
265© Springer International Publishing Switzerland 2015 
J.A. Middleton et al. (eds.), Large-Scale Studies in Mathematics Education, 
Research in Mathematics Education, DOI 10.1007/978-3-319-07716-1_12

A Longitudinal Study of the Development 
of Rational Number Concepts and Strategies 
in the Middle Grades

James A. Middleton, Brandon Helding, Colleen Megowan-Romanowicz, 
Yanyun Yang, Bahadir Yanik, Ahyoung Kim, and Cumali Oksuz

 Introduction

Research in the area of rational number knowledge and proportional reasoning has pro-
duced many important findings on how students think about and operate with rational 
numbers (Behr, Harel, Post, & Lesh, 1992; Behr, Lesh, Post, & Silver, 1983; Empson, 
Junk, Dominguez, & Turner, 2006; Kieren, 1976). The complex nature of this research 
has yet to discover a clear picture or model of how rational number knowledge develops 
over time. Some conjectures have been made concerning rational number development 
from cross-sectional studies, but without longitudinal evidence such trajectories are dif-
ficult to confirm. Defining a framework for interpreting students’ understanding along a 
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developmental path, if one exists, is a desired goal. Without such a framework, the 
research base will remain fragmented and primarily focused on further examination of 
understandings of a particular subconstruct’s origin and phenomenology instead of the 
essential transitions among contexts and conceptions that should mark a more mature 
rational number understanding among constructs (Streefland, 1993).

Investigations into the way that young children are introduced to whole number 
operations have revealed certain barriers to rational number learning due to the 
inconsistencies between the mathematics of whole numbers and the mathematics of 
fractions (Bransford, Brown, & Cocking, 1999; Mack, 1993; Middleton, van den 
Heuvel-Panhuizen, & Shew, 1998). For example, the rules of thumb multiplying 
makes larger and dividing makes smaller when working with whole numbers 
become problematic when students must consider cases involving multiplication or 
division by proper fractions (Kieren, 1993). Recent research has led to a belief that 
the common part–whole introduction of fractions is not as effective in removing 
early-knowledge barriers to the mathematics of fractions as an approach emphasiz-
ing the ideas of partitioning and unit which are more closely related to thinking 
about fractions as quotients (Empson, 1999; Lamon, 2006; Mack, 1993; Streefland, 
1993). But how might this partitioning approach assist students in gaining concep-
tual knowledge in other subconstructs such as measurement? Understanding the 
transitional paths from one subconstruct to another across the field of rational num-
ber concepts is paramount to building a meaningful model of rational number learn-
ing. It is clear, moreover, that this sought-after developmental trajectory is complex 
and will not follow a simple one-dimensional path, moving in an orderly, linear 
fashion from one subconstruct to another. Rather, it depends upon content and rep-
resentations emphasized in instruction as well as contextual referents that give rise 
to initial conceptions of multiplicative quantities (Lamberg & Middleton, 2002, 
2009). In fact, middle-school children who traverse this complex path will no doubt 
face barriers and perhaps take detours that divert, prolong, or even stall their prog-
ress toward rational number understanding in the course of compulsory instruction.

 Longitudinal Analysis

Rational number understanding has been termed a “watershed concept” (Kieren, 
1976). Fractions, ratios, and proportional reasoning are key underpinnings of alge-
bra, calculus, statistics, and other higher mathematics that are becoming more and 
more critical for the development of workplace skills (Oksuz & Middleton, 2005). 
Cross-sectional studies of students at different ages are the norms for the field in 
examining students’ reasoning and development (see for example, the work of 
Empson et al., 2006). This body of work has aided in the development of new cur-
ricular tasks and sequences aimed at providing a more theoretically defensible and 
psychologically connected approach to the teaching and learning of rational number 
(Carpenter, Fennema, & Romberg, 2012; Lamberg & Middleton, 2009; Lesh, Post, 
& Behr, 1988; Streefland, 1993; Toluk & Middleton, 2004).
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However, due to their cross-sectional design, this body of work does not provide 
a coherent developmental picture of rational number knowledge as students move 
across several grade levels (Carraher, 1996). More recent studies, however, give us 
a glimpse of how this knowledge might develop, beginning with the ideas of unit 
and equivalence, then gradually developing the five interconnected interpretations 
or “subconstructs” that predominate the language of the field: Part–whole, measure, 
operator, quotient, and ratio (Lamon, 2006).1 The work reported here, supported 
through a grant from the National Science Foundation, has allowed us to trace these 
changes in understanding related to learning rational number concepts as they 
developed over the middle-school years where this content is most heavily stressed. 
The results of the study are intended to contribute theoretically to the understanding 
of numbers and operations and pragmatically to the further design of curriculum 
materials and pedagogical strategies that will positively impact students’ ability to 
think, represent, and communicate their understanding of rational number concepts 
and procedures over time.

The importance of knowing how rational number knowledge and proportional 
reasoning develop through the middle grade levels is prompted in part by the fact that 
such knowledge forms the foundation for the study of higher mathematics. This need 
is further evidenced by the fact that students in the United States have demonstrated 
weaknesses in these topic areas in comparative studies with other international stu-
dent populations such as the Trends in International Mathematics and Science Study 
(Kelly, Mullis, & Martin, 2000; Mullis, Martin, Gonzalez, & Chrostowski, 2004). 
Some investigators have shown that even postsecondary students have difficulty rep-
resenting fraction magnitudes (Bonato, Fabbri, Umiltà, & Zorzi, 2007).

Besides these reasons that pertain specifically to academic progress and global 
competitiveness, fundamental understanding of rational number is necessary for a 
well-informed citizenry which includes but is not limited to interpreting graphs and 
other data displays, projecting trends and forecasts, comparing quantities multipli-
catively, and basic consumer and home skills.

 Issues in Mapping Students’ Growing Knowledge

In this study, we traced individual students’ development of each of the rational num-
ber subconstructs through a constructivist lens. On the individual level, we utilized 
individual interviews, following a target sample of students from the sixth grade 
through the eighth grade to assess their growth individually. Yet we also recognize 
that the development of rational number knowledge in a classroom is distributed 
across members of student groups or the class, coordinated between internal and 
external structures, and across time where results of earlier tasks and events transform 

1 It must be noted that these five subconstructs are not the only way to parse student reasoning or 
mathematical manifestations of these concepts. Confrey, Maloney, Nguyen, Mojica, and Myers 
(2009), for example, provide a rich alternative framework.
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the nature of later events (Hollan, Hutchins, & Kirsh, 2000; Roth & McGinn, 1998). 
We therefore observed students’ mathematics classes twice per week, coordinating 
our understanding of their individual growth with their classroom experiences.

The inscriptions or representational tools recorded and analyzed in student 
 interviews and in class observations provided a way to describe the propagation of 
rational number knowledge across classroom participants and within a single stu-
dent’s mind over time (e.g., Lamberg & Middleton, 2002). Examining student 
inscriptions was essential in our study due as they documented the form of knowl-
edge at the moment of instruction and developmental sequence in which the knowl-
edge arose. Inscriptions also served as the object of collective negotiations of 
meaning between the student and class, student and teacher, and student and 
researcher, and were appropriated (transported from one person to another) allow-
ing us to trace the diffusion of knowledge across the 3 years of the study, when they 
appeared spontaneously in interview sessions.

In summary, this study is aimed at understanding the intellectual resources indi-
vidual children bring to bear in developing rational number understanding and the 
classroom norms and practices that constrain and enable individual development 
longitudinally. Specifically, the scope of work is intended to advance the field of 
rational number learning by:

 1. Uncovering patterns and mechanisms of individual development in students’ 
understanding of rational numbers and proportional reasoning

 2. Integrating the current piecemeal body of research on rational number into a 
coherent developmental model by examining how understanding of rational 
number subconstructs evolve concurrently and interactively.

 3. Developing insight into the ways in which classroom instruction, especially the 
use of and talk around inscriptions impact students’ ability to think about, repre-
sent, and communicate their understanding of rational number concepts and 
operations as it develops over time.

 4. Generating transportable models of rational number development that can be 
factored into teacher pre- and in-service staff development to promote quality 
instructional practices in the future.

 Method

 Setting and Participants

This study analyzes data collected over a 20-month period in a longitudinal study 
conducted in an urban K-8 school located in the southwestern United States. The 
approximately 850 students enrolled in the school were predominately from a 
Hispanic lower-middle-class background. Over 90 % of the students received free 
or reduced lunch. Sixth-, seventh- and eighth-grade students participated in the 
study. Their classrooms were equipped with whiteboards on two walls, lined with 
low bookshelves and were furnished with round and rectangular tables at which 
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students were typically seated in groups of four to six students. Students attended 
mathematics class daily. Each class lasted for 70 min except Wednesdays, when 
classes were shortened to 55 min to accommodate after-school teachers’ meetings. 
The District-selected mathematics curriculum consisted of the NSF-sponsored, 
Mathematics in Context (2003) series supplemented with Arizona Instrument to 
Measure Standards (AIMS) test preparation materials, which the teachers used on 
an alternating basis. Some teachers favored drill and practice more than others, and 
these sessions lasted from 10 to 45 min in a typical 70-min class period. A signifi-
cant number of the students in all three classes were English Language Learners 
(ELL). As a school norm, teachers tried to seat the ELL students with classmates 
whose English was sufficient to assist them as needed. Participating teachers often 
used overhead projectors during instruction.

Although the exact enrollment in each class varied over the 3 years of the study, 
the average ratio of teacher to students in the sixth-, seventh-, and eighth-grade 
classes was 1–30. The sixth-grade class was self-contained, where a single teacher 
conducted instruction in all subjects. The seventh- and eighth-grade classes fol-
lowed a middle-school format where students traveled to different classrooms for 
subject instruction. Additionally, some seventh- and eighth-grade students were 
given the opportunity to attend a resource class for extended mathematics instruc-
tion. In this special resource class (held twice per week), students worked in small 
groups on challenging problems outside of the regular mathematics curriculum. As 
a part of the classroom norms in the resource class, students were expected to work 
together and present group solutions to the whole class.

 Data Collection Procedures: Interviews  
and Classroom Observations

 Interviews

To make comparisons across students possible, we designed parallel interview pro-
tocols to assess rational number knowledge across all five subconstructs (Behr et al., 
1992; Lamon, 2006). These protocols were administered to all students enrolled in 
the study in the first and last two interview cycles of the school year, regardless of 
the grade level. The tasks in the first pair of these parallel protocols were the same 
in terms of context and level of difficulty, and they covered the subconstructs of 
operator, quotient, and part–whole. The other parallel pair involved the subcon-
structs of measurement and ratio. Both pairs of parallel protocols were administered 
in the fall and spring semesters to assess individual growth over time, which included 
both ability to correctly solve problems, and also, changes in preferred strategies for 
solving problems.

In addition to these parallel protocols administered to all interviewees, we cap-
tured the impact of curricular tasks and instruction using class-specific individual 
interview protocols with prompts adapted from tasks in the district-adopted 
Mathematics in Context (2003) curriculum. Like the parallel protocols described 
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above, these additional tasks focused on one or more of the five subconstructs of 
rational number, but utilized the inscriptions and language that we observed being 
developed in students’ classes.

 Interview Procedures and Coding

All interviews (common, parallel protocols, and grade-specific protocols) were vid-
eotaped. Special attention was given to recording the students’ written inscriptions 
and their verbal “think aloud” responses. Interviewers attempted to capture stu-
dents’ intuitive, procedural, and conceptual knowledge of rational numbers and 
track their change over time. Interviewers were trained to listen closely and care-
fully prompt students for additional thinking without commenting on the appropri-
ateness of any of their solution strategies. Students who spoke little English were 
interviewed by interviewers fluent in both English and Spanish.

Each protocol was coded across five dimensions: (1) Problem subconstruct (the 
anticipated conception of rational number we hypothesized the problem would 
elicit); (2) Students’ solution strategies (Convert to common fractions; Use of 
equivalent ratios; Measurement division; Multiply by a scale factor (operator); Part/
Whole; Proportional Reasoning; Relating to a similar problem; or No Strategy 
observed/Strategy not code-abled); (3) Whether the strategy utilized was developed 
ad hoc, or if it had been previously observed in the student’s class; (4) Whether the 
problem was solved correctly; and (5) Whether the problem strategy led to a sensi-
ble answer mathematically even if the answer was technically incorrect.

Analyses traced the proportion of strategies utilized across each of the interviews 
as students moved from early sixth grade, through the seventh grade, and finally, as 
they prepared to finish the eighth grade, comparing differences in strategy use for 
each of the four other variables.

Table 1 displays the number of students in cohorts who were individually inter-
viewed by grade and by year. Arrows represent student groups followed up through 
successive grade levels. During the first year of the study, 53 sixth graders and 11 
seventh graders participated. Eleven new sixth graders, four new seventh graders, 
and seven eighth graders entered the interview process in the second year, while 38 
of the previous sixth graders and 8 of the previous seventh graders continued into 
the seventh grade and eighth grade, respectively.

6th grade 7th grade 8th grade Total

1st year 53 11 -- 64

2nd year 11 38+4 8+7 68

3rd year 12 9 32+4+4 61

Total 76 62 55 102

Table 1 Participants 
involved in individual 
interviews
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In the third year, 12 new sixth graders and 4 eighth graders entered the interview 
process, while 9 of the previous seventh graders and 38 of the previous eighth grad-
ers remained in the study. Among these 38 students, 32 were retained from the sixth 
grade across the 3 years. As a result, a total of 102 students took part in individual 
interviews during the 3-year study, and the 32 students who were followed over  
3 years became our focus group in this paper.

 Classroom Observations

In addition to individual interviews, the mathematics classes of students participat-
ing in the study were videotaped twice weekly. These 70-min observations were 
conducted to provide a contextual reference within which we embedded individual 
interviews and analyses. Interviewers were able to see their student interviewees 
engaging in mathematical activities within a social setting, to see what inscriptions 
occurred in the classroom, which were favored, and to look for clues to the origins 
of the problem solving and reasoning strategies students used in interview settings. 
While targeted students interacted in groups or whole class situations, our cameras 
recorded their development of mathematical notations and representations within 
the sociolinguistic structure of the classroom.

 Assessment of Students’ Rational Number Performance

There were two major purposes for collecting performance data: (1) to compare 
performance of our sample to a national/international sample; and (2) to describe 
student growth over time quantitatively. Quantitative assessment data were gathered 
at four time points: at the end of the fall semester in year 1, the beginning and end 
of year 2, and the beginning and end of year 3. Questions were drawn from released 
items from national/international mathematics assessments, the Trends in 
International Mathematics and Science Study (Martin & Kelly, 1998; International 
Association for the Evaluation of Educational Achievement, 2001; International 
Association for the Evaluation of Educational Achievement, 2005) and the National 
Assessment Educational Progress (NAEP). Utilizing questions from TIMSS and 
NAEP tests also allowed for comparisons of these students with students of similar 
age throughout the country and around the world.

To determine the rational number constructs the test items represented, the origi-
nal form was piloted using a separate sample to ensure appropriate content and 
discrimination across the three grades. Three items were excluded due to the stu-
dents’ extremely low percentage of correct responses. As a result, the assessment 
consisted of 27 items, assessing 11 categories of rational number including: 
Ordering fractions, part–whole, ratio, relationships between fraction and decimal, 
proportion, linear measurement, rates, percent, equivalent fraction, operator, and 
decimal notation. Among the 27 items, 4 were free-response (item 1, 9, 18, and 21), 
while the remaining items were multiple-choice (see Table 2).
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Table 2 Test item information

Item 
# Source Type Item content

1 TIMSS 
95

Ordering fractions Write a fraction that is larger than 2/7

2 TIMSS 
99

Part–whole Which shows 2/3 of the square shaded?

3 NAEP 
98

Part–whole What fraction of the rectangle ABCD is shaded?

4 TIMSS 
99

Ordering fractions Given two common fractions. Which of these fractions 
is smallest?

5 NAEP 
03

Ratio Given two ratios. Which of the following ratios is 
equivalent to the ratio of 6:4?

6 NAEP 
92

Relation between 
fraction and 
decimal

Given a common fraction, which is closest in value to 
0.52?

7 TIMSS 
99

Part–whole Given a picture. What fraction of the circle is shaded?

8 TIMSS 
99

Part–whole Given a picture. Robin and Jim took X cherries from a 
basket. What fraction of the cherries remained in the 
basket?

9 TIMSS 
99

Proportion John and Mark sold X magazines. Knowing the total 
amount of money, how much money did Mark receive?

10 TIMSS 
99

Part–whole Penny had a bag of marbles. How many marbles were 
in the bag to start with?

11 TIMSS 
95

Ratio Given a picture with numbers, what is the ratio of red 
paint to the total amount of paint?

12 NAEP 
03

Linear measure Given a picture, the distance from Bay City to Exton is 
60 miles, what is the distance from Bay City to 
Yardville?

13 TIMSS 
99

Rates A runner ran 3,000 m in exactly 8 min. What was his 
average speed in meters per second?

14 TIMSS 
95

Percent From 60 cents to 75 cents, what is the percent increase 
in the price?

15 TIMSS 
03

Ordering fractions Given two common fractions. In which of these pairs 
of # is 2.25 larger than the first number but smaller 
than the second number?

16 TIMSS 
99

Proportion If there are 300 calories in 100 g, how many calories 
are there in a 30 g portion of this food?

17 TIMSS 
95

Ratio 3/5 of the students are girls. Add 5 girls and 5 boys, 
which statement is true of the class?

18 NAEP 
03

Linear measure Given a picture, a dot shows where 1/2 is. Use another 
dot to show where 3/4 is

19 TIMSS 
99

Equivalent fraction In which list of fractions is all of the fractions 
equivalent?

20 NAEP 
03

Linear measure 3/4 of a yard of string is divided into pieces; they are 
1/8 yard long each. How many pieces?

(continued)
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Each test had two forms, A and B, which differed only in item order. Assessments 
were given to the entire sixth, seventh, and eighth grades, and students sitting next to 
each other received different test forms to prevent cheating. Since students included 
in the study were predominately Hispanic, a Spanish version of the test was created, 
translated by faculty and graduate assistants fluent in Spanish. Students were asked 
for their test language preference, and although most students were of Hispanic 
decent, only a few students preferred to take the Spanish version. Data were collected 
based on the students’ original responses to test items, and were coded according to 
their correct (1) or incorrect (0) answers to items. Summing the number of correct 
responses formed a student’s total score. Scores were also computed for items within 
each rational number subconstruct represented in the NAEP and TIMSS items.

 Results

 Comparison of Performance of Sample  
to a National/International Sample

Table 3 displays the number of students and gender distribution in each grade tested. 
Numbers in parentheses represent the number of classes involved in the testing at 
each grade level.

To benchmark our students against (inter)national norms, we compared mean 
performance and proportion correct for each of the 24 comparable items on the 
performance assessment. In terms of overall performance, students in our sample 
students scored at or just below the level of middle schoolers around the nation (for 
NAEP items) and the world (for TIMSS items). Only 10 of the 24 comparable items 

Table 2 (continued)

Item 
# Source Type Item content

21 TIMSS 
95

Operator Luis runs 5 km each day, the course is 1/4 km long. How 
many times through the course does he run each day?

22 TIMSS 
99

Decimal Which of these is the smallest number?

23 TIMSS 
95

Ordering fractions Which list shows the numbers from smallest to largest?

24 TIMSS 
95

Ratio The ratio of girls to boys is 4:3. How many girls are in 
the class

25 TIMSS 
99

Ratio The tables show some values of x and y, what are the 
values of P and Q?

26 TIMSS 
03

Decimal Divide a number by 100. By mistake multiplying it by 
100, obtained an answer of 450. What was the right 
answer?

27 TIMSS 
03

Decimal 45 L of fuel; consumer 8.5 L per 100 km. After 
traveling 350 km, how much remained?

A Longitudinal Study of the Development of Rational Number Concepts…
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showed statistically significant differences in percent, correct. These differences 
centered around the predominant focus on Part/Whole fraction instruction in our 
observed classes. We propose that this instructional bias, which is typical of fraction 
instruction in the United States, resulted in a predominance of the use of Part/Whole 
strategies to the exclusion of other learned strategies—strategies which ultimately 
are more efficient, conceptually meaningful, and that are useful for more 
 sophisticated ratio and proportional reasoning problems.

 Comparison of Performance at Different Grade Levels

Table 4 presents students’ average score and standard deviation by grade level for 
each administration. One way Analysis of Variance was performed on percent cor-
rect using grade as an independent variable. Post hoc Scheffe tests show that, eighth- 
grade students outperformed sixth and seventh graders for all administrations 
(p < 0.05). Seventh graders outperformed sixth graders on administration 2 only. 
Sixth graders scored on average, higher than seventh graders on the first administra-
tion, but the difference is not statistically significant (p > 0.05). Students grew signifi-
cantly over time, with greatest gains appearing, not surprisingly during the academic 
years, with very little, but some growth occurring over the summer periods.

Table 3 Number of students participating in each test administration broken out by gender

Sixth grade
N (n)

Seventh grade
N (n)

Eighth grade
N (n)

Total
N

Test 1 74 (3) 27 (1) – 101
Female/male 33/41 14/13 – 47/54

Test 2 22 (1) 84 (3) 62 (2) 168
Female/male 12/16 35/49 29/33 76/92

Test 3 27 (1) 74 (3) 51 (2) 152
Female/male 16/11 32/42 26/25 74/78

Test 4 28 (1) 65 (3) 80 (3) 173
Female/male 16/12 35/30 34/46 85/88

Test 5 26 (1) 61 (3) 85 (3) 172
Female/male 15/11 32/29 43/42 90/172

Table 4 Mean and standard deviation of student test scores

Test Sixth grade Seventh grade Eighth grade

1 (Fall, year 1) 9.39 (3.16) 8.56 (3.33) –
2 (Fall, year 2) 6.73 (3.15) 9.71 (3.70) 12.81 (5.52)
3 (Spr, year 2) 8.48 (2.62) 10.46 (4.05) 14.73 (6.46)
4 (Fall, year 3) 7.89 (2.62) 8.88 (3.36) 10.88 (4.45)
5 (Spr, year 3) 8.96 (3.23) 9.51 (4.52) 13.22 (4.96)

Note: The bold items show the trajectory of sixth graders in year 1 as they matriculated through 
seventh and eighth grade

J.A. Middleton et al.
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 Describing Students’ Mathematics Achievement over Time

As we studied the results of individual interviews (see below), it became apparent 
that the students we were interviewing displayed more capability for solving ratio 
and proportion problems than the larger sample of students in the school that did not 
receive interviewing. To determine if a Hawthorne effect explained this difference in 
student abilities, average test scores for students who were interviewed in the study 
and peers who were never interviewed were separately computed and plotted in 
Fig. 1. The number of students in the former group was 33 and latter group was 56. 
Figure 1 presents a mean plot for these two groups of students across five test points.

It is obvious from the figure that interviewed students’ mathematics performance 
increased steadily, and even accelerated over time. While non-interviewed students’ 
mathematics performance did not increase from the beginning of study till the time 
when the third test was given, they linearly increased starting at about the third test 
(after 15 months of school time had elapsed). Although separate hierarchical linear/
nonlinear models could be specified for each of these two groups to examine and com-
pare student’s growth on mathematics achievement over time, we decided to apply a 
two-level linear model to only the interviewed group, with the following justification:

 1. Thirty-three students were target students in this study, and we had a large body 
of qualitative data for each of these 33 students. This made it possible to combine 
both qualitative and quantitative data outcomes to describe students’ learning 
trajectories.

Fig. 1 Growth in rational number performance for students interviewed in the study versus non- 
interviewed students

A Longitudinal Study of the Development of Rational Number Concepts…
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 2. Among the 33 students in the interviewed group, only 4 data points were 
missing.

 3. Among 56 students in the non-interviewed group, 50 % of data points were miss-
ing, and only 9 students completed all 5 tests. It would not have satisfactory 
power to apply linear model to this group.

The following two-level linear model was specified to interviewed group as 
following:

Level 1: Total monthti i i ti ti= + ( ) +β β0 1 r

Level 2: 
β β γ
β β γ
0 00 0

1 10 1

i i

i i

= +
= +

where:

Totalti: the observed math achievement score of individual i at month level t
β0i: the estimated status when month = 0
β1i: the estimated growth rate for individual i per monthti where month is a time- 

related variable
rti: the residual of individual i at month level t, which was assumed to have a mean 

of zero and equal variance of σ2 across grades
β00: the average true status when month = 0
β10: the average slope for the population
γ0i: the difference between the individual intercept and the average true status when 

month = 0
γ1i: the difference between individual slope and average slope
γ0i and γ1i are assumed to have MVN with a mean of zero and equal variance

We estimated fixed effects: β00, β10 and random effects: eti, γ0i, γ1i

In this model, predictors in level 1 (i.e., β0i and β1i) became criterion variables in 
Level 2, allowing students to have different starting points and growth rates. This 
model assumed that a straight line adequately represented each person’s true change 
over time and that any deviations from linearity observed in the sample data resulted 
from random measurement error rti. The model was examined by using HLM 6.0 
software. Table 5 presents the results.

Table 5 Linear model of growth in math achievement (unconditional model)

Fixed effect Coefficient SE t ratio p value

Mean status at month = 0, β00 9.03 0.57 15.52 0.000
Mean slope, β10 0.16 0.02 7.93 0.000
Random effect Variance component df χ2 p value
Status at month = 0, γ0i 8.21 32 120.99 0.000
Slope, γ1i 0.0055 32 50.94 0.018
Level-1 error, eti 4.63
Correlation between γ0i and γ1i 0.74

J.A. Middleton et al.
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The estimated mean intercept, β̂00 , and mean growth rate, β̂10 , for the math 
achievement data was 9.03 and 0.16, respectively. This means that the average math 
achievement score at month = 0 was estimated to be 9.03 and students were gaining 
an average 0.16 of a score per month. Both the mean intercept and growth rate have 
large t statistics indicating that both parameters are necessary for describing the 
mean growth trajectory of math achievement.

The estimates for the variances of individual growth parameters β0i and β1i were 
8.21 and 0.0055, respectively. The χ2 statistics for γ0i was 120.99 (df = 32, p < .05 ), 
leading us to reject the null hypotheses and conclude that students vary significantly 
in month = 0. The χ2 statistics for γ1i was 0.0055 (df = 32, p < .05 ), leading us to 
reject the null hypotheses and conclude that there is also significant variation in 
students’ math achievement growth rates. The variance of γ1 0 0055i = .  implied an 
estimated standard deviation of 0.074. Thus, a student whose growth was one stan-
dard deviation above average was expected to grow at the rate of 0.16 + 0.074 = 0.234 
scores per month. The correlation between mean and slope was 0.74, suggesting 
that students with a higher score at the starting point tended to learn faster.

In other words, interviewed students showed slightly, but significantly lower ini-
tial performance than non-interviewed students, but over time, they learned more, 
and at a faster rate, resulting in a set of learners with markedly different capabilities 
than the uninterviewed students in the school. Recall that there were nonsignificant 
differences overall in the performance of our sample with the (inter)national norms. 
Some kind of Hawthorne effect, therefore, must have occurred as a function of the 
student interview process. The reasons for this will be discussed following the rest 
of the results.

 Interview Results

We present two cases to illustrate key transitional points in students’ development 
for two of the subconstructs distinguishing our sample’s performance from that of 
the (inter)national sample: Part–whole and ratio. These cases do not capture all 
students’ developmental details, not even all of the details for the two students cho-
sen. However, they illustrate common cognitive challenges and dilemmas students 
faced, and they show common realizations that moved students towards a deeper 
and more useful understanding in the two primary rational number subconstructs 
where sample students differed from their (inter)national peers. As such they can be 
thought of as representative of the larger sample of student growth patterns in these 
two areas for sampled students, but illustrative of the differences in international 
curriculum and learning. We are developing a full account of students’ individual 
trajectories in a follow-up paper.
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 Elias: Part–Whole and Unitization

The case of Elias presents an example of how a student can extend a well-developed 
understanding of part–whole concepts and unitization to navigate through other 
rational number subconstructs, employing this knowledge to guess and check solu-
tions in less familiar contexts (Fig. 2). Elias, like most of the interviewed samples, 
reflected a well-developed notion of fractions as part–whole concepts. When asked 
to express part–whole responses to contextualized questions, he responded with 
fraction notation, languages, and labels indicating an understanding of units and 
what each portion or unit represented. His was flexible, moving among suggested 
units, appropriately representing new, equivalent part–whole ratios correctly.

In describing the different units, for example, in a case of 4 cans out of a case of 
24 cans of soda, Elias’ was able to flexibly change the unit from 24 cans to one 
6-pack and then to two 6-packs. With each new given unit, Elias correctly calculated 
the correct fraction and labeled his answer in terms of the appropriate unit. Thus the 
4 cans became one-sixth of the 24 cans, two-thirds of a 6-pack, or one-third of two 
6-packs.

Within the other rational number subconstructs, Elias’ intuitive knowledge 
appeared to lack the depth necessary to transition smoothly into formal. For exam-
ple, although he had an implicit understanding of ratio and could correctly solve 
simple ratio problems, he was not able to use this implicit understanding to explain 
his reasoning and computation in ratio terms (e.g., a to b, a per b, a for b, etc.). The 
following vignette illustrates his difficulty when he had to alter a recipe that called 
for 2 cups of flour and 1 cup of sugar because the cook only had ½ cup flour. In this 
particular context, the relationship between flour and sugar is a fairly simple  

Fig. 2 Elias’ flexible unitization
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part–part ratio (two parts flour to one part sugar). Elias immediately identified the 
correct numerical answer, but his explanation emphasized the partitioning of two 
cups of flour into four ½ cups. He then described a process of partitioning one cup 
of sugar until he finally revealed a method of taking away three ¼ cups, leaving one 
¼ cup as the amount of sugar needed.

Elias: Hm…sugar… you would need ¼.
Interviewer: How did you get that?
Elias: Cause if you cut 1 into half, wait…if you cut 2 into half it would equal 1, and 

if you cut 1 into half you cut…I am getting myself confused. I’m gonna do it 
another way. If you take 2 minus ¼ it would be ¼ . .. ½ I mean would equal 1 ½, 
take away ½ again, and it would equal 1 and it would equal ¼ of a cut, so it would 
be 1, 2, 3, 4, so it would be 4.

Interviewer: Draw a picture if you need to.
Elias: Oh yeah, if you have ¼ + ¼ + ¼ and how much sugar would you need there are 

3 of these and take away to get ¼. This is my strategy, but you won’t get it.

Elias was able to solve this problem quickly, without visible calculations, yet, as 
we have seen, when encouraged to reveal his thinking process, he expressed 
 frustration in making himself clear to the interviewer and never explicitly described 
the proportional relationship between the flour and sugar quantities given in the 
original recipe. If Elias’ understanding of the ratio subconstruct was developed 
beyond familiar part–whole relationships to part–part or part–part–whole, we would 
expect him to better attend to and express the multiplicative relationship involved in 
changing the quantities of flour and sugar (i.e., the amount of sugar is ½ the amount 
of flour). What we see here is a reliance on Part–whole reasoning, with a fallback 
on a Measure conception as evidenced by Elias’s iteration of a ¼ unit. Like the 
majority of our sample, Elias used these two conceptions approximately 60 % of the 
time in his interviews. Rarely did he utilize equivalent ratios, proportional reason-
ing, or multiplication by a scale factor (operator conception) to solve rate and pro-
portion problems.

 Inez: Ratio Subconstruct

One of the most dramatic examples of growth in the ratio subconstruct was seen in 
the test scores and protocol work of Inez. During her mid-sixth grade year Inez was 
only able to correctly answer 4 out of the 13 ratio problems on the common test 
drawn from TIMMS and NAEP questions. By the fall semester of her seventh-grade 
year, she was able to answer 10 of the 13 correctly, dipping slightly to 8 at the end 
of that year, but coming back strongly in her eighth-grade year to a score of 11. 
What made this development interesting was her admitted lack of familiarity with 
ratio vocabulary and instructor-initiated inscriptions. In several conversations with 
her interviewer, Inez expressed a limited knowledge of the word “ratio” and with 
the ratio table method, which was used extensively by her seventh-grade teacher. 
Comments by Inez such as “What is the ratio?” and “I heard about ratio table but I 
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don’t know about ratio.” seemed to indicate that she wasn’t aware of the formal 
language or notations typically associated with ratio problems.

In one protocol session during her sixth-grade year, Inez was given a problem to 
find the amount of calories in 30 g of ice cream given the fact that 450 calories were 
in 100 g. She tried to divide 450 by 30 and stated “We already have 30 g, so we can 
ignore the 100.” It wasn’t until the interviewer prompted her to determine the 
amount of calories in 1 g of ice cream, that she seemed to recognize the relationship 
between the original quantities of calories and grams and was able to find a specific 
ratio, a unit rate. By mid-year Inez started to show her own usage of a unit rate. 
Figure 3 shows her work in determining how many more cookies must be added to 
a given amount of cookies to maintain the initial ratio of cookies to guests.

Interviewer: You are shopping for a party and you buy 24 cookies for 8 people. Your 
cell phone rings and you are told that four more people are coming to the party. 
How many more cookies will you have to buy to keep the ratio the same? How 
many total cookies will you need?

Inez: We have 24 cookies and only 8 people. So each person will get three cookies. 
So when 4 more people are coming, we have to multiply by 4, so 12 more  cookies 
and all together we need 36 cookies.

Despite her lack of familiarity with formal ratio symbols and operations, Inez, 
like many of our sample students, was able to solve a variety of contextual ratio 
problems by using her own personal notation for assigning correspondence between 
ratio quantities. From the fall semester of her sixth-grade year to protocols through-
out her seventh-grade and eighth-grade year, Inez used an “=” to pair ratio quantities 
and then worked efficiently with this pairing to build up or down to a desired solu-
tion. In Fig. 4, for example, she established a relationship between 90 lions in the 
zoo with 1,800 kgs of food. Once she wrote this “equality” on her paper, she then 
divided or multiplied both sides as needed to create other equivalent ratios, often 
also adding corresponding parts of these pairs to solve given problems. Eventually 
she found the unit rate of 20 kg for one lion and then demonstrated her knowledge 
of how to use this rate to determine the number of kilograms for any given number 
of lions.

Fig. 3 Inez’s use of a unit 
ratio
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During the last year of the study, Inez was confronted by the interviewer about 
her use of the “equal sign” inscription for a ratio problem. Inez was quick to say that 
she knew that the two numbers were not really “equal,” but that this was her own 
way of organizing the information in the problem. It was clear from her work that 
this method of organization provided a structure within which she could move eas-
ily to create equal ratios as needed.

Inez is also indicative of our sample students in that, informal, in-the-moment 
notations were used extensively, along with very few teacher-sanctioned  inscriptions 
(like the ratio table, for example). These ad hoc inscriptions had meaning for each 
individual student, but were not capitalized on by the teachers in an attempt to sys-
tematically make them more formal and precise.

 Summary of Interview Data

Interview protocols were coded based on the type of problem presented (Part–
Whole, Measure, Quotient, Ratio, or Operator), strategies employed to solve the 
problem (including the use of heuristics, super-strategies, and taught procedures), 
and the sensibility of students’ strategies and the correctness of their answers. 
Emulating the wonderful interpretive method of Carpenter and Moser (1984) for 
young children’s arithmetic strategy development, we represent the development of 
children’s strategies as graphs showing the proportion of each coded strategy over 
time. The following four figures show demonstrably that students enter into rational 
number instruction with a variety of strategies, both informal and formal for solving 
a wide variety of problem types. These strategies echo the general research on ratio-
nal number development in that the predominant way of approaching problems 
appears to be conceptualizing them as Part–Whole, with smaller proportions of 
strategies focusing on using benchmark fractions, common denominator strategies, 
and even some proportional reasoning, though this was very rare (<5 % of total 
strategies). Through instruction, certain strategies became preferred in the partici-
pating students’ classrooms. In particular, the use of fraction bars and ratio tables 
favored the development of benchmark fractions, measure strategies, and some use 
of equivalent ratios and proportional reasoning.

Fig. 4 Inez’s equals sign 
used as “colon” ratio symbol
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Findings show that sensible approaches to problem solution tended to lead to 
generation of correct answers (see Figs. 5 and 6). The proportions of strategies 
coded as sensible were nearly identical to the proportions of correct answers. The 
trend for the development of sensible and correct strategies shows that the propor-
tion of problems solved using Part/Whole reasoning decreased over time, being 
supplanted by measure (quotitive division) strategies, relating problem quantities to 
benchmark fractions, and also by a variety of ad hoc strategies made up on the spot 
to solve the problem. Part–Whole, however, remained the dominant strategy pre-
ferred by students, even by the end of the eighth grade.

Examining errors, we show that, ad hoc strategies, were the most prominent 
strategies chosen when the strategies did not make sense for the problem situation 
(see Fig. 7). This indicates that for a large number of interview problems, students 
neither learned nor were able to generate, a meaningful method of solution, and 
instead relied on trial-and-error and other means–end solution methods. Fully 40 % 
of students’ responses were idiosyncratic, and this trend remained relatively con-
stant over the entire course of the longitudinal study. Part–Whole methods were the 
second-most prominent strategies used in ways that did not make sense for the prob-
lem context. Moreover, Part–Whole strategies were used most in cases where stu-
dents’ strategies yielded incorrect solutions. This echoes our comparisons with the 
(inter)national sample.
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The most disappointing trend in our data suggests that potentially powerful 
methods of solution to rational number problems, such as proportional reasoning, 
the use of equivalent ratios, and common denominator strategies were neither 
stressed in students’ classes (until well into the eighth-grade year), nor evident in 
their acquisition of strategies across the middle grades. Instead, the teachers focused 
class time on the use of robust-but-inefficient conceptual strategies such as the use 
of the fraction bar and ratio table. These strategies were heavily used in the  students’ 
textbooks, but were not exclusively emphasized there, indicating considerable 
teacher preference in the kinds of strategies legitimized in their instructional prac-
tices (Fig. 8).

Because our data are drawn from primarily poor, urban, largely Latino schools, 
we want to be careful generalizing the exact developmental trajectory of students’ 
strategies to the rest of the United States. However, inasmuch as other middle- 
school curricula continue to overemphasize the use of part–whole conceptualiza-
tions of fractions, underemphasize the notion of fractions as indicated division, and 
underemphasize methods of computation that build strong understanding of factors 
and multiples, units, and partitions (e.g., Lamon, 2002; Ni & Zhou, 2005; Sophian, 
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2007; Thompson & Saldanha, 2003), it is likely that similar trends are occurring 
across many schools. Data on NAEP and TIMSS (National Science Foundation, 
2002; NCES, 1999) show that US students generally lack understanding and skills 
in these and other areas related to proportional reasoning.

 Discussion

A major objective of this longitudinal study was to contribute significantly to the 
research base on rational number learning by exposing patterns and mechanisms of 
development in students’ understanding of rational numbers and by reorganizing 
the current fragmented body of research into a more coherent developmental model; 
illustrating how rational number subconstructs evolve concurrently and interac-
tively along the road to a more profound knowledge of rational number concepts. 
The former goal is realized in this manuscript, but the latter is still a major challenge 
for the field. In particular, the coherence of instruction for teaching rational number, 
and especially the problematic concepts of ratio and proportion is still lacking, 
resulting in continued fragmentation of knowledge in the US children, favoring less 
sophisticated conceptualizations in this subject matter, than evidenced by students 
in the TIMSS 1999 and 2003 samples. Curriculum and teaching appear to be the key 
levers here (e.g., Saxe, Diakow, & Gearhart, 2012; Saxe, Gearhart, & Seltzer, 1999) 
as we were able to show that instructional strategies that favored Part–Whole con-
ceptions predominated in our sample classrooms, leading to an overreliance on 
Part–Whole conceptualizations by students, yielding performance deficits in com-
parison to the international norm on more powerful concepts of rate, ratio, and pro-
portional reasoning.

Despite the narrow demographics of our studied samples, we see our results as 
transportable to the US educational system in general. In the United States, research 
clearly shows that instruction in rational number tends to favor Part–Whole inter-
pretations far more than other interpretations of fractions (Ni & Zhou, 2005; 
Sophian, 2007; Thompson & Saldanha, 2003). Use of measure, quotient, and ratio 
subconstructs are much less evident. The unfortunate point of this is that a Part–
Whole understanding of fractions does not allow the student to deal with units other 
than one without tremendous difficulty. As a result, improper fractions become con-
fusing (Mack, 1993). Fraction division, in particular becomes conceptually impos-
sible. In countries like Japan and China, who traditionally perform better on 
international assessments of fractions and algebra, rational numbers are explained 
in terms of measurement models like the number line or area models, as the result 
of any division problem, and as a multiplicative comparison of dividend and divisor, 
numerator, and denominator (Moseley, Okamoto, & Ishida, 2007).

Our study reinforces earlier work that suggests that in rational number develop-
ment, students tend to utilize a small number of robust-but-inefficient strategies 
which are applicable across a variety of situations. In the reported project, for 
 example, we found that students who did not have ready access to procedures for 
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determining factors and multiples of whole numbers were greatly hampered in their 
capacity to solve complex problems involving fractions, particularly fractions in 
proportional relationships. Conversely, students who DO have ready access to effi-
cient procedures are able to solve problem subgoals in real time and progress 
towards successful problem resolution much more readily (Kim et al., 2007).

Moreover, in our data, overall, we have seen children using powerful iterative 
methods, such as the repeated halving strategy, far beyond their proficiency with 
other methods of computing fractions (e.g., finding common denominators, divid-
ing numerator and denominator by a common factor). Students persisted in the use 
of these iterative strategies even though they had earlier demonstrated the ability to 
conceptualize fractions as indicated division, knowledge of and the ability to use 
factors and multiples, and the ability to solve complex problems using a division 
procedure.

Siegler, Thompson, and Schneider (2011) show that sixth graders show great 
variability of strategy use. They found that selection of strategies depended upon 
students’ familiarity with solving problems with some arithmetic operations but not 
others. They found, however, that strategy use was highly variable within arithmetic 
operations. The sixth grade in the United States appears to be a key transitional 
grade, where students struggle to consolidate learned strategies for whole number 
arithmetic, and reconcile these with new rational number strategies they are cur-
rently learning.

Empson, Levi, and Carpenter (2011) show “there is a broad class of children’s 
strategies for fraction problems motivated by the same mathematical relationships 
that are essential to understanding high-school algebra and that these relationships 
cannot be presented to children as discrete skills or learned as isolated rules. The 
authors refer to the thinking that guides such strategies as Relational thinking.” 
What we found in our current study is that our studied children came into the sixth 
grade armed with a number of fine strategies for thinking about fraction problems. 
What failed to happen for many of our studied students is that over the course of 
their 3 years in middle school, they were not able to develop relational thinking for 
fractions much beyond Part–Whole and Measure conceptions.

 Conclusions

In conclusion, we found that:

 1. Children come to the middle grades with many useful ways of thinking about 
and solving rational number problems.

 2. Children leave middle school with only a slightly expanded set of skills. They 
tend to rely on ad hoc, means–end reasoning and reliance on simple Part/Whole 
conceptions of fractions as opposed to developing more efficient and powerful 
methods of computation.
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 3. Teaching of fractions overemphasizes conceptual strategies using inscriptions 
like the fraction bar and ratio table, leaving little time to develop proportional 
reasoning, common denominator, and other equivalent fraction methods of 
solution.

 4. The very act of interviewing children, only once every 3 weeks, is an interven-
tion that leads them to learn more and achieve better than their matched counter-
parts. Even though teaching the children was not a goal of this study, interviewed 
children demonstrated significantly higher gains on TIMSS and NAEP items 
than their peers.

 Commentary on the Issue of Scale in Intensive Interview 
and Observational Methods

At first glance, the scale of our study, comprising 204 students—of which all 204 
were administered quantitative assessments of their rational number knowledge, 
102 were interviewed, and 32 remained in the study for the full 3 years of the 
 project—would generally not be considered large when compared to the samples 
reported in other studies in this book. However, as pointed out in the introductory 
chapter of this volume, scale depends on a variety of factors, not just the size of the 
sample. In our case, the scale is determined by two factors: (1) methods utilized; and 
(2) characteristics of the measurement.

Individual constructivist teaching experiments of approximately 45 min took 
roughly 2¼ hours to transcribe. Analysis of each interview took an additional 1.5 h 
on average. Multiplying these factors by 102 students, interviewed 9 times per year 
for 3 years, we get a total experimenter time of roughly 12,500 h for our qualitative 
work. For the quantitative assessments, administration of tests to all 204 students 
pre- and post- each year, coding responses and analysis of the quantitative data took 
roughly 300 additional experimenter hours. A bit more can be added to account for 
cleaning up TIMSS and NAEP data to bring our rough estimate close to 13,000 h of 
work (we do not count reading, writing, meetings, and other preparatory/reflective 
work in these estimates, nor do we count the 2 h per week of classroom observa-
tions, plus transcription and analysis). Clearly, the qualitative methods employed to 
uncover students’ thinking constituted the vast majority of our researcher time. 
Every additional student added to our sample added an additional week (40.5 
researcher hours equivalent) of effort. Given restrictions of funding, relative to the 
sensitivity of measurement we needed to track students’ development of strategies 
over time, 102 students as ongoing informants was at the upper limits of scale 
possible.

So scale, as a construct in mathematics education must be thought of in terms of 
the complexity of the questions asked, the intensity of the data collection process, 
and the density of the data record. We benefited from this understanding of scale in 
that our interview protocols and performance assessments shared a common scheme 
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by which problems could be coded. By utilizing and combining sensitive  idiographic 
techniques such as interviews and observations, with (inter)nationally validated 
tasks on the performance assessment, we were able to identify a key weakness in the 
instruction of our sample, and tie this weakness to inadequate development of pro-
portional reasoning.
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