
Discovering Block-Structured
Process Models from Incomplete Event Logs

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{s.j.j.leemans,d.fahland,w.m.p.v.d.aalst}@tue.nl

Abstract One of the main challenges in process mining is to discover a process
model describing observed behaviour in the best possible manner. Since event
logs only contain example behaviour and one cannot assume to have seen all pos-
sible process executions, process discovery techniques need to be able to handle
incompleteness. In this paper, we study the effects of such incomplete logs on pro-
cess discovery. We analyse the impact of incompleteness of logs on behavioural
relations, which are abstractions often used by process discovery techniques. We
introduce probabilistic behavioural relations that are less sensitive to incomplete-
ness, and exploit these relations to provide a more robust process discovery al-
gorithm. We prove this algorithm to be able to rediscover a model of the original
system. Furthermore, we show in experiments that our approach even rediscovers
models from incomplete event logs that are much smaller than required by other
process discovery algorithms.

Keywords: process discovery, block-structured process models, rediscoverabil-
ity, process trees.

1 Introduction

Organisations nowadays collect and store considerable amounts of event data. For in-
stance, workflow management systems log audit trails, and enterprise resource planning
systems store transaction logs. From these event logs, process mining aims to extract
information, such as business process models, social networks, bottlenecks and com-
pliance with regulations [1]. In this paper we focus on the most challenging problem:
discovering a process model from example traces. Learning a process model (e.g., a
Petri net) from example traces in an event log, called process discovery, is one of the
first and most challenging steps of process mining.

Two problems of logs are particularly challenging for process discovery algorithms.
First, the log may contain infrequent behaviour, which forces algorithms to either ex-
clude this behaviour or return complicated, unreadable models describing all behaviour
[18]. Second, the log might contain insufficient information to discover a process model
that represents the system well: the log might be incomplete. Incompleteness forces al-
gorithms to either exclude the missing behaviour, thereby reducing the as yet unseen
behaviour the model can produce, or include the missing, unknown, behaviour, thereby
risk guessing wrong. In this paper, we focus on handling incomplete logs.

G. Ciardo and E. Kindler (Eds.): PETRI NETS 2014, LNCS 8489, pp. 91–110, 2014.
c© Springer International Publishing Switzerland 2014

92 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

modelevent logsystem
process discoveryproduces

measure fitness,
precision, generalisationrediscoverability

Fig. 1. Traditional model quality assessment (fitness, precision, generalisation) and rediscover-
ability

A notion closely related to incompleteness is rediscoverability. If a process discov-
ery technique has rediscoverability, it is able to discover models that have the same lan-
guage as the real-life process by which a log was produced [3,5,17]. Figure 1 shows the
context of process discovery, rediscoverability, and how discovered models can be eval-
uated. Traditionally, models are evaluated with respect to the event log: fitness meas-
ures what part of the event log is described by the model, precision is high when the
model does not allow too much behaviour that was not in the event log, and generalisa-
tion is high when the model allows more behaviour than just the behaviour in the event
log. Although fitness, precision, and generalisation are intuitively clear, different formal
definitions are possible [13,24,25]. Measuring the quality of a discovered model with
respect to its event log might be useful, but whether the best model for the event log
is the best model for the system is not captured by these measures. Therefore, to com-
pare process discovery techniques it is useful to study rediscoverability, as that gives
theoretical bounds to when a model is language-equivalent to its real-life system.

Rediscoverability is usually proven using assumptions about both log and model
[3,5,17]. A model must be from a certain class, and a log must contain sufficient inform-
ation. The notion what information is sufficient, completeness, depends on the discovery
algorithm. Generally, the strongest completeness notion is language-completeness, i.e.,
each trace through the process must be present in the log. The weakest completeness
notion is that each process step must occur at least once in the log: activity-completeness
[17].

Typically, rediscoverability can only be guaranteed if the log is complete. In this
paper, we investigate the problem of rediscovering process models from event logs, in
particular from incomplete event logs.

Another desirable property of process discovery algorithms is that they return simple
and sound models. A simple model needs few constructs to express its behaviour, and
a sound model is a model free of deadlocks and other anomalies. While an unsound
model might be useful, it is, for instance, not well suited for compliance evaluation
and bottleneck analysis [18]. Therefore, in this paper we will focus on process trees:
abstract hierarchical block-structured Petri nets that are guaranteed to be sound.

The Inductive Miner (IM) [17] is an example of an algorithm that discovers process
trees and for which rediscoverability has been proven. IM applies a divide-and-conquer
approach: it partitions the activities, selects the most important process construct, splits
the log and recurses until a base case is encountered.

In this paper, we adapt IM to handle incomplete logs: we keep the divide-and-
conquer approach, but replace the activity partition step by an optimisation problem.
We introduce relations between activities, estimate probabilities of these relations and

Discovering Process Models from Incomplete Event Logs 93

search for a partition of activities that is optimal with respect to these probabilities.
Rediscoverability is proven assuming log completeness and a sufficiently large log; we
give a lower bound for sufficiency.

In the remainder of this paper, we first explore related work. In Section 3, we in-
troduce logs, Petri nets, process trees and completeness notions. We study effects of
incompleteness on behavioural relations in Section 4 and describe behavioural prob-
abilisations. Section 5 describes the algorithm, Section 6 proves rediscoverability for
sufficiently large logs, and illustrates how incompleteness is handled by the new ap-
proach, compared with other approaches. Section 7 concludes the paper.

2 Related Work

Petri net synthesis aims to build an equivalent Petri net from a transition system or a
language. Region theory, that characterises places in a Petri net, was introduced in [15],
and several synthesis methods were proposed, for instance in [11,21,6,12].

Process discovery differs from Petri net synthesis in the assumption regarding com-
pleteness. Synthesis assumes that the complete language of the system is described in
some form. For process discovery we cannot assume the log to be language-complete,
as typically only a fraction of the possible behaviour can be observed in the event log,
making language-completeness often impossible or infeasible. For example, the lan-
guage of a model with a loop in it contains infinitely many traces, and the language of a
model describing the parallel execution of 10 activities contains at least 10! = 3628800
different traces [1]. In contrast, a typical log only contains a fraction of that.

Many process discovery techniques have been proposed. For instance, after a trans-
ition system has been constructed from the log, state-based region miner techniques
construct a Petri net by folding regions of states into places [4,30]. Typically, state-
based region techniques provide rediscoverability guarantees [10], but have problems
dealing with incompleteness (concurrency is only discovered if sufficient/all interleav-
ings are present).

Process trees, or block structures in general, have been used in process discovery,
both inside the scope of Petri nets [8,2,22], as outside [26,27] the scope of Petri nets.
They provide a natural, structured, well-defined way of describing processes that are
often easily translatable to Petri nets. The process tree formalisms used in [8,17,18]
guarantee soundness as well. Process tree discovery techniques have also been pro-
posed before. For instance, the approach used by [28] constructs a process tree from
a log by enumerating all traces, after which the process tree is simplified. The Evolu-
tionary Tree Miner (ETM) [8] uses a genetic approach to discover a process tree, i.e., a
random population is mutated until a certain stop criterion is met, but as it is steered by
log-based metrics, fitness, precision, generalisation and simplicity, and by its random
nature, it is unable to guarantee rediscoverability. A natural strategy when using block
structures is to apply a divide-and-conquer strategy, which has been applied to process
discovery in for instance [9,38,17,18].

In distinguishing languages of classes of Petri nets, behavioural relations have proved
their worth [31], and they have been used to refine or coarsen models, i.e., making them
more or less abstract [29,16], to compare process models [32], and to perform pro-
cess discovery. For instance, the behavioural relation used in the α algorithm [3], its

94 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

derivatives [35,36], and in [17,18], the directly-follows relation, holds for two activ-
ities if one activity can consecutively follow the other activity. A notion close to the
directly-follows relation is the eventually-follows relation, which holds if one activity
can eventually be followed by another. This eventually-follows relation has been used
in the context of process discovery [28,31,18].

To the best of our knowledge, the influence of incompleteness has not been system-
atically studied either on behavioural relations or process discovery.

3 Traces, Event Logs, Petri Nets and Completeness

Traces, Event Logs. A trace is a sequence of activities: �a, a, b� denotes a trace in which
first a occurred, then a again and finally b. Traces can be concatenated: �a, b� � �c� �
�a, b, c�. An event log is a multiset of traces. For instance, ��a, a, b�3, �b, b�2� denotes
an event log in which the trace �a, a, b� happened 3 times and �b, b� happened 2 times.
The function set transforms a multiset into a set: set�L� � 	t
t � L�; the function Σ
gives the alphabet of the log, i.e., the activities used in it.

Petri Nets, Workflow Nets and Block-Structured Workflow Nets. A Petri net is a bipart-
ite directed graph of interconnected places and transitions, in which tokens on places
model the system state and transitions model process step execution. We use the stand-
ard semantics of Petri nets, see [23].

A workflow net is a Petri net having a single input and a single output place, model-
ling the initial and final states of the system. Moreover, each element is on a path from
input to output [3]. A consecutive sequence of process executions that brings the system
from the initial state into the final state, corresponds to a trace. The set of traces that
can be produced by a model M , the language of M , is denoted by L�M�.

A block-structured workflow net is a hierarchical workflow net: it can be divided
recursively into workflow nets. An example is shown in Figure 2.

b

c

d e

f

g

a

Fig. 2. A block-structured workflow net ME; filled regions denote the block-structure; process
tree ������a, b�, c�,������d, e�, f�, g�� corresponds to this net

Process Trees. A process tree is an abstract hierarchical representation of a block-
structured workflow net. The leaves of the tree are activities, representing transitions.
The nodes of the tree, operators, describe how their children are combined. This paper
uses four operators: , �, � and �. The operator describes the exclusive choice
between its children, � the sequential composition and � the parallel composition.
The first child of a � tree is the loop body, the non-first children are redo parts. For

Discovering Process Models from Incomplete Event Logs 95

instance, ��a, b� is the composition of a trace of the body a, then zero-or-more times a
trace from a redo part b and a body a again: a�ba��.

Each process tree is easily translatable to a sound workflow net. For example, Fig-
ure 2 shows the block-structured workflow net corresponding to the process tree ME �
�����a, b�, c�,�����d, e�, f�, g��.

To define the semantics of process trees, we assume a finite set of activities Σ to be
given. The language of an activity is the execution of that activity (a process step). The
language of the silent activity τ contains only the empty trace: executing τ adds nothing
to the log. The language of an operator is a combination of the languages of its children.

In the following definition, we use the standard language notations
, � and � [20]. To
characterise�, we use the shuffle product S1� . . . Sn, which takes sets of traces from
S1 . . . Sn and interleaves their traces t1 � S1, . . . , tn � Sn while maintaining the partial
order within each ti [7]. For instance,

	�a, b��� 	�c, d�� � 	�a, b, c, d�, �a, c, b, d�, �a, c, d, b�,

�c, d, a, b�, �c, a, d, b�, �c, a, b, d��

Using this notation, we define the semantics of process trees:

L�τ� � 	� ��
L�a� � 	�a�� for a � Σ

L��M1, . . . ,Mn�� � L�M1�
L�M2� . . .L�Mn�

L���M1, . . . ,Mn�� � L�M1� � L�M2� � � �L�Mn�

L���M1, . . . ,Mn�� � L�M1�� L�M2� . . .L�Mn�

L���M1, . . . ,Mn�� � L�M1��L��M2, . . . ,Mn��L�M1��
�

As an example, the language of ME is �ab
ba
c��de�fde��
g�. The function Σ
gives the alphabet of a process tree: Σ�ME� � 	a, b, c, d, e, f, g�. We use

�
to de-

note the set of operators, and often � to denote a process tree operator: � �
�

,�
� 	,�,�,��. Obviously, the order of children for and � and the order of

non-first children of � is arbitrary.

Directly-Follows Relation, Transitive Closure and Graphs. The directly-follows rela-
tion �� has been proposed in [3] as an abstraction of the behaviour described by a model
or a log. From a model M , take two activities a and b. If b can follow a directly in M ,
�. . . , a, b, . . .� � L�M�, then a ��M b. For a log L, ��L is defined similarly. For logs,
�� is monotonic: for a pair of activities, �� cannot cease to hold by adding more traces
to the log.

A ��-path is a sequence a1 . . . ak of activities such that k � 2 and �1�i�kai ��ai�1.
The transitive closure of �� is denoted by ���: for activities a and b, the relation a ���b
holds if there exists a ��-path from a to b. 1 For a model M (resp. a log L), Start�M�

1 We did not choose the eventually-follows/weak-order relation [18,31], as its completeness
does not survive log splitting; Lemma 11 does not hold for it.

96 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

b

a
g

c
f

d

e

(a) ��-graph of ME

b

a
g

c
f

d

e

(b) ���-graph of ME

Fig. 3. Graphs of ME showing its directly-follows relation �� and its transitive closure ���

(resp. Start�L�) denotes the start activities, found at the beginning of a trace, and
End�M� (resp. End�L�) the end activities, that can conclude a trace.

Figure 3a shows the directly-follows relation of ME in graph notation: a directly-
follows graph. In this graph, an edge is drawn between a pair of activities �x, y� if
x �� y. Similarly, Figure 3b shows the graph of ��� for ME .

Completeness. Using these relations, we introduce two completeness notions, between
a model M and a log L:
– L is activity complete to M (L �ΣM), if each activity of M is present in L at least

once: Σ�M� � Σ�L�.
– L is directly-follows complete to M (L ���M), if L is activity-complete to M , its

directly-follows relation is complete, and both start and end activities are complete:
L �ΣM , ��M � ��L, Start�M� � Start�L� and End�M� � End�L�.

Partitions and Cuts. A partition is a distribution of an activity set Σ into disjoint non-
empty subsets Σ1 . . . Σn, with n � 1. A pair of activities �a, b� is partitioned by a
partition Σ1, . . . , Σn if a and b are not both in the same Σi. A cut is a partition com-
bined with a process tree operator. If a pair of activities is partitioned by the partition
in a cut, the pair crosses the cut. For example, ��, 	a�, 	b, c, d, e, f�� is a cut, activity
pair �a, b� crosses it and activity pair �b, d� does not.

Obviously, any process tree can be rewritten to a language-equivalent binary pro-
cess tree. Therefore, without loss of generality, in this paper we consider only binary
partitions and cuts.

4 Behavioural Relations

In many Petri net discovery algorithms, such as [3,17,18,35,36], a two-stage approach
is used: first, an abstraction of the log is derived, and second, from this abstraction a
model is generated. The directly-follows relation �� is often used as a behavioural re-
lation. In this section, we first describe the influence of incompleteness on behavioural
relations. To this end, we classify pairs of activities inspired by the process tree oper-
ators, by using the �� relation, after which we show the effect incompleteness has on
this classification. Second, we introduce a probabilistic version of the classification that
helps discovery techniques deal with incompleteness.

Discovering Process Models from Incomplete Event Logs 97

Figure 4 identifies nine cases for �� and ��� between two given activities a and b,
and organises these cases in a lattice. The structure of the lattice follows from �� and
���: an edge in the lattice corresponds to an extension of the ��-relation with one pair
of activities.

The lattice yields five relations between activities: the commutative , � and �i,
and the non-commutative� and �s. For instance, if b �� a and a ����b, then ��a, b�,
and if a ���b, b ���a, a ��� b and b ���a, then �i�a, b�. Informally,�a, b� denotes that a
and b are in an exclusive choice relation,��a, b� denotes that a and b are in a sequence
relation, and ��a, b� denotes that a and b are in a parallel relation. These are similar to
the α-relations #W ,�W and ‖W [3], but act globally instead of locally.

Both �i�a, b� (loop indirect) and �s�a, b� (loop single) denote that a and b are in a
loop relation. If we combined them into a single relation, this single relation would not
give sufficient information to partition the activities. Using the two relations �s and �i

as given by the lattice does, as will be proven in Section 6.
We consider the commutative cases, for instance ��a, b� and ��b, a�, to be equival-

ent.

a�→bb�→a

a�→bb�→a

)a, b(∧

)a, b(→ a�→bb�→a
)b, a(→

)a, b(×
)b, a(×

)b, a(∧

)b, a(→)a, b(→

)b, a(s�)a, b(s�

)a, b(i�
)b, a(i� a→��bb→��a

a→��bb→��a

b→��aa→��b

b+�→a b+→���a

b+�→a

b+→���a

b+�→ab+�→a

b+�→a

b+�→a

a→��b

a→��b

a→��bb→��a

b→��a

b→��a

a+→���b

a+→���b

a+→���b

a+�→b

a+�→b a+�→b

a+�→b

a+�→b

a+�→b

b+→���a

Fig. 4. Activity relations; the arrows define a lattice

Consider again Petri net ME shown in Figure 2. Figure 5 shows the activity re-
lations of ME as graphs. Consider the log LE � ��c, d, e, f, d, e, f, d, e�, �b, a, d, e�,
�a, b, d, e, f, d, e�, �c, g��, which we produced using ME , but LE is not directly-follows
complete to ME , as a �� g, b �� g, a ���g and b ���g hold in ME but not in LE . There-
fore, �a, g� and �b, g� hold in LE ; Figure 6 shows how and � change. For LE ,
a process discovery algorithm will regard a and b to be exclusive to g, while ME puts
them in sequence, and thus be unable to rediscover ME . The problem illustrated with
these activity relations is inherent to any process discovery algorithm using behavioural
relations; any technique that just uses behavioural relations is likely unable to rediscover
a model if the behavioural relations of the log are not complete.

In the following, we explore ways to use information from incomplete logs that could
help to rediscover the original model. Therefore, in the remainder of this paper we as-
sume that the log only contains behaviour from its system, i.e., no noise is present. First,

98 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

b

a
g

c
f

d

e

(a) �-graph

b

a
g

c
f

d

e

(b) �-graph

b

a
g

c
f

d

e

(c) �i-graph

b

a
g

c
f

d

e

(d) �s-graph

b

a
g

c
f

d

e

(e) �-graph

Fig. 5. Activity relations of ME as graphs. In the �-graph a directed edge is drawn from a to b
if ��a, b� holds, and similar for �s. For �, � and�i, which are commutative, undirected edges
are drawn.

b

a
g

c
f

d

e

(a) �-graph

b

a
g

c
f

d

e

(b) �-graph

Fig. 6. Two activity relations of LE as graphs. Notice that ��a, g� and ��b, g� do not hold
anymore, while ��a, g� and ��b, g� now do.

some information in the log may allow us to conclude that a particular relation between
two activities cannot hold. For instance, if the log contains a trace �b, a�, then ��a, b�
cannot hold. These violations follow from Figure 4: if the log contains information that
a relation � holds, then any weaker relation, i.e., not reachable from �, cannot hold;
one can only move up in the lattice.

Second, the idea is, instead of using a binary choice, to rather use an estimated
probability that a relation holds, an idea also used in for instance the Heuristics miner
[33,34]. For each of the activity relations �, we introduce a probabilistic version p�:
for activities a and b, p��a, b� denotes an artificially estimated probability that �a, b�
are in a �-related. Using the probabilistic versions makes it easier for techniques to
handle incompleteness: in our example, instead of a binary choice whether��a, g� and
��b, g� hold or not, we can compare the probabilities p� and p� to make a choice.

Our choice for these p� is shown in Table 1. Let M be a model and L a log of M .
Then, using Figure 4, we distinguish three cases and choose p��a, b� as follows:

Discovering Process Models from Incomplete Event Logs 99

– if��a, b� holds in L, it makes sense to choose p��a, b� as the highest of all relations
for the pair �a, b�. The more frequent activities a and b occur in L, the more confident
we are that��a, b� holds for M , and not some stronger relation. We choose p��a, b�

as follows: let z�a, b� � 	a	�	b	
2 denote the average number of occurrences of a and

b, then we define p��a, b� � 1� 1
z
a,b��1 , yielding a number between 1

2 and 1.
– if some relation ��a, b�, holds in L from which ��a, b� is unreachable, then L con-

tains a violation to p��a, b�, as we assumed L to be noise-free and the behavioural
relations cannot cease to hold by adding observations. Therefore, we choose p��a, b�
low: 0.

– if some relation���a, b� holds in L from which��a, b� can be reached, i.e., p��a, b�
could hold by adding more traces to L, we choose to divide the remaining 1

z
a,b��1

evenly over all remaining entries, such that the probabilities for each pair �a, b� sum
up to 1.

For example, in case of LE , we get p��a, g� � 0.6 and p��a, g� � 0.07.

Table 1. Our proposal for probabilistic activity relations for activities a and b, with
z�a, b� � ��a� 	 �b��
2. Negations of relations are omitted from the first column.

p��a, b� p��a, b� p��b, a� p�i�a, b� p�s�a, b� p�s�b, a� p��a, b�

(nothing) 1� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

a ���b 0 1� 1
z�1

0 1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

b ���a 0 0 1� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

a ���b� b ���a 0 0 0 1� 1
z�1

1
3
� 1
z�1

1
3
� 1
z�1

1
3
� 1
z�1

a �� b 0 1� 1
z�1

0 0 1
2
� 1
z�1

0 1
2
� 1
z�1

a �� b� b ���a 0 0 0 0 1� 1
z�1

0 1
z�1

b ��a 0 0 1� 1
z�1

0 0 1
2
� 1
z�1

1
2
� 1
z�1

b ��a� a ���b 0 0 0 0 0 1� 1
z�1

1
z�1

a �� b� b ��a 0 0 0 0 0 0 1

In the next section, we demonstrate how to use any system of probabilistic relations
in a concrete algorithm; one could define Table 1 differently, as long as for each pair of
activities �a, b� and each relation�, a probability p��a, b� is available. In Section 6, we
will show that our choices for p� lead to a correct algorithm. We expect that the proofs
given in Section 6 easily extend to other choices, but the precise class of acceptable p�
needs further research.

5 Algorithm

In this section, we demonstrate how the probabilistic activity relations defined in Sec-
tion 4 can be used to discover process trees.

We use a divide-and-conquer approach and adapt ideas from IM [17] to introduce
a new disovery algorithm that we call Inductive Miner - incompleteness (IMin). IMin
consists of three steps that are applied recursively: first, the ��-graph of the log and
its transitive closure ��� are computed. Second, a cut is chosen such that the relations

100 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

between pairs crossing the cut have the highest probability according to Table 1. The
operator of the chosen cut is recorded. Third, using the cut, the log is split into a sublog
for each part and on each sublog, IMin recurses. The recursion ends when a base case, a
log containing just a single activity, is encountered. The hierarchy of recorded operators
is a process tree.

We first describe how to accumulate the probabilities of Table 1 to assess the prob-
ability of a cut. Second, we give the algorithm, an example and a description of our
implementation.

5.1 Accumulated Estimated Probabilities for Cuts

Given activity relation probabilities, such as the ones defined in Table 1, we compute
an accumulated probability for a cut. Informally, for � � 	,�,��, the accumulated
probability p� is the average p� over all partitioned pairs of activities.

Definition 1 (accumulated probability for , � and �). Let c � ��, Σ1, Σ2� be a
cut, with � � 	,�,��. Then p��Σ1, Σ2� denotes the accumulated probability of c:

p��Σ1, Σ2� �

�
aΣ1,bΣ2

p��a, b�

Σ1
 �
Σ2

Note that a �, , or � cut requires all pairs of activities to be in the same relation
sufficiently often. For a loop cut, this is not sufficient, as all crossing pairs of activities in
a loop are in a loop relation (�s��i). This loop relation suffices to describe the prob-
ability whether all activities are indeed in a loop, but on its own cannot distinguish the
body of a loop from its redo parts. For this, we have to explicitly pick the start and end
activities of the redo parts, such that a redo start activity follows a body end activity, and
a redo end activity is followed by a body start activity. This direct succession in a loop
is expressed in �s. Hence, we obtain the following probability that c � ��, Σ1, Σ2�
is a loop cut for the chosen redo start activities S2 and loop redo end activities E2; the
start and end activities of the body are the start and end activities of the log. In the next
section, we show how S2 and E2 could be chosen.

Definition 2 (accumulated probability for �). Let c � ��, Σ1, Σ2� be a cut, L be a
log, and S2, E2 be sets of activities. We aggregate over three parts: start of a redo part,
end of a redo part and everything else:

redostart �
�

a,b�End
L��S2

p�s
�a, b�

redoend �
�

a,b�E2�Start
L�

p�s
�a, b�

indirect �
�

aΣ1,bΣ2

a,b��
End
L��S2��
E2�Start
L��

p�i
�a, b�

Then, p��Σ1, Σ2, S2, E2� denotes the accumulated probability of c:

p��Σ1, Σ2, S2, E2� �
redostart � redoend � indirect

Σ1
 �
Σ2

Discovering Process Models from Incomplete Event Logs 101

In this definition, redostart and redoend capture the strength of S2 and E2 really being
the start and end of the redo parts; indirect captures the strength that all other pairs of
activities that cross Σ1, Σ2 are in a loop relation.

For readability reasons, in the following, we will omit the parameters S2 and E2.

5.2 The Algorithm: Inductive Miner - Incompleteness (IMin)

Next, we introduce a process discovery algorithm that uses the accumulated estimations
of definitions 1 and 2 in a divide-and-conquer approach.

For this, we introduce a parameter that influences a threshold of acceptable incom-
pleteness. By default, a cut with highest p� is to be selected at all times. However,
a low p� might indicate that the behaviour in the log cannot be described well by a
block-structured Petri net. Therefore, a parameter h is included: if there is no cut with
p� � h, a flower model ��τ, a1, . . . , am� with 	a1, . . . , am� � Σ�L�, allowing for
any trace over Σ�L� [17], is returned.

function IMIN(L)
if L � ��a�x� with a � Σ and x � 1 then

return a
end if
��, Σ1, Σ2� � cut of Σ�L� with highest p��Σ1, Σ2�; � �

�

if p��Σ1, Σ2� � h then
L1, L2 � SPLIT�L, ��, Σ1, Σ2��
return ��IMin�L1�, IMin�L2��

else
return ��τ, a1, . . . , am� where 	a1, . . . , am� � Σ�L�

end if
end function
IMin contains two non-trivial operations: selecting a cut with highest p� and the

SPLIT function. To select a cut with highest p�, and in case of � to choose S2 and E2,
our implementation uses an SMT-solver. For more details of the translation to SMT,
please refer to [19].

The function SPLIT splits a log L into sublogs L1 and L2, according to a given cut
c � ��, Σ1, Σ2�, by projecting the traces of L on Σ1 and Σ2. For example, SPLIT ap-
plied to a sequence cut ��, 	a�, 	b�� and a trace �a, a, b, b� yields �a, a� and �b, b�. In
addition, for �, traces are split on the points where the trace ‘leaves’Σ1 and ‘enters’Σ2.
For example: SPLIT���a, b, a, a, b, a��, ��, 	a�, 	b��� yields ��a�2, �a, a�� and ��b�2�.
For a more detailed formal description, please refer to [17].

IMin has been implemented as part of the Inductive Miner plug-in of the ProM
framework [14], available at http://www.promtools.org.

Example 3. As an example, consider again the log LE � ��c, d, e, f, d, e, f, d, e�,
�b, a, d, e�, �a, b, d, e, f, d, e�, �c, g��. If IMin is applied to LE with h � 0, the first
most likely cut is ��, 	a, b, c�, 	d, e, f, g��, with a p� of about 0.64. The choice for�
is recorded, and LE is split into ��c�2, �b, a�, �a, b�� and ��d, e, f, d, e, f, d, e�, �d, e�,
�d, e, f, d, e�, �g��. Then, IMin recurses on both these sublogs. Figure 7 shows the

http://www.promtools.org

102 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

recursive steps that are taken by IMin. The final result is �����a, b�, c�,
�����d, e�, f�, g��, which is equal to ME .

)}d, e, f, g}{a, b, c{,→(

)}c{,}a, b{,×(

)}b{,}a{,∧(

)}g{,}d, e, f{,×(

)}f{,}d, e{,�(

)}e{,}d{,→(a b

c

d e

f

g

64.0

74.0

00.1

74.0

82.0

86.0

Fig. 7. Running example: IMin�LE�. As a first step, the cut with highest p� is
��, a, b, c�, d, e, f, g��, with p� � 0.64. Then, IMin recurses as shown.

6 Rediscoverability

In this section, we report on the rediscoverability of IMin. We first describe a class of
process trees, for which we then prove that IMin has rediscoverability, given a directly-
follows complete log in which each activity occurs sufficiently often. After that, we
report on experiments showing that IMin manages to rediscover these process trees,
even from smaller logs than those needed by other discovery algorithms.

6.1 Class of Rediscoverable Process Trees; Normal Form

The class of process trees CR for which we will prove rediscoverability is as follows:

Definition 4 (Class CR). Let M be a process tree. Then M belongs to CR if for each
(sub)tree M � at any position in M , it holds that
– The subtree is not a silent activity: M � � τ
– If M � � ��M �

1 . . .M
�
n�, with � �

�
, then no activity appears more than once:

�1�i�j�nΣ�M
�
i� �Σ�M �

j� � �
– If M � � ��M �

1 . . .M
�
n�, then M �

1 is required to have disjoint start and end activities:
Start�M �

1� �End�M �
1� � �

In order to prove language-rediscoverability, we use a language-unique normal form.
Each process tree can be converted into this normal form using the following language-
preserving reduction rules. If no rule can be applied to a tree, the tree is in language-
unique normal form [17].

Note that the order of children of and �, and redo children of �, is arbitrary.

Definition 5 (Normal Form). Let M be a process tree. Then applying the following
reduction rules exhaustively on subtrees of M yields a language-unique normal form,
in which � denotes a process tree operator:

Discovering Process Models from Incomplete Event Logs 103

��M �� �M �

�� � �1 ,�� � �2�, � � �3� � �� � �1 , � � �2 , � � �3�

��� � �1 ,��� � �2�, � � �3� � ��� � �1 , � � �2 , � � �3�

��� � �1 ,��� � �2�, � � �3� � ��� � �1 , � � �2 , � � �3�

����M �, � � �1�, � � �2� � ��M �, � � �1 , � � �2�

��M �, � � �1 ,�� � �2�, � � �3� � ��M �, � � �1 , � � �2 , � � �3�

Using this normal form, IMin can discover the language of any tree by searching for
only binary cuts. For example, if M � ��M1,M2,M3�, it is perfectly fine to discover
either��M1,��M2,M3�� or����M1,M2�,M3�.

We say that a cut c conforms to a model M in normal form if selecting c does not
disable discovery of a tree equivalent to M :

Definition 6. Let c � ��, Σ1, Σ2� be a cut and let M � ��M1 . . .Mn� be a model
in normal form. Then c conforms to M if no Σ�Mi� is partitioned: �i�jΣ�Mi� � Σj .
Moreover, for non-commutative operators, order must be maintained.

6.2 Formal Rediscoverability

The main theorem states that any model from class CR can be rediscovered from a
directly-follows complete log whose activities occur at least a certain number of times.
Let least�L� denote the number of times the least occurring activity occurs in a log L.

Theorem 7. Assume a model M that is of class CR. Then there exists a k � N such
that for all logs L with set�L� � L�M�, L ���M and least�L� � k, it holds that
L�IMin�L�� � L�M�.

We prove the theorem as follows: we first show that IMin selects the correct root oper-
ator (Lemma 9), then that IMin selects a partition corresponding to M (Lemma 10), and
finally that log splitting yields correct directly-follows complete sublogs (Lemma 11),
on which IMin recurses.

In these lemmas, we will use a very general property of partitions: any two partitions
share at least one pair of activities that crosses both partitions.

Lemma 8. Take two binary partitions Σ1, Σ2 and Σ�
1, Σ

�
2, both of the same Σ. Then

there is a pair of activities that is partitioned by both partitions.

Proof. Towards contradiction, assume there is no pair that is partitioned by both Σ1, Σ2

and Σ�
1, Σ

�
2. Take a1, a

�
1 � Σ1, a2 � Σ2. Pairs �a1, a2� and �a�1, a2� are partitioned

by Σ1, Σ2, so by assumption they are not partitioned by Σ�
1, Σ

�
2. Thus, there is an

1 i 2 such that a1, a�1, a2 � Σ
�
i. As we posed no restrictions on a1 and a�1, for some

1 i 2, Σ1 � Σ�
i. By similar reasoning, Σ2 � Σ�

i, so Σ1 � Σ2 � Σ�
i. Therefore,

Σ�
i � Σ and hence Σ�

1, Σ
�
2 is not a partition. !"

In the following lemma, we prove that for each log for which least is sufficiently
large, IMin selects the correct root operator.

104 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

Lemma 9. Assume a reduced model M � ��M1, . . . ,Mn�. Then there exists a k � N
such that for all logs L with set�L� � L�M�, L ���M and least�L� � k, it holds that
IMin�L� selects �.

Proof. IMin selects binary cuts, while M can have an arbitrary number of children.
Without loss of generality, assume that c � ��, Σ1, Σ2� is a binary cut conforming to
M . Let c� � ��, Σ�

1, Σ
�
2� be an arbitrary cut of M , with � � �. We need to prove that

p��Σ1, Σ2� � p��Σ
�
1, Σ

�
2�, which we do by computing a lower bound for p��Σ1, Σ2�

and an upper bound for p��Σ�
1, Σ

�
2� and then comparing these two bounds. Apply case

distinction on whether� � �:
– Case � � �. We start with the lower bound for p��Σ1, Σ2�. By Definition 1,

p��Σ1, Σ2� �

�
aΣ1,bΣ2

p��a, b�

Σ1
 �
Σ2

By semantics of process trees, Figure 4, set�L� � L�M� and L ���M , for each
activity pair �a, b� that crosses c,��a, b� holds. For each such pair, we chosep��a, b� �
1� 1

z
a,b��1 (note that this would be an equality, save for p��a, b�, which is 1). Thus,

p��Σ1, Σ2� �

�
aΣ1,bΣ2

1� 1
z
a,b��1

Σ1
 �
Σ2

For all a and b, z�a, b� � 	a	�	b	
2 � min�
a
,
b
� � least�L�. Thus,

p��Σ1, Σ2� � 1�
1

least�L� � 1
(1)

Next, we prove an upper bound for p��Σ�
1, Σ

�
2�. By Definition 1,

�
aΣ�

1,bΣ
�

2
p��a, b�

Σ�
1
 �
Σ

�
2

� p��Σ
�
1, Σ

�
2�

Let �u, v� be a pair partitioned by both Σ1, Σ2 and Σ�
1, Σ

�
2. By Lemma 8, such a

pair exists. For all other �a, b� � �u, v�, it holds that p��a, b� 1 (abusing notation
a bit by combining �i and �s), and there are
Σ1
 �
Σ2
 � 1 of those pairs.

�
Σ�
1
 �
Σ

�
2
 � 1� � 1� 1 � p��u, v�

Σ�
1
 �
Σ

�
2

� p��Σ
�
1, Σ

�
2�

As �u, v� crosses c, ��u, v� holds. Then by inspection of Table 1, p��u, v�
1

z
u,v��1 . Define y to be
Σ�
1
 �
Σ

�
2
.

�y � 1� � 1
z
u,v��1

y
� p��Σ

�
1, Σ

�
2�

From z�a, b� � 	a	�	b	
2 � 1 follows that 1

z
u,v��1
1
2 . Thus,

�y � 1� � 1
2

y
� p��Σ

�
1, Σ

�
2� (2)

Discovering Process Models from Incomplete Event Logs 105

Using the two bounds (1) and (2), we need to prove that

1�
1

least�L� � 1
�
�y � 1� � 1

2

y
(3)

Note that y is at most �Σ�M�#2� � �Σ�M�#2�, which allows us to choose k such that
k � 2y � 1. By initial assumption least�L� � k, and therefore (3) holds. Hence,
p��Σ1, Σ2� � p��Σ

�
1, Σ

�
2�.

– Case � � �. Using reasoning similar to the � � � case, we derive (1). We directly
reuse (2) to arrive at (3) and conclude that p��Σ1, Σ2� � p��Σ

�
1, Σ

�
2�.

Thus, p��Σ1, Σ2� � p��Σ
�
1, Σ

�
2� holds for all �. As IMin selects the cut with highest

p�, IMin selects �. !"

Next, we prove that for a log L, if least�L� is sufficiently large, then IMin will select
a partition conforming to M .

Lemma 10. Assume a model M � ��M1, . . . ,Mn� in normal form. Let c �
��, Σ1, Σ2� be a cut conforming to M , and let c� � ��, Σ�

1, Σ
�
2� be a cut not con-

forming to M . Then there exists a k � N such that for all logs L with set�L� � L�M�,
L ���M and least�L� � k, holds that p��Σ1, Σ2� � p��Σ

�
1, Σ

�
2�.

The proof strategy for this lemma is similar to the proof of Lemma 9: we prove that
at least one “misclassified” activity pair �u, v� contributes to the average p��Σ

�
1, Σ

�
2�.

Please refer to [19] for a detailed proof.
As a last lemma, we show that log splitting produces correct and directly-follows

complete sublogs.

Lemma 11. Assume a model M in normal form and a log L such that set�L� � L�M�
and L ���M . Let c � ��, Σ1, Σ2� be a cut corresponding to M , and let L1, L2

be the result of SPLIT�L, c�. Then, there exist process trees M1 and M2, such that
Σ1 � Σ�M1�, Σ2 � Σ�M2�, the normal form of��M1,M2� is M , set�L1� � L�M1�,
L1 ���M1, set�L2� � L�M2� and L2 ���M2.

For this lemma, we use that M can be converted into a binary tree by using the reduc-
tion rules of Definition 5 reversed. As c conforms to M , it is possible to convert M to
��M1,M2� such that Σ1 � Σ�M1� and Σ2 � Σ�M2�. The strategy for the remaining
part of the proof is to show for each operator that SPLIT returns sublogs L1 and L2

that are valid for M1 and M2 (�i : set�Li� � L�Mi�). We then prove that L1 and L2

are directly-follows complete to M1 and M2 (�i : Li ���Mi). Please refer to [19] for
details.

Using these lemmas, we can prove rediscoverability for sufficiently large logs.

Proof (of Theorem 7). We prove the theorem by induction on model sizes, being
Σ�M�
.
– Base case: M � a. As set�L� � L�M�, L � ��a�x� for some x � 1. By code

inspection, L�IMin�L�� � L�M�.
– Induction step: assume that the theorem holds for all models smaller than M . By

Lemma 9 and 10, IMin selects a cut c � ��, Σ1, Σ2� conforming to M . Next
SPLIT(L, c) returns an L1 and L2. By Lemma 11, there exists process trees M1, M2

such that L���M1,M2�� � L�M�. By Lemma 11, set�L1� � L�M1�, L1 � ��M1,

106 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

set�L2� � L�M2� and L2 ���M2. As of the induction hypothesis and the fact that
L1 and L2 are sufficiently large by construction, L���IMin�L1�, IMin�L2��� �
L���M1,M2�� � L�M�. Because IMin�L� � ��IMin�L1�, IMin�L2��, there exists
a k � N such that if least�L� � k, then L�IMin�L�� � L�M�. !"

In the proofs of Lemmas 9 and 10, we chose k � 2 � �Σ�M�#2� � �Σ�M�#2� � 1.
This gives an upper bound for the minimum least�L� required, and a characterisation
of sufficiency:

Corollary 12. A bound for k and least�L� as used in Theorem 7 is determined by the
size of the alphabet: least�L� � k � 2 � �
Σ�M�
#2� � �
Σ�M�
#2�.

Last, the unsolved question remaining is whether directly-follows completeness of a
log implies that the log is sufficiently large, and that a generalised version of Theorem 7
holds:

Conjecture 13. Assume a model M and a log L such that set�L� � L�M� and
L ���M . Then L�IMin�L�� � L�M�.
The experimental results reported in the remainder of this paper support this conjecture.

6.3 Experimental Result

In this section, we show that IMin can rediscover models from small logs. In addi-
tion, we investigate how various process discovery algorithms, including IMin, handle
incompleteness.

Experiment. In the experiment, we aim to answer three questions: 1) Can IMin redis-
cover the language of models? 2) How does IMin handle incomplete logs? 3) How do
other algorithms handle incomplete logs?

To answer questions 1 and 2, we investigated how large the log of a given model M
has to be to rediscover the language of M , by generating logs of various sizes and trying
to rediscover M from these logs. For question 3, we investigated how large logs need
to be for other algorithms, such that adding more traces to the log would not change the
result of the algorithm.

Setup. For answering questions 1 and 2, we generated 25 random process trees with
15 activities from class CR. For each tree M , 20 random, sufficiently large, directly-
follows complete logs were generated. For each log L, we verified that L�M� was
rediscovered from it: L�IMin�L�� � L�M�. Then we performed a binary search on
L to find the smallest sublog of L from which, in normal form, M was rediscovered.
These sublogs were obtained by removing traces from L, and on each smallest sublog
found, we measured the number of traces and completeness of ��.

To answer question 3, comparing IMin to other algorithms, we used a similar pro-
cedure: for each discovery algorithm D, we used the same randomly generated process
trees to find, for each tree, the smallest logs LD such that adding more traces to LD

would always return a model D� � D�LD� (up to isomorphism). We call the model

Discovering Process Models from Incomplete Event Logs 107

D�LD� for such a smallest log LD a top model MT . For this experiment, we con-
sidered the following discovery algorithms: Inductive Miner (IM) [17], Integer Linear
Programming miner (ILP) [37], α-algorithm (α) [3], Region miner (RM) [30,4] and
flower model, all plug-ins of the ProM framework [14]. The flower model was included
as a baseline, as it will reach its top model if L �ΣM : it only depends on the presence
of activities in the log. All miners were applied using their default settings, and for
IMin h was set to 0. For both procedures, we experimentally observed that event logs
with 16000 traces were directly-follows complete and sufficiently large to rediscover
the original model (in case of IMin) or to find the top model (for other algorithms).

Results. Table 2 shows the results. For example, IM on average required 97% of the
��-pairs of the model to be present in the log to discover its top model MT . For some
models, the ILP implementation we used did not return an answer. Averages are given
without these models and are marked with a preceding *.

Table 2. Results of the experiments. Column 2: for how many models M was its language redis-
covered in MT , averaged over logs. Column 3: average number of traces in the smallest sublogs.
Column 4: average ratio of ��-pairs present in smallest sublogs compared to the models M .

miner L�M� � L�MT � number of traces ��-completeness

α 0% 133.132 1.000

ILP 12% *258.529 *0.980

RM 4% 132.896 1.000

IM 100% 85.256 0.971

IMin 100% 32.568 0.875

Flower 0% 11.620 0.641

a0
a1

a2

a4

a3
a5 a6

a7 a8

a9 a10

a14

a11

a13

a12

Fig. 8. Petri net representation of MF : ������a0,��a1, a2��,
a3, a4�,������a5, a6�,��a7, a8�,��a9, a10��,��a11, a12�, a13, a14�

One of the randomly generated models is shown in Figure 8. To illustrate handling
of incompleteness, we used this model to find the smallest sublog for which IMin re-
discovered MF , and applied other discovery algorithms to that sublog. The results are
shown in Figure 9.

Discussion. Answering question 1, whether IMin can rediscover the language of mod-
els, for all models and logs, IMin discovered the original model or a language-equivalent
one, and even did not require the log to be directly-follows complete, which supports
Conjecture 13. IMin required on average 87.5% of the ��-relation pairs to be present

108 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

a0

a3

(a) Excerpt of α; a0 cannot fire;
unsound.

(b) Excerpt of RM; labels have been removed; lots of
places necessary to represent parallelism.

a0
a2

a5

(c) Excerpt of ILP; a0 can fire at any
time.

(d) IM; labels have been removed; misses the central
parallelism.

Fig. 9. Models resulting from discovery of a smallest sublog of IMin

in the log to discover its top model. This suggests that IMin is able to handle directly-
follows incomplete logs, answering question 2.

The flower model provides a baseline: it discovers a model based on the activities
that are present in a log; no process discovery technique can be expected to reach its
top model without all activities being present in the log. For all models, IMin required
fewer or equally many traces than any other discovery algorithm, except for the flower
model, to reach its top model.

Remarkably, also IM did not require the �� relation to be complete at all times. A
possible explanation is that log splitting might help at times. For instance, ��a, b, c�
could be rediscovered as ��a,��b, c��. If a log lacks ���b, c�, it could be introduced
during log splitting: by splitting �b, a, c� with 	a� and 	b, c� yields the trace �b, c� for
which b �� c holds, enabling the rediscovery of ��b, c�.

Figure 9 illustrates how other discovery algorithms handle models within the repres-
entational bias of IM and IMin, for which IMin rediscovers its language. It would be
interesting to see how these algorithms perform on process trees not derived from class
CR, and on general Petri nets.

7 Conclusion

In this paper, we studied the effects of incompleteness on process discovery. We ana-
lysed the impact of incompleteness of logs on behavioural relations. We introduced
probabilistic behavioural relations to make them more stable when dealing with in-
completeness, and defined an algorithm based on these probabilistic relations. This al-
gorithm was proven to be able to rediscover the language of models, given sufficiently
large directly-follows complete logs. Moreover, in experiments it was shown to be able
to rediscover the language of models, even when given small incomplete logs, and to
need less information in the log to converge than other process discovery algorithms.

Discovering Process Models from Incomplete Event Logs 109

An open question remaining is whether rediscoverability holds for IMin (Conjec-
ture 13). Other points of future research could be what characterises acceptable choices
of probabilistic activity relations (Table 1), (that could even be able to handle noise), and,
if directly-follows completeness is an upper bound for rediscoverability, and if activity-
completeness is a lower bound for it, whether these bounds are tight. The experiments we
conducted suggest that there is a tighter upper bound than directly-follows completeness.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

2. van der Aalst, W., Buijs, J., van Dongen, B.: Towards improving the representational bias
of process mining. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP,
vol. 116, pp. 39–54. Springer, Heidelberg (2012)

3. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

4. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN
1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

5. Badouel, E.: On the α-reconstructibility of workflow nets. In: Haddad, S., Pomello, L. (eds.)
PETRI NETS 2012. LNCS, vol. 7347, pp. 128–147. Springer, Heidelberg (2012)

6. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from term based
representations of infinite partial languages. Fundam. Inform. 95(1), 187–217 (2009)

7. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theor. Comput.
Sci. 163(1&2), 55–98 (1996)

8. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process
trees. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

9. Carmona, J.: Projection approaches to process mining using region-based techniques. Data
Mining and Knowledge Discovery 24(1), 218–246 (2012)

10. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for finite
transition systems. IEEE Trans. Computers 47(8), 859–882 (1998)

11. Darondeau, P.: Region based synthesis of P/T-nets and its potential applications. In: Nielsen,
M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 16–23. Springer, Heidelberg
(2000)

12. Darondeau, P.: Unbounded Petri net synthesis. In: Desel, J., Reisig, W., Rozenberg, G.
(eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 413–438. Springer,
Heidelberg (2004)

13. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs.
Information Systems 37, 654–676 (2012)

14. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.T., van der
Aalst, W.M.P.: The proM framework: A new era in process mining tool support. In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg
(2005)

15. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Acta Informatica 27(4), 343–368
(1990)

16. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based
on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

17. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - A constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)

110 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

18. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process mod-
els from event logs containing infrequent behaviour. In: Business Process Management
Workshops. Springer (2013)

19. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from incomplete event logs. Tech. Rep. BPM-14-05, Eindhoven University of Technology
(March 2014)

20. Linz, P.: An introduction to formal languages and automata. Jones & Bartlett Learning (2011)
21. Lorenz, R., Mauser, S., Juhás, G.: How to synthesize nets from languages: a survey. In:

Winter Simulation Conference, WSC, pp. 637–647 (2007)
22. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the

refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp.
25–41. Springer, Heidelberg (2011)

23. Reisig, W., Schnupp, P., Muchnick, S.: Primer in Petri Net Design. Springer (1992)
24. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst,

W.M.P.: The need for a process mining evaluation framework in research and practice. In:
ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS,
vol. 4928, pp. 84–89. Springer, Heidelberg (2008)

25. Rozinat, A., Veloso, M., van der Aalst, W.: Evaluating the quality of discovered process
models. In: 2nd Int. Workshop on the Induction of Process Models, pp. 45–52 (2008)

26. Schimm, G.: Generic linear business process modeling. In: Mayr, H.C., Liddle, S.W.,
Thalheim, B. (eds.) ER Workshops 2000. LNCS, vol. 1921, pp. 31–39. Springer, Heidelberg
(2000)

27. Schimm, G.: Process miner - A tool for mining process schemes from event-based data. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
525–528. Springer, Heidelberg (2002)

28. Schimm, G.: Mining most specific workflow models from event-based data. In: van der
Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
25–40. Springer, Heidelberg (2003)

29. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on
synthesis from well-structured behavioral profiles. Int. J. Cooperative Inf. Syst. 21(1), 55–83
(2012)

30. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)

31. Weidlich, M., van der Werf, J.M.: On profiles and footprints – relational semantics for petri
nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 148–167.
Springer, Heidelberg (2012)

32. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - effi-
cient computation, applications, and evaluation. Fundam. Inform. 113(3-4), 399–435 (2011)

33. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-
algorithm. BETA Working Paper series 166, Eindhoven University of Technology (2006)

34. Weijters, A., Ribeiro, J.: Flexible Heuristics Miner. In: CIDM, pp. 310–317. IEEE (2011)
35. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice

constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)
36. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G., Lin, X.,

Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 358–365.
Springer, Heidelberg (2007)

37. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using
integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)

38. Yzquierdo-Herrera, R., Silverio-Castro, R., Lazo-Cortés, M.: Sub-process discovery: Op-
portunities for process diagnostics. In: Poels, G. (ed.) CONFENIS 2012. LNBIP, vol. 139,
pp. 48–57. Springer, Heidelberg (2013)

	Discovering Block-Structured Process Models from Incomplete Event Logs
	1 Introduction
	2 Related Work
	3 Traces, Event Logs, Petri Nets and Completeness
	4 Behavioural Relations
	5 Algorithm
	5.1 Accumulated Estimated Probabilities for Cuts
	5.2 The Algorithm: Inductive Miner - Incompleteness (IMin)

	6 Rediscoverability
	6.1 Class of Rediscoverable Process Trees; Normal Form
	6.2 Formal Rediscoverability
	6.3 Experimental Result

	7 Conclusion
	References

