is, does not lie in the union of two lines) if and only if det Q # 0.
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Theorem 4. Any five distinct points in the plane belong to a quadric curve. This
curve is uniquely determined by the points if and only if no four of them belong to a
line.

Proof. Let p; = (§1,1;), 1 < i < 5, be any five points in the coordinate plane.
A quadric curve, given by an Eq. (10) contains the set P = {p, ..., ps} if and only
ifayy,ann, ax, by, by, ¢ satisfy the system of five linear homogenous equations

ané? + 2ap&in + ann? + 2biE +2bni +c =0, 1<i<5. (11)

Since the number of variables here is greater than the number of equations, the
system (11) has a nontrivial solution. If at least one of the scalars a;;, a2, a» is not
zero, then (10) describes a quadric curve, and if a;; = a3 = azy = 0, then the
quadratic equation (2b1§ + 2ban + ¢)? = 0 gives a desired quadric curve.

If some four points from P belong to aline /, given by an equation v+ n+y =
0, then, multiplying its left hand side by a linear polynomial vanishing on the fifth
point of P, we obtain a family of quadratic equations which describe an infinite
family of distinct quadric curves through P.

Suppose that no four points from P belong to a line. Choose a quadric curve
Q containing P. If some three points from P belong to a line, then from the
classification of quadric curves it follows that 0 must be the union of two lines,
say, [ and . Let, for example, p1, p2, p3 € [ and py, p5s € . It is easy to see that
[, and I, give the only way to cover P by the union of two lines. Hence Q =/, U,
is the only quadric curve containing P.

Finally, let no three points of P belong to a line. Then any quadric curve
containing P is non-degenerate. Assume, for contradiction, the existence of distinct
quadric curves, Q and Q’, both containing P. Let Q be given by (10), and Q’ be
given by an equation

g(E.n) = d},& + 2a,En + dyn” + 2b1E + 2bin + ¢/ = 0. (12)

Since Q # Q’, the polynomial f(&, 1) + tg(&, n) is not identically zero in &, n for
any choice of t € R. Hence the equation f(&,n) 4+ tg(€,n) = 0in &, n determines
a quadric curve Q(¢) for any choice of ¢ in R.

Clearly, P C Q(t), which shows that Q(t) is non-degenerate for all # € R. On
the other hand, the determinant

a + tail ap + ta/lz by + lbi
det Q(t) = |ax + tay, axn + tay, by + tb)
by +tby by +1tbh; c+tc

is a polynomial of degree 3 in ¢, whose leading coefficient equals det Q' (# 0).
Hence the equation det Q(f) = O has a real solution ¢ = ¢y, which shows
that the quadric curve Q(fy) is degenerate. The obtained contradiction implies the
uniqueness of Q.
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Theorem 5. For any set P = {po, p1, p2, p3} of four distinct points in the plane
and a line | through py, there is a quadric curve which contains P and has | as a
tangent line at po. This curve is unique if and only if the set P N[ consists of at
most two points.

Proof. Consider a quadric Q in the plane, expressed by (10). It is well-known that
the tangent line of Q at a regular point u = (p, ¢g) is given by the linear equation

(a11p +ang +b))§ + (anpp +ang +b)n+ (bip+byg+c)=0. (13)

Choosing suitable Cartesian coordinates £, 77 in the plane, we may assume that
po = (0,0) and [ is the £-axis. Let p; = (&;,n;),i = 1,2, 3. From (13) it follows
that / is the tangent line of Q at py if and only if ¢ = 0 and b; = 0. Hence

FE ) = ang + 2anén + ann® + 2byn = 0.

Furthermore, Q contains {p1, p,, p3} if and only the coefficients a1, a1z, a2, b2
in (10) satisfy the system of three linear homogenous equations

an€l +2ané&n; + anni +2bm; =0, i =1,2,3. (14)

Since the number of variables here is greater than the number of equations, (14)
has a nontrivial solution. Hence a quadric curve Q satisfying theorem’s conditions
exists.

Assume first that Q is degenerate. Then Q is the union of two lines: / and, say,
I’. The line !’ is uniquely determined by P if and only if it contains at least two
point of P. Hence Q is uniquely determined by P if and only if P N consists of at
most two points. Furthermore, any other quadric 7" satisfying theorem’s condition
should also be degenerate. Indeed, if at least one of the points, pi, p2, ps3, say, pi
belongsto [, then ! C T. If none of py, p, p3isinl, then {p;, p>, p3} should lie in
another line, m (because Q is degenerate), implying the inclusion m C T'. In either
case, T' is degenerate.

Suppose now that Q is non-degenerate. Then P N[ = {py}, and no three points
of P belong to a line. In particular, / ¢ Q. Furthermore, a;; # 0, since otherwise
the polynomial

JFE n) = Qané +ann+2b)n

would describe a degenerate quadric.

Assume for a moment the existence of another quadric curve Q' which contains
P and has [ as the tangent line at py. As shown above, any such a quadric is non-
degenerate. Furthermore, Q' can be expressed by an equation

g(E.n) = a}, £ + 2al,En + abn® + 2b5n = 0,
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where a}, # 0. Since Q # Q’, the polynomial

FEm) +1gE ) =(an + ta}))E + 2(arn + ta',)én
+ (an + tayy)n* + 2(by + thy)n

is not identically zero in &, 5 for any choice of t € R. Hence the equation f(§,7n) +
tg(é,n) = 0 in &, n determines a quadric curve Q(t) for any choice of ¢ in R.
Clearly, Q(t) contains P and has / as the tangent line at po. By the proved above,
Q(t) should be a non-degenerate quadric for all £ € R. On the other hand, the
quadric Q (o), with tp = —ay1/a},, described by the polynomial

FE ) +10g(E.n) = (2(ar2 + toal,)E + (ax + toaby)n + 2(by + tob5))n,

is degenerate. The obtained contradiction implies the uniqueness of Q.

3 Convex Quadrics and Their Plane Sections

In what follows, by convex solid in R", n > 2, we mean an n-dimensional closed
convex sets, distinct from the whole space and, possibly, unbounded (convex bodies
are compact convex solids). As usual, bd K and int K denote, respectively, the
boundary and the interior of a convex solid K C R”.

A convex hypersurface in R" is the boundary of a convex solid. This definition
includes a hyperplane or a pair of parallel hyperplanes. There are different ways to
define convex quadrics in R” (see, e.g., a discussion in [42]). The most general one
is given by the following definition.

Definition 1 ([39]). A convex hypersurface S C R”" is called convex quadric
provided there is a quadric hypersurface 9 C R” and a component U of R" \ Q
such that U is a convex set and S = bd U.

The following classification of convex quadrics is provided in [39].

Theorem 6 ([39]). A convex hypersurface S C R" is a convex quadric if and
only if there are suitable Cartesian coordinates &1, ...,&, in R" such that S can
be expressed by one of the equations:

arfl + -+ akp =1, 1 <k<n,
aE —af; - —af =1,6>0  2<k=<n,
a1l =0,

01512—612522—"'—0/(&%:0, & >0, 2<k<n,
ari + -+ a1 & =&, 2<k<n,

where all scalars a; involved are positive.
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In particular, convex quadrics in R” which contain no lines can be expressed in

suitable Cartesian coordinates &, . .., §, by one of the equations:
a&l -t al =1, (ellipsoid)
algf - azézz — e —ay Ef =1,£& >0, (sheet of elliptic hyperboloid
of two sheets)
aEl —artl — - —a,£2 =0, £ >0, (sheet of elliptic cone)
Q& 4t an 8 = &, (elliptic paraboloid)
where all scalars ay, ..., a, are positive.

A recursive description of convex quadratics in R” is given as follows.

1. Convex quadrics in R? are ellipses, branches of hyperbolas, parabolas, convex
cones, lines, and pairs of parallel lines.

2. Convex quadrics in R, n > 3, are ellipsoids, sheets of elliptic hyperboloids of
two sheets, sheets of elliptic cones, elliptic paraboloids, and cylinders based on
convex quadrics in R"~!,

In what follows, we will need the following definitions. Given a convex solid
K C R”", we say that a point x € bd K is regular provided there is a unique
hyperplane through x supporting K. Furthermore, K is regular if all its boundary
points are regular. The convex solid K is called strictly convex if its boundary does
not contain segments. If M C R” is a closed convex set, then rbd M and rint M
mean, respectively, the relative boundary and the relative interior of M with respect
to the smallest plane containing M (see, e.g., [46] for general references on convex
sets).

We recall that the recession cone of a convex solid K C R”" is defined by

recK ={y € R" : x + ay € K whenever x € K and a > 0}.

It is known that rec K is a closed convex cone with apex o, the origin of R";
furthermore, rec K is distinct from {o} if and only if K is unbounded. The subset
S"~1\ (rec K U—rec K) of the unit sphere S"~! C R” consists of the non-recessional
unit vectors for K. Equivalently, a unit vector e € R”" is non-recessional for K
if and only if the intersection of K with any line parallel to the one-dimensional
subspace [ = {ae : a > 0} is either bounded or empty. The convex solid K has
non-recessional unit vectors if and only if K is distinct from a closed halfspace
of R".
The linearity space of a convex solid K C R” is defined by

lin K =rec K N (—rec K).
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If L C R" is a plane complementary to lin K, then K can be expressed as the direct
sum

K=1linK® (KNL),

and K N L is a closed convex set containing no lines.

The following characteristic properties of convex quadrics in terms of plane
quadric sections will be used below (see also [42]). We will say that a plane L C R”
properly meets a convex solid K C R” provided L meets both bd K and int K.

Theorem 7 ([37,42]). Let K C R", n > 3, be a convex solid and p a point in
K such that all proper sections of bd K by two-dimensional planes through p are
convex quadric curves. Then bd K is a convex quadric or a convex cone with apex p.

Theorem 8 ([38]). If K C R", n > 3, is a line-free convex solid and p a point
in R", then the set bd K \ ((p +rec K) U (p —rec K)) lies in a convex quadric if
and only if all proper bounded sections of bd K by two-dimensional planes through
p are ellipses.

It is interesting to compare Theorems 7 and 8 with similar generic results. For
example, Lenz [25], using methods of projective geometry, proved the following
theorem.

Theorem 9 ([25]). Assume that a connected non-planar piece of a surface S C R*
is covered by an open family € of planes. If each section S N\ P, P € €, is a piece
of a quadric curve, then S is a piece of a quadric surface.

An open family of planes in Theorem 9 is defined as follows. Let € =
{P(eq4. yy)} be a family of planes in R3, each expressed as P (e, yy) = {x € R® :
X-eq = Y4}, Where {e,} are unit vectors and {y,} scalars. We say that € is open
provided for any P(eqy, yy) € € thereis an & > 0 such that P(e, y) € € for all unit
vectors e and scalars y satisfying the inequalities |e — ey || < € and |y — yu| < &.

Clearly, Theorems 7 and 8 do not follow from Theorem 9 (even for the case
n = 3) because the families of planes in these theorems are not open.

The following new result refines Theorem 7.

Theorem 10. Let K C R", n > 3, be a convex solid, p a point in R" such that
a proper section of bd K by a certain two-dimensional plane through p is not a
branch of hyperbola. Then the following conditions are equivalent.

1) bd K is a convex quadric or a convex cone with apex p.
2) All proper sections of bd K by two-dimensional planes through p are convex
quadric curves.

Proof. Clearly, we need to show only that 2) = 1). Since the cases p € int K and
p € bd K are considered in [37] and [42], respectively, we assume that p € R" \ K.

We proceed by induction on n (> 3). Let n = 3. If K contains a line m and L
is a plane through p complementary to m, then bd K is a cylindric surface based on
the convex quadric curve L N bd K. Assume that K contains no lines. Let L, be a
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plane through p properly meeting K such that the curve I'y = Lo N'bd K is not a
branch of hyperbola. Then T is either an ellipse, a parabola, or a convex cone.

I. Assume first the existence of a line /| C Ly through p meeting int K such that
K N1 is a segment, [u, z]. Choose a pair of distinct two-dimensional planes L; and
L, both containing / such that the sets L; N K and L, N K are bounded. By the
assumption, £; = L; NbdK and E, = L, N bd K are convex quadric curves,
whence they are ellipses. Choose a pointv € bd K \ (L U L) so close to u that a
certain two-dimensional plane L through the line (p, v) meets K along a segment
[v, w] and each of the sets £y N L, E, N L has precisely two points. Clearly, v can be
chosen such that [v, w] meets int K. As above, L Nbd K is an ellipse. By Theorem 3,
there is a quadric surface Q containing {v} U E; U Ej.

We state that L Nbd K C Q. Indeed, since both convex quadric curves L Nbd K
and L N Q contain the five-point set {v} U (L N E;) U (L N E,), which does not
belong to a line, Theorem 4 implies that LNbd K =L N Q C Q.

Slightly rotating L about the line (p, v), we obtain a family of ellipses L N bd K
which cover an open subset V' of bd K. As above, V' C Q. To show the inclusion
bd K C Q, choose a point g € V such that (p, g) meets int K. Let x € bd K \ {g},
and denote by N the two-dimensional plane containing { p, ¢, x}. Since the quadric
curves N Nbd K and N N Q coincide along the non-linear arc N N V, they must
coincide: N NbdK = N N Q. Hence bd K C Q. Because int K is a convex
component of R” \ Q, the surface bd K is a convex quadric.

II. Assume now that no line / C L, through p meets K along a segment. Since
T’y is not a branch of hyperbola, the latter happens only if the set M = Lo N K
is a solid convex cone with an apex g such that p belongs to the symmetric cone
2g — M. Denote by h; and h; the boundary halflines of M. Since both 4; and &,
belong to bd K, there are planes H; and H, supporting K such that iy C K N H;
and h, C KN H,. If L is a plane through the line /o = (p, ¢) distinct from L, then
the lines L N H; and L N H; bound the plane convex solid L N K, which shows
that ¢ is a singular point of L N K. Because L N bd K is a convex quadric, it must
be a convex cone with apex ¢. Rotating L around /y, we obtain that bd K is covered
by a family of convex cones with apex ¢, implying that bd K is a convex cone with

apex ¢.

Now, choose three planes L, L, L3 through p such that neither curve C; =
L;Nbd K,i = 1,2, 3, is a convex cone and the component of bd K \ (C; UC, U C3)
containing ¢ is bounded. Being unbounded, each of the convex quadrics Cy, C,, C3
is either a parabola or a branch of hyperbola. Since any parabola has only one
recessional direction, and since each set L; N K has a two-dimensional recessional
cone, none of C;,i = 1,2, 3, may be a parabola. Hence C,, C,, and Cj; are branches
of hyperbolas. It is easy to see that the set D; = U([g,z) : z € C;) is a piece
of an elliptic cone. Since D, D,, D3 pairwise meet and cover the whole bd K, we
conclude that bd K is a sheet of an elliptic cone.
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Let n > 4. Choose a two-dimensional plane L, through p such that Lo N bd K
is not a branch of hyperbola. Let r be a point in Ly N int K, and N be any two-
dimensional plane through . Consider a three-dimensional plane S through { p}UN
and the three-dimensional closed convex set P = KN S. If L C S is a two-
dimensional plane through p properly meeting P, then from L N\tbd P = LNbd K
it follows that L meets rbd P along a convex quadric curve. By the proved above
(the case n = 3), rbd P is a convex quadricin S. Hence N Nbd K = N Nrbd P is
a convex quadric curve, and Theorem 7 shows that bd K is a convex quadric.

Theorem 10 gives an additional argument to reiterate the following problem
from [39, 42]: Is it true that the boundary of a convex solid K C R", n > 3, is
a convex quadric if and only if there is a point p € R" \ K such that all proper
sections of bd K by two-dimensional planes through p are convex quadric curves?
A combination of Theorems 7 and 10 reduces this problem to the following case.

Problem 1. Let K C R", n > 3, be a convex solid and p a point in R” \ K such
that all proper sections of bd K by two-dimensional planes through p are branches
of hyperbola. Is it true that bd K is a sheet of an elliptic hyperboloid of two sheets?

The next new result refines Theorem 5 from [40], proved there for the case [ N
int K # @. Given a line /[ C R”" and a scalar § > 0, denote by Cs(/) the open
circular cylinder of radius § centered about the line /, and by Zs(/) the family of
all two-dimensional planes which are parallel to / and whose distance from / is less
than §.

Theorem 11 ([40]). Let K C R", n > 3, be a convex solid, | C R" a non-
recessional for K line, and § a positive scalar. The following conditions are
equivalent.

1) bd K is a convex quadric.
2) For each two-dimensional plane L € ZPs(l) properly meeting K, the section
L Nbd K is a convex quadric curve.

Proof. Clearly, we need to show only that 2) = 1). Since the case / Nint K # @
is proved in [40], one can assume that [ N int K = @. Furthermore, the case when
Cs(I) Nint K # @ can be reduced to the previous one. Indeed, choosing a suitable
scalare € (0,8) andaline !’ C int C(!) with the property /’Nint K # @, we see that
["and §' = §—e satisfy condition 2). Hence we may suppose that Cs(/)Nint K = @.

We further proceed by induction on n (> 3). Let n = 3. If K contains a line
m and L is a two-dimensional plane through / which is complementary to m and
properly meets K, then bd K is a cylindric surface based on the convex quadric
curve L Nbd K. Suppose that K contains no lines.

I. Assume first the existence of a proper section of bd K by a plane Ly € (/)
which is not a convex cone. Choose a line [y C L parallel to / and meeting int K.
Continuously rotating a plane L about /, from the initial position L = L on a small
angle of size ¢ > 0, we obtain a family & of planes L from &5(/) properly meeting
K. Since the curve Ly N bd K is not a convex cone, ¢ can be chosen so small that
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each section L Nbd K, with L € ¥, is a not a convex. Choose any distinct planes
Li,L,e%andput E; = LNbdK,i = 1,2. Since / is non-recessional for K, the
set K N [y is a segment, say, [p, ¢].

Let M be a plane through / which does not contain /; and meets both planes
L) and L,. Choose a point v € bd K in the open triangular prism bounded by the
planes L, L,, M so close to p that the line /, through v parallel to / meets int K.
By Theorem 3, there is a unique quadric surface Q0 C R? containing {v} U E; U E,.

We state that bd K C Q. Indeed, choose a plane L € Cs(/) through v which
meets the set {v} U E; U E, at five distinct points. By Theorem 4, the convex quadric
curves LNbd K and L N Q coincide. Hence LNbd K = LN Q C Q. Continuously
rotating L about /, on a small angle such that L remains in Cs(/), we obtain a family
of convex quadrics L N bd K through v whose union covers an open piece, Vp, of
bd K. By the argument above, 1, C Q. Denote by /; and /; the lines in Cs(/) N M
which lie at a distance §/2 from [ on the opposite sides of /. Considering all sections
of bd K by planes through /; which meet 1}, we enlarge 1 to a new open piece V; of
bd K also lying in Q. Similarly, the union of all sections of bd K by planes through
I, which meet V) is a new open piece V5 of bd K also lying in Q. Performing these
enlargements (alternatively using planes through /; and /,), we obtain an increasing
sequence of open subsets Vo C V| C V, C ... of bd K whose union covers bd K
and lies in Q. Hence bd K C Q. Since int K is a convex component of R? \ Q, the
set bd K is a convex quadric.

II. Next, assume that all proper sections of bd K by planes from ZZs(/) are convex
cones. We are going to show that this case is impossible. Indeed, choose any plane
Ly through [ properly meeting K, and consider the convex cone Cy = Ly N bd K.
Let ay be the apex of Cy, and h; and h; its boundary halflines. Let M be a plane
through / which does not contain Cy, and denote by /;, [, the lines in Cs(/) N M
which lie at a distance §/2 from / on the opposite sides from /. By the assumption,
the planes L through {x }U/;, x € h;, meetbd K along convex cones,i = 1,2. By a
convexity argument, this is possible only if ay belongs to an open segment (¢, e;) C
bd K such that bd K contains two unbounded 3-gonal regions Vj, Wy C bd K based
on [cy, e;1] and containing Ay, h,, respectively. Similarly, considering the planes L
through {x } U [;, x € Vj, we enlarge the regions Vj, Wy, to V;, Wi, respectively,
such that V7 and W) are based on a segment [c,, e;] properly containing [cy, e1].
Continuing the procedure, we obtain that bd K is the union of two closed halfplanes
with the common boundary line through ¢ and e;. In the latter case, K contains a
line, contrary to the assumption above. Hence Case II is impossible.

Let n > 4. Choose a line [y which is parallel to / and meets int K. Let L be
any two-dimensional plane through [y and M a three-dimensional plane through
[ U Ly. Then Cs(/) N M is a cylinder of radius § in M centered about /. Choose any
two-dimensional plane L C M which is parallel to / and whose distance from / is
less than § such that L properly meets K. According to condition 2), L Nbd K is a
convex quadric curve. Therefore, by the proved above (n = 3) the surface M Nbd K



Characterizations of Convex Quadrics 93

is a convex quadric in M. Hence LoNbd K = LyN (M Nbd K) is a convex quadric.
By Theorem 5 from [40], bd K is a convex quadric.

Problem 2. Is it true that Theorem 11 holds for any choice of the line / in R"?

4 Convex Hypersurfaces with Hyperplanar Midsurfaces

In 1842, Bertrand [4] observed, with a sketch of proof, that any curve in the plane
such that the middle points of every family of parallel chords of the curve belong
to a line is necessarily a quadric curve. Bertrand’s proof uses the following two
arguments: (i) any five points in general position in the plane belong to a unique
quadric curve, (ii) a convergent sequence of quadric curves tends to a quadric curve.
Treating Bertrand’s argument more analytically, Blaschke [7] (see §§ 7, 9, and 35)
showed that a twice differentiable curve of constant curvature is a quadric curve (not
necessarily convex) provided the middle points of any family of parallel chords of
the curve belong to a line.

In 1889, Brunn [12, Chapter IV], using a technique of conjugate diameters,
showed that a bounded convex curve C in the plane is an ellipse provided the
middle points of every family of parallel chords of C belong to a line. For the same
purpose, Blaschke [5] (see also [6, pp. 158—159]) uses the idea of affine symmetry.
Namely, he chooses a pair of affine reflections ¢ and ¢, of C onto itself such
that their composition @, is an affine rotation with period 2". Applying a suitable
affine transformation f, one can make @, a usual rotation ®; on an angle 27/2"
which maps f(C) onto itself. When # tends to infinity, f(C') remains invariant with
respect to a rotation on any angle of size 2;tm /2", where m,n > 1. This argument
shows that f(C) is a circle, and whence C is an ellipse.

For some other proofs of this characteristic property, see, for example, Naka-
jima [29], Berger [3], Kneser [23], and Siiss, Viet, Berger [44].

Griinbaum [20, p. 82] mentioned without proof the following two results about a
bounded convex curve C in the plane: (a) C is an ellipse provided there is a scalar
& > 0 such that the intersection of each midcurve of C with an e-neighborhood of C
consists of two segments, (b) C is an ellipse provided it has infinitely many straight
midcurves. We observe that statement (a) is extendable to higher dimension (see
Theorem 14 below), while statement (b) cannot be generalized even to the case of
unbounded convex curves in the plane. Indeed, let K denote the convex hull of the
set P = {(k.k?) : k € Z}. Then the convex curve C = bd K has infinitely many
line midcurves: each of them is generated by the chords of C which are parallel to
the line tangent to the parabola y = x? at (k, k?).

Brunn’s result was generalized to higher dimension by Blaschke [6, p. 159] for
n = 3 and Busemann [14, p.92] for all n > 2 (see also Grinberg [17] and
Thompson [45, Section 3.4] for the case of a centrally symmetric convex body).
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Theorem 12 ([14]). The boundary of a convex body K C R", n > 2, is an ellipsoid
if and only if the middle points of each family of parallel chords of K belong to a
hyperplane.

The proof of Theorem 12 uses Blashke’s method to characterize ellipses,
followed by the following statement: the boundary of a convex body K C R”,
n > 3, is an ellipsoid provided all sections of bd K by two-dimensional planes
through a given point p € int K are ellipses. See, e.g., [42] for various references
on quadratic sections of convex solids.

Kubota [24] showed that the boundary of a convex body K in the plane is an
ellipse provided for each family .# of chords of K in the same direction, there is
ascalar Az € (0, 1) such that the locus of points that divide all chords from .% in
the ratio A & belongs to a line. (We say that, given a nonzero vector e € R”, a chord
[x, z] (also a line (x, z)) has direction e provided z — x is a positive multiple of e.
Furthermore, a point y divides [x, z] inaratio A € [0, 1] provided y = (1—A)x+Az;
obviously, |x — y|| = Allx —z]|.)

Kubota’s result was extended in [37] to the case of convex quadrics in R”, as
follows.

Theorem 13 ([37]). If K C R", n > 2, is a convex solid distinct from a halfspace,
then the following conditions are equivalent.

1) bd K is a convex quadric surface.

2) The middle points of every family of parallel chords of K belong to a hyperplane.

3) Forevery family F of parallel chords of K in the same direction, there is a scalar
Az € (0, 1) such that the locus of points that divide the chords from . in the
ratio A & lies in a hyperplane.

Theorem 13 immediately follows from a sharper statement below, which con-
siders families of parallel chords in a small neighborhood of bd K. We will say
that a line [ C R” is non-recessional for a convex solid K if [ is a translate of a
one-dimensional non-recessional subspace for K. For a scalar § > 0 and a non-
recessional line / which supports K, denote by K;(/) the set of points in K whose
distance from / is at most 6. If / has a certain positive direction, then let .%s([) be
the family of chords of K lying in Ks(/) and having the same direction as /.

A two-dimensional convex solid M C R? (as well as its boundary curve
bd M) will be called §-polygonal provided it is locally polygonal, and for any non-
recessional line / supporting M, the interior of Ms(/) contains at most one vertex
of M. Obviously, any convex polygon in R? is §-polygonal for a suitable § > 0.

Theorem 14 ([37]). For a convex solid K C R", n > 2, distinct from a halfspace,
the following conditions are equivalent.

1) bd K is a convex quadric or K is a direct sum of a subspace and a line-free
closed convex set C of dimension m, 2 < m < 3, such that C is a simplicial
cone if m = 3, or C is §-polygonal for a suitable § > 0 if m = 2.
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2) There is a scalar § > 0 such that for each non-recessional directed line |
supporting K one can find a scalar A(l) € [0, 1] with the following property:
the points which divide all chords m € %s(l) in the ratio A(l) belong to a
hyperplane.

Corollary 1. For a convex solid K C R", n > 2, distinct from a halfspace, the
following conditions are equivalent.

1) bd K is a convex quadric or K is a direct sum of a subspace and a line-free
closed convex set C of dimension m, 2 < m < 3, such that C is a simplicial
cone if m = 3, or C is a convex cone or a triangle if m = 2.

2) For each non-recessional directed line I, one can find a scalar A(l) € [0, 1] with
the following property: the points which divide in the ratio A(l) all chords of K
in direction | belong to a hyperplane.

The proof of Theorem 14 is organized in distinct steps. The statement 1) = 2)
follows from Theorem 1, with A(/) = 1/2 if bd K is a convex quadric, and from
the standard properties of triangles and three-dimensional simplicial cones, with
A(l)=0o0rA(l) =1.

The opposite statement 2) = 1) is first considered for the case n = 2. The major
steps here are as follows.

1. If the convex solid K C R? is neither regular nor strictly convex, then K is
§-polygonal.

2. If the convex solid K C R? is regular and strictly convex, then for any directed
line supporting K the respective scalar A (/) satisfying condition 2) of the theorem
equals 1/2.

3. If the convex solid K C R? is regular and strictly convex, then for any tangent
line of K, the part of bd K lying in K;(/) is an arc of a convex quadric curve.

For n > 3, the proof of 2) = 1) uses the following arguments.

1. If there is a point p € int K such that each section of bd K by a two-dimensional
plane through p is either a convex quadric curve or a locally polygonal line, then
bd K is either a convex quadric hypersurface or a locally polyhedral surface.

2. If K is locally polyhedral and satisfies condition 2) of the theorem, then K is a
direct sum of a subspace and a line-free closed convex set C of dimension m,
2 < m < 3, such that C is a simplicial cone if m = 3, or C is §-polygonal for a
suitable § > 0 if m = 2.

Gruber [18, 19] gave the following refinements of Theorem 12 (see also Monte-
jano and Morales [28] for the case when K in Theorem 15 is centrally symmetric
and A(e) = 1/2forall e € S"~! in a small neighborhood of a given point).

Theorem 15 ([18]). The boundary of a convex body K C R", n > 2, is an ellipsoid
provided K has the following property: there is a subset T of the unit sphere S"~' C
R" having nonempty interior with respect to S"~' such that for each vectore € T
one can find a scalar A(e) € (0,1) and a hyperplane H(e) so that for any chord
[x,z] of K in direction e, the point (1 — A(e)) x + A(e) z belongs to H (e).
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Theorem 16 ([18]). The boundary of a convex body K C R", n > 2, is an ellipsoid
provided K has the following property: there is a convex subset T of the unit sphere
S"=!' C R" having nonempty interior with respect to S"~' and c1 T containing a pair
of opposite vectors of S"~! such that for each vector e € T one can find a scalar
A(e) € [0, 1] and a hyperplane H(e) so that for any chord [x, 7] of K in direction e,
the point (1 — A(e)) x + A(e) z belongs to H(e).

Theorem 17 ([19]). There are (n — 1)-dimensional subspaces L,,...,Ls C R"
with the following property: the boundary of a convex body K C R", n > 2, is an
ellipsoid provided for each one-dimensional ordered subspace l C L1 U ... U Ly
one can find a hyperplane H(l) and a scalar A(l) € [0, 1] so that for any chord
[x,z] of K in direction I, the point (1 — A(l)) x + A(l) z belongs to H(I).

Based on Theorem 15, we prove the following result (a similar statement, with
A(e) = 1/2foralle € T and n > 2, is given in [40]).

Theorem 18. Given a line-free convex solid K C R", n > 3, and an open nonempty
subset T of S"™!'\ (rec K U —rec K), the following conditions are equivalent.

1) bd K is a convex quadric.

2) Foreachvectore € T one canfind a scalar A(e) € (0, 1) and a hyperplane H (e)
so that for any chord [x,z] of K in direction e, the point (1 — A(e))x + A(e)z
belongs to H (e).

Proof. 1) = 2) due to Theorem 1, with A(e) = 1/2foralle € T.
2) = 1) This part of the proof is organized by induction on n > 3.

Let n = 3. Translating K on a suitable vector, we assume that o € int K. Choose
any vector e € T and denote by / the one-dimensional subspace containing e. Since
K is line-free, there are distinct planes L, and L; both containing / such that the
sets Ly N K and L, N K are bounded. Clearly, L; N T is a nonempty open subset of

(Li NS\ (rec (L; N K) U —rec (L; N K)), i=1.2.

Choose any vector u € L; N T. By condition 2) of the theorem, there is a scalar
Ai(u) € (0,1) and a plane H;(u) so that for any chord [x, z] of L; N K in direction
u, the point (1 — A(u))x + A(u)z belongs to L; N H; (u). Since L; N H; (u) is a line
in L;, Theorem 15 (with n = 2) implies that both sections £; = L; N bd K and
E, = L, Nbd K are ellipses.

Choose a pointv € bd K \ (L U L) so close to [ thatv/|v|| € T, a certain two-
dimensional plane L through the line (0, v) meets K along a bounded set, and each
of the sets £y N L, E, N L has precisely two points. As above, L Nbd K is an ellipse.
By Theorem 3, there is a unique quadric surface Q0 C R? containing {v} U E; U E,.
We observe that LNbd K C Q. Indeed, Theorem 4 implies that the ellipse L Nbd K
is a unique quadric curve containing the five-pointset X = {v{U(E1NL)U(E,NL).
Since L N Q also is a quadric curve containing X, onehas LNbd K = LN QO C Q.
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Slightly rotating L about the line {0, v), we obtain a family of ellipses L N bd K
which cover an open subset 1 of bd K consisting of two open “lenses” with a
common endpoint v. As above, Vo C Q. Similarly, if {x + L} is the family of
translates of the plane L; meeting Vj, then each section (x + L;) N bd K is an
ellipse lying in Q. Clearly, the union of these ellipses covers a larger than V; open
subset V; of bd K enclosed by a pair of planes parallel to L. Performing next a
similar procedure on V;, with L, instead of L;, we enlarge V; to another open
subset V; of bd K which lies in Q and is enclosed by a pair of planes parallel to L.
Alternatively repeating this enlargement procedures, we obtain a sequence of sets
VoocC Vi CcV,CV;CVyC...whoseunion covers bd K and lies in Q. Hence
bd K C Q. Since int K is a convex component of R* \ Q, the surface bd K is a
convex quadric.

Let n > 4. As above, we assume that o € int K. To prove that bd K is a
convex quadric in R”, it suffices to show that the intersection of bd K with any two-
dimensional subspace L C R” is a convex quadric curve (see Theorem 7). Choose
avectore € T \ L and put M = span(e U L). Then M is a three-dimensional
subspace of R". Clearly, M N T is a nonempty open subset of

(M NS" )\ (rec(M N K) U—rec(M N K)).

Choose any vector u € M N T. By condition 2) of the theorem, there is a scalar
A(u) € (0,1) and a hyperplane H(u) so that for any chord [x,z] of M N K in
direction u, the point (1 — A(«))x + A(u)zbelongs to M N H(u). Since M N H (u)
is a plane in M, from the case n = 3 above it follows that M N bd K is a three-
dimensional convex quadric. Hence LNbd K (= LN M Nbd K) is a convex quadric
curve. Therefore bd K is a convex quadric.

The question whether the statement of Theorem 18 holds in the case n = 2
remains open (see [40]). The following more general problem, if confirmed, will
give an affirmative answer to this case.

Problem 3. Let f and g be, respectively, a convex and a concave functions on
a closed segment [a, b] such that f(x) < g(x) for all x € [a,b]. Furthermore,
suppose the existence of a scalar ¢ > 0 such that for any directed line / C R?
forming with the y-axis of R? an angle of size at most ¢ there is a line H = H(l)
and a scalar A = A(/) € (0, 1) so that the following property holds: if a translate
of [ meets the graphs of f and g at points u and v, respectively, then the point
z= (1 —=A)u + Avbelongs to H. Is it true that the graphs of f and g are pieces of
a convex quadric curve?
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bd K v //

p—recK p +recK
p

U

S~

We need some definitions and notation to formulate one more result on local
hyperplanarity of midsurfaces. Let K C R” be a convex solid and p a point in R”
with the property that a certain line through p meets K along a segment [u, v]. Given
a positive scalar §, denote by Cs(/) the closed circular cylinder of radius § centered
about the line /| = (u,v), and by #s([) the family of all chords of K which are
parallel to [ and lie in Cs(/). Furthermore, let

25(p) = U(Cs(1) Nbd K),

where the union is taken over all non-recessional lines of K which containing p
(put 25(p) = @ if no such a line exists). Clearly, £25(p) is a closed neighborhood
of bd K \ ((p +rec K) U (p —rec K)) inbd K (see the figure above).

The following theorem (proved in [40] for the particular case p € intK),
addresses a question of Erwin Lutwak: Is it true that a convex body K C R” is
a solid ellipsoid provided there is a point p € int K and a scalar § > 0 such that, for
every chord [u, v] of K through p, the middle points of all chords of K which are
parallel to [u, v] and lie at a distance & or less from [u, v] belong to a hyperplane?

Theorem 19. Given a convex solid K C R*, n > 2, a point p € R", and a scalar
8 > 0, the following conditions are equivalent.

1) The set $25(p) lies in a convex quadric.
2) For each non-recessional line | of K which contains p and meets K, the middle
points of all chords from Fs(l) belong to a hyperplane.

Proof. 1) = 2) Translating K on —p, we may assume that p = 0. Choose a non-
recessional line / of K which contains o0 and meets K. Then / is parallel to a unit
vectore € S"7!'\ (rec K U—rec K). If £25(0) is the neighborhood of bd K \ (rec K U
—rec K) in bd K that lies in a convex quadric, Q, then the cylinder Cs(/) meets
bd K within Q. By Theorem 1, the middle points of chords from .%5(/) belong to a
hyperplane.

2) = 1) As above, we assume that p = o. Furthermore, we may suppose that
K is line-free. Indeed, let dim (lin K) > 1. Choose a non-recessional line [/ of
K which contains 0. Let M C R” be a subspace complementary to lin K and
containing /. Put K’ = M N K. Clearly, lin K’ = M NlinK = {o}. If H is
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a hyperplane that contains the middle points of chords from %s(l), then M N H
contains the middle points of those chords from .#s(/) which lie in M. So, if
we prove the existence of the neighborhood §2{(0) of the set rbd K" \ (rec K’
U —rec K') in rbd K’ which lies in a convex quadric Q' C M, then, due to the
equality bd K = rbd K’ & lin K, we will conclude that the neighborhood §25(0) of
bd K \ (rec K U —rec K) in bd K lies in the convex quadric Q' & lin K.

First, we consider the case n = 2. Choose a non-recessional line [ of K
containing o. Put [po,go] = K NI, and denote by e, the unit vector which is a
positive scalar of gy — po. We may choose § so small that both boundary lines of
the slab Cs(/) meet int K. Denote by e,,, m > 1, the unit vector forming with ey an
angle of positive size 7/ m (according to counterclockwise bypass of bd K). Clearly,
there is a positive integer m( with the following property: for any m > my, there
are points, denoted p_;(m) and ¢, (m), lying in Cs(/) N bd K such that both chords
[P0, q1(m)] and [p—1(m), o] have direction ep,.

Denote by p;(m), m > my, the point in Cs(I) N bd K such that [p;(m), g, (m)]
has directions ey. By condition 1), there is a line H (e() containing the middle points
of [po, qo] and [p1(m), g1 (m)]. Similarly, there is a line H (e,,) containing the middle
points of [p_1, go(m)] and [po, g1 (m)]. Since the set

Ys(m) = {po, qo0. p1(m), q1(m), p—1(m)}

does not belong to a line, there is a unique quadric curve Q(m) containing Y5(m)
(see Theorem 4).

If a point g (m), k > 2, is chosen in Cs(/) N bd K and the line through g (m) in
direction ey meets H(ep) N K, then let pi (m) be the pointin Cs(/) Nbd K for which
the segment [ py (m), g (m)] has direction ey. If a point p(m),k > 2, is chosen in
Cs(/) Nbd K and the line through pg(m) in direction e, meets both H(e,) N K
and Cs(/) N bd K, then denote by gi+1(m) the point in Cs(/) N bd K for which
[px (M), gx+1(m)] has direction e,,.

Similarly, if a point p_;(m),k > 1, is chosen in Cs(/) N bd K and the line
through p_x (m) in direction ey meets H(ep) N K, then denote by g—; (m) the point
in Cs(/) Nbd K for which the segment [p—i (m), g—i (m)] has direction ey. If a point
g—x(m),k > 1,is chosen in Cs(/) N bd K and the line through g_, (m) in direction
e, meets both H(e,,) N K and Cs(I) Nbd K, then denote by p_;—_; (m) the point in
Cs(l) Nbd K for which [p_x—1(m), g—x (m)] has direction e,,.

A combination of condition 2) and Theorem 1 shows that the set

Y2k+2(m) = {va 4o, pl(m)v ql(m)s ERER pk(m)v Qk(m)7
p-1(m).q—1(m), ..., p—i(m),q—k(m)}

belongs to Q(m)NCs(I)Nbd K. Clearly, there is an increasing sequence of positive
integers k(m), m > my, such that Yoy (,)4+2(m) exists for all m > my, and the sets

Yorcmoy+2(10), Yok mo+1)+2(mo + 1), ...,
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tend to a dense subset of Cs(/) N bd K. Hence the arcs of the quadratic curves

Cs(1) N Q(mo), Cs(1) N Q(mo + 1), ...

converge to Cs(/) N bd K, which shows that Cs(/) N bd K consists of two arcs of
the same quadric curve. Continuously rotating / about o, we cover bd K \ (rec K U
—rec K) with the family of overlapping pieces Cs(/) N bd K of the same quadric
curve. Hence the neighborhood £25(0) of bd K \ (rec K U —rec K) in bd K lies in a
convex quadric curve.

Let n > 3. Choose any two-dimensional subspace L such that L N K is bounded
(this is possible since K is line-free). Then rec (L N K) = {o}. If / is a non-
recessional line through o meeting L N K, and if H C R” is a hyperplane containing
the middle points of all chords from .%;(/), then L N Cs(!) is a slab of width 2§
centered about / and L N H is a line that contains the middle points of chords of
L N K which belong to .%s(I). Hence L N K satisfies condition 1) of the theorem
(with L instead of R"). By the proved above (see the case n = 2), rbd (L N K) is
a convex quadric; so, it is an ellipse because L N K is bounded. Theorem 8§ shows
that bd K \ (rec K U —rec K) lies in a convex quadric Q.

If K is bounded, then rec K = {0} and the whole hypersurface bd K is a convex
quadric. Assume that K is unbounded and choose a halfline & with endpoint o that
lies in int K. Then (see the case n = 2) for any two-dimensional subspace L C R”
containing £, the neighborhood §25(0) of (L Nbd K) \ (rec K U—rec K) in rbd (L N
K) lies in L N Q. Therefore, the neighborhood §25(0) of bd K \ (rec K U —rec K)
in bd K liesin Q.

If K C R” is a convex body, then rec K = {0} and the set £25(p) in Theorem 19
coincides with bd K for any choice of the point p € R”. This argument implies the
following corollary.

Corollary 2. Given a convex body K C R", n > 2, a point p € R", and a scalar
8 > 0, the following conditions are equivalent.

1) bd K is an ellipsoid.
2) For each line | which contains p and meets K, the middle points of all chords
from F(l) belong to a hyperplane.

We conclude this section with a joint characterization of solid ellipsoids and
convex polyhedra by means of A-surfaces.

Theorem 20 ([35]). For a convex body K C R", n > 2, the following conditions
are equivalent.

1) K is either a solid ellipsoid or a convex polytope.

2) For each ordered line | in R" there is a scalar A = A(l) € [0, 1) such that the
set of points dividing in the ratio A all chords of K in direction l lies within a
polyhedral hypersurface.
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The interval [0, 1) in Theorem 20 cannot be replaced with [0, 1] (clearly, instead
of [0, 1) one can consider (0, 1]). Indeed, with polar coordinates (p, ¢) in the plane
R2, let X = {vo,vi,...}, where vo = (1,0), vy = (1,7/k), k > 1. Since X is
compact, its convex hull K = conv X is a convex body in R?, which is neither an
ellipse nor a polygon. At the same time, for any direction / in R? one of the A-curves
of K, correspondingto A = 0 or A = 1, in direction / is a polygonal line.

5 Convex Hypersurfaces with Hyperplanar
Shadow-Boundaries

Given a convex solid K C R" and a line [ C R”, the shadow-boundary of K with
respect to /, denoted S;(K), is the set of points in bd K at which the translates of
[ support K. This terminology comes from the concept of illumination of K by
a family of rays which are parallel to a given direction (see, e.g., the survey of
Martini and Soltan [27]). Since any two parallel lines determine the same shadow-
boundary of K, we consider, in what follows, the shadow-boundaries generated by
one-dimensional subspaces of R". If [ is a one-dimensional subspace of R”, then

S/(K)=bdK Nbd(K+1),

where K + [ is the vector sum of K and / (equivalently, K + [ is the union of all
translates of / meeting K).

Blaschke ([5] and [6, p. 157-159], see also Blaschke and Hessenberg [9]) proved
that a strictly convex body K C R? with regular boundary is a solid ellipsoid if
every shadow-boundary of K is a plane curve. Alexandrov [1], based on the work
of Jitomirskii [21], obtained a far-reaching local version of Blaschke’s result, which
states that a non-planar bounded piece 7" of the boundary of a convex solid K C R?
lies in a convex quadric or in the boundary of a convex cone provided for each
shadow-boundary S;(K) of K that meets T there is a plane H such that S;(K) N
T C H (see also Blaschke [5] and [7, p. 119] for similar statements concerning
regular non-convex surfaces).

Refining Blaschke’s argument, Busemann [14, p.93] proved the following
statement (see also Borodin [11] and Saidenko [32]).

Theorem 21 ([14]). A convex body K C R", n > 3, is a solid ellipsoid if every
shadow-boundary of K lies in a hyperplane.

Monejano and Morales-Amaya [28] proved the following result: A convex body
K C R" about the origin o is a solid ellipsoid if there is a hyperplane H C R”
through o such that for every one-dimensional subspace / sufficiently close to H
the shadow-boundary S;(K) lies in a hyperplane. Another variation of Theorem 21
is mentioned by Rudin and Smith [31]: If K C R” is a convex body centered at
the origin 0 of R” and 1 < r < n — 2 an integer such that for each r-dimensional
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subspace L C R”, the set of points at which translates of L support K lies in a
plane of dimension n — r, then K is an ellipsoid (see also Borodin [10] for a variety
of similar conditions). Schneider [34] (respectively, Schwenk [33]) characterized
ellipsoids as affine (n — 1)-dimensional spheres in R” which have at least n + 1
(respectively, at least one) hyperplanar shadow-boundary resulted from parallel
projection.

Marchaud [26] showed that a convex body K C R? is a solid ellipsoid provided
for any one-dimensional subspace / C R” there is a plane H meeting int K such
that

HNbdK C S(K).

Although Marchaud’s statement does not mention the condition H Nint K # @, his
proof is essentially using it. Clearly, this condition cannot be omitted. Indeed, if K
is a convex polytope in R3, then for any one-dimensional subspace / C R? there is
a plane H which is not parallel to H and supports K along an edge lying in S;(K).
Gruber [19], refining Marchaud’s argument, proved the following statement.

Theorem 22 ([19]). There are (n — 1)-dimensional subspaces L,,...,Ly C R”
with the following property: the boundary of a convex body K C R", n > 2, is an
ellipsoid provided for each one-dimensional subspace | C Ly U ... U Ly one can
find a hyperplane H satisfying the inclusion

HNbd(K+1) C Si(K). (15)

The following two lemmas clarify various planarity conditions used by various
authors to characterize ellipsoids. We say that a one-dimensional subspace / C R”
is sharp for K if every line parallel to / and supporting K has precisely one point
in K.

Lemma 1. For a convex body K C R", a one-dimensional subspacel C R", and a
hyperplane H C R”, the following conditions are equivalent:

1) Si(K)C H, 2) S;(K)C HNbdK,

3) Si(K)C HNbd(K +1), 4) S;(K)=HNbd(K +1).

Any of conditions 1)—4) implies that | and H are not parallel and | is sharp for K.

Proof. Since any line !’ supporting K and parallel to / contains a point from S; (K),
the set S;(K) cannot lie in a hyperplane parallel to /.

1) & 2)If Si(K) C H, then

S;(K)=bdK Nbd(K +1) = (bdK Nbd (K + 1)) Nbd K
=S, (K)NbdK C HNbdK.
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Conversely, if S;(K) C H Nbd K, then S;(K) C H.
1) & 3)If S;(K) C H, then

S;/(K)=bdK Nbd(K +1) = (bd K Nbd (K + 1)) Nbd (K + 1)
=S (K)Nbd(K +1) C HNbd(K +1).

Conversely, if S;(K) C H Nbd (K + ), then S;(K) C H.

1) < 4) Due to the proved above, it suffices to show that 1) = 4); moreover, that
H Nbd(K + 1) C S;(K) provided condition 1) holds. Let x € H Nbd (K + I).
Then there is a point z € bd K such that the line through z contains x. Clearly,
z € bd (K + I), which shows that z € S;(K) C H. Since [ is not parallel to H,
x is the only point in / N H. Hence x = z € S;(K), which proves the inclusion
HNbd(K+1) C Si(K).

Finally, assuming that / is not sharp for K, one can find a segment [u,v] C bd K
parallel to /. Since [u,v] C S;(K), we obtain that S;(K) lies in H, while H is not
parallel to /. The obtained contradiction shows that / is sharp for K.

Remark 1. The inclusion S;(K) C H Nbd K in Lemma 1 may be proper. Indeed,
let K = {(£,n) : £ + n* <1, n > 0}, and [ be the n-axis of R?. Then S;(K) =
{(=1,0),(1,0)}, and the only line H containing S;(K) is the £-axis. On the other
hand, H N bd K is the segment with endpoints (—1, 0) and (1, 0).

Lemma 2. For a convex body K C R", a one-dimensional subspacel C R", and a
hyperplane H C R", conditions 1) and 2) below are equivalent. If, additionally, H
meets int K, then condition 3) becomes equivalent to both 1) and 2).

1) HNbd(K+ 1) C Si(K), 2) HNK+1=K+1, 3) HNbdK C S;(K).

Each of conditions 1) and 2) implies that | and H are not parallel.

Proof. First, we observe that /[ and H are not parallel under condition 1), since
otherwise H N bd (K + /) would contain a line, contrary to the compactness of
S;(K). Similarly, under condition 2), if / and H were parallel, then the sum H N
K + [ would be (n — 1)-dimensional, contrary to 2).

1) = 2) Since HNK + [ C K+ [, it suffices to prove the opposite inclusion, which
is equivalentto bd (K 4+ /) C HNbd K + [. Choose any point x € bd (K + /). Let
I’ be the line through x parallel to [. Since [ and H are not parallel, they meet at a
unique point, z. Clearly, I’ = z+ [ and z € bd (K + [). By condition 1), z € S;(K),
whence z € bd K. Summing up, x € z4+ 1 C H NbdK + [, which shows the
inclusionbd (K + /) C H Nbd K + .

2) = 1) The equality H N K + | = K + [ immediately implies that H Nbd (K +
/) C HNbdK. Thus

HNbd(K+1)=(HNbd(K + 1)) NbdK = HN S;(K) C Si(K).



104 V. Soltan

2) < 3) If H meets int K, then condition 2) becomes equivalent to the equality
H Nbd(K + [) = H NbdK. Therefore,

HNbdK =(HNbdK)NHNbd(K + 1) = HNS(K)C Si(K).

Conversely, if condition 3) holds, then H N bd K = H N bd (K + ), which
gives HNK+ 1=K+ [.

Remark 2. 1t is easy to see that condition 2) from Lemma 2 can be replaced by any
of the following:

HNK=HNK+1) and bd(K + 1) =rbd(H NK) + [.

The next result, proved in [41], extends Theorem 22 to the case of convex solids.

Theorem 23 ([41]). Given a convex solid K C R", n > 3, the following conditions
are equivalent.

1) For each one-dimensional subspace | C R”", there is a hyperplane H C R"
meeting K + [ such that the inclusion (15) holds.

2) For each one-dimensional non-recessional for K subspace | C R", there is a
hyperplane H C R" meeting K + | such that the inclusion (15) holds.

3) For each one-dimensional sharp for K subspace | C R", there is a hyperplane
H C R" suchthat H Nbd (K + 1) = S;(K).

4) K has one of the following shapes:

(a) bd K is a convex quadric,

(b) dim (lin K) = n —2 and K is the direct sum of lin K and a two-dimensional
line-free closed convex set,

(¢) dim (lin K) = n—3 and K is the direct sum of lin K and a three-dimensional
line-free closed convex cone.

The shapes (a)—(c) in condition 4) of Theorem 23 are not mutually exclusive: a
cylinder based on a two-dimensional line-free convex quadric is a particular case
of (b), and a cylinder based on a sheet of a three-dimensional elliptic cone is a
particular case of (c).

Remark 3. Condition 1) of Theorem 23 (respectively, condition 1) of Corollary 3) is
weaker than condition 2) of Corollary 1 (respectively, condition 3) of Theorem 13).
Indeed, if for a given non-recessional directed line /, there is a scalar A(/) € [0, 1]
such that the points dividing in the ratio A(/) all chords a convex solid K C R” in
direction / belong to a hyperplane H, then H Nbd (K + /) C S;(K).

The proof of Theorem 23 is organized by induction on n > 3. The case n = 3
uses the following result of Alexandrov [1].

Lemma 3 ([1]). Let K C R3 be a convex solid and T a non-planar, bounded,
open, and simply connected piece of bd K. If for any shadow-boundary S;(K) of K
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meeting T there is a plane H such that S{(K) N'T C H, then T is a piece of a
line-free convex quadric or a piece of the boundary of a strictly convex cone.

We note that Lemma 3 deals with shadow-boundaries corresponding to all
(possibly, non-sharp, or even recessional for K) one-dimensional subspaces [,
and the plane H is allowed to be parallel to /. Furthermore, Lemma 3 refines
Alexandrov’s original conclusion “T is a piece of a convex quadric or a piece of the
boundary of a convex cone.” For n > 4, the proof of Theorem 23 uses Theorem 8.

Corollary 3 ([41]). Given a convex solid K C R", n > 3, the following conditions
are equivalent.

1) For any one-dimensional non-recessional for K subspace | C R", there is a
hyperplane H C R" such that S;(K) C H.
2) K has one of the following shapes:

(a) bd K is a convex quadric,

(b) dim (lin K) = n—2 and K is the direct sum of lin K and a two-dimensional
line-free closed convex set which is either unbounded or bounded and
strictly convex,

(c) dim (lin K) = n—3 and K is the direct sum of lin K and a three-dimensional
line-free closed strictly convex cone.

Kakutani [22] stated without proof (mistakenly attributing the result to Blasch-
ke [6]) the following “dual” version of the line-to-hyperplane shadow-boundary
characterization of ellipsoids in R3: A regular convex body K C R?® symmetric
about the origin o € int K is an ellipsoid provided for each plane H C R? through
o there is a one-dimensional subspace [ C R? so that HNbd K C S;(K). Kakutani’s
statement is a geometric interpretation of the following fact (with K being the unit
ball of a three-dimensional normed space E*): a norm in E?* is Euclidean provided
for each two-dimensional subspace H of E? there is a linear projection on H of
norm 1.

Amir [2, pp.99-100] (see also Borodin [10] for another method) proved Kaku-
tani’s statement in the geometric form described above, based on the following
characterization of ellipsoids by Brunn [12, Chapter IV]: a bounded convex surface
S C R is an ellipsoid provided all planar sections of S are centrally symmetric.
Phillips [30] (see also Montejano and Morales-Amaya [28]) showed that the
requirement on regularity and central symmetry of the convex body K C R* can
be omitted.

Using a polarity argument, Gruber [19] deduced from Theorem 22 the following
statement.

Theorem 24 ([19]). There are points pi,..., ps € R" such that a convex body
K C R" with o € intK is a solid ellipsoid centered at o provided for each (n —
1)-dimensional subspace H C R" with H N {p1,..., ps} # O, there is a one-
dimensional subspace | satisfying the condition H N K = H N (K + ).
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The points py, ..., ps in Theorem 24 can be chosen on any line not containing o
and placed close to each other. Choosing them in a small neighborhood of a given
one-dimensional subspace L C R”, one can deduce from Theorem 24 the following
statement of Montejano and Morales-Amaya [28]: If K C R”" a convex body
symmetric about the origin o and L a line through o such that for each hyperplane
H through o sufficiently close to [ there is a line /(H) through o satisfying the
inclusion rbd (H N K) C Sj#)(K), then K is an ellipsoid.

In the next theorem of Borodin [10], Cj/(S) means the union of all planes
parallel to a given subspace M C R” and supporting a bounded convex hypersurface
S CR"

Theorem 25 ([10]). A bounded convex hypersurface S C R" symmetric about the
origin o is an ellipsoid if and only if any of the following conditions holds.

1) For each r-dimensional subspace L C R", r > 2, there is a subspace M C R”
suchthat Cyy(SYNS =LNS.

2) For each r-dimensional subspace L C R", r > 2, there is a subspace M C R”
such that Cyy(S)yNS CLNS.

3) For each r-dimensional subspace L. C R", r > 2, there is a subspace M C R"
such that Cyy(S)yNS D LNS.

In regard of Theorem 24 we put the following problem.

Problem 4. Let K C R” be a convex body satisfying the property: for each (n —1)-
dimensional subspace L C R” there is a one-dimensional subspace / C R" and a
translate H of L suchthat H N K = H N (K 4 /). Is it true that K is a solid
ellipsoid?

6 Orthogonal Projections of Convex Quadrics

The main result of this section (see Theorem 26) makes use of a characteristic
property of ellipsoids in terms of shadow-boundaries.

Blaschke and Hessenberg [9] observed without proof that a convex body K C R?
is a solid ellipsoid provided all orthogonal projections of K on two-dimensional
planes are solid ellipses. Later Siiss [43] proved a slightly weaker result: a convex
body K C R® is a solid ellipsoid provided all parallel projections of K on
two-dimensional planes are solid ellipses. Blaschke [8] (also Lenz [25], using a

H,

Fig. 2 Affine diameter of a
convex body a ¢
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projective technique) slightly generalized the result of Siiss by proving that a regular
convex body K C R is a solid ellipsoid provided all its parallel projections on two-
dimensional planes are bounded by R-curves (that is, by centrally symmetric convex
curves with the property that each affine diameter has a conjugate). We recall that a
chord [a, b] of a convex body K C R” is an affine diameter of K (Fig. 2) provided
there are two parallel, distinct hyperplanes H, and Hj both supporting K such that
a € H, and b € H, (see, e.g., [36] for a survey on various properties of affine
diameters).

The argument of Siiss was generalized by Chakerian [15] for all # > 3 in terms
of projections on hyperplanes, and later expanded by Gardner [16, p. 102] in terms
of projections on r-dimensional planes, 2 < r < n — 1. The following theorem goes
back to the original observation of Blaschke and Hessenberg and provides a new
method of proof.

Theorem 26. For a convex body K C R, n > 3, and an integer 2 <r <n — 1,
the following conditions are equivalent.

1) K is a solid ellipsoid.
2) All orthogonal projections of K on r-dimensional planes of R" are solid
r-dimensional ellipsoids.

Proof. 1) = 2) First, assume that r = n — 1. Let H C R" be a hyperplane and /
the one-dimensional subspace orthogonal to H. The orthogonal projection, M, of
K on H can be expressed as the intersection of H with the cylinder K + [. By
Theorem 2, the shadow-boundary S;(K) of K lies within a certain hyperplane G.
This argument immediately shows that K + [ = (K N G) + [. Since K N G is
an (n — 1)-dimensional solid ellipsoid, K + [ is bounded by the elliptic cylinder
bd (KNG)+ [.Hence M = (K + /)N H is asolid (n — 1)-dimensional ellipsoid.

Let2 <r < n — 1 (which is possible if n > 4). Choose an r-dimensional plane
L C R". The orthogonal projection  : R" — L onto L can be decomposed into a
sequence of orthogonal projections

RrLi—>Ly—~...>L,, =1L,

where Ly D L, D ... D L,—, is a nested sequence of planes such that dimL; =
n—jforall j =1,...,n —r.By the argument above, 7 (K) is an r-dimensional
solid ellipsoid.

2) = 1) First, assume that r = n — 1. We observe that K is strictly convex. Indeed,
suppose for a moment that bd K contains a segment [x, z]. Choose a hyperplane G
supporting K such that [x,z] C K N G and a line / C G which is not parallel
to [x, z]. Then the relative boundary of the orthogonal projection, K’, of K on the
(n — 1)-dimensional subspace perpendicular to / contains a segment (which is a
projection of [x, z]), contrary to the condition that K’ is a solid (n — 1)-dimensional
ellipsoid.

Now, choose any line [ C R”". Then K has an affine diameter [a, a’] which is
parallel to [. Let H and H' be distinct parallel hyperplanes both supporting K such
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thata € KN H anda’ € K N H’ (see, e.g., [36]). Since K is strictly convex, one
has K N H = {a}and K N H' = {a’}. Denote by b the middle point of [a, a’], and
let Hy be the hyperplane through b parallel to both H and H'.

We state that the shadow-boundary S;(K) of K lies within Hj. Indeed, choose
a line /; parallel to / and supporting K at a certain point ¢;. Since /; does not meet
int K, there is a hyperplane G containing /; and supporting K. Clearly, K N G| =
{c1} because K is strictly convex. Let m be a one-dimensional subspace parallel to
the (n —2)-dimensional plane H NG, and denote by M the orthogonal complement
of m.Let w : R* — M be the orthogonal projection onto M . By condition 2), the
set w(K) is a solid (n — 1)-dimensional ellipsoid. Clearly, both (n — 2)-dimensional
planes M N H and M N H’ support 7 (K) such that

MnNnHYNT(K)={n(@)} and (M NH)N7(K)={n(@)}.

This argument shows that 7 (K) is symmetric about the point 7z (b).

The (n —2)-dimensional plane G; N M supports (K at a unique point ¢| which
belongs to Hy N Gy. Since ¢ is the orthogonal projection of ¢; on M, we conclude
that ¢; also belongs to Hy. Summing up, S;(K) C Hy. Theorem 21 implies that K
is a solid ellipsoid. Hence the case r = n — 1 is proved.

Suppose that condition 2) holds for a given integer r, with 2 < r < n — 1 (this is
possible if n > 4). We state that 2) holds for » + 1. Indeed, let L C R” be a plane
of dimension r + 1 and 7 : R” — L the orthogonal projection onto L. Then the
orthogonal projection ¢ : R” — N onto an r-dimensional plane N C L can be
expressed as the composition ¢ = i o r, where ¥ is the orthogonal projection of L
onto N . Hence ¢(K) is the orthogonal projection of 7 (K). By the assumption, ¢(K)
is an r-dimensional solid for any choice of an r-dimensional plane L in N. Hence,
by the proved above (with L instead of R"), 7w (K) is a solid (r + 1)-dimensional
ellipsoid.

Consecutively incrementing the value of r, we obtain that condition 2) holds for
r = n — 1. Hence K is a solid ellipsoid by the proved above.

Corollary 4. A convex body K C R", n > 3, is a solid ellipsoid if and only if there
is a plane L C R" of certain dimension s, 0 < s < n — 3, and an integer r, with
s+ 2 <r < n—1, such that all orthogonal projections of K on r-dimensional
planes containing L are r-dimensional solid ellipsoids.

Proof. Clearly, we have to verify the “only if” part. Let L C R” be an s-dimensional
plane and p a point in L. Choose a two-dimensional plane N through p. Since
s + 2 < r, there is an r-dimensional plane M C R” containing L U N. By the
assumption, the projection, K’, of K on M is an r-dimensional ellipsoid. Hence the
orthogonal projection of K on N (which is the same as the orthogonal projection of
K’ on N) is a solid ellipse. By Theorem 26 (with r = 2), K is a solid ellipsoid.

Problem 5. Let K C R", n > 3, be a convex solid distinct from a halfspace such
that for each vector e € S"~!\ (rec K U —rec K) the orthogonal projection of K
on the (n — 1)-dimensional subspace H(e) = {x € R" : x-e = 0} isan (n — 1)-
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dimensional closed convex set bounded by a convex quadric in H(e). Is it true that
bd K is a convex quadric (or, additionally, K is a convex cone if n = 3)?

We conclude this section by mentioning the following result of Burton [13]: A
convex body K C R", n > 4, is the sum of a polytope and a solid n-dimensional
ellipsoid if and only if every orthogonal projection of K on a three-dimensional
plane is the sum of a polytope and a three-dimensional ellipsoid.

Acknowledgements The authors thanks the referee for helpful comments on an earlier draft of
this article.
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Classifying Normal, Nevus, and Primary
Melanoma Skin Samples Using Penalized
Ordinal Regression

Kellie J. Archer, Jiayi Hou, and André A.A. Williams

Abstract Many investigators conducting translational research are developing
multigenic classifiers using data from high-throughput genomic experiments. While
often the class to be predicted is nominal, sometimes it may be inherently ordi-
nal. For example, tissue samples may be collected with the goal of classifying
them as normal < pre-malignant < malignant. In this case, molecular features
monotonically associated with the ordinal response may be important to disease
development. While one can apply nominal response classification methods to
ordinal response data, in so doing some information is lost that may improve the
predictive performance of the classifier. We developed an R package, glmpathcr,
capable of fitting a penalized continuation ratio model when the outcome to be
predicted is ordinal. We demonstrate application of our method by predicting
progression to melanoma using microarray gene expression data.

1 Introduction

It is estimated that 76,690 people in the United States will be diagnosed with
melanoma and 9,480 will die from melanoma in 2013 [15]. Current methods of early
diagnosis rely on visual assessment of existing moles following the ABCDE rule to
note the presence of Assymetry, irregular Border, variegated Color, larger Diameter,
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and Evolution over time. Because stage of melanoma is directly linked to probability
of survival, with 5-year relative survival estimated to be 98.3 %, 62.4 %, and 16.0 %
for localized, regional, and distant stages, respectively [15], early diagnosis is
important. Specifically, at an early stage, melanoma cells have not penetrated deep
enough into the skin to reach blood vessels, so early stage melanoma is unlikely to
metastasize to other areas such as the brain, liver, bones, central nervous system, or
lymph nodes. Due to the poor clinical outcome of patients diagnosed with later stage
metastatic melanoma, improved markers for early diagnosis are needed. Markers
useful for early diagnosis may reduce time to treatment and possibly indicate novel
therapeutic targets, and thereby yield improved patient outcomes. Therefore we
sought to develop a multigenic classifier derived using gene expression microarray
data capable of differentiating among normal, nevus, and primary melanoma skin
samples.

Apart from our goal to classify normal, nevus, and melanoma skin samples using
gene expression data, it is often of interest to develop a multigenic classifier to
predict phenotype using high-throughput genomic data. In many biomedical settings
where histopathological or health status data are collected, phenotypic variables are
recorded on an ordinal scale. Examples include grading of adverse events (none <
mild < moderate < severe) and tumor-node-metastasis stage (I <II < III < IV).
Extensive simulation studies have demonstrated that when ordinal methods are
appropriate, they result in lower classification error rates compared to traditional
nominal response methods [25]. However, ordinal modeling methods are lacking
for situations when the number of predictors exceed the number of observations,
as in high-throughput genomic data. For our illustrative dataset, 70 Affymetrix
HG-U133Av2 GeneChips were available for seven normal, 18 nevus, and 45
primary melanoma skin samples. Note that the sample size, n = 70, is much smaller
than the number of available predictors, p = 22,215. Unfortunately, traditional
statistical models cannot be estimated when p > n. Even if filtering is performed on
this dataset using an F-test, there are still 13,365 probe sets remaining using a false
discovery rate of 5 %. In this chapter, we describe a software package available in the
R programming environment for fitting an L penalized constrained continuation
ratio model that can be applied to high-dimensional datasets for predicting an
ordinal response. We apply our method to the melanoma dataset and discuss our
findings. We also provide the code used in performing the analyses in the Appendix.

2 Regression Models

Before introducing our L; penalized constrained continuation ratio model, we first
review linear regression and various penalized methods for the linear regression
model. We then present the logistic regression model because it serves as the
foundation for related ordinal response methods. We then review the continuation
ratio model as a specific ordinal regression method.
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2.1 Linear Regression

The simple linear regression model is given by,

yi=PBo+ pixi +¢€ (1)

where y; is the response or dependent variable for observationsi = 1,...,n, By is
the intercept, B, is the slope coefficient, x; is the independent or predictor variable,
and ¢; is the error where E(¢;) = 0 and var(¢;) = o [16]. Note that the expected
value of the response is

E(yi)) = E(Bo+ Bixi +€) = E(Bo) + E(B1xi) + E(;) = Bo + B1xi.  (2)

Estimation of the parameters in this model is solved by the method of least squares,
which considers the deviation of y; from its expected value By + B1x;. To fit a line
such that the vertical distances from the fitted values to the datapoints are minimized,
we minimize the residual sum of squared errors (RSS),

RSS = Z(y:' — Bo — Bixi)*. 3
i=1

To find the intercept and slope that minimize the RS S, the derivative of the RS S is
taken with respect to the model parameters (8¢ and f;),

SRS S -
?E":Qg;ﬁ—m—mm) )
and
SRS S .
8B :_2in(yi = Bo— Bixi). ®)
i=1

Setting both equations equal to 0 and solving for By and B; yields the ordinary least
squares (OLS) solution,

Ié _ Y (i = X) (i — V) Y xiyi — PIEIDI Zy, ©
1_ Yoo (xi —X)? N a2 — (le)2

and

Bo =7 — Bi¥. ()
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Often there is more than one predictor variable so it is helpful to be familiar with
the analogous matrix formulation of the least squares regression model, where the

components of the model include

b4l
»n

Yn

I X1 x12 -++ X1
I x31 X220 +++ X2p

1 Xnl Xn2 *** Xnp

Bo
v=| 7|,
Bo
and
el
e
e=1.
€n
The normal equation in matrix terms is
X"Xb = X"Y

and premultiplying both sides of the equation by (X7 X)™!
XTX)'XTxp = (X'X)"'XTY
yields the least squares solution,

b=X"X)"'X"Y

®)

€))

(10)

Y

12)

(13)

(14)

and the regression model is Y = E(X) + e which is simply Y = Xb + e. Note
that the solution is the same when the model includes more than one predictor; the
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only modification that was necessary is that an additional column for each additional
predictor is appended to X and an additional element for each additional predictor
is appended to b.

2.2 Penalization Methods

When interest lies in modeling a continuous outcome y given p predictor vari-
ables measured for n samples, forward stepwise, backward stepwise, and best
subsets methods are commonly used to obtain a parsimonious model [12]. For
datasets where the number of covariates (p) exceeds the sample size (n), the back-
wards stepwise procedure cannot be undertaken. When p is large, the best subset
procedure is computationally prohibitive. Moreover, 8;’s estimated using these
model selection procedures can exhibit extremely large variances when covariates
are collinear. Penalized or regularization methods such as ridge regression, least
absolute shrinkage and selection operator (LASSO), and elastic net are alternatives
to traditional statistical methods that can be used to estimate a regression model
when p > n [12,29,34].

2.2.1 Ridge Regression

Solutions based on penalizing the size of the 8; estimates so that the bias introduced
is traded for reduced variance of the estimates have been proposed. A specific
method called ridge regression can be expressed as

n )4 P
pridse — argn}gin Z(yi _IBO_inj,Bj)Z‘i‘/\Z,B? . (15)

i=1 j=1 i=1

Here A is the tuning parameter that controls the amount of shrinkage: if A = 0
the solution is the OLS estimates; as A increases, the amount of shrinkage of the
parameter estimates increases. The ridge estimates differ depending upon the scaling
of the covariates used, so typically covariates are standardized prior to model fitting.
Referring to Eq. (15), note that By is not included in the penalty term as penalizing
the intercept would make the procedure dependent upon the origin chosen for y.
For centered inputs, we estimate ) by % > '_, yi and the remaining coefficients
can be estimated using ridge regression without the intercept. Therefore, we have
the matrix of covariates X of dimension 7 x p. The penalized residual sum of squares
(PRSS) is a modification of Eq. (3) written in matrix form as

PRSS(A) = (y—XB)" (y — XB) + 28" B. (16)
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Taking the derivative yields

PRSS(A
‘S+ﬂs() — X" (y — XB) + 248 17)
and setting it equal to zero yields
—2X"(y—XB) +2A8 =0 (18)
—2XTy +2XTXB +2A8 =0 (19)
X'XB + 18 =X"y (20)
XX +ADB =Xy (1)

so that the ridge coefficients estimates are given by

~ridge

B = (XX + A0~ !XTy, (22)
Adding AI to X" X yields a non-singular matrix, allowing a solution to be obtained
regardless if p > n.

Ridge coefficient estimates, though biased, have smaller variance and tend to
have improved performance (lower test set error) when compared to OLS estimates.
However, the ridge solution does not yield a parsimonious model because all p
predictors will have non-zero coefficient estimates. For gene expression microarray
data, this makes the final model lack interpretability.

2.2.2 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator (LASSO) [29] imposes a
constraint similar to ridge regression, namely,

n p 4
ﬁ’””":argm};n Z(yi_IBO_inj’Bj)z—}—AZLle . (23)

i=1 j=1 i=1

Again, A is the tuning parameter that controls the amount of shrinkage such that
if A = 0, the solution is the OLS estimate and as A increases, the amount of
shrinkage of the parameter estimates increases. Because the LASSO penalty is based
on a multiplicative factor times the sum of the absolute values of the coefficient
estimates, it is also referred to as an L, penalty or called an L; penalized model.
Additionally, because the L penalty shrinks some coefficients to be exactly zero, it
is better than ridge regression in terms of model parsimony and interpretability.
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Due to the L constraint, there is not a closed form solution to Eq. (23). Various
numerical methods such as the incremental forward stagewise method [11], least
angle regression [7], and coordinate descent [20] have been used to obtain a LASSO
solution.

2.2.3 Elastic Net Penalty

A generalized expression for penalized models is,

n p p
g = argn}gin Z()’i - Bo— injﬂj)z + A Z 1B;1? (24)

i=1 j=1 ji=1

for ¢ > 0. For the LASSO model, let g = 1; for ridge regression, let g = 2. Values
of ¢ € (1,2) provide a compromise between the LASSO and ridge regression.
However, users should note that when ¢ > 1, coefficients are no longer set exactly
equal to 0. Therefore the elastic net penalty was introduced to maintain benefits
from both ridge and LASSO and is given by

P
A B+ (1 =y)IBsD) (25)

=1

where y weights the amount of the penalty placed on the ridge and LASSO
components.

2.3 Logistic Regression

A binary (or dichotomous) response takes on one of only two possible values such
as disease status (case/control) or response to therapy (responded/failed to respond).
Dichotomous responses are conventionally coded as 0 and 1. It is not useful to
fit a linear regression model to dichotomous response data since the response
probabilities are confined to a [0,1] scale whereas regression models could predict
off-scale values that are either below O or above 1. Instead, a model should be fit
on a scale that preserves the range of response probabilities. Logistic regression is
used to model the relationship between a dichotomous outcome variable and a set of
predictor variables. Traditionally, logistic regression assumes that the observations
are a random sample from a population where the model is expressed as

yi =n(x;) +€ (26)
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where y; represents the dichotomous dependent or outcome variable, m(x;)
represents the conditional probability of experiencing the event given the
independent predictor variables Xx;, and ¢; represents the binomial random error
term. More formally, the conditional probability, 7 (x;) is a function of the
independent covariates

r
2(x)) = P(Y; = 1|x;) = % 27)

where the matrix of independent variables and vector of model parameters are the
same as those given in Eqgs. (9) and (10) [14]. A convenient way to express the
contribution to the likelihood function for observation i is

Y(x;) = m(x;)" (1 — m(x;)' 7. (28)

Since the observations are assumed to be independent, the likelihood function is
simply the product of the n independent terms given in Eq. (28), or

LBly.x) =[[vx) =[]xx)" (1 = w(x:)' 7" (29)

i=1 i=1

Mathematically it is easier to maximize the log-likelihood which is given by

log(L(Bly. x:)) = ) (yilog(w(x)) + (1 — y;) log(1 = 7(x;))) . (30)

i=1

Penalized logistic regression models can also be used for variable selection and
shrinkage where the log-likelihood is modified by subtracting the penalty term. For
an L, penalized logistic regression model, this is expressed as

P
log(L(Bly. x:) — A ) 1B1- 31)

j=1

2.4 Ordinal Regression

For observations i = 1,...,n, let the response y; belong to one of K ordinal
classes such that k = 1,..., K. Let x; represent a p-length vector of covariates
for observation i. The backward formulation of the continuation ratio models the
logit as

logit (P(y = kly <k.X=x)) = o) + B x (32)
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whereas the forward formulation models the logit as
logit (P(y = k|y = k,X =x)) = ax. + B} x. (33)

The different use of subscripts highlights the fact that the forward and backward
formulations result in different coefficient estimates. Rather than describe both for-
mulations in detail, here we present the backward formulation, which is commonly
used when progression through disease states from none, mild, moderate, severe
is represented by increasing integer values, and interest lies in estimating the odds
of more severe disease compared to less severe disease [3]. Let y; be a length K
indicator vector for observation i representing ordinal class membership, such that
vir = 1if the response for observation i is in category k and 0 otherwise, such that
n; = 211;1 vir = 1. Using the logit link equation (34) represents the conditional
probability for class k

exp(ax + B X)
1 + exp(ax + ﬂ,;rx)

(x)=P(y =kly =k.X=x) = (34)

The likelihood for the continuation ratio model is then the product of conditionally
independent binomial terms [6], given by

L(Bly,x) = 1_[8%12(1 _ 82)1—215:2 Vik s . 5%{11((1 _ SK)I_yiK. (35)

i=1

where here we have simplified our notation by not explicitly including the depen-
dence of the conditional probability §; on x. Further, simplifying our notation to let
B represent the vector containing both the thresholds (s, . .., ¢k ) and the log odds
(Bi1,...,Bp) for all K — 1 logits, the full parameter vector is

B = (o2, B, B2y  Bops- vk, Bras Bros - Brp) | (36)

which is of length (K — 1)(p + 1). As can be seen from Eq. (35), the likelihood
can be factored into K — 1 independent likelihoods, so that maximization of the
independent likelihoods will lead to an overall maximum likelihood estimate for
all terms in the model [3]. A model consisting of K — 1 different 8 vectors may
be overparameterized so to simplify, one commonly fits a constrained continuation
model, which includes the K — 1 thresholds («s, . . ., k) and one common set of p
slope parameters, (81, ..., B,).

To accommodate situations where p > n, either an L, L, or elastic net penalty
can be used for variable selection and shrinkage [10]. When using the elastic net
penalty, the log likelihood is then taken to be

p
log L(Bly. x) =AY _(vB7 + (1= y)IB,). (37

Jj=1
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3 Methods

To fit a constrained continuation ratio model, the original dataset can be restructured
by forming K — 1 subsets, where for classes k = 2,..., K, the subset contains
those observations in the original dataset up to class k. Additionally, for the
kth subset, the outcome is dichotomized as y = 1 if the ordinal class is k
and y = 0 otherwise. Furthermore, an indicator is constructed for each subset
representing subset membership. Thereafter the K — 1 subsets are appended to
form the restructured dataset, which represents the K — 1 conditionally independent
datasets in Eq. (35). Applying a logistic regression model to this restructured dataset
yields an L penalized constrained continuation ratio model.

We developed the glmpathcr package for the R programming environment
[23] to fit a penalized constrained continuation ratio model. Our glmpathcr pack-
age depends on the glmpath package [20] that can fit penalized logistic regression
models using coordinate descent. Specifically, the glmpath . cr function fits either
a forward or backward (default) penalized constrained continuation ratio model
by specifying method="forward" or method="backward" (default) in the
glmpath.cr call. The glmpath.cr function first restructures the dataset to
represent the K —1 conditionally independent likelihoods needed in Eq. (35) [3] and
then fits the penalized continuation ratio model using the glmpath algorithm [20].
This allows fitting a penalized model for situations where the number of covariates
p exceeds the sample size n. In addition, functions for returning class probabilities,
the predicted class, coefficient estimates, and the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) for the continuation ratio model
are provided. The print and plot methods from glmpath were also adapted
for the returned glmpath. cr object. In this package, the nomenclature for these
cutpoints is to use “cpk” where k = 1,..., K — 1. In this dataset, K = 3 so the
cutpoints are cpl and cp2 with the Intercept being an offset.

We downloaded GSE3189 from Gene Expression Omnibus. In this dataset,
Affymetrix HG-U133Av2 GeneChips were available for seven normal, 18 nevus,
and 45 primary melanoma skin samples [28]. The MASS5 probe set expression
summary method was used to summarize probe level data. Prior to analysis the
control probe sets were removed, leaving 22,215 probe sets for statistical analyses.
Subsequently, the MASS5 expression data were log, transformed. When fitting the
L penalized constrained continuation ratio model using our glmpathcr package,
the final model was selecting using the AIC. All R code used for this analysis
appears in the Appendix to demonstrate usage of the glmpathcr package.

4 Results

Table 1 provides the cross-tabulation of the observed and predicted classes. The
model had excellent performance as the re-substitution error rate was 0 % (100 %
accuracy). We also used tenfold cross-validation (CV) as a means to assess
generalization error; the tenfold CV error was 5.7 % (94.3 % accuracy).
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Table 1 Cross-tabulation of

Predicted Cl. N 1 N Mel
observed and predicted class cooec e o Ak canoma

using the L penalized Normal 7 0 0
constrained continuation ratio Nevus 0 18 0
model Melanoma 0 0 45

Table 2 List of probe sets included in the final L; penalized constrained continuation ratio model

Probe Set Entrez ID Gene Symbol Chromosome B

200755_s_at 813 CALU 7 0.0869
201022_s_at 11034 DSTN 20 —0.7493
201393_s_at 3482 IGF2R 6 0.0090
201591_s_at 11188 NISCH 3 —0.2533
201672_s_at 9097 USP14 18 0.6451
202022_at 230 ALDOC 17 —0.0937
204731 _at 7049 TGFBR3 1 —0.5015
205236_x_at 6649 SOD3 4 —0.0886
205681 _at 597 BCL2A1 15 0.0325
205883 _at 7704 ZBTBI16 11 —0.4180
207144 _s_at 4435 CITED1 X 0.0141
208710_s_at 8943 AP3D1 19 0.0152
211762_s_at 3838 KPNA2 17 0.2661
212862 _at 8760 CDS2 20 0.2269
213002_at 4082 MARCKS 6 0.2290
213029_at 4781 NFIB 9 —0.4125
213330_s_at 10963 STIP1 11 0.0467
216037_x_at 6934 TCF7L2 10 —0.1612
218692 _at 55638 SYBU 8 —0.0387
219476_at 79098 Clorfl16 1 —0.0622

Twenty probe sets were included in the final model (Table 2). The probe set
having the largest absolute coefficient estimate was designed to interrogate destrin
(actin depolymerizing factor) (DSTN). Expression of DSTN decreases as one moves
from normal to nevus to melanoma (Fig. 1). Although DSTN has been studied
in association with other cancers [33], no publications have previously reported
an association between DSTN and melanoma. The two probe sets having the
largest absolute coefficient estimates were considered to be the two most important
predictors, namely DSTN and ubiquitin specific peptidase 14 (USP14). USP14 has
been described as a tumor-promoting factor and over-expression of USP14 was
associated with shorter overall survival in lung adenocarcinoma patients [32]. In this
dataset, USP14 was also over-expressed in melanoma samples compared to normal
and nevus samples. A scatterplot of the log, expression values for these two probe
sets reveals the three classes are almost linearly separable (Fig. 2).

With respect to the other genes included in the final model, several studies have
identified ZBTB16 as under-expressed in primary and malignant melanoma [9].
When examining prognosis in melanoma patients, subjects with < 10,000 ZBTB16
copies pug total tumor RNA had significantly worse survival compared to subjects
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Fig. 1 Dotchart of 201022_s_at (DSTN) log, expression by sample type (normal, nevus, and
melanoma)

with > 10,000 ZBTB16 copies g total tumor RNA (P =0.0429) [4]. In a case
study examining topical diphencyprone applied to a patient with in-transit metastatic
melanoma of the scalp, ZBTB16 was not expressed before treatment but increased
expression was observed after treatment [19]. IGF2R expression was inversely
associated with miR-211 expression, suggesting a role of IGF2R in melanoma
invasion or metastasis [17]. TGFBR3 is located on the short arm of chromosome
1 (1p22) and deletions in 1p22 occur in 17 % of melanomas [30]. BCL2A1 was
over-expressed in 72 % of primary melanoma samples but had low expression in
70 % of nevi; its genomic region was also amplified in 31.8 % of melanoma samples
evaluated [13]. In this same study, melanoma growth was significantly reduced by
knocking down BCL2A1 in cell lines by siRNA and mouse xenografts by shRNA,
indicating BCL2A1 is a melanoma oncogene [13]. In another study, BLC2A1
was significantly over-expressed in metastatic melanoma samples compared to
primary melanoma samples [24]. This study also identified CITEDI as having
lower expression in primary and malignant melanoma samples in comparison to
normal human epithelial melanocytes [24]. In a different study, CITED1 had lower
expression in more-aggressive compared to less-aggressive primary melanoma
samples [26]. Gene expression for KPNA2 was significantly associated with 4-year
distant metastasis-free survival; these results were confirmed using a larger sample
when studying KPNA2 protein expression [31]. Finally, the role of MARCKS in
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cell adhesion has also been studied in melanoma [8]. Other genes in our final model
have been associated with other cancers including NISCH [2], SOD3 [27], AP3D1
[22], NFIB [21], STIP1 [5], and TCF7L2 [18]. We conclude that the genes identified
by our L; penalized model appear to be relevant for the clinical question at hand.

5 Conclusion and Future Work

Using gene expression microarray data, we identified a twenty probe set classifier
having 100 % accuracy on the training dataset and 94.3 % accuracy when using
cross-validation as a means of assessing generalization error. Genes identified had
important links to melanoma development and progression including ZBTB16,
IGF2R, TGFBR3, BCL2A1, CITED1, KPNA2, and MARCKS while other genes
have been associated with other cancers (DSTN, USP14, NISCH, SOD3, AP3D1,
NFIB, STIP1, and TCF7L2). Multigenic tests consisting of a small number of genes
may prove useful in surveillance strategies for detecting melanoma among at-risk
patients.
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A variety of statistical modeling procedures, namely, proportional odds, adjacent
category, stereotype logit, and continuation ratio models can be used to predict
an ordinal response. In this paper, we focused attention to the continuation ratio
model because its likelihood can be easily re-expressed such that existing software
can be readily adapted and used for model fitting. Herein we have described the
glmpathcr package which works in conjunction with the glmpath package in
the R programming environment. The package provides methods for fitting either a
forward or backward penalized continuation ratio model. Moreover, the likelihood-
based penalized constrained continuation ratios models have been demonstrated to
have good performance in simulation studies and when applied to microarray gene
expression datasets [1]. A similar package, glmnetcr, which uses the glmnet
fitting algorithm for fitting a penalized constrained continuation ratio model has also
been developed and is available for download from the Comprehensive R Archive
Network. Functions for extracting coefficients, extracting non-zero coefficients, and
obtaining fitted probabilities and predicted class in the glmnetcr package are
similar to those in glmpathcr and both packages have similar performance [1].
Therefore either the glmnetcr or glmpathcr package should be helpful when
predicting an ordinal response for datasets where the number of covariates exceeds
the number of available samples. Our current research is to expand ordinal response
modeling for high-dimensional datasets by modifying the generalized monotone
incremental forward stagewise method for the cumulative logit, adjacent category,
and stereotype logit models.

Acknowledgements Research reported in this publication was supported by the National Library
Of Medicine of the National Institutes of Health under Award Number RO1LMO011169. The content
is solely the responsibility of the authors and does not necessarily represent the official views of
the National Institutes of Health.

Appendix

All analyses were performed in the R programming environment. We have provided
the code used in performing the analyses in this appendix. R is a freely available
programming environment structured after S. You can download R by going to
http://cran.r-project.org/. To download a version that will run on Windows 95
or a later version, click on the ‘Download R for Windows’ link located under
Download and Install R. Then click on the base subdirectory or on the install
R for the first time link and subsequently click on the Download R-3.0.1 for
Windows link to save the R-3.0.1-win.exe file to your hard drive. Note that as new
versions are released, which occurs every six months, the name of the executable
file will change. To install R, simply go to <Start> <Run> and then browse for the
R-3.0.1-win3.exe file and follow the prompts. Downloads are also available for Mac
OS X and Linux operating systems.
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Installing User Contributed Packages from CRAN

The Comprehensive R Archive Network (CRAN) makes hundreds of user con-
tributed R packages publicly available for download. Once R has been installed,
open R by double clicking on the icon or accessing it through the Start menu. To
install user contributed R packages in a Windows environment, select ‘Packages’
from the Toolbar, then select ‘Select repositories’ and choose the appropriate
repository (CRAN or CRAN extras). The command

R> setRepositories()

can also be issued at the command line to accomplish the same thing. Thereafter,
select ‘Packages’ from the Toolbar, then ‘Install package(s).” A list of packages
available for download will appear.

Installing Bioconductor

Once R has been installed, open R by double clicking on the icon or accessing it
through the Start menu. Install the biocLite script which will install a subset of the
most frequently used Bioconductor packages. From the R prompt,

R> source ("http://www.bioconductor.org/biocLite.R")
then
R> biocLite()

To install additional Bioconductor R add-on packages, select ‘Packages’ from the
Toolbar, then select ‘Select repositories’ and choose ‘BioC software’. Thereafter,
select ‘Packages’ from the Toolbar, then ‘Install package(s).” A list of packages
will appear. Install the additional packages needed by highlighting them (multiple
packages may be installed by highlighting the desired packages while holding the
<Ctrl> key). For further instructions see http://www.bioconductor.org/download.
Download and installation instructions differ from those provided for a Unix or
Mac OS platform. The BioConductor package GEOquery was used to download
GSE3189 and will need to be installed to replicate the analyses.

R Code Example

Prior to analyzing the data, the control probe sets were removed. To simplify coding
notation, the transpose of the gene expression data matrix was extracted as x and
the ordinal factor was extracted and stored as y.
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R> library (GEOquery)

R> library (Biobase)

R> GSE3189 <- getGEO("GSE3189") [[1]]

R> control.probes <- grep ("AFFX", featureNames (GSE3189))
R> GSE3189 <- GSE3189[-control.probes, ]

R> X <- t(exprs(GSE3189))

R> y <- factor(pData (GSE3189) $characteristics_chl,

ordered = TRUE, levels = c("Normal", "Nevus", "Melanoma"))

Subsequently we log, transformed the MASS expression summaries.
R> x <- log(x, 2)

The glmpath. cr function is in the glmpathcr package which is available from
CRAN. Download the glmpathcr package and load it prior to model fitting.

R> library(glmpathcr)
The code for fitting a backward (default) continuation ratio model is given by
R> fit <- glmpath.cr(x, vy)

As with glmpath model objects, methods such as print and plot can be
applied to glmpath.cr model objects, which are helpful for selecting the step
at which to select the final model from the solution path. For example, plot can be
used to identify a more parsimonious model having an AIC close to the minimum
AIC (Fig. 3).

R> plot (fit, xvar = "step", type = "aic")

The plot function can also be used for graphing the path of coefficient estimates
(Fig. 4). The par function is merely used to provide more room in the margins for
the probe set labels and to shrink the fonts using the character expansion parameter
(cex).

R> par(mar = c(4, 4, 2, 5), cex=0.7)
R> plot(fit, xvar = "step", type = "coefficients")

For plot, the horizontal axis can be "norm", "lambda™", or "step". How-
ever extractor functions for glmpath . cr generally require the step to be selected,
so we have selected xvar = "step" in these examples. The vertical axis can be
"coefficients", "aic",or "bic". The model . select function identifies
the best fitting models using commonly used criterion, where the which parameter
allows one to select either AIC or by default, BIC.

R> BIC.step <- model.select (fit, which="BIC")
R> AIC.step <- model.select (fit, which="AIC")

In this example, Step 11 corresponds to the model attaining the minimum BIC while
Step 60 corresponds to the model attaining the minimum AIC. When extracting
the model using the AIC criterion, there were 20 probe sets having a non-zero
coefficient and two cutpoints in the final model. The two cutpoints result from
having three ordinal classes. The coef function returns all estimated coefficients



Penalized Ordinal Regression Models

AIC

AIC
140 160 180
| | |

120
|

100
|

60
|

T T
0 50 100 150
step

T
200

127

Fig. 3 Plot of Akaike Information Criteria (AIC) across the regularization path for the fitted

glmpath. cr object using the GSE3189 melanoma data

for a glmpath. cr fitted model, including the intercept which is returned as the
first element of the coefficient vector as well as the estimated slope and cutpoints.
The K — 1 ordinal thresholds are given by the sum of the Intercept and the
cpl, ..., cpK-1 cutpoints, where cpl,...,cpK-1 are the last K — 1 elements of
the coefficients vector. The coefficient estimates are returned for a specific
step of the regularization path by specifying the step number, s, to extract. The
nonzero.coef function returns only those non-zero coefficient estimates for a
selected model. This latter function is useful when the number of predictor variables

is large.

R> coefficients<-coef (fit, s = AIC.step)

R> sum(coefficients != 0)

[1] 23

R> nonzero.coef (fit, s = AIC.step)
Intercept 200755 s at 201022 _s at

15.470931606 0.086942969 -0.749283676
201393 s at 201591 s at 201672 s_at
0.009031235 -0.253298826 0.645105325
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Fig. 4 Plot of estimated coefficients across the regularization path for the fitted glmpath.cr
object using the GSE3189 melanoma data
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Taking absolute values, the probe set having the largest non-zero coefficient is
201022_s_at. The dotchart in Fig. 1 was produced using the following code.

R> stripchart( x[, grep( "201022_ s at", dimnames(x) [[2]])]~ vy,
vertical = TRUE, pch = 16, ylab = "201022 s at")

Using the annotate and hgul33a.db Bioconductor packages, the probe sets
having a non-zero coefficient estimate correspond to the following Entrez IDs, gene
symbols, and chromosomes:

R> library(annotate)
R> library(hgul33a.db)
R> beta <-nonzero.coef (fit, s = AIC.step)
R> beta <- betal-c(1,22,23)]
R> EntrezID <- getEG(names (beta),
"hgul33a.db")
R> EntrezID
200755 s _at 201022 s at 201393 s at 201591 s at

ng13 "11034" "3482" n11188"
201672 _s_at 202022 _at 204731 _at 205236 _x_at
||9097|| Il230|l II7049II Il6649|l
205681 at 205883 at 207144 s _at 208710 _s_at
I|597Il Il7704ll Il4435|l Il8943|l
211762 s _at 212862 at 213002 _at 213029 at
n3838" "g760" "4082" ng781"
213330 s _at 216037 _x_at 218692 at 219476 _at
"10963" "6934n "55638" "79098"

R> Gene.Symbol <- getSYMBOL (names (beta),
"hgul33a.db")

R> Gene.Symbol

200755 s _at 201022 s at 201393 s at 201591 s at

"CALU" "DSTN" "IGF2R" "NISCH"
201672 s _at 202022 at 204731 at 205236 x at
"USP14" "ALDOC" "TGFBR3" "SOD3 "
205681 at 205883 at 207144 s at 208710 s at
"BCL2AL" "ZBTB16" "CITED1" "AP3D1"
211762 s _at 212862 at 213002 at 213029 at
"KPNA2" "CDS2n "MARCKS " "NFIB"
213330 s at 216037 x at 218692 at 219476 _at
"STIPL" "TCF7L2" "SYBU" "Clorflle"

R> Chr <- unlist (mget (names (beta) ,env=hgul33aCHR))
R> Chr
200755 s at 201022 s at 201393 s at

I|7Il II2OII ||6||
201591 s at 201672 s at 202022 at
I|3Il Il18Il Ill7|l

204731 _at 205236 _x at 205681 at
Illll Il4|l IllSIl
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205883 _at 207144 s at 208710 s at

Illlll IIXII |l19ll
211762 s _at 212862 _at 213002 _at
|l17|l Il20|l ||6||
213029 at 213330 s at 216037 _x at
Il9|l Illlll "10"
218692 _at 219476 at
Il8|l Illll

R Code for producing the scatterplot of the probe set expression values for
the two probe sets having the largest absolute coefficient estimates (Fig. 2) was
produced using

R> plot (x[, grep( "201672 s at", dimnames(x) [[2]1])],
x[, grep( "201022 s at", dimnames(x) [[2]]1)],
pch = c(1, 2, 3)[yl,
xlab = expression( log[2] ("201672_ s at") ),
ylab = expression( log[2] ("201022 s at")))

R> legend( 11.4, 14.0,

legend = c( "Normal" ,"Nevus", "Melanoma"),

pch = c(1, 2, 3), cex = 0.8)

Continuation ratio models model conditional probabilities so a new method to
extract the class probabilities and predicted class was created [1]. The predict
function returns the AIC, BIC, predicted class, and the class probabilities for the K
classes for all steps along the regularization path. By default the training data is used
to obtain model predictions, though predicted class and fitted probabilities can be
obtained for a test dataset by specifying a different dataset using the newx parame-
ter. The predict function extracts the predicted class when type="class" or
the fitted probabilities when type="probs" for the K classes for a specific step
(e.g., which="AIC").

R> hat<-predict (fit, which="AIC", type="class")
R> table (hat, y)

Y
hat Normal Nevus Melanoma
Melanoma 0 0 45
Nevus 0 18 0
Normal 7 0 0

When there are small sample sizes in one or more groups (e.g., the normal
group (N =7)), cross-validation (CV) methods may not perform well as a means
to estimate generalization error due to the random inclusion of samples into each
of the folds. That is, multiple folds may include few if any subjects from the small
classes. Nevertheless, we have provided the R code for those interested in using
cross-validation on their own datasets. The boot strap package is available from
CRAN and must be downloaded for applying the cross-validation method. Here we



Penalized Ordinal Regression Models 131

have demonstrated 10-fold CV. Note that we set the random seed only so that our
results from the cross-validation procedure can be reproduced.

R> library (bootstrap)
R> fit.cv<-function(x,y) {glmpath.cr(x,y) }
R> predict.cv<-function (fit,x) {
predict (fit, newx=x, which="AIC", type="class")
}
R> set.seed(12)
R> cr.cv<-crossval(x, y, fit.cv, predict.cv, ngroup=10)
R> table(cr.cvS$cv.fit, y)

Y
Normal Nevus Melanoma
Melanoma 0 0 43
Nevus 2 18 2
Normal 5 0 0

which yields a generalized misclassification rate of 5.7 %.
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Abstract The complex process to develop a successful therapeutic drug is lengthy
and costly. In order to accelerate this process, molecular modeling has become
a key component of drug design. Methods used in computational chemistry vary
from Ab initio quantum chemistry methods, to semi-empirical calculations and
molecular mechanics. A study of the anticancer activity of a series of 7-aryl-
and 7-hetaryl-7-deazaadenosines published by Bourderioux (2011) showed that
nucleosides with 5-member heterocycles at the position 7 were more potent in vitro
cytostatic agents against hematological and solid tumor cell lines than molecules
with 6-member heterocycles. We decided to conduct a quantitative structure—
activity relationship (QSAR) analysis of these chemical moieties in order to have
a better understanding of their structural properties and identify their molecular
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descriptors explaining their biological activities. We found that 5-member cyclic
structures have three energy molecular descriptors that were negatively correlated
to their biological activity, in particular, compounds with higher energies had
higher biological potency represented by lower ICsy values. CLogP, a parameter of
lipophilicity, was also found to be positively correlated to their biological activity,
i.e. compounds with lower CLogP values had higher biological potency represented
by lower concentrations inhibiting the growth of cancer cells by 50 %. Qualitatively,
5-member-ring heterocycles of 7-deazaadenosine had lower steric hindrance, i.e.
were structurally smaller, than their 6-member counterparts. In this context, a QSAR
analysis could be extraordinarily helpful in studying the mode of action of molecules
with potential pharmacological relevance.

1 Introduction

The complex process to develop a successful therapeutic drug typically involves
the synthesis of a series of chemicals moieties that undergo various in vitro and in
vivo biological tests. During this process, a single chemical compound displays an
interesting pharmacological profile and is selected as a potential therapeutic drug
that will be carefully tested in humans before it can be authorized for clinical use.

In order to accelerate this process, molecular modeling has become a key
component of drug design. Molecular structures can now be modeled, and their
geometry, energies, and physical, electronic and spectroscopic properties can be
calculated by using appropriate computer software [11]. This process includes the
analysis of structural variations of the chemical moieties of interest, and can be
complemented with the analysis of the interactions between the proposed moieties
and their target enzymes or proteins. The ultimate goal is to optimise the synthesis
of the new chemical entities with improved biological activities [7, 11].

Methods used in computational chemistry vary from Ab initio quantum chem-
istry methods, to semi-empirical calculations and molecular mechanics. Molecular
surfaces, atoms, bonds and properties like hydrophilicity and lipophilicity can be
visualized through graphic representations for better understanding of the molecular
properties and interactions. The most common representation is the ball-and-
spring model, which allows the visualization of flexible bonds (springs) between
atoms (balls), volumes, and atoms types and interactions, allowing the chemist to
interpret the results when calculating the lowest energy model for the molecule.
The preferred molecular properties, or molecular descriptors, are those calculated
by the computational chemistry software when the minimum energy geometry of
the molecule, and consequently its most stable structure, has been reached.

In this context, the molecular descriptors are the result of a logic mathematical
procedure that transforms chemical information encoded within a symbolic repre-
sentation of a molecule into quantitative data representing standardized molecular
conjectures. Molecular modeling has become rapidly popular, and is now part
of the initial considerations when planning the synthesis of a series of chemical
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moieties with potential biological activity. Its use has been extended to other areas,
and this has been reflected by the growing number of journals publishing studies
in the broad application of computational chemistry. Of special consideration is
the study of the relationship between the molecular descriptors and either quali-
tative or quantitative indicators of biological activity by statistical methods. This
type of analyses is known as quantitative structure—activity relationship (QSAR)
analysis.

We previously conducted several QSAR analyses where we used semi-empirical
molecular mechanics to compute the molecular descriptors that were correlated
to the biological activity of the molecules analyzed. For example, we found that
alkaloids isolated from Aconitum roots were structurally more stable if they had
an aroyl/aroyloxy group at R4 position than those with the aroyloxy group at Ry,
and this characteristic explained their different local anesthetic activities [4]. Taking
into consideration the previously reported enzymatic activity of chloroperoxidase
for oxidizing organophosphorus pesticides, we used a similar QSAR analysis to
propose a mechanism of the biological oxidation of these pesticides by the hepatic
cytochrome P4s9 which could explain the generation of toxic metabolites [2]. We
also used a QSAR analysis with semi-empirical molecular mechanics to identify
that the anticonvulsant activity of valproic acid metabolites was mainly related
to their lipophilicity, probably reflecting their ability to cross the blood-brain
barrier [3].

These three examples of studies conducted by our group are cited to illustrate the
use of semi-empirical methods available in commercial software, which in combi-
nation with simple statistical methods such as the Pearson correlation analysis and
Student ¢ test allowed us to conduct meaningful QSAR analyses. Recently, a study
of the anticancer activity of a series of 7-aryl- and 7-hetaryl-7-deazaadenosines
showed that nucleosides with 5-member heterocycles at the position 7 were more
potent in vitro cytostatic agents against hematological and solid tumor cell lines than
molecules with 6-member heterocycles [5]. Apart from being carefully conducted,
the study attracted our attention for simultaneously containing detailed information
of the chemical moieties and quantitative data of their anticancer activity in cell
lines of breast, lung and colon cancer, which are of major interests under a public
health perspective. According to the most recent statistics in Canada, altogether,
these were the main causes of cancer in women, and represented 51 % of the new
cases, after excluding skin cancers [6]. In men, lung and colon cancers were the
second and third causes of cancer, only surpassed by prostate cancer, and together,
they represented 27.6 % of the new cases.

Therefore, we decided to conduct a QSAR analysis of this series of 7-aryl- and 7-
hetaryl-7-deazaadenosines in order to have a better understanding of their structural
properties and to identify their molecular descriptors explaining their biological
activities (Fig. 1). We used a similar approach to our previous studies [2—4], briefly
described above, in order to illustrate the broad applicability of this procedure.
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Fig. 1 Structures of the 7-aryl and 7-hetaryl-7-deazaadenosines synthesized and tested for
anticancer effects by Bourderioux et al. [5], and used for the QSAR analysis in the present study
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2 Methods

2.1 Molecular Modeling

We conducted a semi-empirical molecular modeling analysis of 5-member-ring
(n=13) and 6-member-ring (n = 5) heterocycles of 7- deazaadenosine previously
published elsewhere by Bourderioux et al. [5]. The molecular modeling analysis was
performed using the Computer-Aided Chemistry (CAChe) software v. 3.2 (Oxford
Molecular Group, London, United Kingdom) as follows. The structure of a given
chemical moiety is refined by means of pre-optimization calculations in Molecular
Mechanics using Augmented MM3. To optimize the structure, the CAChe adjusts
the initial geometry (bond lengths and angles) of the molecule in order to achieve
minimal potential energy of the structure. The hybridization and bond lengths are
established according with the atomic radii, the type of bond, and electronegativity
of each atom. Once the structural potential energy has been calculated, the atomic
positions are readjusted by changing the dihedral angles between the bonds and
looking for positive interactions such as intramolecular hydrogen bonds and ¥
interactions. The potential energy of the new structure is recalculated in every
readjustment. This is an iterative process where the program moves the atoms and
recalculates the energy, until a minimum energy is reached. The limit of change in
energy between iterations was 0.001 kcal/mol. After the molecular geometry was
optimized, the CAChe program was used to calculate the different forces that act
within and around the molecule, which affect the intermolecular attractions and thus
control its lipophilicity and hydrophilicity of the molecule. These forces include
hydrogen bonds, dipole—dipole forces (electrostatic forces) and London dispersion
forces.

2.2 Molecular Descriptors

The molecular descriptors generated by the CAChe program and used in the present
study, were the following:

(a) The electrostatic force, or electrostatic energy, is a function of the charge on
the non-bonded atoms, their interatomic distance, and a molecular dielectric
expression that accounts for the attenuation of electrostatic interaction by the
environment (the solvent or the molecule itself).

(b) The van der Waals energy is the energy of the sum of the attractive or repulsive
forces between molecules, or between parts of the same molecule, when the
distance between interacting atoms becomes less than the sum of their contact
radii.
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(c) The hydrogen bonds energy is the stabilization energy that corresponds to
the intramolecular hydrogen bonds formation (an electrostatic bond between a
hydrogen atom in a covalent bond and an electronegative atom, such as oxygen).

(d) The steric energy is the sum of the following net energies acting on each atom
in the molecule: bond stretch energy, bond angle energy, dihedral angle energy,
torsion energy, torsion stretch energy, bend—bend energy, van der Waals energy,
electrostatic energy and hydrogen bond energy.

(e) The heat of formation (Kcal/mol) is the amount of heat absorbed in a reaction in
which one mole of the substance in a specified state is formed from its elements
in their standard states. It is considered a measurement of the stability of a
compound.

In addition, the lipophilicity (CLogP) and topological polar surface area (TPSA)
were calculated using Chem Draw Ultra v. 12.0 (Cambridge Soft Corporation,
Perkin Elmer Informatics, Waltham, MA, USA). The calculation methods in this
software can handle molecules containing carbon, hydrogen, oxygen, nitrogen,
sulfur, halogens and phosphorus. Lipophilicity (CLogP) is the ability of a compound
to dissolve in fat or lipids found in the human tissues and cell membranes, and
hydrophilicity is the ability for a compound to dissolve in water. Water is a
major component of the human body especially in the blood stream. Hence, the
lipophilicity of a molecule would affect its ability to cross cellular membranes to
reach the active site.

The topological polar surface area (TPSA), expressed in square angstroms, is
given by the sum of the surface contribution of polar atoms, usually oxygen,
nitrogen and their attached hydrogen, in a molecule. In addition to complementing
the information provided by CLogP, TPSA can also be used to study receptor—
ligand interactions. For example, this molecular descriptor was found to correlate
negatively with activity data for marine pyridoacridine anticancer alkaloids, mela-
tonin MT; and MT, agonists, monoamine oxidase-B and tumor necrosis factor-a
inhibitors, as well as to correlate positively with inhibitory activity data for telom-
erase, phosphodiesterase-5, glycogen synthase kinase-3, DNA-dependent protein
kinase, aromatase, malaria, trypanosomatids and cannabinoid CB, agonists [10].

2.3 Biological Activity

Of the different biological activities, we selected the concentrations reported to
inhibit the cell growth by 50 % (ICsp) of NCI-H23 cell line for lung cancer, HCT116
cell line for colorectal carcinoma, and Hs578 cell line for breast cancer [5]. In
order to facilitate the understanding of our QSAR analysis, it is important to note
that lower ICsy values correspond to compounds that are more potent since less
concentration is required in order to exert their anticancer activity.
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2.4 Data Analysis

The biological activities and structural descriptors were summarized by their
median and range values. For comparisons between the structural descriptors of
the 5-member-ring and those of the 6-member-ring chemical structures, we used the
Mann-Whitney U test due to the differences in the number of chemical moieties
included in each group (n= 13 and 5, respectively). For the analysis of the rela-
tionship between the structural descriptors and the biological activity, we used the
Pearson correlation analysis or linear regression analysis, since both the descriptors
(independent or x-variables) and the biological effects (dependent or y-variables)
were continuous variables. In the linear regression analysis, data were modeled
using linear predictor functions, and unknown model parameters for a straight line
model (Y=mx -+ b) were calculated from the data by the least squares method
which minimises the sum of the squares of the errors associated with each Y point
by differentiation. This error is the difference between the observed Y point and the
Y point predicted by the regression equation. The slope, intercept and coefficient
of correlation (m, b and r values, respectively) were computed. All the statistical
analyses were conducted using StatsDirect v. 2.8.0 (StatsDirect Ltd., Cheshire, UK),
and a P < 0.05 was considered as the significant limit in every analysis.

3 Results

3.1 OQSAR

Apart from the differences in the biological activity of the 5-member-ring
7-deazaadenosines and those derivatives with a 6-member-ring, the two groups
also had significant differences in four of the seven structural descriptors analyzed
including lower van der Waals forces (kcal/mol) lower CLogP, higher steric energy
(kcal/mol) and higer TPSA (Table 1).

In addition, of these three structural parameters, the structure energy and CLogP
were consistently correlated to the ICsop (WM) of the 7-aryl- and 7-hetaryl-7-
deazaadenosines derivatives in the colon, breast and lung cancer cell lines included
in the analysis (Table 2). Although we analyzed data from the 5-member ring deriva-
tives separate from the 6-member-ring derivatives, the small number of chemical
moieties in the second group (n=1>5) limited the statistical power of the Pearson
correlation analysis, and therefore none of the correlation coefficients reached a
significant level. However, the differences found between the correlation analyses
when all the 7-deazaadenosines derivatives (n = 18) were included and those limited
to the 5S-member ring chemical moieties (n = 13), indicate that correlation between
the 7-aryl- and 7-hetaryl-7-deazaadenosines and their ICsg in colon, breast and lung
cancer cell lines was mainly driven by 5-member ring derivatives.
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Table 1 Biological activities and structural properties of a series of 7-aryl- and 7-hetaryl-7-
deazaadenosines

Parameter 5-Member-ring (n =13) 6-Member-ring (n =5) P-value
Biological activity

1Cs¢ (WM)—Ilung cancer 0.035 (0.002; 5.4) 5.4 (0.39; >20) 0.0044
1Cs0 (JuM)—-colon cancer 0.015 (0.002; 3.74) 5.7 (0.63; >20) 0.0016
1C5p (WM)—breast cancer 0.015 (0.001; 6.73) 2.2 (0.81; >20) 0.0016
Structural descriptors

Electrostatic forces (kcal/mol) 20.7 (19.2; 22.9) 20.7 (15.5; 22.2) 0.44
Van der Waals forces (kcal/mol) 13.9 (12.7; 15.9) 15.3 (13.8; 19.8) 0.032
Hydrogen bonds forces (kcal/mol) 4.6 (3.8; 6.9) 4.6 (4.3;4.9) 0.91
Steric energy (kcal/mol) 95.2 (88.4; 100.0) 74.7 (69.6; 78.5) 0.0002
Heat of formation (kcal/mol) —87.3(—118.7, —64.3) —89.7 (—128.8; —73.1) 0.55
CLogP —0.91 (—1.5; 1.3) 1.0 (0.40; 1.66) 0.0016
TPSA (A%) 135.9 (123.9; —160.6) 123.9 (123.9; 133.1) 0.015

The biological activities for each chemical moiety were retrieved from the study conducted by
Bourderioux et al. [5]. Data are summarized as the median and, in parenthesis, minimum and
maximum values. Significant P-values are shown in bold fonts

3.2 Qualitative Analysis of the 5-Member-Ring Substitutions

The four most active 5-member-ring 7-deazaadenosines compounds for lung
cancer were compounds number 19>8>17>18, for colorectal carcinoma
20>8>19>17, and for breast cancer 20 >19 > 17> 15, arranged according
to their anticancer activity. Compound 19, which was reported to be the most active
chemical moiety in lung cancer cells, consists of two nitrogen substitutions in
positions 2 and 4 of the 5-member-ring. Nitrogen atoms as ring-members create a
higher polar surface for interaction than a carbon atom in the ring. Compound 20
shares very similar structural characteristics than compound 19, and therefore is
not surprising that in the cell lines for colorectal carcinoma and breast cancer, the
former is only slightly more potent than the latter chemical moiety.

Compound 8 which was reported to be the second most potent in lung and breast
cancer cell lines has a very electronegative sulphur bonded at position 2 which
would allow for both hydrogen bonding (since sulphur is a hydrogen bond acceptor)
as well as stronger dipole—dipole moments as a result of the sulphur that is delta
negative in comparison to the hydrogen atoms and carbon atoms present in the rest
of the ring.

Compound 17 exhibited good biological activity in the three reported cell
lines. This compound possesses three nitrogen atoms as substitutions in the 5-
member-ring. However, the nitrogen atom in position 4 is bonded to a hydrogen
atom thus making that area slightly more positive than the two other very/highly
electronegative nitrogen atoms. This gives the compound a larger dipole moment as
well as a greater ability to form hydrogen bonds; an amine group (-NH-) has the
dual property of being hydrogen-bond donor and hydrogen-bond acceptor. However,
the ability of 7-aryl- or 7-hetaryl-7-deazaadenosines to form hydrogen bonds does
not seem to be directly affecting the activity of the compound in its receptor site.
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Table 2 Linear regression equations (y = mx + b) between structural parameters (x) of 7-
aryl- and 7-hetaryl-7-deazaadenosines derivatives that were significantly related to the 1Csg
(M) in three types of cancer cell lines

Parameter Slope (95 % CI)* Intercept R P-value

HCT116 colon cancer cells
5- and 6-member-ring (n=18)

Steric energy (kcal/mol) —0.30 (—0.53; —0.069)  28.9 —0.57 0.014
CLogP 2.3 (0.18; 4.5) 2.8 0.50 0.034
5-member-ring (n=13)

Van der Waals forces (kcal/mol)  0.72 (0.075; 1.37) —-9.7 0.59 0.032
Steric energy (kcal/mol) —0.22 (—0.42; —0.025) 21.4 —0.60 0.031
CLogP 0.72 (0.073; 1.4) 0.85 0.59 0.032

Hs578 breast cancer cells
5- and 6-member-ring (n=18)

Steric energy (kcal/mol) —0.28 (—0.52; —0.045) 27.5 —0.53  0.023
CLogP 2.3 (0.15;4.5) 2.7 0.49 0.037
5-member-ring (n=13)

Van der Waals forces (kcal/mol) 1.5 (0.43; 2.5) —20.2 0.68  0.0098
Steric energy (kcal/mol) —0.44 (—0.77; —0.12) 42.6 —0.67 0.012
CLogP 1.5(0.39; 2.5) 1.5 0.67 0.012

NCI-H23 lung cancer cells
5- and 6-member-ring (n=18)

Steric energy (kcal/mol) —0.28 (—0.52; —0.049) 27.9 —0.54 0.021
CLogP 2.4(0.29; 4.5) 3.0 0.52 0.028
5-member-ring (n=13)

Electrostatic forces (kcal/mol) —0.71 (—1.39; —0.030) 15.6 —0.57 0.042
Steric energy (kcal/mol) —0.44 (—0.69; —0.18) 42.0 —0.76  0.0028
CLogP 1.34 (0.45; 2.23) 1.57 0.71  0.007

#Value and, in parenthesis, the 95 % confidence interval. None of the structural parameters of
6-member ring 7-deazaadenosine derivatives was significantly correlated to the ICsy (WM) in
none of the cancer cells analyzed herein, more likely due to the limited number of chemical
moieties included in the group (n =15)

3.3 Qualitative Analysis of the 6-Member-Ring Substitutions

These compounds were significantly less active than those with 5-member-ring
derivatives of 7-deazaadenosine. Therefore, we limited our qualitative analysis to
emphasize that lower van der Waals and steric energies as well as lower structure
energies were qualities in compounds 3, 4, and 6, the three most active compounds
in this group. Compound 6 contains a pair of fused-benzene rings at position 7 of
the 7-deazapurine ring, whereas compounds 3 and 4 contain a single aromatic ring
mono-substituted with an electronegative atom attached to a methyl group.

Hence, it appears that a bigger structure does not permit 7-deazaadenosine
derivatives to have a proper interaction with their site of action. This can also
be appreciated by the perpendicular orientation of the 6-member ring in relation
to the 7-deazaadenosine, whereas the 5-member ring is oriented in the same plane
to the nucleic base (Fig. 2).
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Fig. 2 Compound 4 (left) has a six member ring substituent which is positioned in a perpendicular
plane to that of the 7-deazaadenosine, whereas compound 19 (right) has a five member ring
substituent which stands in the same plane as the nucleic base. In the study by Bourderioux et al.
[5], the latter exhibited more potent anticancer properties than the former

4 Commentary

Our QSAR analysis of the anticancer activity of 5-member-ring and 6-member-ring
heterocycles of 7-deazaadenosine showed that 5-member cyclic structures reported
elsewhere [5], have three energy molecular descriptors that where negatively
correlated to their biological activity, i.e. compounds with higher energies had
higher biological potency represented by lower ICsg values. These descriptors were
the steric energy and electrostatic forces, which appear to be related to the stability
of chemical moieties [3], and the van der Waals forces which represent steric
interactions. Of these three energy molecular descriptors, electrostatic forces appear
to be the less relevant parameter, since no statistical differences were observed when
5-member-ring heterocycles were compared to the 6-member-ring heterocycles
(Table 1).

CLogP, a parameter of lipophilicity, was also found to be positively correlated
to their biological activity, specifically compounds with lower CLogP values had
higher biological potency represented by lower ICsq values. Since drugs need to
cross cell membranes in order to enter into the cell, be adsorbed, or distributed,
lipophilic chemical moieties are expected to cross better through these biological
barriers. The optimum CLogP, however, may vary from one drug family to another.
For example, we previously showed that the rate of transfer of local anesthetics from
the central nervous system to the plasma is parabolic, with the slowest rate occurring
at CLogP of 3.0 [8]

Qualitatively, 5-member-ring heterocycles of 7-deazaadenosine, which were
reported to be biologically more active [5], had lower steric hindrance, i.e.
were structurally smaller, than their 6-member counterparts. Together with
the quantitative analysis, these findings suggest that bigger 7-deazaadenosine
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derivatives would have more difficulties interacting with their site of action. This
can be supported by the findings reported in a study of a series of 7-substituted
adenine derivatives where chemical moieties with high steric hindrance exhibited
low anticancer activities, i.e. from 6.7 to >100 uM [12].

Other nucleosides consisting of pyrimidine or purine attached to either a
ribose or deoxyribose have shown relevant cytostatic activity to treat solid and
haematological malignancies [1, 9]. Cytostatic agents are able to halt cellular growth
and multiplication, and have been widely used in chemotherapy for decades. Para-
doxically, cytostatic agents have also been categorized as carcinogenic, mutagenic
and teratogenic compounds, triggering concerns when treating cancer patients.
Therefore, there is a continuous interest in developing cytostatic agents with high
specificity for affecting malignant cells. In this context, a QSAR analysis could be
extraordinarily helpful in studying the mode of action of molecules with potential
pharmacological relevance in order to plan the synthesis of chemical moieties with a
better pharmacological profile, as well as to understand and anticipate their potential
toxicity when used in the clinical setting.
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More than an African American Facilitator
and a Prayer: Integrating Culture

and Community into HIV Prevention Programs
for African American Girls

Faye Z. Belgrave, Jasmine Abrams, Sarah Javier, and Morgan Maxwell

Abstract When integrating culture into HIV prevention and intervention efforts,
for African American groups, programs need more than an African American
facilitator and a “prayer.” Understanding culture, cultural competency, and cultural
integration is important for programs to be most effective. One research approach
that seems particularly suited for culturally integrated interventions is Community
Based Participatory Research, or CBPR. This chapter provides a discussion of com-
munity involvement in HIV prevention programs implemented by the authors. The
chapter also discusses cultural attributes for African American girls including ethnic
identity, relational orientation, and gender role beliefs. The chapter reviews why
these cultural attributes are important and some of the authors’ work implementing
these attributes in prevention programs for African American girls. The chapter also
discusses the importance of technology use in prevention interventions.

Sexually active African American adolescent females are at a heightened risk for
contracting sexually transmitted infections including HIV/AIDS [15]. As such, there
is a need for prevention and intervention programs to address this health disparity
within a culturally sensitive and developmentally appropriate framework. Research
has shown that culturally integrated interventions can be effective at reducing HIV
risk [18, 19, 32]. The goals of this chapter are to: (1) define culture, cultural
competency, and cultural integration; (2) discuss community integration in HIV
prevention programs; and (3) discuss ways in which culture can be attended to and
integrated in prevention and intervention efforts. The chapter addresses each goal in
order, beginning with an overview of relevant concepts.
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1 Defining Culture, Cultural Competency, and Cultural
Integration

When integrating culture into prevention and intervention efforts, for African
American groups, programs need more than an African American facilitator and
a “prayer.” Understanding culture, cultural competency, and cultural integration
is important for programs to be most effective. Culture is defined as “integrated
patterns of human behavior that include the language, thoughts, communications,
actions, customs, beliefs, values, and institutions of racial, ethnic, religious, or social
groups” [42]. Cultural competence consists of congruent behaviors, attitudes, prac-
tices, and policies that come together in a system, agency or among professionals
and enables that system, agency, or those professionals to work effectively in cross-
cultural situations. Cultural competence facilitates culturally-appropriate prevention
and treatment strategies that are (1) based on the cultural values of the targeted
group; (2) reflect the subjective cultural characteristics of members of the targeted
group; and (3) reflect the behavioral preferences and expectations of members of the
group [28, 42].

Cultural dimensions for African American female adolescents include gender
(i.e. being female), ethnicity (i.e. being African American), and age (i.e. being
between the ages of 12—-18). Other aspects of culture might include neighborhood,
period in time, and group networks. Cultural integration involves attending to
aspects of culture in both the format and the content of the program or activities
that are being implemented [25].

The first step of culturally integrated interventions should be to understand
the culture of the target population. To do so, one must take into account the
unique and diverse attributes of the target population in research and programmatic
activities including: development of research questions, execution of research,
application of research findings, selection of the intervention program, identification
of participants, recruitment and retention of participants, and evaluation of the
intervention program. One research approach that seems particularly suited for
culturally integrated interventions is Community Based Participatory Research, or
CBPR.

2 CBPR and CBPAR: Community-Based Approaches
to Culturally Competent Research

CBPR is a method through which communities can become involved in intervention
efforts. The Kellogg Foundation has defined CBPR as a “collaborative approach to
research that equitably involves all partners in the research process and recognizes
the unique strengths that each brings. CBPR begins with a research topic of
importance to the community, has the aim of combining knowledge with action
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and achieving social change to improve health outcomes and eliminate health
disparities” [16]. In CBPR, community members are involved in all aspects of the
research project, from conception to dissemination and sustainability. Community
members work in close collaboration with the researchers and may be involved in
planning and carrying out program activities as well as observing the proceedings
and analyzing any data that may come out of the program. Use of CBPR has been
encouraged by such agencies as the National Institutes of Health, Centers for the
Disease Control and Prevention (CDC), Research! America, and the Public Health
Foundation [16].

Similar to CBPR, Community Based Participatory Action Research (CBPAR)
is seen as a culturally appropriate approach for health research and promotion
[46]. Some characteristics of CBPAR include: (1) facilitating collaborative non-
hierarchical partnerships and encouraging co-learning and capacity building amid
partners; (2) highlighting community perspectives and indigenous perspectives on
public health problems that identify and address multiple contributors to health and
disease; (3) integrating and accomplishing a balance between research and action for
the shared benefit of partners; (4) identifying and building on assets and resources
within the community; and (5) involving partners in disseminating knowledge
gained [22, 31]. Similar to CBPR, CBPAR is built on community participation and
seeks to involve community stakeholders and members in every step of the research
process [43].

The nature of the relationship between researchers and community members
is very important in the participatory research approach. Generally, the first step
in establishing a mutually beneficial and respectful relationship is to identify
“stakeholders” who are invested in the program or research. Stakeholders can
consist of program sponsors, or organizations that initiate and fund a program,
the targets of the program themselves, and staff members trained to carry out the
intervention [39].

The advantages of using community-based approaches are many and include (1)
having a panel of stakeholders with diverse backgrounds and expertise; (2) improved
strategies for recruitment and retention; (3) increased quality and validity of research
by tailoring the program to fit the needs of the community; (4) increased trust
and rapport; (5) increased resources to communities; and (6) increased potential
to develop further interventions or to maintain the already-existing program [33].

When developing interventions aimed at reducing risk for contracting HIV/AIDS
among African American girls, the above factors are important to consider. While
all factors should be addressed to the extent possible, we believe three of the
most important factors are (1) having diverse stakeholders; (2) having effective
recruitment and retention strategies; and (3) implementing practices that promote
the maintenance or sustainability of the program. Intervention sustainability will be
revisited at the end of the chapter.
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2.1 Having Diverse Stakeholders

HIV is typically viewed as a public health problem that results from individual-level
behavioral practices (e.g., having unprotected sex with an HIV positive person).
In order to understand HIV risk behaviors, a panel of diverse individuals with
different levels of expertise is needed. For example, community partners could
include participants from a non-profit health clinic, academicians from various back-
grounds (e.g. Psychology, Public Health, African American studies, Education),
professionals from school and after-school programs (e.g., teachers, administrators,
prevention specialists), and residents from housing communities. African American
adolescents and their parents are also stakeholders. Having a diverse panel of
stakeholders will garner fresh and varied perspectives and insights. Stakeholders
in our HIV prevention program for girls have included prevention specialists who
served on an advisory council, staff and teachers from after school programs
and local schools, parents, and representatives from teen pregnancy prevention
programs, among others. Adolescent girls have also been involved stakeholders as
members of a junior advisory board.

2.2 Recruiting and Retaining Participants

Recruitment and retention are essential aspects of ensuring the success of an
intervention. It is impossible to obtain the benefits of a program unless participants
are retained for the duration. A recommended recruitment and retention strategy is
to provide transportation to and from the project site or hold the program activities
in communities where people live. Accessibility may be important when working
with African American youth who may live in underresourced communities, where
transportation may not be accessible. Issues of security for program participants
must also be considered if the site is in a high risk neighborhood.

Another recruitment and retention strategy is to work with existing groups of
youth (e.g., church youth groups, community center groups, after-school program
groups, sports teams). Participants from already intact groups typically attend more
program sessions and are more likely to be available for follow up. We also
recommend that staff members of these groups be utilized (in a paid position)
if necessary to support recruitment and retention efforts. In our HIV prevention
programs, we implemented the program within the community that girls lived and
also at after-school sites.

Overall, both CBPR and CBPAR are useful approaches to conducting culturally
competent research.
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3 The Importance of Community Sustainability

Previously, we discussed the importance of CBPR. CBPR recognizes the importance
of the community integration in HIV prevention efforts. It also places priority
on programs being sustained by the community. When conducted correctly and
efficiently, programs aimed at increasing HIV protective behaviors may be sustain-
able over the long-term. This is both in terms of the program itself and also with
a permanent change in attitudes and behaviors among girls. In order to achieve
sustainability, it is important to train community partners to be able to carry out
the program when the researchers or program staff leaves. Several strategies can
be used to assist in program sustainability. These include follow-up meetings or
booster sessions, observations and critique of sessions, and training specifically on
how to implement HIV prevention programs with fidelity. In programs that we have
implemented in after-school and school settings, prevention specialists, and other
professionals were trained in how to implement the curriculums. In other programs
we have encouraged parents to continue to meet as a parenting support group to
continue to realize the goals of the program.

4 Integrating Culture into Programming

Integrating culture into intervention programming should be a thoughtful process,
occurring during program creation and implementation. At this stage, cultural
dimensions should be integrated into both program content and format. There are
several aspects of the culture of African American girls that could be addressed
and incorporated. We describe next a cultural program we developed for African
American girls. The program called, “Sisters of Nia,” can be used as a stand
alone cultural enrichment program or in combination with programs that target life
skills (e.g. HIV and substance abuse prevention). We then focus on three culturally
salient aspects of identity related to sexual risk taking for African American female
adolescents: (1) ethnic identity, (2)) relational orientation, and (3) gender role
beliefs. These cultural attributes have been incorporated into a number of effective
HIV risk reduction interventions for African American girls and women, including
Sister Informing Healing Learning and Empowering (SIHLE), and Project SAFE
(Sexual Awareness for Everyone).

Sisters of Nia, developed for girls in early adolescence (11-14) uses a small
group format that convenes 8—12 girls [6]. Fifteen one and a half hour sessions
focus on the cultures of being female and of African descent. Girls are exposed to
African American female intervention staff called “mzees” (Kiswahili for respected
elders) that serve as role models of what females can do. The 15 sessions in Sisters
of Nia are listed in Table 1 below:
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Table 1 Sisters of Nia

. Session  Topic
sessions

1 Orientation

2 Jamaa building

3 Introduction to relationships

4 Relationships continued

5 Introduction to Africa and African Culture
6 African culture continued

7 Appearances: Judging others

8 Appearances: healing the hurt

9 Personal hygiene

10 Critical consciousness

11 Creativity

12 Leadership: African American women
13 Education awareness

14 Life course

15 Moving on: closing ceremony

An evaluation of Sisters of Nia showed an increase in ethnic identity and
androgynous gender roles and a decrease in relational aggression among girls who
had participated in the intervention [7].

We next provide examples of how we attend to ethnic identity, a relational
orientation, and gender roles in interventions we have implemented and discuss how
these three cultural elements can be incorporated into HIV intervention programing
for African American girls. We also provide a brief discussion of research that
supports why these attributes are important to attend to when working with African
American girls.

4.1 Ethnic Identity

Ethnic identity refers to the degree to which one identifies with their racial, ethnic,
and/or cultural sharing group. African Americans with high ethnic identity associate
positive feelings with being a member of their ethnic group [35]. They are proud to
be African American, desire to be around other African Americans, and engage in
behaviors that support these desires (i.e., shopping in Black owned stores). African
Americans with low ethnic identity tend to affiliate with other ethnic groups and
have negative feelings about being African American.

For African American girls, high ethnic identity is associated with positive
psychological and behavioral outcomes [17, 41]. Girls with high ethnic identity are
less likely to experience sexual onset at a young age and more likely to protect
themselves from sexually transmitted infections and pregnancy [5]. Further, they
use fewer drugs and have more intolerant attitudes toward drugs compared to girls
with low ethnic identity [13]. Given the relevance of these behaviors to decreasing
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HIV risk, culturally integrated intervention programs for African American girls
should aim to increase ethnic identity.

4.1.1 Integrating Ethnic Identity into Program Content

Ethnic identity can be incorporated into program content through sessions on
ethnic pride and African culture that provide information on accomplishments and
the diversity of people of African ancestry. For example, activities can include
information about past and present queens of Africa, Africa being the birthplace
of civilization, and various African countries that reflect rich natural resources,
urban development, and cultural diversity. In addition, programs may benefit from
providing intervention participants with opportunities to learn about successful
African American women and encouraging girls that they have a long and rich
history of which they can be proud.

Ethnic identity can also be addressed in sessions on self-image, with a focus
on critically examining media portrayals of African American women. African
American women are often portrayed as hypersexual in popular media. Addressing
such stereotypical images and having discussions about what it means to be a person
of African descent can help to correct myths about African American culture and
increase ethnic identity [3].

Including sessions that focus on enhancing ethnic identity at the beginning of an
intervention can help to establish a desirable programmatic climate. Topics related
to ethnic identity should not be restricted to one or two sessions but integrated in all
sessions.

4.1.2 Integrating Ethnic Identity into Program Format

Integrating ethnic identity into program format can be accomplished in a number
of ways. One of the most obvious methods is to have African American female
facilitators. This strategy is used in several HIV interventions for African American
girls. Employing the use of cultural titles such as Sista or Mzee (respected female
elder) is also a common technique for promoting positive ethnic identity. The use of
cultural titles also emphasizes respect for elders.

Ethnic identity can also be attended to by employing ritualistic openings and
closings of sessions with African American poetry, music, unity circles, prayers,
call and response phrases, and/or libations. Creating opportunities for girls to
participate in cultural activities is also a useful strategy for promoting ethnic identity.
Examples of these strategies include having girls to read poetry to open or close a
session, recite African proverbs, learn hip-hop or African dance, and attend cultural
celebrations (e.g., Kwanzaa, Black History programs, Juneteenth celebrations, etc.).

It is also a good practice to create an atmosphere that reflects an appreciation of
African culture. This can be done by decorating the intervention space with African
art (paintings, pictures, and/or statues) and playing uplifting music that is popular
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in African American culture (socially conscious hip hop, R & B, and neo-soul).
Finally, it is important to consider that people of African ancestry may think and
behave within a communalistic worldview, which is closely related to having a
relational orientation.

4.2 Relational Orientation

Mutually dependent relationships are important to adolescent girls. Such rela-
tionships, particularly those with adult females, shape the identity of girls and
often serve as exemplars for behavioral expectations. While relationships hold
significance for all girls, they may be especially important to African American
girls given the relational values of both people of African ancestry and females [3].

As relationships are especially important to girls during early adolescence, signif-
icant others have the potential to positively or negatively influence girls’ perception
of self. A positive sense of self is associated with girls feeling valued by significant
others (i.e., mothers, fathers, grandparents, teachers, mentors). A negative sense
of self is associated with the opposite. Girls who do not feel valued in their
relationships with significant others may have unmet relational needs and may
attempt to seek fulfillment within other more damaging and negative relationships.
Girls with positive family relationships are less likely to engage in risky behaviors
when compared to girls without positive family relationships. Among girls, lower
academic achievement, drug use, and risky sex are associated with poor family
relationships [21, 29].

The relational orientation of African American girls can offer additional benefits
through social support. Risky sexual behavior is less likely to occur among
African American adolescents who report having more social support from parents
and others [2, 40]. The types of individuals with whom social relationships are
established can also influence sexual risk taking. For example, African American
adolescents who reported having peers who engage in fewer risky sexual behaviors
also reported fewer risky sexual behaviors [9, 30, 45, 47].

Creating a supportive environment is associated with increased intervention
effectiveness among young African American females, as desired intervention
outcomes are greater for participants who feel supported by their fellow group
members than when they are not [4]. In one study, Belgrave and colleagues
found that higher perceived support from group members in an HIV prevention
intervention was associated with less sexual risk (e.g. higher condom negotiation
efficacy and higher condom use efficacy). Research suggests that community based
interventions may be most successful when the program allows for peer bonding
and the fostering of friendships [27].

The value that girls place on relationships can also have negative impacts if girls
are caring for significant others at the expense of their personal values, desires, and
needs. If a girl values her partner more that she values herself, this mindset has
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the potential to manifest in risky sexual behaviors. Teaching the importance of self-
value is essential to helping African American girls make safer sexual decisions.

4.2.1 Integrating a Relational Orientation into Program Content

Interventions that address the relational orientation of African American girls should
include activities that help girls identify positive characteristics of relationships and
emphasize the importance of positive relationship building. Activities should be
structured in a way that encourages interpersonal connections with adult women
and with co-participants.

The following strategies can assist with achieving high levels of group support,
and positive relationships. Sessions should include teaching techniques such as
active listening, how to provide positive affirmations, how to provide constructive
criticism, and how to let others know that they are appreciated and respected.
Sessions might also incorporate information to participants on how to access and
gain support from others such as appropriate levels of disclosure, how to ask for
help, and how to take constructive feedback [4].

4.2.2 Integrating Relational Orientation into Program Format

Interventions can provide an environment that is conducive to relationship building
and garnering social support from peers. Ideally, this environment would allow
for girls to support and encourage one another in safer sex decision-making.
Providing ample opportunities for girls to interact with facilitators and work in small
groups to discuss topics, solve problems, and carry out other activities promote
collaborations and a sense of community. Within these small groups, girls learn
to look out for and to be responsible for each other. Having adult African American
female facilitators model positive collaborative interactions also helps to promote
relationship building. Facilitators should encourage genuineness, sincerity, and
respect in all interactions. It is also important to keep in mind that the dynamic
of the group must be closely monitored by facilitators in order to avoid negative
consequences of peer interactions.

Social support networks established from relationship building opportunities
in interventions may assist with establishing sustainability of intervention effects.
Facebook groups and group texting/chatting networks established during the inter-
vention can offer girls support from their peers after the intervention has concluded.

4.3 Gender Role Beliefs

Gender role beliefs are socially constructed views that ascribe particular behav-
ioral/role expectations to individuals based on their identity as a male or female.
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Gender role beliefs affects how we interact with others [14], and guide behavior
in a variety of situations including personal decisions, sexual behavior, family
decision making, and human behavior in general [1, 8, 20, 38]. The development and
expression of individual characteristics such as self-concept, identity, interpersonal
skills, mental health, sexual behaviors, and attitudes are influenced by gender role
beliefs [1]. Females who have both high levels of instrumental (masculine) and
expressive and nurturing (feminine) gender roles are androgynous [12]. Being
androgynous may serve as a protective factor for girls. Girls who are androgynous
have higher self-esteem and self-worth and engage in less risky behaviors than those
who are not [37].

African American girls are often socialized to simultaneously assume both
masculine and feminine roles, including those as providers, assertive communi-
cators, and self-reliant individuals while being a nurturer and a caregiver at the
same time [10]. African American girls with androgynous gender role beliefs have
better psychological functioning, engage in less risky behaviors, have higher ethnic
identity, and increased levels of self-worth and self-esteem than those who do not
[3, 12, 37]. African American girls may be raised to believe that part of womanhood
is being independent, assertive, emotionally resilient, and economically capable of
sustaining self [24]. These beliefs may operate as protective factors by promoting
adaptive behaviors and effective coping skills especially in the face of stress or
adversity.

4.3.1 Integrating Androgynous Gender Role Beliefs into Program
Content

In HIV prevention interventions for girls, the focus should be on promoting
androgynous gender role beliefs. Opportunities should be provided to encourage
girls to express and internalize both expressive and instrumental roles. These can
be encouraged through sessions that focus on developing general decision making
skills, sex refusal efficacy, condom negotiation skills, condom use efficacy, and
assertive communication skills. Knowledge and skills gained in sessions should
reinforce the notion of them taking an active role in their sexual decision-making.
They should be provided with the information and given opportunities to develop
the skills needed to effectively communicate their desires and how to practice safer
sexual activity. At the same time, sessions should emphasize the importance of being
sensitive when interacting in a sexual situation.

Even with proper preparation, sexual situations may not go as planned. Thus,
simulation and role playing sessions might demonstrate how to behave in certain
sexual situations. For example, girls could take turns practicing what to say when in
a situation with a partner who does not want to use a condom, then offer critiques
and suggestions.
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4.3.2 Integrating Gender Role Beliefs into Program Format

In order to promote androgynous gender roles, girls should be afforded opportunities
to express both instrumental and expressive gender roles. Opportunities to increase
instrumental gender roles can be facilitated through leadership positions. For
example, girls can be given the opportunity to be responsible for opening and/or
closing sessions, leading activities, or being responsible for calling order to a
rambunctious environment. To increase expressive gender roles, program staff
should acknowledge behavior that is seen as caring and responsive to others [3].
For example, in one program we implemented, we had girls identify (anonymously
by putting a name in a box), one participant who had demonstrated kind and caring
behavior. The person with the most names was recognized for that week. Girls can
also be given homework assignments that encourage the adoption of androgynous
gender roles. These may include asking girls to visit a senior citizen home, develop
an activity for a younger sibling (to strengthen expressive/feminine gender roles) or
initiate a conversation about leadership opportunities within her school and/or place
of worship (to strengthen instrumental gender roles).

5 Considering Technology

Technology can be used to promote or inhibit positive developmental outcomes
among girls. Technology usage, particularly internet and cell phone use, is prevalent
among African American adolescents. A recent study found that 72 % of African
American youth (from low-income backgrounds) use the Internet at least once
or twice a week to acquire information and learn (Whiteley et al. 2011). In
addition, about 60 % use the internet for social networking (Whiteley et al. 2011).
Furthermore, research suggests that increasing numbers of African American youth
have constant internet access with about 45% accessing the internet from their
personal cell phones [26].

HIV risk reduction interventions can use this technology for decreasing risk for
two primary reasons: (1) there are numerous Internet sites that provide inaccurate
information about sexual health and (2) youth have begun to use the Internet
to identify sex partners. Although the relationship between HIV risk and online
technology is understudied, research indicates that meeting sex partners online is
associated with drug and alcohol use and unprotected sex among African American
youth [44]. As such, interventions should discuss prevention strategies related to
unique online social interactions with prospective sex partners. Programs may
also want to provide African American girls with knowledge of and strategies for
identifying appropriate internet resources (government health websites/factsheets)
to gather information about their sexual health.

In addition, as increasing numbers of African American youth have personal
cell phones, programs may benefit from using brief phone calls or text messaging
as a prevention strategy. Indeed, African American adolescents are receptive to
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receiving phone based messages related to HIV prevention (DiClemente et al. 2009;
St. Lawrence et al. 2009). In addition to being thoughtful about the content of the
messages, it is important to consider timing and frequency. Focus groups conducted
with African American adolescents revealed that they preferred to be texted during
the hours of 4:00-6:00 pm and wanted to receive a maximum of three messages per
day (St. Lawrence et al. 1995).

The incorporation of online and cell phone technology into intervention delivery
is demonstrating successful trends in HIV prevention (DiClemente et al. 2009).
Considering the prevalence of use and importance of these technologies would
be useful in creating culturally integrated HIV prevention programs for African
American adolescent girls.

6 Conclusion

In conclusion, culturally integrated interventions are essential in effective HIV
prevention strategies. It is important to acknowledge that culturally integrated
interventions for African American girls require more than an African American
facilitator and a prayer. Health professionals interested in creating or implementing
culturally appropriated programming should invest time in understanding the target
population. For African American girls, the following cultural values should be
attended to in culturally relevant HIV prevention programming: (1) ethnic identity,
(2) relational orientation, and (3) gender role beliefs. It is also important to
consider the prevalence of technology use and utilize strategies that allow for the
incorporation of these into interventions. Further, community integration is essential
for the maintenance of culturally integrated interventions program.
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Dynamics of Niche Construction in Models
“Consumers—Renewable Resource”

and “Consumers—Predators—Renewable
Resource”

Faina S. Berezovskaya and Georgiy P. Karev

Abstract In this chapter a question of “how much over-consumption a renewable
resource can tolerate” is addressed using mathematical models, where a consumer
population compete for the common resource, can contribute to resource restoration,
and is subject to attacks of predators. The bifurcation analysis of the systems shows
that well-adapted predators can keep the system in a stable equilibrium even for
“strong” prey over-consumption, when the initial system of resource—consumer
goes to extinct. It means that predators may extend the domain of the total system
coexistence.

1 Introduction: Description of Models

The identification of mechanisms responsible for the observed patterns of coex-
istence in populations whose survival is intimately connected to their ability to
share a common resource is central to the study of ecological sustainability. The
notion of niche construction provides but one way to organize and understand how
populations can sustainably coexist with their resources. It is the goal of this paper
to study this question using a simple resource-consumer framework.

The term “niche” was first introduced by Grinnell [7] in 1917 in his efforts
to describe how an organism or a population responds to and competes for a
common resource. The interactions of organisms or populations with available
resources within their niche are not limited to consumption. Odling-Smee et al. [15]
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referred to the notion of “niche construction” in situations where organisms not only
adapt in response to environmental pressures (for example, consuming the resource
in the most efficient manner) but in the process also modify the environment.
These adaptive interactions of consumers with their environment re-shape the
niche to the needs of the communities that share the resource consumer—producer
(N-R) systems, where the individuals that compete for resources also contribute
differentially to “increases in the size of the pie”. The carrying capacity of N—R
systems turns out to be a function of the adaptive interactions between resources
and consumers. Niche is therefore not a static concept but is an adaptive system in
itself, for example, equilibrium of the system. The ability to understand and predict
possible directions in which the consumer—resource system may evolve is crucial in
order to successfully achieve sustainable coexistence with common resources and
to avoid “tragedy of common” (Hardin [8]).

It has been supposed that bifurcations in dynamical systems describing the N-R
model can correspond to “tipping points” in complex adaptive systems, which in
turn may signal upcoming crises.

For these purposes a simplified version of the model introduced by Krakauer
et al. [13] was used, which is presented in the form

G =N(=%)

dR __ e(l1—c)N
@ =V OR+ Ty

ey

In this model consumers N(f) compete for common resource R(f), which
determines the carrying capacity of the population. A resource is suppose to be
renewable in such a way that consumers not only consume the resource but also
be able to contribute to its restoration, i.e., contribute to increase of the common
population carrying capacity.

The per capita birth rate is equal to the rate ¢ of the resource consumption.
The per capita death rate is equal to bTN, where b characterizes the efficiency of
resource consumption. Resource R(f) is restored naturally at constant rate y >0,
deteriorates at the rate §R(§ >0) and can be replenished by the activity of N.
The rate of restoration of the common resource in response to the activity of
individuals is modeled by the function ej;;(-fl—l_VC) , where parameter 0 < ¢ < 1 denotes
the proportion of total resource that is consumed or restored. As the number of
consumers increases, the amount of resource R will increase or decrease depending
on the value of the parameter ¢ > 0.

The resource consumption/restoration parameter c is restricted to the interval
c€[0,a],a>1, since within the frameworks of this model, the rate of niche-
construction can neither be negative nor infinite. Letting a =1 implies that the
individuals in the population never consume more than they restore, making the
population completely “altruistic”. Letting a > 1 allows for the presence of over-
consumers in the system, so (1 —¢) can take on negative values, which accounts
for strictly consumerist behavior. The solutions to the equation for population
growth always remain positive. Solutions for the equation for ‘fi—lf are positive when
cel0,1+4 yle).
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Certainly, resource can be exhausted if individuals use it more than contribute to
its restoration. A boundedness of a renewable resource is the principal distinction
of the considering model of many others models, which describe consumer com-
petition. The first problem of our interest is what is the role of over-consumption
in the dynamics of the system. For this purpose in Sect. 2 we study the effects of
the resource (over) consumption on the entire population, identifying all possible
dynamical regimes that the population can go through with increasing of parameter
c up to exhausting of its resources.

We evaluate what transitional regimes the population can go through over-
consumption and extinction and describe the bifurcation boundaries; discussion of
the problem how the boundaries can be used for forecasting of the system collapse
are contained in [3, 10-12, 14].

Next, we “introduce” in the system predators (P(f)) which attack consumers—
preys and study the common dynamics of the system ‘“consumers—predators—
renewable resource”. The second problem of the interest is what is the role
of predators in the total system dynamics, and how predators can govern the
coexistence of resource and consumers. We study this problem in Sect. 3 using the
model

N — N(c—X_P)= fi(N, P, R),

4E = BP(N —m) = fo(N. P, R), 2)
& =y =R+ GG = /(N P.R)

Many works were devoted to studying predator—prey systems (see, for example,
[3] and references herein). The second equation in (2) describing the predator
dynamics is taken in the simplest (Volterra) form. It introduces to the model two
additional positive parameters, 8,m where B <1 is the efficiency coefficient of
transformation of preys to predators biomass, and Sm is the mortality of predators.
Notice that the parameter m characterizes the equilibrium level of coexistence of
the predator—prey system. It was shown in [3] that in the predator—prey model with
the logistic prey growth there exists such value m = m* that predators and preys can
coexist in a stable equilibrium or stable oscillating for m < m*, and predators get
extinction if m > m*. So, m is one of the most important model parameters in our
analysis below, whereas f is fixed.

Interpretations and discussions of results are presented in the Sect. 4.

2 The model “Consumers—Renewable Resource”
2.1 Simplification of Model (1); Equilibria

System (1) has a singular point at the origin O(N =0,R=0). To handle this
singularity we consider the following system of equations, obtained from (1) via
transformation
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c=2.1

Fig. 1 Four types of placing of null-clines

R(N + Rydt = dt

N' =495 =N(R—-N)(N+R) =G (N.R), 3)
7 =9 = ((y—6R)(N + R)+eN(1—c))R=G,(N.R).

The following statement holds.

Proposition 2.1 (1) In the positive quadrant of (N, R)-plane systems (3) and (1)
are topologically orbital equivalent everywhere except for the point O,
which is an equilibrium point of system (3) for all parameter values but
not for system (1).

(2) Trajectories of system (3) are bounded in the first quadrant.

The statement (1) follows from [1], the statement (2) is proven in Sect. 2.7.
Coordinates of equilibria of (3) satisfy the equations:

N(@ER—-N)=0, R((y—8R)(N +R)+eN (I —c))=0. &)

Proposition 2.2 System (3) has

(1) Non-hyperbolic equilibrium point O(0, 0);
(2) A saddle point B,(N =0,R = y/§);
3) For0 < % < ‘E‘T_ll) the system has nontrivial equilibrium

_ ce(l1—c) Y _ ce(l1—c) y .
A2 (N =c (453 + %) R = 552 + § ) (see Fig. 1.
cle=D(clc+D+38(c+2))

(c+1)*(c+8) and

The point A, is a stable topological node if % >
cle=D(clc+1)+8(c+2)
S et (c+1)*(c+5) :
The Proof of Proposition is given in Sect. 2.5.

: o cle=1) )4
unstable topological node if == < £ <
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We use Proposition 2.2 to identify three parameter boundaries (see Fig. 4) that
correspond to qualitatively different phase portraits of System (3):

Oy:y=0, NMI:Z:M’ H:Z:C(C_l)(C(C-i;l)+8(c+2))
e C+1 e (c+1)(6+8)

Crossing the boundary Nul from the bottom to the top is accompanied by the
appearance of a positive node A;; crossing the boundary Oy leads to the appearance
of a saddle B; in the first quadrant; the boundary H corresponds to changing of
stability of equilibrium A,, which is accompanied by appearance or disappearance
of limit cycles in the phase plane (Andronov—Hopf bifurcations). Analysis of the
model behavior in a neighborhood of equilibrium point A, with parameters close to
the boundary H is performed in Sect. 2.3.

2.2 Structure of the Equilibrium Point at the Origin

The point O(0,0) is the non-hyperbolic equilibrium of System (3), since both
eigenvalues of the Jacobian matrix at the point O are equal to zero. We will apply
the “blowing-up transformation” to analyze this point (for general aspects of this
method see [4] and references within). We show that the orbit structures in a
neighborhood of the point O depend on the parameters in the following way:

Proposition 2.3 For any positive fixed values of parameters e and §, the parameter
half-plane (y > 0, c > 0) of System (3) in a neighborhood of point O is divided into
three domains of topologically different phase portraits (see Fig. 2). Boundaries

between the domains are the lines Oy :y =0and K : % =c¢ — 1 and Nul : % =

cle—1)
C+1 ) .. . . .
Non-trivial asymptote of the orbits tending to O is

- LA
_y+e(1_c)(1+o(l)), e>c 1>0

The proof of the Proposition is given in Sect. 2.6.

2.3 Hopf Bifurcations and Separatrix Bifurcations
in the Model

Let H : L = cle=D(c(c+1)+8(c+2))
G (c+1)2(c+8)
fixed (8, e); if the point (y,c) belongs to the curve H, then the equilibrium A, has

coordinates A4, (N = R =

be a curve in the parametric space (y,c) at

ye Y
c(14c)+Q24+c)s° C(l+c)+(2+c)5)'
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Fig. 2 Bifurcation diagram of the equilibrium point O, shown through blowing-up transformations
where u = R/N,v = N/R

Proposition 2.4 The line H is the Hopf boundary such that equilibrium A, changes
stability when parametric point (y,c) crosses the boundary H.

(1) Let§ > 5++/24. Then there exists §* such that the “generalized Hopf” (Bautin)
bifurcations of co-dimension 2, a change of stability of equilibrium A, with
appearance of two limit cycles happens at parameter values

* ok _ §F—14+/1-108* +5*2
X:l: (8 ac:l: - 2 ’

(2-1) ci(c;+1)+5*(ci+2))) |

(ci—‘rl)z(ci +5*)

C

*
H-*

Yy =¢€

(2) The supercritical Hopf bifurcation of co-dimension 1 is realized in the equilib-
rium A, with crossing H for § > 8% if § > 5 + /24 (see the line H™, Fig. 3).
(3) The subcritical Hopf bifurcation of co-dimension 1 is realized in the equilibrium

Ay with crossing H for 54+ /24 < § < §* orforany § € (0, 54V 24) (see the

line HY, Fig. 3). Schematic bifurcation diagram of Hopf bifurcations is shown
in Figs. 3c and 4.

The proof of the Proposition is performed in Sect. 2.5.

Due to the Bautin Theorem (see, for example, [ 14]) each of the parametric points
X+ and y_ has in its vicinity the line C4+ and C_ correspondingly of one more
bifurcation of co-dimension 1 corresponding to a non-degenerate fold bifurcation of
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Fig. 3 Schematic bifurcation diagrams of heteroclinics and Hopf bifurcations in system (3):
(a) appearance/disappearance of attractive parabolic sector in the vicinity of the origin; (b)
appearance/disappearance of unstable limit cycle containing A, inside itself; (¢) Hopf bifurcations

the cycles. Numerical analysis showed that the bifurcation lines C4 and C_ merge
and compose a unique curve C (see Fig. 3c). We call to the curve C as bifurcation
boundary of saddle-node cycles. The parameter domain which is bounded by Ht
and C contains two limit cycles, unstable and stable, and unstable equilibrium point
A,. Crossing the boundary C limit cycles collide and disappear.

In Fig. 4 H™ is the boundary between Domains 3 and 4, it corresponds
to subcritical Hopf bifurcation of equilibrium A,, H" is the boundary between
Domains 3 and 6, it corresponds to supercritical Hopf bifurcation of A,. C is the
boundary between Domains 6, which contains two limit cycles, and Domain 4 where
the system has no limit cycles.

System (3) demonstrates separatrix bifurcations. One of such bifurcations
corresponds to the appearance of an attracting parabolic sector in a positive
neighborhood of equilibrium O, (see Fig. 2). It happens with parameter values
belonging to the boundary K, for which the separatrix of the “infinite” equilibrium
in the Poincaré coordinates u = 1/N, v = R/N reaches O, (see Figs. 3a, and 4a, the
boundary between Domains 1 and 2).

An unstable limit cycle that contains stable equilibrium point A, inside itself
(see Fig. 4a, Domain 3) we were able to identify numerically. This cycle appears
from the heteroclinics composed by the separatrices of the saddle point B, and the
saddle-node point O, (see Fig. 3b). The curve S is the parameter boundary which
corresponds to this bifurcation. In Fig. 4a curve S is the boundary between Domains
2 and 3.
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Fig. 4 Bifurcation diagram of system (1) for non-negative parameter values (c, y) and phase
variables (N, R) at fixed e=1 and positive §. a: The partition of (c, y)-parameter portrait into
six Domains of topologically non-equivalent phase portraits (see Theorem 2.1 for details). The
boundaries between Domains, K, S, HT, H—, C, Nul are described in Table 2, attracting sets and
boundaries of the basins in every Domain are described in Table 1 and Theorem 2.1. b: The
partition of (c, y)-parameter portrait into three Domains with different number of stable non-trivial
modes: the single globally stable equilibrium A; in Domain In; the locally stable equilibrium A,
or limit cycle in Domain 2n; there is no stable non-trivial equilibria or cycles in Domain 3n. Line
K is the boundary between Domains 1n and 2n, CH = H~ U C is the boundary between Domains
2n and 3n (see the lower row of Table 2)

2.4 Bifurcation Diagram of the System
“Consumers—Renewable Resource”

The results of our analysis are summarized in the following statement.

Theorem 2.1 For any fixed parameter 0 < e <1 the bifurcation diagram of system
(1) consists of six Domains of qualitatively (topologically) different parameter-
phase portraits, presented in Fig. 4a, namely:

— Domain of monostability 1, there exist a single non-trivial equilibrium

4y (N = (%952 + 1), R = U=0 1) which is globally stable;
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Table 1 Domains of qualitatively different phase behaviors in system (3),
attracting sets and boundaries of the basins

Stability Attracting sets Boundary of basin
1 Monostability  Equilibrium A, Global stability
2 Bistability Equilibrium A;, origin Separatrix z = % N >>1
3 Bistability Equilibrium A;, origin Unstable limit cycle
4 Monostability  Origin Global stability
5  Elliptic sector ~ Origin Elliptic sector
6  Bistability Stable limit cycle, origin ~ Unstable limit cycle, point A,

— Domains of bistability 2 and 3; in domain 2 equilibrium A, shares basins with
the equilibrium O, and separatrix of O, serves as a boundary of their basins; in
Domain 3 an unstable limit cycle containing inside equilibrium A, serves as a
boundary of the basin of Ay;

— Domains of monostability 4, where only equilibrium O, is globally stable;

— Domain 5, where the system has no stable modes and an elliptic sector exists in
a neighborhood of O,

— Domain 6 of bistability, where unstable limit cycle is a common boundary of
stable equilibrium O, and a stable limit cycle.

Structures of basins are described in Table 1, boundaries between Domains,
K,S,HT,H ™, C, Nul, are described in Table 2. Schematically presented bifurcation
diagram is shown in Fig. 4a. For any fixed value of parameter e parameter space
(y, ¢, ) of the model is divided into six domains of different phase behaviors.

For further analysis and interpretations we schematically present the modified
partition of (c, y)-parameter portrait of system (3) in panel b of Fig. 4. This partition
contains three domains corresponding to different numbers of stable non-trivial
modes in (N, R)-phase portraits. Equilibrium A, is globally stable in Domain In
of b-panel as well as in Domain 1 of a-panel. Domain 2n of b-panel is the union
of Domains 2, 3 and 6 of a-panel; it is the region of bistability; there exist stable
equilibrium O; and other stable manifold, equilibrium A, or a stable limit cycle,
containing unstable point A;. Domain 3n of b-panel is the union of Domains 4 and
5 of a-panel; there are no stable non-trivial equilibria or cycles. The boundaries of
Domains 1n, 2n and 3n are shown in Fig. 4b, described the captions and presented
in Table 2.

2.5 Proof of Propositions 2.2 and 2.4
1) Jacobian J(x, z) for system (3) is of the form

R(y—6R+e(l—c)) eN(1—c)+y(N+2R)—06R(2N +3R)
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Table 2 Boundaries of Domains, corresponding to bifurcations in system (3)

Domains

Boundary

Bifurcation

Domains 1, 2

Domains 2, 3

Domains 3, 4

Domains 3, 6

Domains 6, 4

Domains 4, 5

K:y/e =c—1; denote ¢, = 1 + y/e for
fixed y, e, §

S (no analytical description) corresponds
to the heteroclinics composing by
separatrices of equilibria B, and O,

c(c—D(cle+D+8(c+2

H+ . %_ cle L(J(rl—)t(()igg +2) _ 0;
the 1% Lyapunov value is positive; §
is small

¢ = ¢y, is a root of the equation for that

parameters
_ cle=D(c(c+1)+8(c+2)

H™: 46— (£+1)2<c+a> =0
the 1% Lyapunov value is negative; §
is large

¢ = ¢y, is the root of the equation for
that parameters.

C (no analytical description) corresponds
to merging and disappearing of stable
and unstable limit cycles.
c=c,: for fixed ¢, § (c.,y) €C

Nul: £ — ‘(1‘—;” =0,c>l,c= ¢yis
the root of the equation

Appearance of stable parabolic
sector in a positive
neighborhood of
equilibrium O

Appearance of unstable limit
cycle containing stable
equilibrium A, inside itself

Subcritical Hopf bifurcation:
Stable equilibrium A,
becomes unstable due to
merging with unstable limit
cycle

Supercritical Hopf bifurcation:
equilibrium A; loses stability
producing stable limit cycle

Saddle-node bifurcations of limit
cycles

Merging of equilibria A, and O,

Domains
2, =3U6,4 CH: {c = c.,y), where c.;, = Disappearance of non-trivial
(col(c,y) € C).con = (cnl(c,y) € stable modes
H™)
2
In By(N = 0, R = y/8) one has J (0. 7/8) :( c(v/9) 0).
e

—c)y/8 —y*/8

Thus, B, is a saddle whose eigenvalues are A; = c(y/8)%, 1, = — y2/6.
(1—¢) (1—=¢) _
Cros + %) Gras + %) ., where N = cR, one has

In 4z (e (

J (Ay) = (

So,  Det(J(Ay)) =c8(1 4 ¢)*R* >0,

2+ 0)R).

—c (1 +¢) R?

Re(l1—c¢)+y—686R) —R(—y + (2 +c¢)5R)

c2(1+c)R2))

Trace(J(A2)) =R(y — (c(c+ 1) + 6

The first inequality guarantees that equilibrium A; is a topological node. Eigen-
values of A, become imaginary when Trace(J(A;)) = 0. A simple algebra shows that

theline H : £ = cle=eled D5 +2) g the boundary of the Hopf bifurcation in the
(c+1)“(c+3)

system. For verifying a “direction” of Hopf bifurcation (sub- or super-critical one)
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with crossing the H-boundary we compute the first Lyapunov quantity L; [1, 2] with
parameter values belonging to H. We found that (up to a positive factor)

(ec (c = 1)°8 (2 —c (8 — 1) + 26)

L c + D)% +5)°

Il

Denote V(c,8) =c? + c¢(1 —§) +28. Evidently, L; >0 if ¥(c,8) >0, which
corresponds to a sub-critical Hopf bifurcation, and L; < 0 if ¥ (¢, §) <0, which cor-
responds to a super-critical Hopf bifurcation, under condition that W #*
0[14].

For the system considered

d (Trace (J (A2))) | ( ce(P+e(s—1)=28)—(c+1)2(c+8)y
d(y/e) - (c+1)

—(c+9) (Ce(l—c)+)/(1 +c))),
6(203+c(8—2)—38+025)

2(c+1)%(c+8)
One can see that ¥ (c, §) and consequently L, are positive for § € (0.5 + 24)

which vanishes for £ = if (y,c)eH.

and for § > 6% € (5 + V24, oo) if ce (c:_, 00),y > y:_ and is negative for § >

8% € (5+ V24, oo) ifce(c, )yl <y<yl

The first Lyapunov value L; vanishes for (c=c_,y =y.), (c=cL,y=y5).
Notice that

dL, (e (et —1)ct)°8*V/T— 108" + 5*2
dC 8=8*,c=c;k: (Ci + I)IO(C:;: =+ 8*)5

does not vanish for the corresponding ¢, §. The sign of the second Lyapunov value
[1,2, 14] for c =} ,8 = §*,y =y _ coincides with the sign of the function:

Ly = —4 + 285" — 556" + 76" + (4 —208* + 76™%) /1 — 106* + §*2

which is always positive. All the conditions of Bautin theorem [2, 14] are fulfilled.
Propositions 2.2 and 2.4 are proven.
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2.6 Structure of Non-hyperbolic Equilibrium in the Origin:
Proof of Propositions 2.3

For studying the structure of non-hyperbolic point O(0,0) we use blowing-up
method developed in [4, 5].

System (3) has two integral manifolds R=0,N>0 and N =0,R>0. It was
shown in [4] that two blowing-up transformations

(N,R) > (N, u=R/N), NH#O0 (®)]
and
(N,R) > (v=N/R,R), R#O0 (6)

allow us to reveal the structure of a neighborhood of the point O(0,0) in the first
quadrant (see Fig. 2). Applying (5) to System (3) and letting dt — Ndt, we obtain
the system

N/EC;—]XZ—NZ(l—FM(C—l)—CMZ) 7
u = % =u(e(l—c)+y+yu)+Nu(l—8+(c+8—1)u—cu?)

It has equilibria on wu-axis, O{(N=0,u=0) with eigenvalues A; =0,
Ay=(1—=c)e+y and

0,(N=0,u=(e(c—1)—y)/y with eigenvalues A (0,) = w&
A2 (0,) = 0. According to [1], in the first quadrant point O; has a positive saddle
sector if % < ¢ — land an attracting parabolic sector if % > ¢ —1 > 0; point O, has
positive u-coordinate only for % > ¢ — 1 > 0; in this case it has a saddle sector in

. .. . . _ y cle—1)
its positive neighborhood if ¢ — 1 < ¢ < =777,

c(e—1) <7

and a repelling parabolic sector if

c+1 e’
Applying (6) to System (3) and letting dt — Rdtwe obtain the system

—

V=2=—yy+e(l—c)+y)v+R(S—c+((S—c+1)v+1?)

®)
R'=49 =R(y+(e(l—c)+y))—8R*(1 +v)

Equilibrium point O,(v = 0, R = 0) of system (8) for any y > 0 has a saddle sector
for positive R. Combining obtained results we have

1) For 0 < % < ¢ — 1 systems (7) and (8) have only one equilibrium point at the
axis, O; and O, correspondingly; each of these points has a saddle sector in its
positive neighborhood (see Fig. 2);

2) Forc—1 < % < % equilibrium O has a positive attracting parabolic sector,
equilibrium O, as well as equilibrium O, have a positive saddle sector;
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3) For % > % equilibrium O; has a positive attracting parabolic sector,
equilibrium O, has a positive repelling parabolic sector, and O, has a positive

saddle sector.

Using the results of [4] we can state: in Domain 1, 0 < % < ¢ — 1, equilibrium
c(c—1)

c+1
saddle-node in the first quadrant; in Domain 3, % > %, equilibrium O contains

elliptic sector for positive R, N. The results of our analysis are summarized in Fig. 2
and completely prove all statements of the Proposition.

O is a saddle for positive R, N; in Domain 2, ¢ — 1 < % < equilibrium O is a

2.7 Egquilibria “At Infinity”: Proof of the Boundedness
of the Model

For study the structure of equilibrium points “at infinity” we use the Poincaré sphere
method [1, 2].
(a) The change of variables

(NR) > (u=1/N,v=R/N), N #0 ©))
and
dt = u*dt (10)
transforms system (3) to

’fl—f =-—w({l+u)(—1+cu,
% =—u(-l+@C+Hu*+(—1+c)ew—ywHu(—1+c+38—yw))
Y

Non-negative equilibrium points of system (11) in the axis u are (w =0,u =0),
which an unstable node with eigenvaluesis A} = A, =1, and (w=0,u = 1/(c + 3)),
which is a non-trivial saddle with the eigenvalues is A; = 8(c; + 8 + 1)/(c; + 8)?,
Ay =—(c1 4+ 8 + 1)/(c; 4 8); the separatrix of the saddle stays in a bounded domain
of the first quadrant.

(c) Making the transformation

(N.R)—> (u=1/R,w=N/R), R#0 (12)

and (10), we obtain the system of equations:
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&

~

=u(d(14+w)—yu((l —i—w)—(ecw—l)),

(13)
:—u(u+u2—8(l+w)+)/u(1+ecu+u—c(1+u+eycuw))

QU ]
=

vV
T

)

All equilibria of system (13) with w0 are topologically equivalent to cor-
responding equilibria of system (11). The equilibrium (¥ =0, w = 0) has positive
eigenvalues A| = §, A, =¢, so it is an unstable node.

We got that at the equators of the Poincare sphere non-negative equilibria are
repelling; axes N, R are integral manifolds of system (14). Thus every trajectory,
which is beginning inside the first quadrant does not leave it with t — oo (see
Fig. 3a).

Statement (2) of Proposition 2.1 is proven.

3 Model “Consumers-Predators—Renewable Resource”
3.1 Simplifications of the Model

System (2) [as well as system (1)] has a singularity at z = 0. To handle this sin-
gularity, we consider the system of equations, obtained from (2) via transformation
dt— (N +2) zdt:

AN = N((c—P)R-N)(N+R)=F (N,P.R),

2 — BP(N—-m)R(N +R) =F(N,P,R),

4R = R((y = 8R)(N + R)+e(1—c)N) = F; (N, P.R), (14)

Fi=(N+R)f/i(N,P,R),F,=R(N + P) (N, P,R), F;
=R(N +R) fs(N,P,R)

where N, P,R are scaling amounts of preys—consumers, predators, and common
resource, y,c,m are “free” parameters and f,e,8 are “fixed” parameters of the
system.

The following statement holds.

Proposition 3.1 Systems (14) and (2) are topologically orbitally equivalent inside
the positive (N, P, R)-octant everywhere except for the plane R =0, which is the
plane of non-isolated equilibria for system (14) with all parameter values.

In what follows we study behaviors of system (14) depending on positive
parameters (c, m) while the parameters 3, §, e are fixed. More exactly, we construct
and study (c, m)-cuts of the complete (y,m, c)-bifurcation diagram depending on
values of y. We divide the parameter space into domains of different numbers of
stable non-trivial modes in (N, R)-phase portraits of system (14) (similar to the
partition of the phase-parameter portrait of system (3), see Fig. 4b).
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3.2 “Predator-Induced” and “Predator-Free” Equilibria
of the Model (14): Bifurcation Diagram in (c, m)-Plane

Coordinates of equilibria of the system satisfy equations:

N(@c—P)R—N)=0,
PR(N —m) =0, (15)
R((y —8R)(N + R)+e(1—c)N) = 0.

Solving (15) we see that system (14) can have up to five equilibrium points. Three
of them,

00, 0,0, B(N=0.P=0R=5%), A(N = (5(y+2).P=0,)

R = (y + Cel(-lf—CC))) have the same N, R-coordinates as the points O,, B, A, of

system (3), i.e. have counterparts in the sense, that N(B) = N(B;), R(B) = R(B>), and
N(A)=N(A3), R(A) = R(A3). In what follows we use the notations N(A), P(A), R(A)
for corresponding coordinates of the point A(N, P, R)

New, “predator-induced” equilibria of system (14), C(N*,p*,z*), have
coordinates N*=m, Px = ¢ — Z—*, R=1z%* where z* satisfies the quadratic
equation

R>—(y—8m)R—m(e(1—c)+y)=0. (16)

Let us denote z+ = %ﬁ, 7 = %ﬁ where D = (y + §m)? + 4edm

(1 —c¢). Thus, system (14) can have up to two “predator—induced” equilibria
Ct(m,PT,z%),C~(m,P~,z") with P* = ¢ — 2. The domain A where C-
equilibria are defined is given by the condition D > 0 The boundary of the domain
A is defined by the equation D = 0 and consists of two branches, where mZ, m;, for

fixed y, e, § are the curves in (¢, m)-plane (see Fig. 5)

b w2Vl =D =) +@e(c=1)—y)

At - S
_ . 2yelc=Dlelc=D—y)+Qe(c=1)~—y)
mpy.m= R .

The domain A is bounded by the coordinate axes and the boundary mI Umy,.
We show that there exist “wide” sub-domains of the domain A where equilibria
C™*, C have positive coordinates.

Let us define the curve my(4) : m = § (C(el(rc? + y) = N (4,) with 0 < ¢ < ¢y,

where ¢ is a positive root of the equation % = ‘(1‘ s D which defines the boundary
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DA mx ) :
|mp

A oc* M

pc =pc* v pc”

+2 —1 —1)e— 2(c—1)e—
/(c—De((c ); )+ (2(c—1De—y) are

boundaries of the Domain A. The line my) @ m = § (“(17") + y) 0 < ¢ < ¢, and my

(14c¢)
have a common point «(cy, my) where ¢, is a positive root of the equation y/e = W;

Fig. 5 For any positive y: (a) the lines m:At

my),0<c =<cq
my, c>cy
DC of qualitatively different phase behaviors of system (14), see Theorem 3.1, Propositions 3.2,
33

(b) the line M(c,m) = * divides 0 < (¢, m)-quadrant into domains DA and

Nul in Fig. 4 (see Table 2). For ¢ =c¢( the equilibria A, and O; of system (3)
merge; A, leaves the positive quadrant if ¢ > cg (Fig 4a, D .5). Similarly the

equilibrium 4 (N - ( (y n “{ic‘)) p=0,R= (y n “’1“+;’)) is positive
only if 0 <c <cy.

Denote DC™ the domain in positive (c, n)-quadrant bounded by the curve mya)
and the interval 0 <c <c¢¢ (Fig. 5). We have found that the curves my) and the
branch m, of the boundary D = 0 have a common point a(cg, mg), where cq is a

positive root of the equation

_c(c—l)(c+2)_
y/e T =0 (17)

cde<l—cd)
Cd

and the coordinate my = < (— + y | for any fixed 8, y, 6, e.
1+C,1)

my), 0 < ¢ < cq,

My, c>cCy

Denote DA, DC the domains in non-negative (c,m)-quadrant that are placed,
correspondingly, upper and lower than M(c, m), 0 <c < oo (see Fig. 5). Evidently,
DCC A. We show below that the “predator-free” equilibrium A is stable in
the domain DA, while the “predator-induced” equilibrium C™ is stable in the
domain DC.

In what follows we study behaviors of the model depending on positive param-
eters (c, m) while the parameters 3, 8, e are fixed. More exactly, for any fixed y we

Next, let us define the continuous curve M (¢, m) = %
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construct the phase-parametric portraits of model (14) and compare it with those of
system (3). We pay the main attention to the analysis of stable modes of the model.

Denote DCt the domain bounded by the curve my4) and the interval 0 < ¢ < ¢y,
denote also DC™ = DC\DC™ (see Fig. 5). The following statements hold.

Proposition 3.2 Let B, y, 8, e be arbitrary fixed constants.

1. If (c,m)e DC then equilibrium ct (m,p+, zH)is positive;
2. Equilibrium C(m,p~,z") is positive if (c,m) € DC™ and c > cg

In the following statement we describe characteristics of N, R-coordinates of
equilibrium C* and compare them with N, R-coordinates of equilibrium A.

Proposition 3.3 Let y > 0 and (c, m) € DC where equilibrium C™ is stable. Then

1) the coordinate p(C") is always positive and increases if the parameter c
increases;

2) forany 0 < ¢ < 1 the coordinate N(C*) =m < N(A), R(C") <R(A);

3) for 1 <c <cy the coordinate N(CY) =m < N(A) but R(C*) > R(A);

4) ifc=cythen N(C*) = N(A) and R(CT) = R(A);

5) if cq<c<cq then two cases, m=N(C")>N(A) and m=N(Ct)<N(A) are
possible; in both cases R(C*) > R(A);

6) if ¢ > cg then there is no predator-free equilibria.

Propositions 3.2 and 3.3 are proven in Sect. 3.5.
Analysis of stability of equilibrium points of system (14) implies the following
statement.

Theorem 3.2 (1) Equilibrium B (N =0,P=0,R= %) is unstable; it has one

positive and two negative eigenvalues: A{(B) = %, A(B) = _,3,;,_2;/2,
2
A3 (B) = =13
(2) EqullbrleA (N = % ()/ =+ Cel(}I—_cC)) R P = O’ R = % (y + Cel(—lk_cc))) is unsta-

ble for (c,m)eDC* and stable for (c,m)€DA,0<c<ce (see Figs. 5
and 6);

(3) Egquilibrium CT(m,p™,z") is positive and stable for (c,m) € DC;

4) If (c,m)e DC™ then the equilibrium C~(m,p~,z") is positive and unstable; it
has at least one positive eigenvalue;

(5) Equilibrium O(0, 0, 0) is non-hyperbolic; the projection of its neighborhood
to the plane P =0 has the same local structure in (N, R)-plane as the local
structure of the equilibrium O,(0, 0) of system (3).

Theorem 3.2 is proven in Sect. 3.6.
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Fig. 6 Schematically presented (N, R)-cut of bifurcation diagram of system (14) in (m,c)-
parameter plane (at fixed y). The curve M(c, m) divides the plane to the regions DA where
predator-free equilibrium A is stable, and DC where predator-induced equilibrium CT is stable.
Each region consists of three Domains with qualitatively different stable modes. The Domains are
numerated by the integer and sub-index A in DA, sub-index C in DC. Domains 1A and 1C are
divided by the curve M(c, m) and bounded the lines ¢ =0, ¢ = ¢;,. Domain 2A is bounded by the
curve M(c, m) and the lines ¢ = ¢, c = c; M(c, m) is the boundary of Domain 3A for ¢ > c..
Domain 2C is bounded by the line ¢ = ¢;, and the curve my), ¢g < ¢ < ¢y, whereas Domain 3C is
bounded by the curves my),cq <c <cp and ma—,c > ¢ (see Table 2 for definitions). In model
(14) (N, R)-coordinates of the equilibria A, Ct, ¢~ coincide if ¢ = ¢y, m = my. The (N, R)-phase
portraits of the system are presented in the lower panel. Portraits 3A and 3C are constructed for
Bp=y=8=e=1,c=3,and m = 0.2, m = 0.1 correspondingly

3.3 Sketch of the Bifurcation Diagram of Model (14)

Theorem 3.1 together with the computer analysis of model (14) allows us to describe
the stable modes of system (14) in the regions DA and DC under conditions that
parameters S, §, e are fixed (see Figs. 5 and 6)

Proposition 3.4 For any fixed y >0 the parameter domain DA in (c,m)-plane
is dividing into three subdomains 1A,2A,3A of qualitatively different phase
behaviors of system (14). The boundaries of these Domains are the lines
c=0,c=cp(y)c=ca(y) (see Fig. 5 and the captions). Specifically, the equilibrium
A is globally stable in the domain 1A and shares basins of attraction with O in
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Fig. 7 Phase curves of

system (14) in Domains 1A R

and 1C of Fig. 6. Parameters R p
B,y,8,e=1,c=195.1In ‘:c"‘*\ P
Domain 1A with m = 2 phase
curves (black) tend to P
A(0.72,0,0.37)). In Domain P

1C with m = 0.15 phase /--"‘"3 —— L,
curves (red) tend to f o =5
Cc+(0.15,1.77,0.86)) ( T:;?_>

2A. If the parameters c, m belong to Domain 3A then O is a single non-negative
equilibrium point; O has attractive sector and may have elliptic sector in its positive
neighborhood.

Notice, that projections of phase curves corresponding to the parameter domain
DA of three-dimension system (14) onto (N, R)-plane are qualitatively equivalent to
the portraits of two-dimension system (3) in Domains 1n, 2n and 3n presented in
Fig. 4b.

Proposition 3.5 Non-trivial point C* is stable equilibrium of system (14) in
parameter domain DC = DC' U DC™ (Figs. 5 and 6). This point is globally stable
in the domain 1C bounded by the lines ¢ =0,c=c,(y) and shares basins of
attraction with equilibrium O in domains 2C and 3C. (N, R)-phase portraits of
system (14) in the parameter Domains 1C and 2C are qualitatively equivalent to
those in domains 1A,2A. (N, R)-phase portrait in Domain 3C (see Fig. 6) contains
the stable equilibrium CT and equilibrium O, which has an attractive sector and
may have elliptic sector for large c, in the last case basins of CT and O are divided
by separatrixes of equilibrium C™.

Proposition 3.6 The boundary M(c,m) between regions DA and DC corresponds
to the following bifurcations in the system: the trans-critical bifurcation of changing
stability of equilibria A and C™ for 0 < ¢ < cq and merging of equilibria Ct and C~
forc>cy.

Parameter-phase portrait of system (14) is schematically presented in Fig. 6.

Phase portraits of the system in different parameter domains are shown in Figs. 7,
8, 9 and 10 and will be discussed below.
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R Domain 2.4 R Domain 2C
m=.3

m=.12

stable C (12,85,22)
unstable A(21,0,.02)

stable A(0.18,0,0.02)

- N-

Fig. 8 Parameters B =e=1, y=7.74,§ =22,¢=9.033; initial value P(0)=0.3. (N,R)-
projections of phase curves of system (14) are shown with different values of the parameter m (see
Fig. 6); (a) m = 0.3; in Domain 2A phase curves tend to the stable equilibrium A(0.18, 0, 0.02) (b)
m=0.12; in Domain 2C phase curves tend to the stable equilibrium C1(0.12,8.5,0.22)

a b|lz — '
ST e C (3, 273,63)
: / . @
Domain 2C e v
A/ N 4
R C(151.77.36 / Y
v _“ -
1/ T w3
t o 2
- B <
N

Fig. 9 Evolution of phase portraits of system (14) with increasing of parameter m in Domain 2C
(Fig. 6) for fixed c=2.31,=e=y=6=1,P0)=1,N(A) =0.2; (a) m=0.15; phase curves
tend to the origin or to the stable equilibrium C +(0.15,1.77,0.86); (b) m = 0.3; phase curves tend
to the origin or to the stable equilibrium C1(0.3,2.73,0.63)

3.4 Comparison the Bifurcation Diagram of Model (14)
in Regions DA and DC

Let a parameter point (c,m)€ 1C, e.g., 0 <c<cp(y). Then the equilibrium
C*(m,p*,z") is stable while the equilibria A and O are unstable (see Proposition
3.4). If a parameter point (¢, m) € 14, e.g., 0 < c < cp(y). Then the equilibrium A is
stable while the equilibria C* and O are unstable (see Proposition 3.5). Thus, the
phase portraits of system (14) in Domains 1A and 1C are equivalent. We, however,
do not combine them into one because they have different “biological” meanings,
namely, in Domain 1C the equilibrium amount of predators is non-zero while in
Domain 1A there are “no” predators.

The same is true for Domains of bistability 2A and 2C, where c¢,(y) < c < co(y).
Depending on initial values trajectories of the system tend either to O, or to
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a b

—_— | Domain 24 | ——— — | Domain 2¢ |
R R

Fig. 10 Parameters ¢ =2.42,y =§ = e =1, initial value P(0) = 1. (N, R)-projections of phase
curves of system (14): (a) in Domains 3A for m = 1 and (b) in Domains 3C for m = 0.2 (see Fig. 2).
Phase curves in Domain 3A, depending on initial values, tend to O for t — 0o or compose elliptic
sector close to 0. In Domain 3C phase curves tend to the stable equilibrium C1(0.2,2.12,0.68) or
to+0; system has also unstable equilibrium C~(0.2,0.81,0.12) whose separatrixes divide basins of
C™ and O

non-trivial equilibrium point (e.g., to A in Domain 24 and to C* in Domain 2C).
Notice, that due to Proposition 3.3 in Domain 2C value R(C) > R(A).

The most crucial difference of system dynamics is observed for parameters
belonging to Domains 3A and 3C (see Fig. 7). For (c,m) € 3A e.g., ¢ > ¢, System
(14) has no non-trivial stable equilibria. For (c, m) € 3C system (14) the equilibrium
C* remains locally stable for any c. The (N,R)-phase portrait in domain 3C,
Fig. 6 shows that the system has two attractive equilibria, C* and O, as well as
“saddle-type” equilibrium C~ whose separatrices divide the basins of C* and O.
Non-hyperbolic point O has a complex structure, in a neighborhood of O there exists
an elliptic sector in (N, R)-plane (see Fig. 2). The results of computer studying of the
system behaviors with different parameter values are shown in Figs. 7, 8, 9 and10.

So, the existence of non-trivial equilibrium CT in Domain 3C shows that
predators are able to support and stabilize coexistence of the “consumers—predators—
resource” system in “critical” situation of over-consumption when the system in
absence of predators goes to extinction.

3.5 On Positivity of Predator-Induced Equilibria: Proofs
of Propositions 3.2 and 3.3

Here we prove the following three statements:

1) The point CY(N=m,P=pT,R=zT) is positive, ie. pT,zv >0, if
(c,m)e DCTUDC™;

2) The point Ct(N= m,P=p~,R=7") is positive, i.e. p_,z >0, if
(c,m) e DC™, where
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y—8m+ \/(J/+8m)2+4e8m (1—¢)
- 26

P =R(CY) pt=P(C*)=c—m/z*,

y—8m—\/(y+8m)2+468m (1—c¢)
28

7 =R(CT)= ,p =P (C7)=c—m/7~

3)z7 =R(CT) > R(A), if ¢ > ¢, where c4 is a positive root of the equationy /e =
(c=D(c+2) _ ce(1=0)+(1+0)
< C(1+c§2 and R(A) = =555+ Y
To prove of the first statement we solve the system of inequalities
(y + 8m)* + 4edm (1 —c) > 0,
\/()/+5m)2+4e8m (1—¢)>—(y—38m), (18)

c\/(y + 8m)* + 4esm (1 —c)) >2m—c(y—ém)

The first inequality defines the domain A. The second inequality holds in A

if m<yl/§ or if y/e > c— 1. The third inequality holds for m < 8(;—12) orm <
ce(l—c)

% ()’ + T) = MN(4)-

Let y =0. Then the domain A where zt is positive has the boundaries
m=0,m=4e(c—1)/§,thus DC~ = &. The domain A contains positive sub-domain
DCT™, which is bounded by the curves m = 0 and my 4y : m = ‘;fl(:;) ,0<c<1.
Thus, Ct is positive in DCT = DC (see Fig. 5).

If y >0 then the curves myu) and m : m = meY (C_l)e((c_l)g_wHz(c_l)e_y)

have a common “point” «(cy, my) where the value ¢, is a positive root of the

woiw)
<l+Cd)

ﬁ, so the
parameter point « is the common for these three lines, my, myu) and m = 8(5_3/—2)
Domain DC™ (see Fig. 5), which is bounded by the curves m) where ¢; < ¢ < 00,
mpy4) Where c; < ¢ <c¢, and m =0, ¢ > ¢,, belongs to the domain A and DC™ is not
empty. The first statement is proven.

For proving the second statements we consider and study the system

clc—1)(c+2)

equation y/e = o

, and the coordinate my; =

oo

Remark, that the point a(cy, m;) belongs also to the curve m =

(y 4 8m)* + 4edm (1 —c¢) > 0,
\/(J/+3m)2+4e8m (I—¢)<y-—23dm, (19)
c(y —86m)—28m > \/(y+8m)2+4e8m(1—c)
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similarly to the previous case. At last, the third system of inequalities can be reduced
to the system
(y +8m)* + 4eSm (1 —c) > 0,
O +8my +desm (1 —c) = — (y —5m) (20)
(1+0) /(7 + 8m) + 4em (1= ¢) > (1 +¢) (y + 6m) + 2ce (1 — )

Solutions of (20) are

c>1land % > %andm < W = N(A),or
Yoo oele=et) g < —24/(c—De((c—1)e—y)+(2(c—1)e—y) = m=
e (1+¢) - s A

This formulas mean that system (20) is satisfied if m < my,) for 1 <c <c¢s and
if m <m, for ¢ > ¢4. The statement is proven.

3.6 On Stability of Equilibria
We use the standard linearization method for analyzing stability of equilibrium

points. Let J (N, P,R) = (BFi(g\/NP,R) DE(NPR) OFy(N.P.R) ) i = 1,2.3, be
Jacobian of (14). Then

J(N,P,R) =
—3N2+2N(—1+c—p)z —NR(N + R) NN (=14c¢c—P)+2(c—P)R)
+(—p)7
BPR(—m+2N +R) B(—m+ N)R(N + R) B(—m + N) P (N +2R)
R(e(1—c)+y—6R) 0 eN(1—c)+y(N+2R)
—8z(2N + 3R)
1) Substituting coordinates of B in J(N, p, z7) we get
c(y/8)? 0 0
J (B2 (0.0.7/8) = 0—pm(y/s) 0
e(l—c)y/s 0 —cy?/8

Thus, A{(B) = CSL;,AZ(B) = —ﬁ'g'zyz,)kg,(B) = —%2, and statement 1) is proven.
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2) Substituting P =0 to J(N, P, R) we get

Det (J(A) — L) =

—3N2+2N(=14+¢)R —NR(N+R) N(N(=14+¢)+2cR)
+cR?— A
Det 0B(—=m+N)R(N+R)—2A 0=
Re(1—c)+y—68R) 0eN(—c)+y(N+2R)

—§2(2N +3R) — A
—3N2+2N(=14+c¢)R N (N (=14+¢)+2cR)
+cR?— A
Re(l—c)+y—68R)eN(1—c)+y (N +2R)
—SR(2N +3R) — A

(B(=m+ N)R(N + R)—2) Det

Thus, in the point A(N = N(A), p(A) = 0, R = R(A)) the characteristic polynomial
is of the form Det(J(A)—A)=(B(—m + N)R(N + R) — A)Det(J(A;) — 1) where
Det(J(A,) — A) is the characteristic polynomial in the point A, (see Sect. 2.5).

From the latter formula we get A3 = B(N(A) — m)R(N(A) + R). So, with positive
R and B the eigenvalue A3 <0 for N(A) <m, which is true for (c,m)€ DA (see
Fig. 5b).

3) Substituting coordinates of the points C* to J(N, P, R) we get the matrix:

J(C*) =
—m(m+ R) —mR (m + R) m(c—P)(m+ R)
( BPR (m + R) 0 O)
R(e(l—=c)+y—95R) OR(y—06R—36(m+ R))

where R = R(C*) = z*.
The characteristic polynomials in C* are

0 (L) =A3=A2 ((—m*— (1+8) mR+z (y—28R) )—A(m (m + R) (em(1 —c¢)
+(m+R)(y+R (=28+B(m—cR))))—pmR (m + R)* (m — cR) (—y + §(m+
2R))

Let A1, A5, A3 be the roots of Q(A). Then

M+A+Az=-m?>—(1+8mR+ R(y —26R),
AAs +AAs + Aods = —(m (m + R)(em (1 —¢) + (m + R),
(J/+r(—25+,3(m—cR))))
AMAsAs = BmR2(m + R)? (m — c¢R) (—y + §(m + 2R))

21

We consider only positive z¥ = R (Ci) = %, D = (y+8m)* +

4eSm(1—c)>0and P (C*) = "Z:_LT_’”
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In the third equation of (21) the factor m—cz¥ <0, the factor -y +
§ (m + 2R) = ++/D; in the first equation of (21)

D+ /D (y—38m+m)+m(y—8m)

—m*— (1 +8)mR+z(y —28r) = — 25

We see that for the point C~ the product A;A,43 > 0. It is possible if at least one
of the eigenvalues A1, A5, A3 is positive. So the equilibrium C~ is unstable.

For the point C* the product and the sum of eigenvalues are negative. Thus, all
roots of the characteristic polynomial have negative real parts. So, the point CT is
stable.

4 Discussion and Conclusion

In this work we consider two kinds of systems, “consumer—renewable resource” and
“consumer—predator—renewable resource” and compare their dynamics. A common
resource R determines the carrying capacity of the consumer population N. The
main peculiarity of both systems is that the common resource is supposed to be
renewable in such a way that consumers not only consume the resource but also
are able to contribute to its restoration increasing the common population carrying
capacity.

We suppose that the resource R is naturally restored at constant rate y >0
and deteriorated at the rate SR (§ >0) and can be replenished by the activity
of consumers. We suppose also that the per capita birth rate of consumers is
proportional to the rate ¢ of resource consumption whereas the rate of resource
restoration/utilization by the consumers—producers is proportional to (1—c). The
case ¢ > 1 models over-consumption, when consumers utilize more resource than
they restore; we call to them as over-consumers.

We use model (1) in order to investigate two questions: whether a largely con-
sumerist population can nevertheless sustainably coexist with common renewable
resources without exhausting it over time, and if it cannot, what is the critical level of
over-consumption and what dynamical regimes it goes through before it collapses.

The dynamics of “consumer-renewable resource” model was described by
means of bifurcation diagram in parameters (c, y) (see Fig. 4), where parameter
space is divided into six domains of qualitatively different (V, R)-phase portraits.

Our analysis indicates that even when the population consists of over-consumers,
there is a threshold for system resistance to over-consumption, which is directly
proportional to the natural growth rate of the resource y and inversely proportional
to individuals’ efficiency of niche construction, modeled by the parameter e. Hence,
the system can tolerate more over-consumers if it can restore itself quickly enough
or if the individuals are not overly efficient in resource consumption.

As the consumption rate ¢ increases, the population goes through a series
of transitional regimes (see Fig. 4) before it collapses. When the value of c is
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small, consumers—producers and the resource can coexist in a stable non-trivial
equilibrium point. As c increases, an unstable limit cycle appears around the stable
equilibrium point. The system enters in the domain of bistability where it may
either still coexist in a stable equilibrium or in stable oscillations or go to extinction
depending on initial values of the consumers and resource P(0), R(0).

Further increases in ¢ drive the dynamics into the domain, where the non-
trivial equilibrium point still exists but is unstable. Further increases in c lead to
disappearance of the non-trivial equilibrium from the first quadrant, changing the
point O(0, 0) from a saddle-node to an elliptic sector, which corresponds to eventual
extinction of both the resource and the population, although in infinite time.

The system has a non-hyperbolic singular point at the origin that, as the
parameters are varied, changes its structure from a saddle to a stable saddle-node
with a sector of trajectories tending to the origin, to an elliptic sector. As parameters
are varied, the non-trivial equilibrium in the model changes its stability as a result of
a “catastrophic”” Andronov—Hopf bifurcation, yielding a parameter region, where an
unstable limit cycle divides the basins of attraction of the nontrivial equilibrium and
the origin. No stable oscillations can be observed, and the system eventually “dies
out” because as ¢ increases, an increasing number of trajectories tend towards the
origin. It is the mutual placement of separatrixes that determines the structure of the
phase portrait (or in other words, it is the ratio of the consumer to the resource that
determines the existence of the attractive sector at the origin). Notably, the unstable
limit cycle appears from heteroclinic orbits of the origin and the saddle point B;.
These are new type of dynamics compared to other models that have a complex
equilibrium point at the origin [3, 4, 5, etc.]. With further increasing of ¢ the system
goes to total extinction.

The second model describes the dynamics of “consumer—predator-renewable
resource” system; informally, we add predators to the first system such that
consumers are subject to attacks of predators. The main problem of interest here is
how predators P change the dynamics of the initial “consumer—renewable resource”
system. We analyze the role of predators with the help of three-dimension model
(2). This model has an additional important parameter m m, which characterizes
the critical density of predator for non-trivial equilibrium coexistence with preys.
The dynamics of “standard” predator—prey model (which correspond to the case of
unlimited resource) is well known (see, e.g., [3]); it demonstrates only two types
of behaviors depending on model parameters: either predators go to extinct and
only preys survive in the system, or both populations coexist in a stable equilibrium.
Model (2) can be considered as a generalization of that models; the carrying capacity
of preys is now determined by a renewable resource R, which is governed by the
third equation of model (2). Analysis of system (2) shows that for any fixed values
of parameters 3, y, 8, e and any value of ¢ there exists a boundary M(c), such that
consumers—producers, predators and resource coexist in a stable equilibrium for
m < M(c). The existence of that equilibrium reveals the “governing and stabilizing”
role of predators, which increase a mortality rate of consumers and hence save more
resources.
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Our analysis of the “consumer—predator—renewable resource” model shows that
predators can change the steady states and dynamics of the system. Predators don’t
change essentially the dynamics of the “consumer—renewable resource” system
when the level of over-consumption is not too large. In contrast, predators are able
to keep a stable equilibrium with non-zero amounts of the preys and resource even
when the level of overconsumption is so large that the “predator free” consumers—
resource system goes to extinction. The amount of predators in this equilibrium
increases as the parameter c¢ increases. The equilibrium point has a bounded
basin and trajectories that start out of this basin tend to O. Notice that the level
of over-consumption corresponding to this equilibrium can be arbitrary, and the
amount of predators P *, which keeps non-zero equilibrium of the system increases
proportionally to the parameter c.

Computer experiments revealed that even small amount of predators in the
system increases the life time of the system even in the case when in the “final”
equilibrium the amount of predators is zero. We may conclude that the model reveals
possible “positive” influence of predators which can increase sustainability of the
“consumers—predators—renewable resource” system and prevent it from extinction.

It is our hope that the model and the results of its study may be interpreted in
terms of socio-economics systems, but this is out of the scope of this work.
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Recent Advances in Approaches to the Study
of Gene Locus Control Regions

Benjamin D. Ortiz

Abstract In the many decades of investigation into the regulation of gene transcrip-
tion in vertebrates, the locus control region (LCR) has emerged as perhaps the most
powerful cis-acting regulatory DNA element that one can envision. An LCR element
is unique in that it supports both specific spatiotemporal regulation of transcription
during development, and a poorly understood “insulation capacity” that prevents
genomic interference with the gene regulatory program it would impose upon a
linked transgene. As such, it represents a complete, compact and portable package
of the DNA sequence information required to establish an independently and
predictably regulated gene locus in native chromatin of a whole animal. Both in
vivo and cell culture models have contributed significantly to building the field
of LCRs. Nevertheless, the gold standard experimental approach to LCR study
is transgenic mice, which has been dominant in the progress made in the field
over the past 25 years. However, recent technological advances are resulting in
a re-emergence of cell culture based approaches to LCR study, portending a
coming era of more rapid progress in this significant but understudied field. The
investigation of the unique and powerful gene regulatory activities supported by
LCR elements offers unparalleled opportunities to gain insight into cis-mediated
transcriptional regulation at the single gene locus level. Furthermore, such insights
are critical to advancing the safety and efficacy of gene therapy.
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1 Introduction

The processes regulating gene transcription in time and space are of paramount
importance to organismal development and cell type-differentiation. Therapeutic
interventions that harness and/or manipulate these processes are also on the cutting
edge of novel approaches to treating disease. The molecular machinery of gene
regulation is presumed to be directed to specific gene loci primarily by cis-acting
DNA sequences that can be either proximal or distal to the transcription start site
of a given target gene. Thus, such cis-acting DNA elements have been a major
focus of study in the effort to understand the spatiotemporal control and gene locus
selectivity of cell type-specific transcription programs. Of these DNA elements,
transcriptional enhancers have received the bulk of experimental attention, as they
can directly modulate linked gene promoter activity [6]. However, other classes of
cis-acting DNA elements have been characterized with profound, though usually
more indirect, impact on the subsequent activity of RNA polymerase bound to
a promoter of a native gene locus [37]. These elements are thought to influence
the localization and/or accessibility of DNA subsequences within a gene locus that
would interact with trans-acting nuclear protein factors in chromatin. Arguably, the
most powerful of these distinct cis-acting DNA elements is the locus control region
(LCR).

An LCR is unique in its ability to virtually eliminate integration site-dependent
position effects that would interfere with the expression of a linked transgene
inserted at a random, ectopic location in the genome of mice [38]. Such position
effects lead to unpredictability, or even absence, of transgene expression in some
or all lines of mice that are transgenic for a given transcription unit [48]. While
transcriptional enhancers can be important regulators of transcription in vivo [6],
they generally cannot, on their own, suppress integration site-dependent position
effects on transgene expression. In contrast, LCR-driven transgene expression is
“integration site-independent” and, thus, consistently observed to be high-level
across all lines of mice bearing the transgene. Furthermore, in an LCR-regulated
system, mRNA expression levels will directly correlate with the number of trans-
gene copies incorporated into the genome of a given transgenic mouse line. The
specificity of transgene expression in time and space will be similar in all lines, and
generally parallel the pattern of a given LCR’s gene locus of origin. As such, an
LCR represents a complete, compact and portable package of the DNA sequence
information required to establish an independently and predictably regulated gene
locus in native chromatin of a whole animal. The investigation of the gene regulatory
activities supported by LCR elements offers unparalleled opportunities to gain
insight into cis-mediated transcriptional regulation at the single gene locus level.
Furthermore, such insights are critical to advancing the safety and efficacy of gene
therapy.



Recent Advances in Approaches to the Study of Gene Locus Control Regions 191
2 LCRs Versus Insulator Elements

It has been speculated that the integration site-independence aspects of LCR activity
are related to the function of vertebrate insulators [19]. There are two distinct classes
of insulator elements identified in vertebrates: enhancer blockers [8] and chromatin
barriers [52]. Distinct DNA-binding protein effectors, and modes of action, have
been identified for each insulator type (reviewed in [1]). Evidence has accumulated
in support of the view that LCRs can contain within them one or more sub-elements
with activities reminiscent of barrier type insulators. A small handful of LCR
sub-elements have been isolated and shown to provide a linked transgene with
a degree of integration-site independence similar to that provided by bona fide
barrier insulators [13, 26, 46, 44]. However it is important to note the dramatic
distinctions between the activity of barrier insulators and LCRs. Barrier insulators
do seem able to render most integration sites in a genome permissive for some
expression of a linked gene. However, in contrast to LCRs, barrier insulators do not
provide the copy number-dependent mRNA expression levels indicative of complete
suppression of integration site-derived position effects [37]. Furthermore, unlike
LCRs, the vertebrate barrier insulator elements identified to date seem not to bear
any particular developmental and/or cell type specificity in their function, and their
identified molecular effectors are ubiquitously expressed [11, 64]. In short, while
the eventual discovery of clear molecular connections between the activity of barrier
insulators and LCRs seems likely, it is clear that the LCR supports a considerably
more complex (and comprehensive) function in terms of gene regulation.

3 The First Locus Control Region

The first LCR was discovered in the human p-globin gene locus. Early attempts to
make human B-globin transgenic mice, containing well-characterized promoter and
downstream enhancer elements failed to produce transgenic mice with predictable
human B-globin gene expression [40, 60]. It was also known that disruption of non-
coding DNA flanking the B-globin gene locus can cause human fB-thalassemia by
inactivating the locus [32]. These data taken together provided a strong rationale
to search for hypothesized cis-acting elements located at a greater distance from
the naturally occurring human p-globin gene. Initial evidence for such came from
DNase I hypersensitivity studies that yielded candidate regulatory regions distant
from the coding regions of the B-globin locus [16, 25, 61].

Using a somatic cell fusion approach [58], Forrester et al. provided important
correlative evidence that the distant DNase hypersensitive regions actively regulated
B-globin gene expression [15]. Briefly, these experiments utilized non-erythroid
human cells, in which the B-globin gene, borne by chromosome 11, would be
inactive. These cells were fused with a mouse erythroid cell line, in which the
endogenous mouse f-globin gene was active. The hypothesis behind this experiment



192 B.D. Ortiz

was that the mouse erythroid cell derived factors would activate in frans the
dormant human B-globin locus de novo. Resulting human chromosome 11 bearing
mouse/human hybrid cells indeed displayed both transcriptional activation of the
locus, and concurrent formation of the developmentally stable DNase hypersensitive
region flanking the human B-globin locus.

In 1987, Grosveld et al. used transgenic mice to test human B-globin locus
derived transcription units that included the putative distant flanking control regions
[24]. Unlike the integration site-dependent “position effects” that were routinely
and generally observed to lead to significant line-to-line variability in transgene
expression [48], these new transgenes displayed consistent activity across transgenic
mouse lines (i.e. at multiple integration sites). The human B-globin transgene
expression pattern paralleled that of the endogenous p-globin locus in time, space
and even mRNA level per transgene copy. These astonishing results would (with
a subsequent accord on nomenclature [37]) give birth to the field of locus control
regions. It would also begin the dominance of the transgenic mouse approach to the
study of LCR activity.

Following the above events, an LCR was discovered in the lymphocyte-
specifically expressed human CD2 gene locus [36]. In 1989, both the B-globin
and CD2 LCRs were reported to dominantly transfer the spatiotemporal expression
patterns of their gene locus of origin to an unrelated transcription unit [3, 22]
while maintaining the ability to confer integration site-independent and transgene
copy number-dependent expression levels. These remarkable findings would help
establish the definition of a bona fide LCR as a uniquely powerful cis-acting gene
regulatory element distinct from classical transcriptional enhancers. At the same
time, it augured high potential for the future application of LCR activity to the
developing field of gene therapy, where vectors engineered to support robust and
specifically targeted gene expression would be highly desirable.

4 Study of LCR Activity in Transgenic Mice

Since the late 1980s, transgenic mice have been utilized to identify LCRs in multiple
gene loci expressed in various cell types [38]. Aside from yielding important
information on the molecular mechanisms regulating their native gene loci, LCR-
driven transgene systems began yielding more general insight into the nature of
mammalian gene regulation in native chromatin, even before the term “histone
code” became popularized [29]. Chief among these insights was the observation
that LCRs can dominantly overcome the repressive impact of heterochromatin on
transgene expression at an ectopic integration site [14, 42]. Furthermore, in this
context, the LCR mode of action clearly involved cis-mediated, tissue-specific
regulation of long-range chromatin structure [12, 44] and epigenetic modifications
of histones [23] and DNA [54].

Despite the important contributions of LCR study to locus-specific, and more
general, gene regulatory knowledge, the field has been relatively slow moving.
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This state-of-affairs is most directly attributable to the field’s dependence on
transgenic mouse models, wherein the full range of LCR activities were first
demonstrated. Transgenic mouse experiments are resource intensive, high cost and
involve protracted timetables. While this approach has remained the most complete
and rigorous model for assessing LCR activity, the slow pace of progress inherent
in this technology inspired various attempts to develop assays for LCR activity
that did not require transgenic mice. For many years, these efforts yielded only
partial success, although, in the process, much was learned about the unanticipated
requirements for establishing LCR activity in a cell.

S The Search for Alternatives to Transgenic Mice

Since cell culture based technology yielded important data leading to the initial
discovery of the B-globin LCR, it is surprising that the field struggled for well over
a decade to validate assays for the complete range of LCR activities that were not
dependent on transgenic mice. Somatic cell genetics experiments in erythroid cell
lines began to indicate that the activity of the f-globin LCR on chromatin, in the
context of its endogenous locus, would manifest itself differently from its apparent
impact on a transgene at an ectopic site in the genome [53]. This notion would
later be confirmed in vivo [2] and is likely due to native locus derived functional
redundancy. These findings notwithstanding, at the time there was no a priori basis
for doubting that a differentiated adult erythroid cell line would support the full
activity of a B-globin LCR-driven transgene introduced de novo into its genome.
Nevertheless, an informative “failure” in this regard was published in 1998. Skarpidi
et al. discovered that the same mouse cell line that was able to “frans-activate”
the endogenous human p-globin locus in human/mouse cell hybrids was unable to
support integration site-independent B-globin LCR activity at an ectopic site [57].
The copy number-dependent transgene mRNA expression levels supported by the
p-globin LCR in transgenic mice were not reproduced in the erythroleukemia cell
clones stably transfected with similar reporter transgenes.

An important clue to explaining the puzzling inability of erythroid cell lines to
support LCR activity was reported the following year [62]. In this work, p-globin
LCR-driven reporter transgenes were first stably integrated into the genome of
mouse fibroblasts. These transfected fibroblasts were then fused with the same
erythroid cells used in the above experiments. The fusion resulted in activation of
the ectopically integrated LCR-driven transgenes, much in the same manner as the
endogenous human B-globin gene locus was activated by similar fusion experiments
performed in the earliest days of the field. The copy number-dependence of
transgene expression was restored in the hybrid cells. The interpretation of these
experiments was that the first steps of LCR activation require it to be present in
chromatin of an undifferentiated cell. If this were true, it would explain the failure
of de novo introduction into the chromatin of already differentiated erythroid cells
to support the establishment of an LCR’s activity.
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It might seem trivial to point out that during development, all cell type-
specifically expressed gene loci will exist for some time in an undifferentiated
chromatin environment in precursor cells, before they become activated upon sub-
sequent cellular differentiation events. But the reasons why such pre-differentiation
presence would be required for the later establishment of LCR activity were far less
obvious at the time. Subsequent reports would discover pre-differentiation molec-
ular “priming” events at the human B-globin locus occurring early in development
[4, 5, 63]. While the system used in Vassilopoulos et al. [62] does not recapitulate
normal erythroid cell development per se, the data supporting the significance of
prior transcriptional priming to subsequent B-globin locus activation pointed to a
potential mechanistic basis for their findings. Nevertheless, even after these efforts,
the field remained without a validated cell culture model supporting the full range
of LCR activities manifested at an ectopic genomic site. As it happened, the next
steps forward in this effort would come from the study of LCRs that are active
in a different cell lineage altogether, the T cells of the immune system. These
recent advances would be enabled by a breakthrough procedure that supported the
direct observation of the full trajectory of T cell development from undifferentiated
precursors, without the use of transgenic mice.

6 A Method to Recapitulate T Cell Development In Vitro

Embryonic stem cells (ESC) are the pluripotent founder cells of mammalian
embryos. ESCs can be isolated from zygotes and propagated in cell culture in
way that maintains their undifferentiated state. These cells can also be directed to
differentiate in vitro into a wide variety of specialized cell types, upon provision of
the appropriate micro-environmental components (both soluble and cell-associated
factors) in a sequence that mimics the normal developmental events that yield a
given cell lineage in vivo [18]. Although a number of hematopoietic cell types had
been successfully derived in vitro from ESC [7, 43], T cells remained recalcitrant
to differentiation in cell culture. It was then discovered that input from the Notch
signal transduction pathway shifted the fate of developing lymphocytes into the T
lineage at the expense of B lineage cells in vivo [51]. This key information was used
to develop a clever strategy to coax developing hematopoietic cells towards T cell
fates in vitro (Fig. 1).

A bone marrow derived stromal cell line (called OP9 [43]) was transduced with
a Notch receptor-triggering ligand [named Delta-like-1 (DL1)] to create the OP9-
DL1 cell line [56]. With the provision of the appropriate cytokines, OP9-DL1 cells
supported robust, quantitative differentiation of mouse ESCs into T cells within 3
weeks of co-culture [55]. OP9-DL1 cells are also able to support the direction of
human embryonic stem cells and human induced pluripotent stem cells into the T
lineage in cell culture [31]. DNA constructs can be readily introduced into mouse
ESCs by electroporation, and other means. Thus, this system seemed to offer a
way to assess the regulatory activity of reporter gene-linked DNA elements during
hematopoietic differentiation of cloned, stable-transfected ESCs in vitro.
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Fig. 1 The ESC-OP9 co-culture procedure for reproducing hematopoiesis in vitro [55]. ESCs
are initially seeded on a monolayer of OP9 bone marrow derived stromal cells. On day 5 of co-
culture, the cytokine fms-like-tyrosine kinase receptor-3 ligand (FIt-3 L) is included in the culture
to derive hematopoietic progenitor cells by day 8. At that point, interleukin-7 (IL7) is included and
developing progenitors are re-plated on either OP9 cells, to generate non T cell types or OP9-DL1
cells to produce T-lineage cells. The process in completed within 3 weeks of co-culture

7 A Step Forward: The Human Perforin Gene LCR

The idea to use in vitro T cell differentiation to examine an LCR was first tested in
studies of selected aspects of human Perforin gene LCR activity [49]. The Perforin
gene encodes a key cytotoxic effector molecule employed by natural killer (NK)
and CD8-lineage T-killer cells during cell-mediated immune responses [30]. This
gene becomes activated as part of a late-stage response to the triggering of mature
T cells via their antigen receptor. This response coincides with the development of
cytolytic effector function 2 days after initial T cell receptor stimulation [9, 34, 47].

The long, eighteen hypersensitive site region of the putative human Perforin LCR
was first identified using microcell-mediated chromosome transfer (a variation of
cell fusion). In this approach, a mouse T cell line capable of expressing the Perforin
gene (after immune receptor triggering) receives a copy of the Perforin-bearing
human chromosome 10 from microsomes derived from a donor fibroblast cell line
[49]. The fusion moved the inactive, native human Perforin gene locus out of an
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undifferentiated cell, and into a differentiated cellular environment. Much like the
experiments carried out 20 years earlier on the f-globin locus, this event enabled the
de novo activation of the DNase hypersensitive region, and subsequent induction of
Perforin gene expression.

In this study, in vitro ESC differentiation was used to test the cell-type specificity
of this LCR’s activity. A bacterial artificial chromosome (BAC) bearing the human
Perforin gene, and its putative LCR, was used to transfect mouse ESCs. BAC
bearing ESC clones were differentiated into various hematopoietic progeny in vitro.
Among the generated progeny cell types, transgenic Perforin expression was only
seen in cytolytic lymphocyte cell types that had been appropriately activated to
simulate an immune response [49]. This pattern is what would have been predicted
from the characteristics of endogenous Perforin gene expression.

In the above report on the initial identification of the Perforin LCR [49], multiple
assays using both ESC and a cultured T cell line were combined to characterize
its activities. Thus, this effort represented a step forward in the drive to develop
alternatives to transgenic mice for LCR study. However, the Perforin LCR has yet
to be isolated and shown to transfer its characteristics to a linked heterologous
transgene. Furthermore, there have not yet been reports of its activity in vivo.
Nevertheless, the successful, if limited, use of in vitro ESC differentiation in this
work seemed to point the way toward the development of a single, complete assay
for LCR activity that was not dependent on transgenic mice. A direct test of this
idea would require the use of an isolated, bona fide LCR, the activity of which
had already been fully characterized in vivo. Another LCR active in T cells would
eventually provide the opportunity for this test.

8 The T Cell Receptor-a Gene LCR

The LCR residing in the mouse T cell receptor (TCR)-a gene locus (Fig. 2a) would
become the third LCR to be discovered in a T cell expressed gene locus [10]. It
was initially described as a series of nine DNase I hypersensitive sites spread over
13-kb of genomic DNA in between the TCRa constant region exons on the 5'-
end, and the last exon of the essential Defender against Death (Dad)-1 gene on
the 3’-end [28]. The study of this LCR has had significant impact on the field
[1, 17, 37, 38]. Like the human B-globin and CD2 LCRs, the TCRa LCR has
been well demonstrated to dominantly transfer its gene regulatory properties to a
linked heterologous transgene [27, 33, 44]. Furthermore, the TCRa LCR is one of a
small handful of LCRs for which significant structure-function information has been
obtained [21, 26, 45] (Fig 2b). This LCR’s activity seems to result from functional
synergy between a 3/-“chromatin opening” property that is widely active in multiple
tissues [46] and an adjacent 5'-DNA region that provides developmental timing-
and cell type-specificity to this activity in a whole animal [44]. While the molecular
bases for these functions are not completely known, there is considerable evidence
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Fig. 2 The TCRa gene locus control region. (a) Scale diagram of the endogenous mouse
TCRa/Dad 1 genomic locus showing the locations of the nine DNase I hypersensitive sites of its
resident LCR (numbers with arrows). Exon sequences are marked with filled boxes. The open box
represents the classical transcriptional enhancer of the locus (Ea). The transcriptional orientations
of the TCRa and Dad1 genes are shown. Only the four TCRa constant region exons are shown here.
The somatically rearranging variable region exons of the TCRa gene extend over 1-Mbp of DNA
to the left (i.e. 5') of what is depicted. (b) Depiction of TCRa LCR structure—function information
obtained to date. The positions of the TCRa and Dad1 genes are shown as simple boxes with arrows
indicating their transcriptional orientations. The numbers indicate the DNase hypersensitive sites
(HS) of the core TCRa LCR [45] noting those known to be involved in the LCR’s spatiotemporal
specificity [44, 45] and its integration site-independence function [21, 26, 46]. TF123 and HS6-316
are functional sub-regions of HS6. Dashed arrows indicate known functional interactions between
the numbered HS regions [26, 45, 46, 54]. Note: this depiction is not drawn to scale

that the cooperation between these two regions involves distinct LCR sub-elements
that provide cis-mediated direction to trans-regulatory mechanisms that target both
chromatin [44, 45] and DNA for cell type-specific epigenetic modification [54].

Aside from two reports identifying enhancer-blocking insulator activity within
the TCRa LCR [39, 65], virtually all published data on the TCRa LCR are derived
from transgenic mouse experiments. Because of the high cost and long timelines
of such experiments, efforts were made to study TCRa LCR activity in cultured
cell lines [26]. As in the B-globin case, TCRa LCR activity was incomplete after
its direct introduction into chromatin of T cells [35]. These data made it clear that
for a cell culture model to support full LCR activity, it would have to meet the
apparent requirement (revealed in the -globin LCR model [62]) for the LCR-driven
reporter transgene to be present in the genome prior to differentiation and cell type
specification. We hypothesized that an approach of introducing TCRa LCR driven
reporter gene constructs into ESCs followed by their in vitro differentiation would
satisfy this criterion, and yield T cells capable of supporting all the known aspects
of TCRa LCR activity observed in vivo.
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9 The TCRo LCR Manifests Full Activity in T Cells Derived
In Vitro from Mouse ESC

Because the function of the TCRa LCR had been extensively tested and confirmed
in vivo, it was an ideal candidate for testing the notion that committed cell types
derived in vitro from transfected ESCs would support full LCR activity. An in
vivo proven TCRa LCR linked human CD2 reporter gene construct [27] was
introduced into mouse ESC by standard electroporation protocols. A co-transfected
neomycin-G418 resistance gene allowed for the selection and propagation of stable-
transfectant ESC clones. The in vitro ESC differentiation system allowed us to assay
for all the key properties of LCR activity [35]. These include provision of integration
site-independence, cell type-specificity, appropriate developmental timing and copy
number-related mRNA production levels to a linked transcription unit.

In the absence of the LCR, the unlinked hCD2 reporter gene alone was not
expressed in T cells derived from any of the transfected ESC clones (n = 6). In sharp
contrast, we observed that every ESC clone bearing intact TCRa LCR linked hCD2
transgene integrants yielded T cells that expressed the hCD2 reporter gene robustly
(n>12). As the independent clones resulting from ESC transfection represent
independent integration events, each presumably at varying random locations in
the genome, these results provided strong evidence that the TCRa LCR-linked
transgene can establish activity at any site of chromosomal integration in this assay
[35], as it does in transgenic mice [27].

In addition to T cells, ESCs can be directed to differentiate into various blood
cell types in the OP9 cell co-culture system including monocytic, erythroid and
B-lineage lymphocytes [7, 43]. Thus, this technology enables some assessment of
the cell type-specificity of TCRa LCR activity, something that generally is not
possible in transfected, lineage-committed, cultured cell lines. In short, consistent,
high level expression of the reporter gene was only observed in T-lineage cells
derived from transfected ESC clones [35]. Furthermore, the entire course of T cell
development (that normally takes place in the thymus) can be monitored in this co-
culture system, using flow cytometry-based detection of key cell surface-expressed
developmental marker proteins [20]. In such experiments, the temporal course of
TCRa LCR activation generally parallels that of its gene locus of origin [35].
Thus the regulatory characteristics of this LCR in time and space are completely
manifested in the in vitro ESC differentiation system.

In addition to the qualitative aspects of gene expression described above, there
are important quantitative facets to LCR activity that are, generally speaking, not
shared by other types of cis-acting gene regulatory DNA elements. That is to say,
LCR-driven mRNA production levels per transgene copy only vary within a very
narrow (<3-fold) range across multiple lines of transgenic mice [13]. This leads
to a strong direct correlation between LCR-driven gene expression and integrated
transgene copies. Neither classical enhancers, nor even insulator elements [37]
have the capacity to achieve this degree of quantitative predictability of linked
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transgene activity. Previous work in transgenic mice has amply demonstrated, in
assays that have utilized four different transcription units, that the TCRa LCR
supports this key property [10, 27, 33, 44].

For the in vitro ESC differentiation system to serve as a true alterative to
transgenic mice for LCR study, it was critical to determine if the copy number-
dependence property of the TCRa LCR was supported in this co-culture system.
Indeed, we observed copy number-related mRNA production levels from TCRa
LCR driven transgenes in T cells derived in vitro from transfected ESCs [35].
Multiple independent sets of transfectants, each containing multiple independent
transfectant clones were analyzed in real time, quantitative reverse transcriptase-
mediated (qQRT)-PCR to obtain this data. The range of reporter mRNA expression
levels per transgene copy was a very tight 1.6-fold.

Interestingly, mRNA production levels from identical transgenes that were
directly transfected into already differentiated T cell lines did not display the strong
degree of copy number dependence described above. This is despite the fact that
nearly all (10 of 11) of the T cell transfectant clones did express the transgene
at some level indicating a high degree of integration site-independence. These
results could be produced by a barrier-type insulator element, which is thought
to prevent the spread of heterochromatin into a linked transcription unit [1]. It is
possible that the TCRa LCR functions as a barrier insulator-like element in the
directly transfected T cell lines, even though it is not displaying complete the LCR
activity evident in T cells derived from transfected ESCs. Further work is needed
to determine the molecular bases of the difference between complete LCR activity
and the barrier insulator-like activity we observed in the T cell lines. Collectively,
the data lead to a novel hypothesis that the copy number dependence property of
LCRs arises from additional molecular mechanisms distinct from those that support
integration site-independence.

10 Conclusion

The report of the above-described data on the TCRa LCR has validated the in vitro
ESC to T cell differentiation system for the study of LCR activity [35]. Our report
represented a major advance in that it demonstrated a complete assay for the full
range of a bona fide LCR’s activity at an ectopic genomic site that is not dependent
on the use of transgenic mice [35]. The timeframe from ESC transfection with a
reporter gene, through to the emergence of T cells from in vitro differentiation
of isolated transfected cell clones, can be as short as 6 weeks. This is a much
faster “time-to-data” scenario when compared with the timeline from pronuclear
microinjection of a transgene into fertilized eggs, to the harvesting T cells from
stably established transgenic mouse lines. Thus, wider adoption of this technology
for the study of LCR elements that are active in hematopoietic cell types should
greatly speed progress in the field of LCRs.
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There is also very high potential for LCRs to be useful in the design of gene
therapy vectors for use in stem cell transplantation. During genetically engineered
stem cell differentiation in a transplant recipient, vector components derived from
LCRs should provide predictable expression patterns and levels to a gene encoding a
therapeutic protein. This idea has already yielded p-globin LCR containing vectors,
versions of which can be used to treat Thalassemia patients [41]. Therapeutic genetic
engineering of T cells has recently yielded very promising results in B cell leukemia
patients [50]. The viral vectors used to transduce these cells have limited space
for exogenous DNA sequences [59]. Thus, there is much merit to the continued
structure/function study of LCRs to identify their key functional sequences. These
key sequences will very likely have to be isolated and reassembled into a smaller
form in order for them to be successfully accommodated by lentiviral vectors. These
“miniaturized” LCR versions will have to be extensively tested to determine if they
can reproduce the full function of the original LCR they are derived from. The in
vitro ESC differentiation system we validated should enable these tests to be more
readily undertaken, and more quickly completed in the future.
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Dynamical Roles of Jacobian Feedback
Loops and Qualitative Modeling

Bourama Toni

Abstract The chapter presents a mathematical methodology applicable to
qualitative modeling of systems using the feedback loops encoded in the Jacobian
matrix and described by the products of the Jacobian entries under cyclic
permutations of the indices. The relation between these feedback loops and the
Jacobian spectrum defines their dynamical properties. We determine the conditions
of nondegeneracy and appearance of multiple equilibria in terms of feedback
loops as well as the conditions of loop stability to induce the stability analysis of
the systems. In particular we emphasize the applications to qualitative modeling
in biological and biochemical sciences, economics. We present a complete loop
analysis of the celebrated Lorenz and Rossler systems predicting their global
dynamics.

The methodology is proved efficient to assert the possibility of multistationarity,
periodicity, self-sustained oscillations, and chaos using strictly the qualitative rela-
tions and assumptions of the systems, to achieve primarily qualitative understanding
rather than quantitative numerical prediction. We also show the Jacobian loops tech-
nique is easy to implement and could quickly demarcate both parameter and phase
spaces into exciting regions (limit cycle, multiple equilibria, chaotic behavior), non-
exciting ones (single stable fixed points), hard-instance regions (ergodic behavior).
Therefore as such the technique could be useful in surveying dynamical responses of
models simulating physico-chemical, biological, biochemical, economical systems
and game theory.
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1 Introduction

Interest in qualitative mathematical methods has been expanding during the last
decades, mostly due the wide applications in biosciences, social sciences including
behavioral sciences and economics. In these mathematical models variables define
parts of the modeled system, parameters designate factors that influence the system
dynamic but are not usually influenced by it; the system dynamics are defined as
relationships among system parts and between the parts and some extra systematic
factors; the dynamics are described by the model equations which could be in
the differential or difference format. For models representing complex systems in
biological and behavioral sciences, it is usually impossible or infeasible to determine
the quantitative value or the precise functional form of most of the interactions
between system parts. However, it is often possible to determine the qualitative
properties of these interactions; sometimes what can only be ascertained is that
there is or there is not interaction between variables, which could be translated
by yes or no, 0 or 1, e.g., in Boolean models, making qualitative modeling more
appropriate in these sciences. For example within ecology, qualitative models are
more easily ascertained in the attempt to estimate intrinsic growth rate, carrying
capacity, competition coefficients. Economists trust more the sign and direction of
interactions between major parts of the economy but doubt their functional form
can be determined more precisely. In psychology, there is little expectation for a
precise mathematical function to accurately represent human behavior as reflected
in imprecise belief states or preferences of typical real-world agents. Indeed, in
biosciences, physical-chemistry, economics and behavioral sciences, informations
about the underlying dynamics often reside in the rules of construct of the system
and not in the absolute quantitative values. The data and phenomena being studied
are essentially qualitative. Therefore, absent the precise quantitative, qualitative
modeling concerns what properties, in particular dynamical properties, can be
derived from these qualitative relations between the model variables.

Results established by qualitative models, with less commitment to details,
tend to achieve a greater generality. In addition this type of modeling allows an
understanding of phenomena less susceptible to the drawbacks of the quantitative
usual idealization methods. Simplifications are inherent to both quantitative and
qualitative models; in the former, they are realized by decreasing specificity,
whereas, in the latter, they usually involve unrealistic assumptions in order to
use some precise and tractable mathematical equations with fewer or more easily
estimable parameters, in the hope that these intentional misrepresentations will not
distort the salient features of the system. Several qualitative methods have been
proposed. See Levins, Puccia and Levins, Orzack and Sober [9, 10, 14]. However as
claimed by Levins Scientific modeling can maximize at most two of three virtues:
generality, realism, and precision:

1. Sacrifice generality for precise quantitative predictions about specific systems
and maximize realism by representing as many system details as possible.
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2. Sacrifice realism to make unrealistic assumptions so systems can be described
with general mathematically tractable equations producing precise quantitative
predictions.

3. Sacrifice precision to abandon quantitative accuracy for qualitative relations
between variables for maximum generality and realism.

This chapter introduces a recent and progressive methodology in qualitative
modeling, for instance, to showcase how much can be achieved about the structure
and behavior of systems partially specified by using the sign of an interspecific
interaction. In a series of studies we have developed an efficient tool in the
qualitative study of systems described by differential or difference equations,
namely, a tool based on the dynamical roles of Jacobian Feedback Loops. Such
a tool intends to survey the dynamical response of models simulating physico-
chemical, biological and economical systems by stressing qualitative understanding
as the primary goal rather than numerical prediction [29, 30, 33-36].

Dynamical systems theory is mostly based on quantitative values of the Jaco-
bian entries. But for some systems, mainly in biosciences such as biology and
biochemistry, in economics and behavioral sciences, the relevant informations are of
qualitative nature. Quantitative results are rare in studying interactions in a system
of biochemical compounds: A gene X could be shown to be an activator (or a
repressor) of the expression of a gene Y, but usually without knowing the strength of
the interaction, the concentrations and their kinetics. In a conflict resolution model
featuring the variables of Attitude (A), Behavior (B) and Contradiction (C), one can
“accurately” determine if the variables mutually influence each other positively (+),
negatively (—) or no influence (0) with no need to quantify the strength of the
influences.

The theory of Jacobian loops is therefore the analysis of the dynamics (simple
and complex) using solely the loop-pattern Jacobian matrix, that is, even when
only the signs, not the magnitudes of the Jacobian terms, are known. Section 2
presents the preliminary concepts, definitions and examples. Section 3 discusses the
Jacobian loops required for the existence of multiple equilibria (multistationarity).
Section 4 addresses loop and qualitative stability, whereas Sect. 5 is devoted to the
applications, in particular the complete loop analysis of the well-known Lorenz
and Rossler systems. The last section presents directions for future research on
qualitative modeling as an efficient tool to address the ever increasing complexity
of system mathematical models.

2 Preliminaries

Consider the autonomous differential system

dx;(t)
= Fi(x,
ar o (1)

x=(x1,,Xx,) €R", a=(a,as,---,ay) €eRY,

xi(t) =
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describing a dynamical system with phase space in R”, and the parameter/control
space in RN . The component functions F;, i = 1,2,---,n of F(x,a) are assumed
to be at least C'! (U), that is, differentiable along with their first partial derivatives on
U an open set of R". The partial order relation x <y <= x; < y;,i = 1,...,n
defines the vector order in R”. The Jacobian matrix at X = (Xy,...,X,) is given by

a F DI Fn - aE -
J(x) = DF(x) = [—( l )(X):| = I:K(x)} = [Jijli<ij<n. (@)
j

(X1, xn) <t
and in general depends on the state variables, except for linear systems [1, 38].

Remark 2.1. Actually the relation x;(t) = F;(x,a) shows how the rate of change
in variable x; is dependent on changes in any given variable x;. Therefore the
Jacobian entry gTF;(x) = Jij, for 1 <i, j < n describes the interaction between
the variables x; and x, as positive (respectively negative, no) interaction for J;; > 0

(respectively J; ; <0, J; ; = 0).

2.1 Jacobian Loops: Definitions and Notations

2.1.1 Permutations of Indices and Their Properties

Let .#, be the set of indices 1,--- ,n and denote by I = {iy,--- ,i;} an ordered
subset of k different elements of .#, and by I, = me(ly) = {1, s Jjihs
with 7, € E; a permutation of I;. Recall Card(Ey) = k!, i.e., there are k!
permutations. Every permutation it may be factored into v disjoint circular (cyclic)
permutations o;,i = 1,---,v, that is, my = 0702 ---0,. The signature of my,
denoted sg(my), is (—1)", n the number of inversions in 7y, that is, the number
of pairs (j,,, ju) with j,, > j, while i,, < i,, for j,, = m(in), and j, = 7 (iy).
The permutation . is even (resp. odd) for an even (resp. odd) . There are exactly
]‘7! even and exactly %’ odd permutations in E;. We denote E (resp. Ef, E7)
the subset of circular (resp. even, odd) permutations [3]. The set &, is the classic
symmetric group of permutations on the set of indices ..

We have the following defining concepts [33,34].

Definition 2.2. 1. The set of nonzero terms J;;, i € Iy, and j € fk, describes a
Jacobian loop associated with the nonzero product
I=k
P(mi, J) = l—[ Jimetiy = Jivmeiy Jinme (i) - - - Jigme i) 3
I=1

called a loop product.
2. The loop is called a k-order simple Jacobian loop L; when the permutation mx
is a k-cycle= (iy, i2, - - , i) with the loop product

P = JiinJinis -+ Jiy i Jigi - 4)
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3. Its sign sgn(Ly) is that of the loop product pr = P(Ly) := P(m, J). Its length
or dimension /(L) = k is the number of loop factors J;, , (;;) involved, as well
as the number of related system variables x;.

Remark 2.3. 1. A simple Jacobian loop Ly is positive (resp. negative) for an even
(resp. odd) number of negative loop factors J;, , () in the loop product P (Ly).

2. The loop L has the following representation called loop graph or interaction
graph and denoted by Ly, : it consists of k distinct vertices given by the system
variables x;,i = 1,...,k and k edges E;; = (x;, x;,s;;) directed from j to i
where s;; = sign(J;;) denotes the nature of the interaction between the variable
x; and x;.

3. A positive (resp. negative) loop involving the variables xi, x3, ..., x; is also
conveniently denoted L;"l Xpexg (resp. L;l pee Xk).

4. A loop graph Ly is complete if for every i # j there is a directed polygonal line
connecting x; to x;, that is, X; Xx,, Xk Xk, *** 5 Xk, X -

Definition 2.4. 1. A non-circular permutation 7t yields a union of simple Jacobian
loops, called a composite loop £, = UiZYL; = (L4,...,L,) of dimension
1(Z}) = k given by the sum of the lengths of its v simple component loops, i.e.,
k=Yi_1dL)=1+--+v.

2. A proper composite loop £} of resonance (v, k) is a disjoint union of v simple
loops of total length k, that is, the component loops do not share a vertex.

Remark 2.5. We denote P, the loop product of a composite loop .£”. The
sign of a composite loop .Z}” is the sign of P}, or equivalently, sign(Z}) =
5:{ sign(L;) = (—=1)"—, where v_ is the number of negative simple loops in .Z}’.
1y = (=1)""!is the characteristic of the proper composite loop of reso-
nance (v,k). Therefore a k-order proper composite loop has a negative (resp.
positive) resonance, i.e., a negative (resp. positive) characteristic for v even
(resp. odd).

Definition 2.6. A k-order Feedback F} is defined by

Fe=) ()P, (5)
allv
where P, is the loop product of the proper composite loop £’
Consequently we have the following

Lemma 2.7. 1. A composite loop £} is positive (resp. negative) for an even (resp.
odd) number of its negative simple loops.

2. A proper composite loop £,) with all component simple loops negative has a
negative resonance in the Feedback Fy. as defined above.
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Definition 2.8. 1. We call qualitative matrix S a matrix consisting exclusively of
the signed entries s;; € {4+, —,0}, thatis, S := [s;j]i<i j<s. We denote S by
A, for a qualitative matrix associated with a matrix A = [q;;], that is, s5;; =
sign(a;;),forl <i,j <n.

2. The loop structure (or qualitative structure), denoted LLg, corresponding to the
region Z in the phase space or to a sign-pattern is the set of all Jacobian loops
(simple and proper composite) along with their signs.

2.2 Methodology Requirements

The Jacobian loop analysis required first the determination of the loop structure
associated to the system in a given region of the phase space, either from the
signed entries of a Jacobian matrix evaluated at equilibria or constant at some
parameter values or solely from the qualitative evaluation of the interaction between
the variables in terms of positive, negative or zero. Determining and analyzing the
qualitative structure anywhere in the phase space, including around the steady states,
if any, yields some understanding of the local and global dynamics of the system.

2.2.1 Some Terminologies and Notations

Consider a matrix A = [a;;], possibly a Jacobian, and its corresponding qualitative
matrix § = A,.

1. For x = (x1,---,x,) € R" x; 1= (sign(x;),i = 1,---,n) is called a qualita-
tive vector. The corresponding equivalence class is [x] 1= {y € R"/y, = x,}.

2. A matrix B = [b;j]i<i j<n is qualitatively or sign equivalent to A = [a;;]i<i j<n
in the region % if B has the same sign pattern as 4, i.e., 4, = B,. We denote
A QO B.

3. (A) denotes the qualitative equivalence class of matrix A represented by the
qualitative matrix Ay .

4. The qualitative equivalence class () is represented by a n x n array of nonzero
sij = =+, —,0 entries such that, for any matrix A = [a;;] € (), sign(a;j) =
Sl‘j,l fl,] <n.

5. A matrix B = [b;j]i<i,j<n is loop equivalent to A = [a;;]i<i j<n in the region
Z, if B yields the same loop structure Lg as A. We denote A O B.

6. ) A( denotes the loop equivalence class of matrix A. The class ){(= L is a loop
structure represented by a set of signed loops, such that any matrix A €)( has the
loop structure L.
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2.2.2 Examples

To illustrate consider in the 3-variables x yz-phase-space the following three distinct

matrices:
-1-3-2 -8 -9 -1 2 3-6
A=15 0 8 )|; B=|3 0 7); M=]1-90-8
1 -4 7 4 =25 7 5—4

The qualitative equivalence classes are represented by

- + + =
(A):(B)EquBq: +()+ , (M)Equ —0 - ,
+-+ + 4+ -

where = indicates representation. Therefore

1.

A © B, but A and M are not qualitative equivalent, as are not B and M.

2.A0BOM.

3.

The common loop structure I contains the following simple loops and their
composition:

(a) Negative 1-loops given by either L or L_; positive 1-loops given by Lj or
LY
(b) Three negative 2-loops givenby L L} : Ly

(c) One positive 3-loop Ljyz, and one negative 3-loop L .

Remark 2.9. 1. Clearly the real vector spaces R" and the space .#, of all real

matrices are partitioned as

R" = UXGR[XL %n = UAG//{(A)‘

. The classes [x], (A), and )A( are convex cones respectively in R” and ./,

closed by addition and multiplication by a positive scalar. The cone [x] is solid
if sign(x;) #0,i =1,...,n. Theset [x] := {y e R"|y; = x;, or 0} isthe
closure of [x]. Similarly one defines the solid cone (A4), and ) A{, and the closure
W, and m

. The equation Ax = b is qualitatively or sign solvable if B € (A), ¢ € [b],

By = ¢ implies y € [x].

. Denote by (xAy) the set of matrices which map the set [x] into [y]. Of course an

interesting question will be to characterize algebraically (xAy) [18,21].

Some general observations based on the above definitions and examples and

some results in matrix theory lead to the following lemma:

Lemma 2.10. /. Qualitative equivalence obviously implies loop equivalence but

not inversely.



212 B. Toni

2. Given two matrices A and B loop equivalent, the qualitative class (B) may
be obtained from that of A by some combination of negation, transposition,
permutation, and signature similarity.

Proof. Note that the loop equivalence class yields the loop structure uncovered
from a representative qualitative matrix Q. Therefore if A (O B then they are
sign-patterned in a way to provide the same loop structure, though they are not

necessarily qualitatively equivalent in the sense sign(a;;) = sign(b;;). Thus
matrix operations such as negation, transposition, permutations, and signature
similarity allow to derive one sign pattern from the other. O

An immediate consequence is the following result:

Corollary 2.11. Let A 4 denotes the spectrum of matrix A, that is, the set of the
eigenvalues of A. If A O B therefore Ay = Ap.

Next we show how the loops and their combinations, i.e., composite loops
and their Feedback, have their dynamical roles uncovered from the Jacobian
characteristic equation.

2.3 Loops and Jacobian Spectrum
For a matrix A4, Jacobian or otherwise, given by A = [A;;]i<; j<n the characteristic
polynomial is defined by the monic polynomial
CaA) =AM —Al = A"+ A" gt emiA e (6)
From Linear Algebra [1, 6] the coefficients may be expressed as
cx = coefficient A" ) =Y "(=1)fmy, k=0.---.n—1, (7)

where the sum extends over all kth order principal minors mj of A. For instance
we have

¢n =(=1)"det(4) = (~1)"|4], fork =n,
_ ®)
c=— Z Aj; = =Tr(A), where Tr(A) is the trace of A.

From the theory of determinant and permutations we may write

mi= > (=" [ Aiman =Y D[P A) =) (D" P(L).

TREEL i|€E I allv i=l1 allv
©))
where the permutation 7y € Ej; of the indices 1 < i) < i) < -+ < iy < n
factors into the cyclic permutations (oy,:--,0,) yielding the proper composite

loop .Zk” = (o1, -+ ,0,) with loop product P(.Zk”) = P} as defined above.
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Consequently we obtain an expression of the characteristic coefficients ¢ in terms
of the proper composite loops. Importantly we obtain [20]

Lemma 2.12. The kth order Feedback %y involving all the proper composite
loops £ with v = 1,---  k may be expressed in terms of the coefficients of the
characteristic polynomial by

Fi =cp = Z(—l)"“Pk”, k=1,---.n (10)

allv

Proof. Immediate from the above formulas, the k-order principal subdeterminant
Dy of matrix A is written as

Dy = Z(—l)k_"P]f, giving(—1)*T'Dy = Z(_l)vﬂpﬁ — 7

allv allv

|

Remark 2.13. 1. First recall the zeros of the characteristic polynomial are the
eigenvalues of the matrix A, that is, they are the elements of the spectrum
A 4. They are of multiplicity m if (z — A)™ factorizes €4(z). For m = 1 the
corresponding eigenvalue is said to be simple, such as when A has n distinct
eigenvalues.

2. Importantly the k-order Feedback .%; being the k-order coefficient of the
characteristic polynomial entails that the loop factors A4;,(;) defined above are the
only Jacobian entries contributing to the characteristic equation, and therefore,
influence directly the eigenvalues of the matrix, and consequently the dynamics.

3. From the standard theory of equations it is also known that the coefficients
cr = Fy are related to the eigenvalues A; in a systematic way by the following
Viete formulas: (See [1,6, 13]).

i=1
o =F :_(Al+...+kn):—2A,’i.

i=1

a=FR= Y k= ) (Adudy—A5A;)

i,j=Li<j i,j=Li<j
=M+ A A5+ -+ AmiA,.
(11
C3:F3:— Z A,‘/\j/\k
i.jk=1li<j<k

= —(AA2A3 + A1 2244 + -+ 4+ A2 An—1Ap).

e =F, = (1" 4.

Immediate from the above definitions and the theory of determinants [1, 6], we
have
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Lemma 2.14.

det(A) =|A| = ) sg(my) P(. A)

T €&y
12)
= > P A)— > P A).
TEEES nlEEY
Proof. Every permutation 7, = 0,0 ---0, is associated with a composite loop

%, = (L1, Ly,---L,) with the simple loop L; defined by the cyclic permuta-
tion o;. 7, (resp. 7, ) denotes an even (resp odd) permutation. In the expression (12)
of | A| all the loop product P (¢, A) have the same sign opposite to that of P (17, A).
In fact if £ (resp. .£?) is the composite loop associated with 7 (resp. 77) then it
has an even (resp. odd) number v of components L; for n even, and it has an odd
(resp. even) number v of components L; for n odd. O

A classic result therefore leads to the following theorem:

Theorem 2.15. A necessary condition to have all eigenvalues with negative real
parts %, < 0 is that all kth order Feedback 7\ must be positive.

Proof. The proof is straightforward from a classic lemma we recall (See for
instance [3]): given a n-degree polynomial with real coefficients

P ="+a "+ @+ a1z + an, (13)

a necessary condition for p(z) to have all its zeros z, with negative real part, i.e.,
p(2) is a strongly stable polynomial, is that all the coefficients ay > 0,k = 1,--- ,n.
Indeed, if all real parts are negative then we have either the form

p@ =]]e-(@+ip)
=[] - 20z + o> + 87 (14)
=l—[(zz+az+b), a>0, b>0,

or
r@=[lc-o=]]c+a. a>0. (15)

By successive multiplication we necessarily obtain p(z) with a; > 0. a
We also have

Lemma 2.16. A proper composite loop £, with all v components simple loops
negative has a negative resonance in the kth order Feedback, that is, its character-
istic y; is negative.
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Proof. Indeed the term (—1)”+1P($k") in the Feedback #; has the sign
(=1)"(=1)"*! = —1. Hence the claim. O

Theorem 2.17. If there is no proper composite loop £ of dimension k < n, then
the characteristic coefficient ¢, = 0.

Moreover at least one proper composite loop £, of the system dimension is
necessary to have a nonsingular jacobian matrix.

Proof. From the above Viete formulas the characteristic coefficient ¢, can be
written as

I=r] I=r I=ry

Ck = tg}{ = Z(_l)v 1_[ Ji[f[k(i[) 1_[ Ailﬂk(iI)"' 1_[ Ai[f[k(i[)- (16)

=1 I=r1+1 I=ry—1

Terms in the expression of ¢; with one cyclic permutation correspond to r; = k,
those with two cyclic permutations correspond to r| < k, r, = k — ry, and so on.
Therefore, if there is no proper composite loop -Z; of dimension k, then each term
of the sum is zero. For k = n the system dimension, these formulas yield clearly
Det(A) = |A| = 0. hence the claim. |

Definition 2.18. We say that the qualitative equivalent class (A) or the loop
equivalence class )A( is qualitatively nondegenerate if every matrix in the class
is nonsingular in the sense |A| is nonzero.

We prove

Theorem 2.19. If the loop structure L does contains a composite loop 2, of
the dimension of the system, and all such loop £, have the same sign, then the
corresponding Jacobian determinant | A| is nonzero.

Proof. Indeed suppose all the composite loops .Z, of the dimension of the system
have the same sign. Then c,, consisting of nonzero terms of the same sign, is
therefore nonzero. Consequently, the Jacobian determinant is nonzero.

Moreover ¢, is positive (resp. negative) if all .Z, have an odd (resp. even) number
Vv, (resp. v,) of simple loops L;. O

We also prove

Theorem 2.20. A positive simple loop in the loop equivalence class is a necessary
condition for the Jacobian matrix to have a positive real eigenvalue.

Proof. Recall the characteristic coefficients given in the Viete formulas, that is,

=Y. (=D'P(01,4)- P(02.A)- -+ - P(0y. A), (17)
Ze=(L1..Ly)
where the simple Jacobian loops L;,i = 1,---,v are defined by the cyclic

permutations o;,7 = 1,---,v. Now assume that the region has a negative loop
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equivalence class, i.e., there is no positive simple loop in its loop structure. So every
simple loop L; defined by o; € E&Ej is negative. Therefore the corresponding
nonzero loop product P(o;, A) is also negative. Then for a composite loop %, =
(Ly,--+,L,) we have

sign(=1)" P(o1, A) - P(02, A) - -+ - P(0,, A) = sign((=1)®) = +.  (18)

Thus all the characteristic coefficients ¢, are positive. This entails a characteristic
polynomial of degree n with only positive coefficients. By Descartes’ rules of sign
it cannot have a positive real root. Hence the claim. O

3 Jacobian Loops for Multiple Equilibria

Equilibria or steady states of system (1) are solutions of the equations F(x,a¢) = 0
at the parameter value ay. Together with closed orbits they are the simple dynamics
or limit sets of a system, and sometimes they are “essentially” all that can occur,
e.g., for gradient systems and planar systems. Variants of the qualitative study of
the existence of multiple equilibria may also be found in other literatures. See for
instance [11,26,27,29,30].

Assume that the elements of the Jacobian matrix J are constant in a region &
(open convex) of the phase space not necessarily a neighborhood of a steady state,
and that the equivalence class (J) is qualitatively nondegenerate. Set L to be the
corresponding loop structure. We prove

Theorem 3.1. Assume the loop structure 1L in a region & contains a composite
loop £, of the dimension n of the system, and that all such loops have the same
sign. Then there is a subregion 9 C 9 where the dynamical system cannot have
more than one fixed point.

The proof is based on the following lemmas.

Lemma 3.2 (n-dimensional Mean Value Theorem). Assume f is a differentiable
Sunction in an open convex domain U of R". Then For any a = (ai,--- ,a,) and
b= (b1,---,by) in U there exists c = (c1,-+- ,¢y) €la,bl,c = (1 —t)a + tb, for
some t €0, 1] such that

fb) = fla)=Vf(c).(b—a), 19)
where V f(c) is the gradient of f atc,i.e,V f(c) = Zj:’ %(C).

Consequently if f(a) = f(b) then there exists ¢ = (¢, -+ ,¢,) €]a, b[ such that
V f(c) and b — a are orthogonal. This lemma entails the following.
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Lemma3.3. Let F = (F,---,F,) € €'(U), U open set in R". Assume
|Jr(x0)| # O for some xo € U. Then there exists a neighborhood Wy, of (xo)
where F is one-to-one, that is, fora,b € Wy, F(a) = F(b) implies a = b.

Indeed, a neighborhood being convex, from the n-dimensional Mean Value Theorem
it follows that

0=F(b) - Fi(a)=VF(c).(b—a), i=1--.n c¢ €ablCWg. (20)

But this is a system of linear equations
Z(yk - xk) (c,) =0 1)

with a nonzero determinant. Hence y; — x; = 0 for every k.

Proof (Proof of Theorem 3.1). Indeed points in the region & have a nonzero
determinant, and therefore, admit a neighborhood where the vector field F' defining
the dynamical system is one-to-one. Hence the claim. |

We now address the following questions: What will be a necessary condition in
terms of Jacobian loop to have more than one fixed point in a given region %
We actually prove

Theorem 3.4. A positive simple Jacobian loop is a necessary condition for multiple
equilibria in a given region of the phase-space.

Proof. We consider two a = (aj,a2,-:-,a,) € #£ C R" and b =
(b1,by, -+ ,by) € Z C R". Then the line segment Ja,b[= {x € R"| a < x < b},
with respect to the partial order & previously defined, is included in the

open convex set %. The components F;,i = 1,---,n of the &' vector field
= (F,F,---,F,) are also €' on Z%. Therefore, from the n-dimensional
Mean-value theorem, we obtain, for everyi = 1,--- ,n

Fi(b) — Fi(a) = VFi(¢').(b —a), forsomec' = (cil,ciz,--- ,CL) €la,bl. (22)

We have c = (1 —si)a + s;b, for some 5! E]O 1[. That is ¢’ has components in
the form c = (1—-s"Yaj; +s'b;, j =1,---,n. Therefore we may rewrite the

preceding formula as

Fi(b)—Fi(a) = Z —((1—S Nar+s by, (1= )az+s'ba. -+, (1=s")an+s'by)(bj—a;).
(23)

We now assume F(a) = F(b). (e.g. a and b are fixed points). Then (22) yields the
homogeneous systems of n linear equations of # unknowns

j=n
0= E 3—((1—s’)a1+s’b1,(1—s’)a2+s’b2,--- ,(1—=s"Ya, +5'by)8;, (24)
=1 an
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with §; = b; —a;. This system admits the unique trivial solution (81, 8>, -+ ,8,) =
(0,0,---,0) if the corresponding Jacobian determinant is nonzero, for instance for
a and b in the neighborhood of a point of nonzero Jacobian determinant. That is, in
such a case, F(a) = F(b) impliesa = b.

Let now analyze the case a # b. With respect to the partial order, we may take
a<b,ie,a; <b;,j=1,---n.Denote A, ={1,2,--- ,n}, I, ={j € Ayla; <
aj},and I, = A, — I.. Without loss of generality we may take I, = {1,2,---,r},
and I, = {r + 1,r +2,--- ,n}. Thus for j € I,, there exist a positive real 8 such
thath; = a; +6;. Anda; = b; for j € I,. Therefore we get from formula (24)

= OF,

¢ =(a1+58,a2+58, -+ ,ar+5 8. ary1.- a,), and0 = ,2 W;(cf)a,».
(25)
Set
F; ; i
Jr(c) = [K(C Miziznazj=r = [ij(Dhziznazj=r (26)
j
the n x r corresponding matrix. The assumption a # b requires § = (81, 82,-- , ;)
be a nontrivial solution. It is well-known that the system (24) of n linear equations
of 1 < r < n unknowns admits a nontrivial solution § = (8,8;,---,8,) F#*
(0,0,---,0) if and only if every r x r determinant
4 OF .
Det, = |Jij(c)i<ij<r = |a—(C Misij<r 27)
Xj

formed by r rows is zero. We denote by J”" the corresponding matrix. From
results about determinants in the previous section, we also know that every such
determinant may be written in the form

Detr = Z Sg(”r)P(”erl‘) = Z P(”revjr)_ Z P(]T:’Jl')' (28)

€8, n¢€BE TP €EB?
Therefore

Det, =0 < Y Pt J)= Y Pl (29)

ec=e 0ecR0
TEEET TPEE]

Let now assume that all simple Jacobian loops L; are negative in the system loop
structure corresponding to the region where F(a) = F(b) = 0 with a # b. For an
even (resp. odd) number r the associated compound loop £ having an even (resp.
odd) number v of simple component loops L;, and £ an odd (resp. even) number
v of simple component loops L;, yields all P(xr¢, J,) of same sign but opposite to
that of all P(rr?, J.). Therefore Det, cannot be zero. Hence there must be a positive
simple loop in the loop structure. |
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Remark 3.5. The previous theorem (22) actually settles Thomas conjecture 1 in the
circuits formalism as recalled below [27,29, 32].

Let now assume that the matrix J = [J;;]i<i j<s in (1) is such that its loop
equivalence class J; = (J) has only positive simple Jacobian loops Lk, k > 2. We
prove the following theorem.

Theorem 3.6. Under the previous assumptions, the corresponding system (1) is
linearly equivalent to the system

afi .
y=f0) =00 D). fu(¥)), Wilh% >0 fori # ] (30)

J

Proof. Indeed there is a linear transformation y = T'x converting the Jacobian J
with a positive loop equivalence class to a Jacobian A = [a;;]i<i j<» Whose off-
diagonal elements are nonnegative, and such that x(¢) is a solution of (1) if and
only if y(t) = Tx(¢) is a solution of system (30). We recall here the algorithm
to construct the transformation matrix T = [T};]i<; j<u. T is the diagonal matrix
defined by

Tw=1, T; =0, i#]j

Tiizl, i?él, ifJ1i>OOI'J,'1>O.

(3D
T,'i:—l, i?él, ifJ1i<001’J,'1<0.
T;; = arbitrary if J;; = J;; = 0.

We also have T~' = T, T? = I,. The transformed vector field f(y) and its
Jacobian matrix A are obtained as

ofi
SO)=TF(Ty), y=1,), withAz[Wf]lg,jsnzT-J-T. (32)
J

Hence the theorem. See also [8]. O
In terms of Jacobian loops we get

Corollary 3.7. Assume we have a loop equivalence class )J( whose simple
Jacobian loops Ly, k > 2 are all positive. Then there exists a qualitative diagonal
matrix T, such that the qualitative matrix given by

Ay =T,-J,-T, (33)

has only nonnegative signs s;;, for i # j.

Indeed T, is the qualitative matrix associated with 7.
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4 Loop and Qualitative Stability Analysis

The loop stability refers to the invariance of the Jacobian spectrum under any
variation of entries that leave unchanged its loop structure. Jacobian loops and
their combinations provide valuable information about the stability of a system even
when only the signs, not the magnitudes of the Jacobian terms, are known.

Recall that A 4 denotes the spectrum of matrix A, i.e., the set of all eigenvalues
A of A or zeros of the characteristic polynomial G4 (1).

We summarize the classic characterizations of stability from Routh-Hurwitz and
Lyapunov theories. For more details see [1,6, 13,15, 17].

Theorem 4.1 (Stability Criteria). The necessary and sufficient conditions to have
all real parts negative are given by:

1. (Lyapunov) There exist a positive definite symmetric matrix Q such that
QA + A'Q is a negative definite matrix.
2. (Routh-Hurwitz) All the Hurwitz determinants H; are positive, where

Hy =cy,

C1 C3C5 -+ Cop—1

(34)
1 cacs - copo
H,=|0c¢c¢cm3|=c¢,H,, ¢c; =0, j>n.
000-- ¢
3. (Liénard-Chipart) For all k = 1,--- ,n ¢y > 0, and the alternate Hurtwitz

determinants up to order n are positive.

Definition 4.2. 1. The matrix A is stable (resp. asymptotically stable) if its char-
acteristic polynomial €4(4) is stable (resp. strongly stable), that is, for every
eigenvalue A of A we have Z,(1) < 0 (resp. < 0).

2. A is unstable if it is not stable. In other words, there is at least one eigenvalue A
such that Z,(1) > 0.

3. The matrix A is of saddle-type if %Z.(A) > 0 for some eigenvalues, and
H, (L) < 0 for the remaining.

Therefore a sink equilibrium has a asymptotically stable Jacobian, whereas a
source has an unstable Jacobian.

Moreover, if %,(A) > 0 for every A € A4 the instability is said to be strong,
e.g., a source is strongly unstable. A weak instability is characterized by %, (1) > 0,
for some eigenvalues, and %Z,(A) = 0 for the remaining.

Recall that, as a function of the matrix, A 4 is neither additive nor multiplicative.
Moreover we have the followings:
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1. For a nonsingular matrix A4, i.e., |A| = det(A) # 0, Ay—1 = {%, A€ A4l
So A and A~! must be stable simultaneously.

2. Ag = Ay, A" denotes the transpose of matrix 4. Thus 4 and A’ must be stable
simultaneously.

Definition 4.3. 1. The matrix A is loop stable (resp. asymptotically stable) if every
matrix in the loop equivalence class ) A{ is stable (resp. asymptotically stable).
2. A is loop unstable if every matrix in the loop equivalence class ) A{ is unstable.

Remark 4.4. A loop equivalence class )A( that is not stable is not necessarily
unstable. Instead it does have at least one matrix that is unstable, i.e., with an
eigenvalue of positive real part in its spectrum.

The loop analysis is addressed here for irreducible matrices. Recall a matrix A =
[aijli<i.j<n is irreducible or indecomposable if there is no simultaneous row-and-
column permutation P, — P, such that A is similar to

B O
PAP, — ( s D). (35)

where P, and P, are respectively the row and column permutation matrices, and
B, C are respectively a p x p and a ¢ x g block such p + g = n, and O a
p X q block of zeros. By a Laplace decomposition the spectrum of A is given by
A4 = Ap + Ap, thus reducing its eigenvalue analysis to that of the individual
diagonal block of lower dimension. Therefore we assume all matrices are irreducible
without loss of generality. Actually a P, — P, permutation amounts to a renumbering
of the system variables, and renumbering should certainly not affect the properties
of the system in general, and its asymptotic behavior in particular. [citations]
From the above stability criteria we readily derive

Theorem 4.5. All kth order Feedback Fy positive is a necessary condition for a
stable loop equivalence class.

Moreover we obtain

Theorem 4.6. If the loop structure 1L has a positive simple loop Ly then the
corresponding loop equivalence class cannot be stable.

Proof. Indeed it suffices to construct a representative matrix with k eigenvalues
arbitrarily close to the kth roots of unity by continuity, and one of them is a simple
positive eigenvalue. Therefore the matrix is unstable. Hence the claim. |

Similarly one can prove

Theorem 4.7. The loop equivalence class is unstable if it has a composite loop £,
of the dimension of the system, positive for n even, and negative for n odd.

Proof. Indeed for any matrix A4 in such a loop structure, the presence of a composite
loop of the dimension of the system ensures a nonzero determinant such that the
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characteristic coefficient ¢, = F,, = €4(0) is > 0 for n even, and < 0 for n odd.
This entails the characteristic polynomial of any matrix in the class has a positive
root. The claim is proved. O

Combining the above definitions and properties results in the following [19,34,35].

Remark 4.8. 1. The Routh-Hurwitz stability criteria also imply for the k-order
feedback loop %

Fr >0, Vk
(36)
T3 > F x Fs.

2. Ifﬁ]:Othenﬁ},H:O, r=1,---,(n—1)

3. Positive loops have a negative contribution to %, and therefore hey tend to
destabilize a steady state. Hence their presence promotes instability in the system

4. A steady state with .%; # 0, but %4+, = 0 cannot be asymptotically stable.

5. To have .#; < 0 requires at least one negative 1-loop.

6. To have .%3 < 0 requires the loop structure to contain at least one negative loop
of order 2 or higher.

7. An important consequence of the last is that in the absence of negative feedback
loops of at least order two, the system cannot have any stable periodic behavior
such as stable limit cycles. See also [snoussi]. Therefore negative feedback loops
promote oscillations in the system.

8. Whenever the positive and negative feedback loops fulfill their dynamical role,
they are said to be functional.

S Applications

5.1 Qualitative Modeling in Biological and Biochemical
Sciences

5.1.1 Background

Many proteins are transcription factors binding to DNA to regulate the transcription
of specific genes, synthesizing RNA from coding regions of chromosomal DNA.
Regulation occurs during the complete process of gene expression. Identical DNA
does not imply identical gene expression. Most genes are part of a gene network
from which one can draw an interaction graph consisting of vertices (genes) and
directed edges endowed with sign, positive to indicate activation, negative for
inhibition and zero to indicate the absence of effect of a gene on another. In
general the strength of the interactions between genes is unknown, that is, the lack
of quantitative information. Therefore determining the dynamical properties of a
gene network solely for the qualitative topology of the interaction has proved to



Dynamical Roles of Jacobian Feedback Loops and Qualitative Modeling 223

be difficult; some methods were based on numerical simulation choosing realistic
kinetic parameters. Other methods involve the study of the statistical properties of
gene networks comparing the interaction graph with random ones. Decomposition
of the graph into submodules of biological significance has also been tried.

Feedback loop patterns are important for many biological activities, such as the
circadian rhythm of sleep-wake cycle generated by genes in a network of positive
and negative feedback loops, or for the fates of cells in the transition of an egg to a
multi-cellular organism.

Cell differentiation was suggested earlier on in the 40s e.g., Max Delbruck in [3],
to be associated with distinct states of expression in the cell genetic regulatory
networks. Differences transmissible from cell to cell in the absence of any genetic
difference are called epigenetic differences, also involved in cell differentiation, and
part of the more general process of the so-called multistationarity the display of
multiple steady states. During cell differentiation a gene can be activated by the
product of another gene and remains on after the disappearance of this product.
Biologist for many years have recognized the stabilizing roles of negative feedback
loops within networks of interacting genes and proteins: for instance the protein
product of a gene could act to inhibit its synthesis, eventually turning it off as the
protein concentration increases. As for the positive feedback loop, a gene expression
could trigger further increase in its expression, leading in the absence of mitigating
factors to an unbounded increase in various protein concentrations. As a result, with
other factors coming into play, the cell could be switched from on stable condition
to another. It has been known for some time there exists a positive feedback
loop in all biological systems displaying multistationarity on which is based a
cellular memory. Then Thomas in 1981 formally conjectured that the presence of
positive feedback loop (termed circuit) is a necessary condition for multistationarity.
Thomas also conjectured at the same time that negative feedback loops are necessary
for the biological homeostasis and periodicity. While these conjectures could be
easily stated in the biological context, a major challenge has been to state and
prove them using the mathematical models of biological processes, which display
essentially qualitative features. The Jacobian feedback loop methodology has indeed
helped to settle these conjectures [2—4,11,22,28,30,31].

It has been also shown that positive loops account for many features of memory
stricto sensu(neural memory and mnesic evocation) and largo sensu (differentiation
and immunological memory). The combination of positive and negative loops could
provide some powerful regulatory modules, with enormous dynamical possibilities
in neurobiology. An application of such combination has been given in problems of
synchronization and desynchronization of a neural model for hippocampus memory
evocation processes. See [2,4, 11].

Note also that in biological networks, the occurrence of feedback loop is often
in a coupled structure rather than in a single isolated form. Thus the importance of
understanding the dynamics of coupled feedback loops, in particular dynamics not
predictable by just the combinatorial dynamics of the individual component loops,
as it is often the case. We see the dynamical role of coupled feedback loops below
in the qualitative Lorenz and Rossler systems [16,22,23].
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5.1.2 Thomas Conjectures

We restate Thomas’s conjectures in the loop formalism [29-32].

1. Conjecture 1 [1981] The presence of a positive feedback loop (somewhere in the
phase space) is necessary condition for multistationarity.

2. Conjecture 2 [1981] The presence of a negative feedback loop of length at least
two (somewhere in phase space) is a necessary condition for stable periodicity.

3. Conjecture 3 [1999] Chaotic dynamics require both a positive feedback (zo
allow multistationarity) and a negative feedback loop (fo allow for permanent
periodicity).

Remark 5.1. 1. Soulé in 2003 presented a proof of conjecture 1. Some partial
results were also given by Plahte et al (1995), Snouussi (1998), Gouzé (1998),
Cinquin and Demongeot (2002). See [7, 19,26,27]

2. Under additional assumptions Snoussi and Gouzé also proved Conjecture 2.
See [4,26]

3. Conjecture 3 is also included in a more general conjecture by Toni et al in 1999,
yet to be settled [34-36].

5.2 Eisenfeld Qualitative Stability

Eisenfeld et al also studied in [5] qualitative stability, that is, strictly from the sign
patterns. The results could be easily derived as well from the above analysis using
the qualitative equivalence terminology. For instance

Lemma 5.2. [fthe loop structure of the n-dimensional system contains a composite
loop of length n and all such composite loops have same sign then the Jacobian is
nondegenerate, i.e., det(J) # 0.

See details in [5]. Lemma that entails

Theorem 5.3 (Eisenfeld Stability). Assume the loop structure has all composite
n-loop of same sign. Then a necessary and sufficient condition for a stable sign
equivalence class is that the loop structure has the following features

1. There is at least a 1-loop.

2. There are no positive 1-loops

3. There are no positive 2-loops

4. There are no k-loops with k > 3.

And leads to

Corollary 5.4. A necessary condition of the sign equivalence class to be unstable
is that its loop structure contains no more than (n — 1) negative 1-loops.
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For a system to undergo a Hopf bifurcation, ensuring the existence of limit cycles,
its Jacobian must admit an exchange of stabilities. Therefore we have

Corollary 5.5. A Hopf bifurcation requires a sign equivalence class that is neither
stable nor unstable.

Remark 5.6. 1. An example of a sign equivalence class neither stable nor unstable
is one associated with a loop structure containing n negative 1-loop L, ,i =
1,---,ni.e., at each vertex and at least one k-loop with k > 3.

2. Intuitively the negative loop may be seen as stabilizing whereas the positive loop
could be seen as destabilizing.

In terms of composite loops and their sign as defined in the previous sections, we
state

Theorem 5.7. A sufficient condition for an unstable sign equivalence class (quali-
tatively unstable matrix) is that in the loop structure there is at least one integer k,
(1 < k < n) such that either there is no composite k-loop or they are all positive
(strong instability.)

See details and proof in [5].

5.3 Loop Analysis in the Plane

Consider a square matrix A of order 2 given by

an a
A = ( 1 12) (37)
as an
with entries constant with respect to the state variables, possibly depending on some
parameters. The above stability criteria translate into

Tr(A) =a; +ax»n <0
(38)
|A| = anaxn —anas.

We obtain the following loop interpretation. There is a parabolic boundary line at
Tr(A)? — 4|A| = 0 between real and complex eigenvalues. Complex eigenvalues,
i.e., oscillations are possible only when aj,a;; < 0, which corresponds to a negative
2-loop. Crossing the boundaries of the second quadrant is the fundamental way
to lose stability, leading to the appearance of a positive feedback loop rendering
positive the real part of the eigenvalues. Thereby the stable periodicity is destabi-
lized into a limit cycle for complex eigenvalues, or promoting multistationarity, i.e.,
saddle point for real eigenvalues.
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Oscillations require the necessary condition Tr(A4)?> — 4|A| < 0, that is, (a;; —
a22)2 < —4ajpa;;. Therefore a negative 2-loop L;y is necessary for any periodic
behavior (center, stable focus, or limit cycle).

For a two-dimensional system, we also have the following results.

Theorem 5.8. Any loop structure in the plane consisting of two I-loop L, of
opposite signs and a negative 2-loop cannot be loop stable or loop unstable.

The proof is based on the following lemma:

Lemma 5.9. The qualitative equivalence class given by

() = (j: :) : (39)

cannot be stable and cannot be unstable, that is, there is a matrix A € () such that
A is unstable or stable.

Proof. The equivalence class above is the so-called 1-striped sign pattern; as such,
given any monic quadratic polynomial g(x) = x> + bx + c, there is a matrix
M with characteristic polynomial €4(A) = ¢(A). Therefore there is certainly one
whose spectrum contains an eigenvalue with a positive (resp. negative) real part.
Hence the claim. a

Proof (Proof of Theorem 5.8). The proof of theorem 5.8 follows immediately;
indeed by combinations such as negation, transposition, permutation, signature
similarity, one can construct a matrix M with the loop structure of two 1-loop of
opposite signs and a negative 2-loop in a such way that the matrix M is in a class of
the type in Lemma 5.9. a

Based on the Linear Stability Theory, we can classify the loop equivalence
classes in the plane as follows. See also [12].

Theorem 5.10. /. The loop structure consists of only a negative 2-loop L5 : The
dynamic is that of a linear center, that is, a family of periodic orbits surrounding
the origin.

2. The loop structure 1. consists of a negative 2-loop L5 and two 1-loop of same
sign; the dynamic is that of a focus point, that is, the presence of sustained
oscillations around the origin. If the system is bounded then there exists a limit
cycle surrounding the origin.

3. The loop structure consists of only two I-loops of opposite sign (resp. same sign).
Then the origin is a saddle point (resp. a node stable for negative 1-loops, and
unstable for positive 1-loops).

4. These loop equivalence classes are the only loop equivalence classes in the plane.

Proof. Immediate from Linear stability theory adapted in terms of sign patterns.
Indeed every 2 x 2 matrix is amenable, via nonsingular linear transformations to
one of the forms:
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a0 a b
(60) (50): o)

The sign equivalence classes consist of the following sign patterns:

1. Absence of 2-loops.

+ 0 + 0
= , = , 41
0 (Oi) 0 (O ¢) (4D
2. Absence of 1-loops
0 £ 0=+
= , = , 42
0 (io) 0 (”) “2)
3. Presence of 1-loops and 2-loops including of same or opposite sign.
+ +
= , 43
0 ( N i) 3)
|

Therefore we have formally, as indicated above

Corollary 5.11. A negative 2-loop L5 is a necessary condition for any periodic
behavior such as a center, a focus, or a limit cycle, i.e., an isolated periodic orbit.

5.3.1 Biochemical Application: Two-Component Oscillators

Consider a two-component network of a chemical reaction system given by

X1 = fi(x1,x2)
(44)
X2 = falx1, x2),

possibly with some dependence of fi and f; on the kinetic parameters. Recall that
the Bendixon’s negative criterion claims that if the divergence div(fi, f2) is of
constant sign in a region of the plane, then there can be no periodic solution in that
region. For chemical reaction systems the diagonal entries of the Jacobian matrix
are usually negative. If both a; and a,, are always negative, that is, the existence of
a constant negative 1-loop in the loop structure, then the trace never changes sign,
and Hopf bifurcation cannot occur in such a system. So at least one of them must
be positive, indicating autocatalysis. With the diagonal elements of opposite sign,
in order to have the determinant positive, the off-diagonal elements must also be
of opposite sign. The typical sign patterns for a Hopf bifurcation are given by the
following.

()= (+ +) , (45)
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representing the so-called substrate-depletion oscillator. [Tyson]. The production of
X1 is autocatalytic, and the reaction speeds up as x| increases, until the substrate x,
is depleted to the extend that the reaction ceases. The matrix

()= (j: :) : (46)

corresponds to the activator-inhibitor models. Intuitively, when x, is rare, x
increases autocatalytically. The degradation of the x; is inhibited with their accu-
mulation stimulated by abundant x;, which feeds back to inhibit the production of
x1. After x; disappears, x; is also destroyed, and then x| can make a comeback.

Therefore a two-component biochemical reaction system can oscillate if there
exists in its loop structure at least one positive 1-loop, that is, autocatalysis along
with a negative 2-loop. Autocalysis represented by a;; > 0 has a major role in
biochemical oscillations, and usually occurs when a chemical decelerates the rate
of its own destruction. a;; > 0 together with a;; > 0 indicates the x; activates the
production of x; and vice versa, leading to a feedback loop generating an indirect
autocatalysis. When a;;a;; < 0, there exist a negative 2-feedback loop indicating
that x; activates the production of x; but x; inhibits the production of x; [35].

5.3.2 More Illustrative Planar Examples

1. Consider the sign equivalence class

()= (: f) 47

¥=-x+y

given by the system

i (48)
y=-x-y

The loop structure consists of two simple negative 1-loops, a simple negative

2-loop, and a proper composite loop of resonance (2,2) given by .£2 = L U

L7 . The absence of any positive loop excludes multistationarity; and indeed the

system has a single steady state. From the previous theorem, this single steady is

a stable focus as indicated by the presence of a negative 2-loop and two negative

1-loops. Such conclusion is also confirmed by the traditional stability analysis.
2. For the sign equivalence class given by

+ *
0=(17) “9)
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note that all loops are positive, allowing for multistationary, that is, the existence
of multiple steady states, none of which could be stable, due to the presence of
the positive 1-loops. Indeed the traditional methods ensure the presence of two
unstable nodes separated by a saddle point.
3. If the sign equivalence class is
() = (_ _) (50)

the loop structure has a simple positive 2-loop L;"y and two simple negative
1-loops Ly and LY. This allows for multistationarity, with possibly the presence
of stable steady states, actually two stable nodes and a saddle point from
conventional methods.

5.3.3 Two-Dimensional Model for Electrochemical Corrosion

We present how the Jacobian feedback loop methodology is applied to the electro-
chemical corrosion model initially developed by Talbot and Oriani. See also [36].
That is, a metal M is dissolving in an electrolyte solution in such a way that any
given point of the metal surface at any given time is either bare or covered with
adsorbed MOH to passivate the underlying metal. The model system reproduces the
dynamics observed during potentiostatic dissolution of copper in an acetate buffer.
In terms of dimensionless variables the system is given by

x=p(l—y)—gx 1)
y=x(l—y)—ye

with the state variables confined to interval [0, 1], for the positive parameters values
P, ¢, and B. In the region of steady states, the Jacobian matrix is

Jz(_q _”), (52)
I—yan

where ay; is a function of the parameters p, ¢, and 8 given by a = %(ﬂy -
By + 1). The associated qualitative matrix is

J:(_ o )
+ sign(an

Therefore the loop structure has a negative 1-loop L and a negative 2-loop L,
satisfying the necessary condition for periodic behavior. Moreover the only way to
secure a positive loop to promote multistationarity and sustained oscillations is to
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getay, > 0. Thisisrealized for B > 4and y € [Y;, Y2 with Y}, = %(1 F.,/1- %).
This implies there exists a region in the parameter space with a positive loop
necessary for multistationarity. There is also the possibility of sustained oscillations
due to the presence of the negative 2-loop L7,

Therefore the loop analysis allows to predict a region of coexistence of mul-
tistationarity and sustained oscillations, actually limit cycle. See more in details
in [36]. We note that the sign of the single Jacobian term a,, was crucial for
both multistationarity and limit cycle. We were able to predict the global dynamics
without resorting to actual integration of the system.

5.4 Loop Analysis for a Three-Dimensional System

Consider the corresponding matrix

ap ap a;
A= \ayanan]. (53)
asi axn as;

The characteristic polynomial €4(1) = A3 + ¢{A? + c2A + ¢3 has the coefficients

c1 =—(an +ax +az) =-Tr(A)
Cy = —apdz; —aasz —asdp + anan + anass + assan

C3 = —a120a23a3] — A13a32d21 + 41102303 + A20a13a31 + A33a12021 — 411322033
(54

5.4.1 Saddle-Focus Loop Interpretation

In the associated 3-variable xyz systems, a saddle-focus may be described as follows
in terms of loops

1. A repulsive periodicity in the xy-plane, attractive along the z-axis with the loop

structure

L:LQUL;yuL;

where L:‘ ~stands for a positive 1-loop at either x or y.
2. A steady state periodically attractive in the xz-plane and repulsive along the y-
axis requires

L:L;UL%UL;
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The presence of a positive 3-loop Lfyz could destabilize these periodicities. Note
there are only two 3-loop in the matrix A given respectively by ajxazsas; and
asjasnar;. In addition wherever they exist together they are coupled to the three
2-loops ajxazy, ajsas;, and azsasz,. Such a strong coupling might preclude the
appearance of a chaotic attractor, leading to the conjecture

Theorem 5.12 (Conjecture). There are no three-dimensional chaotic systems con-
sisting of two coupled 3-loops.

We also prove

Theorem 5.13. Any three-dimensional loop structure containing the two negative
2-loops L, and L7, the positive 2-loop L;’Z, in the absence of any positive I-loop

+ . i P o7 .
LY and negative 1-loops L, and L7 is destabilized by the two positive 3-loops
whenever they are present.

Proof. Indeed such a loop may be represented by a qualitative class whose is similar
by the usual operations of signatures and permutations, to

+/0 — +
+ —/0 — |. (55)
+ + +/0
One can easily construct a matrix in this class with a positive eigenvalue. |

Theorem 5.14. For a three-dimensional system the following four loop equivalence
classes cannot be stable.

1. The loop structure () consists of two I-loops Lft of opposite signs, and two
negative 2-loops L5 , no 3-loop.

2. The loop structure () consists of one positive 1-loop L, and two negative
1-loops L7, one negative 2-loop L5 , and one positive 2-loop L3, but no 3-loop.

3. The loop structure () consists of two 1-loops Lft of opposite signs, and one
negative 2-loop L5 , and a positive 3-loop Lj'yz.

4. The loop structure () consists of two 1-loops Lft of opposite signs, one negative
2-loop L5, one positive 2-loop LY, and a negative 3-loop Ly,

5. These loop classes cannot be unstable, and are the only ones that cannot be
stable and unstable.

6. These equivalence classes are the ones necessary for any Hopf bifurcation
ensuring the existence of limit cycles.

Before presenting the proof we state the following conjecture to be illustrated in the
next section [12].

Theorem 5.15 (Conjecture). The previous loop equivalences are some of the nec-
essary loop structures for the onset of any chaotic behavior in a three-dimensional
system.
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Proof (Proof of Theorem 5.14). We consider in each case a representative qualitative
equivalence class, that is, a sign-pattern with such a loop pattern, and then use some
results for advanced matrix theory on the so-called arbitrary spectrally sign pattern.
By signatures and permutations, a representative sign-pattern of the classes above
is similar to respectively the following sign-patterns well-known to be spectrally
arbitrary, that is, they contains a matrix whose spectrum has a positive eigenvalue,
root of an arbitrary monic cubic polynomial.

1. Case one
+ -0
+ 0 — (56)
0+ —
2. Case Two
+ -+
+ -0 67
+ 0 —
3. Case three
+ -0
+ 0 — (58)
+ 0 —
4. Case four
+ + -
+ 0 — 59)
+ 0 —
O

We now will present a Jacobian loop analysis of the well-known Lorenz and
Rossler systems, paradigms of chaotic dynamics, as a step toward the necessary
and/or sufficient conditions in terms of Feedback Loops for the onset of chaos.

5.4.2 A Loop Analysis of the Lorenz System

The Lorenz system [16,33] is described by

XxX=0(y—x)
y=px—y—xz (60)
z=—Bz+ xy,
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where (x,y,z) € R?, and 0,p, 8 > 0. The Lorenz equations can also be found
in simplified models for lasers, dynamos, electric circuits, chemical reactions. The
variable x is proportional to the intensity of convective motion, y is proportional
to the temperature difference between ascending and descending currents and z
is proportional to the distortion from linearity of the vertical temperature profile.
The Lorenz flow is dissipative, contracting volume with a negative divergence
—(1 + B + o). The Jacobian matrix at a steady state p*x = (x*, y*, z*) is

—o o O
A=|p—zx —1 —xx |, (61)
yx  xx —f

with the corresponding qualitative Jacobian

- + 0
Ay =|sgn(p—zx) —  —sgn(xx) ], (62)
sgn(yx) sgn(xx) — —

The main characteristics of the Lorenz system are

1. The system is invariant under reflection in the z-axis.

2. Its equilibria are the origin O = (0,0, 0) for all values of the parameter p, and
Ey = (£/B(p—1),£/B(p—1),p— 1) appearing at p > 1 and symmetric
with respect to the z-axis.

We give here a complete loop interpretation of this most celebrated system. First the
stability parameters given by the k-order feedback loops lead to

F1=—(0c+p+1)<0
Fr=Pp+o(l+p)—op+oz*+xx (63)
F3=—0(B(1 —p) + Bz*+x %y * +xx%)

Hence we have

1. # is always negative, ensuring the constant presence of at least one negative
1-loop L;/y/z.
2. % =0forp=p, . This entails %, > 0 for p < p, to

promote stability and .%, > 0 for p < p, to promote instability.
3. jg, =0 fOI‘p =p = a(ﬂ(l—p)+ﬂz*+x*y*+x*13

o

— BHo(1+B)—op+ozx+x*

From the qualitative Jacobian A,, there are three persistent negative 1-loops
L7, L7, L7 . Then under the plane z = p appears an additional positive 2-loop
L;Ly in the loop structure corresponding to the qualitative matrix

- + 0
A}I = + —  —sgn(xx)|. (64)
sgn(y*) sgn(xx*) -
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Whereas in the plane z = p itself, the previous positive disappears, as indicated by

- + 0
A; = 0 —  —sgn(xx*) |. (65)
sgn(yx) sgn(x*)  —

Now above the same plane, that is, for p —z > 0, a negative 2-loop L\, emerges as
seen in

- + 0
=1 - = —senlen ). (66)
sgn(y*) sgn(x*) —

The symmetry of the Lorenz system with respect to the z-axis imposes the analysis
along that axis and the region % with x and y respectively of the same and opposite
sign. On the z-axis, we have

- 40
Ay =+/0/--0]. 67)
0 0 —

that is, sp; is respectively (4), (0), (—) under, in, and above the plane z = p.
Therefore the loop structure has only the previous persistent ones. In the region Z+
the loop structure is given by

- +0
Af =[+/0/--F|. (68)
+ o+ -

with again s,; taking respectively (+), (0), (—) as we move vertically. Now a
negative 3-loop L persists throughout the region, coupled successively under the
plane z = p with a positive 2-loop LY, and a negative 2-loop L, in the plane, only
with the negative 2-loop L7, and above with a negative 2-loop L}, and a negative
2-loop L.

In the negative region %~ the loop structure corresponds to

- 40
Ay = +/0/--=F|. (69)
F o+ -

The previous 2-loops are now coupled with a positive 3-loop L;'yz.

We now consider the loop structures around the steady states. First around the
origin, we obtain

- +0
A9=1+-0]. (70)
00—
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Therefore in addition to the persistent negative 1-loops, a positive 2-loop L;ry
appears. And the feedback parameters .%; adjust to

Fi=—(0+Bp+1)<0
Fr=p(1+0)+o(l—p) (71)
F3 = —oB(1 —p))

T — — B(+p)
Thus the stability breaks downat p = l andatp = 1 + Tp.

Around the steady states Ex+ = (£+/B(p— 1), £/B(p—1),p— 1) forp > 1
the qualitative Jacobian becomes

-+ 0
A=+ -F|. (72)
+ + —
Therefore a negative 3-loop L, emerges coupled with a positive 2-loop Lj'y and a
negative 2-loop L. And the feedback parameters Z become

Fi=—(0+B+1)<0
Fr=p(oc+p) >0 (73)

F3==20B(p—1) <0.

meeting the above stability criteria. However as p approaches 1 from above, stability

is lost. Recall from nonlinear theory on the Lorenz system that there is a subcritical

Hopf bifurcation at the equilibria E4+ when 1 < py = ‘T(U‘T_'F—/fjl’”, for a range of

values of o and 8, with E4 stableforo < 8+ lorl <p < pjando > f + 1.
The overall loop interpretation for the Lorenz systems goes as follows:

1. For any value of p > 0 the positive 2-loop L;'y promotes multistationarity under
the plane z = p to become a generator of periodicity L, with the corresponding
oscillations normal to the xy plane due to L} and L7

Xy’

2. Around the origin, indeed stable for p < 1, the previous positive 2-loop Lj'y
actually functional ensures multistationarity realized with the emergence of the
two steady states £+ and a loss of stability at p = 1. These steady states E

could be seen as symmetrical foci generated by the negative 2-loop L.

3. In the region Z* the periodicity generated by the negative 2-loop L7 could be
damped by the two negative 1-loops L. and L, made into a stable attractor
along the x-axis due to the negative 1-loop L, and transient due to the negative
3-loop LY, . Whereas under the plane this periodicity could be destabilized by

the positive 2-loop L;"y into limit cycles.
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4. However all these trajectories are forced to switch from one attractor to another,
crossing the z-axis periodically.

5. Crossing the plane z = p the positive 2-loop L;Ly disappears to reappear negative
in the plane; thus the existence of the two generators of periodicity, distinct yet
coupled at y. The oscillations are damped due to the negative 1-loop L.

6. The negative 3-loop L, is functional and contributes to destabilize the periodic
behavior, and sooner or later, forcing the trajectories to cross the z-axis,
periodically due to the appearance of the negative 2-loop L, on the z-axis.

7. The combination of these local periodic movements, together with the global
destabilizing influence generated by the negative 3-loop which may indicate the
presence of the so-called strange attractor.

8. In addition a positive 3-loop L;ryz (of the dimension of the system) is present in
the other region %Z~ (x and y of opposite signs), with a destabilizing effect in
the whole region, making it the appearance of the attractors impossible under the
plane, as well as that of the strange attractor above the plane, with the additional
effect of directing the trajectories toward the attractors or the strange attractor
whenever appropriate.

Remark 5.16. In conclusion, considering a qualitative Lorenz system, that is, in
terms only of the sign of Jacobian entries and the corresponding loop structure, we
obtain the presence of a destabilizing positive 2-loop L;Ly, a negative 2-loop L7
unique generator of periodicity promoting the two symmetrical attractors. And in
addition we have the presence of a negative 3-loop, of the dimension of the system,
which contributes to confining the system to bounded regions of the variables, forces
the switching from an attractor to the other while ensuring the periodic recurrence

of the entire process.

5.4.3 A Loop Analysis of the Rossler System

The Rossler system [23] is given by
X=-y—z
y=x+ay (74)
z=b+xz—cz

The system has two steady states or equilibria E 4 located at

ceve2—dab  ceNe?—4dab ciNc? —4ab
2 ’ 2a ’ 2a

associated with the Jacobian matrix

(x4, y+,24) = ( ) (75)

0—-1-1
1 a 0], (76)
z 0 —c
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and its qualitative equivalence class

0 — —
++0]. (77
+0—

For a wide range of the parameters a,b,c the system exhibits two unstable
equilibria of type saddle-focus periodically repulsive (resp. attractive) in a plane
while attractive (resp. repulsive) along a normal direction.

The loop structure contains two negative 2-loops L, and L along with two
1-loops of opposite signs L;r and L. Note, as conjectured, the presence of two
proper three-dimensional composite loops 92”32 given by the negative (L;', L7,) and
the positive (L, Ly,).

A complete loop analysis as in the Lorenz case above leads to predict the chaotic
behavior of the system.

6 Concluding Remarks

Given its fundamental qualitative nature, the methodology of Jacobian feedback
loops allows only necessary conditions, not sufficient ones. However such necessary
conditions are powerful enough to predict the effect to different structural or
parameter changes. Indeed changes in the equations leading to a violation of any
necessary conditions in terms of loops should yield the change as well in the
dynamic behavior. And changes in the equations which do not affect the feedback
loop structure of the Jacobian should preserve the dynamic behavior.

The above definitions, properties and theorems are the fundamentals of the
theory of the Jacobian Loops analysis. They show that Jacobian loops and their
combinations play an important dynamical role in a system, even when only the
signs, not the magnitudes of the Jacobian terms, are known. Using stability analysis
one can attain only the local dynamics of the system, and hence the need to use,
for instance, numerical integration in conjunction to obtain global dynamics which
can be predicted by the feedback loop methodology, as for the Lorenz and Rossler
systems. This is a great advantage over the classical approach. Indeed it allows
one to assert whether sustained oscillations, multistationarity, or chaotic dynamics
are possible. As such this analysis is certainly an efficient tool in the qualitative
modeling of complex systems. It allows to:

1. Stress qualitative understanding as the primary goal rather than numerical
prediction.

2. Supplement the more familiar large scale quantitative methods made possible by
improved computer technology.

3. Include variables difficult or even impossible to measure, e.g., a diabetes model
should include measurable variables such as glucose, insulin and other chemicals
but also real variables such as anxiety or stress but any attempt to measure stress
is itself stress inducing.
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In economics [24], behavioral and social sciences, as well as in complex physical
sciences relevant informations about the underlying dynamics reside in the rules of
construct of the system and not in the absolute values.

The Jacobian loops technique, easy to implement, intends to quickly demarcate
both parameter and phase spaces into exciting regions (limit cycles, multiple
equilibria, chaotic behavior), non-exciting regions (single stable fixed point), and
hard-instance regions (ergodic behavior). Hence it could prove useful in surveying
dynamical response of models simulating physico-chemical, biological and bio-
chemical, and economical systems, as well as in game theory.

6.1 Open Problem and Future Research

We present here some directions to improve the effectiveness of the qualitative anal-
ysis of systems based on the Jacobian feedback loops. Recall a loop is determined

by a set of nonzero terms a;; = % of the Jacobian matrix whose i (row) and j
J

(column) indices are in cyclic permutation. Its oriented edges (arrows) are the a;;
elements considered with their signs to indicate positive, negative or no interaction.
A loop is usually symbolized by the product of its elements: for example, a 3-loop
L,,, is given by ajxas3as;. A loop is positive or negative depending on the sign of
this product, this is, depending on whether it comprises an even or an odd number
of negative elements. A positive feedback loop is destabilizing, whereas a negative
feedback loop is stabilizing. For instance a minimal requirement for oscillations is
the existence of at least one positive and a negative feedback loop, e.g. in chemical
reactions systems [25,37].

1. We want to emphasize that qualitative modeling should consist of strictly
qualitative relations and assumptions, as opposed to studying the qualitative
structure of models consisting of some quantitative features which actually
describes the classic qualitative analysis.

2. In qualitative modeling the rate of change x should be defined as a qualitative rate

of change %, that is, rather than just taking the sign of the entries of the Jacobian,
one should consider directly the qualitative interaction per se of the variables
x = (x;,i =1,---,n).

3. A qualitative algebraic structure should be developed independently, not just by
“signing” the current algebras. The study of the qualitative and loop equivalence
classes is a first step.

4. There is a need of strong qualitative or loop stability theorem similar to the
Lyapunov’s theorem; this could be done only through a direct qualitative study,
rather than translating from the signs of quantitative values. That is, proving the
existence of a Lyapunov function using only qualitative properties and relations
of the variables and/or parameters interactions.
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5. Complexity is the keyword in the evolution of systems. And its main tool of
analysis is a qualitative one, which could achieve a greater generality and realism
than does the usual quantitative idealization of most mathematical models.
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Forecasting of Time Series Data Using Multiple
Break Points and Mixture Distributions

Rajan Lamichhane, Norou Diawara, and Cynthia M. Jones

Abstract Stochastic processes have applications in many areas such as oceanog-
raphy and engineering. Special classes of such processes deal with time series of
sparse data. Studies in such cases focus in the analysis, construction and prediction
in parametric models. Here, we assume several non-linear time series with additive
noise components, and the model fitting is proposed in two stages. The first stage
identifies the density using all the clusters information, without specifying any
prior knowledge of the underlying distribution function of the time series. In
the second stage, we partition the time series into consecutive non-overlapping
intervals of quasi stationary increments where the coefficients shift from one stable
regression relationship to a different one using breakpoint detection algorithm.
These breakpoints are estimated by minimizing the likelihood from the residuals.
We approach time series prediction through the mixture distribution of combined
error components. Parameter estimation of mixture distribution is done by using the
EM algorithm. We apply the method to a simulated data.
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1 Introduction

Stochastic processes for longitudinal data are fundamental in probability and statis-
tics and have applications in many areas such as oceanography and engineering.
Special classes of such processes deal with time series of sparse data. Studies in
such cases focus on the analysis, construction and prediction in parametric models.

In this work, the prediction of time series is revisited and a different approach of
prediction based on mixture distribution is explained with a simulated example.The
density uses all the clusters information, without specifying any prior knowledge
of the underlying distribution function of time series. The change in stability of
regression coefficients during the time course can be accounted by creating differ-
ent breakpoints. The time course is partitioned into consecutive non-overlapping
intervals where the coefficients shift from one stable regression relationship to a
different one. These breakpoints are estimated by minimizing the residual sum of
squares (RSS) using the algorithm described by Bai and Peron [15]. The foundation
for estimating breaks in time series regression models was given by Bai [11] and was
extended to multiple breaks by Bai [12] and [13] and Bai and Perron [14] and [15].
The algorithm in selecting the number of change points is based on a simple iterative
step in which the maximum difference is less than a critical value of the difference of
two consecutive values and is less than an optimal threshold chosen in a Bayesian
framework. The partition algorithm fits a different probability model maximizing
likelihood within each block interval.

Since different parts of data fit different models, forecasting depends not just
on one model, but on all the relevant models. Method based on mixture of
different distributions to forecast this type of model is explained. The Expectation-
Maximization (EM) algorithm, with initial values obtained from the empirical
estimates, gives the estimates of the mixture distribution. Further improvement
in the parameter estimation has been observed by using bootstrap re-sampling
combined with EM algorithm. For simplicity, we name this method as Break Point
Bootstrap Filtering (BPBF) method.

This work is an extension of the ideas developed akin to the cited references
and related work. It presents a novel concept in time series prediction and some
supporting empirical evidence in terms of real data. The concept of using multiple
break points based on minimum RSS or Bayesian Information Criteria (BIC) does
not always create desirable partitioning of intervals. There could be very few
observations in some intervals and the estimates based on those observations may
be suspicious. In such cases, the estimation of parameters are improved by using
block bootstrap. The block bootstrap as described in Bai [11-13] is the most general
method to improve the accuracy of bootstrap for time series data. By dividing the
data into different blocks, it can preserve the original time series structure within
a block. However, the accuracy of the block bootstrap is sensitive to the choice of
block length, and the optimal block length depends on the sample size, the data
generating process and the statistic considered. In our examples, we are using the
approach proposed by Patton et al. [26] to identify the optimal block size. Varying
block lengths that follow the geometric distribution are considered, and thus we
avoid the problem of non-stationary by its construction [27].
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This chapter is organized as follows. Section 2 presents the guidelines and
theory of the different procedures in model fitting. The distributions of the models
are specified, and our new method is provided. In Sect. 3, we apply the method
to simulated data and get estimation of parameters as well as model forecasting.
Conclusion is presented in Sect. 4.

2 Model Building

Partially observed time series models are studied under various conditions, e.g. state
space models [19], dynamic models [31], and hidden markov models [17]. All of
these methods work if we have regular time series data where the model structure
does not change locally. In other words, if the variance changes locally, then it is
hard to build the model based on regular time series approach. However, there are
cases where structural changes or breaks appear to affect models, for example in the
evolution in key economic and financial time series such as output growth, inflation,
exchange rates, interest rates and stock returns.! If data are collected over a long
period of time, we are more likely to observe the structural change. This change
could be the result of many possible factors such as institutional or technological
changes, environmental changes, shifts in economic policy, or could even be due
to large macroeconomic shocks such as the doubling or quadrupling of commodity
prices experienced over the past decades.

One main goal that arises in the context of time-series forecasting of such models
is to incorporate these different model structures to estimate the overall model
parameters. Sometimes it is reasonable to assume that if breaks have occurred in
the past, surely they are also likely to happen in the future. Approaches that view
breaks as being generated deterministically are not applicable when forecasting
future events unless, of course, future break dates as well as the size of such breaks
are known in advance. In most applications, this is not a plausible assumption and
modelling of the stochastic process underlying the breaks is needed. In this section,
we provide a general framework for forecasting time series under structural breaks
that is capable of handling the different above scenarios.

Regular time series linear model of responses Y based on predictors X can be
defined as:

Y =XB+¢,

where the errors §’s are not independent and assume stationarity process. These
errors are assumed to be unobserved, and our goal is to formulate their distributional
form.

Also, the lag h autocovariance for the § is given by:

Cov(&i, &—n) = Cov(&i, §in) = y(h) = Uzplu

! A small subset of the many papers that have reported evidence of breaks in economic and financial
time series includes Garcia and Perron [21], Koop and Potter [24], and Pastor and Stambaugh [25].
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and the ¢ follows an autoregressive moving average process of order (p,q), we
denote as ARMA(p, ¢) which is:

G—9&1—Pli2— . =Gy =Z + O Zi + ...+ 097,

with {Z,} being the white noise of the { process and ¢1,...,¢, and 0;,..., 8, are
AR and MA components, respectively.

Also, we can further extend the model to autoregressive integrated moving
average, ARIMA (p, d, q), where {{,} satisfies a difference equation of the form

¢(B)(1 — B)'f, = 0(B)Z,, {Z;} ~ WN(0,0%),

with ¢ (z) and 0(z) are polynomials of degrees p and g, respectively,

¢(2) # O for |z] <1, d is the difference indicator and B is the backshift operator
such that B/¢, = ¢—; and B/Z, = Z,—; . Notice that in ARIMA models, the
nonstationary time series is converted into stationary by differencing. For d = 0, an
ARIMA(p, d, q) reduces to an ARMA(p, q) process.

If the structure of data is such that there is heterogeneous variance structure
among different intervals, then parameter estimates based on a regular time series
model is very unrealistic. So the data is divided into different parts using multiple
breakpoints. The distribution function used for the confidence intervals for the
breakpoints is given in Bai [13]. The ideas behind this implementation are described
in Zeileis et al. [32]. The break points are obtained by testing or assessing deviations
from stability in the classical linear regression model

T
yi=x;B+uj,

where at time j, y; is the observation of the dependent variable, x; =

(1, xj1,...,x;)7 is a (k + 1) x 1 vector of observations of the independent

variables, and u; are iid with 0 mean and variance 02, and B is the (k + 1) x 1
vector of regression coefficients.

In many applications, it is reasonable to assume that there are m breakpoints,
where the coefficients shift from one stable regression relationship to a different one.
Thus, there are m + 1 segments, Iy, --- , I+ in which the regression coefficients
are constant, and the model can be rewritten as:

T
vi =xBi +uj, (1)
where B;,i = 1,2,---,m + 1 is the vector of regression coefficients within each
segment, i denotes the segment index and j = j,—; + 1,...,j;. In practice,

the breakpoints are rarely given exogenously, but have to be estimated. They are
estimated by minimizing the residual sum of squares (RSS) from Eq. (1). The
algorithm for computing the optimal breakpoints given the number of breaks is
based on a dynamic programming approach based on the Bellman principle [16].
The main computational effort is to compute a triangular RSS matrix, which gives
the RSS for a segment starting at observation indexed j and ending at indexed j/
with j < j ". Also, the adjacent intervals separated by break points are significantly
different.
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Let /; denote the ith interval with density function f;;(y;;,6;) where i = 1,
2,...,m + 1 represents the number of intervalsand j = 1,...,n; represents
the number of values within that interval and 6; is the vector of time series
parameters within each interval. Thus, we have m + 1 time series models and each
model is based only on the data of corresponding interval. So our main challenge is
to combine all this model information to create a common model that can be used
for forecasting. Several studies have been done in the past to combine the multiple
time series regression models. Qin [28], Qin and Lawless [29], Qin and Zhang [30],
Gilbert [22], Zhang [33] and Fokianos et al. [20] worked on some semi-parametric
methods. Kedem and Gagnon [23] further extended those ideas by showing the
estimation of the probability distribution of a “reference” time series and using them
in conditional prediction. All these aforementioned ideas use multiple time series
regressions where different time series structures are related to different covariates
but the ideas do not extend into the different time intervals.

2.1 Parameter Estimation

Let’s assume that there are m breakpoints, so there are m+1 time series intervals. We
assume that for each interval, different models fit the data so there are m+1 distinct
models. Let y;;,i =1,2,...,m,(m+1); j = 1,2,...,n; be the jth observation
in i th interval.

Let fi(y;,0;) be the density function at ith interval. Notice that this density
function is the function of past values and time series parameters 6.

Lett;,i = 1,2,....,m 4+ 1 be the vector of discrete time components.

Then,

yl,fl = ﬁ(zl,fl—l) + Ctlstl = 1525---7’11 )

2

Yo+ iamsr = Sm+1@m+1.6000-1) + Sty >
where t,11 = tyn + 1,0 + 2,...,tyy + nyyy1 and z;;,_; contains past values
of covariate time series possibly including even past values of yi;, ..., Yims,»

Yim+1itpy - Als0, n; is the number of observations in the i th interval. Throughout our
discussion it will be assumed that data have been “mean corrected” by subtraction
of the sample mean, so that it is appropriate to fit a zero-mean ARMA model to the
adjusted data.

Since any ARMA model can be expressed in the linear form of ¥, = OXO: ViZi—;
where =
Z ~ WN(0,d?).
We have:

f@ig—1) = Zw,,gtl,,;, ~WN(©,0%),i =1,2,...,m+ 1.
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If the ARMA process is driven by Gaussian white noise, we can take {(;} i

N(O, criz). So, the predicted values are:
o0
)/i,t,' = Z Wu é‘f,'—j'
j=0

Let
Yith) = E(Yi 1, Yi44n) - [Since E(Y; ) = 0]
Then estimate of /& lag covariance can be written as:

J;l' (h) = C{O\I/(Yvi,tia }]i,t,'+h) s
= E(?i,ti?i,ti+h) , [Since E(?,-,ti) = 0]

oo

= Z Z Vi Uik vi(G —h = k).
Jj=0k=0

Taking k = j — h, we get

Pithy = Py i yi (0).

Jj=0

Since, the covariance structure is symmetric so the lag /& coefficients g@i( j—hy and
Vit ) are equal. Also, 7;(0) = Var(¢;) = 62.
Hence,

o0
Vi(h) = A?ZWijWi(j+h)-
j=0
o0
— VAR(Y;) = 7:(0) =67 ) ;.
j=0

The parameters ¥; are composed of both autoregressive components, ¢; and
moving average components, #;. The preliminary estimates of parameters ¢; and 6,
are obtained by several methods such as Yule-Walker method, Burg procedure, inno-
vations algorithm, Hannan-Rissanen algorithm and maximum likelihood method.
Each method has its own advantages and limitations. Apart from the theoretical
properties of the estimators such as consistency, efficiency etc., practical issues like
the speed of computation and size of the data must also be taken into account in
choosing an appropriate method for a given problem.
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Yule-Walker and Burg procedures apply to the fitting of pure autoregressive
models but innovations algorithm and Hannan-Rissanen algorithm are used for
mixed models. Innovations algorithm is applicable to all series with finite second
moments, regardless of whether they are stationary or not (Brockwell and Davis
2002). We also prefer innovation algorithm for the preliminary estimation of the
parameters. Parameter estimation is improved by using innovations algorithm in
conjunction with maximum likelihood method. The maximum likelihood method
of estimating model parameters is often favored because it has the advantage among
others that its estimators are more efficient (have smaller variance) and many large
sample properties are known under rather general conditions. In our case, we do the
parameter estimation as follows:

(I) We first identify the order (p, q) of ARMA model based on minimum value
of corrected version of Akaike Information Criterion (AICc).
(II) Based on order (p,q) from previous step, we use one-step innovations
algorithms to get preliminary estimates of ¢; and 6.
(III) One step prediction errors obtained from innovations algorithm by using
different values of ¢, and #; are then used to numerically maximize the
likelihood function based on Gaussian noise.

2.2 Maximum Likelihood Estimation of Time Series
Parameters

We fit different time series models for different intervals. Parameters are estimated
based on maximum likelihood method in which preliminary estimates are obtained
through innovations algorithm. Even though the maximum likelihood method
is based on the assumption of Gaussian noise, it still makes sense to use this
method as a measure of goodness of fit of the model to the data and it has
well defined asymptotic properties. A justification for using maximum Gaussian
likelihood estimators of ARMA coefficients is that the large sample distribution
of the estimators is the same for white noise {¢;} ~ I1D(0,0?), regardless of
whether or not Z; is Gaussian (Brockwell and Davis 2002). For convenience, in our
discussion we use a general case to derive the expressions for maximum likelihood
rather than defining it for different intervals.
Let {Y;} be causal ARM A(p, q) process then

Y, =W(B) =) ¥;BIL L ~WN©0,6%):) |¥;] <oe.
j=0

j=0
Also for ARMA model,
_ 0(B)

Y, =
#(B)

&
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So,
0(B)
W(B) = —=
B=5)
—=(1—p1B—¢B>—...—¢,BYWYo+V1B+..)=1+6,B+6B>+...+6,B9.

Equating the like coefficients of B’s, we get

1L =10,
01 = Y1 — Yo = V1 = 01 + Yo,
0 = VYo — Y11 — Yo = V2 = O + V191 + Vo2,

min.(j.p)
Vi =0+ Y ¢ivji.j=0.1..., 3)
i=1
and we define §p = 1 and §; = 0 for j > ¢. The innovations estimates

Gnl, 9;12, .. 9,1,(,,+q) are used to estimate ¥, ¥, ..., ¥, + g. Replacing ; by énj
in Eq. (3) we get

A min(ip)
Oy =0+ D $ibugoin.i=12....p+q, )

i=1

From last g equations we first estimate qAS as:

~ ~ ~ ~

9n,q+l enq en,q—l s 9n,q+l—p ¢1
9n,q+2 9n,q+l en,q s 9n,q+2—p ¢2
9n,q+p 9n,q+p—l 9n,q+p—2 oo en,q ¢]7

Then 6 can be estimated from Eq. (3) as:

min.(j.p)

:é Z¢zn]t,j—12 ,q.

i=1

/\

After these preliminary estimation of ¢ and @, we use these values as the initial
values to get the maximum likelihood estimates. The maximization is nonlinear
in the sense that the function to be maximized is not a quadratic function of the
unknown parameters, so the estimators cannot be found by solving a system of
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linear equations. They are found instead by searching numerically for the maximum
of the likelihood surface. When the order p and ¢ of ARMA model is known, good
estimators of ¢ and @ can be found by imagining the data to be observations of a
stationary Gaussian time series and maximizing the likelihood with respect to the
p +q + 1 parameters ¢y, ..., ¢,,601,...,6, and 6.

Suppose that {Y;} is a Gaussian time series with mean zero and autocovariance
function «(i, j) = E(Y;Y;). Let Y, = (Y1.)a,..., Y,) and let the one step
predictors IA’n = (f’l,f’z,...,f’,,)/ where IA’l = 0 and IA’j = P;j1Y;,j = 2 Let
I, denote the covariance matrix I, = E(Y, Y;), and it is non-singular.

Then the likelihood of Y, is

n 1 7
L(I;Y,) = (271)‘5|1"n|_%exp (_EYnFn_IYn) . 4)

The direct calculation of I, is cumbersome and in many situation not possible and
it is avoided by using the one step prediction errors Y, — Y, and mean squared error,
EY, - ?,,)2 instead of Y, and I7;,. Both of prediction error and mean squared errors
are calculated recursively from the innovations algorithm.

Also,

Y,=0,Y,-Y,)
=Co(Y,=Y,)—L(Y,-Y,)
=C,(Y,-Y,)—-Y,+Y,

—Y,=C(Y,-Y,). (6)

A

Since the components Y, — Y, are uncorrelated, the covariance matrix of ¥, — Y, is

Vo 0 ...0
0 vy ... 0
En = [ .
00 ... Un—1
From Eq. (6),
Var(Y,) = Var[Cy(Y, - ¥,)]
—T1,=C2,C,.
So,

|T| = ICn|2|2n| = VYoV1...Un—1,
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and

’

Y. roy, = [Cn(Yn - Y,,)] ey, —Y,) [From Eq. (6)]
=(Y,-Y,)C.r7'C/(Y,—Y,)
=¥, -Y,) 5 (¥, -V,

n A
Y (Y -Y))?
ji=1
Vj—1
Hence, from Eq. (5) likelihood of vector Y, reduces to:
1 —1

L(l;Y,) = ex —
(F: ¥) V(2r)" vy .. U P

The likelihood for data from ARMA(p, q) process is easily computed from the
innovations form by replacing Y; by one-step predictor and v; by o*r,.
Hence, the Gaussian likelihood for an ARMA process can be written as:

n A
. | Y —Y))?
1 =
L(:Y,) = expl—
VQro)rory .. e 202 i1

(N

So, maximum likelihood estimator of o2 is:

> (¥ - 1))’
15

n rj—1

62 =

>

and qAb and @ are the values of ¢ and 0 that maximize the likelihood in Eq. (7).

Also, we used minimum AICc (Akaike Information Criteria Corrected) value
as a major criterion for the selection of the orders p and g. AICc criterion can be
defined as:

2(p+qg+ Dn

AICc = -2InL(¢,, 0,7, )
¢ n (¢p q n)+n_p_q_2



Forecasting of Time Series Data Using Multiple Break Points and Mixture Distributions 251

where [nL(¢ ,.04:Y,) is the log of likelihood function defined in Eq. (7) using

maximum likelihood estimators (]3 p and é 4- For any fixed p and ¢, it is clear that the
AlCc is minimized when ¢, and 8, are the maximum likelihood estimators. Final
decisions with respect to order selection should therefore be made on the basis of
maximum likelihood estimators.

2.3 Forecasting

As we have seen, autoregressive moving average time series models can be regarded
as means of transforming the data to white noise, that is, to an uncorrelated
sequence of errors. If the appropriate model has been chosen, there will be zero
autocorrelation in the errors. For large samples the residuals from a correctly
fitted model resemble very closely the true errors of the process (Box and Pierce
1970). Since there are differences in trends, forecasting of multiple time series
data based on well behaved residuals and certain joint relationship between their
probability density functions are explored by Kedem and Gagnon [23]. We are also
exploiting the similar idea but by using the mixture distribution of residual densities
as the reference distribution. The mixture parameters are estimated through the
distributions of combined noise.

Since, each part of the interval is fitted with different models, the residuals for
each part are independent to each other and to the errors from other intervals. So,the
error sequence {;, } is the sequence of iid random variables.

Define,

iid .
by ~gilg),i=1,....mm+1,
where g; (<) is the density function of ¢, for ith interval. We approach time series
prediction through the mixture distribution of these error components. Noises from
different intervals are combined to form combined noise.
Let

§=0Cn8 8t
= {(Cla ey §n1)7 R (Cl‘i+lv .. ’§t1+n,~)7 R (Cl‘m-l-la ey Cl‘m+nm+1)}‘

The joint density of combined noise is the mixture of ‘m + 1’ noise distributions.
So, the joint density of finite mixture of combined noise is:

m+1

g) =Y pigi(s).

i=1

where p; be the mixing proportion with the constraints p; > 0,7 = 1,...,m,
m+1
m+1l,and Y p; = 1.

i=1
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Hence, the cumulative distribution function of combined error is:

m—+1
Pt <) =G() =) piGis), ®)
i=1
where G; (¢) is the cumulative distribution functionof §; , i =1,...,m,m+ L.

Our main objective is to predict the future reference values ym+42:,,,+1
conditional on past values z,+1,,,, - Future probability of events conditional in
past values can be written as:

P(y)n+2,t(m+],+1 =< y|z(m+2),tm+1) = P(fm+2(z(m+2),tm+1) + Ztm_H-‘rl = y) [FI'OIH Eq (2)]
= P(§t7)1+1+1 =y- fm+2(z(m+2),tm+1)

=G(y— fm+2(z(m+2),tm+1))

m—+1
= Z Di Gi (y - fm+2 (z()n+2),t,n+1 )) [FI‘OI‘Il Eq (8)]

i=1

m—+1 )4
= Z piGi(y — Z Dij Y42ty —J

i=1 j=1

q
+ Z 9ik§m+2,t(m+”—k)i| . (9)

k=1

Since we are using a sample of observed values, the cumulative distribution function
can be approximated by empirical distribution function.

Let Gi (¢) be the empirical distribution function of error components in ith
interval. Then,

ni

1 <)
Gig)="—

ni
where

1, ifl; <g¢: Jj=12,...n;,

(¢ < —
€y =¢) 0, otherwise,

and ¢;; be the jth error component in i th interval. Also, strong law of large numbers
indicates that empirical cumulative distribution function converges almost surely to
cumulative distribution function.

Here, for a fixed point ¢ the quantity n; G (¢) ~ Bin(n;, G;(c)). Therefore

Gi(6)(1 = Gi())

1

E(Gi(c)) = Gi(¢)andVar (Gi()) =
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By using Chebyshev’s inequality,

Gi(s)(1 = Gi(s))

ni€2

P(Gi(s) = Gi(s)| =€) < for any € > 0.

— 0 asn; — oo.
Hence,
Gi(s) = Gi(s).

So the future probability of events conditional in past values from Eq. (9) can be
approximated as

P(ym+2,t(m+1)+1 = y|Z(m+2)Jm+1)

m+1 p q
= Z piGi|y— Z¢inm+2,t(m+l)—j + Z OikCmt2.m1y—k | |- (10)
i=1 j=1 k=1

The parameters ¢ and @ for each interval are estimated by using the method of
maximum likelihood in conjunction with innovations algorithm as discussed in
Sect. 2.2. Estimation of future values in Eq. (10) also requires the estimation of
p; which is discussed in the next section.

2.4 Estimation of Mixture Proportions

In general time series, noises are either uncorrelated white noises or Gaussian
noises. White noises are assumed to be a sequence of uncorrelated random variables
generated from uniform probability distribution while Gaussian noises are generated
from Gaussian distribution. The parameter estimation of mixture of Gaussian or
other exponential family distribution can be done by using EM algorithm since the
likelihood function of these kind of distribution is well defined [18]. A general
method of parameter estimation for mixture of exponential family distribution is
already discussed in Sect. 2. But when dealing with the mixture of any location
family distribution or particularly white noises EM algorithm may not be the
appropriate method to estimate the parameters. The problem of identifiability should
also be handled.

In our discussion we will focus more on Gaussian noise since it has some
well defined properties. The time series parameter estimation using maximum
likelihood method we proposed is based on the assumption of Gaussian noise.
Another justification for using Gaussian noise is that, the large sample distribution
of estimators is the same whether or not we use Gaussian (Brockwell and Davis
1991). Even though our primary focus is on Gaussian noise, we will also discuss the
alternative way of parameter estimation for mixture distribution of white noises.
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2.4.1 Gaussian Noise and EM Algorithm

For each interval, without loss of generality, assume that §; ~ N(0, O’iz). Gaussian
mixture model is a simple linear superposition of Gaussian components. Gaussian
mixture distribution can be written as linear combination of Gaussians in the form

m+1

g(s10)=>" pigi(s).

i=1
where 8 = (p;, w:i,07). So,
m+1

_ 1 RLED Bl IS
g(§|0)—m;p,mexp[2q¢(s u,)] (11)

This gives us the incomplete likelihood as:

1 n n m+1 1 _1 5
L(bls) = (E) [1 (Z Pi - eXp [27‘3(5 — i) :|) =N M

j=1 \i=1

and the log likelihood is:

n m—+1 1 |
10]s) o Y log (Z p,-;exp[zf‘z@j —WD. (12)
j=1 4 i

i=1

Maximizing the log likelihood of Eq. (12) turns out to be a more complex problem
than for the case of a single Gaussian. The difficulty arises from the presence of
summation over i that appears inside the logarithm, so that the logarithm function no
longer acts directly on the Gaussian. If we set the derivatives of the log likelihood to
zero, we will no longer obtain a closed form solution. Also, the maximum likelihood
framework applied to the Gaussian mixture model has significant problem due to the
presence of singularities. Whenever one of the Gaussian components collapses onto
a specific data point, the log likelihood function will go to infinity as o; — 0. This
creates a singularity problem and inverse covariance matrix, which is often required
in maximum likelihood framework, is unattainable. So we consider an alternative
approach known as EM algorithm which is an elegant and powerful method for
finding maximum likelihood solutions for models with latent variables [18].

Let us introduce a m 4 1 dimensional binary random variable w =
Wi, wa, ooy Wit 1)/ in which a particular element w; is equal to 1 and all other
elements are equal to 0. The value of the latent indicator w; therefore satisfies

m+1
w;ie{0,1}and Y w; = 1.

i=1

Also, the probability

pwi =1) = pi,
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where the parameters { p; } must satisfy

m+1
0<p <1 and Zpizl.
i=1
Hence, the marginal density
m+1
pw) =[] "

i=1

Similarly, the conditional distribution of ¢ given a particular value of w is:

1 —1
w; = 1,0 = €X — — Ui 2i| .
Pt =1.0) = ——exp| 506~ m)

So

m+1 1 wi 5 wi
”(S'W"”_E(m@) [ep{ 2(; u,)” .

Using conditional probability, the joint density of ¢ and w is:

(s, w|0) = p(s|w,0)p(w|0)

m—+1 Wi wi
_ P \" LRl
-[1() [olmre—m]

Hence, the complete likelihood is:

n m-+l1

L@;s.w) =[] 1'[(

j=li=l1

And the complete log likelihood becomes:

n m+1 n m+1
[(0:¢.,w) = Z (Z wilogp,-) - % Z (Z wilog(27t0i2))

j=1 \i=l1 j=1 \i=1

m+1 n

LYY w [2 (=) ]

i=1 j=1

255

wi _1 wi
) |:x {r‘iz(gj—u,-f” wheren =n; + ...+ 1,4,

13)

Notice that this log likelihood can be solved easily in the closed form once we

identify the conditional distribution of w given g.
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The conditional probability of w given ¢ when w; = 1 plays an important role to
define expectation function. We shall view p; as the prior probability of w; = 1,
and the conditional distribution p(w; = 1|g,0) as the corresponding posterior
probability once we have observed ¢ for some known parameter estimates 6. We
can use Bayes rule to estimate the conditional probability of w given ¢ and 6 as
follows:

p(slwi =1,0).p(w; = 116)

i =1lc,0) =
pw ls.0) 2(c10)
.. _ P(B|A)P(A)
e = S5
J_o { 2(9 m)z}
:Lmilﬂ __( C— )2 .
\/Ej:l o exp 20_}2 Sj H]
Hence,
i -1
%exp{ﬁ(gi _Mi)z}
pwi =1g.0) = 1’ ' (14)
mtl p
z U; eXP|:2 5(j - uj)z}

Thus, the conditional expectation of w given ¢ and 6 is:
Ew|s.0) = p(wi =1|g.0)

Let’s assume that we start with some initial values #® and cycle up to kth step.
Let 0% = ( p (k) 1.2(")) be the parameter values at kth step. Then, conditional
expectation at kth step can be written as:

k
W = E(wlg.0®)
(k)
i -1 Wy
(k) expgm(gz Ki)
- m+1 P;k) -1 (k) . (15)
2 e | (S — i)
j=10; 20

J

Now, in E step we replace w; with the conditional expectation of w at kth step
from Eq. (15) into the complete log likelihood obtained in Eq. (13). Hence, the
expectation function, Q (6|6 *)), becomes:
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n m+1 n m—+1
0(016%) =>" (Z WSk)logpf) - % > (Z w,(-k)log(Znaiz))

j=1 \i=l1 j=1 \i=1
m+1 n

+ZZW(“[22(;, u,)] (16)

i=1 j=1

In the M step, we determine the revised parameter estimate 6 (k1) by maximizing

Eq. (16) with respect to relative parameters, p;, i; and criz. Equation (16) can be
m+1

maximized with respect to p; under the condition that Y p; = 1. So we need to
i=1

maximize the Lagrange function. Lagrange function is

n m+l1 m+1
A(p, L) = Z Z w(k)logpl + Constant + A (Z pi — l)

j=1i=1 i=l1

Maximizing with respect to p; and A and substituting the value of A, we get the
estimate of p; at (k + 1)th step as:

£
1

k =1
p’( +0 _ —’
n
where wl(k) is the conditional expectation as discussed in Eq. (15). Also,
00016%) _
I

k
= Y W —p) =0

j=1
n
(k)
lei Si
=
= e
> w
j=1
n
(k)
Z wi G
— k+1 _ J=1

i k+1) -
np; )
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Similarly,
00(016%) _
do?
n 2
(k) (k)
Zl (§j — M ) Wi
2(k+1) Jj=
- 0 = 1
T
It can be shown that the sequence {0(” 09 0(")} converges to the maximum

likelihood estimator of @, i,e. 6 as k — oo [18].
In our applications, we are using the mixture of two Gaussian distributions in
Sect. 3. The mixture of two Gaussian population is given as:

I (¢— I [¢—pa
g(§|0)=p—<p< )+(1—p)—<p( ,
o1 o1 02 02

where ¢ is the cumulative distribution function of the standard normal distribution
and 0 = (p,p,l,,uz,crlz,azz) ; O<p<1.
Then, the indicator variable W be treated as missing data information such that:

1,if T belongs to first interval

W =
{ 0, if {; belongs to second interval,

where W; is Bernoulli distributed with parameter p.
Therefore, the likelihood expression for complete data becomes:

n w 1—w
w —w 1 Sji — K1 1 Sj— M2
Ly,(®ls.w) =[] p"(1 = p)! p<p< — ) 1_W<p< — :
j=1 1 1 P! 2

And the corresponding log-likelihood function for the density becomes:

n n 1 n
L(Ols,w) =D wlog(p) + D (1 —w)log(l = p) = 2 > wlog(2mo)
j=1

Jj=1 Jj=1

1 < 1 ¢
—503 2w — ) = 5 ) (1= w)log(2ra3)
=1

207 4 ‘
1 j=1 J

1 n
257 Z(l —w)(sj — 12)”.
o3 =

The conditional distribution of W given ¢ is:

Wig;, 0% ~ Bin(1,w®),
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with

)
Si—H )

(k)
9

PO —mo(
wh = 1

’

) &)
PP —50(5) + (1= p®) ()
(Tl (Tl (Tz

o
where p®) is a set of known or estimated parameters at kth step. The initial value

p© can be obtained from the empirical distribution.
Hence, the conditional mean at kth step is:

Ew|g;,0%) = w®.
The expectation function becomes:

0010 =Y whlog(p) + 3 (1 —wh)log(1 - p) - % > wiog@nof)

=1 Jj=1 Jj=1

1 1<
502 Zw(k)(gj — )’ - 3 Z(l —w®)log(2ro?)
1 j=1 —1

1 n
—5o7 2 (1= w(g) = o),
03 o

Now, we maximize the expectation function as discussed above.
Hence, the parameter estimates at the (k + 1)th step are:

1 n
k k
pEY = p E w®)
j=1

k k
LD =Yg, LD 2= —wh)g;
: Yiogwh T2 Y (T —wk)

(k+1),2 (k+1),2
S+ j= s —m ) and oD = Y =w) (e —py )
1 - ’ 2 -
S S (1 —w)

The initial values of § = (p©, p,(lo), ,u(zo),alz (0),022 © ) are obtained from the

empirical distribution.

Each update to the parameters resulting from an E step followed by M step
is guaranteed to increase the log likelihood function. In practice, the algorithm
is deemed to have converged when the change in the log likelihood function, or
alternatively in the parameters, falls below some threshold.
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2.4.2 Mixture of White Noises

In the previous subsection, we have discussed more general case of mixture of
Gaussian noises. As mentioned earlier, Gaussian noise have some well defined
properties and they are easy to deal with. But it’s not uncommon to assume
time series as a linear combination of white noises. White noises are the random
variables from some uniform distribution defined in a particular interval. Teicher
(1963) showed that univariate normal mixtures are identifiable, while in general
mixture of uniform distributions are not. Identifiability is a necessary condition for
the possibility to estimate the parameters of a mixture model consistently. It makes
sure that no two essentially different mixture parameter vectors parameterize the
same distribution. According to Casella and Berger (2002), “A parameter 6 for a
family of distributions { f(x|60) : 6 € O} is identifiable if distinct values of 6
correspond to distinct probability density or mass functions. That is, if 6 # 0, then
£(x]6) is not the same function of x as f(x]0").”

Maximum likelihood method of parameter estimation for exponential family
distribution give robust estimates. EM algorithm can also be thought as an adjusted
maximum likelihood method. So the parameter estimates of mixture of Gaussian are
robust and identifiable. Maximum likelihood estimates for a wide class of location-
scale mixtures are not robust (Hennig 2004). So the parameter estimation based on
EM algorithm may not be the appropriate choice when we deal with mixture of
white noises.

Parameter estimation of mixture of uniform distributions using the method
of moments and method of maximum likelihood is discussed in Craigmile and
Titterington (1997) [5]. In this subsection, we briefly discuss the alternative way
of estimating the parameters for mixture of white noises. Since our main interest
lies in the Gaussian noise and parameter estimation through EM algorithm, we just
outline some of the parameter estimates based on method of moments for mixture
of uniform distribution without giving detailed explanation.

So the apparent simplicity of uniform mixtures conceals a hidden danger of non-
identifiability.

For example, let us assume a two component mixture of uniform distribution:

fGlp.0) = pU(s:0.0) + (1 - p)U(s:6.1),
where U(c; a, b) denotes the uniform density on the interval [a,b) and 0 < p < 1,

and0 <6 < 1.
Let us take p = 6. Then,

fGlp,p) =U(0,1).

So, for any values of p, we get the same distribution function. The problem of
non-identifiability arises and the estimate is not consistent. But if p or 8 is known,
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the mixture is identifiable even if the true values of p and 6 are equal. So care should
be taken when dealing with mixture of uniform distribution and we should avoid the
condition of non-identifiability.

For convenience, let us assume that we have the mixture of two white noises from
each of the interval, so {; id WN(O, criz); i = 1, 2. Notice that criz is the variance of
the uniform distribution in the i th interval. Since, uniform distribution is a location-
scale family, we can consider two disjoint intervals for uniform mixture and can
write the density function as:

f(lp.0) = pU(5:0,0) + (1 — p)U(s;06,1), (17)

As discussed earlier, this is non-identifiable when p = 6, so we take the cases when
p # q. Equation (17) can be written as

(1-p)
(1-10)

fslp0) = £10 <5 <)+ c—1B <5 < 1),

where I be the indicator function. Since the kth raw moment of uniform distribution
U(c;a,b)is

1 pk+l _ gk+1
k+1 b-—-1

we can write the kth raw moment of the mixture density as:

e pBE (1= p)(1— kY
mk_E@)_k—i-l a1-60)(k+1)

1— 6%t — p(1 —6%)

= . 18

1-6)(k+1) (18)
Also, kth sample moment can be represented as:
1 &

M =~ > ok (19)

J=1

By equating kth raw moment with kth sample moment, we estimate the parameters
of mixture distribution. We choose the cases when p # 6 to avoid non-
identifiability. There are three cases of parameter estimation:

(i) 6 known, p unknown
(i) p known, 6 unknown and
(iii) both p and 6 are unknown

But in our situation, we don’t have known p, so second case is irrelevant to our
discussion. Here we’ll discuss case (i) and case (iii) briefly.
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CaseI: 6 known, p unknown
When 6 is known, p is estimated by equating kth raw moment with kth sample

moment as
My = my,

po*  (1-p)1 -0

My = 1 D [From Eq. (18)]
. —(1=0)k+1) (1—-6Y |
= Py Mt aTen

where M is the kth sample moment defined in Eq. (19). For simplicity we can
write

P = cx My + dy.

The order k is determined based on the optimal variance of p.

1
2 k
var(p) = cjvar - E X;

cale1]) ()

i=1 i=1

c}(my —m?)
.

We choose k and estimate of p in such a way that variance of p will be minimum.
Gupta and Miyawaki (1978) suggested k = 1 for estimation of p.

Case III: Both p and 6 unknown
Gupta and Miyawaki (1978) has suggested using first and second order moments
to estimate the parameters of 6 and p. Here, we will derive the expression based
on first and second order moments. As suggested by method of moments,

M1 =m;
_ _p2

a0, (=P =6

2 2(1-6)
2My =146 —p. (20)

Again,

M2=m2

92 _ _pn3
=P (I-p)(a-267)

3 3(1-196)

3My =146 —p+6>—pb. (21)
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From Egs. (20) and (21), we have:

5 _ 3M>—2M,
o2M -1
and

4AM? —3M,

.
P M, —1

2.4.3 Caveat: Mixture of White Noises

The extension of more than 2 component mixture of uniform distribution and their
parameter estimation is discussed briefly by Craigmile and Titterington (1997) [5]
giving an example for mixture of 3 component uniform distributions. Even for three
component mixture distribution, there are several cases of non-identifiability and if
we have higher component mixture distributions we will encounter multiple cases of
non-identifiability. So the parameter estimation is restricted by several conditions.
It is not possible to track all the restricted conditions so higher component mixture
of uniform distribution is not suggested. The parameter estimation could be very
inconsistent and in many cases not possible. Also, one should be very careful
when assuming the mixture of uniform distribution, since mixture is defined as
the combination of non-overlapping uniform distribution. In the cases with large
number of breakpoints, the number intervals m 4 1 may not be equal to the number
of clusters for the mixture of uniform distributions. If this situation arises, the
method of forecasting based on m 4 1 mixtures that we have proposed will not be
appropriate and some other methods with reduced dimension should be considered.
But this is not the case for mixture of Gaussian noises. So, we consider the case of
mixture of white noises as just an alternative approach and preference is given to
the framework based on mixture of Gaussian noises.

2.5 Confidence Interval Estimation and Large Sample
Properties

Time series parameters are estimated using innovations algorithm together with the
maximum likelihood method. We can use the asymptotic distribution of ARMA
parameters ((]3, é ) to derive approximate large sample confidence regions for the
true coefficient vectors (¢, ).

Let Y; be the stationary and invertible time series process. An ARMA model can
be written as:

p q P
Y, _Z¢in—i = fr—zejft—j; Cl"\fl N(0,02).
j=1

i=1
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This is equivalent to

p q
[Ta-apy.=]T0-m)s
i=l1

j=1
P q -

=  =Ja-4a]](-M)"¥,.
i=1 j=1

For example, if we have ARM A(2, 2) model
Y=Y — Yo =8 — 0181 — 018,
Then we can easily derive

¢ = A1+ A ¢ =—A14;
6 = M, + M, 0 = —M | M,.

R. Lamichhane et al.

(22)

ARMA model are the superposition of both AR and MA models, so we can write

AR and MA components of Eq. (22) in terms of past errors as:

9¢;

Ui = 7 (1—A;B) "¢,
ad
Vii = _813,‘ = —(1 — M,-B)_li,f_l. (23)
For the mixed A R M A models, the information matrix can be written as:
1(¢.0) =
i Vuu(o) yuu(l) e yuu(p - 1); )’uv(o) yuv(_l) . yuv(1 - q) ]
Vuu(l) yuu(o) s yuu(p - 2): )’uv(l) yuv(o) . yuv(2 - q)
: : ! : :
: : | : :
A VP =D yup=2) o YO yilp — D) Y =2) . Yulp —4).
o? Yur(0) Yw(=1) oo V(1 =q) 1 Yuu(0) Yuu(1) Yuu(p — 1)
Yur(1) Yw(©0) .. V(2 —¢q) : Yuu(1) Yuu(0) - Yuu(p —2)
: : ! : :
: : | : :
L Vuu(l - (]) yuu(z - q) cee yuu(p - q)!yuv(q - 1) )’uv(q - 2) tee yuv(o) .
(24)

where y,,(h) = E(u, ur+1),Yu(h) = E(u;, v,+5) and so on. The components u and
v are related to autoregressive and moving average components of Eq. (23). Using
Egs. (23) and (24) for the large sample, we get the information matrix in terms of

A; and M; as
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1(¢.0) =
(1—4H~! (I=A414)™" .. (1—A4,4,)7" ;—(1—A1M1)*1 e (L= A M)~ ]
: : : ! :
(l—A.]A,,)*‘ (1=A4,)7" ... (-4 :—(l—Ale)*l e == A,Mp)™!
o I BBy V) Sl v Ry V70 o Ry gy A,M)T T (=M T = =MM)™"
. . . I . .
. . . ! . .
|~ =AM~ —(1 = A,M)~" == A,M)7 A= MMy~ L (- MY

This matrix can be partitioned after pth row and gth column. So,
1(6.8) =n [-Ié/‘-'{f“ll } .

Notice that matrix /' (¢, @) is non-singular, so the covariance matrix of estimators
of ¢ and § for ARMA model is

Z(p.0)=1"9.0).

In case of pure AR and MA models, this covariance matrix can further split by
removing cross covariance matrices of AR and MA components (i.e. [4ys = 0).
This gives

Z(p) =179

-1
= n Ly s

X@0)=17")

= L.
n MM

Let B = (¢, 0) be the vector of ARM A model parameters.
The large sample distribution of maximum likelihood estimators of ARM A(p, q)
can be written as

B~ Npig(B.n™'2$.0).
and for pure autoregressive (AR) and moving average (MA) models,
By~ Ny(B,.n"' T(@)

and

B, ~ Ny(B,.n"'2(8)).
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As we have seen that any ARMA(p, g) model can be obtained using the linear

filter ¢ from white noise or Gaussian noise, ¢ N (0,0?), let’s write:
o0
Y, =y (B) =) Vil
j=0
Let ?H-h be the & step predictor, then
Yien = Z Vi Cin—j-
=0

Hence, the mean squared error is:

h—1
P= BV = Yi)? = )05 Var(en—)-
j=0
h—l
U7 (25)
j=0

Here, 1}12 is the function of estimators ¢ and € such that:

p
=Y hvii—6;, =012,
k=1

where §y = 1,6; = 0if j > ¢, Yo = 1, and §/; = 0if j <O.

Other estimators qak,k = 1,2,...,p and éj,j = 1,2,...,q, are estimated
using innovations algorithm together with maximum likelihood method. And the
estimator 62 is obtained from the empirical data.

If the ARMA(p, q) process {Y;} (for each interval separated by breakpoints) is
driven by Gaussian white noise, then the prediction error Y; 4 — ?t+k is normally
distributed with mean 0 and variance S? given by the Eq. (25). In our case we are
using one-step prediction so k = 1. Hence, the prediction interval of Y; 1 is

Yior = Vg £ D428

Let us assume that there are m + 1 mixture components, then for the forecasting
based on mixture distribution we can rewrite the / step prediction as:

m+1 -

Yorn =Y pi Z¢1]§n+h —j

i=1
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m+1
where > p; = land 0 < p; < 1,n = ny +ny + ... + 041, n; be the
i=1
number of observations in each component of mixtures and ¥, is composed of
ARMA parameters (¢;, 6;) from each breakpoint groups. Hence, the mean squared
error is

m+1 h—1

S;i = Ai+1ZZPiZK}?j,

i=1j=1

where 631 .1 be the white noise variance estimator of (m + 1)th component.

Assuming that the ARMA process {Y,} is driven by Gaussian white noise so if
& ird N(0,0?), then for each /1 > 1 the prediction error is normally distributed with
mean 0 and variance S,fl. It follows that Y, 4+, lies between the bounds

A

Yn+h + ¢l—a/2Sm- (26)

with probability (1 — o). In the above equation, ®;_4/> is the (1 — «/2) quintile of
standard normal distribution. We can call this bound as prediction bound for Y, 4.

2.6 Block Bootstrap

We use block bootstrap to generate bootstrap replicates of a statistic applied to time
series. By dividing the data into several blocks, The original time series structure
as well as the properties of original data generating process are preserved within a
block.

Let{Y; :t = 1,...,n} be time series data then we construct bootstrap sample in
the following steps:

1. Pick the optimal block size, [. The block size is chosen according to Patton
etal. [26].

2. Consider the overlapping blocks with varying block lengths. The optimal block
size [ is the mean of geometric distribution used to generate the block length. This
avoids the problem of non-stationarity by construction [27]. For the overlapping
method, we divide the data into n—/+1 blocks, which block 1 being {Y1,--- , Y;},
block 2 being {Y>,---, Yi4+1},--+ , etc.

3. Resample the blocks randomly with replacement and generate bootstrap sample
{Y* : t = 1,---,n} by gluing blocks together in the order that they were
sampled.

4. Calculate the estimator.

For simplicity, this combination of identification of breakpoints together with
bootstrap is named as Breakpoints Bootstrap Filtering (BPBF) method.
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3 Application

In this section, we test our proposed methodology on a simulation data. In order to
justify the methodology we simulate an ARMA model with mixture of Gaussian
noise. We implement the proposed method for forecasting and prediction and
compare the result with the classical time series approach.

3.1 ARMA Model with Mixture of Gaussian Noise

We simulate an ARMA model with mixture of Gaussian noise. An AR model with
zero mean, AR component (¢) = 0.4 with mixture of two component Gaussian is
simulated. The simulated mixture of Gaussian noise has the following parameters

p=03u =10 =06,u =3,00 =2.

First, we fit the model based on classical approach, which fits an ARMA model
for the entire data. Looking at Fig. 1, we can see that the data structure does not look

10

Value

T T T
0 50 100 150 200
Time

Fig. 1 AR(0.4) model with noises from mixture of two Gaussians
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Table 1 Parameter estimates and se() of MA(4) model for simulated data
i 6, 6, 64 62 AIC BIC Log-lik
3.97 0.28 0.13 0.14 —0.12  3.05 80290 822.69 —395.45
(0.18)  (0.07) (0.08) (0.08) 0.07)
Table 2 Summary of AICs N
using different combinations a
of p and ¢ for best model pi 0 ! 2 3 4 >
selection of simulated data 0 0.0 806.8 807.6 804.0 802.9 803.9
1 8049 806.6 808.5 804.1 803.5 805.7
2 806.6 808.6 808.6 805.5 8055 805.6
3 808.6 807.4 806.1 805.1 806.8 801.5
4 803.7 803.9 805.8 806.6 807.9 806.4
5 803.7 8054 8064 8025 8025 8045

same and it changes over two different time intervals. Also, there is no seasonal
component associated with these data. So, we don’t need to worry about fitting
an ARIMA model. Also, both augmented Dickey-Fuller test and Philips-Perron
unit root tests suggest that data is stationary (p-value=0.01). Once stationarity is
established, now we want to see which model best fit the data. Based on maximum
likelihood method and minimum Akaike Information Criterion (AICc), we choose
MA(4), model. The estimated parameters for this model are given in the Table 1.
The values in the parenthesis are the standard error estimates.

Also, Table 2 shows the AICs using maximum likelihood method for different
combinations or AR(p) and MA(g) components. Notice that for MA(4) we achieve
minimum AIC.

Also, predicted values and twenty future forecast values using MA(4) model
together with the original data are plotted in Fig. 2. In the figure, the yellow band
after time 200 represents the prediction bound for forecasting. We can clearly see
that model fitting is not very good and many cyclic variations are not captured.
Forecasting is even worse, it has large prediction bounds and forecast looks constant.
Here, the model based on classical approach fails to incorporate the cyclic variation
in the forecast and it’s not capturing the change of data structure over different
intervals of time. We overcome these problems by using breakpoints and mixture
distribution based forecasting discussed in previous sections.

In the next step, we use our proposed method to the data. First, we identify
the breakpoints in the data set and divide it into different intervals. Then, we fit
separate models for the data in each interval. Breakpoints are identified according
to the method discussed in the Sect. 2. Using R package strucchange it is reasonable
to use one breakpoint in the data set. Figure 3 shows different values of Bayesian
Information Criterion (BIC) and Residual Sums of Squares (RSS) for different
breakpoints. Our goal is to take the optimal solution and it is reasonable to consider
one breakpoint. Also, if we choose more than one breakpoint, we may encounter the
problem of overfitting.
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Fig. 2 Forecasting and model fitting of simulated data
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Fig. 3 Breakpoint identification of simulated data
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Table 3 Summary of AICs
using different combinations
of p and q for first part
(1-124 observations) of
simulated data

pd 0 1 2 3 4 5

0 0.0 487.8 489.6 486.1 486.7 488.5
1 486.8 488.3 4902 487.0 488.6 490.5
2 488.5 490.3 4889 487.7 489.1 489.8
3 489.2 488.0 490.0 488.1 489.6 491.2
4
5

4883 489.8 4903 4894 4909 4929
4893  491.0 486.5 487.0 4929 4949

Table 4 Summary of AICs
using different combinations

of p and ¢ for second part Py
(125-200 observations) of
simulated data

0 1 2 3 4 5

0 0.0 319.5 3207 3209 3194 320.1
1 3189 3209 3225 3216 3163 3183
2 3209 3229 3152 321.3 3183 3203
3 3219 3183 317.2 3179 3202 3223
4

5

3162 3179 3197 3195 3158 3175
318.0 319.8 321.7 3209 3174 316.7

Table 5 Parameter estimates and se() of MA(3) model for part 1 of simulated data

Q 6, 6, 6 52 AIC BIC Log-lik
3.76 035 014 024 272 486.06 500.16 —238.03
0.25)  (0.09) (0.11)  (0.10)

Table 6 Parameter estimates and se() of ARMA(2,2) model for part 2 of simulated data

A

it ¢ b b, b, 6> AIC  BIC  Loglik
430 134 —094 —1.13 087 308 31523 32921 —151.61
025 (007)  (0.06) (0.12) (0.15)

From Fig. 3 it is clear that at one breakpoint we get BIC= 840.4 and RSS=
667.6. These values are close to the possible minimum values of BIC (= 833.4)
and RSS (= 697.7). In the data set, this breakpoint lies in the 124th observation, so
we divide the data into two parts, 1-124 and 125-200. Now, we fit different ARMA
models to these two parts and combine the error distributions.

In the data of both parts no non-stationarity is evident. Phillips-Perron Unit root
tests suggest the stationarity of the data in both intervals. Also, there are no seasonal
or periodic components in the data set, so we use ARMA based models on both
parts. Based on the method of maximum likelihood and minimum AIC, We choose
MA(3) and ARMA(2,2) models for first and second parts respectively. Tables 3
and 4 show the AIC values for different combinations of AR (p) and MA(q)
components.

Parameter estimates of best models are given in Tables 5 and 6.

Notice that all comparative measures such as AIC, BIC and Log-likelihood of the
models obtained by using breakpoints (Tables 5 and 6) are significantly improved
compared to the model obtained by using classical approach (Table 1).
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Fig. 4 Autocorrelation function of residuals from part 1 (1-124 observations)

We also check the residuals from each of these fits to see whether or not they
meet the autocorrelation test and normality test with homoscedastic variance. Both
Box-Pierce and Ljung-Box portmanteau tests suggest independence and white noise
property of the data. P-values for Box-Pierce and Ljung-Box tests are 0.79 and 0.78,
so we fail to reject the null hypothesis that “data are independently distributed”.
Figures 4 and 5 show there is no serious autocorrelation between the residuals. Also,
residuals from both intervals meet the criterion of normality separately. Also, for the
model based on classical time series approach, the residuals are not normal. Several
model selection methods based on AIC, BIC and minimum variance were tried and
in all cases residuals were not normally distributed. This is reasonable, because we
intentionally simulated the model with mixture Gaussian noise and classical time
series approach fails to handle this situation.

The process is invertible, so we can get the actual data from the errors. So,
for forecasting we combine the errors from both parts and estimate the mixture
parameters of mixture of two component Gaussian distributions using the EM
algorithm. Figure 6 shows the histogram of combined noise which seems right
skewed from normal distribution, infact it is the mixture of normal distribution.
Also, for combined noise we don’t see significant autocorrelation (Fig. 7), we fail
to reject both Box-Pierce (p-value= 0.74) and Box-Ljung (p-value= 0.74).

It’s a reasonable assumption to consider that the joint distribution is the mixture
of Gaussian distributions since the source of residuals are different. We use EM
algorithm to estimate the model parameters of this mixture distribution. Parameter
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Fig. 5 Autocorrelation function of residuals from part 2 (125-200 observations)
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Fig. 7 Autocorrelation of combined residuals of simulated data

Table 7 Parameter estimates of combined residuals

using EM algorithm
p i i ] 1
0.32 —1.01 0.48 0.76 1.80

estimation of mixture of two component Gaussian using EM algorithm is presented
in Table 7. Also, Fig. 8 shows the estimated mixture density together with individual
Gaussian component density for combined data.

Now we forecast the next 20 future values using the theory already discussed in
Sect. 2.4.1.

In Fig. 9, we can see that the model fitting has improved significantly by using the
mixture model. Most importantly, forecasting of the data has significantly improved.
The mixture model forecasting also incorporates the cyclic factor of the data and the
prediction intervals are narrower than those of classical approach.

4 Conclusion

We have introduced a non-linear dynamical probability time series model which
exploits the idea of breakpoints together with bootstrapping and mixture distri-
bution. Breakpoints partition the time course into consecutive non-overlapping
intervals where the coefficients shift from one stable regression relationship to a
different one. Also, because there are limited observations in some intervals, we
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Fig. 8 Density of the mixture distribution together with individual component distribution for
combined residuals

use block bootstrapping to improve the parameter estimates. The optimal size of the
blocks needed is chosen such that the RSS will be minimum. Once we fit the model
for different intervals, such information is combined and used in forecasting.

Forecasting partitioned data which has different model structures at different
partitions is a challenging task. Over the last decade, there has been much interest
in developing breakpoints to time series data in a small sample scale. To our
knowledge, there are no existing methods that discuss the prediction of this type of
data. We have shown numerically that the model accommodates data with different
variance structures with the introduction of the breakpoints. The regression and
the dependency of the parameters in the model have been included in a consistent
and efficient manner. Regression models with unequal mixed sample frequencies
and their advantages is still relatively the unexplored area (Andreou et al. 2002).
Consistency is guaranteed since we are using the maximum likelihood method, and
efficiency is guaranteed since the bootstrap method is used to resample the data
once the blocks have been identified and the predictions lie within the smaller range
intervals than the classical time series modelling.

The method discussed in this work is different from other existing methods that
are based on time series data in which different covariates have different covariance
structures. Typically, the models that are built with the predictors without the
breakpoint inclusion do not provide substantial forecasting (Stock 2008). We have
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Fig. 9 Model fitting and forecasting of simulated data by using classical time series and mixture
model approaches

developed a new approach which advances previous concepts with new ideas for
forecasting time series data that are subject to the structural breaks and non-
equidistant time. Our approach is based on the mixture distribution where the
parameters are estimated by using EM algorithm combined with bootstrapping. Our
approach together with block bootstrapping performs very well when faced with
small and sparse data sets. Our approach is quite general and can be implemented
in different ways other than those documented. Pesaran et al. (2006) discussed
similar type of data by using Bayesian approach and by allowing the possibility
of new breaks occurring over the forecast horizon. We assume that the existence of
breakpoints in the forecast horizon is somehow unrealistic. Our approach is based
on past data within the intervals and we do not use the information of systematic
breakpoints in the forecast horizon.

Further questions are being explored. One of the questions is related to the
identification of optimal block size for block bootstrapping as discussed in Patton
etal. [26]. Another concern is related to finding a procedure of choosing initial value
in EM algorithm for faster convergence.
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Direct Differentiation of Human Pluripotent
Stem Cells into Advanced Spermatogenic Cells:
In Search of an In Vitro System to Model Male
Factor Infertility

Charles A. Easley IV, Calvin R. Simerly, and Gerald Schatten

Abstract Differentiation of stem cells into spermatogenic lineages in vitro provides
a unique window into the biological mechanisms responsible for driving pluripotent
stem cells into essential progeny—haploid spermatids and viable sperm—as well
as provides an innovative approach for determining novel root causes for male
infertility. Our recent work outlined a novel approach for differentiating human
embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) into
advanced spermatogenic lineages including haploid spermatids with correct parent-
of-origin genomic imprints on two loci. The work described here in this chapter
provides a foundation for building a true in vitro model for human spermatogenesis
with which to model, diagnose and potentially treat male factor infertility.

1 Introduction

As previously discussed [13], the sharp biological distinction between mortal
somatic cells and potentially immortal germ cells has been held as a central
tenet in developmental biology for well over a century dating back to August
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Weismann’s Germ-Plasm Theory (for review, [53]). This theory holds that whereas
the germ line lineage can both maintain itself and also differentiate into somatic
progeny, it is a rectified pathway in which somatic cells cannot themselves generate
gametes. Cracks in this seemingly impregnable wall separating somatic and germ
cells first appeared when Dolly and other cloned animals had offspring and were
therefore reproductively fertile [7], since the transferred somatic cell nucleus was
reprogrammed within the oocyte into a germ line lineage; explanations incorporated
the idea that the oocyte’s germplasm or ooplasm was vital in this process as in
other systems [54]. Breakthroughs in induced pluripotency and the generation of
fertile mice using tetraploid complementation embryo transfers (for review, [64])
opened the floodgate by demonstrating that exposure to a just a few transcription
factors could reprogram somatic cells which were rigidly committed differentiated
cells into most every other cell, including cells in the germ line. Derivations of
cells in the spermatogenic lineage show the promiscuity of pluripotent stem cells,
and now findings of oocyte stem cells in mice capable of generating pups [65] and
recently similar oocyte-like stem cells from women [58], might be another example
of this cellular promiscuity in vitro. Whether these in vitro generated gamete
precursors have reproductive capabilities in vivo, helpful for infertility patients,
will be important to evaluate pre-clinically, though they will be of keen biological
importance regardless.

The quest to generate viable sperm and spermatids in vitro from pluripotent stem
cells and even somatic cells in humans and other primates has many biomedical
justifications even though the endeavor is fraught with experimental and bioethical
challenges [10, 31, 35]. Furthermore the stringencies which with these ‘artificial
sperm’ are evaluated vary according the necessary endpoint. The greatest stringency
is for the generation of fully functional sperm or spermatids useful and safe for
reproduction in ART clinics. This objective is well justified by the Oncofertility
Consortium, which seeks the benevolent objective of preserving fertility in male
cancer survivors who were rendered infertile during their therapies but were also
too young or fragile to produce a sperm specimen for cryobanking [25, 26, 34, 52,
57,59, 61]. It is also justified for the treatment of infertile men suffering from either
diagnosed [24] or idiopathic male infertility in cases in which neither sperm nor
elongated spermatids useful for either ICSI or ELSI can be obtained [25, 26, 34,
52,57, 59, 61]. Discovering of the stages during spermatogenesis at which various
forms of idiopathic male infertility arrest would greatly aid in the diagnoses, and
perhaps eventual treatments, of these still mysterious processes. Learning of these
spermatogenic arrest sites might also contribute to the design of novel contracep-
tives. Additionally the epigenetic modifications enabling the properly imprinted
sperm chromatin and the replacement of nuclear proteins to form the sperm nucleus
could be better investigated in these types of cell cultures versus in intact tissues.
Anticipated improvements in the efficiency of in vitro spermatogenesis may also
help understanding how mitochondria are modified to create the sperm mitochondria
as well as how the somatic centrosome is reduced during male meiosis to form the
sperm tail’s basal body and the sperm centrosome [49].
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Recent studies suggest that human pluripotent stem cells (PSCs) can enter
meiosis, and in some cases produce haploid products, in vitro [15, 29, 44]. In this
chapter, we examine the article recently published entitled Direct Differentiation of
Human Pluripotent Stem Cells into Haploid Spermatogenic Cells [12], in which
we developed an in vitro method which achieves two significant endpoints. First,
male hESCs and hiPSCs are directly differentiated into adult-type spermatogonia.
Secondly, differentiating stem cells give rise to cells which are phenotypically
consistent with post-meiotic round spermatids. These results highlight the full
plasticity of human PSCs by showing the ability to undergo spermatogenesis in vitro
culminating in the production of round spermatid-like, haploid cells with correct
parent-of-origin genomic imprints on at least two loci. These results also contribute
to the overall goal of ultimately generating gametes that may prove invaluable for
understanding infertility mechanisms.

2 Differentiation of Human PSCs in Mouse Spermatogonial
Stem Cell Conditions Significant Increases VASA
Expression

Because human testis cells have been shown to directly de-differentiate into PSCs
by culturing cells in PSC conditions [8, 32, 33], we examined whether ESCs
could directly differentiate into germline stem cells. Our goal was to differentiate
PSCs into spermatogonial stem cell (SSC)-like cells because this spermatogenic
lineage has shown an exceptional ability to re-colonize sterilized testes and thus
restore fertility in certain species including mice and non-human primates (NHPs)
[1, 22, 27]. One advantage of this strategy is that there are established protocols
for culturing and expanding rodent SSCs in vitro [28]. Using these established
protocols, we cultured male hESCs and hiPSCs into mouse SSC medium on
specialty STO feeders for 10 days (Fig. la). After 10 days, we observed a
significant increase in VASA-expressing cells (Fig. 1b, c) with VASA expression
showing similar perinuclear localization to that of germ cells found in human testis
histological sections (Fig. 1d).

3 SSC Conditions Elevate Additional Germ Cell Markers
in Human PSCs

We further analyzed whether hESCs and hiPSCs cultured in mouse SSC conditions
express additional germ cell markers. Deleted-in-Azoospermia-like (DAZL) and
VASA are two germline specific, RNA binding proteins that are important in germ
cell development and normal spermatogenesis [5, 29]. Here, both male hESC and
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Fig. 1 Differentiation of human pluripotent stem cells (PSCs) in mouse spermatogonial stem
cell (SSC) conditions significantly increases VASA expression. Adapted from [12]. (a) Schematic
depicting our differentiation methodology by culturing hPSCs onto specialty STOs in mouse SSC
medium containing bFGF and GDNF. Mouse serum-free medium (mSFM). (b) hESCs and hiPSCs
cultured in mouse SSC conditions for 10 days and then stained for VASA. Percentage of VASA
expression was quantified in the parent PSC lines and the differentiated lines. Representative
graphical analysis from five separate trials, >5,000 cells counted for each condition, is shown.
Asterisk signifies p < 0.01 comparing H1 ESC to H1 SSC. Hash signifies p < 0.01 comparing HFF1
iPSC to HFF1 SSC. (c¢) Representative images of PSCs and PSCs differentiated in SSC culture
conditions for 10 days and stained for VASA. DNA labeled with Hoechst. Scale 50 pm. Enlarged
insets show typical, perinuclear localization of VASA. (d) Human testis tissue was processed
for immunohistochemistry and stained for VASA expression. In VASA-expressing cells within
the seminiferous tubules, VASA localizes to the perinuclear region. DNA is counterstained with
Hoechst. Scale bar 500 pm

hiPSC lines do not exhibit expression of germ cell marker mRNAs (Fig. 2b).
Differentiated cells show an increase in all germ cell markers tested, including
CXCR4 and PIWILI, by RT-PCR, suggesting that this is an efficient way to generate
germ cell lineages (Fig. 2b). VASA and DAZL protein expression was also elevated
in differentiated human PSCs compared to the undifferentiated, parent PSC lines
(Fig. 2c). We also observed that germ cell differentiation was dependent on the
growth factor GDNF (glial-derived neurotrophic factor, hPSCs 4+ Complete). Cells
differentiated without GDNF (hPSCs 4 FGF only) demonstrated no increase in
VASA or DAZL protein expression but did show a loss of the pluripotent marker
Nanog, suggesting that both lines differentiated (Fig. 2c). These results suggest that
GDNF containing SSC medium efficiently and rapidly differentiates hPSCs into
germ cell lineages.
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Fig. 2 SSC conditions elevate additional germ cell markers in human pluripotent stem cells.
Adapted from [12]. (a) Schematic depicting our differentiation methodology by culturing hPSCs
onto specialty STOs in mouse SSC medium containing bFGF and GDNF. Mouse serum-free
medium (mSFM). (b) Reverse transcription (RT) PCR for germ cell markers DAZL, VASA,
CXCR4 and PIWILI in PSCs and their differentiated counterparts. GADPH is shown as a loading
control. No DNA (—DNA) is also shown as a negative control. (¢) Representative western blot
analyses showing upregulation of germ cell marker expression and a concomitant loss of the
pluripotent marker Nanog in complete SSC culture conditions (with GDNF and FGF). Despite loss
of Nanog in FGF only SSC medium (i.e. without GDNF), germ cell markers were not expressed.
Actin is a loading control

4 Human Pluripotent Stem Cells Cultured in Mouse SSC
Conditions Express PLZF, a marker of Stem
and Progenitor Spermatogonia

We next evaluated whether hPSCs differentiated in mouse SSC culture conditions
expressed PLZF, a zinc-finger transcription factor that is a consensus marker of
stem and progenitor spermatogonia. PLZF, or ZBTB16, plays a critical role in SSC
self-renewal and growth [2, 9, 23]. Whereas hPSCs do not express PLZF, 10 day
culture in mouse SSC conditions induced expression of PLZF, localized to the
nucleus, in both differentiating hESCs and hiPSCs (Fig. 3). This nuclear expression
of PLZF mirrors that observed in human testes (Fig. 3, fourth row for each cell
type). Furthermore our protocol generates a high percentage of PLZF-positive cells
within differentiating colonies (Fig. 3, low magnification views, third row for each
column). Unlike other germ cell differentiation methods, our protocol induces PLZF
expression. This suggests that we are more closely mirroring the early events of in
Vivo spermatogenesis.
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Fig. 3 Human pluripotent stem cells cultured in mouse SSC conditions express PLZF, a marker of
stem and progenitor spermatogonia. Adapted from [12]. While the parent PSC lines do not express
detectable levels of PLZF, 10 day culture in SSC conditions upregulates PLZF (red) expression in
both lines (hESC left column, hiPSC right column). Hoechst (blue): DNA. Scale 40 pm. Global
view (third row of each column) of differentiated colonies shows a large portion of cells expressing
PLZE. Scale 100 pm. Fourth row panels in each column depict PLZF staining in human testis
sections
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5 Haploid Cells are Generated from hPSCs
Culturedin SSC Conditions

SSCs are defined in part by their ability to produce gametes through a complex
combination of division and differentiation. Mouse SSCs can differentiate into
haploid cells in vitro [16, 18, 41], so we next quantified whether haploid cells
were produced in differentiating hESCs and hiPSCs in mouse SSC conditions. Flow
cytometry analyses indicated that a haploid population exists in hESCs (4.5 %) and
iPSCs (3.9 %) differentiated in mouse SSC conditions corresponding to haploid
peaks observed with human sperm (Fig. 4). Parent hRESC and hiPSC lines showed no
presence of haploid cells in their respective cultures (Fig. 4). We further confirmed
haploidy of isolated cells by fluorescence in situ hybridization (FISH) with an LNA
probe to satellite DNA found on chromosomes 1, 9, 16 and Y (Fig. 4, lower right
inset). These results suggest that we are able to generate a small percentage of
haploid cells in vitro from hPSCs within 10 days of SSC culture.
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Fig. 4 Haploid cells are generated from hPSCs cultured in SSC conditions. Adapted from [12].
FACS ploidy analysis reveals a small haploid peak in hPSCs cultured in SSC culture conditions
for 10 days. This peak corresponds to the haploid peak observed in human sperm. Chart below
represents % of haploid cells in undifferentiated and SSC-mediated differentiated hPSCs. Data is
representative of five cell sorts with 500,000 cells sorted per experiment. Included table shows
a summary of the average % of haploid cells produced. Lower right inset, cells by FACS from
the haploid peak are confirmed as haploid by FISH, using an LNA probe directed at satellite
DNA found on chromosomes 1, 9, 16 and Y. Left, undifferentiated H1 hESCs show diploid probe
expression with seven “dots” present. Haploid cells isolated by FACS show both appearance of
three “dots” and four “dots” signifying the generation of X-haploid cells and Y-haploid cells,
respectively. Scale bar 2 nm

6 Haploid Cells Isolated from hPSCs Cultured in SSC
Conditions Resemble Round Spermatids

Because differentiation in SSC conditions yielded a small percentage of haploid
cells in addition to a large population of PLZF-positive spermatogonia, we next
evaluated whether hESCs and hiPSCs differentiated into intermediate cell types
observed in in vivo spermatogenesis during culture in mouse SSC conditions. In
addition to PLZF, we observed expression of UTF1 and CDH1 (Fig. 5, left column),
proteins expressed both in spermatogonia and PSCs. Unlike PSCs, we observed an
increase in protein expression of RET and GFRal (Fig. 5, western blots), receptors
for GDNF found on spermatogonia.

Differentiation of hPSCs in SSC conditions showed an increase in PIWILI RNA
expression (Fig. 2b). PIWILI, also known as HIWI, is essential in spermatogenic
progression from SSCs to round spermatids [11]. We examined expression of three
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Fig. 5 Haploid cells isolated from hPSCs cultured in SSC conditions resemble round spermatids.
Adapted from [12]. Left: 10 days post differentiation cultures of hESCs and hiPSCs express pre-
meiotic spermatogonial markers UTF1 and CDHI. Scale 50 pm. Differentiation also induces
expression of two membrane receptors: RET and GFRal. Actin is a loading control. Center:
expression of spermatogonia-to-spermatocyte marker HILI, spermatocyte-to-spermatid marker
HIWI and meiotic marker SYCP3. Scale for HILI 200 pwm, scale for HIWI, 500 pm and scale
for SYCP3, 10 wm. Right: expression of post-meiotic spermatid markers Acrosin, Protamine 1
(Protl) and Transition Protein 1 (TP1). Haploid cells were sorted by FACS and immunostained
with antibodies directed at the indicated protein. Scale 10 pm

spermatocyte markers for pre-meiotic spermatocytes/differentiating spermatogonia,
meiotic spermatocytes and post-meiotic spermatocytes. We identified cells in both
differentiating hESCs and hiPSCs expressing pre-meiotic HILI protein, meiotic
marker SYCP3 (synaptonemal complex 3), involved in recombination and segre-
gation of meiotic chromosomes; and post-meiotic HIWI (Fig. 5, center column).
While there were a large number of HILI-positive cells, very few cells expressed
SYCP3 or HIWI, suggesting that there is bottleneck prior to meiosis.

We next isolated the haploid peaks from FACS and immunostained isolated
cells for spermatid markers. During spermiogenesis, acrosin expression is turned
on and histones are replaced by protamines via transition proteins [4]. Haploid cells
isolated from differentiated hESC and hiPSC cultures express post-meiotic, sperm
markers: acrosin, protamine 1 and transition protein 1 (Fig. 5, right column). In
particular, acrosin staining exhibits polar localization in both cell lines (Fig. 5, first
row). These haploid cells resemble round spermatids by acrosin localization, the
nuclear/perinuclear localization of transition protein 1 (TP1) and the perinuclear
localization of protamine 1 (Protl) (Fig. 5, right column), which localizes to the
perinuclear region of haploid cells and enters the nucleus at the elongated spermatid
stage [4]. These haploid cells also resemble round spermatids observed in human
and NHPs [4, 40, 47]. These results coupled with the preceding PIWILI expression
data suggest that PSCs are able to directly differentiate into post-meiotic, round-
spermatid like cells in vitro.
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7 Haploid Spermatids from Pluripotent Stem Cells Show
Similar Imprint Patterns to Human Sperm

During in vivo germ cell specification, genomic imprints are removed at the
primordial germ cell stage and then re-established during spermatogenesis [36].
In mice, differentiating PSCs into functional germ cells results in progeny that
exhibit epigenetic disease phenotypes [41, 42]. One explanation was improper
imprinting during gametogenesis [37]. To evaluate imprinting statuses on haploid
spermatids differentiated here, we isolated haploid cells by FACS and examined the
methylation status of the imprinting control region (ICR) for paternally imprinted
(H19) and maternally imprinted genes (IGF2). As previously reported, hiPSCs
showed aberrant imprinting [46], but hESCs showed typical somatic cell imprinting
on ICRs for H19 and IGF2 (Fig. 6). Isolation of haploid cells from differentiated
hESC cultures showed imprinting patterns similar to those observed in human sperm
with H19 ICR methylation around 90 % and IGF2 ICR methylation around 5 %
(Fig. 6). Haploid cells from differentiated hiPSC cultures showed similar levels of
H19 ICR methylation to human sperm ( 90 %), but IGF2 methylation ( 14 %) was
slightly elevated above methylation observed in human sperm (Fig. 6). These results
suggest that haploid products obtained show similar DNA methylation patterns on
at least two parent-of-origin genomic imprints.

8 Discussion

Infertility affects perhaps 15 % of couples worldwide, with male factors responsible
for 40-60 % of all cases [51]. In men without a genetic root cause for infertility,
stem cell transplantation represents a possible treatment option to restore fertility
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Fig. 6 Haploid spermatids from pluripotent stem cells show similar imprint patterns to human
sperm. Adapted from [12]. hESCs, hiPSCs, fertile human sperm, and haploid cells obtained
by FACS from differentiated hESC and hiPSC cultures were examined for methylation on
imprinting control regions (ICRs) for H19 (paternally imprinted) and IGF2 (maternally imprinted).
Methylation statuses were examined using Qiagen Epitect Methyl II PCR Array. Graph shows
average % methylation with error bars
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Fig. 7 Proposed model for treating male infertility with stem cells. Adapted from [13]. Diagram
depicting how our differentiation strategy yields SSCs, which can be useful for restoring fertility
by transplantation into the testis, and haploid spermatids which can potentially be used to fertilize
an oocyte by IVF

[38, 39, 43, 63]. Clinical interventions such as chemotherapy and immune sup-
pressant treatments often render male patients sterile. Protocols to preserve future
fertility in boys undergoing cancer therapies who cannot yet bank their own sperm
are under development [19, 21, 30, 48, 50, 60]. However for adult and prepubescent
patients rendered sterile prior to sperm collection, there are no current treatments to
restore fertility.

Our differentiation protocol generated two endpoints critical for driving in vitro
spermatogenesis to the clinic to treat infertility in patients without a known genetic
etiology (Fig. 7). First, human PSCs were differentiated into SSC-like cells, cells
that reside at the foundation of spermatogenesis. Several previous studies have
shown the ability of human and non-human primates PSCs to differentiate into
PGCs [3, 17, 29, 44, 45, 55, 56, 62]. Although this cell lineage has the capability of
restoring fertility in rodents, including primordial germ cells (PGCs) derived from
mouse PSCs [6, 20], SSCs remain the gold standard for colonizing cells which
recapitulate spermatogenesis following transplantation [1, 27]. Thus differentiating
hPSCs into SSCs is an important step in the future ability for using patient-specific
PSCs to restore fertility, as SSCs derived from PSCs can be transplanted into
the sterilized testes to restore spermatogenesis (Fig. 2). Furthermore, the sperm
generated following transplant would, in theory, be the patient’s own genetic
material.
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However, transplantation of SSCs derived from PSCs supposes that the somatic
environment of the testis remains intact. Prolonged clinical interventions, injury,
exposure to environmental toxins, etc. can cause sterility and render the somatic
environment useless for SSC transplantation. For these patients, complete sper-
matogenesis in vitro is critical for generating haploid products useful for ART
procedures to fertilize a partner’s oocyte and pass along their own genetic material
(Fig. 7). Our differentiation protocol generates haploid products consistent with
round spermatids. While techniques for utilizing round spermatids to fertilize
oocytes have not been proven in human and non-human primates, our differentiation
protocol at least shows the feasibility of generating haploid products that could be
useful in IVE. This would suggest that functional haploid cells may be obtained
from no greater starting material than a skin biopsy needed for iPSC derivations.

In vitro spermatogenesis also holds great promise to diagnose male infertility
and provides a novel tool for exploring root causes for male infertility [14]. By
deriving hiPSCs from infertile men, such as from patients with Sertoli-cell-only
(SCO) syndrome, followed by direct differentiation with our protocol, we can
examine where spermatogenesis arrests, and in the case of SCO patients, identify
whether hiPSCs can differentiate into SSCs and whether viability of SSCs is a
major concern. A similar strategy can be implored for men with defects in Leydig
Cell function, DAZ-family deletions and even Klinefelter Syndrome. In cases where
spermatogenesis arrests in vitro, chemical screens can be employed with a read-
out for haploid cell production to identify novel compounds that could treat known
causes for male infertility. In this same light, chemical screens can be utilized to
discover male forms of birth control that temporarily arrest spermatogenesis but do
not endanger SSC survival. Thus the clinical uses for in vitro spermatogenesis are
substantial and could lead to the first cures for male sterility.

9 Conclusion

While the risks and ethical considerations for moving in vitro spermatogenesis to the
clinic are great, the potential rewards are sufficient to continue to explore this option
to treat male infertility. To date, our methodology needs to be refined to use xeno-
free conditions to generate haploid spermatids for use in the clinic. As advances
in in vitro spermatogenesis are made, this technique may become fundamental in
diagnosing and treating a currently incurable disorder: male infertility.
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Stepanov-Like Pseudo-Almost Periodic
Functions in Lebesgue Spaces with Variable
Exponents L?*)
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Abstract In this paper we introduce and study a new class of functions called
Stepanov-like pseudo-almost periodic spaces with variable exponents, which
generalizes in a natural way the space of Stepanov-like pseudo-almost periodic
spaces. Basic properties of these new spaces are established. The existence of
pseudo-almost periodic solutions to some first-order differential equations with
S 74()_pseudo-almost periodic coefficients will also be studied.
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1 Introduction

The notion of pseudo-almost periodicity was introduced in the literature over a
decade ago by Zhang [14]. Since then such a concept has been largely studied
and extended in various directions. In particular, in Diagana [3], the notion of
S?-pseudo-almost periodicity (or Stepanov-like pseudo-almost periodicity), which
generalizes the notion of pseudo-almost periodicity, was introduced and studied.
The construction of S”-pseudo-almost periodic spaces makes extensive use of the
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Lebesgue space L? and its properties. Various important results on these spaces
have recently been established including some composition theorems, e.g., [2,4, 5,
7,8,10,11], and [12].

The main objective of this paper is twofold. Our first goal consists of generalizing
S?-pseudo-almost periodic spaces to the case of variable exponents. These new
spaces are called S79™)-pseudo-almost periodic functions with variable exponents.
The construction of these new spaces makes extensive use of basic properties of
Lebesgue spaces with variable exponents L¢™) (see [6,9, 13]). Various properties
of these new functions are investigated including some composition results (see
Theorem 5.15).

The second goal of the paper consists of using the newly-introduced functions to
study the existence of pseudo-almost periodic solutions to the first-order differential
equation

u'(t) = Au(t) + F(t,u(®)), teR, (1)

where the (possibly unbounded) linear operator A : D(A) C X + X is the
infinitesimal generator of a Cy-semigroup which is exponentially stable on a Banach
space X, and the forcing term F : R x X + X is a S79-pseudo-almost periodic
function satisfying some additional conditions. Such a result generalizes most of the
results encountered in the literature on pseudo-almost periodic solutions to Eq. (1).

In order to study the existence and uniqueness of pseudo-almost periodic solution
to Eq.(1), we first study the existence of pseudo-almost periodic solutions to the
linear differential equation

uW'(t) = Au(t) + f(), tE€eR, ()

where the linear operator A satisfies the above-mentioned assumptions and the
forcing term f belongs to S;);g,(x)(X) NCR,X) forf > 1 and ¥ € C(R).

This paper is organized as follows: Section 2 is devoted to some useful notations
needed in the sequel. Section 3 collects the basic background on pseudo-almost
periodic functions needed in the sequel. Section 4 gathers the basic results on the
Lebesgue space with variable exponents 7). Section 5 introduces S 7¢*)-pseudo-
almost periodic functions and studies their properties. Section 6 studies the existence
of pseudo-almost periodic solutions to Egs. (1) and (2).

2 Preliminaries

Let (X, - D, (Y,] - |ly) be two Banach spaces. Let BC(R,X) (respectively,
BC(R x Y, X)) denote the collection of all X-valued bounded continuous functions
(respectively, the class of jointly bounded continuous functions F' : R x Y — X)).
The space BC(R,X) equipped with the sup norm || - || is a Banach space.
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Furthermore, C(R,Y) (respectively, C(R x Y, X)) denotes the class of continuous
functions from R into Y (respectively, the class of jointly continuous functions
F : RxY — X). Let B(X,Y) stand for the Banach space of bounded linear
operators from X into Y equipped with its natural operator topology; in particular,
B(X, X) is denoted by B(X).

3 Pseudo-Almost Periodic Functions

Definition 3.1 ([3]). A function f € C(R,X) is called almost periodic if for each
€ > 0 there exists /(¢) > 0 such that every interval of length /(¢) contains a number
7 such that || f(r + ) — f(¢)|| < & for each t € R. The collection of all almost
periodic functions from R to X will be denoted by A4 P (X).

Definition 3.2 ([3]). A jointly continuous function F € C(R x Y, X) is called
almost periodic in # € R uniformly in x € Y if foreache > Oandany K C Y a
bounded subset, there exists /(¢) such that every interval of length /(¢) contains a
number t with the property that || F(t +1,y)— F (¢, y)|| < e foreacht e R,y € K.
The collection of such functions will be denoted by AP (R x X).

Define

PAPy(X) :=

1T
S €BCRX): lim — /_T | f(o)|ldo = o§ .

Similarly, define PAPy(R x X) as the collection of jointly continuous functions
F : R xY — Xsuch that F(-, y) is bounded for each y € K (K being an arbitrary
bounded subset of Y) and

T

.1
Jm oo . IE (s, y)lds =0

uniformlyin y € K.

Definition 3.3 ([14]). A function f € BC(R,X) is called pseudo-almost periodic
if it can be expressed as f = g + ¢, where g € AP(X) and ¢ € PAPy(X). The
collection of such functions will be denoted by PAP (X).

Definition 3.4. A function F € C(R x Y, X)) is called pseudo-almost periodic if it
can be expressed as F = G + ®, where G € AP(R x Y) and ® € PAP)(R x X).
The collection of such functions will be denoted by PAP (R x X).

Theorem 3.5 ([14]). The space PAP(X) equipped with the sup norm | - ||oo is a
Banach space.
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Theorem 3.6 ([1]). Assume [ : RxY — Xis pseudo-almost periodic and satisfies
the Lipschitz condition, that is, there exists L > 0 such that

If@w) = fEn < L-lu=vly foralluyveY,reR.

Ifh € PAP(Y), then f(-.h()) € PAP(X).

4 Lebesgue Spaces with Variable Exponents L?®*)

This section is mainly devoted to the so-called Lebesgue spaces with variable
exponents L7 (R, X). Various basic properties of these functions are reviewed.
For more on these spaces and related issues we refer to Diening et al. [6].

Let (X, | - ||) be a Banach space and let 2 < R be a subset. Let M(2,X)
denote the collection of all measurable functions f : Q2 — X. Let us recall that two
functions f and g of M (L2, X) are equal whether they are equal almost everywhere.
Set m(R) := M(Q,R) and fix p € m(Q). Let p(x,1) = t?™ forall x € Q and
t > 0, and define

) = prin@ = [ g luolax = [ uo) s

LPO(Q,X) =

ue M(Q2,X): lim p(Au) = 0} ,
A—0t

LA(Q,X) =

ue LPD(Q,X): p(u) < oo} , and

EP(Q,X) =

ue LP(X)(Q’X) :forall A >0, p(Au) < OO} .

Note that the space L?*) (2, X) defined above is a Musielak-Orliez type space

while the space Lpo("é) (2,X) is a generalized Orliez type space. Further, the
sets EP0)(Q,X) and LPW (2, X) are vector subspaces of M($2, X). In addition,
Lpo(é) (22, X) is a convex subset of L7 (Q, X), and the following inclusions hold

EPO(Q,X) c LIY(Q.X) ¢ LPM(Q,X).

Definition 4.1 ([6]). A convex and left-continuous function y : [0, o0) — [0, 00]
is called a ®-function if it satisfies the following conditions,

(@) ¥(0) =0;
(b) lim+ ¥(t) = 0; and
t—0

(©) lim y(1) = co.
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Moreover, ¥ is said to be positive whether ¥ (¢) > 0 for all # > 0.

Let us mention that if i is a ®-function, then on the set {t > 0 : ¥ () < oo}, the
function v is of the form

V(o) = /0 k(0)dt,

where k(-) is the right-derivative of ¥ (¢). Moreover, k is a non-increasing and right-
continuous function. For more on these functions and related issues we refer to [6].

Example 4.2. (a) Consider the function ¢, (1) = p~'t? for 1 < p < co. It can be
shown that ¢, is a ®-function. Furthermore, the function ¢, is continuous and
positive.

(b) It can be shown that the function ¢ defined above, that is, ¢(x, ) = 7™ for all
x € Rand ¢t > 0is a &-function.

For any p € m(S2), we define

p~:=essinfyeq p(x), pt :=esssup,eq p(X).

Define
C.(Q):={2pem(Q):1<p <px)<pt <oo, foreachx € Q}.

Let p € C4(2). Using similar argument as in [6, Theorem 3.4.1], it can be
shown that

Ep(x)(Q, X) — L](’)(é)(gz’ X) — LP(X)(Q, X)

In view of the above, we define the Lebesgue space with variable exponents
LP9(Q,X) with p € C4+(R), by

LPO(Q,X) =

ue M(2,X): / u(x)|PPdx < oo} .
Q

Define, for each u € LPY(Q, X),

/\>0:/
Q

It can be shown that || - | (v) is @ norm upon L”™) (2, X), which is referred to as
the Luxemburg norm.

||M||p(x) = inf

u;) Hp(x)dx E 1} '
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Remark 43. Let p € C4(R).If p is constant, then the space L?) (2, X), as defined
above, coincides with the usual space L? (€2, X).

We now establish some of the basic properties of these spaces. For more on these
functions and related issues we refer to [6].

Proposition 4.4 ([6]). Let p € C1(R) and let u,ur,v € M(Q,X) for k =
1,2, .... Then the following statements hold,

(@) Ifur — ua.e, then pp(u) < klim inf(pp (ur)).
—00
®) IF ]| = Nl 2., then py ) = Tim py ().
(©) Ifux — uae., |lug| < |v| andv € EPY(Q,X), then uy — uin LP®(Q,X).

Proof. (a) Since ¢(x,-) is a ®-function, then by [6, Lemma 2.3.4 ], the function
@(x,-) is lower semicontinuous. Thus the usual Fatou’s Lemma yields,

pp(u) = :0]1( Jim inf(uk))

).

lim inf / g || d x
k—o00 Q

p(x)

dx

lim inf(uy)
k—00

IA

= lim infp, (uy).
k—o00

(b) Let ||ug|| — |lu|| a.e.. Then by the left-continuity and monotonicity of ¢(x, -)
we have

0= @C. ux O = @, [luC))-

Thus the usual Theorem of Monotone Convergence yields,

pp (1) /Q H Jim ()
= / lim [ug||P™ dx
Qk-)OO

lim / lluage |7 d x
k—o00 Q

Jim pp(uk).

p(x)
dx

(c) Letuy — uae., |lux| < |v] andv € EP¥(Q,X). Then |ux — ul| — 0 a.e.,
lul < |Iv]l and [jux — u|| < 2||v||. Since p,(2Av) < oo, then using the usual
Theorem of Dominated Convergence, we conclude that
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p(x)
lim p,(Allux —ul) = / lim (k”uk — u||) dx = 0.
k—o00 Q k—>o0

Now since A > 0 was arbitrary, then [6, Lemma 2.1.9] yields uy — u in
LP9(Q,X).
|
Proposition 4.5 ([6,13]). Let p € C1(Q). Ifu,v € LPY(Q, X), then the following
properties hold,
@) |lullpery = 0, with equality if and only if u = 0.
(®) pp(u) = pp(v) and |Jull pixy = IVl pexy I llull = [IV]l.
(©) pp(u”””;(lx)) =lifu#0.
(&) pp(u) <1 ifand only if [l iy < 1.
©) If lull pxy < 1, then

[/’p(”)]%— < lull peoy < [pp(u)]#.

® If |lull px) = 1, then

L

(0] < e = [p0]

Proposition 4.6 ([6]). Let p € C1 () and let u,ur,v € M(Q,X) for k

1,2,.... Then the following statements hold:
@) Ifu € LPY(Q,X) and 0 < |v|| < |u||, then v € LPY(Q,X) and IVl pe) <
llell px) -

(b) Ifu — wae. then ull o) = Tim inf(lue] o)

©) If luk | — |lull a.e. with u € LP®(2,X) and sup; lurll pvy < 00, then u €
LR, X) and |ug || piy = llull pi-

Using similar arguments as in Fan et al. [9], we obtain the following:
Proposition 4.7. If u,u, € LP(Q,X) for k = 1,2,..., then the following
statements are equivalent:

(@) lim |lug —ullpr) = 0;
k—o0
(b) lim p,(ur —u) = 0;
k—o0
(©) ux — uand lim p,(ur) = pp(u).
k—o00
Theorem 4.8 ([6,9]). The space (L?™)(22,X), || - | px)) is a Banach space that is

separable and uniform convex. Its topological dual is L1 (Q, X), where p~' (x) +
g~ '(x) = 1. Moreover, for any u € LP®(Q,X) and v € L1 (Q, R), we have
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1 1
| [ o] = (5= + =) Nl Placo:
Define

Di(RQ):={pem(Q):1<p <p) <p’ <oo, foreachx € Q.

Corollary 4.9 ([13]). Let p,r € D (). If the function q defined by the equation

Lot
q(x)  p(x) )

is in D4 (R2), then there exists a constant C = C(p,r) € [1, 5] such that

”uV”q(x) =< C”””p(x)- |V|r(x)s

foreveryu € LP™(Q,X)andv € L"™(Q,R).

Corollary 4.10 ([6]). Let mes(2) < oo where mes stands for the Lebesgue
measure and p(x),q(x) € Dy (). If q(-) < p(-) almost everywhere in 2, then
the embedding LP™ (Q,X) — LIY(Q,X) is continuous whose norm does not
exceed 2(mes(2) + 1).

5 Stepanov-Like Pseudo-Almost Periodic Functions
with Variable Exponents

Definition 5.1 ([4]). The Bochner transform f?(t,s), t € R, s € [0,1] of a
function f : R — Xis defined by f(¢,s) := f(t + ).

Remark 5.2. (i) A function ¢(t,s),t € R, s € [0, 1], is the Bochner transform of
a certain function £, (t,s) = f°(t,s),if and only if p(t + 7,5 — ) = @(s,1)
forallt e R,s €[0,1]and T € [s — 1, 5].

(ii) Note thatif f = h + ¢, then f? = h? + ¢”. Moreover, (Af)? = A f? for each
scalar A.

Definition 5.3 ([4]). The Bochner transform F? (t,s,u),t e R,s €[0,1],u € Xof
a function F (¢, u) on Rx X, with values in X, is defined by Fb(t, s,u) ;= F(t+s,u)
foreach u € X.

Definition 5.4. Let p € [1,00). The space BS?(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f on R with
values in X such that f? € L®(R, L?((0, 1), X)). This is a Banach space with the
norm
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1+1 1/p
1 llse = 1/ llzeo Ly = sup (/ ||f(f)||pdt) '
teR t
Note that for each p > 1, we have the following continuous inclusion:
(BCX). [+ lloo) = (BSP(X), I - ls2)-

We introduce

Definition 5.5. Let p € C,(R). The space BS?™(X) consists of all functions
f e M(R,X) such that || f||gpx) < 00, where

If s = sup |:inf{k >0: /01 H@HP(X—H)CZX < 1}:|

—ap s [0 V1]

Note that the space (BS POYX), || - Il pm) is a Banach space, which, depending on

p(-), may or may not be translation-invariant.

Definition 5.6. If p,q € C4(R), we then define the space BS?™4W(X) as
follows:

BSPX)a) (X) := BS"(X)(X) 4 BS4™ (X)

= {f=h+p e MR.X):h € BS"(X) and ¢ € BST™ (X))},

We equip BS?™)4)(X) with the norm || - || ¢p.4» defined by

I lspeae = inf{ 12llsrer + ll@llsa = f=h+¢

Clearly, (BS PEI (X)), || - |l s p(x).q(x)) is a Banach space, which, depending on

both p(-) and g(-), may or may not be translation-invariant.

Lemma 5.7. Let p,q € C+(R). Then the following continuous inclusion holds,
(BCRX).11-lloo) = (BS"@ 0. I lsi0) = (BP9, |- lspcaaco ).

Proof. The fact that (BSW)(X), - S,,(x)) < (BSWM(X)(X), I Sp(x).,,m) is
obvious. Thus we will only show that (BC(]R, X), | - ||oo) — (BS”("")(X), | -
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||Sp(x>).lndeed, let f € BCR,X) C M(R,X).If || f|loo = 0, whichyields f =0,
then there is nothing to prove. Now suppose that || f'||cc 7 0. Using the facts that
0< H ”’;% H < 1 and that p € C+(R) it follows that for every ¢t € R,

t+1 p(x) t+1
[ e
: I/ oo :

p(x)

and hence || f || € gk >0: ftH—l H% dx < 1} , which yields

a0 [0 <l < i1

Therefore, || f ||l so < || fleo < oc. This shows that not only f € (BS?™ (X)), || -
ls»w) but also the injection (BC(R,X), | - o) <> (BSP®(X), | - lsow) is
continuous. |

Definition 5.8. Let p > 1 be a constant. A function f € BS”(X) is said to be
S”-almost periodic (or Stepanov-like almost periodic) if f* € AP (LI’ (0, 1), X)).
That is, for each ¢ > 0 there exists /(¢) > 0 such that every interval of length /(¢)
contains a number t with the property that

= (/ol Hfb(t+r, S)—fb(t,S)deS)l/pzsup ([H Hf(”rf)—f(s)H”dS)l/p .

teR teR

The collection of such functions will be denoted by S4,(X).

Remark 5.9. There are some difficulties in defining Sfp(x)(X) for a function p €
C+(R) that is not necessarily constant. This is mainly due to the fact that the space
B SPY(X) is not always translation-invariant. In other words, the quantities 1 (¢ +
r,s)and f’(¢,s) (fort € R, s € [0, 1]) that are used in the definition of S7-almost
periodicity, do not belong to the same space, unless p is constant.

We now introduce the concept of §7:9™)-pseudo-almost periodicity that obvi-
ously generalizes that of S7-pseudo-almost periodicity.

Definition 5.10. Let p > 1 be a constant and let ¢ € C4(R). A function f €
BSP40)(X) is said to be S74)-pseudo-almost periodic (or Stepanov-like pseudo-
almost periodic with variable exponents p, g(x)) if it can be decomposed as

f=h+o,
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where i € S7,(X) and ¢ € SZ,(;;L (X) with SZ((,’;?) (X) being the space of all ¥ €
B S9%)(X) such that

q(x)

Y (x) ‘
A

1 T t+1
lim — [ inf A>O:/ ) dx <14 dar = 0.
T—o0 2T J_7 '

The collection of S790)_pseudo-almost periodic functions will be denoted
Spip " (X).

Proposition 5.11. Let p > 1 be a constant and let ¢ € C+(R). If f € PAP(X),
then f is SP1%)-pseudo-almost periodic.

Proof. Let f € PAP(X). Thus there exist two functions %, ¢ : R — X such that

f=h+o.
where 1 € AP(X) and ¢ € PAPy(X). We first show that 1 € SZ,(X). Indeed, since
h € AP(X), for each ¢ > 0 there exists /(¢) > 0 such that every interval of length
I(g) contains a number 7 with the property that

12(r +7) =h@)ll <&

foreacht € R.
Now

t+1 » t+1
/ Hh(s—l—t)—h(s)” dsf/ ePdx = &?
t t
for all ¢+ € R, which means that
|a(t + ) —h(@)|sr <e,
thatis, i’ € AP(L”((0,1),X)).

To complete the proof, we need to show that ¢? € PAP(LY ™ ((0, 1), X)).
Using (e)—(f) of Proposition 4.5 and the usual Holder inequality, it follows that

[ o [0
= /T (/1 lp(t + x)[|a¢+) dx)y dt
-T 0
= (2T)“V[/_TT (/01 lp(r + x)[ 40+ dx) dt]y

q(x+1)
d

xfl}dt
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T 1 Y
saTﬂﬂ[[T(L|wa+xmwm@#“*d0dﬂ
[[ ([|wa+mnw> }

T
|:/ (/_T le( + x)|| dt) dx:|
q+—l 1 1
:(2T)(||<plloo+1) ! U) (ﬁ/ lo(t + x)|| dt) dx:|

=77 (glloo + 1

)
=@nw@wm+0

where

o ifllell <1,

i~

L iflel = 1.

Using the fact that PAPy(X) is translation invariant and the (usual) Dominated
Convergence Theorem, it follows that

lim _TTinf{A>0:/Ol H@)

q(x+1)

T—oo 2T

gt 1 1 T 14
Y . _
< (||<P||oo + 1) |:/0 (Tlgr;oﬁ . le( + x)|| dt) dx:| =0.
O

Definition 5.12. Let p > 1 and ¢ € C+(R). A function F : R x X — X with
F(.,u) € BP4W(X) for each u € X, is said to be $74™)-pseudo-almost periodic
in¢ € R uniformly in u € X if t — F(t,u) is SP4™)-pseudo-almost periodic for
each u € B where B C X is an arbitrary bounded set. This means, there exist two
functions G, H : R x X — X such that F = G + H, where G’ € AP(R x
L?((0,1),X)) and H?> € PAPy(R x L‘fb(")((O, 1), X)), that is,

dxfl}dt

T

. 1 . q(x+1)
lim — inf { A>0:

/1 HH(x+t,u)
0

T—o00 -7

dxfl}dtzo,

uniformly in # € B where B C X is an arbitrary bounded set.
The collection of such functions will be denoted by S 50%()‘) R x X).
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Let Lip" (R, X) denote the set of functions f : R x X — X satisfying: there
exists a nonnegative function L y € L" (R) such that

| f(t,u)— f&E. V| < Lp@)u—v| forall u,veX, tekR. 3)

Now, we recall the following composition theorem for S, » functions.

Theorem 5.13 ([12]). Let p > 1 be a constant. We suppose that the following
conditions hold:

(@) f € SR xX)N Lip"(R,X) withr > max{p, #}.

(b) ¢ € S&,(X) and there exists a set E C R with mes (E) = 0 such that

K:={¢p(t):t e R\ E}

is compact in X.
Then there exists m € [1, p) such that f(-,¢()) € Sy, (R x X).

Lemma 5.14 ([12]). Let q > 1 be a constant and let K C X be compact subset. If
f € Lipi(R,X) and fb e PAPy(L?((0,1),X)), then f € PAPy(R), where the
function f is defined by

S =

sup | /(1 + - ) @
u€K q

forallt € R.

Theorem 5.15. Let p,q > 1 be constants such that p < q. Suppose that the
following conditions hold:

(@ f = g+h e Shh(RxX) with g® € AP(R x L?((0,1),X)) and h* €
PAPy(R x L4((0,1),X)). Further, f,g € Lip"(R,X) with r > max{gq, %}.

b)) ¢ =a+ B € ShhX)witha € SI,(X) and B € S}ap,(X), and there exists a
set E C R withmes (E) = 0 such that

K:={u():teR\ E}

is compact in X.

Then there exists m € [1, p) such that f(-,$()) € Sy, (R x X).

Proof. The proofis a sequel of Lemma 5.14 and Theorem 5.13. Indeed, decompose
£ as follows:

P =" Ca" )+ ") = PGl () + el ()).
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Using Theorem 5.13, it easily follows that there exists m € [1, p) with % = % + %
such that g (-,a”(-)) € AP(R x L™ ((0, 1), X)).
Set

0"() = 7. ¢"() = [ ().

Clearly, ® € PAPy(L™((0,1),X)). Indeed, for T > 0,

1
1

1 T 1 b m
— t Mds | dt
7 L[ e orras

T 1
= % . (/(; ”fb(l +S,¢b(l +S))—fb(t +S,Olb(t +S'))||md8') dt

1 m #
(/O (L‘}}(t—l—s).”ﬂb(z—l—s)”) ds) dt
=1Ly [L/T (/l 18” (¢ +s)||”ds)pdt}
= f . T . A
1 (T 1 :
| [ﬁ L, (/0 18" +s>||'fds) dt},

Using the fact that B° € PAPy(LY((0,1),X)), it follows that ¢* €
PAPy(L™((0,1),X)).

Now using the factthat h = f — g € Lip"(R,X) C Lip?(R, X), it follows by
Lemma 5.14 that

T
sup [[a(c + - w]l| dr =o,
uek q

1
lim —
T—o0 2T -T

which yields
1 T 1 %
T /||hb(t+s,ab(t+s))||mds dt
-T 0
1 T 1 i
<57 /||hb(t+s,ab(t+s))||”ds dt
=T 0

IA

1 T 1 q i
— / sup |2t +s,u)|| | ds| dt =0 as T — oo,
2T J-r \Jo \uek
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which means that h° (-, a?(-)) € PAPy(L™(0, 1;X)). This completes the proof. [
Remark 5.16. A general composition theorem in S Ifjgx)(R x X) is unlikely as

compositions of elements of S 5{}%()() (R x X) may not be well-defined unless g(-)

is the constant function.

6 Existence of Pseudo-Almost Periodic Solutions

Let p,q > 1 be constants such that p < ¢. This section is devoted to the search
of a pseudo-almost periodic solution to the first-order differential equation (1).
Throughout the rest of the paper we suppose that:

(A.1) The operator A is the infinitesimal generator of an exponentially stable
Co-semigroup (7'(¢));>o0, that is, there exist constants M, w > 0 such that

IT@)| < Me™

foreacht > 0.
(A2) F=G+H € Shi RxX)NCR xX) with G® € AP(R x L”((0,1), X))
and H” € PAPy(R x L4((0, 1), X)). Moreover; F,G € Lip" (R, X) with

erax%q,L}.
p—1

Definition 6.1. Under (A.1), if f : R — X is a bounded continuous function, then
a mild solution to Eq. (2) is a continuous function u : R — X satisfying

u(t) = T(t —s)u(s) + / T({t—o0)f(o)do (®)]
forallt,s e Randt > s.

Definition 6.2. Suppose (A.1) holds. If F : R x X — X is a bounded continuous
function, then a mild solution to Eq.(1) is a continuous function u : R — X
satisfying

t
u() = T(t —s)u(s) + / T({t—o0)F(o,u(o))do (6)
s
forallt,s e Randt > s.
Theorem 6.3. Let 6 > 1 be a constant and let ¥ € C4(R). Suppose that (A.1)

holds. If f € Sﬁﬁm(X) N C(R,X), then the Eq. (2) has a unique pseudo-almost
periodic (mild) solution given by
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u(t) = / T(t—s)f(s)ds. @)
Proof. Define the function u : R — X by
t
u(t) = / T(t—s)f(s)ds, t €R. €]

It is easy to check that u given in Eq.(8) satisfies Eq.(5) and hence it is
a mild solution. Let us now show that u € PAP(X). Indeed, since f €
S,f,’;;“)(X) N C(R,X), then f = h + ¢, where h* € AP(L?((0,1),X)) and
@b € PAPy(L?"™((0,1), X)). Then u can be decomposed as u(t) = X(r) + Y (t),
where

t

X(t) = /_t T(t —s)h(s)ds, and Y(t) = / Tt —s)p(s)ds.

The proof that X € AP(X) is obvious and hence is omitted. See, e.g.
[3, Theorem 3.2]. To prove that Y € PAPy(X), we define foralln = 1,2, ..., the
sequence of integral operators

n t—n+1
Y, @) = / T(s)p(t —s)ds = / Tt —s)p(s)ds.
n—1 t

—n

foreacht € R.
Let d € m(R) such that d~'(x) + 97 !'(x) = 1. Using Holder inequality
(Theorem 4.8), it follows that

t—n+1

10 < M / O g(s) [ ds
1 1 . t—n+1 e—w(t—s) d(s)
EM(d—_+ﬂ—_)|:lnf§/\>0/t_n ( 1 ) dsfl§:|
t—n+1 D (s)
o [T A < |
A

Now since

t—n+1 —w(t s) d(y) t—n+1 w(s rin_1) d(s)
[ ol 1> ] ds
t—n
/l‘ n+1 d(?)

IA
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<1

—w(t—.\')

A

t—n+1 e—w(t—s) d(s)
inf{A>0: / ds <1 < e @=)
[ { t=n ( A )

Consequently,

. —o(n—1 t—n+1 d(s) .
it follows that e=@®=D e {1 > 0 : ft ( ) ds < 1;, which shows

that

1 1 —w(n—
L e
q

Since the series

—w(n—1)
(e7" ™)

K

1

n

is convergent, we deduce from the well-known Weierstrass test that the series

pRAG
k=1

is uniformly convergent on R. Furthermore,

Y(1) =) Ya(0),

n=1

Y € C(R,X), and

o0
YOI <D 101 < Killllsoe.

n=1
o0
where K| = — + — Z _“’(” 1)
n=1
Next, we will show that
1 T
lim — IY(s)|| ds = 0.
T—o0 2T -T
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Indeed,
1 [T 1 1
— Y, dt < M(— + —)e 0D
o7 |, @l di = M(= + 5=)e

Lo [0 [T e f |

Since ¢’ € PAPO(LN(X)((O, 1), X)), the above inequality leads to ¥,, € PAPy(X).
Using the following inequality

1 T

o [ Yol ds < %/_TT ¥ —émn” 1 +§%[i 1Y, (5)] ds.

we deduce that the uniform limit Y(-) = Y o2, ¥,(-) € PAPy(X). Therefore u €
PAP(X).

To complete the proof, we have to prove that the mild solution u is unique.
Indeed, u : R — X is bounded and satisfies the homogeneous equation

u'(t) = Au(t), t€R, 9

Then u(t) = T(t — s)u(s), for any t > s. Thus ||u(t)| < MKe=®"=9, where
|lu(s)|| < K. Take a sequence of real numbers (s, ) such that s, — —oo as n — oo.
For any ¢ € R fixed, one can find a subsequence (s,,) C (s,) such thats,, < ¢ for
allk = 1,2,.... By letting k — oo, we get u(t) = 0. Now if u, v are bounded
solutions to Eq. (2), then w = u — v is a bounded solution to Eq. (9). In view of the
above,w = u —v = 0thatis u = v. O

Using Theorem 6.3 one easily proves the following theorem

Theorem 6.4. Let p,q > 1 be constants such that p < q. Under assumptions
(A.1)—(A.2), the Eq.(1) has a unique pseudo-almost periodic (mild) solutions
whenever | L | s is small enough.

Proof. Define the function u : R x X — X by

u(t) = / T(t —s)F(s,u(s))ds, foreacht € R. (10)

—00

It is easy to check that u given in Eq. (10) satisfies Eq. (6) and hence it is a mild
solution.

Letu = o + B € PAP(X), where « € AP(X) and B € PAPy(X). Then
u € SHh(X) and K = {a(r) : ¢ € R} is compact in X. Consequently, from

Theorem 5.15, there exists m € [1, p) such that F(-,u(-)) € Shap (R x X).
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Applying the proof of Theorem 6.3 to f(.) = F(.,u(.)), one can easily check
that u given in Eq. (10) is in PAP (X).

To complete the proof, we make use of the Banach fixed-point theorem. Indeed,
consider the nonlinear operator Y defined by

(Yu)(t) := /_f T(t —s)F(s,u(s))ds, foreacht € R.

For all u,v € PAP(X), itis easy to see that

t

Hﬂﬁﬂﬂ—CﬁMﬂHE/ 1T = ). 1F (s uls)) = F(s.v(s) | ds

—00
< llu = v||so- / Me @=L (s) ds

t—n+1

< = Voo Z / M=) Lp (s) ds
t

—n
1

N "0
e—row(t—b) ds) . ||LF||Sr

1
o e~ Ton—Do _ ,—ronw \ 10
< M. Ju—vlloo }:( ) ALElse

t—n+1
<M. |u—|oo- Z

o0

of 1+ ene
< M. Jlu—v]joo. " Z " | Lp s,

foreach t € R, where

1 1
-+ —=1.
r ro

Hence is whenever || L F||s- is small enough, that is,

1 +ere S
M. —— ) e ||Lp|sr < 1.

Fow
0 n=1

then Y has a unique fixed point, which obviously is the unique pseudo-almost
periodic solution to Eq. (1). O
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Group Circle Systems on Conics

Raymond R. Fletcher

Abstract A group circle system is a collection of points and circles in the Euclidean
plane determined by the elements of an abelian group. Let G be an abelian group
and g a fixed element of G. Let ¢:G — II be an injective mapping from G into
the Euclidean plane IT such that no five points in ¢(G) are cocyclic . If for each
four element subset {a, b, ¢, d} of G such that a+ b+ ¢ 4+ d =g, the points {¢$(a),
¢(b), d(c), d(d)} are cocyclic, then we call the set of points ¢(G) and the associated
circles, a (G, g) circle system. The abelian group G is the base of the circle system. In
this first paper on circle systems we will confine our attention to group circle systems
all of whose points (or vertices) lie on a noncircular conic a. We will construct
circle systems on o with base group Z, Z, and Z x Z. These are subalgebras of an
algebra with one ternary operation defined on a.. A remarkable nine variable identity
suggested by the circle systems is shown to hold in this algebra.

1 A Parallelism Property for Noncircular Conics

First we have a basic result concerning the intersection of a circle with a parabola.
This will be useful when we discuss the intersection of a circle with a general
noncircular conic. Basic properties of conics can be found in [1, 5].

Lemma 1 Let p denote the parabola (1) y = a(x — h)? + k, and let c be a circle such
that pNc contains the four points A= (s, 1); B=(q, p); C = (u, v) and D = (m, n).
Then 4h=s+ g+ u+ m. Moreover, if A’ =(—s, t) and C' = (—u, v), then BD is
parallel 1o A'C'.
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Proof Let (2) (x— d)? + (y— e)> =r? be the equation of ¢ and use (1) to substitute
for y in (2) to obtain (3) (x — d)? + (a(x —h)?> + k —e)?> =12. The coefficient of x>
in (3) is —4a’h. Since the points A, B, C, D satisfy (3), (3) must have the form: (4)
a%(x — s)(x — q)(x —u)(x —m). The coefficient of x3 in (4) is a%(—s — q—u—m), so
we must have —4a’h = a?(—s — q —u — m) which yields 4h =s +q+u +m.

To prove the last statement of the Lemma we simply compute the slopes:

pn (a(q—h)2+k)— (a(m—h)2+k)

g—m g—m

=a(q+ m—2h),

Muc = _ts_+vu - (a(s_h)2 +k2s_ n ga(u_h)z +k) =a(—s—u+2h).

Now by the first part of the Lemma: Mpp = a(q + m — 2h) = a(4h —s —u —2h)
= MA/C/ . |:]

The parallelism property stipulated in Lemma 1 holds for any noncircular conic
as we show next.

Theorem 1 Let A, B, C, D be four points on a noncircular conic o with A, B,
C distinct, and let A’, C' be the reflections of A, C respectively across an axis of
symmetry of a. Then A, B, C, D are cocyclic iff BD is parallel to A’C’.

Proof Suppose A, B, C, D lie on a circle ¢ with equation: (5) (x —h)? + (y —k)? =r2.
If o is a parabola, then BD is parallel to A’'C’ by Lemma 1, so we may suppose that
a is an ellipse with equation: (6) x*/a> + y?/b> =1, or a hyperbola with equation:
(7) x2/a> — y*/b%> = 1. Suppose A’, C’ are reflections of A, C across the vertical axis
of symmetry (y-axis) of a. If we solve (6) or (7) along with the equation of ¢ by
solving (5) for y? and substituting for y? in (6) or (7), we obtain the equation of a
parabola (with vertical axis of symmetry) which contains the four points A, B, C,
D. We may then invoke Lemma 1 to conclude that BD is parallel to A’C’. If A", B”
are reflections of A, C across the horizontal axis of symmetry of a, then we obtain
similarly that A”C” is parallel to BD. Thus the lines BD, A’C’, A”C” are mutually
parallel.

Conversely, suppose BD is parallel to A’C’ and let E be the fourth point on o and
on circle (A, B, C). By the first part of the Theorem, A’C’ is parallel to BE and thus
BE and BD are parallel. We must then have that BE and BD are the same line. Any
line through B meets the conic a in at most one point (besides B), so we must have
E =D, and thus the points A, B, C, D are cocyclic. O
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2 Construction of a (Z, 0) Circle System
on a Noncircular Conic

In this Section we present the construction of a (Z, 0) circle system on a noncircular
conic. If a, b are elements of the set Z of integers, we denote the line joining the
corresponding points by [a, b].

Theorem 2 Let o be a noncircular conic with axis of symmetry j. In the case of a
hyperbola the transverse axis is selected for j so that in all cases j and a have a
point in common. The following assignment of integer labels to points on « yields a
(Z, 0) circle system: (i) Assign the integer 0 to a common point of j and «. (ii) Put
vertex I on o but not on an axis of symmetry of a. (iii) Let vertex —I be the reflection
of vertex I across j, (iv) Let m denote the line [0, —1] and draw a line through vertex
1 and parallel to m. Label the point where this line meets o with —2. (v) Let vertex 2
be the reflection of vertex —2 across j. (vi) In general, if elements {0, £1, £2, ...,
41t} have been assigned to points on a, assign —(t + 1) to the point on o and on the
line through t and parallel to m, and let t + 1 be the reflection of —(t + 1) across
J. We assume that the generating vertex 1 is chosen on o so that no point on o is
assigned more than one integer label.

The construction described in Theorem 2 is illustrated in Fig. 1. Before proving
Theorem 2 we need the following Lemma. We employ a variant of Pascal’s Theorem
which states that if hexagon (a, b, c, d, e, f) is inscribed in a conic and two pairs of
opposite sides are parallel, then the third pair of opposite sides are also parallel.
Pascal’s Theorem for a hexagon inscribed in a circle can be found in [2], and the
more general case in which the hexagon is inscribed in any conic can be found
in [1].

Lemma 2 [n the proposed construction of a (Z, 0) circle system on a noncircular
conic, if m, n, p, q are integers and m +n =p + q, then the lines [m, n] and [p, q]
are parallel.

Fig. 1 (Z, 0) circle system on ellipse
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Fig. 2 Cyclic quadrilateral in (Z, 0) circle system

Proof Consider the inscribed hexagon (p, q, —q—1, q+ 1, p—1, —p). Opposite
sides [p, —pl, [@q+ 1, —q—1] are vertical hence parallel, and opposite sides [q,
—q— 1], [p — 1, —p] are parallel by virtue of our construction. By Pascal’s Theorem,
the remaining pair of opposite sides [p, q], [p — 1, q + 1] are also parallel. Applying
the same result with p—1 in place of p and q + 1 in place of g, we obtain that the
lines [p—1, q+ 1], [p—2, q+ 2] are parallel, and thus [p, ql, [p—2, q+ 2] are
parallel. Repeating this argument we obtain that all lines of the form {[p —t, q + t]:
teZ} are mutually parallel. If we let t =p —m then we obtain that the lines [p, q],
[m, n] are parallel. Note that the same proof works in case p = g, when line [p, q] is
interpreted as the tangent to the conic at p. |

Now we may proceed with the proof of Theorem 2.

Proof (of Theorem 2) Let a, b, c, d be four distinct integers such that
a+ b+ c+d=0. We must show that the corresponding points on a are cocyclic.
Consider: Z(a, b, ¢) = Z(—a, —b, —c) since —a, —b, —c are reflections of a, b, ¢
across the axis of symmetry j. Since (—a) + (—b) =c +d, the lines [—a, —b], [c,
d] are parallel by Lemma 2. Also, since (—b)+ (—c) =c + (—b—2c), the lines
[-b, —c], [c, —b—2c] are parallel by Lemma 2. It then follows that Z(—a, —b,
—c)= Z(d, ¢, —b—2c¢) as in Fig. 2. Since a4+ d =c + (—b —2c), the lines [a, d],
[c, —=b —2c] are parallel by Lemma 2. So if we extend segment [c, d] to point e as
in Fig. 2, we have Z(a, d, e) = 4d, ¢, —b —2c) = 4(a, b, c¢). Consequently Z(a, d,
¢)=180° — 4(a, d, e) = 180° — 4(a, b, c), and it follows that quadrilateral (a, b,
¢, d) is cyclic. (The elementary result that a quadrilateral is cyclic iff its opposite
angles are supplementary can be found in [3].) O

Let G be any abelian group and let 0 denote the identity in G. Next we show that
any (G, 0) circle system on a noncircular conic must exhibit the properties inherent
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in our construction of a (Z, 0) circle system. The reader may find it useful to review
some elementary properties of groups which can be found in [4]. The radical axes
of three mutually nonconcentric circles concur at a point called the radical center of
the three circles. This property of circles can be found in [2, 3].

Theorem 3 Let 2 be a (G, 0) circle system whose vertices lie on a noncircular
conic a and such that G contains distinct points {g, —g, h, —h, k, —k} . Then one
of the axes of symmetry of o has the property that g and —g are reflections with
respect to it, for every g € G. Moreover, if a, b, c, d€ G and a+ b= c +d, then
[a, b] is parallel to [c, d]. Conversely, if a set §2 of points on a noncircular conic
is labeled with the elements of an abelian group G such that ¥ a, b, ¢, d € G with
a+ b=c+d, the lines [a, b], [c, d] are parallel, then S2 is a (G, 0) circle system on
the conic.

Proof Let g, h, k be elements of G such that {g, —g, h, —h, k, —k} are distinct.
Then ¢; = (g, —g, h, —h), c; = (h, —h, k, —k) and c3 = (k, —k, g, —g) are circles
in Q. The lines [g, —g], [h, —h], [k, —k] either meet at the radical center of c, c,,
c3 or are mutually parallel. Let b/, —h’ denote the reflections of h, —h respectively
across an axis j of symmetry of a. By Theorem 1, the lines [g, —g], [h/, —h’] are
parallel. Considering circle ¢, we obtain similarly that the lines [k, —k], [h/, —h]. Tt
follows that all lines {[g, —g]: g € G, g # —g} are mutually parallel. Since [g, —g] is
parallel to both [h, —h] and [h’, —h'], it follows that [h, —h] is parallel to [h’, —h'].
This can only happen if h' = —h or [h, —h] is parallel to j. In the first case h and —h
are reflections with respect to j, and in the second case h, —h are reflections with
respect to a second axis of symmetry of a perpendicular to j. The circles ¢4 =[O0, g,
h, —(g+h)] and cs = (0, —g, —h, g + h) belong to €2 and are reflections across an
axis of symmetry of a. Since both circles contain vertex 0, we must have that 0 lies
on this axis.

Now suppose g, —g are reflections across the axis j of symmetry of o for all g €
G, and suppose a, b, c,d € Gsuchthata+b=c+d. Thena+ b+ (—c)+ (—d)=0
and so (a, b, —c, —d) is a circle in 2 provided a, b, —c, —d are distinct elements of
G. In this case we obtain [a, b] parallel to [c, d] by Theorem 1. If two of these points
are identical, say a =b, then we interpret (a, a, —c, —d) as the circle (a, —c, —d)
which is tangent to a at a. In this case Theorem 1 says that [a, a] = [a, b] is parallel
to [c, d] where [a, a] denotes the tangent to o at a.

Conversely, suppose €2 is a set of points on a noncircular conic a, labeled with the
elements of an abelian group G such that whenevera, b,c,d € Ganda+b=c +d,
the lines [a, b], [c, d] are parallel. Let p, q, r, s € G and suppose p+q+r1r+s=0.
Then p 4+ q=(—r1)+ (—s) and so the lines [p, q], [, —s] are parallel. But then,
by Theorem 1, the points p, q, r, s are cocyclic and thus 2 is a (G, 0) circle
system. O
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3 A Ternary Operation Defined on a Noncircular Conic

Let a be a noncircular conic and let a, b, ¢ be three points on a. Circle (a, b, ) must
meet o in a fourth point which we denote by 8(a, b, ¢). This ternary operation is
still defined in case two or even three of its arguments are identical; 8(a, a, b) is the
remaining point on a and on the circle which is tangent to o at a and contains b,
and 8(a, a, a) is the remaining point on a and on the unique circle which intersects o
with multiplicity 3 at a. Regarding intersection multiplicity for algebraic curves, the
reader may wish to consult [1]. These possibilities are illustrated in Figs. 3 and 4.
A point x of a is idempotent if 8(x, x, x) = x. It can be shown that the idempotent
elements of an ellipse consist precisely of the four points where the major and minor
axes meet the ellipse. We have created a ternary algebra on o which we denote by
(o, 8). The following identities hold in this algebra:

(i) 8(b, a,c)=28(a, b,c)=28(a,c,b)
(ii) 8[a, b, 8(a,b,c)]=c
(iii) 8(3(a, b, ¢), 8(d, e, f), q) = 8(8(a, b, d), 8(c, ¢, 1), q)

d(a,a,b)

Fig. 3 § operator with two identical arguments

d(a,a,a)

Fig. 4 § operator with three identical arguments
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Fig. 5 Parallelism property for § operator

Identities (i) and (ii) are obvious, and identity (iii) will be proved in this Section.
A consequence of (i), (ii), (iii) is that the value of the expression 8[8(a, b, ¢), 8(d, e,
f), 8(g, h, 1)] remains constant under any permutation of the nine arguments. We call
(iii) the tricubic identity. We begin with yet another parallelism property.

Lemma 3 Leta, b, c, d, e, f be six points on a noncircular conic «. Then the lines
[6(a, b, ¢), 6(d, e, f)] and [(a, b, d), §(c, e, f)] are parallel.

Proof Let j be an axis of symmetry of & and if x is any point on ¢, let x’ denote the
reflection of x across j. Since the points {a, b, c, 8(a, b, ¢)} are cocyclic, the lines
[c, 8(a, b, )] and [a/, b'] are parallel by Theorem 1. Similarly, the lines [d, 8(a, b,
d)] and [a’, b'] are parallel. Consequently the lines [c, 8(a, b, ¢)] and [d, 8(a, b, d)]
are parallel as are the lines [d, 8(d, e, )] and [c, 8(c, e, f)]. See Fig. 5. If we now
consider the hexagon (8(a, b, ¢), 8(d, e, f), d, 8(a, b, d), 8(c, e, f), c¢) inscribed on a,
and apply Pascal’s Theorem (variant), we obtain the desired result. O

Now we are prepared to show that the tricubic identity holds on any noncircular
conic.

Theorem 4 Let o be a noncircular conic and let a, b, ¢, d, e, f, q be any seven points
on a. Then §(8(a, b, ¢), 8(d, e, f), q) =6(8(a, b, d), 5(c, e, ), q).

Proof Letx=38(8(a, b, ¢), 8(d, e, f), q) as in Fig. 6, and let j be an axis of symmetry
of a. For each point w on «, let w’ denote the reflection of w across j. By Theorem 1
we have (8) [x, q] parallel to [8(a, b, ¢)’, 8(d, e, f)']. Let y = 8(8(a, b, d), 8(c, €, f), q),
then by Theorem 1 we have (9) [y, q] parallel to [8(a, b, d)’, 8(c, e, f)']. By Lemma 3
we have [8(a, b, ¢), 8(d, e, )] parallel to [8(a, b, d), 8(c, e, )], and by reflecting these
lines across j we obtain (10) [8(a, b, ¢)’, 8(d, e, f)'] parallel to [8(a, b, dY, 8(c, e, )'].
From (8), (9), (10) we obtain that the lines [x, q], [y, q] are parallel. This implies
that the points x, y, q are collinear. But any line through q meets the conic « in at
most one other point, so we must have x =y. O
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Fig. 6 The tricubic identity

4 Circle Systems on Z and Z,

Let 2, be a (G, g) circle system and €2, be a (H, h) circle system on abelian
groups G, H. If there exists a bijection {: G— H such that a, b, ¢, deG and
a+b+c+d=g,implies V(a) + V(b) + P(c) + ¥(d) = h, then we say that £2; and
Q) are equivalent circle systems under the relabeling given by . The relabeling {:
Z — Z given by {/(x) =x + k adds the integer k to each vertex and thus adds 4k
to each circle in a (Z, 0) circle system. Consequently every circle system in {(Z,
4k): k € Z} is equivalent to a (Z, 0) circle system. Applying the same mapping, we
obtain that every circle system on Z is equivalent to a (Z, 0), (Z, 1), (Z, 2) or (Z,
3) circle system. Besides adding a fixed integer to each vertex, we can also replace
each vertex by its inverse. Thus a (Z, 1) circle system is equivalent to a (Z, —1)
system which, by adding one to each vertex is, in turn, equivalent to a (Z, 3) system.
We have proved the first part of our next result.

Theorem 5 Every circle system on Z is equivalent to a (Z, 0), (Z, 1) or (Z, 2) circle
system, and these are mutually nonequivalent.

Proof Let Qq, 21, Q2 be (Z, 0), (Z, 1), (Z, 2) circle systems respectively.
We will show that €2y is not equivalent to €2;. Suppose, to the contrary,
that there exists a bijection {r: Z—Z such that whenever a+b+c+d=0,
we have Y(a)+ P(b)+ PY(c)+Y(d)=1. Let: ¢(0)=s and {Y(1)=t. Since
040404 0=0, we must have 4s=1 which cannot be satisfied by an integer.
4s =2 also cannot be satisfied by an integer, so a similar argument shows that
Qo and 2, are not equivalent. The nonequivalence of €2; and €2, is more
interesting. Suppose |L: Z — Z is mapping such that whenever a, b, ¢, deZ and
a+b+c+d=1,then n(a) + w(b) + p(c) + pw(d) = 2. We claim that such a map-
ping does exist and must have the form: (11) (k) = 2k — (4k — 1)s where s = |L(0).
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If m(1) = t, then since 0+0+0+4+1=1, we must have 3s+t=2 and thus
(1) =2-3s in accordance with (11). Now assume inductively that (11) holds with
|k| <nandletk=n+ 1. Consider: (n+1) 4+ (—n) + 0 4+ 0 = 1 and so we must have
pw(n+1) + p(—n) + 2s =2. By the inductive hypothesis w(—n)=—2n+ (4n+ 1)s
so we obtain p(n+ 1) =—4ns+2n—3s+2=2(n+ 1)—(4(n+ 1) — 1)s in accor-
dance with (11). Finally letk = —n — 1 and consider: (—n—1)4+n+14+1=1 and
so we must have p(—n — 1) + w(n) + 2t = 2. Now replacing j.(n) by 2n—(4n— 1)s,
we obtain p(—n—1)=—-2n+@n—1)s—2t+2=4ns—2n—s—2t+2=4ns—
2n—s—2(2—3s8)+2=4ns-2n+5s-2=4ns+5s+2(—-n—1)=2(—n—1)— (4
(—n—1) — 1)s in accordance with (11). However | cannot be onto for any choice
of s. The equation 2k — (4k — 1)s = 0 has only the solution k = s = 0 in the integers,
i.e., the preimage of 0 under L must be 0, but then since s =0, (W(Z) = {0, £2, £4,
46, ....}, and so | is not onto. O

It remains to show that (Z, 1) and (Z, 2) circle systems exist. If o is a noncircular
conic, then a subalgebra of (a, 8) is a nonempty subset of a which is closed under
the ternary operation 8. Clearly every circle system on « is a subalgebra of (a, §).
Let ¢ be a (Z, 0) circle system on « and let S={m € Qy: m=4k + 1 for some
integer k}. fa=4s+ 1; b=4t+ 1 and c =4q + 1 are elements in S, then 3(a, b,
c)=—a—b—c=—M4s+1)—@4t+1)—@4q+1)=4(—s—t—q—1)+1€S.50S
is a subalgebra of €2¢. Now define a mapping : S = Z by {(4k + 1) = k which is
clearly bijective. We claim that ¢(S) is a (Z, —1) circle system on a. For suppose
(a, b, c, —a—b—c) is acircle in S, then [{r(a), Y (b), Y(c), Y(—a—b—c)]=(s, t,
g, —s—t—q— 1) is the corresponding circle in J(S), whose vertices sum to —1. By
multiplying each vertex in {(S) by —1 we obtain a (Z, 1) circle system. If we let
T ={me Qp: m=4k+ 2 for some integer k}, then similarly T is a subalgebra of
Qo, and the relabeling : T — Z defined by w(4k 4 2) =k yields a (Z, —2) circle
system . The further operation of multiplying each vertex by —1 yields a (Z, 2) circle
system on the points in (T). We have thus proved:

Theorem 6 If « is a noncircular conic and 2 is a (Z, 0) circle system on «, then
every circle system on Z occurs as a subalgebra of §2. O

In the construction of a (Z, 0) circle system given in Theorem 2 suppose that the
noncircular conic a is an ellipse with x and y axes as axes of symmetry. Let vertex
0 be chosen on the negative x-axis and let k> 2 be an integer. The placement of
vertex 1 on the ellipse determines the positions of the remaining vertices and it is
clear, from the construction given in Theorem 2, that vertex 1 can be positioned suf-
ficiently close to vertex O so that vertices 1, ... , k lie in the upper half of the ellipse
and their reflections —1, ... , —k lie on the lower half of the ellipse. By shifting
vertex 1 a little to the right along the ellipse we can make vertices k and —k coincide
at the other extremity of the major axis. This is illustrated for k =5 in Fig. 7. When
this happens each pair of vertices which are congruent mod(2k) also coincide. The
result is a (Zyx , 0) circle system on the ellipse. If instead we shift vertex 1 a little to
the left we can make vertex k and vertex —(k 4 1) coincide, resulting in a (Zyk+1, 0)
circle system. Note that this construction is not possible on a parabola or hyperbola
since these are not closed curves and our construction puts new vertices further and
further away from vertex 0. We thus have the following result.
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Fig. 7 (Z10, 0) circle system on ellipse

Theorem 7 For any positive integer n, a (Z,, 0) circle system can be constructed
on any ellipse.
We have also determined the equivalence classes of circle systems on Z,:

Theorem 8 (i) If n is odd, then every Z, circle system is equivalent to a (Z,,
0) circle system. (ii) If m is odd, then every Z,,, circle system is equivalent to a
(Zom, 0) or a (Zow, 1) circle system. (iii) Every Zyy, circle system is equivalent to
either a (Zym, 0), (Zym, 1) or (Zym, 2) circle system. The circle systems indicated
in (ii) are nonequivalent and the three circle systems indicated in (iii) are mutually
nonequivalent.

Now suppose 2 is a (Zsn, 0) circle system on an ellipse o and let
S={4k+1€Z4n:k=0,1,2, ... ,m—1}. Then S is easily seen to be a subalgebra
of (€2, 8) and the mapping ¢: S = Z,, given by ¢p(4k 4 1) =k is a relabeling which
turns S into a (Zy,, —1) circle system on a. The further action of multiplying each
vertex by —1 yields a (Zy,, 1) circle system. If we let T={4k + 2 € Z4,: k=0, 1, 2,
... ,m—1}, then T is a subalgebra of (€2, 8) and the relabeling {: S = Z, given by
P(4k +2) =k turns T into a (Zn,, —2) circle system. Then multiplying each vertex
by —1 yields a (Zy,, 2) circle system on a. So we have:

Theorem 9 Every circle system on Z,, can be constructed on any ellipse.

We conjecture that the only finite abelian groups which support circle systems,
(with vertices not necessarily on a conic), are the groups Z, and Z, x Z,,, and Z, x
Z, x Z, where m, n are any positive integers. The construction of circle systems
on Z; X Zoy, and their properties will be included in a future work. Here we can
show that no such circle system can exist on a noncircular conic. If 2 is any (G,
g) circle system, let us refer to circles with a repeated vertex as minor circles of
Q. These are circles of the form (a, b, X, x) where a + b + 2x = g. If the points of
2 lie on a noncircular conic a, then this minor circle is tangent to o at x. Let 2
be a (Z; X Zyy) circle system, m > 2, and suppose €2 lies on a noncircular conic
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Fig. 8 Two circles through points (a, b), (c, d) which are tangent to ellipse

a. Since Z,xZyy, contains a subgroup isomorphic to Zy,, the conic o must be an
ellipse. Now consider the minor circles: [(a, b), (c, d), (0, 0), (0, 0)], [(a, b), (c, d),
(0, m), (0, m)], [(a, b), (¢, d), (1, m), (1, m)], [(a, b), (¢, d), (1, 0), (1, 0)], where (a,
b) + (c, d) = g. These are four distinct circles each through the same two points (a,
b), (c, d) and each tangent to the ellipse at a third point. But only two such circles
exist: suppose P is a circle through (a, b) and (c, d), then its center O must lie on
the perpendicular bisector j of the segment [(a, b), (c, d)]. As O moves along j from
~+o0 there is a position for O where  is tangent to the ellipse. Similarly, as O moves
along j from —oo, there is a second position for O where p is tangent to the ellipse.
These possibilities are illustrated in Fig. 8. We require four such circles but there
are only two, so we conclude that no Z, x Zyy, circle system, (m > 2) can exist on a
noncircular conic.

5 Direct Product of Circle Systems

In this Section we show that a direct product construction can be used to create
circle systems on a noncircular conic with base group Z x Z. By extension, we can
create circle systems with base group Z" for any positive integer n.

Theorem 10 Let $2 be a (G, 0) circle system, and 2’ a (H, 0') circle system on the
same noncircular conic a, where 0, 0 are the identities of the abelian groups G, H
respectively. We suppose, in accordance with Theorem 3, that the same point P on o
and on an axis of symmetry j of a has been labeled with 0 and 0’ and that g, —g are
reflections across j for every g € G, and similarly h, —h are reflections across j for
every h € H. Finally we suppose that 2 and 2’ have only the point P in common.
Then a circle system $2 x §2' with base group G x H and sum (0, 0') can be defined
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on a as follows: (i) relabel each point g € G by (g, 0); (ii) relabel each point h
€ H by (0, h). Note that the point P will have label (0, 0'); (iii) let (g, h) = 5[(—g,
0/), (0’ _h), (0, 0/)]

Proof Since the points {(g, h), (—g, 0), (0, —h), (0, 0")} are cocyclic, we have by
Theorem 1: (12) the lines [(g, h), (0, 0")] and [(g, 0'), (0, h)] are parallel Vg € G, Vh
€ H. Now suppose s, t € H and s 4+ t = h. Consider the inscribed hexagon H; = [(g,
0", (0, h), (0, 0, (g, s), (0, t), (0, s)]. We have that lines [(0, h), (0.0")], [(0, t),
(0, s)] are parallel by Theorem 3. Also the lines [(0, 0), (g, s)], [(0, s), (g, 0)] are
parallel by (12). So we can apply Pascal’s Theorem (variant) to H; to obtain (13)
the lines [(g, 0'), (0, h)], [(g, s), (0, t)] are parallel. Then from (12), (13) we obtain
(14) the lines [(g, h), (0, 0], [(g, s), (0, t)] are parallel. Now let H, = [(g, s), (g0, 1),
(0,0, (g, h), (go, 0), (0, t)] be a second hexagon inscribed on a where g, go € G.
By (12) the lines [(go, 1), (0, 0")], [(go, 0'), (O, )] are parallel, and by (14) the lines
[(g, h), (0,0N], [(g, s), (0, t)] are parallel. Then applying Pascal’s Theorem to H, we
obtain that the lines [(g, s), (g0, t)], [(g, h), (g0, 0")] are parallel whenever s +t=h.
Consequently we have (15) the set of lines {[(g, s), (20, t)]: s + tis a fixed element of
H} are mutually parallel. Similarly (16) the set of lines {[(p, h), (q, ho)]: h, hg € H,
and p + q is a fixed element of G} are mutually parallel. Now suppose (a, b), (c,
d), (u, v), (w, x) € G|H, and (a, b) + (¢, d) = (u, v) + (W, x) and thusa+c=u+w
and b+ d=v + x. By (15) the lines [(a, b), (c, d)], [(a, V), (c, x)] are parallel, and
by (16) the lines [(a, v), (¢, X)], [(u, v), (W, X)] are parallel. We thus obtain that the
lines [(a, b), (c, d)], [(u, V), (W, X)] are parallel. We have shown that our construction
satisfies the parallelism property stipulated in Theorem 3 for a general O-sum circle
system. It then follows from Theorem 3, that Q2 x Q' is a [G x H, (0, 0")] circle
system on o. O

Following the construction given in Theorem 2, we can construct a (Z, 0) circle
system on a noncircular conic a with zero vertex at a point P on a and on an
axis of symmetry of a. In this construction vertex 1 is the generating vertex since
its placement determines the positions of the remaining vertices. In principle we
can construct a second (Z, 0) circle system on «, putting its zero vertex at P and
positioning its generating vertex so that the two circle systems have only the zero
vertex in common at P. Then using the construction given in Theorem 10 we obtain
a[ZxZ, (0, 0)] circle system on a. Constructing yet a third (Z, 0) circle system
on o and choosing the generating vertex so that this new circle system has only the
zero vertex in common with the [Z x Z, (0, 0')] circle system, we obtain a zero sum
circle system on o with base group Z x Z x Z. Repeating this process we can obtain
a zero sum circle system on a with base group Z" for any positive integer n. If o is
an ellipse, then we can construct similarly zero sum circle systems on o with base
group Zp, x Z" for any positive integers m, n. Note that Theorem 10 cannot be used
to construct a [Z; X Zon, (0, 0)] circle system on an ellipse, (which we have shown
to be impossible), since in the construction given in Theorem 10, the (Z;, 0) circle
system and the (Zyy,, 0) circle system would have two points in common, namely
the two points on the ellipse and on the axis of symmetry j.
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6 Conclusion

In the previous Section we provide a construction for a (Z x Z, (0, 0)) circle system
Q0o on a noncircular conic. It is not difficult to show that all Z x Z circle systems
are equivalent to a Z x Z circle system with sum g where g € {(0, 0), (0, 1), (0, 2),
(1, 1), (1,2),(1,3), (2, 2)}. We claim, similar to Theorem 6, that every circle system
on Z x Z occurs as a subalgebra of (¢, §). We will only outline the proof of this
claim for the creation of a (Z x Z, (1, 2)) circle system. Let S = {4s 4 1: s € Z} and
let T={4t+2:t e Z}. Then S x T is a subalgebra of (2¢o, 8), and the mapping ¢:
S xT=ZxZ given by ¢(4s+ 1, 4t+ 1) = (s, t) is a relabeling which turns S x T
into a [Z x Z, (—1, —2)] circle system. Replacing each element in this circle system
by its inverse yields a [Z x Z, (1, 2)] circle system. We conjecture that a similar
result holds for circle systems on Z" and Z;, x Z". It remains an open question as to
which infinite abelian groups besides these may support circle systems.

As an afterthought we observe that the construction of a Z, circle system on an
ellipse given in Theorem 7 is essentially unique once the vertex 0 is chosen on either
the major or minor axis.
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Remanufacturing Processes, Planning
and Control

Jianzhi Li and Zhenhua Wu

Abstract This chapter provides a summary of critical issues in remanufacturing
process and its planning and control. The chapter starts with an introduction of
the special characteristics and the associated problems in remanufacturing. Typical
remanufacturing processes such as cleaning, testing, and disassembly are then dis-
cussed in details. The chapter also provides a discussion of process sequencing for
product disassembly to minimize cost and energy consumption. Due to stochastic
nature in the material arrival process, production planning represents another main
challenge for remanufacturers. Based on a case study of a business in Austin TX, a
simulation model with a prioritized stochastic batch arrival mechanism, considering
factors that affect the total profit, is also discussed. The chapter also presents a
genetic algorithm (GA) algorithm to optimize the production planning and control
policies for dedicated remanufacturing.

1 Introduction

Product remanufacturing develops rapidly in recent decades due to intensified
environmental legislations and growing economic concerns. Through remanufac-
turing, products/components that would otherwise head to land-fill or incineration
will instead go through a set of value and material recapturing processes, includ-
ing collection and distribution, inspection,disassembly, cleaning, testing, repair,
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B .

Collected used products

Cleaning and swrtace
treatment of subparts

B

Used alternator (left) and
remanufactured alternator (right)

Fig. 1 Remanufacturing processes of alternators [8]

reassembly, redistribution, and remarketing or recycling. Remanufacturing allows
for reusable components and recoverable materials reenter the supply chain for
future reuse or new product fabrication.

Although there are numerous definitions of remanufacturing, Lund [5-7],
describes remanufacturing as . .. an industrial process in which worn-out products
are restored to like-new condition. Through a series of industrial processes in a
factory environment, a discarded product is completely disassembled. Usable parts
are cleaned, refurbished, and put into inventory. Then the product is reassembled
from the old parts (and where necessary, new parts) to produce a unit fully equivalent
and sometimes superior in performance and expected lifetime to the original new
product.” Note that remanufacturing differs from simple repair or recovery in
that a remanufactured product should meet the same customer expectation as new
products in quality, warranties, life span, and functions.

Generally, the production processes of remanufacturing are comprised of fol-
lowing stages: product arrival, inspection, disassembly, cleaning, testing, repairing
(reconditioning), reassembly, final testing, labeling, packaging, and shipping. The
typical remanufacturing processes are demonstrated in Fig. 1.

Material arrival process for remanufacturing is a typical compound stochastic
batch arrival process with varied product types and conditions. Thus, in receiving,
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incoming product to be remanufactured have to be classified according to its type
and condition. Received products will then be briefly inspected to collect related
information, and sent to inventory. For received products, cleaning processes are
required to separate undesired dirt, coating, or other contaminants from the parts to
be remanufactured. Following this, the testing process is carried out to investigate
the condition of the product and assign appropriate remanufacturing processes,
which include refurbishing, repair, reuse and material recycling. Finished goods will
be labeled, packed and shipped for resale. Components that cannot be reused will
be further disassembled and classified according to their material contents, and then
shipped for material recycling.

2 Key Remanufacturing Processes

A research survey of remanufacturers [1] proved the importance of the cleaning
process. As the graph illustrates, 29 % of the remanufacturers’ highest expense is
the cleaning process. The cost of the cleaning process is a significant factor for
remanufacturers. Survey results are shown on the figure below (Fig. 2).

Part refurbishing process is generally different for different types of products, so
our discussion of remanufacturing will focus on cleaning, testing and inspection,
and disassembly/reassembly.

2.1 Cleaning Processes

Cleaning process of mechanical parts can be grouped into two categories: liquid
based cleaning process and mechanical based processes. In liquid based processes,
parts are cleaned by solutions through mechanisms such as wetting and other

Percentage Of Responses
0% 10% 20% 30% 40% 50%
Part Replacement
Cleaning
Part Refirbishing
Reassembly
Inspection
Sorting
Finding Part Sources
Disassenbly

Packaging

Fig. 2 Which is more costly in remanufacturing processes? [1]
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chemical reactions. While in mechanical processes, external force is applied to the
part being cleaned to separate undesired layers from the parts. It should be noted
that liquid based cleaning can also employ mechanical energy to achieve a better
cleaning effect.

2.2 Liquid Based Cleaning Process

2.2.1 Cleaning Mechanism of Liquid Based Cleaning Method

Most of the liquid based cleaning techniques rely on following mechanisms to
achieve effective cleaning: wetting; emulsification; solubilization; saponification;
deflocculation; and sequestration.

Wetting mechanism is essential to any liquid based cleaning. It delivers the
cleaning chemistry to contaminants to be separated. Through wetting, substrate-
soil bonds are broken, so that mechanical energy can be delivered to displace and
remove the contaminants. Wetting can also reduce undesired surface and interfacial
tensions, allowing cleaning agent to penetrate between the contaminant and the
substrate.

Emulsification is the dispersion of oils to be removed in the solvent. The main
factors of emulsification include types of oil and the surfactants selected. The pH
level and temperature can also affect the level of emulsification. Mechanical energy,
such as vibration, ultrasonic, and turbulence are generally employed to enhance the
emulsion effect. Note that emulsification does not change the chemical characters
of the contaminants, however it is essential for most cleaning process in effective
separation of the contaminates from the substrate.

Solubilization is a process to enhance the solubility of the contaminants in a
particular solution using surface-active agents. Solubilized contaminants are then
dissolved into the solution. In a typical cleaning process, cleaning agents generally
solubilize a certain amount of contamination while additional contaminant is held
in suspension by emulsification.

Saponification is the reaction of any organic oil containing reactive fatty acids
with free alkali to form soap. Alkaline cleaners containing saponifiers rely on
this process to remove some oils, including vegetable and animal fats and their
derivatives. The soaps that are generated are easily removed by subsequent rinsing
with water.

Deflocculation causes the breakdown of contaminants into very small particles
that are then dispersed in the liquid cleaning medium and swept away. This process
is similar to emulsification except it happens on a larger scale.

Sequestration is a process where undesirable ions, such as Ca™ or Mg*2, and
heavy metals are de-activated; preventing them from reacting with material that
normally would form insoluble products. The classic example is the hard water
scum formed when soaps are used. The scum formed is the reaction between the
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Ca*? or Mg™? ions in hard water with soap. When the water is softened, the Ca™?
or Mg "2 ions become tied or sequestered and are unable to react.

For any cleaning processes, proper cleaning equipment is required to implement
the cleaning mechanisms described previously. The cleaning equipment provides
not only the site for accomplishing the cleaning process; it can also provide other
desired functions such as separation and collection of removed coating or dirt. In
addition, most of the cleaning equipment integrates heating or mechanical vibration
to provide external agitation that enhances the cleaning effectiveness.

The goal of agitation of the cleaning solution is to apply external energy to the
part surface so that the cycle time and effectiveness of the cleaning process can be
enhanced greatly. Agitation can be achieved by simply stirring solution with rotary
stirrers. Similar effect can be achieved by rotating parts inside the solution. Stirring
agitation is gentle in general and does not significantly improve cleaning effective-
ness unless the chemistry is very aggressive. Nonetheless, due to its simplicity and
easy to implement, it can be applies in most processes. Ultrasonic agitation uses
high-frequency sound waves to achieve mechanical agitation. Ultrasonic waves can
also penetrate thin layers of metal and propagate around corners to clean work pieces
inside and out. Ultrasonic cleaning is usually not appropriate for thick buildups of
contaminant.

Based on the solution and external energy sources used, cleaning processes can
be grouped as follows:

a) Immersion cleaning
Immersion cleaning refers to a group of the most applied cleaning methods for
mechanical parts. It generally uses cleaners with high concentration. Convec-
tion current combined with external vibration, soils are removed from metal
surface conveniently. This cleaning approach is particularly good for cleaning
irregular shapes, box sections, tube and cylindrical configurations that cannot be
penetrated using spray systems. The operation may vary from hand dipping a
single part or agitating a basket containing several parts in an earthenware crock
at room temperature to a highly automated installation operating at elevated
temperature and using controlled agitation.
Several approaches of immersion cleaning are summarized below:

— Barrel cleaning: this approach is generally used for cleaning large quantities
of small parts. Parts are placed and agitated inside a barrel that rotates in the
cleaner solution.

— Moving conveyor cleaning: in this approach, parts are placed on a moving
conveyor, which moves parts through solution flow.

— Mechanical contact: cleaner is applied with brushes or squeegees.

— Mechanical agitation: in this approach, parts are flooded with solution which
is circulated using pumps, mechanical mixers, or ultrasonic waves.

— High pressure agitation: in this approach, a high pressure solution flow
generated by pumps is applied to the parts to clean deep and blind holes as
well as tubes with a small diameter.
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b) Ultrasonic Cleaning

Ultrasonic cleaning employs high frequency ultrasonic waves (20—40 kHz)
passing through liquid solutions to assist effective cleaning. Due to the gas
bubbles created by ultrasonic waves inside the cleaners, ultrasonic cleaning can
provide strong cleaning effects on the parts immersed in the solution. Ultrasonic
cleaning is ideal for parts with complicated shapes, surfaces, and cavities that
may not be easily cleaned by traditional immersion techniques.

The basic ultrasonic cleaning process generally is composed of following
components: the cleaning tank, ultrasonic transducers, and the power supply.

Another similar cleaning technique is Megasonic cleaning. It uses a much
higher frequency (700—1,000 kHz) acoustic energy to generate pressure waves
in a liquid. Compared with ultrasonic, megasonic technique does not suffer from
cavitations which is a typical drawback for ultrasonic. Less cavitations reduce
the likelihood of surface damage.

2.3 Mechanical Cleaning

Another group of cleaning technology is based on employment of mechanical force
to separate contaminants from the substrate. The mechanical force can be in the
forms of air blowing or exhausting, vibration, abrasion using brushes or small
hard particles blasted by air. Since no chemical reaction occurs during the cleaning
process, one of the most attractive benefits of mechanical cleaning is less hazardous
emissions. However, due to strong mechanical forces applied to parts to be cleaned,
it is also possible to damage the substrates.

a) Vibration cleaning
Vibration cleaning utilizes high frequency rotary oscillation to create strong
vibration that overcomes the adhesive force so that dirts are separated from the
parts. The dirts separated can be exhausted to a special container and can be
reused. Additional abrasive bush can be combined with the vibration movement
to enhance the cleaning effectiveness and reduce cycling time

b) Abrasive cleaning
Abrasive cleaning use high speed propelling blade shot small hard particles on
the part surface, thus cleaning contaminants by impact force. The particles used
as abrasive media vary in types and sizes to meet specific cleaning scenarios.
Abrasive cleaning is most commonly used method to remove heavy scale and
paint on large easy to access parts. Major components of the Centrifugal blast
machines include: blast wheel, work conveyor, abrasive recycling system, and a
dust collection device.

¢) Dry-Blast cleaning
Dry-blast cleaning is also called abrasive blasting cleaning. Dry blast cleaning
is considered as the most efficient and environmentally effective method for
abrasive cleaning. It generally employs a 685 kPa air supply system to propel
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abrasive particles to separate contaminants from the parts. Different replaceable
air-blast nozzles are developed with different shape and wear resistant materials.
Although all metals can be cleaned abrasive blasting processes, one should
carefully select suitable abrasive medium for soft and brittle metals such as
aluminum, magnesium, copper, zinc, and beryllium, to avoid damage to the part
itself.

With respect to the equipment available for dry blast cleaning, people
developed several types based on different material handling approach:

d) Cabinet machines: A cabinet is used to contain the abrasive-propelling mecha-
nism, holds the work in position, and confines flying abrasive materials and dust.
Cabinet machines may be designed for manual, semiautomatic, or completely
automated operation to provide single-piece, batch, or continuous-flow blast
cleaning.

e) Continuous-flow machines: compared with cabinet machine, continuous flow
machine uses proper conveying devices to continuously clean parts in the
cabinets. These machines are used to clean coils and wires as well as castings and
forgings at a high production rate. Combined with a abrasive particle recycling
system, it can reuse the blast particles.

f) CO; dry ice blasting
CO,; dry ice blast is a special dry blasting method in that it uses frozen CO,
particles or snow as abrasive media. Some parts may be sensitive to thermal
changes from the pellets and should be tested first. While particles can be clean
the surface at a faster rate, it can also damage the surface being cleaned. The
advantage of the CO, dry ice blasting is that they sublimate on contact with the
material to be cleaned.

2.4 Testing and Inspection for Remanufacturing

After parts are cleaned, inspection and testing procedures are followed to check
if repair is required. Since parts to be remanufactured are always in different
conditions, testing is generally unavoidable. Since the purpose of remanufacturing is
to reuse the parts, most of the testing methods are not intended to create any damage
to the part being tested. As such called, nondestructive testing is a commonly used
technique to reveal flaws and defects in a material or device without damaging or
destroying the test sample.

Since nondestructive testing (NDT) is a wide group of analysis techniques used
in science and industry to evaluate the properties of a material, component or system
without causing damage, currently commonly used NDT methods are summarized
below.
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2.4.1 Methods for Nondestructive Testing

NDT methods employ techniques such as microscope, electromagnetic radiation,
sound, and combined with the inherent properties of materials to detect flaws in
the parts to be remanufactured. Microscope method is generally used to examine
external surfaces of the part being tested. To test the inside of the part, methods
such as electromagnetic radiation and liquid penetrant testing are generally used to
examine fatigue cracks. For liquid penetrant methods, a certain liquid is applies to
penetrate and reveal the cracks. For non-magnetic material, fluid with fluorescent
or non-fluorescing dyes is commonly used. For magnetic material, an externally
applied magnetic field or electric current through the material is used. When parts
have cracks, magnetic flux will leave at the area of the flaw, resulting in leakage
of magnetic field at the flaw area. This leakage can be captured and used as an
indication of flaws.

NDT can be further classified in to various methods and techniques. It is
important to select the right method and technique for a specific part or material
to ensure the performance of NDT.

Liquid Penetrant Inspection method usually takes following test procedure:

1. Pre-cleaning: cleaning methods discussed earlier are used to remove any dirt,
oil, grease or any other contaminants to ensure that any defects are open to the
surface, dry, and free of contamination.

2. Application of Penetrant: After parts are cleaned, penetrant is then applied to the
surface. A certain period of time (5-30 min) is required to allow the penetrant
to immerse into any flaws. The length of the penetration time depends on the
penetrant being used, the type of material being testing, and the size of flaws
being examined. Generally, smaller flaws require a longer penetration time.
Excess penetrant has to be removed from the surface of the part being tested.

3. Application of developer: A developer is a chemical that draws penetrant from
defects so that defects can be identified. From the stains that show up in the
developer one can identify the positions and types of defects on the surface under
inspection.

4. Inspection: In inspection, visible light is applied for visible dye penetrant. In
contrary, for fluorescent penetrant, ultraviolet radiation is applied to the part
surface being examined.

5. Post Cleaning: Cleaning is required to remove penetrant after inspection and
recording of defects are finished.

As to magnetic penetrant testing, fine iron or magnetic particles, held in
suspension in a suitable liquid, are used as penetrant. For better performance of the
inspection, the particles are usually colored and coated with fluorescent dyes visible
under ultraviolet light. To apply the penetrant, the liquid suspension is sprayed or
painted on to the part, which is magnetized. Due to magnetic leakage at the defect
area, the magnetic particles are attracted in the area of the defect. When UV light
is applied, the location and size of the defect can be easily identified. Magnetic
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penetrant testing method is generally a low cost inspection method and is much
faster than ultrasonic testing and radiographic testing.

Radiographic testing (RT) methods use short wavelength electromagnetic radia-
tion to penetrate materials and reveal defect. Typical radiation source is an X-ray
machine. Since the amount of radiation emerging from the opposite side of the
material can be detected and measured, variations in the intensity of radiation are
used to determine thickness or defect of material.

3 Disassembly Analysis and Disassembly Process Planning

One important step of remanufacturing is product disassembly [4]. A proper
disassembly procedure can increase residual value recovery and reduce the environ-
mental impact resulted in recycling processes. Disassembly analysis and planning
in this regard, addresses three issues: (1) Optimal disassembly strategy that recovers
maximum residual value, (2) Disassembly sequence planning, and (3) evaluation of
disassembly time, cost, and disassembly difficulty rate, with component information
provided.

The disassembly relationships among the components of a product to be reman-
ufactured include component-fastener relationships and precedence relationships.
Therefore, two types of graphs are needed in order to fully represent the relation-
ships among the components of a product, namely, component-fastener relationship
graph and precedence relationship graph.

Fasteners are used to attach one component to another for the purpose of
assembly. Examples of fasteners include screws, rivets, inserts, etc. In a component-
fastener graph G.=(V,E), The components are represented as the vertices
V ={vi,v2, ..., V,}, where n is the number of components. Their relationships are
represented as the edges E = {ey, e, ..., e,}, where m is the number of edges. If
two components vi and vj (i # j) are joined by fasteners, then (vi, vj) € E; otherwise
(vi,vj) €E. The graph Gc is an undirected graph. Vertices and edges in graph Gc
are modeled using object-oriented techniques. While the object vertex consists of
component information including its name, weight, material type, etc., the object
edge consists of fastener information including the number of fasteners, fastener
type, etc. For example, Fig. 3a. shows component-fastener graph of a personal
computer.

Precedence graph represents the precedence relationship among the components
of a product, namely, a component cannot be disassembled before certain compo-
nents. Figure 3b shows the precedence relationship graph.

Disassembly tree can then be constructed based on the component-fastener
graph and precedence graph. The disassembly tree consists of vertices representing
an assembly or a component and information such as its name, material type,
weight/volume. A vertex is decomposed into child vertices representing its child
sub-assemblies or components. An edge, linking a child vertex with its parent
vertex, represents the disassembly relationship between two components and infor-
mation about assembly method.
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Fig. 3 (a): Component-fastener graph for the assembly, (b): Precedence relationship graph for the
assembly
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Fig. 4 (a): Pseudo-disassembly tree. (b): Disassembly tree for the assembly

The disassembly tree is constructed through searching of cut-vertices
in the component-fastener graph. A cut-vertex is a vertex whose removal
disconnects the graph. If a cut-vertex is found, the graph is split into two or more
sub-graphs. The same procedure is repeated until no cut-vertices can be found. In
this way, a pseudo-disassembly tree is generated which is showed in Fig. 4a.
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Fig. 5 Optimal disassembly termination analysis

The pseudo-disassembly tree is then modified by the precedence of the disassem-
bly according to the precedence graph, and a disassembly tree can be obtained as
illustrated in Fig. 4b.

In disassembly sequence planning, a popular assumption is that end-of-life
products should be disassembled to the fullest extent possible. However, based on
discussion with the recycling industry, such assumption is not practical in many
cases due to the high cost of disassembly. It is very important to find the optimal
level for disassembly where the benefit of reverse manufacturing is maximized and
the cost is minimized. The disassembly sequence planning can be determined after
such a termination point.

Optimal disassembly planning is determined based on the cost and profit. Three
types of costs and one type of profit are addressed: (1) disassembly cost which
includes labor and tooling cost, (2) material reprocessing cost, i.e. cost of recycling
(3) disposal cost, which includes transportation fee and landfill cost, and (4) salvage
profit, which is the profit gained by means of component reuse or recycling. The
cost model for determining the termination of disassembly is illustrated in Fig. 5.

The total cost is calculated as the sum of disassembly cost, material reprocessing
cost, disposal cost, and salvage profit. The lowest point of the curve (f) repre-
senting the total cost determines the termination of disassembly where the cost is
minimized, in other words, the benefit of disassembly is optimized. Note that the
obtained disassembly plan is optimized just from the viewpoint of economy and the
plan is not always optimal from the environmental viewpoint.
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4 Remanufacturing Production Planning and Optimization

The most significant characteristic of remanufacturing production system is its
unstable and uncertain incoming flow [2]. The returned products generally have a
high uncertainty in arrival pattern and high variation in product type with disparate
residual value. Quantity, year of model, and quality of returned products are
also subject to high uncertainty. For example, the product might come from a
software company that updates its computers every 3 months or they might come
from a family replacing its 10-year-old home computer. The consequence of high
uncertainty and variation of the return flow is the difficulty associated in production
planning and control of the remanufacturing, which leads to increased production
cost and poor economic performance [3].

Another major challenge of remanufacturing comes from the distinct role of
the receiving inventory. On one hand, it differs from traditional ones in that
customers return their post consumer products to the inventory instead of taking
the product away from the inventory. In this regard, inventory is used to meet the
product return demand. A redistribution cost, which does not exist in a forward
manufacturing system, is incurred when the remanufacturer finds no inventory
space to handle the returns. On the other hand, receiving inventory can still act
as a buffer to dampen the randomness of material arrival process, thus providing a
relatively stable material flow for the reverse production. However, replenishment
of stocks (post consumer products) is a stochastic process with high uncertainty,
while remanufacturer has little control over it. This generally results in huge safety
inventory for the remanufacturers.

As in forward manufacturing, operations and processes of remanufacturing
should also be aligned and optimized to maximize the total profit. This leads to
following three production planning problems that need to be addressed:

1) First of all, remanufacturing system has to handle substantial number of product
types. Generally these different products share one production line. Therefore,
a priority based switch rule has to be developed for production planning to
determine how and when to switch between different production types. The
priority mechanism is generally based on following concerns. The first concern
is the depreciation rate of the products or components received. Products with the
highest depreciation rate should be given first consideration. The second concern
is the residual value of the product. Generally, products with a high residual value
should be processed first. The third concern is the environmental impact. If the
product has in-transition environmental impact, it should also be processed early.
The fourth concern is the market demand. If the secondary-market demand for
a certain remanufactured product or component is higher, these products should
be handled first. In determining when to switch, production lot size for different
products with different priorities have to be determined and optimized to reduce
total holding cost, set up cost and redistribution cost.

2) The second issue for remanufacturing planning and control is determination of
the optimal receiving inventory capacity and safety stock level. On one hand,
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receiving inventory capacity set a constraint of safety stock level and the possible
production run size (that is, the number of products to be produced in one run
without changing the production configuration). It also has significant impact on
both stability of production and redistribution cost. With more receiving inven-
tory space, a higher level safety stock can be allocated to improve the stability of
reverse production system. This could result in better efficiency. More receiving
inventory space will also reduce the chance of redistribution and associated
cost. Nonetheless, excessive inventory capacity also has shortcomings—Ilarge
inventory capacity increases the space cost, while higher safety inventory results
in higher inventory cost.

The third problem is to determine the optimal workforce level and production
capacity. The unstable and uncertain incoming flow of the dedicated model
requires workforce level and production capacity respond to the product return
demand so that excessive capacity can be avoided. However, changing capacity
of any production system will always incur costs.

3

~

Obviously, effective modeling and analysis of the production model of reman-
ufacturing system is critical to attack the problems discussed. Approaches such as
Queuing networks or other mathematical modeling techniques are possible options.
However, due to the special stochastic characteristics of the arrival process and the
priority based switching rules in production planning, the Queuing model has to
consider both the compound bulk arrival and the priority Queuing. Analysis of
priority queue with compound bulk arrival has shown to be very hard to solve.
Optimization with simulation methods proved to be an effective approach and can
be used in optimization of a system that possesses the characteristics described in a
remanufacturing system [3].

4.1 General Simulation Model

The general simulation model developed for the remanufacturing is illustrated in
Fig. 6. The remanufacturing system receives the products with stochastic, compound
and batch arrival. It is assumed that a batch of n different products with random
quantities (xj, X2, ..., xp) is transported via the same truck. It is also assumed
that there is one production line that is capable of producing each of the different
product types. The production line has N stations (or stages), with a queue in front
of every station. Every station has one or more identical servers with a stochastic
service time. There is a transit time between any two consecutive stations, which
is assumed to be exponentially distributed. The production line does not have any
coordination of job movement between stations. An available operator starts a job
as soon as it is available and, upon completion, the job leaves the station provided
there is room at the next station. This mode of operation may cause starvation and
blocking of servers. A bulk of returned products will be accepted to the receiving
inventory if enough receiving space is available to hold the entire load. Otherwise,
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Fig. 6 General remanufacturing production flowchart

as many products as possible will be accepted and products with higher priority will
be considered first. The rest of the load would be refused and a redistribution cost
would be incurred.

4.2 Production Switch Rule

Since the production line is shared for processing different product types, a
control mechanism is required to switch the line from one product type to another
considering a specific run size and specific priorities. The switch rule can be either
based on production batch or based on the product type. Production based switch is
launched only when the inventory of products currently being processed is totally
depleted. A variation of this rule is switching the production line after a certain
period of time without referring to the current inventory level. For either case, all
product types sharing the same production line implicitly have the same priority.
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Another rule strictly follows the priority of each product type. Priority based rule
could be impractical because it could switch the production line too frequently
raising the setup costs. Consequently, it is rational to combine the product priority
rule with the batch production rule. A pseudo code for the priority based batch
switch control rule developed for the simulation model is given as follows:

Assume there are N types of products with distinct priority level, N =1,2,3, ...,
n, where the smaller number means higher priority. Let /; denote the inventory level
of product type i, current denote the type of product currently being processed, and
q; denote the run size of product i, where i =1, 2, 3, ..., n., then we have the
following switch rule:

if (Production line is running and receiving inventory station is requested to send more
products to the production line) or (production line is idle and a new bulk arrives ) then

fori=1ton
begin
if i < current (i.e. product i has priority over current product) and /; > ¢; then
current =i
switch production line to product i
break

else if i > = current and L.,yyen; > 0, then
continue sending current type of product to production line
break
else
idle period begins, waiting till more spent products arrival
break
end if
end
end if

4.3 Optimization Problem Formulation

The control variables in the optimization model of the remanufacturing system
are categorized into four types: inventory capacity, run size of each product
type, number of workers in each manufacturing cell, and the buffer size of each
manufacturing cells. The objective of the analysis is to find the optimal value of
these decision variables that maximize the total net profit. The objective function of
the remanufacturing system can be expressed as follows:

1 B =TR-T 1
IeD,,WeDru?,%)éDB,QeDQ,f( W.B.0) ¢ M

Where

I = available inventory space for the receiving area.
W= (w1, wa, ..., wp) is the vector representing number of workers in manufactur-
ing cell 1 to p,
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B =(by, by, ..., by) is the vector representing buffer size of each manufacturing
cell,
0=(0i, Oy, ..., 0, is the vector representing run size of product type 1 to n,

(D1, Dw, Dg, Do) represents the feasible domain of (I, W, B, Q).

Total expected profit can be derived as the difference between the expected
total revenue (7R) and the expected total cost (7C) of a dedicated remanufacturing
system. Total annual revenue is assumed to be

TR:Zn:RixVi 2

i=1

where R; is the residual value of product type i and V; is the total volume (number)
of product type i processed per year. The total cost is broken down into five major
cost categories:

TC =C.+CL+Cy +Cqx+Cpr 3)

Where

C.: product collection cost. This includes the purchasing cost of used products from
customers and the transportation cost during the collection process.

Cy: logistics cost. This is incurred during distribution and redistribution of the
collected products. When the receiving inventory is full, redistribution cost is
incurred in the re-transportation of returned products to other remanufacturing
facilities.

Cy: remanufacturing processing cost. This includes labor cost, materials cost and
utility cost, which are incurred in machine operating, line switch and setup, and
line and operator idling.

Cpy: inventory holding cost, which is incurred by holding received products in the
inventory area and the production line.

Cp: fixed cost of running the factory regardless of the production level. This includes
general utility, air-conditioning, insurance, and facility depreciation.

4.4 Hybrid GA Simulation Optimization Approach

Based on the objective function and the simulation model, a hybrid GA approach
which combines the Fractional Factorial Design (FFD) with the GA method was
developed.

As shown in Fig. 7, the optimizationprocedure starts with dividing the solution
space into subspaces called cells. Each cell is considered as the local solution space
of the FFD. The FFD is used to find the extrema of each cell. The results of the FFD
provide the solution candidates for the GA. Based on the corresponding extrema of
each cell produced by the FFD the GA will continue the search process until the
termination condition is met. It is important that a well thought out fraction of the
design be selected when the FFD is used to coordinate both efficiency and accuracy.
A high fraction will increase the efficiency while losing accuracy as a trade-off.
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Fig. 7 The hybrid GA approach

Similarly, low fraction will increase the accuracy but will take more time to find
the extrema. In general, the FFD will not only make sure that the output is the
local optimum in the cell thereby improving the searching accuracy of the GA by
considering all solutions in a subspace instead of a unique point, but also improve
the searching efficiency due to its fractional runs. On the other hand, the GA can
guarantee promising solutions due to its effective global searching performance.
For a more thorough explanation of fractional factorial designs please refer to
Montgomery [9].

4.5 Case Study

A case study is conducted based on a remanufacturing plant located in Austin Texas.
The plant recovers, reuses, and recycles used laptops and desktops. The two types
of products share the same reproduction line.

4.5.1 Model Parameters Assumptions

A number of parameters were obtained and assumptions were made in this case
study based on conversations with the plant managers.

Truck arrivals are assumed to follow a Poisson process with the mean time
between arrivals of 4 h per 8 h a day. Both laptop and desktop are contained in
the same truck load. However, the proportion of desktop and laptop in a truck is
not fixed and is a random number. The number of desktops and laptops in a single
shipment satisfy the following equation: 0.5 x (number of Laptops) + 1 x (number
of Desktops) = 260.

The number of laptops is a random integer variable with a uniform distribution
between 0 and 520. The number of desktops is also a random number, which is
complementary to the number of the laptops and equals 260—0.5 X (number of
laptops).
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Based on the interview with the plant manager, we assume that 10 % of received
computers will pass testing and be labeled directly; 10 % of them, which cannot
be remanufactured, will be torn down for further recycling; the remaining 80 % of
computers have to be fixed and labeled after repair.

The capacity of the receiving inventory was initially set to 500 sq. ft. If
the returned products find no space available in the receiving area they will be
redistributed. The redistribution fee is $450 each time regardless of how many
computers are re-transported. It is assumed that all of the finished products will
be immediately shipped and sold out after packaging. Hence, there is no inventory
for finished goods.

There is only one production line that is shared by laptops and desktops. Based
on the aforementioned production priority rule, the production line will switch with
a setup time of 30 min. Letting g; and gp be the run size of laptop and desktop
respectively, and assuming that the current production line is processing desktops.
The priority based switch control can be stated as follows:

g) If I} (number of laptops in the inventory)> g, the production line will be
switched to process laptops.

h) Else if the Ip (number of desktops in the inventory) is greater than zero, the
production line will keep processing desktops.

i) Otherwise, it will wait for the arrival of more computers, which causes an idle
period.

The selling price of the remanufactured desktops is assumed to be $250 per
unit and the selling price of the remanufactured laptops is assumed to be $400 per
unit. Other parameters, assumptions and factory profile are summarized in Table 1
below.

4.5.2 Cost/Profit Evaluation

Based on the analysis outlined earlier, the costs for all related operations are
summarized in Table 2.
The total inventory cost can be derived by summing all of the costs:

TIC = Cspace + Cutiliry + Chandling + Cequipment (4)

The fixed cost of the whole plant includes utility cost, as well as building
and equipment expense that includes machine depreciation, building rental, taxes,
insurance, fire protection, and general maintenance cost. The total building and
equipment expense is $811,000 per year.

The total profit for the remanufacturer is the difference between gross revenue
and total costs which is given by following equation: Profit = (Finished Desk-
tops) x (Desktop Sell Price) 4 (Finished laptops) x (Laptop Sell Price) — Total Cost.
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Table 1 Model assumptions

Labor Working time 8 h per day 350 work days per
year = 2,800 h
per year

Work efficiency 90 %

Factory Space 3,200 sq. ft.

Truck Aurrival rate Poisson (4 h)

Bulk capacity 260 sq. ft.

Returned products Desktop 0.5 sq. ft. per unit,
random # units
per truck

Laptop 1.0 sq. ft. per unit,
random # units
per truck

Inventory For receiving 500 sq. ft.

For finished goods 0

Production line  One production line

shared by laptops
and desktops
30 min setup time per
switch
Run size Laptop qL
Desktop qp

Sale price Laptop $400 per unit

Desktop $250 per unit

4.6 Simulation Model

The simulation model for the remanufacturing operation is developed using Arena™
Software. The flowchart module is demonstrated in Fig. 8. The general purpose of
the model is to analyze the effect of operational changes on the profit performance
of this dedicated reverse manufacturing system. The ultimate goal of the simulation
model is to find the optimal configuration of the production system resulting in
maximum profit.

The distribution of the time for each operation modeled in the simulation model
is assumed to be an exponential distribution, where the normal time listed in Table 3
represents the expected value. An exponential distribution is used for all service
times in order to simulate the large range of possible values.

4.6.1 Optimization
In order to optimize the remanufacturing system, ten control variables are identified

as important to the performance of the system under study. These parameters
include: (1) receiving inventory capacity (), (2) run size of laptops (gr), (3) run size
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Fig. 8 Simulation model for reverse manufacturing

of desktops (gp), (4) buffer size of repair stations (b,), (5) buffer size of labeling
area (b;), (6) buffer size of packing station (b,), (7) number of workers in the testing
cell wy, (8) number of workers in the repairing cell (w,), (9) number of workers in
the labeling cell (w;), and (10 ) number of workers in the packing cell (w,,). Based on
the consulting from the plan manager, the reasonable range for each control variable
is also obtained:

1= {200, 300, 400, 500, 600, 700, 800}

g1 = qp = {30, 40, 50, 60, 70, 80}
by=b=1{2,4,6,8, 10}

b, = {10, 20, 30}

w,=1{4,5,6,7,8}

w,=1{10, 11, 12 13, 14, 15, 16, 17, 18, 19, 20, 21}
wi=13,4,5,6}

w,=15,6,7,8,9, 10}

In order to use the GA approach presented earlier, these ranges were decomposed
into smaller cells so that the two-level FFD algorithm can be implemented. Recall
that each control variable has only one or two values. In doing this, the following
new segments were obtained:

11 = {200, 300}, I> = {400, 500}, I5 = {600, 700}, I, = {800}

qr1 =1{30, 40}, g1» = {50, 60}, g13 = {70, 80}
gp1 = {30, 40}, gp2 = {50, 60}, gp3 = {70, 80}
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Table 4 Initial population

Cell index b, by b, 1 qL qp wy Wy w; wp
7,976 [2,4] [6,8] [10,20] [200,300] [30,40] [50,60] [8] [16, 17] [3,4] [7, 8]

[ ]
22,517 [2,4] [10] [30] [800] [30,40] [50, 601 [6,7] [14,15] [5,6] [7,8]
25,832 [6,8] [2,4] [10,20] [600,700] [50,60] [70,80] [6,7] [16,17] [3,4] [5,6]
28,314 [6, 8] [2,4] [30] [400, 500] [30,40] [50,60] [4,5] [14,15] [5,6] [9,10]
43,652 [6,8] [10] [30] [200, 300] [70,80] [70,80] [4,5] [16,17] [3,4] [7,8]
18,526 [2,4] [10] [10,20] [800] [30,40] [30,40] [6,7] [16,17] [5,6] [5,6]
1,166 [2,4] [2,4] [10,20] [400,500] [30,40] [50,60] [8] [14,15] [3,4] [7,8]
66,424 [10] [10] [30] [200, 300] [50, 60] [30,40] [4,5] [10,11] [5,6] [5,6]
16,444 [2,4] [10] [10,20] [200,300] [70,80] [70,80] [4,5] [18,19] [5,6] [5,6]
4,427 [2,4] [2,4] [30] [200, 300] [50, 60] [50, 60] [8] [20, 21] [5,6] [7, 8]

brl = {2’ 4}’ br2 = {6’ 8}, br3 = {10}

by =1{2,4}, bp =16, 8}, b3 = {10}

bp1 = {10, 20}, by, = {30}

Wi = {4’ 5}’ W = {6, 7}’ W3 = {8}

wr = {10, 11}, wpo = {12, 13}, wz = {14, 15}, wy = {16, 17}, w,s = {18, 19},
w6 = {20, 21}

wi =1{3,4}, wp = {5, 6}

Wpl = {5’ 6}’ sz = {7’ 8}, Wp3 = {9, 10}.

Combining the segment for each parameter, we have a total of 4 x3 x3x
3x3%x2x3x6x2x3=69,984 cells, which compose the original domain. Index
numbers are also assigned to each of the cells from 1 to 69,984.

The population size N of each generation is set to 10. Other important parameters
for the GA approach are crossover rate, P, and mutation rate, P,,, which are set
to 0.8 and 0.78 respectively. Therefore, in each generation, 8 (=N x P,) of ten
individuals will be selected to crossover and generate eight new designs. Among
these eight new designs, 6 (=N x P, x P,,) will be chosen for mutation.

To initialize the start population, ten random integers are generated with a
uniform distribution between 0 and 69,984, they are {7,976, 22,517, 25,832, 28,314,
43,652, 18,526, 1,166, 66,424, 16,444, 4,427}. The corresponding cells are listed in
Table 4.

A -L Fractional Factorial Design is built for each of these cells with a run size of
64 (2118_4 = 64). The output of the simulation model is used in the FFD analysis
to determine the optimum for each individual cell. The result provides the first
generation listed in Table 5.

In crossover, eight of ten individuals, individuals 1, 2, 3, 4, 6, 7, 9, 10, in the first
generation are randomly picked with probability P.. Meanwhile, based on a uniform
distribution U (0, 1), four random numbers, 0.46,0.91, 0.33, and 0.78, are generated
for A. The result is shown in Table 6.

In mutation, six of the eight new designs, new designs 2, 3, 4, 5, 6, 7, 8, are
randomly picked with probability P,,. Meanwhile, six random numbers, 0.86, 0.74,
—0.01, —0.27, 0.42, and —0.67, are generated for { following normal distribution
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Table 5 First generation

Control parameters

Individual b, by b, I . qp  w; w. w; w, Output($)
I 2 6 20 300 40 50 8 17 4 7 18,970.26
I 4 10 30 800 30 50 7 14 5 8  28,161.37
Iz 8 4 20 600 50 70 5 16 4 7 19,443.51
Iy 8 4 30 500 40 60 7 15 6 10 29,153.52
I5 8 10 30 300 70 70 5 16 4 7 18,896.89
I 2 10 20 800 30 40 o6 16 6 6 19,505.26
I; 4 2 10 500 30 60 5 14 4 7 18,346.21
Ig 10 10 30 300 60 30 5 1 5 6 17,914.16
Iy 4 10 20 300 8 70 5 19 5 5 15,543.76
Tio 2 2 30 300 50 60 8 21 5 8 24,729.08

N (0, 1). The resulting mutation is listed in Table 7. The last column contains the
corresponding cell indexes.

The FFDs are built for these new designs. After running the simulation model,
the output is analyzed using the FFDs to find the cell optima. After eight optima
are obtained, the best ten was selected from them and the second generation as the
population of the first generation, which are shown in Table 8.

Similar procedures of crossover, mutation and cell analysis are followed to
generate the rest of the generations until the termination condition is met. In this
case, the procedure stops if the optimum does not change for two generations or the
differences among individuals in a generation is less than 5 %. Under this criterion,
the GA approach stops after seven generations. Figure 9 shows the outputs of each
generation. In each generation ten seeds are selected for mutation and crossover
which lead the next generation. These ten selected ones are demonstrated in Fig. 9.
As illustrated, the profit of each generation is increasing as the generation evolves.
The final optimal solution of the remanufacturing system in this case study is 700 sq.
ft. for receiving inventory, 40 for run size of laptops, 80 for run size of desktops, 18
workers in the repairing station withbuffer size of 8, 6 workers in the labeling station
with buffer size of 6, 10 workers in the packing station with buffer size of 20 and 8
workers in the testing station.

5 Conclusion

This chapter summarizes the critical issues involved in remanufacturing. Typical
remanufacturing processes including cleaning, testing and inspection, and disas-
sembly are illustrated. Characteristics of remanufacturing production system and
problems are also introduced. A GA optimization approach based on the simulation
model is also developed to obtain the optimal production policy.
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Table 8 Second generation
Control parameters
Individual b, by b, I . qp  w; w. w; w, Output($)
I 8 4 30 500 40 60 7 15 6 10 29,153.52
L 8 4 30 500 40 60 7 15 6 10 29,153.52
I 2 10 30 500 40 60 8 16 6 8  28,684.64
I 4 10 30 800 30 50 7 14 5 8  28,161.37
Is 10 8§ 20 700 60 80 7 17 6 8  27,993.82
Is 4 8§ 30 700 30 50 7 14 5 8  26,383.17
I 2 8§ 20 700 30 60 7 16 6 8  25,424.63
Ig 2 2 30 300 50 60 8 21 5 8  24,729.08
Io 4 2 30 300 60 60 7 20 6 8  24,287.99
Lo 4 4 20 700 40 60 5 15 4 6  19,564.63
40,000
35,000
t : ; i ——Gl
30,000 .//,\ x }\.;K gz
—-—
25000 N
: /N N o
S
i‘: 20,000 +—¢ ¥ )__,,\‘_\:\/ G4
L
“ 15,000 @
—e— (G6
10,000 ——G7
5,000
0 T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10
Individuals in each generation

Fig. 9 Outputs of different generations
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Viscous Interfacial Motion: Analysis
and Computation

Jin Wang

Abstract We consider the interfacial flows between two viscous incompressible
fluids. After formulating the mathematical framework, we first present analytical
solutions to the linearized problem, and discuss some results from linear asymptotic
analysis. We then describe a numerical method for computing the nonlinear motion
which ensures a high accuracy on and near the moving interface. Simulation results
on viscous Stokes waves are presented to demonstrate the advantages of this method.
In addition, as an example of nonlinear asymptotic study, we conduct a perturbation
series analysis for Stokes waves with small viscosity, the results of which provide
an analytical justification to the numerical observation.

1 Introduction

Interfacial motion between two viscous incompressible fluids is abundant in our
world; common examples include water waves, bubbles, droplets, rain, cavita-
tion, and oil spill, just to name a few. These phenomena span a wide range of
scientific disciplines such as fluid dynamics, geophysics, oceanography, material
science, mechanical engineering, and aerospace engineering, which underscores
the importance of studying and understanding viscous interfacial flow problems.
Mathematically, the motion in each fluid is governed by the incompressible Navier-
Stokes equations, the solutions of which are connected through the interfacial
conditions [3]. There are several difficulties associated with the study of such
problems. First, the motion is strongly nonlinear and analytical solution is usually
impossible to obtain. Second, the incompressibility condition has to be satisfied
(somehow in an implicit manner) at all times [9]. In addition, the domain of interest
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contains an unknown interface which evolves in time and which must be determined
as part of the solution. The interface plays a major role in defining the system and it
is crucial to have an accurate representation of it.

Mathematical analysis to viscous flow problems is limited owing to their strong
nonlinearity. In fact, the fundamental question on the proof of the existence and
uniqueness of the solution to three-dimensional Navier-Stokes equations remains
unresolved to date. Nevertheless, for some special types of such problems, mathe-
matical analysis can provide deep insight into the fundamental mechanism involved.
In particular, linearized motion (i.e., unsteady Stokes flow with a moving interface)
can be solved in closed form and thoroughly analyzed, which, in turn, provides an
important starting point for some nonlinear analysis as well as the development of
computational methods. Meanwhile, asymptotic study based on perturbation series
is a powerful analytical tool to investigate more complex problems.

For most of the interfacial flow problems, however, numerical methods have to be
employed. Popular computational approaches for tracking or capturing interfacial
motion include (but not limited to) the volume-of-fluid (VOF) [24], level set [26]
and boundary integral [19]. In the VOF formulation, a volume fraction function
C is defined and it satisfies an advection equation. At each time, the values of
C are used to reconstruct an approximation to the interface and this approximate
interface is then used to update the volume fractions at the next time. VOF methods
provide a simple way to handle the topological changes of the interface and are
relatively easy to extend from two-dimensional to three-dimensional domains. The
level set approach was first proposed by Osher and Sethian [22] and has since been
widely applied to many interfacial/free-surface problems [26]. In these methods,
a level set function ¢ is introduced such that its initial value denotes the shortest
distance between each point and the initial interface. The function ¢ then evolves in
response to the propagation of the interface and, at anytime, the zero level set ¢ = 0
gives exactly the location of the interface. The level set method does not require
special procedures to treat topological changes of the interface and is relatively
simple to generalize to three-dimensional problems. The boundary integral method
was developed for computing inviscid potential flows, and notable work in this
category was made by Longuet-Higgins and Cokelet [19], Vinje and Brevig [31],
Baker et al. [2], etc. In the boundary integral formulation, Laplace’s equation is
solved by using Green’s functions, leading to Fredholm integral equations of the
second kind. The dynamic and kinematic surface conditions are integrated to update
the interface at each time. A distinct advantage of this method is that the space
dimension of the problem is reduced by one, thus they offer an efficient way for
the computation of inviscid and irrotational flows. However, the method is not
applicable to general viscous motion. In addition, there are several other well known
computational methods including the marker-and-cell [10, 36], front tracking [8],
phase field [28], and immersed interface [14, 16, 18]. A detailed review of these
computational techniques for two-phase flows can be found in [4]. Although much
success has been achieved by these numerical methods, all of them have their own
strength and weakness. In particular, many of these methods encounter difficulty in
resolving the fine-scale viscous boundary layers in interfacial flow computation, and
are not suitable for an accurate investigation of surface details.
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In this work, we discuss some of the analytical and computational aspects of
viscous interfacial motion. We focus our attention on flows between two viscous
incompressible fluids with distinct densities and viscosities, and each with an infinite
depth. For ease of presentation, we restrict ourselves to two-dimensional (2D)
settings, though most of the methods and results discussed here can be naturally
extended to three-dimensional (3D) space. We start the presentation by considering
the simplified, linearized problem which can be analytically solved and the analysis
of which can be further augmented by a linear asymptotic study. We then describe
a numerical method for the nonlinear problem that ensures both strong numerical
stability and an accurate representation of the moving interface. By using this
method, Stokes waves can be followed sufficiently in time to reveal the deep
pattern of viscous effects on wave motion. In addition, as an example of nonlinear
asymptotic study, we present a perturbation series analysis on Stokes waves with
viscosity, which provides a theoretical verification of the numerical observation.
Finally, conclusions are drawn and some discussion is made on related problems
and research.

2 Basic Formulation

We first present the basic mathematical formulation for our moving interface prob-
lem in a two-dimensional setting. We denote the spatial coordinates by (x, z), the
temporal coordinate by ¢, the velocity components by (1, w), and the pressure by p.
The motion in each of the two fluids is described by the viscous incompressible
Navier-Stokes equations [3, 15]

pu; + puuy + pwu, = —Py + w(uyy +uz), ey
owr + puwy + pww, = — P, 4+ u(Wex + wy;), 2
uy +w, =0, 3)

where p is the density, u is the dynamic viscosity, g is the gravitational acceleration,
and where P = p + pgz is referred to as the hydrodynamic pressure. The first
two equations are referred to as the momentum equations, where the temporal
derivatives describe the rate of change for the velocity. The nonlinear terms on
the left-hand side represent the convection (or, advection) of the velocity field,
whereas the second derivative terms on the right-hand side represent the diffusion.
No time derivatives of the pressure appear here; instead, the pressure acts as a
Lagrange multiplier in the Navier-Stokes equations [9]. In addition, Eq. (3) is the
incompressibility condition, also referred to as the continuity equation.

Equations (1)—(3) hold in both the upper and lower fluids, and their solutions
are connected through the interfacial conditions, to be provided in Egs. (6)—(8). In
addition, we will assume that solutions are periodic in the horizontal direction, and
exponentially decay away from the interface in the vertical direction.
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We represent the interface in the form
(x,2)=(x, h(x.1)). 4
The profile of /4 is determined by the kinematic condition
he +uDhy, =wh) | (5)

where u!), w(!) are the interfacial velocity components. Essentially, this kinematic
condition states that a fluid element on the interface must remain on and move with
the interface at any time. Due to the presence of viscosity, we have the continuity of
velocity at the interface for both the tangential and normal directions; in other words,
both the horizontal and vertical velocities must be continuous across the interface:

0V = 4@ = (M = @ = (D) 6)

where the superscripts (1) and (2) refer to the upper and lower domains, respec-
tively. Moreover, the balance of stresses provides two more interfacial conditions
[3]: one states that the tangential stress is continuous across the interface, whereas
the other states that the normal stress is discontinuous at the interface and the jump
in normal stress is balanced by the jump in pressure and the surface tension. In
two-dimensional case, these two stress conditions yield

(= D O+ ) = 12w 4 0?)]

20, [V = w) = p P @ )] =0, (7)
(PO = P®) = gh(p = p®) + I [ () + ) = 1P + w?)]
=2 [ — PP — i =0, 8)

where y is the surface tension and where « is the mean curvature of the interface,

hXX

RN TETEE ®

3 Linear Analysis

The strong nonlinearity of the Navier-Stokes equations and the presence of an
unknown interface make the analytical solution impossible to find in general.
Nevertheless, we may gain some insight by starting from the simpler, linearized
problem.
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The linearized Navier-Stokes equations, also referred to as the unsteady Stokes
equations, take the form

1
U = _;Px + v (uxy +uz) (10)
1
wy = _;Pz+v(wxx +wz), (i
ux + Wz = 0 ’ (12)

where v = ad is the kinematic viscosity. Meanwhile, by dropping all the nonlinear

P
terms, the original interfacial conditions are reduced as

W = @ (13)
hy = wl) = w® | (14)
PO () 4 D) = @@ (U 4 @) | (15)

(0@ — pMygh + PU — PO _ 2oy _ sy G1) = yh - (16)

Solutions in the upper fluid domain have a positive vertical coordinate, z > 0,
whereas those in the lower domain have a negative vertical coordinate, z < 0.

In order to simplify the calculations, we consider solutions in complex form.
Real solutions can be generated by simply adding the complex conjugates. Let k
be the wave number. For convenience of presentation, k > 0. Using the periodicity
assumption on x and the normal mode analysis, we write solutions in the form

u
_ Likx ,ot w
=ée e 73
H

a7

>N = =

where o is referred to as the growth rate of the motion, H is a fixed number
measuring the initial amplitude of the interface, and &/, VW, P all depend on the
vertical coordinate z.

By substituting (17) into the Egs. (10)—(16), we obtain

ik
oU = —%P+v(—k2L{+L{ZZ), (18)

1
oW = —;PZ + (=KW +W.,,) , (19)

ik +W, =0, (20)
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and
U =u? 1)
Ho =W =w® (22)
PO D +ikwh) = pPv@ U@ +ikw?) | (23)
(02 — pM)gH + PH — PO — 2,0y OWH _ p@,))y@)
= —k*yH . (24)

Standard methods proceed by reducing the equations above into a single differen-
tial equation of 4th order. In contrast, our approach here is to reduce the order, while
increasing the number, of the differential equations; that is, we convert the governing
equations to a system of 4 first-order differential equations. To that end, we treat U,
as another unknown, and denote the unknown vector by Y = [U, U, W, P]T.
Then Egs. (18)—(20) can be rewritten as

0 1 0 0
d A | Q%v 0 0 ik/pv
—Y=BY = Y, 25
dz —ik 0 0 0 25)

0 —pvik —pQ? 0

where Q = +/o + vk2. It is easy to find that the matrix B has four distinct
eigenvalues:

M=k A=—k, A3=Q/Vv. Ay =—Q/v. (26)

Consequently, physically meaningful solutions (i.e., solutions that vertically decay
away from the interface) to system (25) can be represented by

Q/Jv —ik
Q2 Q j k2

YD =, ik/v exp [ - Tg] + D, lk exp[—kz] 27
0 po

in the upper domain (z > 0), where p = p(") and v = v), and

—Q/ ik
—Q2%/v Qz —ik?
2 — =
YO-o| T exp[ﬁ]+D2 U etk @8)
0 po

in the lower domain (z < 0), where p = p® and v = v®.
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Those constants C;, C; and D, D, can be expressed in terms of o and H:

_ HFo _ HEo
- k(F-E)’ 'TUk(E-F)’
Vi@k 4+ Q@ VV@QW + VHhQ® ic
= a0 T T ek _qo
C,=C, —iD,—iD,, (29)

D,

with

E = 20000k 42000 @ k QO |

(@)
F =pW(c+20Vk%) + p<2>sz<”,/%(«/u<2>k + Q@)
—pPVVOk (VK — QP). (30)

Given an initial amplitude (H) of the interface, the value of o has to satisfy
certain condition, referred to as the dispersion relation, to ensure a nontrivial
solution of our problem. Indeed, substitution of the interfacial conditions yields,
after some algebra,

I:p(l)A/v(l)(Q(l) + VoK) + p@VHD (@ + 4/‘)(2)]{)]

[ (0® = pMgk + yk* + (02 + p)o? |
44 (p(l)4/1)(1)9(1) 4 p(2)v(2)k)(p(Z)a/v(Z)Q(Z) + p(l)v(l)k)ak =0. (31

Equivalent form of Eq. (31) can be found in [5], though derived by a different
approach. This dispersion relation is nonlinear and cannot be solved analytically;
instead, some approximation methods (e.g., numerical or asymptotic approaches)
have to be used.

One possible way to conduct asymptotic study on the linear viscous interfacial
motion is based on the method of multiple scales [11, 20, 33]; some details are
presented below.

Let us introduce two dimensionless parameters

W e

Since the boundary layers near the interface have thickness proportional to /v [15,
20, 30], we introduce scaled vertical coordinates 1y, 1; by

<
- L — -7 33
Mo NG m \/;770 z (33)
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Consequently,

0 1 0 0

- + )
9z v any o
92 1 92 2 92 92

==t =T+ —. 34
0z2 v ok Jv anodm  an? (34
Then we assume the following perturbation series expansions:
U = uo(no,m) + Vvui(no,m) +vus(no,m) +---,
W = wo(no, m) + ~vwi(no,m) +vwa(no,m) +---,
P = Po(no,m) + v Pi(o,m) +v Pa(jo,m) + -+,
oc=00+vo,+vo,+---. (35)

Note that o is the same in the upper and lower fluid domains but with different
expansions. They are related by

o) =0l oV =R"0?, m=12-. (36)

By substituting (35) into (18), we obtain

(00 + Vvor+voy+--)ug+ Vv (0o + Vvor +vor+ - )u +

| k | k | k
v(og+Vvor+vor 4 )uy 4= —%Po—ﬁ%Pl —U%Pz-i—---
1 0%u, 2 u 0%uy
+v (= K2upg— VK2 —vkPuy — o — — + — +—+
( 0= VvE 2 v oomy v dngdn ot
1 9% 0%u, Pu; Puy 0%u, 0%uy
— +2 + Vv + +2v +v—F---).
Vv o} 9n0 0 o I3 dno 0N on? )
(37)

Comparison of the coefficients of v" at each order, starting from the lowest, yields,

k 92
orderv? :  goug = —— Py Mzo , (38)
ang

. 32 32
order v? : oy Uy + opup = I P +2 1o 4 , (39)

P dno dm I

1 ik 2
orderv' :  oyug+ oru +ogur = —— P, — k“ug
0
92 92 92
uo u us (40)

+— + + .
and oo dm - Om?



Viscous Interfacial Motion: Analysis and Computation 365

If we substitute (35) into (19) and equate the coefficients of the terms with V", we
obtain,

orderv=2 1 —2 =0, 41

1 9P 1 oP 02
order 10 : gowp = —— =0 _ &1 W0
pom  pdno g

1 1 8P1 1 8P2 82w0 82w1
orderv2 : oywy+opw =—————=+4+2 + —. 43)
PR o G pane | Tomodm | omg

; (42)

Similarly, the substitution of (35) into (20) yields,

d
order vt : 20—, (44)
ano
ad ad
order V0 : ikuo—i-ﬂ—f-ﬂ:O, (45)
am ano
ad ad
order v? : iku1+ﬂ+ﬂ=0. (46)
ani 9o
Meanwhile, we expand the interfacial conditions (21)—(24). Let v = v,

Using (32), the substitution of (35) and (36) into (21) yields,

order v* 1 u(! =ul? (47)

order v? : u(ll) = Ru(lz) . (48)

Substitution into (22) yields,

orderv’ :  Hol" =wl" =wl = Ho? , (49)
order v : Hal(l) = w(ll) = ngz) = HR 01(2) . (50)

Substitution into (23) yields,

P Q)] P )
orderv=3 : p Lo _ g2l , (51)
ano ano
duy  Oup . 0 ug ~ duy . )
order v’ : r(— + — +ikw =R>(— + — +ikw . (52)
(3771 ano 0) (3771 ano 0)
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Finally, substitution into (24) yields,
orderv? @ (p@ — pMgH + Pél) - PO(Z) = —k’yH , (53)

| awl w?
order vt i PV~ RPP—2(p" L RpP ) 0. (54)
ano ano

Based on Egs. (38)—(54), solutions can be determined order by order. The
interfacial conditions at the lower orders are applied to determine the coefficients
in the solutions, whereas secularity conditions in the higher order equations are
used to determine the additional dependency of the solutions on the scaled variables
Mo, M.

In particular, solution for o at the lowest order, which represents the motion in
inviscid fluids, is given by

@ _ 3
2_ (P p 14 )
% = <p(z> T &t o) (55)

where 0y = o(gl) = G(gz). Equation (55) shows that when r > 1 (i.e., p() > p@),

the motion is unstable for all wave numbers 0 < k < /(o) — p@)g/y . This is

the well-known Rayleigh-Taylor instability [5]. When r < 1, the motion is stable

and oy is purely imaginary; it determines the phase speed and does not change the

interface amplitude, as can be naturally expected for the linear inviscid flow.
Solution for o at the next order is given by

2kRr /oo
1) 2 0

=R = 56
o, o, ( A+ 1) (56)

Now the real part of o} is nonzero and it determines the leading term of the decay
rate for the wave amplitude due to viscous dissipation, while the imaginary part of
07 gives viscous correction to the inviscid phase speed. Furthermore,

—2k?
o) = R2o® =

2 = Renpa g pl 0 R 2R P04 ] 67

This shows that o5 is real and only influences the wave decay rate, and has no
contribution for the phase speed. When the viscosities are small, the first few terms
in the series expansion, such as

00+ vor+voy, (58)
could provide a good approximation for .

In addition, we note that when r is very small (in a system of air and water, for
example, r = 0.001), Eq. (58) yields a simplified approximation
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o= -29k>+i/gk+k3y/p? . (59)

From (59), it is clear that the wave amplitude will decay exponentially as
H exp[-2vPk?t], (60)

so that the total energy dissipation rate per wavelength is given by

d [1 @24
dt

EIo(z)k(He—z\,(z)kzr)2C2] = 20Dk H2 e ’ (61)
where c is the phase speed of the wave. This is consistent with the result in Sec. 348
of Lamb’s classical textbook [15].

4 Numerical Calculation

We now turn to numerical study of the original nonlinear problem. In general, the
moving interface z = h(x,t) between the two fluids makes it a nontrivial task on
the design of an accurate numerical method. To overcome this difficulty, we map
the deformed geometry (due to the evolving interface) into a rectangular domain
in new coordinates so as to facilitate accurate and efficient numerical discretization.
The cost of doing this is that the details of the governing equations and the interfacial
conditions are changed. Our numerical methods are then constructed on these
mapped equations.
We introduce the new coordinates, (X, Z, t), through the mapping [32]

x=X, (62)
z= F(X,Z,71), (63)
t=r1, (64)

where

Z 4+ h(X, 1) exp(—aZ), Z >0,

A
FEZD20 2 4hixon) expz), 2 <0,

(65)

and where o > 0 is a constant which can be used to adjust the grid spacing near
the interface. Clearly, the coordinate line Z = 0 corresponds to the location of
the interface z = h(x,t). When far from the interface, Z is relaxing exponentially
to the physical coordinate z so that the far-field boundary conditions can be easily
handled.
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We proceed to derive the mapped equations under the new coordinates. To that
end we need to calculate the transformed derivatives and operators. If we define

Ft FX 1
Go=-"., Gi=-X. Gy=—. 66
0=, 1= E 3T E, (66)

then the transformed first and second derivatives can be calculated by

d ad ad
Z = L _ G 7
- 9 Pz (67)
0 d d
— = — —G|{—, 68
ox  ax ez (68)
d d
% G3ﬁ , (69)
32 82 5 32 32 9
o2 o9x2 + (Gl) = 26157 X 0Z +[Gi1(G)z — (G x]— 37" (70)
92 5 92 d
a5 = 71
02 = (G3) 55 + G:(Ga)z (71
Let us further define
0G, 0G; 090G,
_ 2 2 _ 0G3  dGy
= (G +(G3)", g3 =-2G, =G1— VA + Gs Ak (72)

Then we can write the Laplacian in the new coordinates as

P 9 9 9

ra2 2 2
a2 a2 axe T8z T 8uxaz T8y

(73)

We note that the coefficients G; (i = 0,1,3), g; (i = 2,3,4) are different in the
upper and lower domains.

Now we substitute the transformation rules (67)—(73) into the basic equa-
tions (1)—(8) to obtain

1 1
= Gouz +u(uyx — Guz) +wGsuz = _;PX + ;Gle +vLi{u}, (74)
1
— Gowz + M(WX —Giwz) + wGswyz = —;G3PZ + UE{W} s (75)
uy — Guuz + Gawz =0. (76)

The kinematic condition becomes

he +uPhy = wh | (77)
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Though the velocity interfacial conditions (6) stay the same, the two stress condi-
tions are changed under the new coordinates:

(1)
1 (1) (1) 2) () (2) (2) 4hx Gl 1, (D D (1)
/L( )(G3 MZ +WX)—/L( )(G3 MZ +WX)+(h§(—1 +W)/L( )(MX _Gl uZ)
3
2)
dhy G 2 2) 2
+ )P 62y =0, (78)

21" GO

4n3 1 (1 2 2,2
(PO - POy 4 (2 ﬁ)[ﬂ(l)(ug() _ Gi )“(z)) _ M(Z)(“(X) — G{ )“(z))]
X

= gh(p" = p®) + yic . (79)
We note that in order to obtain (78) and (79), we have eliminated wgl) and wf) in
Eqgs. (7) and (8) by using the incompressibility condition (3).

We then write these mapped equations in the form of linear terms and nonlinear
terms separately. Specifically, the linear terms are separated and put on the left-
hand side of the equations, which recover the equations for the linear motion as
presented in the previous section. Meanwhile, all the nonlinear terms, including
the convection and the mapping associated terms, are put on the right-hand side
of the equations, treated as perturbations to the corresponding linear equations. We
note, however, that in most applications these nonlinear terms are strong and take a
dominant role in the system, and one cannot simply apply a numerical linear solver
to deal with such a strongly nonlinear problem. Nevertheless, the linear analysis
presented before does provide insight into the development of nonlinear numerical
discretization. The procedure is summarized below; for details, we refer to the work
in [35].

The second-order backward difference formula (BDF) [1] is applied to update
the motion in time. The method is fully implicit and so requires the solution of
a nonlinear system of equations for the unknowns at the new time level. The
linear terms on the left-hand side thus provide a simple iterative procedure. At
each iterate, the Fourier transform is applied in the horizontal direction X, which
possesses periodicity, to achieve spectral accuracy in X. Efficient implementation
is achieved by using the Fast Fourier Transform (FFT), and a pseudo-spectral
technique [21, 23] is employed simultaneously to handle those nonlinear terms.
The temporal discretization and the Fourier transform in X result in a linear
system of first-order differential equations with respect to the vertical coordinate,
Z, at each time iteration. This first-order system is then computed by a second-
order numerical integration technique (such as the trapezoid rule), together with
the interfacial conditions and the far-field boundary conditions. The numerical
integration is implemented by decoupling the growing and decaying modes (which
correspond to the eigenvalues of opposite signs associated with the system) so as to
catch the bounded (and physically meaningful) solutions. Once solved, the current
iteration is complete and the procedure is repeated for the next cycle.
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Fig. 1 Vorticity contours in air and water

Standard convergence tests have confirmed that this numerical method achieves
spectral accuracy in the horizontal direction and second-order accuracy in the
vertical direction and time marching, for both the velocity and pressure throughout
the flow domain. The method is also capable of handling large density and viscosity
jumps across the interface. A plot of the vorticity contours from a typical moving
interface simulation involving air and water is presented in Fig. 1, where the
horizontal domain is nondimensionalized to [0, 2r]. It shows that the viscous
boundary layers are well resolved, and that the vorticity is much higher in value
and more spread out in the boundary layer in air (the upper domain) than that in
water (the lower domain).

One significant application of this numerical method is the simulation of Stokes
waves in the presence of viscosity. Stokes waves are originally defined with inviscid
fluids and refer to the motion of periodic, steady progressive free-surface or
interfacial waves [6, 12, 17,25, 27, 29]. Surface tension is neglected in this study.
In a system with two inviscid fluids of infinite thickness, a Stokes wave can be
expanded in a permanent form by a complex Fourier series

o0
h(x.0) =) An(A)e™ ™ (80)
m=1
where k is the wave number, A is a free parameter, and where o = ikp is

referred to as the inviscid growth rate; it is purely imaginary and does not change
the wave amplitude. The parameter S denotes the phase speed of the wave and is
determined by
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B (81)

)_ & p(2) _ p(l) (p(Z))Z + (p(l))z .
- k p(z) + p(l) (10(2) + p(l))2 ’

where we assume p() < p®?. The letter g denotes the gravitational acceleration.
The first few coefficients in Eq. (80) are given in [29]; for example,

A =4,
2 _ 5D
Al AT ST
Ao = D Ok

3(p)* = 10p@ oM + 3(p)>?

2 43
ey AT

Ay =

(82)

and in general, 4,, = O(A™). It is certain that Stokes waves of such a permanent
form can only exist in inviscid fluids. However, any fluid in nature has some
viscosity. It is natural to ask what happens to a Stokes wave in the presence of
viscosity, and, in particular, how the viscosity changes the Stokes’ expansion given
in Eq. (80).

Most of current computational methods for viscous interfacial motion introduce
numerical smoothing which could mask the true effects of viscosity. In contrast, the
numerical method presented here is capable of capturing a sharp interface with high
accuracy, thus is suitable for a detailed study of viscous effects on Stokes waves.

For inviscid flow, the results in (82) suggest one way to view the family of Stokes
waves is to consider the curves |Ai|(|A1|). Then the effects of viscosity can be
studied by viewing the deviation of the numerical results from these curves. Thus,
we draw the curves by using (82) for the modes |A,| versus |A;|, | 43| versus |A;],
| A4| versus |Ay|, |As| versus | A1], etc., and refer to these curves as inviscid solutions.
On the other hand, starting with a Stokes wave profile and running the simulation
with viscosity by using the numerical methods described above, we obtain the
numerical solutions which give the time evolution for the amplitude of each mode.
We then plot these amplitudes in the same way as |A,| versus |A|, |A3| versus
|Ayl, |A4| versus |Ay|, |As| versus |Ay], etc. In Fig. 2 we compare the numerical
viscous solution to the analytic inviscid solution. The numerical solution is plotted
from T = 0 and for every period, T, until T = 207. Figure 2 gives the results in
the air-water case for A = 0.1. Though not shown here, similar results are observed
for different choices of the amplitude parameter A and the viscosities. These results
suggest an interesting interpretation: viscous effects seem to reduce the magnitude
of the Stokes wave while allowing it to remain a member of the family. Without
viscosity, A is fixed. With viscosity it is reduced while maintaining the ratio of the
amplitudes.
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Fig. 2 Comparison between the inviscid solution and the numerical viscous solution of a Stokes
wave in air and water. The numerical solution is displayed for 20 periods. (a) modes |A4,| versus
|A1]; (b) modes | A3| versus |A;]; (¢) modes |A4| versus |A;]; (d) modes |As| versus |A;]

5 Nonlinear Asymptotics

For some nonlinear viscous two-phase flow problems, asymptotic study can also
provide a useful means to gain deeper understanding. Below we present an example
for using perturbation series to analyze viscous effects on Stokes waves, the results
of which can provide a verification of the numerical observation presented in the
previous section.

We assume the interface / is expanded in terms of the amplitude parameter A as
follows,

h = cl Aeat eikx +0 AZeZJt eZikx +tCm Amemat emikx 4o, (83)
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where k > 0 is the wave number and o is the viscous growth rate. Each coefficient
¢ i independent of A and, without loss of generality, we may set ¢c; = 1.
We expand the growth rate o by

o=00+ Aoy + A0+ A" 0 + - (84)
The velocities and pressure are also expanded in terms of A. For example,
U= ul(z)Ae‘” eikx 4 uz(z)Azez‘” eZikx 4 Mm(Z) A Mot emikx +---, (85)

where u,, (m = 1,2,---) are depending on the vertical coordinate z. Similar
expansions hold for w and P.

For each order of A, we seek solutions in terms of small viscosity v. For
convenience of discussion, we again use the two dimensionless parameters r and
R, first introduced in Eq. (32). We then expand each o, as follows, taking into
account that the boundary layers have thickness proportional to /v [20,30],

O—mzo—m,0+\/;0—m,l+vo-m,2+"'v (86)

where we pick v = v, the viscosity of the upper fluid. Similarly, for each
coefficient ¢,, in Eq. (83) we have

Cm = Cmo+ NVVCmi+VCna+ . (87)

For the velocities and pressure, we will need to consider the outer and inner
solutions separately. In the regions outside the boundary layers, solutions are given
by the regular perturbation series. For example,

Up = um,O(Z) + \/;Mm,l(z) +v Mm,Z(Z) +oee (88)

Inside the boundary layers, we need singular perturbation series [20] to represent
the solutions,

Uy = um,O(n) + \/;“m,l(n) +v um,2(77) + .-, (89)
where

_ z—h(x,1)
T

is referred to as the stretched coordinate. We make similar expansions for w,,
and P,,.

Based on these asymptotic expansions, calculations can be performed from lower
orders to higher ones. At each order, solutions are determined by solving the Navier-
Stokes equations together with interfacial conditions, and by matching the outer and
inner expansions through the well-known Van Dyke matching principle [20, 30, 34].

(90)
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In particular, we obtain the growth rate o at the inviscid level (order (ﬁ)o) as

follows,
2) — p)
[p@—p
000 = =i mgk, 1)

g1,0 = 0 s (92)
20 = iy p(2) — p(l) gk (p(2))2 + (p(l))2 (93)
’ 2@+ p) (P + pyz

We observe again that the growth rate at the inviscid level is purely imaginary and
has no effect on on the wave amplitude. It is easy to observe that the above results
agree with the inviscid expansion of the phase speed in Eq. (81).

The viscous corrections to the growth rate are given by

2erm
- Vo0 94
TR +7) ©4)
Oon = ;kz[(l +r)R* = 2r’ R+ r’(1+r) | (95)
T (R4 +r)? '
o1 =0, (96)
012 = 0 . (97)

where the square root of 0y is taken with positive real part. The real part of 0y is
nonzero which contributes to the viscous dissipation of the wave amplitude, while
the imaginary part of o0y gives viscous correction to the inviscid phase speed.
The oy is real and only influences the wave amplitude; it has no contribution to
the phase speed. There is no viscous correction in the order A level; this pattern is
consistent with the inviscid expansion (81).

The first few terms of the coefficient ¢,, in Eq. (83) are found as

=1, (93)
@ _ ,M
PP —p
o= —7—"-Kk, 99
20 = 3y 99)
4kRI‘O'(),() 00,0

c2 [3(R—r}) + (@V2-5r(1-R)],  (100)

TR
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Equations (98) and (99) indicate that if we set v = 0 in the expansion form (83),
we will recover the inviscid Stokes wave expansion (80) to the order A2. The value
of ¢;,1 makes the major contribution of viscous correction to ¢; o. What we are most
interested is perhaps the case r < 1, as in a system with air and water, for example.
In such a case we have

00,04/00,0 - (101)
Using (101), we can obtain an estimate for the absolute value of ¢; 1,

. 12k
le2n | = T (102)

This shows that the correction term +/v ¢y | is very small, especially for long waves
(where the wave number k is small and where we can reasonably neglect the surface
tension). Indeed, some simple evaluation reveals that even with a wave number
as large as 1,000, the viscous correction only counts 15 % of ¢, . For small or
moderate wave numbers, the viscous correction to ¢ is negligible (for instance,

ﬁCZ,l

€20

when k = 10, it is found = 0.0047). In such situations, we have

¢ = 0, (103)

which implies that viscous effects would almost be equivalent to replacing the
inviscid growth rate o by the viscous growth rate o in the inviscid Stokes wave
expansion (80), up to the second order of A. It is as though small viscosity tends
to keep the Stokes’ expansion form. This result is consistent with the numerical
observation presented in the previous section. It can be expected that the same
pattern holds for higher-order expansions; this can be justified by carrying out the
calculations to A* and higher levels.

6 Discussion

We have presented some mathematical analysis and numerical simulation to viscous
interfacial motion associated with two-phase flows. Due to the strong nonlinearity
and the presence of an unknown moving interface in such problems, analytical
solutions are generally impossible to find. We started our discussion by considering
the linearized problem where an analytical solution procedure can be formulated and
can be further augmented by some linear asymptotic analysis. We then presented a
numerical method to simulate the nonlinear interfacial flow problem. The method
achieves fully second-order accuracy in the time marching and the vertical direction,
and spectral accuracy in the horizontal direction, for both the velocity and pressure.
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It allows us to treat viscosity jumps, large density ratios (about 1,000 to 1 in
the water-air case), and reasonably high Reynolds numbers, without introducing
unnecessary numerical smoothing. It is thus capable of capturing very thin boundary
layers at an evolving interface in slightly viscous fluids. Our simulation results on
viscous Stokes waves demonstrate these advantages of the method. Finally, as an
illustration of nonlinear asymptotic analysis that can be possibly applied to some of
the viscous interfacial flow problems, we performed an asymptotic study on Stokes
waves with (small) viscosity, and the results provide a theoretical justification to the
numerical observation of viscous effects on Stokes waves.

There are many related problems that involve viscous interfacial motion. For
example, in fluid-structure interaction (FSI) problems [7], one or more solid
structures interact with an internal or surrounding viscous fluid flow, and both
fluid dynamics and structure mechanics are needed to understand the fundamental
physics involved. A recent review of FSI computation can be found in [13].
One exciting area of current and future research is the simulation of coupled
two-phase flow and FSI problems. Notable examples of applications include high-
speed boats cruising on water, wind turbines floating in oceans, and energy buoys
interacting with waves. A deeper understanding of the fluid and solid motion in these
applications would enable more efficient and robust design of marine crafts and
energy devices that can sustain strong wave impacts, and enhance the technological
development in related industry. As mathematical analysis to such nonlinear, multi-
physics problems are generally out of the question, and laboratory experiments
are usually limited in scope, numerical simulation provides a very useful way to
investigate such problems and to improve our understanding of the fundamental
knowledge. Development of accurate and efficient computational methods for these
problems is both important and challenging, and will benefit from interdisciplinary
effort.
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QSAR analysis
APD. See Action potential duration (APD)
ARMA model with Gaussian noise
AICs, maximum likelihood method, 269
autocorrelation function, residuals,
271-273
BIC and RSS values, 269, 270
Box-Pierce and Ljung-Box portmanteau
tests, 271
breakpoint identification, 269, 270
data structure, 268
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density, mixture distribution, 274, 275
distributions, 272, 273
EM algorithm, 274
forecasting and model fitting, simulated
data, 269, 270
histogram, combined residuals, 271,
272
measures, AIC, BIC and log-likelihood,
271
parameters estimation, 268, 269, 271
stationarity data, 269
7-Aryl-and 7-hetaryl-7-deazaadenosines,
137-138, 141, 143
Attentional control, 21, 23, 24, 26, 29
Attention-deficit hyperactivity disorder
(ADHD)
cognitive impairment, 23
as possibly efficacious treatment, 25
self-regulatory behavior, 23
WM training, 32
Autoregressive moving average (ARMA)
model
with Gaussian noise (see ARMA model
with Gaussian noise)
model building, 243-244
model fitting and forecasting, 274, 276

B

Backward difference formula (BDF), 369

Bacterial artificial chromosome (BAC), 196

Banach spaces, 46, 47, 49, 52, 57, 59, 65, 66,
72,296-298, 301-303

Basic cycle length (BCL), 9

Bautin theorem, 166, 171
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Bayesian information criteria (BIC)
and AIC, penalized model, 120, 126
breakpoint identification, simulated data,
269-271
BDF. See Backward difference formula (BDF)
BIC. See Bayesian information criteria (BIC)
Bifurcation analysis
boundary and domains, 170
consumer-renewable resource, 168—169
DA and DC parameters, 178-181
Hopf and separatrix, 165-168
predator-free equilibria, 176-178
predator-induced equilibria, 175-176
Biological and biochemical sciences,
qualitative modeling, 222-224
Bootstrap sampling, 267
Brain training, WM
ADHD, 23, 24
cardiovascular system, 23
Cogmed’s efficacy, 25
cognitive interventions, 22
computerized tasks, 24
fluid intelligence (Gf), 22
n-back training, 26-27
neuroimaging, 26
possibly efficacious treatment, 25
span-type interventions, 25
visuospatial matrix, 22
Break point bootstrap filtering (BPBF), 242,
267

C
CAChe program. See Computer-Aided
Chemistry (CAChe) program
Cardiac arrhythmias
APD alternans, 3, 13, 14
closed-loop feedback, 2
ETDAS (see Extended time-delay
autosynchronization (ETDAS))
feedback control, 2
FEP, 4-6, 13-16
Hopf bifurcations, 2
mapping, 3
pendulum, 2
space-time, 13, 14
Cardiac tissue, 3, 4
CBPAR. See Community Based Participatory
Action Research (CBPAR)
Circle systems, groups
(Z, 0) construction, 317-319
direct product, 325-326
replacing elements, 327
Z and Z,, construction, 322-325, 327
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Cleaning process
description, 331, 332
liquid based, 332-334
mechanical cleaning, 334-335
CLogP values, 136, 140, 143, 144
Cognitive training
fluid intelligence (Gf), 28
lure trials, 27-28
n-back tasks, 28
Community Based Participatory Action
Research (CBPAR), 148-149
Community Based Participatory Research
(CBPR)
advantages, 149
and CBPAR, 148-149
diverse stakeholders, 150
HIV/AIDS prevention intervention, 149
Kellogg Foundation, 148
recruiting and retaining participants, 150
The Comprehensive R Archive Network
(CRAN), 125, 126, 130
Computer-Aided Chemistry (CAChe) program,
139-140
Conics, noncircular
circle system construction, 317-319
parallelism property, 315-316
ternary operation, 320-322
Consumer-renewable resource
Bautin theorem, 169-171
bifurcation diagram, system, 168—170
blowing-up transformations, equilibrium
point, 165, 166
description, 185-186
equation, population growth, 162
equilibria, 163-165
Hopf and separatrix bifurcations, 165-168
infinity equilibrium points, 173-174
niche construction, 161-162
non-hyperbolic equilibrium, 172-173
over-consumption, 163
per capita birth and death rate, 162
system predators, 163
Consumers—predators—renewable resource
bifurcation diagram, 178-180
description, 186-187
equilibria stability, 183-185
non-isolated equilibria, 174
parameter values, 180-181
predator-free equilibrium, 176-178
predator-induced equilibria, 175, 176,
181-183
simplifications model, 174
Convex quadrics
description, 80-81
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Euclidean space, 79

hyperplane, 79-80

midsurface (see Midsurface, convex

quadrics)
orthogonal projection, 106—-109
plane section (see Plane section, convex
quadrics)

properties, 81-87

shadow-boundaries, 80, 101-106
Convex solid

midsurfaces, 94, 95, 98

plane section, 87-91

shadow-boundaries, 101, 104-105, 108
Crystallized intelligence, 22
Cultural integration, African Americans

CBPR and CBPAR, 148-150

community sustainability, 151

competence, 148

definition, 148

ethnic identity, 152-154

gender role beliefs, 155-157

HIV prevention programming, 158

integration, 148

internet and cell phone use, 157

interventions, HIV risk reduction, 157

relational orientation, 154—155

sessions, Sisters of Nia, 151
Cytostatic agents, 137, 145

D
7-Deazaadenosines, QSAR analysis
Ab initio quantum chemistry methods, 136
7-aryl-and 7-hetaryl-7-deazaadenosines,
137-138
ball-and-springs model, 136
biological activities, 140
CAChe program, 139-140
CLogP, 140, 141
data analysis, 141
molecular structures, 136
QSAR (see Quantitative structure—activity
relationship (QSAR) analysis)
topological polar surface area (TPSA), 140,
141
Destrin (DSTN)
expression, log,, 121-123
probe sets, 121
and USP14, 121
Diastolic interval (DI), 8,9, 11
Diffusion tensor imaging (DTI), 29
Disassembly analysis
component-fastener graph, 337-338
cost and profit, 339
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disassembly tree, 338, 339
end-of-life products, 339
fasteners, 337
precedence relationship graph, 337-338
pseudo-disassembly tree, 338
Drug discovery, 7-deazaadenosines, 137-139
Drug modeling, 136
DSTN. See Destrin (DSTN)
DTI. See Diffusion tensor imaging (DTI)
Dynamical systems theory, 207

E
Eisenfeld qualitative stability, 224-225
Elastic net penalty, 117, 119
Embryonic stem cells (ESCs)
description, 194
electroporation protocols, 198
ESC-OP9 co-culture procedure, 194, 195
haploid spermatids, 287
hCD?2 reporter, 198
and human induced pluripotent stem cells
(hiPSCs), 281-282
LCR’s activity, 196
mRNA expression, 198
neomycin-G418 resistance, 198
PLZF expression, 283, 284
recapitulate T cell development in vitro,
194-195
T-lineage cells, 198
Equilibria
“at infinity,” 173-174
Jacobian loops, 207, 216-219
non-hyperbolic point, 165, 172-173
predator-free, 176-178
predator-induced, 175, 181-183
Rossler system, 236-237
simplification, 163165
stability, 183-185
ESCs. See Embryonic stem cells (ESCs)
ETDAS. See Extended time-delay
autosynchronization (ETDAS)
Ethnic identity, African American girls,
152-154
Euclidean plane, abelian group, 318, 319, 322,
324, 325, 327
Expectation-Maximization (EM) algorithm
conditional, 257-258
estimator, 258
framework, 254
function, 259
Gaussian mixture model, 254
Lagrange function, 257
log-likelihood function, 258-259
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Expectation-Maximization (EM) algorithm
(cont.)
marginal density, 255
parameter estimation, 255, 259
probability, 256
Extended time-delay autosynchronization
(ETDAS)
discordant alternans, 13
discrete-time systems, 6
Fenton-Karma model, 13
higher-dimensional mappings, 7-8
one-dimensional mapping, 67
and restitution, 8—12
spatial dimension, 12

F
Far-field pacing (FFP)
discordant alternans, 13
electric field pulses, 14
ETDAS, 5
fibrillation, 15
pacing protocol, 15
pain threshold, 5
point stimulation, 4
polarization, 5
single-cell alternans, 5
spatiotemporal chaos, 6, 15
virtual electrodes, 5
Fast Fourier transform (FFT), 369
Feedback control, abnormal cardiac rhythms
cardiac rhythm, 2
ETDAS, 3
FEP, 13
higher-dimensional mappings, 7-8
point stimulation, 5
Feedback loops
biological networks, 223
differential/difference equations, 207
electro-chemical corrosion model, 229
indirect autocatalysis, 228
Lorenz and Rossler systems, 237
multistationarity, 224
Routh—Hurwitz stability criteria, 222
sleep-wake cycle, 223
stability, 225
FFD. See Fractional factorial design (FFD)
FFP. See Far-field pacing (FFP)
FFT. See Fast Fourier transform (FFT)
Fluid intelligence, 22, 25
Fluid-structure interaction (FSI), 376
Fractional factorial design (FFD)
hybrid GA approach, 344
simulation model, 351, 352
FSI. See Fluid-structure interaction (FSI)

Index

G
GA. See Genetic algorithm (GA)
Gaussian distribution
ARMA model, 248, 268-274
assumption, 253
and EM algorithm, 254-259
maximum likelihood method, 247, 249-250
white noise (see White noises)
Gender role beliefs
African American girls, 156
androgynous role, 156
HIV prevention interventions, 156
individual characteristics, 156
knowledge and skills gained program, 156
Genetic algorithm (GA)
hybrid GA optimization approach, 344-345
simulation model, 352
Gene transcription, 190
Germ cell differentiation, 282, 283
Groups
amine, 142
aroyl/aroyloxy, 137
circle systems (see Circle systems, groups)
cross-validation (CV) methods, 130-131
ethnic identity, 152
Facebook, 155
noncircular conics (see Noncircular conics)
recruiting and retaining participants, 150

H
Haploid cells
generation, 284-285
spermatids, 285-286
HIV prevention
community integration, 151
girls, interventions for, 156
integrating ethnic identity, 153
intervention programming, 151
risk reduction interventions, 157
“Sisters of Nia,” sessions, 152
Hopf bifurcations
and separatrix bifurcations, 165-168
sub-/super-critical, 170-171
Hybrid simulation, 344-345

I
Infertility
factors, 287-288
gamete precursors, 280
hiPSCs, 289
idiopathic male, 280
in vitro spermatogenesis, 288
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mechanisms, 281
SSC transplantation, 289
with stem cells, 288
utilizing round spermatids, 289
Infinite delay, partial differential equations
axioms, 56
Banach space, 59
continuous function, 58, 65
dimensional space, 57
infinitesimal generator, 59
integral solution, 62
linear operator, 56
memory space, 57
periodic solution, 56
qualitative analysis, 56
translation property, 63
Inhibit the cell growth by 50 % (IC50), 136,
140-142, 144
Insulator elements, 191, 198, 199

J
Jacobian feedback loops and qualitative model
analysis (see Loop analysis)
autonomous differential system, 207
biological and biochemical sciences,
222-224
chemical reactions systems, 238-239
composite loop, 209
dynamical systems theory, 207
Eisenfeld qualitative stability, 224-225
graph/interaction graph, 209
and Jacobian spectrum, 212-216
k-order feedback, 209
Levins scientific modeling, 206-207
loop stability, 220-222
matrix, 208, 212
multiple equilibria, 216-219
parameter values, 210
product, 208
qualitative equivalence classes, 211
qualitative matrix, 210
structural/parameter changes, 237
Jacobian matrix, 7, 8, 165, 207, 208, 215, 216,
219, 229, 233, 236, 238

L
LASSO. See Least Absolute Shrinkage and
Selection Operator (LASSO)
LCR. See Locus control regions (LCR)
Least Absolute Shrinkage and Selection
Operator (LASSO)
description, 116-117
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elastic net penalty, 117
penalized/regularization methods, 115
Lebesgue spaces
Banach space, 298, 301-302
convex and left-continuous function,
298-299
dominated convergence, 300-301
Fatou’s lemma yields, 300
Luxemburg norm, 299
monotone convergence yields, 300
properties, 298, 300, 301
statements, 301
Levins scientific modeling, 206207
Linear analysis
interface, initial amplitude, 361-362
inviscid fluids motion, 365
multiple scales, interfacial motion,
363-364
Navier-Stokes equations, 360-361
nontrivial solution, 363
perturbation series, 364
physically meaningful solutions, 362-363
Rayleigh-Taylor instability, 365
real solutions, 361
standard methods, 362
substitution, interfacial conditions,
364-365
unknown vector, 362
viscous dissipation, 366-367
wave decay, 366
Linear regression
7-aryl-and 7-hetaryl-7-deazaadenosines
derivatives, 141, 143
components, model, 114
data analysis, biological activities, 141
description, 113
least squares solution, 114—115
ordinary least squares (OLS) solution, 113
residual sum of squared errors (RSS), 113
Lipophilicity (CLogP)
7-deazaadenosines, QSAR analysis,
141-143
description, 140
optimum, 144
and topological polar surface area (TPSA),
140
Liquid based cleaning process
agitation, 333
deflocculation, 332
emulsification, 332
immersion cleaning, 333
saponification, 332
sequestration, 332-333
solubilization, 332
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Cleaning process (cont.)

ultrasonic cleaning, 334
wetting mechanism, 332

Locus control regions (LCR)

chromatin, 190

cis-acting DNA, 190

DNase hypersensitive, 191
human f-globin, 191

insulator elements, 191
integration site-independent, 190
lymphocyte, 191

Perforin gene, 195-196

T cells, 194-195

transgenic mice, 192—-194

Logistic regression. See also R programming

environment
conditional probability, 118
description, 117-118
dichotomous responses, 117
glmpathcr package, 120
L penalized logistic regression model, 118

Loop analysis

linear stability theory, 226

parabolic boundary line, 225
qualitative equivalence class, 226
sign equivalence classes, 227-229
1-striped sign pattern, 226
three-dimensional system, 230-237
two-component oscillators, 227-228
two-dimensional model, 229-230

Loop equivalence

k th order feedback, 221
linear stability theory, 226
loop structure, 221

matrix, 210

positive real eigenvalue, 215
qualitative class, 212
three-dimensional system, 231

Loops and Jacobian spectrum

characteristic polynomial, 213
coefficient, 215

cyclic permutation, 215
determinant and permutations, 212
k-order coefficient and feedback, 213, 214
loop equivalence class, 215

monic polynomial, 212

negative real part, 214
permutation, 214

simple loop, 216

Viete formulas, 213

Loop stability, 220-222
Lorenz system

characteristics, 233
description, 232

Index

feedback parameters, 235

Jacobian matrix, 233

k-order feedback loops, 233

loop interpretation, 235-236

loop structure, 234

nonlinear theory, 235

z-axis, 234

Lotka—Volterra equation

continuity, 77

contradiction, 75

diffusion, 74

L penalized constrained continuation ratio
model

definition, 116

expression, 118

fitting, using glmpathcr package, 120

identification, genes, 121-123

LASSO penalty, 116-117

observed and predicted class, cross-
tabulation, 120,
121

probe set, 121

M
Maximum likelihood estimation, time series
AlICc criterion, 250-251
ARMA model, 247-249
assumption, 247
Gaussian, 249-250
parameters estimation, 247
Mechanical cleaning
abrasive cleaning, 334
cabinet machines, 335
CO; dry ice blasting, 335
continuous-flow machines, 335
dry-blast cleaning, 334-335
vibration cleaning, 334
Melanoma
and DSTN (see Destrin (DSTN))
early diagnosis, 111-112
genes identification, 121-123
markers, 112
predicted class, cross-tabulation, 120, 121
regression models (see Penalized ordinal
regression models)
R programming (see R programming
environment)
and USP14 (see Ubiquitin specific
peptidase 14 (USP14))
Memory spaces, partial differential equations
axioms, 65
Banach space, 66
continuous semigroup, 65
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essential growth bound, 66
finite dimensional space, 67
Midsurface, convex quadrics
Blashke’s method, 94
Brunn’s outcomes, 93
characteristic property, 93
and concave functions, 97-98
conjugate diameters, 93
convex solid, 94-95, 98—100
description, 80
ellipsoid, 95-96
joint characterization, 100
line-free convex solid, 96-97
parallel chords, 94
polyhedral hypersurface, 100-101
quadric curve, 93
three-dimensional subspace, 97
Mixture distribution, time series
density, 275
error components, 251
estimates, 242
forecasting based, 266
Gaussians noise (see Gaussian distribution)
prediction, 242, 251
residual densities, 251
white noises, 253
Mixture proportions
Gaussian noise and EM Algorithm,
254-259
parameter estimation, 253
white noises, 260-263
Model building, time series data
ARMA, 244
block bootstrap, 267
breaks, 243, 244
confidence interval and sample properties,
263-267
density function, 245
forecasting, 251-253
maximum likelihood method, 247-251
mixture proportions (see Mixture
proportions)
parameter estimation, 245-247
regression coefficients, 244
regular, 243-244
semi-parametric methods, 245
structural changes, 243
Multigenic classifier, 112. See also R
programming environment
Multiple equilibria
diagonal matrix, 219
generality, 218
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gradient systems and planar systems, 216

Jacobian loops, 219

linear equations, 217

linear transformation, 219

n-dimensional mean value theorem, 216

nontrivial solution, 218

nonzero determinant, 217

partial order, 217

simple Jacobian loops, 218
Multistationarity, 207, 223-225, 228-230, 235,

237

N
Navier—Stokes equations
fluid motion, 357
interfacial conditions, 373
linearized, 361
pressure, 359
three-dimensional, 358
viscous incompressible, 359
N-back training
cognitive mechanism, 27
prefrontal and parietal brain regions, 29
Neural mechanisms, WM
brain activation, 29
DTI, 29
n-back training, 29
Niche construction, 161-162
Noncircular conics
construction, (Z, 0) circle system, 317-319
parallelism property, 315-316
ternary operation, 320-322
Nondestructive testing (NDT)
for developer, 336
inspection, 336
liquid penetrant methods, 336
magnetic penetrant testing, 336-337
microscope method, 336
for penetrant, 336
pre and post cleaning, 336
radiographic testing (RT) methods, 337
Nonlinear asymptotic analysis
boundary layers, 373
calculations, 373, 374
growth rate, 373-374
inviscid expansion, 374-375
Navier—Stokes equations, 373
upper fluid, 373
Van Dyke matching principle, 373
velocities and pressure, 373
viscous effects, stokes waves, 372
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(0]
One-dimensional mapping, ETDAS
bifurcation, 6
discrete logistic mapping, 7
feedback gain, 6
linear stability analysis, 7
Optimization
economy and plan, 339
effective approach, 341
ETDAS, 15
first generation, 351-353
hybrid GA simulation, 344-345
molecular mechanics, 139
objective function, 343
outputs, 352, 355
parameters, 347, 350
redistribution cost, 340
second generation, population, 352, 355
segments, 350, 351
Ordinal regression. See also Penalized ordinal
regression models
backward formulation, logit, 118
conditional probability, 119
elastic net penalty, log likelihood, 119
forward formulation, logit, 119
parameter vector, 119
Ordinary least squares (OLS) solution, 113

P

Partial functional differential equations
applied mathematics, 45
automorphic solutions, 71-73
Hille—Yosida’s theorem, 47
Lotka—Volterra equation, 74-77
population dynamics, 46
reduction, complexity (see Reduction,

complexity)
spectral decomposition, 46
variation, constants formula (see Variation,
constants formula)

Penalization method
description, 115
elastic net penalty, 117
LASSO, 116-117
ridge regression, 115-116

Penalized ordinal regression models
cross-validation (CV), tenfold, 120
DSTN and USP14, 121, 122
glmpath. cr function, 120
glmpathcr package, 120
linear regression, 113-115
logistic regression, 117-118

Index

L penalized constrained continuation ratio
model, 112, 120, 121
ordinal regression, 118-119
penalization methods, 115-117
R programming (see R programming
environment)
Penalized residual sum of squares (PRSS),
115-116
Perforin gene, LCR
bacterial artificial chromosome (BAC), 196
chromosome transfer, 195
cytotoxic effector, 195
ESC differentiation, 196
natural killer (NK), 195
T cells, 196
Plane section, convex quadrics
Cartesian coordinates, 87—88
conditions, 91-93
convex solid, 87-89
description, 88
hypersurface, 87
non-planar piece, 89
two-dimensional plane, 89-91
Pluripotent stem cells (PSCs)
differentiation, 281, 282
haploid (see Haploid cells)
ICSI/ELSI, 280
infertility, 287-289
mouse SSC conditions, germ cell markers,
281-283
PLZF expression, 283-284
separation, somatic and germ cells,
279-280
spermatids (see Spermatids)
stages, spermatogenesis, 280
stringencies, 280
VASA expression, mouse spermatogonial,
281
Weismann’s germ-plasm theory, 280
Predator-free equilibrium, 176178
Predator-induced equilibria, 175, 176, 181-183
Projection, convex quadrics
affine diameter, 106—-107
hyperplanes, 107
observation, 107-109
PRSS. See Penalized residual sum of squares
(PRSS)
Pseudo-almost periodicity
Banach space, 302-304
Bochner transform, 302-303
construction, 295-296
dominated convergence theorem, 306
existence and uniqueness, 296, 309-313
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functions, 297-298

Holder inequality, 305-306

literature, 295

objective, 296

preliminaries, 296297

quantities, 304

spaces, Lebesgue (see Lebesgue spaces)

Stepanov-like, 304-309
Pseudo-spectral technique, 369

Q

QSAR analysis. See Quantitative structure—

activity relationship (QSAR) analysis

Quadric surfaces

curve, 85

geometric properties, 81

middle points, chords, 81-82

non-degenerate, 83—84

shadow-boundary, 82-83

uniqueness, 86—87

Quantitative structure—activity relationship

(QSAR) analysis

biological activities and structural
properties, 141-142

CLogP values, 144

cytostatic agents, 145

hepatic cytochrome Pys0, 137

1C5 values, 144

linear regression equations, 141, 143

5-member-ring substitutions, 142

6-member-ring substitutions, 141,
143-144

semi-empirical molecular mechanics,
137

structures, 7-aryl-and 7-hetaryl-7-
deazaadenosines, 137-138

R

Reduction, complexity
Banach space, 52
d-column vector, 51
linear mapping, 51
memory spaces, 65-71
ordinary differential equation, 54
spectral decomposition, 50
subspace, 52

Relational orientation
family and social relationships, 154
HIV prevention intervention, 154
mutually dependent relationships, 154
positive/negative sense, girls, 153
program content and format, 155
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Remanufacturing processes
cleaning process (see Cleaning process)
cost/profit evaluation, 346-347
description, 329-330
disassembly analysis (see Disassembly
analysis)
general simulation model, 341-342
hybrid GA approach, 344-345
industrial processes, 330
material arrival process, 330-331
NDT (see Nondestructive testing (NDT))
optimization model, 343-344
parameter models, 345-346
production planning, 340-341
production processes, 330
Queuing model, 341
receiving inventory, 340
returned products, 340
simulation model (see Simulation model)
switch rule, 342-343
testing process, 331
Residual sum of squares (RSS)
and BIC values, for breakpoints, 269-271
penalized (PRSS), 115-116
simple linear regression model, 113
Restitution
APD, 8
BCL, 9
bifurcation, 9, 11, 12
DI, 8
one-dimensional mapping, 9
short-term memory, 11
Ridge regression
coefficients, 116
definition, 115
elastic net penalty, 117
PRSS, 115-116
Rossler system, 207, 223, 232, 236-237
R programming environment
Akaike Information Criteria (AIC) plot,
126, 127
Bayesian Information Criterion (BIC) plot,
127
bioconductor installation, 125
coding notation, 125-126
coefficients, estimation, 126—128
continuation ratio models model, 130
CRAN, user contributed R packages
installation, 125
cross-validation (CV) methods, 130-131
description, 124
glmpathcr package, 126
non-zero coefficient, estimation, 129-130
RSS. See Residual sum of squares (RSS)
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S
Saddle-focus loop interpretation, 230-232
Separatrix bifurcations, 165-168
Shadow-boundary, convex quadrics
condition, convex solid, 104, 105
convex cone, 104-105
description, 80, 101
determination, 101
line-to-hyperplane, 105
one-dimensional subspace, 102-104
solid ellipsoid, 101-102
symmertic, 106
Sign equivalence, 224, 225, 227-229
Simulation model
FFDs, 352
first generation, 351-353
initial population, 351
manufacturing cell analysis, 347-349
outputs, generation, 352, 355
parameters, 347, 350
pseudo code, 343
remanufacturing system, 341, 342
reverse manufacturing system, 347, 350
second generation, population, 352, 355
segments, 350, 351
“Sisters of Nia” sessions, 152
Spermatids
‘artificial sperm’, 280
genomic imprints, haploid, 287
haploid cells, isolation, 285-286
round, 285-286
Spermatogenesis
foundation, 288
genomic imprints, human, 287
germ cell markers, 281
in vitro, 280, 281, 288
in vivo, 283, 285, 288, 289
recapitulate, 288
restore, 288
SCO patients, 289
stages, idiopathic male infertility, 280
Spermatogonial stem cells (SSCs)
germ cell markers, human PSCs,
281-283
haploid cells generation, 284-285
PLZF expression, mouse, 283-284
spermatids, 285-286
VASA expression, 281
SSCs. See Spermatogonial stem cells
(SSCs)
Stokes waves
inviscid fluids, 370
permanent form, 371
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perturbation series analysis, 359
simulation results, 376
viscous effects, 371, 372, 376

Subalgebras, circular system, 323, 324, 327

T cells

bone marrow, 194

cell culture model, 197
chromatin, 196

Dadl genes, 196, 197

DNase I hypersensitive, 196, 197
ESC, 194, 195, 197-198
hematopoiesis, 194, 195
OP9-DLI1 cells, 194

Three-dimensional (3D) system

characteristic polynomial, 230

Lorenz system, 232-236

Rossler system, 236-237

saddle-focus loop interpretation, 230-232

Time series data

ARMA model with Gaussian noise,
268-274

BIC, 242

block bootstrapping, 242, 274-275

BPBF, 242

breakpoints partition, 274

EM algorithm, 242, 276

forecasting partitioned data, 275-276

mixture distribution, 242

model building (see Model building, time
series data)

non-linear dynamical probability, 274

regression coefficients, 242

RSS, 242

stochastic processes, 242

Topological polar surface area (TPSA), 140,

141

Transfer, WM

brain training, 22-27

cognitive and neural mechanisms, 27
interventions, 20

physical domain, 21

scholastic achievement, 33

sleeper effects, 33

training task, 21

Transgenic mice, LCR

erythroid cell lines, 193
fibroblasts, 193
pB-globin LCR, 193
heterochromatin, 192

T cell development, 194
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Two-component oscillators, 227-228
Two-dimensional (2D) model, electrochemical
corrosion, 229-230

U

Ubiquitin specific peptidase 14 (USP14)
description, 121
and DSTN, 121
expression, logy, 121, 123

\%
Variation, constants formula
continuous function, 47
Hille-Yosida condition, 47
infinite delay (see Infinite delay, partial
differential equations)
linear operator, 48
Viscous interfacial motion
analytical solution procedure, 375
basic formulation, 359-360
BDE, 369
computational methods, 371
design, numerical method, 367
difficulties, 357-358
FFT, 369
FSI computation, 376
incompressible fluids, 357, 359
inviscid and numerical solution, 371-372
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linear analysis, 360-367

mapping linear and nonlinear terms, 369

nonlinear asymptotics, 372-375

second-order accuracy, 375-376

stokes waves, 359, 370-371, 376

transformed derivatives and operators,
368-369

VOF formulation, 358

vorticity contours, air and water, 370

w
‘White noises
caveat, 263
description, 260
Gaussian mixture, 253
identifiability, 260
maximum likelihood method, 260
uniform distribution, 260-263
Working memory (WM)
ADHD, 20
brain plasticity, 20
cognitive mechanisms, 27-28
distribution, training, 31
motivation, 31
neural mechanisms, 28-29
strategy training, 30
targeted interventions, 33
task engagement, 30
transfer (see Transfer, WM)
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