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      Measuring Change in Mathematics Learning 
with Longitudinal Studies: Conceptualization 
and Methodological Issues 

             Jinfa     Cai     ,     Yujing     Ni    , and     Stephen     Hwang   

          Learning is about growth and change. Learning is often demonstrated by changes in 
student achievement from one point in time to another. Therefore, researchers and 
educators are interested in academic growth as a means to understand the process of 
student learning. In mathematics education, there has been a growing interest in 
using longitudinal designs to examine and understand student learning over time. 
Researchers face a number of issues of measuring change using such designs. 
In this chapter, we draw on our experience gained from two longitudinal studies of 
mathematics learning to discuss various issues of measuring change in student 
learning. We start with a brief introduction of the two studies. Then we discuss the 
conceptualization and measures of change in mathematics learning. Third, we dis-
cuss issues of analyzing and reporting change. Finally, we discuss how to interpret 
changes in mathematics achievement in longitudinal studies appropriately. 

    Two Longitudinal Studies Examining Curricular Effect 
on Student Learning 

 This chapter draws on two longitudinal projects that studied the effects of curricu-
lum on student learning. The fi rst project was conducted in China and addressed the 
question, “Has curriculum reform made a difference?” by looking for changes in 
classroom practice and consequently in student learning. This project (hereafter 
called the China project) compared the effect of a new, reform-oriented elementary 
mathematics curriculum to that of the conventional curriculum on classroom 
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practice and student learning outcomes. The second project—the LieCal project 
(Longitudinal Investigation of the Effect of Curriculum on Algebra Learning)—was 
conducted in the USA. This project was designed to investigate both the ways under 
which a reform curriculum did or did not have an impact on student learning in 
algebra, and the characteristics of the curricula that led to student achievement 
gains. Both projects looked into changes in classroom practice by examining the 
nature of classroom instruction, analyzing cognitive features of the instructional 
tasks implemented in different classrooms, the characteristics of classroom interac-
tions, and changes in student learning outcomes. 

 The China project and the LieCal project shared similarities in their designs and 
data analyses. In particular, both projects addressed a set of common and critical 
questions about teaching and learning using reform-oriented curricula, including: 
(1) Does the use of the reform-oriented curriculum affect the quality and nature of 
classroom teaching; (2) Do students improve at solving problems, as the developers 
of the reform-oriented curricula claim; (3) Do students sacrifi ce basic mathematical 
skills with the reform-oriented curriculum; and (4) To what extent does the use of 
the reform-oriented curriculum improve learning for all students?  

    Conceptualizing and Measuring Change in Student Learning 

 Student learning takes place in various domains; two major domains are cognitive 
and affective (Krathwohl,  2002 ), each with multiple factors infl uencing what is 
learned, how it is learned, and how it is remembered and used. Here, we will focus 
on the cognitive domain, and in particular on mathematical thinking, to illustrate the 
issues of how to conceptualize and measure change in student learning. We will 
briefl y touch on the affective domain afterwards. 

 Although there is no consensus on what mathematical thinking is, it is widely 
accepted that there are many aspects of mathematical thinking that warrant exami-
nation (Cai,  1995 ; Ginsburg,  1983 ; Schoenfeld,  1997 ; Sternberg & Ben-Zeev, 
 1996 ). Studies of mathematics learning over the years have included a focus on 
identifying those ways that students demonstrate a propensity to “think mathemati-
cally” in their actions. For example, Polya found that capable problem solvers 
employ heuristic reasoning strategies to solve problems (Polya,  1945 ). Being able 
to self-generate useful analogies while solving a problem is an example of a  heuristic 
that capable solvers demonstrate as they solve problems. In addition, Krutetskii 
( 1976 ) found that able students are more likely than less able students to use gener-
alizations in their mathematical problem solving. Other researchers have described 
and explained mathematical thinking as distinct from the body of mathematical 
knowledge, focusing on processes such as specializing, conjecturing, generalizing, 
and convincing (Burton,  1984 ). More recently, mathematical thinking has been 
characterized in terms of the learner being able to develop strong understandings in 
mathematical situations (Kieran & Pirie,  1991 ) and making connections among 
concepts and procedures (Hiebert & Carpenter,  1992 ). 

J. Cai et al.



295

 These studies suggest that we need to use multiple measures to assess the 
 mathematical thinking of students. For example, although we know that it is impor-
tant for students to have algorithmic knowledge to solve many kinds of problems, 
this does not ensure that they have the conceptual knowledge to solve nonroutine or 
novel problems (Cai,  1995 ; Hatano,  1988 ; Steen,  1999 ; Sternberg,  1999 ). Hence, it 
is crucial that studies of mathematical thinking include tasks that measure students’ 
high-level thinking skills as well as their routine problem-solving skills that involve 
procedural knowledge. Indeed, as the heart of measuring mathematical performance 
is the set of tasks on which achievement is to be assessed, it is desirable to use vari-
ous types of tasks to measure the different facets of students’ mathematical thinking 
and gauge student growth in mathematics learning (Betebenner,  2008 ; Mislevy, 
 1995 ; National Research Council (NRC),  2001 ). 

 Recognizing the need to assess mathematical thinking broadly, both the China 
project and the LieCal project used multiple measures of student achievement. Most 
of the assessment tasks used in both projects came from Cai’s earlier work ( 1995 , 
 2000 ), in which he investigated Chinese and US students’ mathematical thinking. 
The design of the achievement measures in each project was guided by the follow-
ing considerations: (1) a combination of multiple-choice and open-ended assess-
ment tasks should be used to measure students’ performance; (2) different cognitive 
components, specifi cally, the four components of Mayer’s ( 1987 ) cognitive model 
(translation, integration, planning, and computation), should be attended to in the 
multiple choice tasks; and (3) in responding to open-ended tasks, students should 
show their solution processes and provide justifi cations for their answers. 

 Because of their potential for broad content coverage and objective scoring, 
their highly reliable format, and their low cost, multiple-choice questions were 
used to assess whether students had learned basic knowledge and skills in mathe-
matics. However, it is relatively diffi cult to infer students’ cognitive processes 
from their responses to multiple-choice items; such questions are more appropriate 
for measuring procedural knowledge and basic skills than conceptual understand-
ing. Thus, open-ended tasks were also included to assess student achievement in 
both projects. The open-ended tasks provided a better window into the thinking 
and reasoning processes involved in students’ problem solving (Cai,  1997 ). The 
use of various types of assessment tasks provided the information to address ques-
tions such as, “Does the curricular emphasis on conceptual understanding come at 
the expense of fl uency with basic mathematical skills?” For example, the China 
project showed that both students who received the reform-oriented curriculum 
and those who did not receive the curriculum had signifi cant improvement in 
 performance on computation and on routine and open-ended problem solving 
over time. However, the non- reform group showed a faster rate of improvement 
on the measure of computation. The LieCal project demonstrated that students 
receiving the reform-oriented CMP curriculum (Connected Mathematics Program, 
a  Standards -based curriculum) showed a faster rate of improvement than the 
 students receiving non-CMP curricula on the measures of solving open-ended 
tasks. However, the two groups did not differ in growth rate on the measure of 
computation and equation solving. 
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 Research has also shown that changes in learning experiences can lead to changes 
in feelings towards mathematics, perception of mathematics, and consequently 
commitment to think mathematically. For example, Schoenfeld ( 1992 ) demon-
strated how students’ beliefs about mathematics could be changed with the experi-
ence of being engaged in solving authentic mathematical problems. Reform-oriented 
mathematics curricula aim not only to help students think mathematically but also 
to nurture their positive beliefs and attitudes toward learning mathematics. 
Therefore, the China project administered multiple measures of affective outcomes 
(interest in learning mathematics, classroom participation and views of what math-
ematics is about) several times. It was found that, although the students showed 
signifi cant gains in the three measures of cognitive achievement, their interest in 
learning mathematics declined from the start of fi fth grade to the end of sixth grade 
for both the reform and non-reform group, with a steeper decline for the non-reform 
group. This highlights the importance of considering change in students’ mathemat-
ical learning broadly so that changes can be understood in a broader context of 
learning. In particular, it highlights the importance of longitudinal analyses so that 
growth rates can be estimated for key learning variables.  

    Analyzing and Reporting Change 

 The major purpose of a longitudinal study is to examine change and the correlates 
or causes of change over time. Because learning is fundamentally about growth and 
change, analyzing and reporting change in students’ academic achievement is a 
signifi cant endeavor for the study of learning. However, change is often diffi cult to 
document well, given the myriad variables and factors that may infl uence changes 
in students’ learning. It is even more challenging to identify the causes of a change 
when change is detected. A sound analysis of longitudinal data relies on a sound 
study design that includes the use of multiple measures of the same variables over 
time to help enhance the internal validity of the study (Fisher & Foreit,  2002 ; Linn, 
 2007 ). Given the multifaceted nature of the mathematical thinking that the LieCal 
and China projects were studying, both projects used three cognitive measures of 
mathematics achievement (computation, routine problem solving, and complex 
problem solving) to gain a detailed picture of student growth in mathematics 
achievement and a possible curricular correlate to the growth. 

 Within the confi nes and constraints of non-randomized experimental design, the 
primary question about change in student achievement that our studies were 
designed to answer was whether or not there was any meaningful difference in 
growth rate in mathematics achievement among groups of students using different 
curricula (Cai, Wang, Moyer, Wang, & Nie,  2011 ; Ni, Li, Li, & Zhang,  2011 ). 

 At the same time, the projects were also designed to address other factors that 
might affect the students’ mathematics achievement growth rate. For example, the 
LieCal project considered how the conceptual or procedural emphasis of classroom 
instruction might moderate the curricular infl uence on the growth rate of students’ 
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mathematics achievement. To measure these classroom variables, as the students 
progressed from sixth through eighth grade, we conducted over 500 lesson observa-
tions of over 50 mathematics teachers participating in the project. Each LieCal class 
was observed four times, during two consecutive lessons in the fall and two in the 
spring. Trained observers recorded extensive minute-by-minute information about 
each lesson using a detailed, 28-page observation instrument. The data from these 
observations were used to characterize key aspects of each lesson, including the 
degree of conceptual and procedural emphasis of instruction in the CMP and non- 
CMP classrooms (Moyer, Cai, Wang, & Nie,  2011 ). 

 In the China project, each of 60 participating teachers and their classrooms was 
observed for three lessons on three consecutive days. The videotaped lessons were 
analyzed in terms of cognitive features of implemented instructional tasks and pat-
terns of classroom discourse. The project found signifi cant differences in instruction 
between the reform and non-reform classrooms (   Li & Ni,  2011 ). With the measured 
aspects of classroom instruction, it became possible to examine the relations 
between curriculum, classroom instruction, and student learning. 

 In addition, both the LieCal project and the China project attended to elements of 
the students’ sociocultural backgrounds that might infl uence change in student 
achievement. Classrooms in the USA have become increasingly ethnically diverse, 
and there have been persistent concerns about disparities in the mathematics 
achievement of different ethnic groups. This is particularly true with respect to areas 
such as algebra and geometry, where success has been shown to help narrow dis-
parities in post-secondary opportunities (Loveless,  2008 ). Given that middle school 
mathematics experiences can lay the foundation for students’ development of alge-
braic thinking, the LieCal project explored potential differential effects of reform 
and traditional curricula on the mathematics performance of students from different 
ethnic groups (Cai, Wang et al.,  2011 ; Hwang et al.,  2015 ). 

 The China project took into consideration socioeconomic status (SES) as well. 
This variable was measured because one purpose of the project was to examine 
whether achievement gaps between higher SES students and low SES students 
would decrease or increase in the different aspects of mathematics achievement 
over time in relation to the different mathematics curricula. 

    Analyzing and Reporting Change Quantitatively 

 With these purposes in mind, both studies employed a panel design in which a 
cohort is followed for a period of time and a common set of instruments is adminis-
tered repeatedly over that period (Ma,  2010 ). The studies produced data with a 
hierarchical structure of individual students nested within classes, classes nested 
within schools, etc. For this type of hierarchically structured data, the technique of 
hierarchical linear modeling (HLM), and in particular multilevel growth modeling, 
is appropriate and effective for examining change at both the individual and the 
group level. This is because this method is able to account for the correlated 
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observations of the different levels due to the clustering effects and thus relax the 
assumption of independence of observations for the traditional regression analysis 
(Raudenbush & Bryk,  2002 ). Therefore, both projects used HLM models to answer 
their research questions. The HLM analyses revealed that, in the China project, the 
students showed a faster growth rate in computation and solving routine problems 
than in solving open-ended problems, and that this trend was more pronounced for 
the students receiving a conventional curriculum than those receiving a reform cur-
riculum. The LieCal project used four two-level HLM models (one for each out-
come measure) with the mean of conceptual emphasis or procedural emphasis 
across 3 years as a teaching variable together with student ethnicity and curriculum 
type nested in schools (Cai, Wang et al.,  2011 ). The results of the HLM analysis 
showed that students who used CMP had a signifi cantly higher growth rate than 
non-CMP students on open-ended problem-solving and translation tasks while 
maintaining similar growth rates on computation and equation-solving tasks. Thus, 
the relatively greater conceptual gains associated with the use of the CMP curricu-
lum did not come at the cost of basic skills. 

 In addition, to gain a fi ner-grained picture of the curricular impact and also as a 
validation of the results of the HLM analyses, Cai, Wang et al. ( 2011 ) compared the 
percentage of students receiving the CMP curriculum who obtained positive gain 
scores to the percentage of students receiving non-CMP curricula who obtained 
positive gain scores. These calculations showed the relative sizes of the groups of 
students whose performance increased on each of the outcome measures whereas 
the results of the HLM analyses estimated an overall difference in the means of the 
gain scores between the two groups of students. For example, we found that 89 % 
of CMP students had positive gains in open-ended problem-solving tasks over the 
course of the middle grades. This was a statistically signifi cantly larger percentage 
than for the non-CMP students, of whom 83 % showed gains in open-ended prob-
lem solving. With respect to computation, despite the fact that the mean gains were 
not signifi cantly different between the CMP and non-CMP students, we found that 
a larger percentage of non-CMP students than of CMP students showed positive 
gains (78 % vs. 60 %). With respect to equation-solving, however, the two groups 
were not signifi cantly different either in mean gains or in percentage of students 
with positive gains (e.g., 50 % of student group A receiving non-CMP curricula 
obtaining positive gain scores and 70 % of student group B receiving the CMP 
 curriculum doing so) (Cai, Wang et al.,  2011 ). 

 Using a broad set of measures over time within a study also allows for the collec-
tion of information on what trade-offs may be faced with different curricula and 
about what can be realistically expected in typical classrooms (Brophy & Good, 
 1986 ). The China project showed that the non-reform group demonstrated faster 
growth in profi ciency in computation skills from the fi fth grade to the sixth grade, 
and they outperformed the reform group students in the fi nal assessment. Also, the 
reform group students kept their initial advantage in solving open-ended problems, 
as they performed better than the non-reform group on the fi rst assessment and the 
growth rates for the two groups were similar. Nevertheless, given the nature of the 
design, it could not be concluded that the reform group’s better performance on 
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complex problem solving was merely due to the curriculum or to their better initial 
status. However, the reform group appeared to have achieved a relatively more bal-
anced development in the three measures of mathematics achievement, computa-
tion, routine problem solving, and complex problem solving. 

 The China project was also concerned with whether or not the different curricula 
would help reduce achievement gaps between students from different family back-
grounds. The project found that the achievement gaps in computation skills between 
students of high SES backgrounds and those of low SES were narrowed signifi -
cantly from their fi fth grade to sixth grade, but there was no narrowing of the gap in 
solving open-ended mathematics questions. This was the case for both groups using 
either a reform curriculum or conventional curriculum. The closing achievement 
gap in computation but not in solving open-ended mathematics questions suggested 
that instructional conditions that facilitate mathematical explaining, questioning, 
exchanging, and problem solving are most valuable for students from low SES fam-
ilies because low SES families are less likely to be able to afford the conditions to 
facilitate high-order thinking (Ni et al.,  2011 ).  

    Analyzing and Reporting Change Qualitatively 

 To deepen analyses of curricular effect on change in student learning it is necessary 
to look beyond measuring performance differences in terms of mean scores on vari-
ous types of tasks between groups of students receiving different types of curricula. 
As useful as such comparisons may be, they do not provide a complete profi le of 
what students who use different curricula can and cannot do. Two students may 
receive the same score on a task but use very different solution strategies or make 
very different types of errors. To inform these comparisons of performance on indi-
vidual tasks, some additional exploration of the thinking and methods that led stu-
dents to their answers is required. 

 The use of open-ended assessment tasks makes it possible not only to measure 
students’ higher-order thinking skills and conceptual understanding, but also to ana-
lyze students’ solution strategies, representations, and mathematical justifi cations 
(Cai,  1997 ). The strategies that students employ and the ways that they represent 
their solutions can provide insight into their mathematical ideas and thinking pro-
cesses. For example, in the LieCal project, we supplemented our analysis of the 
correctness of answers with a longitudinal analysis of the changes in students’ strat-
egies over time (Cai, Moyer, Wang, & Nie,  2011 ). Figure  1  shows the doorbell 
problem, an open-ended task used in the LieCal assessments. In this problem, stu-
dents were asked to generalize from the given pattern of doorbell rings.  

 Student performance on this task were analyzed longitudinally over the course of 
3 years and found that, in general, both CMP and non-CMP students increased their 
generalization abilities over the middle school years and that CMP students devel-
oped, on average, greater generalization abilities than non-CMP students. More spe-
cifi cally, the success rate for each question improved over time for both CMP and 
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non-CMP students, but the CMP students’ success rate increased signifi cantly more 
than that of the non-CMP students on questions A and C in the doorbell problem 
over the course of the middle grades (Cai, Moyer et al.,  2011 ). 

 By examining the students’ solution strategies on this open-ended task, we 
obtained further data to inform and confi rm this fi nding. We coded the solution 
strategies for each of these questions into two categories: abstract and concrete. 
Students who chose an abstract strategy generally formulated an algebraic represen-
tation of the relationship between the ring number and the number of guests enter-
ing at that ring (e.g., the number of guests who enter on a particular ring of the 
doorbell equals two times that ring number minus one). These students then were 
able to use their generalized rule (e.g., to determine the ring number at which 299 
guests entered). In contrast, those who used a concrete strategy made a table or a list 
or noticed that each time the doorbell rang two more guests entered than on the 
previous ring and so added 2’s sequentially to fi nd an answer. 

 Looking at the changes over time in the solution strategies students employed to 
solve the doorbell problem, we found that both CMP and non-CMP students increased 
their use of abstract strategies over the middle grades. Indeed, in the fall of 2005, only 
one CMP student and none of the non-CMP students used an abstract strategy to cor-
rectly answer question A, but in the spring of 2008, nearly 9 % of the CMP students 
and 9 % of the non-CMP students used abstract strategies to correctly answer ques-
tion A. Similarly, nearly 20 % of the CMP students and 19 % of non- CMP students 
used an abstract strategy to correctly answer question B by the spring of 2008. 
Although only a small proportion of the CMP and non-CMP students used abstract 
strategies to correctly answer question C in the spring of 2008, the rate of increase for 
the CMP students who used abstract strategies from the fall of 2005 to the spring of 
2008 was signifi cantly greater than that for non-CMP students ( z  = 2.58,  p  < .01). 

Making Generalizations

Sally is having a party.

The first time the doorbell rings, 1 guest enters.

The second time the doorbell rings, 3 guests enter.

The third time the doorbell rings, 5 guests enter. 

The fourth time the doorbell rings, 7 guests enter.

Keep going in the same way.  On the next ring a group enters that has 2 more persons than
the group that entered on the previous ring.

A. How many guests will enter on the 10th ring? Explain or show how you found your
    answer.

B. How many guests will enter on the 100th ring? Explain or show how you found your
    answer.

C. 299 guests entered on one of the rings.  What ring was it? Explain or show how you
    found your answer.

D. Write a rule or describe in words how to find the number of guests that entered on each
     ring.

     Fig. 1    The doorbell problem used in the LieCal open-ended assessment       
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Thus, these results provided additional detail that informed our conclusion that both 
CMP and non-CMP students increased their generalization abilities over the middle 
school years, but that on average, the CMP students developed their generalization 
ability more fully than did non-CMP students. 

 The China project did a similar qualitative analysis of the solution strategies that 
students employed to solve open-ended mathematics questions. A similar observa-
tion was obtained that the students receiving the new curriculum were more likely 
to use a more generalized strategy (e.g., algebraic or arithmetic representation) to 
solve open-ended questions such as the doorbell problem than the students receiv-
ing the conventional curriculum (Ni, Li, Cai, & Hau,  2009 ). The advantage of using 
the more generalized strategy became evident in students’ solutions to the part of 
the doorbell problem where 299 guests enter.  

    Analyzing and Reporting Change Beyond the Grade Band 

 Generally speaking, mathematics curricula are designed to address the needs of 
students within a particular grade band, whether it be the elementary, middle, or 
secondary grades. Analyses of curricular effect, however, should not be limited to 
the grades in which students encounter the curriculum. Indeed, students’ experi-
ences with mathematics curricula can set them up for success or failure in their 
future mathematics classes. Thus, it is important for longitudinal curriculum analy-
ses to follow students beyond the grade band in which they experience a curriculum 
to gauge the long-term effects of the curriculum. 

 The LieCal project initially measured curricular effect on students’ learning of 
algebra while they were still in middle school. The middle school results suggested 
a potential parallel with fi ndings from studies of Problem-Based Learning (PBL) in 
medical education (Hmelo-Silver,  2004 ; Vernon & Blake,  1993 ). Specifi cally, med-
ical students who were trained using PBL approaches performed better than non- 
PBL (e.g., lecturing) students on clinical components in which conceptual 
understanding and problem solving ability were assessed, but performed as well as 
non-PBL students on measure of factual knowledge. When the medical students 
were assessed again 6 months to a few years later, the PBL students were found to 
perform better than their counterparts on clinical components and measures of fac-
tual knowledge (Vernon & Blake,  1993 ). 

 Thus, the LieCal project subsequently followed 1,000 of the CMP and non-CMP 
students into high school to investigate the hypothesis that the superior conceptual 
understanding and problem solving abilities gained by CMP students in middle 
school might result in better performance on delayed assessments of procedural skill, 
conceptual understanding, and problem solving. We used measures of open- ended 
problem solving in the ninth grade, basic mathematical skills (on the state test) in the 
tenth grade, and problem solving and posing in the 11th grade to probe the long-term 
effects of the CMP and non-CMP curricula that the students had used in middle 
school. On all three measures, we found that the use of the CMP curriculum in 
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middle school had positive effects, not only on students’ middle school performance, 
but also on their high school performance (Cai, Moyer, & Wang,  2013 ). 

 More specifi cally, we found that, controlling for middle school achievement, the 
ninth grade, former CMP students performed as well as or signifi cantly better than 
the non-CMP students on open-ended mathematics problems. On the tenth grade 
state standardized test of basic mathematical skills, we found that the CMP students 
had a signifi cantly higher scaled mean score than the non-CMP students (Cai, 
Moyer, & Wang,  2013 ). This result held for a series of analyses of covariance con-
trolling for the students’ sixth grade baseline scores on LieCal multiple choice and 
open-ended tasks as well as for their sixth, seventh, and eighth grade state standard-
ized mathematics test scores. Similarly, on problem-posing tasks administered in 
the 11th grade, we examined the performance of groups of CMP and non-CMP 
students who had performed similarly on their sixth grade baseline examinations 
(Cai, Moyer, Wang, Hwang, et al.,  2013 ). We found that the CMP students were 
more likely to pose problems that correctly refl ected the mathematical conditions of 
the given problem situation than the comparable non-CMP students. Moreover, a 
detailed analysis of the students’ problem-solving performance and strategy use 
showed that the CMP students appeared to have greater success algebraically 
abstracting the relationship in the problem-solving task (Cai, Silber, Hwang, Nie, 
Moyer, & Wang,  2014 ). Together, these results point to the longer-term effects of 
curriculum and thus highlight the importance of analyzing and reporting change 
beyond the immediate grade band in which a curriculum is implemented.   

    Interpreting Change in Mathematics Achievement 

 Interpreting change in mathematics achievement means identifying the causes that 
may be responsible for the observed change. This is an extremely important task for 
advancing knowledge of how educational inputs are related to educational outputs 
and thus to inform educational practice. It is also an extremely diffi cult task to 
accomplish. Below we describe our approach to interpreting change in our longitu-
dinal studies and the lessons we have learned in the process (Cai, Ni, & Lester, 
 2011 ). In particular, we focus on the importance of establishing equivalent groups 
of students in comparative curricular studies and on the need for a conceptual model 
that informs an initial hypothesis. 

    Equivalence of Student Sample Groups 

 Both the LieCal and China studies were designed to investigate curricular infl uence 
on change in student learning outcomes by comparing two curricula. To infer any 
causal links between a curriculum and observed change in student learning out-
comes in this type of comparative study, it is of paramount importance to set up 
equivalent groups of students to receive the curricula (NRC,  2004 ). However, it is 
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often challenging to implement random assignment of students to one or the other 
curriculum because of administrative and ethical constraints. When this is not pos-
sible, it is wise to collect as much information as possible about the student sample 
and consider how any observed change in student achievement may be associated 
with characteristics of the student sample in addition to the curriculum factor. The 
LieCal project randomly selected reform curriculum schools, and was able to obtain 
information on the prior achievement of the students to create statistically compa-
rable groups by selecting comparable non-reform schools. However, this was not 
possible in the Chinese project. The researchers could not equate the groups statisti-
cally because they lacked prior achievement data. This resulted in a high degree of 
uncertainty about the observed changes in student achievement being due to the 
different curricula the students had received. The problem might have been miti-
gated if the Chinese project had, for example, administered an intelligence test and 
used it as a control variable in the analyses. However, a problem would still have 
remained because intelligence test scores are only moderately correlated with 
school achievement. This underscores the importance of obtaining adequate infor-
mation about student populations prior to the beginning of a comparative study.  

    Initial Conceptual Model 

 One must have a theory or hypothesis, regardless how rudimentary it may be at fi rst, 
to design a curriculum study that can test how curricular infl uence is related to class-
room instruction and, in turn, to students’ mathematics achievement (Christie & 
Fierro,  2010 ; NRC,  2004 ; Weiss,  1998 ). In the LieCal project, we used the concep-
tual model shown in Fig.  2  of the relations among curriculum, teaching and learning 
to frame our investigation of the factors or processes that likely caused the observed 
changes in students’ mathematics achievement (e.g., Cai & Moyer,  2006 ). We con-
sidered that curriculum materials including curriculum standards, textbooks, and 
teacher manuals would affect the kinds of learning tasks that the teachers selected 
and implemented and the types of classroom discourse that the teachers engaged in 
with their students. The nature of the learning tasks and classroom discourse imple-
mented in the classroom would in turn affect learning processes and learning out-
comes for students.  

 It would be ideal to test the entire set of relations described in Fig.  2  simultane-
ously and conclusively. However, this is almost impossible to implement techni-
cally. Among other issues, one major obstacle is that a measurement model involving 
so many variables would produce a covariance matrix so complicated that it would 
be impossible to make a sensible estimation of the parameters concerned (Ni, Li, 
Cai, & Hau,  in press ; Raudenbush & Bryk,  2002 ). This complication is made even 
more acute by the diffi culty in reliably measuring the variables. 

 Facing this challenge in our projects, we used the problem-solving heuristic of 
“divide-and-conquer” to address our research questions. After having observed the 
changes in students’ mathematics achievement and their association with the type of 
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curriculum being implemented, the LieCal project used HLM analyses to investi-
gate whether the conceptual or procedural emphasis of classroom instruction mod-
erated the curricular infl uence on the achievement gains of the students. However, 
these variables did not show any meaningful infl uence. We then looked into the 
effect of the cognitive demand of instructional tasks. Using the classifi cation scheme 
of Stein and Lane ( 1996 ), the instructional tasks actually used in the CMP and non- 
CMP classrooms were classifi ed into four increasingly demanding categories of 
cognition: memorization, procedures without connections, procedures with connec-
tions, and doing mathematics. We found that the distributions of types of instruc-
tional tasks in the CMP and non-CMP classrooms were signifi cantly different, with 
CMP teachers implementing a higher percentage of cognitively demanding tasks 
(procedures with connections and doing mathematics) than non-CMP teachers (Cai, 
 2014 ). In contrast, non-CMP teachers implemented a signifi cantly higher percent-
age of tasks with low cognitive demand (memorization or procedures without con-
nections). Moreover, we found that this variable was a signifi cant predictor of 
achievement gains in the students receiving either curriculum. 

 Similarly, following the conceptual framework in Fig.  2 , the China project exam-
ined the relationships of the cognitive features of instructional tasks (high cognitive 
demand, multiple representations, and multiple solution-strategies) to teacher– 
student classroom discourse on the one hand (Ni, Zhou, Li, & Li,  2014 ) and to stu-
dents’ mathematics achievement gains on the other hand in the Chinese mathematics 
classrooms (Ni, Zhou, Li, & Li,  2012 ). The results showed that high cognitive 
demand tasks were associated with teachers’ high-order questions, which in turn led 

Instructional Tasks

As set up by teachers

Instructional Tasks 

As implemented

in classroom

Students’ 

Learning 

Processing 

& Outcomes

Classroom Discourse

Instructional Tasks

In the curricular materials

Students’ Learning Goals

In the curricular materials

  Fig. 2    Framework used in the two projects (Cai,  2007 ; Cai & Moyer,  2006 ; Ni et al.,  in press )       
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to students’ highly participating responses. However, teachers tended to be more 
authoritative in evaluating student responses when they used high cognitive demand 
tasks or high-order questions. It was unexpected that teachers tended to ask low- 
order Yes or No questions when they elicited multiple solution methods from stu-
dents for an instructional task. It appeared that the teachers just wanted students to 
talk more but did not press students to be accountable for their answers when pursu-
ing multiple solution methods. Concerning the effects of the cognitive features of 
instructional tasks on student learning, the China project found that the cognitive 
features did not predict achievement gain on any of the cognitive learning outcomes 
(computation, routine problem solving, and complex problem solving). However, 
high cognitive demand of instructional tasks was shown to positively predict affec-
tive outcomes including students’ expressed interest in learning mathematics, class-
room participation, and a more dynamic view about mathematics. In turn, the 
indicators of students’ positive attitude towards learning mathematics were signifi -
cantly associated with their cognitive learning outcomes. These results illustrated 
the richness, complexity, and uncertainty of the links from the written curriculum to 
the implemented curriculum in classrooms and then to the achieved curriculum as 
shown in changes in student learning. 

 Our experience with the two projects indicates that a conceptual framework, 
such as the one in Fig.  2 , is a necessary tool for planning and executing a quality 
longitudinal study of students’ mathematics learning in relation to curricula and 
classroom instruction.   

    Conclusion 

 The LieCal project and the China project provide opportunities for us to consider 
the challenges in conducting high-quality longitudinal research into student learn-
ing. It is clear that the constructs we are interested in measuring are broad, requiring 
both careful defi nitions and well-chosen measures to address properly. If we wish to 
measure growth and change in students’ academic achievement, it is necessary to 
use a variety of measures that address multiple facets of that growth and change. To 
characterize the effects of curriculum on student learning, diverse measures of con-
ceptual understanding, procedural skill, problem-solving and problem-posing abili-
ties, and interest and attitude toward learning mathematics are all useful tools. 

 In addition, the contexts and structures within which students learn guarantee that 
the data we collect will be complex. The methods of analyses we choose must there-
fore be suitable for the structure of the data and be suffi ciently robust to take into 
consideration the many infl uences on student learning. Social and socioeconomic 
factors, the nature of classroom instruction, and many other factors can infl uence 
student learning, and thus the design of studies that include these factors must be 
carefully considered. Of course, no study design, however solid it may be, can address 
all of the potential infl uences. As we have done in planning the LieCal and China 
projects, researchers must use their conceptual models and hypotheses strategically 
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to choose what to address and how, given the constraints of experimental design and 
ethical considerations. 

 As we consider the results from these two projects, we look forward to continued 
longitudinal research that seeks to conceptualize, measure, analyze, and interpret 
change in student learning. We conclude with a fi nal note on the role of experimen-
tal studies and our expectations for them. It is important to note that the analyses 
done by both the LieCal project and the China project about the relations between 
classroom processes and gains in student mathematics achievement were descrip-
tive in nature. Therefore, experimental studies are yet required to test and prove a 
causal link of the classroom processes to student learning outcomes. However, these 
correlational fi ndings were derived from naturalistic situations in which the class-
rooms differed with respect to factors such as teachers’ allocation of time to aca-
demic activities, classroom organization, and student backgrounds. The patterns of 
association observed in these situations do provide meaningful results that can 
guide further experimental studies and classroom practice (Brophy & Good,  1986 ). 

 Of course, not every experimental study using random assignment will produce 
causal links between a set of assumed factors and the observed outcomes. Conversely, 
it is always questionable for a non-randomized study to draw such causal links. 
Indeed, caution is always appropriate when interpreting the results of any single 
study. Consequently, consistency and replication of fi ndings is the key to the gener-
alization of any fi nding. A good example of this is the evaluation of the federally 
funded early childhood programs in the USA (Heckman, Doyle, Harmon, & 
Tremblay,  2009 ; Reynolds,  2000 ). On the one hand, the implementation of early 
childhood education varied in different states and communities. This made general-
ization of any particular fi nding about its effectiveness diffi cult. On the other hand, 
the assemblage of evaluations of programs that were carried out in diverse situations 
provided an excellent opportunity to examine whether or not a given fi nding about 
the effects of the programs could be observed across different circumstances. 
Converging evidence was obtained that indicated that the cognitive advantages for 
the children participating in the programs tended to disappear approximately 3 
years after leaving the programs. However, those children who participated did ben-
efi t in terms of increased likelihood of retention in grade school, high school gradu-
ation, college education, and employment. The conclusions that arose from the 
convergence of consistent fi ndings and the replication of those fi ndings across 
diverse contexts have subsequently contributed to well-informed educational policy 
and practice for early childhood education. Similar concerted efforts are required to 
examine the robustness of fi ndings about the infl uences of curricular and classroom 
variables on gains in student mathematics achievement in different circumstances 
and with different methods.     
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