
Synthesis of Persistent Systems

Eike Best1,� and Raymond Devillers2

1 Department of Computing Science,
Carl von Ossietzky Universität Oldenburg, Germany

eike.best@informatik.uni-oldenburg.de
2 Département d’Informatique, Université Libre de Bruxelles, Belgium

rdevil@ulb.ac.be

Abstract. This paper presents efficient, specialised synthesis and reengi-
neering algorithms for the case that a transition system is finite, persistent
and reversible. It also shows bymeans of a complex example that structural
properties of the synthesised Petri nets may not necessarily be entailed.

Keywords: Cyclic Behaviour, Persistency, Labelled Transition Systems,
Parikh Vectors, Petri Nets, Region Theory, System Synthesis, Reengi-
neering.

1 Introduction

In the realm of (asynchronous) hardware, persistency [14] is a significant, desir-
able property, as it is related to the absence of hazards [12,18,19], as well as to
arbiter-free synchronisation [13]. Persistency means that an enabled transition
can never become disabled through occurrences of other transitions.

In this paper, we focus our attention on a class of persistent labelled transition
systems (lts) generated by Petri nets. A relatively weak structural restriction for
a Petri net to have a persistent reachability graph is that its places have at most
one outgoing transition. Such Petri nets will be called ON in this paper, for
“(place-)output-nonbranching”.

We investigate conditions under which, conversely, a given persistent lts is
isomorphic to the reachability graph of an unknown ON Petri net. Moreover, we
define an algorithm that creates such a net in case it is theoretically possible.
Eventually, such an algorithm could be useful in the automatic generation of
asynchronous hardware from persistent specifications.

These results can be seen as a variant of the Petri net synthesis problem
addressed by region theory [1,3]. Since one of the conditions we use is that the
given lts is already generated by some Petri net, our results can also be seen as
a variant of the reengineering problem, asking whether a given Petri net can be
transformed – under invariance of its reachability graph – into an ON Petri net.

The paper is structured as follows. Labelled transition systems, Petri nets,
and regions are briefly introduced in section 2. Section 3 delineates the class of

� The first author gratefully acknowledges the support of Université d’Évry-Val-
d’Essonne and Université Paris-Est Créteil-Val-de-Marne.

G. Ciardo and E. Kindler (Eds.): PETRI NETS 2014, LNCS 8489, pp. 111–129, 2014.
c© Springer International Publishing Switzerland 2014

112 E. Best and R. Devillers

lts we shall study and lists several auxiliary results about this class. Sections 4
and 5 contain the main results: a dedicated test which allows to check the ON
implementability of a persistent lts specification; an efficient algorithm producing
a generating ON Petri net if one exists; and examples demonstrating the necessity
and (non-)sufficiency of various conditions. Section 6 concludes.

2 Labelled Transition Systems, Petri Nets, and Regions

Definition 1. lts, reachability, Parikh vectors, cycles, equivalences
An lts (labelled transition system with initial state) is a tuple (S,→, T, s0),

where S is a set of states; T is a set of labels with S ∩ T = ∅; →⊆ (S × T × S)
is the transition relation; and s0 ∈ S is an initial state. A label t is enabled in
a state s, denoted by s[t〉, if there is some state s′ such that (s, t, s′) ∈→. We
also use the notation s[t〉s′, meaning that s′ is reachable from s through the ex-
ecution of t, instead of (s, t, s′) ∈→. We denote by s• = {t ∈ T | s[t〉} the set of
labels enabled at s, and by •s = {t ∈ T | s′[t〉s for some s′ ∈ S} the set of labels
leading to s. The definitions of enabledness and of the reachability relation are
extended to label sequences (or directed paths) σ ∈ T ∗:
s[ε〉 and s[ε〉s are always true;
s[σt〉 (s[σt〉s′) iff there is some s′′ with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively).

A state s′ is reachable from state s if there exists a label sequence σ such that
s[σ〉s′. By [s〉, we denote the set of states reachable from s. For a finite sequence
σ ∈ T ∗ of labels, the Parikh vector Ψ(σ) is a T -vector (i.e., a vector of natural
numbers with index set T), where Ψ(σ)(t) denotes the number of occurrences
of t in σ. s[σ〉s′ is called a cycle (at state s) if s = s′. The cycle is nontrivial if
σ �= ε. A nontrivial cycle s[σ〉s around a reachable state s ∈ [s0〉 is called small
if there is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ).

Two lts (S1,→1, T, s01) and (S2,→2, T, s02) over the same set of labels will
be called language-equivalent if their initially enabled sequences coincide, i.e., if
∀σ ∈ T ∗ : s01[σ〉 ⇐⇒ s02[σ〉, and isomorphic if there is a bijection ζ : S1 → S2

with ζ(s01) = s02 and (s, t, s′) ∈→1 ⇐⇒ (ζ(s), t, ζ(s′)) ∈→2, for all s, s
′ ∈ S1.

1

Definition 2. Basic properties of lts
A labelled transition system (S,→, T, s0) is called finite if S and T (hence

also→) are finite sets; deterministic if for any reachable state s and label a, s[a〉s′
and s[a〉s′′ imply s′ = s′′; totally reachable if S = [s0〉 and ∀t ∈ T∃s ∈ [s0〉 : s[t〉;
reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉; persistent if for all reachable states s and labels
t, u, if s[t〉 and s[u〉 with t �= u, then there is some state r ∈ S such that both
s[tu〉r and s[ut〉r. 2

Definition 3. Petri nets, markings, reachability graphs
A (finite, initially marked, place-transition, arc-weigthed) Petri net is a tuple

(P, T, F,M0) such that P is a finite set of places, T is a finite set of transitions,
with P ∩ T = ∅, F is a flow function F : ((P × T) ∪ (T × P)) → N, M0 is

Synthesis of Persistent Systems 113

the initial marking, where a marking is a mapping M : P → N, indicating the
number of tokens in each place. A transition t ∈ T is enabled by a marking
M , denoted by M [t〉, if for all places p ∈ P , M(p) ≥ F (p, t). If t is enabled
at M , then t can occur (or fire) in M , leading to the marking M ′ defined by
M ′(p) = M(p) − F (p, t) + F (t, p) (notation: M [t〉M ′, and [M0〉 again denotes
the set of reachable markings). The reachability graph of N , with initial marking
M0, is the labelled transition system with the set of vertices [M0〉 and set of
arcs {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If an lts TS is isomorphic to the
reachability graph of a Petri net N , then we will say that N solves TS. 3

Definition 4. Basic properties of Petri nets
For a place p of a Petri netN = (P, T, F,M0), let

•p = {t ∈ T | F (t, p) > 0} its
pre-places, and p• = {t ∈ T | F (p, t) > 0} its post-places.N is called connected if
it is weakly connected as a graph; plain if cod(F) ⊆ {0, 1}; pure or side-condition
free if p• ∩ •p = ∅ for all places p ∈ P ; ON if |p•| ≤ 1 for all places p ∈ P ; a
marked graph if it is plain and |p•| ≤ 1 and |•p| ≤ 1 for all places p ∈ P .

N is called weakly live if ∀t ∈ T∃M ∈ [M0〉 : M [t〉 (i.e., there are no unfireable
transitions); k-bounded, for some k ∈ N, if ∀M ∈ [M0〉∀p ∈ P : M(p) ≤ k (i.e.,
the number of tokens on any place never exceeds k); bounded if it is k-bounded
for some k; persistent (reversible) if so is its reachability graph. 4

The class of ON nets has also been called CF (for Choice-Free nets) in [16],
but to avoid an easy confusion with free-choice nets [10] or conflict-free nets [14],
we shall here stick to the above terminology.

In the remainder of this paper, attention will be restricted to bounded and
weakly live Petri nets. It is easy to see that the reachability graphs of such nets
are finite (by boundedness), deterministic (coming from a Petri net), and totally
reachable (by weak liveness).

The synthesis problem consists of finding a Petri net solving a given lts in the
sense of Definition 3. In order to study conditions for such solutions to exist,
regions have been introduced as follows.

Definition 5. Regions of lts
Let TS = (S,→, T, s0) be an lts. A triple

ρ = (R,B,F) ∈ (S → N, T → N, T → N)

is a region of TS if, for all s[t〉s′ with s ∈ [s0〉, R(s) ≥ B(t) and R(s′) =
R(s)− B(t) + F(t). 5

A region mimicks, at the level of an lts, the properties of a Petri net place p.
More precisely, R(s) mimicks the marking of p in state s, B(t) the weight of the
arc from p to t, and F(t) weight of the arc from t to p (B stands for “backward”,
F for “forward”, as seen from transitions). For instance, suppose that TS is the
reachability graph of a Petri net N = (P, T, F,M0), and let p ∈ P . For any
M ∈ [M0〉, define Rp(M) = M(p), and for any t ∈ T , define Bp(t) = F (p, t) and

114 E. Best and R. Devillers

Fp(t) = F (t, p). Then (Rp,Bp,Fp) is a region of TS. The region properties in
Definition 5 correspond to the notions of enabling and firing in Definition 3.

An lts TS = (S,→, T, s0) satisfies SSP (state separation property) iff

∀s, s′ ∈ [s0〉 : s �= s′ ⇒ ∃ region ρ = (R,B,F) with R(s) �= R(s′)

meaning that it is possible to distinguish the various states in terms of markings.
TS satisfies ESSP (event/state separation property) iff

∀s ∈ [s0〉 ∀t ∈ T : (¬s[t〉) ⇒ ∃ region ρ = (R,B,F) with R(s) < B(t)

meaning that it is possible to exclude forbidden transitions through a marking.

Theorem 1. Basic region theorem for place/transition nets
A (finite, deterministic, totally reachable) lts TS is isomorphic to the reacha-

bility graph of a (possibly non-plain, or non-pure) Petri net iff TS satisfies SSP
and ESSP. 1

In the proof of this result (e.g. [1,3]), it turns out that ESSP without SSP
allows to build a Petri net with the same language as the given lts, but not
necessarily satisfying the requested isomorphism.

3 Some Classes of Labelled Transition Systems

In section 3.1, the class of lts considered in this paper is motivated and intro-
duced. In section 3.2, some basic properties of this class of lts are documented.

3.1 Persistency, Uniform Small Cycles, and the ON Property

Let TS = (S,→, T, s0) be some lts. Let Υ : T → N \ {0} be a fixed vector with
no zero entries. The principal properties we study are the following ones.

rg TS is the reachability graph of some bounded Petri net.
r TS is reversible.
p TS is persistent.
PΥ All small cycles of TS have Parikh vector Υ .

Special cases of PΥ are P1 (Υ is the all-ones vector), P2 (Υ is the all-twos
vector), and so on. For instance, Figure 1 shows an lts satisfying all properties
rg to P1. Two solutions of this lts are depicted: a plain non-ON one (in the
middle of the figure), and a non-plain ON one (on the right-hand side). Figure 2
shows an lts satisfying rg to P2. This lts has a solution, as shown in the figure,
but no ON solution, as will be proved later.

The interest of property PΥ arises from results in [4]. These results show that
if an lts satisfies rg, r and p, then it may essentially be expressed as a direct
product of label-disjoint lts, each of which satisfies PΥ , for some vector Υ . It is

Synthesis of Persistent Systems 115

M0

M2

M

M1

a
b

b a

c

a

b

d

d

d

a b

c

d

a

b

c d

p

2

Fig. 1. An lts satisfying rg, r, p, and P1, with two different solutions

M0

1

2
3

4

5

a

a

bb

c

c

c a

b

2

2 2

Fig. 2. An lts satisfying rg, r, p, and P2, but having no ON Petri net solution. A
non-pure, non-plain, and non-ON solution is shown on the right-hand side.

also shown in the same paper that there is a small cycle around each state, and
that the Parikh vector of each cycle is a linear combination of the Υ .

If some transition t is the only outgoing transition of a place p, then no other
transition can reduce the number of tokens on p. Thus, ON Petri nets are a
subclass of persistent Petri nets, and the results of [4] can be specialised as
follows:

Theorem 2. Properties of ON Petri nets
The reachability graph TS of a connected, bounded, weakly live, reversible, ON

Petri net N is finite and satisfies rg, r, p, and PΥ , for some Υ .

Proof: All claims but PΥ are obvious.
If a place p is isolated (i.e., p• = ∅ = •p), then since the net is connected, the

transition set is empty, and PΥ is vacuously true.
If p is not isolated, it must have both input and output transitions, because

the net is weakly live and reversible. Since the net is ON, p has a unique output
transition; let it be t. From results in [4], t belongs to some small cycle; let T ′

be the unique set of labels occurring in this cycle. If p has an input transition t′

not in T ′, p is not bounded, since there is a (small) cycle containing t′ but not
t; it is possible to reach it; and following indefinitely that cycle will indefinitely
increase the marking of p. Hence, since the net is connected, T ′ = T , and PΥ is
satisfied with Υ being the Parikh vector of any small cycle. 2

116 E. Best and R. Devillers

This result suggests a close relationship between persistent lts and ON Petri
nets, motivating the following (in a sense, converse) question which was raised
in [5]:

If an lts satisfies persistency and a set of other strong properties, viz. rg
and r and PΥ , does there always exist an ON Petri net generating it?

Figure 2 shows that the answer is negative for general PΥ . However, it was not
known until more recently that the answer is still negative if PΥ is strengthened
to P1, and further conditions are imposed.

The theory developed in section 4 will lead to an efficient algorithm allowing
to synthesise (and reengineer, if possible) labelled transition systems satisfying
rg, r, p, and PΥ , such as the one shown in Figure 1. The same theory also leads
to a method for proving that examples such as the one shown in Figure 2, as
well as a more complicated one we will exhibit later, do not have ON solutions.

3.2 Some Properties of lts Satisfying rg, r, p, and PΥ

Let TS = (S,→, T, s0) be an lts satisfying properties rg, r, p, and PΥ .
First, we briefly recapitulate Keller’s theorem [11]. For sequences σ, τ ∈ T ∗,

τ−• σ denotes the residue of τ with respect to σ, i.e., the sequence left after
cancelling successively in τ the leftmost occurrences of all symbols from σ, read
from left to right. Formally and inductively: for t ∈ T , τ−• t = τ if Ψ(τ)(t) = 0;
τ−• t = τ1τ2 if τ = τ1tτ2 and Ψ(τ1)(t) = 0; τ−• ε = τ ; and τ−• (tσ) = (τ−• t)−• σ.
Theorem 3. Keller’s theorem

If s[τ〉 and s[σ〉 for some s ∈ [s0〉, then s[τ(σ−• τ)〉s′ and s[σ(τ−• σ)〉s′′ as well
as Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and s′ = s′′. 3

Definition 6. Short paths, and distances
Let r, s be two states of TS. A path r[τ〉s will be called short if |τ | ≤ |τ ′| for

every path r[τ ′〉s, where |τ | denotes the length of τ . We shall denote by Δr,s the
Parikh vector of some short path from r to s, and call it the distance between r
and s. 6

According to Lemma 2 below, the definition of Δr,s does not depend on the
choice of the short path from r to s. For a label t, the number Δr,s(t) thus simply
indicates how often t occurs on any short path from r to s.

Lemma 1. Characterisation of short paths
Suppose that s[τ〉s′. Then s[τ〉s′ is short iff ¬(Υ ≤ Ψ(τ)).

Proof: (⇒): By contraposition. Suppose that s[τ〉s′ and that Υ ≤ Ψ(τ). By
results in [4], there is some cycle s[κ〉s with Ψ(κ) = Υ . By Keller’s theorem,
s[τ〉s′[κ−• τ〉s′′ and s[κ〉s[τ−• κ〉s′′. But Ψ(κ) = Υ ≤ Ψ(τ) implies κ−• τ = ε.
Therefore, s′ = s′′ and s[τ−• κ〉s′. Since κ contains every transition at least once
and Υ ≤ Ψ(τ), |τ−• κ| < |τ |. Hence s[τ〉s′ is not short.

Synthesis of Persistent Systems 117

(⇐): Suppose that s[τ〉s′ and ¬(Υ ≤ Ψ(τ)). Consider any other path s[τ ′〉s′;
we show |τ | ≤ |τ ′|. By reversibility, there is some path ρ from s′ to s. Both
s′[ρτ〉s′ and s′[ρτ ′〉s′ are cycles at s′. By results from [4], they can be permuted
into sequences of small cycles. Therefore, Ψ(ρτ) = �·Υ and Ψ(ρτ ′) = �′·Υ . If
� > �′, then Ψ(τ) ≥ Ψ(τ)−Ψ(τ ′) = Ψ(ρτ)−Ψ(ρτ ′) = (�−�′)·Υ ≥ Υ , contradicting
¬(Υ ≤ Ψ(τ)). Hence � ≤ �′ and Ψ(τ) ≤ Ψ(τ ′) and |τ | ≤ |τ ′|. 1

Lemma 2. Uniqueness of short Parikh vectors
Suppose that s[τ〉s′ and s[τ ′〉s′ are both short. Then Ψ(τ) = Ψ(τ ′).

Proof: By Lemma 1(⇒), both ¬(Υ ≤ Ψ(τ)) and ¬(Υ ≤ Ψ(τ ′)). As in the proof
of Lemma 1(⇐), Ψ(τ) ≤ Ψ(τ ′) and Ψ(τ ′) ≤ Ψ(τ), hence Ψ(τ) = Ψ(τ ′). 2

Lemma 3. Characterisation of Parikh vectors of paths
Suppose that s[τ〉s′. Then Ψ(τ) = Ψ(τ ′) + m·Υ , with some number m ∈ N,

where s[τ ′〉s′ is any short path from s to s′.

Proof: Assume that s[τ〉s′. Let m be the maximal number in N such that
Ψ(m·Υ) ≤ Ψ(τ). Let s[κ〉s be some cycle with Ψ(κ) = Υ . Then also s[κm〉s,
with Ψ(κm) = m·Υ . By Keller’s theorem, s[κm〉s[τ ′〉s′, with τ ′ = τ−• κm. By the
maximality of m, s[τ ′〉s′ is short, and by Ψ(κm) ≤ Ψ(τ), Ψ(τ) can be written as
Ψ(τ) = Ψ(τ ′) + Ψ(κm). By Lemma 2, the choice of τ ′ is arbitrary. 3

Lemma 4. Existence of short paths
Suppose that s, s′ are states. There is a short path from s to s′.

Proof: By reversibility, s[τ〉s′ for some τ . Just take the path s[τ ′〉s′ from the
proof of Lemma 3. 4

Lemma 5. A repeat lemma for plain nets
Assume that the Petri net N generating TS by rg is plain, and that b does

not occur in τ . If s[ττ ′b〉 and Ψ(τ) = Ψ(τ ′), then also s[τbτ ′〉.
Proof: Suppose s[τ〉s′[τ ′〉s′′[b〉s′′′ and assume that b is not enabled in state s′.
By plainness, this implies that in N , there is some pre-place p of b which has
zero tokens in s′. The total effect of τ ′ on p is to create at least one token on p,
because b is enabled at s′′. But since Ψ(τ) = Ψ(τ ′), the total effect of τ is the
same as that of τ ′, which implies that at state s′, place p has at least one token.
Hence the assumption was wrong, and instead, b is enabled in s′. By persistency,
since b does not occur in τ ′, also s′[bτ ′〉, and hence s[τbτ ′〉, as claimed. 5

4 Solving an lts, Using rg, r, p, and PΥ

Throughout this section, we continue to assume that some given, finite lts
TS = (S,→, T, s0) satisfies all properties rg, r, p, and PΥ . Our aim will be
to derive conditions under which an ON Petri net solution exists for TS. In sec-
tion 4.1, we will identify important subsets of states. Using these sets, section 4.2

118 E. Best and R. Devillers

presents an algorithm which is able to produce an ON Petri net from TS, under
certain conditions specifying exactly when this is possible. Section 4.3 contains
the correctness proof of this algorithm. Finally, section 4.4 discusses how it may
be checked that no ON Petri net can be constructed for TS.

The lts shown in Figures 1 and 2 will serve as motivating and as running
examples. Note that both of them satisfy all required properties (one withP1, the
other with P2), but for the first one, an ON solution exists while for the second
one, no ON solution exists (although we still did not prove this). Henceforth,
examples of the first type will be called positive while examples of the second
kind will be called negative.

4.1 Sequentialising States

In Figure 1, stateM does not enable b, but all of its successor states do, no matter
whether they are reached by a or by d. We might say that state M sequentialises
the set of labels {a, d} with regard to b. The ON solution shown on the right-hand
side of Figure 1 contains a place, called p, with ingoing transitions a, d (each with
weight 1) and a single outgoing transition b (with weight 2). We might interpret
this place as realising the sequentialisation of {a, d} with regard to b.

The basic idea, to be developed in the following, is to generalise this obser-
vation: If all sequentialising states are enumerated and adequate corresponding
places are introduced, does there result an ON net solving the original lts? In sec-
tion 4.2, it will be shown that, upon closer inspection of this idea, the following
definition plays a crucial role.

Definition 7. Unique input states and sequentialisation states
For any label x ∈ T , we shall denote by

NUI (x) = {s ∈ S | ¬s[x〉 ∧ •s = {x}}
Seq(x) = {s ∈ S | ¬s[x〉 ∧ ∀t ∈ s• : s[tx〉}

the set of states with unique input x not enabling x, and the set of states from
which x is sequentialised, respectively. 7

Example: In Figure 1, NUI (b) = {M1,M2} and Seq(b) = {M}.
In Figure 2, NUI (a) = {2} and Seq(a) = {5}. End of example

4.2 Checking ON-solvability

Assuming that T = {x, a1, a2, . . . , am} is the set of labels of TS, we now wish
to determine under which conditions a pure place p with outgoing transition x
and incoming transitions a1, a2, . . . , am can serve as a part of an ON Petri net
solving TS. The general form of such a place is shown in Figure 3. For generality
reasons, it is assumed that all transitions aj but the outgoing one, x, are inputs
of such a place, even if some of the weights kj can possibly turn out to be zero.

Synthesis of Persistent Systems 119

• · · · •
p

x

a1

a2

...

am

k

k1

k2

km

Fig. 3. A general pure ON place p

The parameters to be determined are the arc weights k1, k2, . . . , km, k, all ≥ 0,
and the initial marking M0(p) corresponding to the initial state s0 of TS.

First, we may observe that we do not change the dynamics of the place if we
multiply all the weights by some integer n > 0 and the initial marking by the
same factor; we may even replace the initial marking by any value n ·M0(p) + �
provided 0 ≤ � < n. Conversely, if all the weights have a common factor n > 0,
the dynamics of the place is not modified if we divide the weights by n and
replace the initial marking by M0(p)÷ n. Hence, we may always assume

gcd{k, k1, k2, . . . , km} = 1 (1)

Next, since all cycles have a Parikh vector multiple of Υ , we must have

∑

1≤j≤m

kj · Υ (aj) = k · Υ (x) (2)

Example: The lts in Figure 1 satisfies P1. For place p, (2) becomes: sum of the
weights of p’s incoming arcs = weight of p’s outgoing arc = 2. A similar equality
is true for all other places in Figure 1. End of example

Now, let us determine the constraints the initial marking of this place must
satisfy. Since it is necessary that each path allowed by the lts is also allowed by
the place, the initial marking must be large enough. By the shape of the place
shown in Figure 3 and by the firing rule, the marking of place p at an arbitrary
state r is Mr(p) = M0(p) +

∑
j kj ·Δs0,r(aj)− k·Δs0,r(x). This sum must always

be nonnegative, that is, we must have

∀r ∈ S : M0(p) ≥ k ·Δs0,r(x) −
∑

1≤j≤m

kj ·Δs0,r(aj) (3)

In addition, since there is no side-condition around p, if these inequalities are
satisfied for all states r, no path of the lts will be prevented by place p.

Another way to interpret the constraints (2) and (3) is to see that these
are exactly the conditions to be satisfied such that the triple (R,B,F) where
R(r) = M0(p) +

∑
j kj ·Δs0,r(aj) − k·Δs0,r(x), B(x) = k (0 otherwise), and

F(aj) = kj (for j = 1, ...,m; 0 otherwise) is a region in the sense of Definition 5.
The constraints (3) yield |S| inequalities, but they are not all useful. If r[x〉r′,

the constraint for r′ entails the one for r since Mr′(p) = Mr(p) − k < Mr(p).

120 E. Best and R. Devillers

Similarly, if r[aj〉r′, the constraint for r entails the one for r′ since Mr′(p) =
Mr(p) + kj ≥ Mr(p). As a consequence, the only interesting states for inequal-
ities (3) are the states r ∈ NUI(x), since the other ones correspond to higher
markings, so that the positivity of the marking (or region) is ensured for the
latter if it is for the states in NUI (x).

The values for the initial marking which satisfy inequalities (3) are upward
closed, and for any choice of the weights satisfying the equations (2) and (1), it is
always possible to choose M0(p) = maxr∈NUI(x)(k ·Δs0,r(x)−

∑
j kj ·Δs0,r(aj)).

This is the least possible value for M0(p) and, in that case, for at least one of the
states r ∈ NUI(x), the marking Mr(p) is 0 (otherwise a lower value for M0(p)
could have been chosen).

Example: For the lts in Figure 1, maxr∈{M1,M2}(2 · ΔM0,r(b) − (ΔM0,r(a) +
ΔM0,r(d))) = 2, the number of tokens initially on place p. End of example

Next, let s be any state of the lts which does not enable x. In a pure ON
solution of TS, and corresponding to ESSP, there must be at least one place ps
of the kind shown in Figure 3 that forbids this transition. Hence we must have:

M0(ps) < k · (Δs0,s(x) + 1) −
∑

1≤j≤m

kj ·Δs0,s(ai) (4)

because otherwise, due to the “+1”, the marking Ms(ps) does not prevent x
from occurring at state s. Note that we do not forbid that ps = ps′ , if both
s and s′ exclude an x-move and the same place works for both. It could even
happen that a single place works for all the exclusions of x.

Again, some of those constraints (hence some places) entail other ones. For
instance, if s[aj〉s′, while ¬s[x〉 and ¬s′[x〉, the place ps′ also does the job for s,
since its marking at state s is not higher than at state s′, so that ps′ excludes
x from s if it does so from s′. As a consequence, we only have to consider the
inequalities (4) for states s ∈ Seq(x). For this reason, in view of (4), only the
sequentialisation states for x are interesting.

The constraints (3) and (4) both concern the initial marking, but it is possi-
ble to express them without it, since the system (3) yields the minimal initial
marking. One has to find, for each transition x and each state s ∈ Seq(x), arc
weights such that

∀r ∈ NUI (x) : k·Δs0,r(x)−
∑

j

kj ·Δs0,r(aj) < k·(Δs0,s(x)+1)−
∑

j

kj ·Δs0,s(aj)

or equivalently

∀r ∈ NUI (x) : 0 < k · (Δr,s(x) + 1)−
∑

j

kj ·Δr,s(aj) (5)

since, using Lemma 3, Δr,s = Δs0,s − Δs0,r + m · Υ for some integer m, and
the coefficients satisfy equation (2). With the aid of equation (2), we may even
eliminate k from these inequalities. As a result, for each state s ∈ Seq(x) we
obtain the system of inequations

∀r ∈ NUI(x) : 0 <
∑

1≤j≤m kj · (Υ (aj) · (1 +Δr,s(x)) − Υ (x) ·Δr,s(aj)) (6)

Synthesis of Persistent Systems 121

The reasoning above shows that, if the considered lts is solvable by a pure ON
net, then for each label x ∈ T and each state s ∈ Seq(x) the system of inequations
(6) is solvable in the N domain. A converse is also true. Assume that, for each
label x ∈ T and each state s ∈ Seq(x), the system of inequations (6) is solvable.
So, we get nonnegative integer values for all the weights kj . It may still happen
that they do not lead to an integer value for k satisfying equation (2). But since
the inequations are homogeneous, any non-null set of integers proportional to a
solution is also a solution (while there may be other, non-proportional, solutions
as well). Hence it is always possible to choose a solution which may be extended
with an integer k such that equation (2), as well as (1), is satisfied, and choose

the initial marking maxr∈NUI(x){
∑

1≤j≤m kj · (Υ (aj)
Υ (x) ·Δs0,r(x)−Δs0,r(aj))}.

Then, from (6) and (2), the constraints (3) and (4) are satisfied, and a pure
ON place with integer weights on all of its adjacent arcs may be constructed.

First example: Consider label x = b and state s = M in the lts depicted in
Figure 1. For states r = M1 ∈ NUI (b) and r = M2 ∈ NUI (b), inequations (6)
respectively reduce to 0 < ka and 0 < kd after setting the Υ terms to 1 and
evaluating the Δ terms on the lts. This system is simultaneously solvable by
ka = 1, kc = 0 and kd = 1, describing the interface at place p with regard to its
incoming transitions. Using (2), the weight k of the arc from p to its outgoing
transition b can then be set to k = ka + kd = 2. Observe that apart from the
minimal solution given in this instance, there are plenty of other solutions arising,
for instance, by uniform multiplication by a constant number. All of them serve
the same purpose, and redundant ones can be omitted. End of first example

It can be verified that the system (6) of inequations can always be solved for
this example, not just for x = b and s = M . Moreover, the ON solution shown
on the right-hand side of Figure 1 can be obtained by assembling places yielded
by such solutions. In the next section, it will be shown that this is a general
property of the construction defined in the present section.

Second example: Consider label x = a and state s = 5 in the lts depicted in
Figure 2. For the only state r = 2 ∈ NUI (a), inequations (6) become 0 < kb·(−2),
which is not solvable in the N domain. End of second example

This second example illustrates the opposite case. As we have just seen, there
exists some label x and some state s ∈ Seq(x) such that (6) is unsolvable. In the
next section, it will be shown that this entails, in general, that no ON Petri net
solving the given lts exists.

Note: The constructions also work in case |T | = |{x}| = 1 (then Seq(x) = ∅,
and a single, isolated transition x is created) as well as in case T = ∅ (then an
empty net with empty initial marking is created). End of note

Figure 4 summarises the resulting algorithm.

4.3 Correctness and Optimisations

In this section, the shorthand “(6) is solvable” means that for all pairs x ∈ T
and s ∈ Seq(x), the system of inequations (6) is solvable in N.

Theorem 4. Language equivalence

122 E. Best and R. Devillers

input an lts TS = (S,→, T, s0) and a T -vector Υ ≥ 1 satisfying rg, r, p, PΥ ;
initially T is the set of transitions, and P := ∅;
for every x ∈ T and s ∈ Seq(x) do
construct the system (6) for x and s, as well as equations (1) and (2) for x;
if ¬ ∃ k1, . . . , km ∈ N solving (6) then
{output “TS not ON-solvable, due to x, s and system (6)”; stop};

choose a set of integers (k1, . . . , km, k) satisfying (6), (1) and (2);
add to P a place as in Fig. 3, with weights k1, . . . , km, k and initial marking

maxr∈NUI(x){
∑

1≤j≤m kj · (Υ (aj)

Υ (x)
·Δs0,r(x)−Δs0,r(aj))}

end for; output “The net with transitions T and places P ON-solves TS”.

Fig. 4. An algorithm checking ON-solvability and constructing an adequate solution

A finite lts TS satisfying properties rg, r, p and PΥ has the same language
as some pure ON net if and only if (6) is solvable.

Proof
(⇐): Suppose that (6) can be solved. Then the construction exhibited in the

previous section yields a pure ON Petri net N , whose set of places correspond
to regions satisfying ESSP. As noted after Theorem 1, ESSP entails language-
equivalence between TS and N .

(⇒): Suppose that (6) cannot be solved, for some x ∈ T and s ∈ Seq(x). It
was shown in the previous section that it is impossible to separate x at s by any
pure ON place. Thus there is no pure ON net with the same language as TS
(nor solving TS). 4

It is possible to strengthen language-equivalence to isomorphism, as follows.

Theorem 5. Reachability graph isomorphism
A finite lts satisfying properties rg, r, p and PΥ is isomorphic to the reach-

ability graph of some pure ON net if and only if (6) is solvable.

Proof: (⇒) follows from Theorem 4(⇒).
(⇐): Let N be a pure ON net as constructed by the algorithm in the previous

section. From Theorem 4(⇐), one only has to check also that no two states s1
and s2 of the lts correspond to the same marking of N . If it would be the case,
since the lts is strongly connected, there would be a sequence σ of transitions
leading from s1 to s2. Since both places correspond to the same marking of the
net, the sequence σ should also be allowed iteratively from s2, leading to states
s3, s4, ..., and since the system is finite, at some point we will have si = sj with
i < j. Hence, from si we have a cycle with Parikh vector (j − i)·Ψ(σ), and by
rg (as successor markings depend only on Parikh vectors of paths), σ generates
a cycle from s1 and s2 = s1. Consequently, SSP holds and, by Theorem 1, the
reachability graph of the constructed net is isomorphic to the lts we started
from. 5

Synthesis of Persistent Systems 123

0 1

23

a b

a
b a b 0 1

a

b

Fig. 5. An lts, the constructed Petri net, and its reachability graph

The significance of rg in part (⇐) of Theorem 5 is illustrated by the example
shown in Figure 5. The lts on the left-hand side (which does not satisfy rg)
leads to solvable systems (6). A corresponding net is shown in the middle of
the figure, and its reachability graph on the right. In this case, the places of
the constructed net yield regions of the given lts satisfying ESSP, but not SSP.
The culprit is the fact that, in the lts we start from, 0[abab〉0 form a cycle, with
Ψ(abab) = Υ = (2, 2), but 0[ab〉2 is not a cycle while Ψ(ab) = (1, 1) = Υ/2.

Some remarks: The previous theorems hold even if “pure ON” is replaced by
“ON” in their statements. That is, allowing side-conditions does not afford any
true new degree of freedom.

If one is interested in synthesis problems, instead of reengineering ones, it is
possible to weaken rg. For instance, it is possible to show that if rg is replaced by
“the lts is finite, deterministic, and totally reachable” plus “gcdt∈T {Υ (t)} = 1”,
Theorem 5 is still valid. Theorem 5 is also still valid if rg is replaced by “the lts
is finite, deterministic, and totally reachable” plus a marginally stronger form
of cycle-consistency [4]. One only has to make sure that the proof of 5(⇐) goes
through.

For these remarks, the details are described in [6]. End of some remarks
The aim of the algorithm exhibited in Figure 4 is correctness, not minimality.

Various optimisations may be considered, such as:

• when a new place is constructed, for some x ∈ T and s ∈ Seq(x), it may
happen that the arc weights around a place constructed for a previously
considered s′ ∈ Seq(x) also satisfy the current system (6), as well as (1) and
(2) since the latter have not changed; hence the new place the algorithm
would construct is redundant and can be dropped;

• conversely, when a new place is constructed for some x ∈ T and s ∈ Seq(x),
it may happen that its arcs weights also satisfy one or more systems (6)
constructed for previous states s′ ∈ Seq(x), so that the places constructed
from the latter are redundant and may be dropped;

• even if the algorithm does not produce redundant places, it can happen that
a set of natural numbers k1, . . . , km solves simultaneously many systems (6),
for some x and many states s, leading to a place allowing to drop many
redundant places; this kind of optimisation may be detected by searching
for maximal subsets S ⊆ Seq(x) such that the system ∪s∈S(6)s is solvable,
where (6)s denotes the system (6) constructed for x and s; then one only has
to consider the subset Seq(x) \ S for continuing the construction of places
with output x;

124 E. Best and R. Devillers

• from the way we constructed a place from a solution of (6), or ∪s∈S(6)s, if
Υ (x) > 1, it may happen that a “better” place may be found when starting
from a greater solution of the considered system.

4.4 Checking Non-ON-Solvability

Using the previous results, checking ON-solvability amounts to checking the
solvability of the system of inequations (6) for all x ∈ T and s ∈ Seq(x), while
checking non-ON-solvability amounts to checking the unsolvability of (6) for one
such label x and state s. By means of linear-algebraic duality and by considering
a dual system of inequalities, it is possible to exchange these two methods:

Theorem 6. ON incompatibility
A finite lts satisfying properties rg, r, p and PΥ is not language-equivalent to

the reachability graph of some (pure) ON Petri net if and only if, for some label
x ∈ T and sequentialising state s ∈ Seq(x), the system of constraints in yr’s

∀j, 1 ≤ j ≤ m : 0 ≥
∑

r∈NUI (x)

yr · (Υ (aj) · (1+Δr,s(x))−Υ (x) ·Δr,s(aj)) (7)

has a nonnull solution in N.

Proof: This is an immediate consequence of Theorem 4 and the alternation
result of Ville [17]. Among several similar results (e.g., Farkas’s lemma), Ville’s
theorem has a convenient formulation to imply directly that the system of in-
equations (6) has a solution in N if and only if the system (7) has no other
solution in N than yr = 0 for each r. 6

Specialising Theorem 6(⇐) by considering solution vectors with only 0 and 1
for the unknowns, we obtain the following:

Corollary 1. Bad configurations for ON nets
If, for a finite lts TS satisfying properties rg, r, p and PΥ , there exist a label

x ∈ T , a state s ∈ Seq(x), and a subset ∅ �= R ⊆ NUI (x) such that

∀j, 1 ≤ j ≤ m : 0 ≥
∑

r∈R

(Υ (aj) · (1 +Δr,s(x)) − Υ (x) ·Δr,s(aj)) (8)

then no ON net is language-equivalent (nor, a fortiori, reachability graph-iso-
morphic) to TS. 1

Example: In Figure 2, there is a bad configuration corresponding to label
x = a, state s = 5, and state set R = {2}. End of example

Even though this corollary constitutes only a very special case, we mention it
explicitly, because for all the examples we have considered up to now, checking
(8) was sufficient to show non-ON-solvability, and we conjecture that this is a
general property.

Synthesis of Persistent Systems 125

0

1

2

3

4

5

6

7

8

9

a1

a2

a2

t

a1

t

t

t

a2

a1

a1

a1

a2

t

t

a2

•••

••

• ••

a1 a2

t

4

3 2

2

2

p0

p1

p2 p3

Fig. 6. An lts with unique Parikh cycle and a possible ON Petri net solution

5 Examples of the Constructions

We shall now illustrate the constructions (and optimisations) developed in sec-
tion 4 on two rather more substantial examples.

5.1 A Worked, Positive Example

Let us consider the lts in Figure 6. It satisfies all the requested preconditions,
with Υ = (a1 �→ 2, a2 �→ 1, t �→ 2). We get NUI (a1) = {1, 7}, Seq(a1) = {3, 8, 9},
NUI (a2) = {2}, Seq(a2) = {8}, NUI (t) = {4, 5, 9} and Seq(t) = {0, 6}.

Let us first consider the sequentialisation of t at state 0 through a1 and a2,
which should correspond to the place p0 in the ON net on the right.
The system (6) has the form

0 < 2 · ka1
0 < 2 · ka2
0 < 2 · ka1 − ka2

the least solution is ka1 = 1, ka2 = 1, but this does not lead to an integer value
for kt; but multiplying it by 2 leads to a valid solution ka1 = 2, ka2 = 2, kt = 3,
with the initial marking 2.

For the sequentialisation of t at state 6 through a1 we get the system:

0 < 2 · ka1 − ka2
0 < ka2
0 < 2 · ka1 − 2 · ka2

again, the least solution (ka1 = 2, ka2 = 1) is not adequate; twice it is adequate:
ka1 = 4, ka2 = 2, kt = 5, but there is a smaller one: ka1 = 3, ka2 = 2, kt = 4, with
the initial marking 3, corresponding to place p0 in the Petri net. This shows that
the least solution of the system (6) does not always lead to the smallest solution
of (5) (but it leads nevertheless to an acceptable solution). Moreover, it may be

126 E. Best and R. Devillers

observed that this place also works for the previous sequentialisation, while not
the least one in this case, so that it may be useful not to stick to the smallest
solution in terms of weights: a non-minimal one may work for many different
systems.

There are two different sequentialisation configurations for a1 through t: from
state 3 and state 8. The first one leads to the system

0 < −ka2 + 2 · kt
0 < −2 · ka2 + 2 · kt

with minimal solution ka1 = 1, ka2 = 0, kt = 1, with the initial marking 1,
corresponding to place p2 in the Petri net.
The second one leads to a different system

0 < 2 · kt
0 < −ka2 + 2 · kt

but with the same minimal solution, and place.
However, there is another sequentialisation for a1, from state 9 through a2.

Here the system to be solved is

0 < 2 · ka2
0 < ka2

and the minimal solution is ka1 = 1, ka2 = 2, kt = 0, with the initial marking 2,
corresponding to place p1 in the net.

Finally, the sequentialisation of a2 from state 8 through t yields the (very
simple) system

0 < kt

with minimal solution ka1 = 0, ka2 = 2, kt = 1, with the initial marking 2,
corresponding to place p3 in the net.

5.2 A Worked, Negative Example

In this section, the following assertion will be proved:

Proposition 1. A very regular, persistent lts without ON solution
There exists a finite lts, satisfying properties r, p, P1, and rg with a plain

and pure solution, which cannot be solved by any ON Petri net.

This proposition implies, amongst other things, that the class of persistent
(plain, pure) Petri nets is “essentially larger” than the class of ON Petri nets,
even if for the latter, arbitrary arc weights and side-conditions are allowed. Note
that the latter class is, in turn, much larger than the class of marked graphs, as
exemplified by Figure 1.

Synthesis of Persistent Systems 127

Proof: By example. The lts presented in Figure 7, where a triple (s, t, s′) rep-
resents an arc s[t〉s′ and s0 is the initial state, has 10 labels, 89 states and 180
arcs. We have verified, with synet [8] and our own tools [9,15], that it satisfies
r, p, P1 and a strong form of rg since it is generated by a plain and pure net.
However it has no ON solution. The culprit – by construction of the lts, and
also found by [9] – is label y1 with sequentialising state s6 ∈ Seq(y1) and states
NUI (y1) = {s58, s83}. The system (6) yields the constraints

0 < −2 · kb1 + ka2 − kb2 − kb3 (from a short path s58 � s6)
0 < −2 · ka1 − ka2 + kb2 − ka3 (from a short path s83 � s6)

whose sum 0 < −2 · kb1 − kb3 − 2 · ka1 − ka3 has no solution in N. In fact, this
corresponds to a bad configuration in the sense of Corollary 1, with x = y1,
s = s6, and R = {s58, s83}. 1

(s0,a1,s1) (s0,b1,s2) (s0,z,s3) (s1,b1,s25) (s1,z,s4) (s2,a1,s25) (s2,z,s5) (s3,a1,s4)
(s3,b1,s5) (s4,a2,s31) (s4,b1,s6) (s5,a1,s6) (s5,b2,s7) (s6,a2,s8) (s6,b2,s9) (s7,a1,s9)
(s7,y1,s26) (s8,b2,s10) (s8,y1,s11) (s9,a2,s10) (s9,y1,s87) (s10,y1,s12) (s11,b2,s12)
(s11,y2,s33) (s12,y2,s13) (s13,a3,s14) (s13,b3,s15) (s13,x,s16) (s14,b3,s17) (s14,x,s21)
(s15,a3,s17) (s15,x,s18) (s16,a3,s21) (s16,b3,s18) (s17,x,s0) (s18,a3,s0) (s18,b1,s19)
(s18,z,s20) (s19,a3,s2) (s19,z,s22) (s20,a3,s3) (s20,b1,s22) (s21,a1,s27) (s21,b3,s0)
(s21,z,s28) (s22,a3,s5) (s22,b2,s23) (s23,a3,s7) (s23,y1,s24) (s24,a3,s26) (s24,y2,s54)
(s25,z,s6) (s26,a1,s87) (s26,y2,s55) (s27,b3,s1) (s27,z,s29) (s28,a1,s29) (s28,b3,s3)
(s29,a2,s30) (s29,b3,s4) (s30,b3,s31) (s30,y1,s32) (s31,b1,s8) (s31,y1,s59) (s32,b3,s59)
(s32,y2,s44) (s33,a3,s34) (s33,b2,s13) (s33,x,s35) (s34,b2,s14) (s34,x,s36) (s35,a3,s36)
(s35,b2,s16) (s36,a1,s37) (s36,b2,s21) (s36,z,s38) (s37,b2,s27) (s37,z,s39) (s38,a1,s39)
(s38,b2,s28) (s39,a2,s40) (s39,b2,s29) (s40,b2,s30) (s40,y1,s41) (s41,b2,s32) (s41,y2,s42)
(s42,a3,s43) (s42,b2,s44) (s43,b2,s45) (s43,x,s49) (s44,a3,s45) (s44,b3,s46) (s45,b3,s47)
(s45,x,s48) (s46,a3,s47) (s46,b1,s33) (s46,x,s62) (s47,b1,s34) (s47,x,s50) (s48,b3,s50)
(s49,b2,s48) (s50,a1,s51) (s50,b1,s36) (s50,z,s52) (s51,b1,s37) (s51,z,s53) (s52,a1,s53)
(s52,b1,s38) (s53,a2,s57) (s53,b1,s39) (s54,a3,s55) (s54,b3,s56) (s55,a1,s78) (s55,b3,s63)
(s55,x,s79) (s56,a3,s63) (s56,x,s64) (s57,b1,s40) (s57,y1,s58) (s58,b1,s41) (s58,y2,s60)
(s59,b1,s11) (s59,y2,s46) (s60,a3,s61) (s60,b1,s42) (s61,b1,s43) (s61,x,s88) (s62,a3,s50)
(s62,b1,s35) (s63,a1,s65) (s63,x,s66) (s64,a3,s66) (s65,a2,s15) (s65,x,s67) (s66,a1,s67)
(s66,b1,s68) (s66,z,s69) (s67,a2,s18) (s67,b1,s70) (s67,z,s74) (s68,a1,s70) (s68,z,s71)
(s69,a1,s74) (s69,b1,s71) (s70,a2,s19) (s70,z,s72) (s71,a1,s72) (s71,b2,s82) (s72,a2,s22)
(s72,b2,s73) (s73,a2,s23) (s73,y1,s75) (s74,a2,s20) (s74,b1,s72) (s75,a2,s24) (s75,y2,s76)
(s76,a2,s54) (s76,b3,s77) (s77,a2,s56) (s77,x,s81) (s78,a2,s13) (s78,b3,s65) (s78,x,s80)
(s79,a1,s80) (s79,b3,s66) (s80,a2,s16) (s80,b3,s67) (s81,a2,s64) (s82,a1,s73) (s82,y1,s83)
(s83,a1,s75) (s83,y2,s84) (s84,a1,s76) (s84,b3,s85) (s85,a1,s77) (s85,x,s86) (s86,a1,s81)
(s87,a2,s12) (s87,y2,s78) (s88,b1,s49)

Fig. 7. An lts satisfying rg with a plain and pure net, r, p, and P1, without an ON
solution

So far, we did not check whether the example shown in Figure 7 has a minimal
number of states. Nevertheless, the following two arguments lead us to believe
that the number of states cannot be reduced considerably.

• We found an example satisfying rg, r, p, P1, that has no plain or pure
solution, cannot be reduced, and already has 23 states [6].

128 E. Best and R. Devillers

• This kind of counterexample is derived rather painstakingly from a skeleton,
akin to a bad configuration, which ensures the unsolvability of (6) in spite
of rg. Such a skeleton already has quite a few states, and Lemma 5 (in
conjunction with persistency) adds more states to it. It is hard to see that
considerably fewer states would suffice.

6 Concluding Remarks

In this paper, we have developed a synthesis / reengineering algorithm for lts
satisfying several nice properties, which allows to create an ON Petri net when-
ever it is theoretically possible. Moreover, we have shown that the existence of
structurally pleasant solutions cannot always be guaranteed. In parallel work [7],
we were able to show, however, that the state spaces of live and bounded marked
graphs (and their bounds) can actually be characterised by adding a single fur-
ther property, namely bp, an analogue of persistency in backward direction.

Several questions remain open, and new ones have been detected.
Generalisations and extensions. Very simple examples show that persistency

cannot be dropped (quite naturally not, since the ON property is intimately
related to persistency). But what happens exactly if reversibility is weakened
to liveness? What happens for unbounded nets? Can concurrency semantics,
especially step semantics, play a useful role?

Restrictions. Can one find a weak (preferrably, structural) property, to be
imposed besides rg, r, p, and PΥ or P1, which is weak enough not to imply
bp, but also strong enough to guarantee ON solvability? For example, it is not
known whether Proposition 1 in section 5.2 remains true if the net which exists
by rg is assumed, in addition, to be 1-bounded.

Simplifications. Can the crucial system of constraints, (6), be reduced further
by considering only those r ∈ NUI (x) from which x-free directed paths lead to
s? Can the number of states be reduced in the example discussed in section 5.2?

Special cases. Can one find exact criteria for cyclic lts (generalising Figures 2
and 5), or for lts of other regular shapes?

Complexity analysis. As compared, for instance, with [2], our constructions are
more efficient for two reasons. The first reason is that, as a synthesis method, the
algorithm given in section 4.3 applies to a special case. This is reflected by the fact
that we identify the two sets NUI (x) ⊆ S and Seq(x) ⊆ S which are normally
much smaller than S, leading to much fewer linear-algebraic calculations needing
to be done. However, it is still a matter of research to find out exactly how
the sizes of these sets are related to each other in the average or worst cases.
The second reason is that our algorithm comes with an in-built reengineering
method, which is absent in the general synthesis algorithm. If one wanted to use
the latter for reengineering in a brute-force way, one would have to cycle through
all region bases in order to check whether there exists a “nice”, desirable one.
Such an additional loop implies a considerable additional layer of complexity to
general synthesis. It is absent in our approach because it was specifically tailored
to the desired “niceness” criterion, viz. ON solvability.

Synthesis of Persistent Systems 129

Acknowledgments.We are grateful to Philippe Darondeau and Hanna Klaudel
for inspirations and discussions. The remarks of the anonymous reviewers allowed
to improve the presentation of the paper.

References

1. Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis, 330 pages.
Springer (in preparation, 2014)

2. Badouel, É., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the Syn-
thesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)

3. Badouel, É.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998.
LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

4. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition
Systems. Acta Informatica 46, 237–254 (2009)

5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite,
I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012)

6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. TR 2/14, Dep.
Informatik, Carl von Ossietzky Universität Oldenburg, 80 pages (February 2014)

7. Best, E., Devillers, R.: Characterisation of the State Spaces of Live and Bounded
Marked Graph Petri Nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez,
J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Hei-
delberg (2014)

8. Caillaud, B.: http://www.irisa.fr/s4/tools/synet/
9. Devillers, R.: plain.c, pure.c, frag.c: Specially tailored programs written in C++

10. Hack, M.: Analysis of production schemata by Petri nets, M.S. thesis, D.E.E. MIT.
Cambridge Mass. Project MAC-TR 94 (1972)

11. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation.
In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer,
Heidelberg (1975)

12. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.:
Checking Signal Transition Graph Implementability by Symbolic BDD Traversal.
In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

13. Lamport, L.: Arbiter-Free Synchronization. Distributed Computing 16(2/3), 219–
237 (2003)

14. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri
Nets. J. ACM 25(3), 352–364 (1978)

15. Schlachter, U., et al.: https://github.com/renke/apt
16. Teruel, E., Colom, J.M., Silva, M.: Choice-Free Petri nets: a model for deterministic

concurrent systems with bulk services and arrivals. IEEE Transactions on Systems,
Man and Cybernetics, Part A, 73–83 (1997)

17. Ville, J.: Sur la théorie générale des jeux où intervient l’habileté des joueurs. In:
Borel, E. (ed.) Traité du calcul des probabilités et de ses applications, vol. 4, pp.
105–113. Gauthiers-Villars (1938)

18. Yakovlev, A.: Designing control logic for counterflow pipeline processor using Petri
nets. Formal Methods in Systems Design 12(1), 39–71 (1998)

19. Yakovlev, A.: Theory and practice of using models of concurrency in hardware
design. DSc Thesis, University of Newcastle upon Tyne (August 2005)

http://www.irisa.fr/s4/tools/synet/
https://github.com/renke/apt

	Synthesis of Persistent Systems
	1 Introduction
	2 Labelled Transition Systems, Petri Nets, and Regions
	3 Some Classes of Labelled Transition Systems
	3.1 Persistency, Uniform Small Cycles, and the ON Property
	3.2 Some Properties of lts Satisfying rg, r, p, and PΥ

	4 Solving an lts, Using rg, r, p, and PΥ
	4.1 Sequentialising States
	4.2 Checking ON-solvability
	4.3 Correctness and Optimisations
	4.4 Checking Non-ON-Solvability

	5 Examples of the Constructions
	5.1 A Worked, Positive Example
	5.2 A Worked, Negative Example

	6 Concluding Remarks
	References

