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      Conceptualizing Teachers’ Capacity 
for Learning Trajectory-Oriented Formative 
Assessment in Mathematics 

             Caroline     B.     Ebby      and     Philip     M.     Sirinides      

          TASK (Teachers’ Assessment of Student Knowledge) is an online tool designed to 
measure teacher’s capacity for learning trajectory-oriented formative assessment in 
mathematics, specifi cally focusing on their ability to analyze student work and 
make instructional decisions based on that work. Formative assessment has proved 
to be one of the most powerful current educational practices in terms of improving 
student learning (Black & Wiliam,  1998 ; Kluger & DeNisi,  1996 ). A meta-analysis 
of more than 250 studies on formative assessment indicates substantial evidence 
linking formative assessment with higher student achievement, with typical effect 
sizes ranging from an impressive 0.4–0.7 (Black & Wiliam,  1998 ). Yet numerous 
studies have concluded that teachers struggle to make effective use of student learn-
ing data (Datnow, Park, & Wohlstetter,  2007 ; Heritage, Kim, Vendlinski, & Herman, 
 2009 ; Kerr, Marsh, Ikemoto, Darilek, & Barney,  2006 ; Young,  2006 ). 

 While the term formative assessment is often used erroneously in educational 
contexts to refer to assessment instruments themselves, it is more accurately defi ned 
as a process whereby an assessment provides feedback to both the learner and the 
teacher and this feedback causes an adjustment in instruction (Bennett,  2014 ; Black 
& Wiliam,  1998 ; Shepard,  2008 ). Formative assessment is therefore fundamentally 
an interpretive process. Effective formative assessment—assessing student under-
standing relative to a standard or goal, providing feedback to the student in the form 
of instructional guidance, and continually working to diminish the gap between the 
student’s performance and the instructional goal—requires that teachers are able to 
understand and analyze student thinking to develop an instructional response that 
will move the learner forward. TASK is an open-ended measure situated in the con-
text of looking at student-generated work that can be used to measure these specifi c 
aspects of teacher knowledge and also explore the nature of that knowledge. 
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 In this chapter, we begin by articulating the conceptual framework behind learn-
ing trajectory-oriented formative assessment and describing the instrument, scoring 
rubrics, and ongoing development of TASK. We then present the results of a large- 
scale fi eld test of TASK, both in terms of the overall results and additional studies 
of the properties of the instrument. We also draw on the results of this fi eld test to 
investigate the relationships between various dimensions of teachers’ ability to ana-
lyze student work in mathematics and their instructional decision making. 

    Conceptual Framework: Learning Trajectory-Oriented 
Formative Assessment 

    At the foundation of formative assessment is a clear understanding of the gap 
between the learner’s current state of understanding and the learning goal or stan-
dard. A well-designed assessment should illuminate the learner’s current state so 
that the gap is evident. The assessment becomes formative only when (1) the infor-
mation provides useful feedback to the learner, (2) the information provides useful 
feedback to the teacher, and (3) the teacher is able to provide an instructional 
response that will help the learner move closer to the goal. This is an iterative pro-
cess, the cycle repeating until the gap is closed and new learning goals are estab-
lished (Bennett,  2014 ; Black & Wiliam,  1998 ; Heritage,  2008 ). 

 Learning progressions, or “successively more sophisticated ways of thinking 
about a topic” (National Research Council,  2007 , p. 219), have recently become 
prominent in mathematics educational research as well as in conceptualizations of 
assessment and instruction (Clements & Sarama,  2004 ; Confrey,  2008 ; Daro, 
Mosher, & Corcoran,  2011 ; Sztajn, Confrey, Wilson, & Edgington,  2012 ). 
 Learning trajectories , as they are most often called in mathematics education, can 
provide a guiding framework as teachers assess where students are in the trajec-
tory of learning those concepts and skills and then use that information to design 
and enact instructional responses that support students’ movement along that tra-
jectory towards the learning goal (Heritage,  2008 ). Learning trajectories can be 
described as a path through the complex terrain of a particular mathematical topic 
(Battista,  2011 ; Daro et al.,  2011 ). While this path is not necessarily linear, knowl-
edge of the key stages or levels that characterize this path can help teachers both 
determine where students are and what experiences are likely to help them move 
forward. In other words, knowledge of learning trajectories can enhance the 
 formative assessment process. 

 In conceptualizing the knowledge that teachers need to implement effective for-
mative assessment in the classroom, we draw upon a conception of teaching as a 
complex activity that is dependent on distinct but interconnected bodies of knowl-
edge (Ball, Thames, & Phelps,  2008 ; Putnam & Borko,  2000 ; Shulman,  1987 ). 
Arguing that teachers draw on knowledge that is distinct from either knowledge of 
subject matter, Shulman defi nes  pedagogical content knowledge  (PCK) as “the ways 
of representing and formulating the subject matter that make it comprehensible to 
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others” (p. 9) and frames it as the intersection between content and pedagogy. 
Building on this work to study the work that teachers do when teaching mathematics 
in the classroom setting, Ball and colleagues have further defi ned and delineated 
mathematical knowledge for teaching (MKT) by breaking down the domain of con-
tent knowledge into  common content knowledge ,  specialized content knowledge,  
and  horizon content knowledge  and pedagogical content knowledge into  knowledge 
of content and students ,  knowledge of content and teaching , and  knowledge of con-
tent and curriculum  (Ball et al.,  2008 ). 

 More recently, Sztajn et al. ( 2012 ) bring together research on learning trajecto-
ries with research on teaching to propose the construct of  learning trajectory-based 
instruction  as “teaching that uses student learning trajectories as the basis for 
instruction (p. 147).” In addition to presenting a learning trajectory interpretation of 
the six MKT categories, they defi ne a learning trajectory interpretation of formative 
assessment as the case where teachers are “guided by the logic of the learner” rather 
than only by disciplinary goals when eliciting student thinking and providing feed-
back to students. In developing the TASK instrument and analyzing the results of 
the fi eld test, we draw on these frameworks to explore how teachers actually make 
sense of evidence of student thinking for their instruction.  

    The TASK Instrument 

 We designed the TASK instrument to capture and explore teacher knowledge in 
relation to learning trajectories in several core mathematical content areas. Open- 
ended prompts were designed to elicit the information teachers glean from student 
work and the instructional response they develop based on that evidence. While the 
MKT is an established measure of “mathematics knowledge for teaching,” these 
multiple choice measures have not been as useful in capturing teacher reasoning or 
more subtle manifestations of teacher conceptual change (Goldsmith & Seago, 
 2007 ). Hill, Ball, and Schilling ( 2008 ) describe the challenges of using multiple 
choice measures to assess “knowledge of content and students,” or teachers’ knowl-
edge of mathematical thinking and learning, including the fact that performance can 
be infl uenced by test-taking skills or mathematical content knowledge. They con-
clude that open-ended items may be a more effective way to assess the kind of rea-
soning skills about student thinking that are called for in classroom-based 
instructional practice. We have developed, fi eld tested, and validated TASK to pro-
vide a contextualized measure of teachers’ ability to (a) analyze students’ mathe-
matical thinking within a grade-specifi c content area in relation to research-based 
learning trajectories, and (b) formulate effective instructional responses. 

 We began the development of TASK by fi rst determining what kinds of knowledge 
are brought to bear in the process of formative assessment. Formative assessment 
involves a critical shift from  scoring  student work to  interpreting evidence  of student 
thinking and considering that evidence in light of research on the development of 
understanding of mathematical content. With this in mind, we initially posited that the 

Conceptualizing Teachers’ Capacity for Learning…



162

following six domains of knowledge are relevant for  learning trajectory - oriented 
formative assessment :

    1.     Content Knowledge —At the most basic level, teachers need to be able to under-
stand and correctly solve math problems that assess the content they are 
teaching.   

   2.     Concept Knowledge —To assess student understanding, teachers must be able to 
identify and articulate the concept and related sub-concepts that a particular 
mathematics problem or item is assessing.   

   3.     Mathematical Validity —Once a teacher administers an assessment to a student, 
he/she must be able to understand the logic or mathematical validity of the strat-
egy that the student uses to solve the problem. 1    

   4.     Analysis of Student Thinking  ( AST )—To build on student thinking, teachers need 
to be able to go beyond determining whether or not a response is correct or incor-
rect to identify the underlying conceptual understanding or misconceptions that 
are present in student work.   

   5.     Learning Trajectory Orientation  ( LTO )—After analyzing the strategy a student 
uses to solve a math problem, teachers need to be able to position that strategy 
along a learning trajectory for the respective math content. Thus, teachers must 
have a sense of what the developmental progress looks like for the particular 
math concept and where to place students along that continuum and be able to 
use this as a framework to interpret and respond to student thinking.   

   6.     Instructional Decision Making  ( IDM )—Finally, teachers must choose an appro-
priate instructional response and be able to describe why that instructional inter-
vention is designed to move students from their current level of understanding 
along the developmental trajectory towards greater understanding.    

  To further explore these domains, we constructed a performance assessment that 
requires teachers to draw upon and articulate these types of knowledge in the con-
text of classroom practice. Specifi cally, we situated TASK in the activity of looking 
at and responding to a carefully designed set of typical student responses to a 
 mathematics problem in a particular content area. The student responses character-
ize different levels of sophistication of student thinking as well as common miscon-
ceptions that are supported by mathematics education research. Through an online 
instrument, teachers are presented with the student work and then led through a 
series of questions designed to measure these six key domains of knowledge related 
to the specifi c mathematical concept that is being assessed. 

 Seven TASK instruments have been developed in the following mathematics 
content areas: (1)  addition , for teachers in grades K-1; (2)  subtraction , for teachers 
in grades 2–3; (3)  multiplicative reasoning , for teachers in grades 3–5; (4)  fractions , 
for teachers in grades 3–5; (5)  proportional reasoning  for teachers in grades 6–8; (6) 
 algebraic reasoning  for teachers in grades 7–12; and (7)  geometric reasoning , for 

1   As Ball et al. ( 2008 ) point out, determining whether a students’ thinking is mathematically sound 
requires a kind of knowledge that a person with strong knowledge of mathematics content who is not 
a teacher may not necessarily possess. It is therefore distinct from common content knowledge. 
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teachers in grades 9–12. These content areas represent core or fundamental mathe-
matical ideas at the different grade level bands, and the TASKs are designed around 
key concepts in those domains (e.g., part/whole, equivalency, and magnitude for 
fractions). While the content areas are different across grade levels, all TASKs fol-
low a consistent structure in both the prompts and the fact that the student work 
refl ects key stages in the development of student thinking in the content area. The 
K-8 TASKs focus around six samples of student solutions; however, for algebra and 
geometry, since the problems have a higher level of complexity and longer student 
responses, there are only four samples of student work for the teacher to interpret. 

 An example of the different levels of sophistication of students’ thinking and 
common strategies and misconceptions that are embedded in the student responses 
is presented in the fractions TASK for grades 3–5 in Fig.  1 . The problem involves 
reasoning about whether two fractional quantities combine to make a whole. As 
shown in Fig.  1 , Abby, Carla, and Devon’s work refl ect the use of visual models to 
make sense of parts and wholes, while Brad and Emma’s work demonstrate more 
abstract reasoning about equivalence and addition. Carla, Devon, and Frank’s work 

  Fig. 1    Problem and designed student responses from the grades 3–5 fractions TASK       

   Each carton holds 24 oranges. Kate’s carton is 1/3 full. Paul’s carton is 2/4 
full. If they put all their oranges together, would Kate and Paul fi ll one 
whole carton?  

  Solve the problem. Show your work.   
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are less developed and contain misconceptions about partitioning, part/whole under-
standing, and the meaning of fractions. In this way, the student work represents 
some of the important landmarks that have been identifi ed in current research on 
children’s learning of fractions as well as an overall progression from concrete to 
more abstract understanding of fractional quantities (Confrey,  2008 ; Lamon,  2012 ; 
Steffe & Olive,  2010 ). Thus, TASK is designed to provide a realistic context from 
which to elicit information about what teachers pay attention to when they examine 
student strategies that they are likely to come across in their own classrooms.  

   Similarly for the other content areas, student work was constructed to represent 
key stages in the development of addition, subtraction, multiplication, proportional 
reasoning, and algebraic thinking, with student responses refl ecting strategies of 
different levels of sophistication as well as strategies refl ecting both procedural and 
conceptual errors. 

 The prompts are shown in relation to each dimension of knowledge and method 
of scoring in Table  1 . Three of the response types are forced-choice or short answer 
and can be scored automatically while the rest are constructed responses scored by 
trained raters with a rubric or a combination of a coding scheme and rubric. The 
rubrics, described in the next section, are based on a four point ordinal scale to char-
acterize the teachers’ orientation towards the interpretation of the student work on a 
continuum that ranges from general to procedural to conceptual to developmental.

   Table 1    TASK prompts and scoring   

 Domain of 
teacher knowledge  Prompt  Scoring  Scale 

 Content 
knowledge 

 Examine the math problem and state 
the correct answer 

 Automated  Correct/incorrect 

 Concept 
knowledge 

 Explain what a student at that grade-
level needs to know and/or understand 
to solve the problem 

 Scored and 
coded by 
rater 

 Rubric score (1–4) 

 Mathematical 
validity 

 Examine the solutions of 4–6 typical 
students and determine if their solution 
processes are mathematically valid 

 Automated  Percent correct 

 Analysis of 
student thinking 

 Comment on four students’ solution 
process in terms of what the work 
suggests about the student’s 
understanding of the mathematics 

 Scored and 
coded by 
rater 

 Rubric score (1–4) 

 Learning trajectory 
orientation 

 Rank each student’s solution of the level 
of sophistication of the mathematical 
thinking that is represented 

 Automated  Rubric score (1–4) 

 Explain the rationale for the rankings 
given to each student 

 Scored 
by rater 

 Rubric score (1–4) 

 Instructional 
decision making 

 Suggest instructional next steps and 
explain the rationale for those next 
steps for two student solutions 

 Scored 
by rater 

 Rubric score (1–4) 

C.B. Ebby and P.M. Sirinides



165

   As described above, the six samples of student work were constructed to represent 
both correct and incorrect solution strategies, common conceptual errors, as well as 
a range of sophistication of strategies. To prevent the instrument from becoming too 
time-consuming, respondents were asked to comment on a subset of four solution 
strategies, but then to rank and explain their ranking for all six. The four solutions 
represent beginning, transitional, and advanced strategies (with correct answers) as 
well as one solution that refl ected a correct strategy with a conceptual error and 
incorrect answer. Likewise, respondents were only asked to describe instructional 
responses for two of the solutions: (a) a correct, but less sophisticated response to the 
problem and (b) a response with a conceptual weakness. 

 TASK was developed as an online instrument where teachers are sent an email link 
to complete the survey. Respondents move through several screens where the student 
work is shown as it is in Fig.  1  along with the respective prompts. Responses for 
mathematical validity and ranking are entered by clicking on radio buttons (see Fig.  2  
below), while the open-ended responses for concept knowledge, analysis of student 
thinking, ranking-rationale, and instructional decision making are entered into text 
boxes. Respondents also have the option to expand their view of the student work by 
hovering the mouse over the image. A benefi t of the online administration is that the 
system can target reminders to non-respondents to achieve a high response rate.  

  Fig. 2    Ranking screen of the online TASK       
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    Scoring Rubric 

 The rubrics that raters used to score specifi c prompts about student work were 
based on a four-point ordinal scale to capture the overall orientation toward 
teaching or student understanding. We developed this rubric from the pilot data 
(described in the next section) through both an inductive and deductive process. 
First, a team of researchers read the entire set of responses to generate initial catego-
ries and codes to capture what teachers were referencing in their responses to each 
question. These codes were then grouped into larger categories, drawing on existing 
research in mathematics education to guide the analysis in terms of the degree to 
which the response refl ected elements of a learning trajectory orientation. The dis-
tinction between procedures, or what students did, and concepts, or what students 
understood, became salient across all domains. The shift from procedural to more 
conceptual views of mathematics has long been promoted in mathematics reform 
literature (e.g., Hiebert,  1986 ; National Council of Teachers of Mathematics,  1988 ; 
National Research Council,  2001 ), and since learning trajectories by nature focus 
on conceptual development, a conceptual orientation toward student work was rated 
as higher than one that was only procedural. More recently, research on learning 
trajectories has promoted a developmental view, where students’ conceptual knowl-
edge develops in relation to instruction along a predictable path toward more com-
plex and sophisticated thinking (Battista,  2011 ). Therefore, for a response to be at 
the highest level of the rubric, we determined that a teacher’s focus on conceptual 
understanding must have evidence of drawing upon a developmental framework. 
We then had four ordinal categories (general, procedural, conceptual, and learning 
trajectory) that applied to each question on the TASK. The general rubric shown in 
Table  2  describes each of the TASK rubric categories. These categories are seen as 
cumulative where each level builds on the one before it; therefore, a conceptual 
response might also contain some procedural focus. Four domains were scored with 
more specifi c and detailed versions of this rubric: Concept Knowledge, Analysis of 
Student Thinking, Learning Trajectory Orientation, and Instructional Decision 
Making (Ebby, Sirinides, Supovitz, & Oettinger,  2013 ).

   For Concept Knowledge and Analysis of Student Thinking, raters were asked to 
utilize a coding scheme organized in the form of a checklist, with descriptors under 
the main categories: general/superfi cial, procedural, conceptual, and learning trajec-
tory. After the raters assigned the relevant codes, they used those results to help 
determine a rubric score. This technique also allows for tabulation of the specifi c 
concepts and procedures that are referenced by teachers which can be used to 
decompose patterns of teacher responses within each of the rubric categories. 

 The sample teacher responses shown below in Table  2  are taken from the pilot 
administration of the grades 6–8 proportions TASK. Teachers are describing a piece 
of student work where the strategy refl ected a conceptual error stemming from addi-
tive thinking and led to an incorrect response. The sample teacher responses refl ect 
different levels of analysis of that evidence: at the lowest level, the teacher evaluates 
the strategy but misses the nature of the conceptual error completely. At the proce-
dural level, the teacher describes what the student did to get the incorrect answer, but 
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does not relate this to underlying conceptual understanding. At the conceptual level, 
the teacher recognized the proportional understanding in part of the student’s solu-
tion strategy. The learning trajectory response is further distinguished by interpreting 
the students’ use of doubling in terms of multiplicative reasoning and the conceptual 
error in terms of additive reasoning, an important distinction in established learning 
trajectories for proportional reasoning (e.g., Confrey,  2008 ; Lamon,  2012 ).  

    Ongoing TASK Development 

 TASK began with a pilot administration in the fall of 2011 with a convenience 
sample of 60 teachers and at least 10 responses at each grade band. The pilot data 
were used for two purposes. The fi rst purpose was to begin development of the 
detailed scoring rubrics for each domain of the instrument and the second was to 
advance the design of the instrument. Both the actual responses and participant 
feedback contributed to our modifi cations of the instrument. Based on what we 
learned from this feedback, the instruments were substantially modifi ed and scoring 
rubrics were developed. 

 In the spring of 2012, we administered TASKs in 6 content areas to a sample of 
about 1,800 teachers in grades K-10 from 5 public school districts in 5 states. 
Recruitment for this validation study used a stratifi ed random sample of teachers by 
grade/subject; however, participation was voluntary. The fi ve districts vary in terms 

    Table 2    TASK rubric levels and descriptions   

 Score  Category  Description  Sample response 

 4  Learning 
trajectory 

 Response draws on 
developmental learning 
trajectory to explain 
student understanding or 
develop an instructional 
response 

 Devon shows that he has some basic 
understanding of multiplicative reasoning when 
it comes to doubling both quantities of the rate. 
However, he then goes to additive reasoning to 
get to $20. He is not distinguishing the 
difference between multiplying and adding/
subtracting in relation to proportionality 

 3  Conceptual  Response focuses on 
underlying concepts, 
strategy development, or 
construction of 
mathematical meaning 

 Devon has just a beginning understanding 
of a proportion as demonstrated by doubling 
both 12 and 15. He knew he needed to get to 
$20, but he didn’t know how to use the 
proportion so he subtracted 

 2  Procedural  Response focuses on a 
particular strategy or 
procedure without 
reference to student 
conceptual understanding 

 Devon did not fi gure out the cost per can. 
He subtracted $10 so he also subtracted 10 
cans but 1 can is not equivalent to $1 

 1  General  Response is general or 
superfi cially related to 
student work in terms of 
the mathematics content 

 Devon had a good strategy but did not 
perform the operations correctly 
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of size, student demographics, and programs of math instruction. Overall, about 
1,400 teachers completed the TASK, 2  for a 74 % response rate. Fifteen raters, 
including researchers with math content expertise and experienced mathematics 
teachers and coaches, were trained to code the open-ended responses for references 
to procedures and concepts and then make an overall judgment about a teachers’ 
written response in relation to the four point rubric. TASKs were only scored by 
raters after they had established a reliability of at least 75 % direct agreement on all 
of the rubric scores with other reliable raters. Drawing from the results of the analy-
sis of this fi eld test data, much of which is described in the sections that follow, we 
have refi ned the TASK instrument to focus on the three most salient and robust 
domains: Analysis of Student Thinking (AST), Learning Trajectory Orientation 
(LTO), and Instructional Decision Making (IDM) while further streamlining the 
coding and analysis process. 3  In addition, we are developing multiple forms for 
repeated administrations as well as new TASKs in additional content areas.   

    Large-Scale Field Trial Results 

    Descriptive Statistics 

 Analysis of the fi eld test data resulted in descriptive statistics for each of the domains 
on each TASK using unit weighting scoring as the average of scores within domain 
(Ebby et al.,  2013 ). Across the domains examined on the TASK the majority of 
teacher responses were procedural, focusing on what the student did to solve the 
problem, rather than underlying conceptual understanding or sophistication of rea-
soning. Table  3  shows the breakdown of rubric scores for the domains of AST, LTO, 
and IDM. While these results are briefl y summarized below, a more complete analy-
sis of the descriptive results can be found in our interactive report (Supovitz, Ebby, 
& Sirinides,  2014 ).

    Analysis of student thinking  ( AST ). In this domain, the vast majority of teacher 
responses were procedural, focusing on what the student did to solve the problem 
rather than commenting on underlying conceptual understanding. Fewer than one 
fi fth of the teachers surveyed, across all grade levels, interpreted the student solu-
tions in terms of underlying conceptual understanding. The highest level of proce-
dural responses were found in grades K-1 addition (93 %), while the highest level 
of conceptual and learning trajectory responses (19 %) were found in grades 3–5 
fractions. Particularly striking is the fact that all of the responses for proportions in 
grades 6–8 were either general or procedural, with 21 % of the teachers providing 

2   Thousand two hundred and sixty-one fully completed TASKs in fi ve content areas were analyzed 
from this fi eld test. Responses to the geometry TASK have not yet been analyzed. 
3   For example, the latest version of the TASK for multiplicative reasoning includes some multiple 
choice questions to augment the open ended prompt for Instructional Decision Making. 

C.B. Ebby and P.M. Sirinides



169

only general analyses of student work (e.g., “understands proportions” or “demon-
strates strong reasoning.”). The results highlight the widespread lack of a concep-
tual focus in teachers’ analysis of student thinking around proportions among 
middle grades teachers. 

  Learning trajectory orientation  ( LTO ). Again the vast majority of teachers 
explained their ranking of student work by pointing to procedural aspects of student 
work rather than what students understood or how that understanding was situated 
in a learning trajectory. It should be noted that teachers were somewhat more suc-
cessful in choosing the ranking than they were in providing a reasoned rationale for 
that ranking, though fewer than half of teachers in grades K-8 were able to correctly 
order student strategies in terms of sophistication. 

  Instructional decision making  ( IDM ). Across all grade levels, the majority of 
teachers’ instructional suggestions for specifi c students focused on teaching a stu-
dent a particular strategy or procedure rather than on developing mathematical 
meaning or understanding. The percentage of teachers who gave conceptual or 
learning trajectory responses was highest for algebra and lowest for addition in 
grades K-1. 

 Together, these results suggest that there is a great deal of room for growth in 
relation to teacher’s ability to interpret and respond to conceptual understanding in 
student work, and even more so in relation to learning trajectories. We also used 
these results to provide information back to the participating districts in the form of 

   Table 3    Percent of teacher responses by TASK domain, content, and score   

 Domain/content/grade   n   General  Procedural  Conceptual  Learning trajectory 

 AST 
 Addition (K-1)  246  4  93  3  0 
 Subtraction (1–2)  185  13  76  11  0 
 Fractions (3–5)  376  7  73  18  1 
 Proportions (6–8)  291  21  79  0  0 
 Algebra (9–10)  163  9  88  3  0 

 LTO (rationale) 
 Addition (K-1)  246  0  83  17  0 
 Subtraction (1–2)  185  4  69  22  5 
 Fractions (3–5)  376  9  76  14  1 
 Proportions (6–8)  291  14  78  7  1 
 Algebra (9–10)  163  15  57  26  2 

 IDM 
 Addition (K-1)  246  13  79  8  0 
 Subtraction (1–2)  185  19  59  20  2 
 Fractions (3–5)  376  22  60  16  2 
 Proportions (6–8)  291  28  55  14  3 
 Algebra (9–10)  163  15  46  30  9 

   Note : 1,261 teacher responses to the TASK were collected in spring 2012  
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reports that detailed the relative proportion of teachers at each grade level who 
responded at each level of the rubric in each domain. These reports were designed 
to allow districts to view both strengths and weaknesses in their teachers’ capacity 
for learning trajectory-oriented formative assessment.  

    Instrument Properties 

 The design of the instrument and validation methods were directly infl uenced by the 
 Standards for Educational and Psychological Testing  (American Educational 
Research Association, American Psychological Association, & National Council on 
Measurement in Education,  1999 ), which provides strong guidelines for high- 
quality and technically sound assessments. Our methods of ongoing instrument 
validation were chosen to supply evidence that the resulting scores from this theo-
retically grounded instrument are reliable and valid for the purposes of evaluating 
teachers’ capacity for learning trajectory-oriented formative assessment in mathe-
matics. Unless otherwise noted, data for these analyses were collected from the 
large-scale fi eld trial described above. The technical report (Ebby et al.,  2013 ) pro-
vides more details about the measurement studies for the TASK. 

 To examine the validity of TASK scores as a measure of pedagogical content 
knowledge, we have analyzed its association with another similar established test, 
the measures of Mathematical Knowledge for Teaching (MKT) (Ball et al.,  2008 ; 
Hill, Schilling, & Ball,  2004 ; Schilling, Blunk, & Hill,  2007 ). The MKT is a mea-
sure of the Common Content Knowledge and Specialized Content Knowledge that 
teachers need for effective mathematics instruction. The MKT is most aligned with 
the TASK domains of Content Knowledge and Mathematical Validity, but we expect 
that there would still be a positive, though smaller, relationship with the other 
domains, for which no validated measures exist. In the technical report (Ebby et al., 
 2013 ), we present descriptive statistics and correlation matrices for domain scales 
and the MKT separately for each TASK based on a sample of 486 teachers across 
the fi ve districts. We fi nd that the statistical associations of MKT and TASK domains 
refl ect a low relationship and note that correlations are largest ( r  = 0.56) for TASK 
domains with the most variance. 4     The positive direction and low magnitude of the 
statistics suggests that the constructs are related but distinct from MKT. 

 Collectively, results from a series of ongoing instrument validation studies are 
generating evidence that the instrument yields reliable and valid scores of teachers’ 
learning trajectory-oriented formative assessment capacity in mathematics, is feasi-
ble for widespread use in a variety of settings, and provides useful reporting of results. 
Ongoing research studies will focus on how TASK can be used to measure change in 
teacher knowledge over time and whether it can predict student outcomes.   

4   We are mindful that score reliabilities for the TASK are still under investigation and that correlations 
may be underestimated in the presence of measurement error (i.e., attenuation) (Lavrakas,  2008 ). 
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    Pathways Analyses 

 In this section, we highlight an investigation of the relationships between the vari-
ous dimensions of teachers’ ability to analyze student work in mathematics and 
their instructional decision making. More specifi cally, we investigate the relation-
ships between: (1) mathematical validity; (2) analysis of student thinking; (3) learn-
ing trajectory orientation; and (4) instructional decision making. 5  The theoretical 
framework is based on the research literature in mathematics education and our 
hypothesis that analyzing student work for underlying conceptual understanding 
should contribute to a more sophisticated instructional response. Given the current 
focus on learning trajectories in mathematics education research, and standards, we 
also investigated whether the ability to place student work in a learning trajectory 
would have an effect on instructional decision making, and if so, how strong that 
relationship is compared to other dimensions. 

 The conceptual framework guiding the empirical study is summarized by the 
structural pathways in Fig.  3 . This framework includes a series of relationships 
among independent and dependent constructs, which characterize the mechanism 
through which the analysis of student work infl uences instructional decision mak-
ing. The analysis of student work in terms of Mathematical Validity (MV), Analysis 
of Student Thinking (AST) and Learning Trajectory Orientation (LTO) is theorized 
to affect instructional decision making (IDM). Additionally, AST is theorized to be 

5   We do not include the domains of content knowledge or concept knowledge in this analysis as we 
do not expect them to have as strong of an infl uence on instructional decision making. 

  Fig. 3    Conceptual model of teachers’ assessment of student knowledge and instructional decision 
making       
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indirectly predictive of IDM through its effect on LTO. Finally, MV indirectly 
affects IDM through AST’s direct and indirect paths to IDM. It is important to note 
that our method of analysis (described below) cannot be employed as a causal mod-
eling approach because it cannot satisfy assumptions of directionality (Duncan & 
Hodge,  1963 ) or spurious correlation (Simon,  1957 ). As such, study fi ndings do not 
adopt a causal interpretation, in the sense of confi rming a presumed hypothesized 
network of causation. Rather this study sheds light on the tenability of the theorized 
causal model and results may be used as grounds for future research to further 
investigate causal mechanisms that are implied by this correlational study.  

 For this study, a statistical modeling approach was needed to meet several ana-
lytic goals. First, the study of indirect effects required the modeling of mediating 
variables. Path analysis (Wright,  1934 ) met this need because it offered a single 
framework for a system of multiple equations. Another analytic goal was the inclu-
sion of latent variables in the model. This study examined relationships among 
theorized dimensions that pertain to learning trajectory-oriented formative assess-
ment, which are not measured directly, but rather are measured by the TASK using 
a set of indicators and rubrics. Structural equation modeling (SEM) expands the 
path analysis framework to include a measurement model. In the measurement 
component of the SEM, latent variables are modeled as exogenous predictors of 
multiple observed items. The structural component of SEM specifi es relationships 
among latent or observed variables. A benefi t of using SEM is that both the mea-
surement model and the structural model are estimated as one system of equations. 

 An empirical model was specifi ed according to the structural pathways in the 
conceptual model (Fig.  3 ). Each of the four hypothesized domains were modeled as 
unobserved factors represented by the ten constituent rubric scores using all 1,261 
complete TASK records. The latent factors were identifi ed in the model by assign-
ing each a variance of one, making the factor covariance interpretable as a factor 
correlation. The observed data were analyzed as continuous outcomes and the path-
ways between factors were freely estimated parameters. The model was estimated 
using Full Information Maximum likelihood using MPlus 7.1. 

 The full structural equation model defi ned by the structural pathways specifi ed 
by our conceptual model was estimated and did not meet conventional thresholds 
for model fi t, with a signifi cant overall model chi square statistic and RMSEA = 0.18 
(recommended < 0.10). Despite the marginal fi t of the model, we fi nd that all path 
coeffi cients in the structural model are statistically signifi cant and consistent with 
the hypothesized direction of the relationships. The three antecedent dimensions 
accounted for 23 % of variation in instructional decision making and the estimated 
direct, total indirect, and total effects presented in Table  4  are all statistically signifi -
cant at  p  < 0.05. Table  5  presents the standardized estimated correlation matrix for 
the latent variables.

    Estimated correlations between TASK domains are positive, as expected. 
Further, all correlations are low suggesting that the measured domains are not 
highly associated (Cohen,  1988 ). The direction and magnitude of the statistics 
across TASK instruments suggests that the domains we are measuring are distinct. 
Across the subject areas, we observe that the largest correlations are between 
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the domains of Analysis of Student Thinking (AST) and Learning Trajectory 
Orientation (LTO). In addition, Analysis of Student Thinking (AST) is more 
strongly correlated with each of the other domains, particularly in grades K-5, sug-
gesting that overlap exists between this domain and the other domains. 

 These results are interpreted as preliminary fi ndings that will inform ongoing 
instrument development as well as alternative conceptual models that may improve 
the fi t of the measurement and structural components using a second round of multi- 
district TASK data. The ability of a teacher to analyze student thinking in terms of 
conceptual understanding was the largest predictor of instructional decision making 
in both its direct and total effect. A teacher’s ability to assess the mathematical 
validity of student work is also predictive of IDM with nearly half of the total effect 
being mediated by their analysis of students’ thinking and learning trajectory orien-
tation. Overall, these fi ndings provide preliminary evidence that a teacher’s depth of 
understanding of student thinking may have the largest total effect on instructional 
decision making in terms of the degree to which these decisions draw upon learning 
trajectories with a signifi cant amount of that relationship being mediated by the 
teachers’ learning trajectory orientation. 

 These results confi rm and add to some of the existing fi ndings of qualitative stud-
ies of the relationship between teachers’ interpretation of student work and their 
ability to develop informed instructional responses. In studying teachers’ use of 
interim test data, Goertz, Oláh, and Riggan ( 2009 ) found that teachers who inter-
preted student errors conceptually, rather than only procedurally, were more likely 
to generate substantive instructional responses. Similarly, in analyzing teacher logs, 
Riggan and Ebby ( 2013 ) found a clear linkage between the way teachers analyze 
their student work and the nature of the instructional responses they develop. 
Teachers who described student work in terms of conceptual understanding were 
more likely to state that they would reteach the content differently using strategies 
that were tailored to the individual student. Adding to this research base, our analy-
sis of TASK suggests that the depth of teachers’ interpretation of student work is 
moderately related to their tendency to develop a learning trajectory-oriented 
instructional response.  

   Table 4    Standardized direct, 
indirect, and total effects on 
instructional decision making   

 Direct  Total indirect  Total 

 MV  0.089  0.072  0.161 
 AST  0.234  0.055  0.289 
 LTO  0.153  –  0.153 

   Note : All estimates are signifi cant at  p  < 0.05  

   Table 5    Standardized 
estimated correlation matrix 
for the latent variables   

 MV  AST  LTO  IDM 

 MV  1.00 
 AST  0.224  1.00 
 LTO  0.058  0.259  1.00 
 IDM  0.118  0.179  0.114  1.00 
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    Building Capacity for Effective Mathematics Instruction 

 TASK was developed as a tool for researchers and evaluators to assess teacher 
capacity for learning trajectory-oriented formative assessment and the impact of ini-
tiatives that seek to develop that capacity. The development of TASK and the various 
ongoing studies described in this chapter has led to some key fi ndings about the 
instrument itself, the current capacity of teachers to interpret student thinking in rela-
tion to learning trajectories, and the nature of the knowledge that teachers need for 
effective mathematics instruction. TASK was developed to explore and measure an 
understudied component of mathematical knowledge for teaching: teacher knowl-
edge in the context of formative assessment. Taken together, our analyses highlights 
three key domains—analysis of student thinking, learning trajectory orientation, and 
instructional decision making—that advance the conceptualization of the teacher 
knowledge required for learning trajectory-oriented formative assessment. 

 Our results offer empirical evidence that teachers’ tendency to analyze student 
thinking for underlying conceptual understanding is related to their ability to develop 
instructional responses that build on the current state of students’ thinking to move 
them towards more sophisticated understanding. Yet the vast majority of teachers 
surveyed across grade levels analyzed student work procedurally, in terms of what 
students did to solve the problem, rather than in relation to underlying conceptual 
understanding. Given the current emphasis in mathematics education on rigor as a 
balance between conceptual and procedural understanding, this suggests that there is 
a great deal of room for growth in teacher capacity to identify, interpret, and respond 
to students’ conceptual understanding. Furthermore, results point to understanding a 
learning trajectory orientation, or the ability to order different student strategies in 
terms of the sophistication of mathematical thinking, as rooted in analysis for con-
ceptual understanding and an immediate predictor of instructional decision making. 

 The TASK instrument is thus an important step towards identifying more pre-
cisely the components of teacher knowledge that can infl uence and potentially 
improve classroom instruction. TASK also represents an important new tool for 
researchers in mathematics education that has the capability to gauge more than just 
content knowledge or general pedagogical content knowledge. The ability to mea-
sure teacher knowledge, capacity, and growth in relation to the understanding and 
use of learning trajectories will become increasingly important as states and dis-
tricts work to train teachers to reach the goals of new and more rigorous standards.     
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