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      Effect of an Intervention on Conceptual 
Change of Decimals in Chinese Elementary 
Students: A Problem-Based Learning 
Approach 

             Ru-De     Liu      ,     Yi     Ding      ,     Min     Zong     , and     Dake     Zhang    

          In this chapter, we described a study that compared a problem-based learning (PBL) 
approach to a traditional approach for teaching decimal concepts to 76 Chinese fi fth 
graders. This chapter started with a review of literature regarding conceptual change, 
challenges in teaching decimals to elementary students, the PBL in relation to self- 
effi cacy, and the rationales for conducting the present study. Then, we elaborated 
the PBL approach as an intervention approach in an independent sample of fi fth 
graders. Finally, we discussed implication of PBL in educational settings. 

 Decimal fraction learning is considered one of the cornerstones of mathematics 
education internationally (Stacey et al.,  2001 ). In the United States, formal instruc-
tion of decimal fractions begins in fourth grade and continues throughout all second-
ary grade levels (National Council of Teachers of Mathematics (NCTM),  2000 ). The 
NCTM Standards require third to fi fth graders to be able to understand and convert 
fractions, decimals and percentages. And students older than sixth graders should 
fl exibly solve problems involving fractions, decimals and percentages. In China, 
decimals and fractions are also introduced to students at the elementary level begin-
ning in fourth grade (Zong,  2006 ). 
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 A substantial number of studies have demonstrated that children have diffi culties 
understanding decimals (Baturo,  1998 ; Hiebert & Wearne,  1983 ; Ni & Zhou,  2005 ; 
Resnick et al.,  1989 ; Sackur-Grisvard & Leonard,  1985 ; Stacey & Steinle,  1998 ; 
Stafylidou & Vosniadou,  2004 ; Vamvakoussi & Vosniadou,  2004 ). Diffi culty with 
fractions (including decimals and percent) has been identifi ed as a pervasive prob-
lem and is a major obstacle preventing students from progressing in mathematics, 
including algebra (National Mathematics Advisory Panel,  2008 ). Even a consider-
able number of adults continue to hold such misconceptions (Putt,  1995 ; Silver, 
 1986 ; Stacey et al.,  2001 ). Therefore, exploring how to help children develop their 
decimal knowledge is a priority for educational researchers. 

 In addition to the technical aspects of learning specifi c mathematics concepts, 
noncognitive variables play a role in student performance in mathematics. One such 
factor is students’ self-effi cacy. Bandura ( 1986 ) has argued that self-effi cacy has a 
powerful impact on academic achievement. Research regarding mathematics 
 self- effi cacy has indicated that, in comparison to their counterparts with low self- 
effi cacy, students with high self-effi cacy demonstrate stronger persistence in diffi cult 
problem-solving situations and have better execution results in mathematics compu-
tation (Collins,  1982 ; Hoffman & Schraw,  2009 ). Thus, exploring self- effi cacy in the 
context of mathematics learning has been of interest to educators and researchers. 

    A Conceptual Change Approach to Explain Children’s 
Diffi culties with Decimals 

 Rational numbers, including integers, terminating decimals, and repeating deci-
mals, are numbers that can be expressed as a/b (both a and b are integers, and b can 
not be zero) (Vamvakoussi & Vosniadou,  2010 ). A single rational number, such as 
½, can be represented in several ways (e.g., 5/10, 50/100, or 0.5), which all have the 
same value and are all alternative representations of the same rational number. In 
this chapter, we use the term “decimals” to refer to decimal representations of ele-
ments (i.e., a subset) of the set of rational numbers; we do not discuss decimals such 
as  π  that are not rational numbers. 

 The conceptual change approach has been recently used to explain students’ 
persistent misconceptions regarding rational numbers (Vosniadou,  2007 ; Vosniadou 
& Verschaffel,  2004 ). Children’s initial number frameworks are essentially natural 
numbers, which possess discreteness, whereas rational numbers have the feature of 
density, closely related to the concept of infi nity (Hannula, Maijala, Pehkonen, & 
Soro,  2001 ; Malara,  2001 ; Merenluoto & Lehtinen,  2002 ). Natural numbers follow 
the successor principle (Vamvakoussi & Vosniadou,  2010 ) that all natural numbers 
are well ordered. Each natural number has a defi nite position in a sequence (e.g., 3 
is the third number in the sequence of natural numbers), but rational numbers do not 
have this feature. When non-natural numbers, such as decimals and fractions, are 
introduced to students, their prior number frameworks based on natural numbers 
might hinder their understanding of the non-natural numbers. 
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  Misconceptions . Previous literature has documented substantial information 
regarding the diffi culties students usually encounter when they learn decimals. 
A common misconception is the notion that  longer is larger  (Moskal & Magone, 
 2000 ; Moss,  2005 ; Roche,  2005 ), in which students evaluate the value of a decimal 
number by comparing the number of its digits (e.g., 0.56 is larger than 0.8). A con-
trasting misconception is that  shorter is larger , in which the students confuse deci-
mals with  fraction denominators (Steinle & Stacey,  2004 ). For example, in one 
study, children consistently judged that the larger number had fewer digits to the 
right of the decimal point; thus, 2.43 was larger than 2.897 (Sackur-Grisvard & 
Leonard,  1985 ). Another misconception,  multiplication makes bigger  (Fischbein, 
Deri, Nello, & Marino,  1985 ; Steffe,  1994 ), is true for natural numbers other than 
one, but is incorrect for decimal or fractional numbers less than one. Misconceptions 
can also arise in children’s understanding of the density and infi nity features of deci-
mals. Finally, children often have diffi culty with combining a string of digits into a 
single decimal quantity (Hannula et al.,  2001 ; Malara,  2001 ; Merenluoto & 
Lehtinen,  2002 ; Resnick et al.,  1989 ). 

 Children’s misconceptions are often associated with over-generalization from 
their knowledge of natural numbers. For example,  longer is larger  and  multiplica-
tion makes bigger  may originate in children’s experiences with comparing whole 
numbers. Children’s diffi culty with understanding the infi nity feature (i.e., there are 
infi nitely many decimal numbers between any two different decimals) of decimals 
can also be associated with their existing concept of whole numbers (Nunes & 
Bryant,  2007 ). In the domain of whole numbers, a number is a set of units of one, 
whereas in decimals, there is no minimum unit corresponding to ones. Instead, the 
minimum unit of decimals could be tenths, hundredths, thousandths, and so on. 
Children tend to intuitively generalize their mathematical reasoning skills regarding 
whole numbers to solving problems with decimals, which often leads to errors.  

    Existing Interventions for Teaching Decimals 

 The literature has documented programs that help children, sometimes identifi ed as 
having had low achievement, to learn decimals. Two studies (Resnick, Bill, & 
Lesgold,  1992 ; Resnick, Bill, Lesgold, & Leer,  1991 ) emphasized the importance of 
helping low-SES African American parents to understand algebra and decimals and 
thus to provide their children with a better learning environment at home. Another 
study (Rao & Kane,  2009 ) helped children with intellectual disabilities to learn deci-
mal calculation using a behavioral simultaneous prompting procedure in which the 
teacher delivered the target stimuli and the controlling prompt simultaneously; thus, 
the children did not have time to respond independently and therefore did not learn 
the task with errors. 

 Several existing interventions have taught students decimal concepts using rep-
resentation techniques, such as using a number line and blocks to represent the 
place values. Hiebert and Wearne (Hiebert,  1988 ; Wearne,  1990 ; Wearne & Hiebert, 
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 1988 ,  1989 ) conducted a group of studies using representation techniques. These 
studies emphasized using manipulatives (blocks) to promote conceptual under-
standing of decimals. The researchers taught students using place-value blocks in 
which different shaped blocks were named to represent different place values. 
Specifi cally, large cubes represented a unit, a fl at block represented a tenth of a unit, 
and a long block represented a hundredth of unit. Results showed that fourth through 
sixth graders made notable improvement based on the intervention. Similarly, Swan 
( 1983 ) used representation techniques (a number line model) to help students under-
stand the meaning of decimal notation and found that the students made consider-
able progress. Woodward, Baxter, and Robinson ( 1999 ) also successfully used 
visual representations (e.g., wood block rectangles, squares, or cubes) to teach basic 
decimal concepts to children with learning disabilities. 

 One group of studies focused on the effects of exposing children to their miscon-
ceptions regarding problem solving, where decimals were used. For example, Swan 
( 1993 ) compared two classes whose teachers had adopted two different teaching 
styles. One class was taught with a “positive-only” teaching style. First, the teachers 
explained the concepts and methods of using a number line; then, the students prac-
ticed using this method but were not asked to mark their work or diagnose errors. 
Another class was taught using a “confl ict teaching style,” in which the teacher 
initially gave students problems that exposed them to misconceptions and taught 
students a method using a number line; then, the teacher led a discussion of the 
students’ errors and misconceptions. The “confl ict teaching style” resulted in sig-
nifi cantly more progress in children’s achievement than the “positive-only style.” 
The results suggested that exposing children to their misconceptions helped them to 
overcome their errors. Another study by Pierce, Steinle, Stacey, and Widjaja ( 2008 ) 
revealed the importance of identifying college students’ diffi culties with decimals. 
In this study, nursing students were given a decimal problem-solving test that identi-
fi ed the students’ misunderstandings of particular items. Next, the teacher used vari-
ous models to illustrate the place value and base ten concepts, and students were 
encouraged to ask questions and provide responses. This study found signifi cant 
improvement by the students on a delayed post-intervention test, and the research-
ers concluded that it was necessary to expose students to their errors and plan for 
remediation of students’ misconceptions before teaching procedure rules. 

 Similarly, Huang, Liu, and Shiu ( 2008 ) revealed the effectiveness of exposing 
students to incorrect examples to facilitate their conceptual understanding of deci-
mals. Sixth graders were exposed to incorrect examples when learning the meaning 
of decimals (e.g., in 5.4, saying the .4 represents 4 ones instead of 4 tenths). After 
4 weeks, these students performed better than students who were not presented with 
incorrect examples. 

 In summary, existing interventions have suggested the importance of exposing 
students to their mathematical misconceptions and errors. Researchers have reported 
that providing incorrect examples or examining students’ own mistakes can pro-
mote deeper refl ection on correct concepts (VanLehn,  1999 ) and increase students’ 
frequency of choosing correct strategies (Siegler,  2002 ). Based on these fi ndings, it 
is plausible to assume that PBL would be effective for improving children’s concep-
tual understanding of decimals.  
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    Problem-Based Learning and Self-Effi cacy 

 PBL is a student-centered instructional strategy in which students learn through 
solving problems in groups and making refl ections on their problem solving experi-
ences. PBL is rooted in constructivist theories of learning that stress the importance 
of learners being engaged in constructing their own knowledge (Mayer,  2004 ; 
Palincsar,  1998 ). In PBL, students work in groups and are challenged with open 
ended and ill-defi ned problems. PBL is highly student-centered: Students are 
encouraged to explore the solutions and direct the problem solving process by 
themselves, and teachers only serve as facilitators (Hmelo & Guadial,  1996 ; 
Quntana, et al.). PBL is reported to be effective in enhancing content knowledge 
and fostering the development of communication, problem-solving, and metacogni-
tive skills (Hmelo-Silver, Duncan, & Chinn,  2007 ). PBL has been shown to be 
effective in various empirical studies as described by Hmelo-Silver et al. For exam-
ple, “there is an extensive body of research on scaffolding learning in inquiry- and 
problem-based environments (Collins, Brown, & Newman,  1989 ; Davis & Linn, 
 2000 ; Golan, Kyza, Reiser, & Edelson,  2002 ; Guzdial,  1994 ; Jackson, Stratford, 
Krajcik, & Soloway,  1996 ; Reiser,  2004 ; Toth, Suthers, & Lesgold,  2002 ” (p. 100, 
Hmelo-Silver, Duncan, & Chinn,  2007 ). Theory based and empirically validated 
strategies for effectively scaffolding students during PBL have been developed by 
many researchers (Hmelo-Silver,  2006 ; Hmelo-Silver, Duncan & Chinn  2007 ; 
Reiser et al.,  2001 ). PBL is often used to assist learning of complex tasks. Complex 
tasks often require scaffolding to help students engage in sense making, self-man-
agement of their problem-solving processes, and facilitate students to articulate 
their thinking and refl ect on their learning experiences (Quintana et al.,  2004 ). 
Scaffolding helps to reorganize complex tasks and reduce cognitive load by struc-
turing a task in a way that allows the learners to focus on relevant aspects of the task 
(Hmelo-Silver,  2006 ). 

 Many challenging tasks require both adequate skills and self-effi cacy, which is 
about one’s beliefs about whether or not one can successfully complete a task 
(Bandura,  1986 ). The relationship between PBL and self-effi cacy has gained increas-
ing attention. For example, self-effi cacy was a signifi cant predictor of science 
achievement in middle school students in a computer-enhanced PBL environment 
(Liu, Hsieh, Cho, & Schallert,  2006 ). For adult learners, specifi c instructional strate-
gies (i.e., authentic problems of practice, collaboration, and refl ection) used in PBL 
were reported to improve levels of self-effi cacy in undergraduate computer science 
students (Dunlap,  2005 ). For educators, those with higher scores of self-effi cacy 
demonstrated a signifi cantly higher use of a PBL approach, direction instruction, and 
communication skills in mathematics teaching (Ordonez-Feliciano,  2010 ). 

 However, there are no studies dealing with the application of PBL to the instruc-
tion of decimal fractions in Chinese elementary students with consideration of stu-
dents’ self-effi cacy. We were particularly interested in the PBL approach in Chinese 
students partially due to the fact that traditional Chinese mathematics instruction 
often follows a curriculum-centered approach with relatively large student–teacher 
ratios, making few opportunities available for students to be exposed to a PBL 
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 environment. Given that previous studies have found that exposing students to their 
misconceptions or errors and to challenging problems was effective in enhancing 
their conceptual understanding of decimals, the purpose of the present study was to 
investigate the following questions: (a) Does a PBL approach outperform a tradi-
tional instructional approach to enhance conceptual change in decimal computa-
tion? (b) Does a PBL approach outperform a traditional instructional approach to 
promote metacognition, measured by explicit interpretation of strategy use? and (c) 
Does a PBL approach lead to a higher level of self-effi cacy and academic interest 
than a traditional instructional approach?  

    Method 

    Design 

 This study utilized a quasi-experimental design to compare pretest and posttest 
measures. The independent variable was the instructional method, consisting of a 
PBL approach in the experimental group and a traditional instructional approach in 
the control group.  

    Participants and Setting 

 The instructors were two experienced mathematics education teachers. One investi-
gator majoring in educational psychology was on site for training, progress monitor-
ing, and data collection. Each classroom had one experienced teacher as the lead 
teacher. The two classes of students had mathematics classes at different time periods 
on each day, so the investigator was able to observe classroom activities and col-
lected data both in the control group and the experimental group for similar amounts 
of time to avoid the Hawthorne Effect. The participants were 76 fi fth graders at an 
elementary school in the urban area of Beijing in Mainland China. The students were 
in two parallel classes, which were chosen because they were equivalent in terms of 
the students’ performance in mathematics. Both classes followed the same mathe-
matics curriculum, had a similar pace (teaching unit by unit according to textbook), 
used the same curriculum-based exams (designed by curriculum committees at the 
school), and the two teachers had comparable teaching experiences (i.e., years of 
teaching mathematics, teaching similar students at similar schools). Both teachers 
were new to the two groups because data collection started in the beginning of the 
school year. One class ( n  = 38) received experimental PBL instruction that empha-
sized problem-based scenarios for teaching and students’ own computation errors 
and prior experiences for discussion and problem analysis. The other class ( n  = 38) 
received traditional instruction that emphasized curriculum-centered lecture and use 
of demonstration examples from the textbooks. All students were with normal 
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intellectual abilities and were enrolled in regular classroom settings. Students’ prior 
whole number and decimal number knowledge was similar due to the highly uniform 
school instruction implemented in Chinese schools.  

    Dependent Measures 

  Decimal computation test . To quantitatively measure students’ conceptual change in 
decimals, we developed two sets of decimal computation tests. The measurement 
instruments used in this study involved a pretest (eight items in total) and a posttest 
(ten items in total). The pretest and posttest involved computation of both decimal 
and whole number problems. The pretest had three items that involved whole num-
ber computation only. Of the other fi ve items relevant to decimals in the pretest, three 
of them involved decimal computation only and two of them involved mixed com-
putation. The posttest had four items that involved whole number computation only. 
Of the other six items relevant to decimals in the posttest, four of them involved deci-
mal computation only and two of them involved mixed computation. Each test 
included pairs of corresponding decimal and whole number items, as explained in 
Table  1 . The computations included addition, subtraction, multiplication, and divi-
sion. These items were chosen from  Beijing Compulsory Education Curriculum 
Reform Experimental Materials of Mathematics in Elementary School - Volume IX  
(Lu & Yang,  2005 ). The pretest and posttest items were not identical due to consid-
eration of the curriculum taught during the 22 classes. The pretest functioned as a 
placement test to examine whether the experimental group had similar prior knowl-
edge as the control group. The posttest functioned as a summative test to measure 
whether students had mastered designated computation skills after receiving 22 
classes of formal instruction. The diffi culty levels of the pretest and posttest were 
consistent with curriculum content. Cronbach’s alpha was .63 for the pretest and 0.72 
for the posttest. Because of the limited testing time, we only designed eight items for 
the pretest and ten items for the posttest. The relatively low reliabilities might be 
attributable to the number of testing items we had. Sample items are listed in Table  1 .

    Qualitative measure of students ’  conceptual understanding of decimal division . 
Students’ conceptual change was qualitatively measured by an open-ended question 
on the posttest to examine students’ conceptual understanding of decimal division. The 
open-ended question asked, “Currently, there is a student who does not understand 
decimal division. Please elaborate your procedures of problem solving. For example, 
tell this student what to do fi rst, what to do as a second step, and then what else.” 
  Self - effi cacy survey . A self-report questionnaire was developed based on Qin ( 2003 ) 
and Zhang ( 2005 ) to explore (a) social self-effi cacy, (b) academic self- effi cacy, and 
(c) academic interest. The questionnaire utilized a 6-point Likert scale ranging from 
 completely unlike me  to  completely like me . The subtest of social self- effi cacy 
included six items, with 36 points as the highest score. The subtest of academic self-
effi cacy included seven items, with 42 points as the highest score. The subtest of 
academic interest included seven items, with 42 points as the highest score. 
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The internal consistency coeffi cients were 0.71, 0.92, and 0.92 for the three  subtests, 
respectively. The survey was administered to students during both the pretest and 
the posttest. Sample items are listed in Table  1 .  

    Coding and Scoring 

  Decimal computation test . First, a graduate assistant who was unaware of the pur-
pose of the study scored the decimal computation test using an answer key. 
Specifi cally, items on the test were scored as correct or incorrect, with one point 
awarded if the correct answer was given. In the pretest, there were fi ve items involv-
ing decimal computation. In the posttest, there were six items involving decimal 

        Table 1    Sample problems in probes   

 Measures  Sample items 

  Computation tests  ( All items included ) 
 Pretest computation  10.1÷0.2 (decimal)  0.9 + 2.32 (decimal) 

 15 × 0.8 (mixed)  5.85 × 0.60 (decimal) 
 101÷2 (whole number)  9 + 232 (whole number) 
 585 × 60 (whole number)  100 − 2.56 × 5 + 32.5÷10 (mixed) 

 Posttest computation  1.21÷0.2 (decimal)  0.9 + 3.25 (decimal) 
 5.58 − 0.9 (decimal)  7.8 × 0.60 (decimal) 
 120÷20 (whole number)  9 + 325 (whole number) 
 78 × 60 (whole number)  2.56 × 5 + 32.4÷10 − 4.85 (mixed) 
 2.5 × 18 − 0.67 + 0.5÷5 (mixed)  558 − 9 (whole) 

  Sample items of self - effi cacy  and  interest survey  
 Students are asked to rate on a Likert scale (i.e., 1–6, 1 stands for completely disagree and 6 
stands for completely agree) according to each item 
 Social self-effi cacy 
questionnaire 

 Sample A: I can successfully interpret my thoughts to my classmates 
 Sample B: When other students talk with me, I do not know what I 
should talk about with them 

 Academic self-effi cacy 
questionnaire 

 Sample A: If I have suffi cient time, I can learn mathematics well 
 Sample B: I can learn math even if some contents are very diffi cult 

 Academic interest 
questionnaire 

 Sample A: I like math class more than I do other subjects 
 Sample B: The problems discussed in math class are very interesting 

    Note : In the pretest computation, 10.1 ÷ 0.2 (decimal) corresponds with 101 ÷ 2 (whole number); 
0.9 + 2.32 (decimal) corresponds with 9 + 232 (whole number); 5.85 × 0.60 (decimal) corresponds 
with 585 × 60 (whole number). In the posttest computation, 1.21 ÷ 0.2 (decimal) corresponds with 
120 ÷ 20 (whole number); 7.8 × 0.60 (decimal) corresponds with 78 × 60 (whole number); and 
0.9 + 3.25 (decimal) corresponds with 9 + 325 (whole number). Between pretest and posttest com-
putation, 10.1 ÷ 0.2 (decimal division) corresponds with 1.21 ÷ 0.2; 101 ÷ 2 (whole number divi-
sion) corresponds with 120 ÷ 20; 0.9 + 2.32 (decimal addition) corresponds with 0.9 + 3.25; and 
5.85 × 0.60 (decimal multiplication) corresponds with 7.8 × 0.60; 9 + 232 (whole number addition) 
corresponds with 9 + 325. There are two mixed (whole number and decimal number) computation 
problems in pretest and posttest, respectively  
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computation. We calculated students’ total scores on the pretest and posttest and also 
calculated their decimal computation scores in pretest and posttest, respectively. 

 Second, as there were paired whole number and decimal items in each of the two 
tests, the students’ answers were classifi ed into four categories: (1) whole number 
computation is correct, and decimal computation is also correct; (2) whole number 
computation is correct, but decimal computation is incorrect; (3) whole number 
computation is incorrect, and decimal computation is also incorrect; and (4) whole 
number computation is incorrect, but decimal computation is correct. The second 
category of responses indicated that the students were unable to correctly apply 
whole number computation rules to decimal computation. 

 Third, we coded for errors to examine the mistakes students made during their 
problem solving. The investigators used a coding system to categorize seven types 
of computation errors in both groups: aligning place value, carrying, displacement 
of decimal point, carelessness, mnemonics, computation order, and missing values 
(see Table  2 ). Most Chinese textbooks have a student version and an instructor ver-
sion, and the instructor version provides details such as exercise items, solutions, 
and common types of errors. The classifi cation of computation errors was designed 
based on the types of errors suggested by the instructor version of the mathematics 
textbook utilized in the school.

    Qualitative measure of students ’  procedural understanding of decimal division . 
There was one open-ended question in the posttest to qualitatively examine students’ 
procedural understanding of decimal division. Students’ levels of awareness of the 
strategies they used were categorized into three types, including missing or inaccu-
rate (i.e., incorrect answers), nonessential (i.e., answers regarding general computa-
tion rules that applied to whole numbers but did not apply to decimal numbers), and 
essential answers (i.e., answers that were essential for decimal computations or 
answers showing correct examples or decimal computation rules) (see Table  2 ). 

  Self - effi cacy survey . Scores on negatively worded items were reverse coded. 
A higher score indicated a higher level of self-effi cacy. Students were rated as “0” 
when they chose  completely unlike me  and were rated as “6” when they chose  com-
pletely like me . 

  Inter - rater agreement . Another graduate assistant rescored 30 % of the tests. Inter-
rater agreement was computed as the percentage of  the number of agreements 
divided by the total number of rated items. Inter- rater agreement was 95 %.  

    Procedures 

 Following the pretest assessment, one intact class became the PBL group and the 
other intact class became the control group. Because the two participating classes 
had identical curriculum, similar class schedules and similar instructional 
approaches, the selection of the PBL group and control group was totally random. 
Students in the PBL group received the intervention during fi ve classes per week for 

Effect of an Intervention on Conceptual Change of Decimals…



244

     Table 2    Coding scheme for computation errors and awareness of strategy use   

 Descriptors  Examples 

  Coding for different types of computation errors  
 Aligning  Lining up the decimal points as below 

 0.9  0.9 
 + 3.25   + 3.25  
 4.15  3.34 

 Carrying  Students made mistakes during carrying 
numbers between different unit positions 

 0.9 
 + 3.25  
 3.15 

 Displacement  Students placed the decimal point at wrong 
place after calculation 

 7.8 × 0.60 = 0.468 

 Carelessness  Due to carelessness, students made mistakes 
like miscopying of numbers, omission, or 
skipping of calculation steps 

 “I accidentally put 
0.12 as 0.18” 

 Mnemonics  Students retrieved incorrect multiplication facts  “3 times 7 is 22” 
 Computation 
order 

 Students did not calculate according to 
computation order, such as (1) calculating from 
left to right, (2) calculation in parenthesis 
should be done fi rst, (3) exponents or radicals 
should be done next, (4) multiplication and 
division should be done in the order in which it 
occurs, and (5) addition and subtraction should 
be done in the order in which it occurs 

 In the example of 
“2.56 × 5 + 32.4 ÷ 
10 − 4.85 = ?,” the student 
did not calculate 
multiplication and division 
before they calculated 
addition and subtraction 

 Missing  During pretest measures, students had not yet 
learned decimal division, thus students chose to 
give up on some of the items 

 “Can I skip this problem?” 

  Coding for conceptual understanding of decimal computation  
 Missing or 
inaccurate 

 Students provided inaccurate answers or did 
not provide any answers 

 “Well, I am not supposed 
to explain that” 
 “Let me think about it” 
 “That is good” 

 Nonessential  Students provided only general computation 
rules that applied to whole numbers but did not 
apply to decimal numbers 

 “Decimal division is pretty 
much like division of whole 
numbers” 
 “You compute it like 
division of whole numbers, 
then add a decimal point 
afterwards” 

 Essential  Students provided answers that were essential 
for decimal computations, used correct 
examples, or mentioned important decimal 
computation rules 

 “To divide by a decimal, 
multiply that decimal by a 
power of 10 great enough to 
obtain a whole number” 
 “When we multiply the 
divisor, we also need to 
multiply the dividend” 
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4½ weeks during the school day, for a total of 22 classes. Each session of class 
lasted approximately 40–45 min. The control group continued to have their regular 
mathematics classes (i.e., fi ve classes per week for 4½ weeks), for a total of 22 ses-
sions. The major teaching content for both classes was decimal multiplication and 
division, which covered two units of the textbook. The complete content for that 
semester included seven units. 

  Teacher training . The instructor for the experimental group had utilized a PBL 
approach for more than 5 years and was very familiar with PBL. She received 1 
week of additional training on the PBL approach before the intervention started. 
The purpose of the training was to help the teacher to conduct the intervention in the 
designated manner and to train the teacher to be proactive. The teacher relearned the 
PBL approach, had opportunities to practice how to teach students using the PBL 
approach, and received feedback from the investigator during the training. The 
investigator developed the teaching scripts (see Appendices  1  and  2 ), which were 
studied by the instructor of the experimental group to prepare for teaching the les-
sons. For the control group, the investigator observed classroom activities and col-
lected data. For the experimental group, the investigator was on site for observation, 
progress monitoring (i.e., making sure the teacher was following the teaching 
scripts), and data collection. The investigator spent a similar amount of time in each 
classroom for observation and data collection. 

  Assessment conditions . Assessment conditions refer to the pretest assessment prior 
to the intervention and the post-intervention assessment. Pre- and post- intervention 
tests were administered using paper and pencil for all students. Experimenters did 
not provide any  prompting or feedback regarding the accuracy of students’  solutions. 
Students were provided with suffi cient time to complete the test and the survey. 

  Experimental group . The experimental group adopted a PBL approach. The stu-
dents began with specifi c problem scenarios and the teacher provided them with 
opportunities to reveal their computation errors and prior experiences. The teacher 
encouraged the students not only to explain the patterns of computation errors, but 
also to analyze the causes of computation errors. The teacher in the PBL group 
encouraged an open learning atmosphere and supported the students’ reliance on 
prior learning experiences to guide their learning behaviors. 

 The instructional materials included projectors, experiment record sheets, and 
reminder cards. The reminder cards provided hints to the students when the prob-
lems were presented; for example, after the computation, the reminder cards helped 
the students to self-check the computational procedure, such as “I have checked the 
placement of the decimal point.” Therefore, reminder cards were considered an 
effective method to monitor students’ metacognition (Tong & Zhang,  2004 ). 

 The teacher gradually faded out the use of reminder cards as the instruction pro-
gressed. Specifi cally, at the beginning of the instruction, the teacher provided the 
students with complete reminder cards. The teacher determined the instructional 
framework and distributed the reminder cards to every student in the classroom. 
After discussion, the students summarized the types of computation errors made by 
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all of the students in the class and noted the computation errors on the reminder 
cards according to a scaffolding framework. As the instruction progressed to 
approximately halfway through the intervention, the teacher provided the students 
with partially completed reminder cards. Each student analyzed only computation 
errors that he or she made and then noted the types of errors on the reminder cards. 
Each student could individualize his or her reminder card. 

 For both new lecture and review classes, the PBL curriculum followed similar 
procedures, including class preparation, instruction, and PBL. The focus was to 
analyze the students’ prior experiences and design a PBL environment to motivate 
the students to think through problems and work out solutions. During the instruc-
tional procedure, the focus was to facilitate group discussion, analyze problems, and 
guide students to come up with solutions to solve problems. The initial PBL ses-
sions helped students to identify errors and analyze prior experiences. The later 
PBL sessions emphasized exercises tapping into metacognition, such as analyzing 
types of computation errors, discussing the rationales for errors, and self-revising 
computation errors. Appendices  1  and  2  present examples for a new lecture and a 
review class. Appendix  3  presents a fl owchart of the PBL approach guiding our 
intervention. 

  Control group . The teacher in the control group closely followed the instructional 
guidelines used for the regular curriculum. Traditional Chinese mathematics instruc-
tion focuses on a curriculum-based teaching approach. Due to a relatively large 
student–teacher ratio (e.g., 40 or 50:1), lecture that closely follows the curriculum 
is often the main teaching method. Due to the mandatory teaching content specifi ed 
by the Ministry of Education of the People’s Republic of China, teachers often 
closely follow guidelines in the curriculum as a typical practice. Although the 
teacher of the control group had opportunities to question students, few opportuni-
ties were available for small-group discussion, close interaction between the teacher 
and students, and students’ refl ection on their own errors and prior experiences. The 
4½-week instructional activities included new lectures and review classes for deci-
mal multiplication and decimal division. For the new lectures, the teacher intro-
duced new concepts based on the textbook, started with demo exercises, explained 
rules of computation, asked the students to complete exercises, and provided stu-
dents with opportunities to ask questions. During the review classes, the teacher 
primarily relied on demo items in the textbook to explain computation errors, and 
the discussion of patterns of computation errors was based on teaching experience 
rather than on actual computation errors that occurred during the students’ exercises. 
Thus, the discussion of computation errors was not specifi c, and the teacher did not 
provide the students with opportunities to refl ect on their own computation errors. 
The most frequently used method was to discuss classical computation errors 
addressed by the textbook as examples. Although there were opportunities for 
teacher–student interaction, most of the demo items had fi xed answers, which were 
not likely to challenge students’ higher levels of reasoning. The teacher typically 
gave students general praise but did not provide specifi c feedback.  
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    Treatment Fidelity 

 In addition to the fi rst investigator who was on site for data collection and progress 
monitoring, a second investigator independently observed ten treatment sessions in 
the experimental group to assess fi delity or quality of implementation of specifi c 
performance indicators. Treatment fi delity checklists are provided in Appendix  4 . 
Half of the sessions were new lectures and half of the sessions were review classes. 
The observation sessions were equally distributed throughout the intervention period. 
The teacher used a teaching script to guide the teaching strategy during each class 
session. In addition, for each session, the fi rst and third author used a checklist, which 
listed the key instructional components, to evaluate teachers’ adherence to the 
assigned instructional condition type. The second investigator judged the adherence 
of the instructor’s teaching based on the presence or absence of the features listed on 
the fi delity checklist. The overall treatment fi delity was .92 for the sessions observed.   

    Results 

    Pretreatment Group Equivalency 

 We used ANOVA tests to examine pretreatment group equivalency on the decimal 
computation test, self-effi cacy questionnaire, and academic interest survey. Results 
indicated no signifi cant difference between the two groups on the total computation 
test,  F (1, 74) = 0.044,  p  = 0.835; the decimal computation test (i.e., decimal compu-
tation in computations involved decimals only and mixed numbers),  F (1, 74) = 0.633, 
 p  = 0.429; the social self-effi cacy questionnaire,  F (1, 73) = 0.048,  p  = 0.828; the aca-
demic self-effi cacy questionnaire,  F (1, 73) = 3.783,  p  = 0.056; or the academic inter-
est survey,  F (1, 73) = 3.633,  p  = 0.061 (see Table  3 ).

   We also compared computation errors made by the two groups of students during 
the pretest. Both groups appeared to make the most frequent computation errors in 
aligning place value, carrying, and displacement of the decimal point. In both groups, 
a large number of students chose to skip the questions because they had not learned 
decimal division prior to the intervention. The chi-square test indicated nonsignifi cant 
differences in the distribution of the seven computation errors with the exception of 
displacement of the decimal point,  χ  2  = 5.775,  p  = 0.038 (see Table  6 ), with better per-
formance in the control group.  

    Quantitative Measure of Students’ Conceptual Change in Decimals 

  Total computation . We performed an ANOVA test (with the pretest difference as a 
covariate) on the posttest scores to assess the effects of instruction on students’ total 
computation performance. Results indicated a signifi cant difference between groups 
at posttest,  F (1, 74) = 10.063,  p  = 0.002 (see Table  3 ), favoring the PBL group. 
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  Decimal computation . An ANOVA test on the posttest scores revealed that the 
experimental group outperformed the control group on decimal computation (i.e., 
the decimal computation and mixed items),  F (1, 74) = 9.215,  p  = 0.003 (see Table  3 ). 
Due to the fact that the pretest (which served as a placement test) and posttest 
(which served as summative evaluation) did not have the same question items, 
within-group comparison of pretest and posttest scores for each group could not be 
conducted. We conducted univariate analysis of variance to further control for dif-
ferences in pretest decimal computation performance (termed Pre-De in Table  3 ). 
The analysis results in Table  4  indicated a signifi cant main effect caused by group 
difference (i.e., experimental group vs. control group) and a nonsignifi cant main 
effect of pretest decimal computation performance.

       Students’ Self-Effi cacy and Academic Interest 

  Self - effi cacy . An ANOVA test (with the pretest difference as a covariate) on the 
post-survey of self-effi cacy revealed signifi cantly higher social self-effi cacy in the 
experimental group,  F (1, 73) = 35.723,  p  = 0.000. Although the control group 
reported relatively higher academic self-effi cacy, the test did not indicate a signifi -
cantly higher score than the score of the experimental group,  F (1, 73) = 02.30, 
 p  = 0.134 (see Table  3 ). In terms of within-group comparison, we conducted a 
paired samples  t  test. The control group did not show signifi cant improvement on 
either social self-effi cacy or academic self-effi cacy after 22 sessions of classes. 
The experimental group showed signifi cant improvement on both social self-effi cacy 
( p  = .000) and academic self-effi cacy ( p  = .000) after receiving the entire intervention. 

  Academic interest . An ANOVA test (with the pretest difference as a covariate) on 
the post-survey of academic interest indicated signifi cantly higher academic interest 
in the experimental group over the control group,  F (1, 73) = 18.950,  p  = 0.000 (see 
Table  3 ). We also conducted a paired samples  t  test to examine within-group 

   Table 4    Univariate analysis of variance of posttest decimal computation in two groups   

 Source  Type III sum of squares  df  Mean square   F   Sig 

 Corrected model  23.375 a   2  11.687  6.125  .003 
 Intercept  132.046  1  132.046  69.200  .000 
 Pre-De  5.361  1  5.361  2.810  .098 
 Group  16.104  1  16.104  8.439  .005 
 Error  139.296  73  1.908 
 Total  1,339.000  76 
 Corrected total  162.671  75 

   Note :  a  R  squared = .144 (adjusted  R  squared = .120);  Pre - De  all decimal computation pretest 
(including decimal computation in mixed computation),  Post - De  Dependent variable, all decimal 
computation posttest (including decimal computation in mixed computation)  
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improvement. The control group did not show signifi cant improvement on 
 academic interest from pretest to posttest measures, whereas the experimental 
group demonstrated signifi cant improvement.  

    Qualitative Measure of Students’ Conceptual Change in Decimals 

 The posttest included an open-ended item that asked, “Currently, there is a student 
who does not understand decimal division. Please elaborate your procedures of 
problem solving. For example, tell this student what to do fi rst, what to do as a sec-
ond step, and then what else.” Approximately two thirds of the students in the con-
trol group chose to give up, and another one third of the students provided answers 
showing no conceptual understanding of decimal division (e.g., using whole num-
ber rules for decimal computation). Only one student in the control group provided 
an answer showing a conceptual understanding of decimal division. In contrast, 14 
students in the experimental group explained essential features associated with 
computation of decimal division. We used the coding scheme listed in Table  2  to 
classify the narrative responses provided by the students, including missing or inac-
curate, nonessential, and essential answers. The Monte Carlo chi-square test 
revealed signifi cant differences in the distribution of the three types of answers in 
the two groups,  χ  2  = 15.857,  p  = 0.000 (see Table  5 ). Students in the experimental 
group were more likely to explicitly describe their computation procedures and 
demonstrated understanding of unique features of decimal computation that differ 
from whole number computation (see Table  5 ).

       Students’ Computation Errors 

 Given that the pretest and posttest instruments did not consist of the same number of 
testing items, a comparison of absolute numbers of computation errors on the pretest 
and posttest measures was not conducted. There were no signifi cant differences 
among the computation errors between the experimental group and the control group 
during the pretest measures, with one exception (more errors occurred on displace-
ment of the decimal point for the experimental group). In other words, prior to the 
treatment, students in the experimental group had similar or slightly worse 

    Table 5    Qualitative analysis 
of students’ conceptual 
understanding of decimal 
computation   

 Type of answers  Control  MA  Total   χ  2 /Sig. 

 Missing  26  14  40  15.857/.000 

 Nonessential  11  10  21 
 Essential  1  14  15 
 Total  38  38  76 
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computation skills than did those in the control group. Students in the experimental 
group did not have a better computation foundation before the treatment. For every 
single type of computation error made during the posttest, those in the control group 
made more errors than did those in the experimental group. The students in the con-
trol group had relatively more computation errors on aligning, carrying, displace-
ment of the decimal point, and mnemonics. Computation errors made by the students 
in experimental group were primarily errors on aligning, carrying, and displacement 
of the decimal point. The experimental group had fewer students who made compu-
tation errors and as a group made fewer total computation errors (see Table  6 ).

   The data in Figs.  1  and  2  present the total number of items with computation 
errors and the total number of students who made computation errors in the two 
groups. The trends in the two fi gures consistently indicate that students in the exper-
imental group made fewer computation errors and had fewer students who made 
errors. For each type of computation error, a chi-square test was performed with a 2 
(pretest, posttest) × 2 (control group, experimental group) contingency table on the 
number of errors the students made of that type. The results showed signifi cant 

      Table 6    Analysis of pre- and-posttest computation errors   

 Error type 

 Pretest  Chi-square  Posttest  Chi-square 

 Control  MA   χ  2 /Sig.  Control  MA   χ  2 /Sig. 

 Aligning  15(12)  27(19)  3.619/.282  23(18)  11(6)  7.664/.006 
 Carrying  15(12)  15(13)  .252/1.000  28(20)  13(9)  2.427/.119 
 Displacement  14(12)  24(22)  5.775/.038  22(19)  12(10)  5.573/.018 
 Carelessness  4(4)  7(6)  1.151/.734  13(12)  8(6)  1.891/.169 
 Mnemonics  5(4)  9(8)  2.023/.523  20(12)  5(5)  7.649/.006 
 Computation order  5(5)  8(8)  .835/.361  4(4)  3(3)  .642/.423 
 Missing  86(37)  66(32)  7.060/.173  NA  NA  NA/ NA 

   Note : Numbers within the parentheses indicate the number of students who made the errors  

  Fig. 1    Comparison of number of posttest computation errors in each group       
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 differences in the distribution of aligning, displacement of the decimal point, and 
mnemonics,  χ  2  = 7.664,  p  = 0.006;  χ  2  = 5.573,  p  = 0.018;  χ  2  = 7.649,  p  = 0.006 (see 
Table  6 ), for which students in the experimental group had signifi cantly fewer 
errors. In terms of carrying, carelessness, and computation order, there were no 
signifi cant  differences between the two groups,  p  = 0.119,  p  = 0.169,  p  = 0.423 (see 
Table  6 ).    

    Analysis of Relations Between Whole Number 
and Decimal Computation 

 Some computation rules for whole numbers are similar to those for decimals; how-
ever, other computation rules are different. The students’ answers to the paired 
whole number and decimal test items were classifi ed into four categories: (1) whole 
number computation is correct, and decimal computation is also correct; (2) whole 
number computation is correct, but decimal computation is incorrect; (3) whole 
number computation is incorrect, and decimal computation is also incorrect; and (4) 
whole number computation is incorrect, but decimal computation is correct. The 
second category of responses indicated that the students were unable to correctly 
apply rules of whole number computation to decimal computation. Thus, the second 
type of error tapped into our research interest regarding the relations between whole 
number computation and decimal number computation. If students demonstrated 
that their whole number computation was correct but decimal computation was incor-
rect, we assumed that the students did not achieve conceptual change. A chi- square 
test was conducted to compare differences between the two groups in this type of 
error pattern for addition, subtraction, multiplication, and division, respectively (see 
Table  7 ). It appeared that the two groups of students signifi cantly differed in this 
type of error on multiplication. Students in the control group tended to make more 

  Fig. 2    Comparison of number of students in each group who made errors on posttest       
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such errors on multiplication than did the experimental group. For division,  addition, 
and subtraction, the two groups of students did not show signifi cant differences in 
this type of error,  p  = 0.297,  p  = 0.723,  p  = 0.208, respectively (see Table  7 ).

        Discussion 

 The purpose of this study was to evaluate and compare the effectiveness of a PBL 
instructional approach and a traditional instructional approach for teaching decimal 
multiplication and division to Chinese fi fth-grade elementary students. We exam-
ined students’ conceptual change in decimal computation both quantitatively and 
qualitatively. The results showed that the students in the experimental group had a 
higher accuracy rate on computation and were more likely to explain their computa-
tion procedures and principles of computation strategically. 

    PBL and Improvement in Computation Skills 

 The fi ndings revealed a signifi cant intervention effect for computation skills in the 
experimental group when compared to the control group. In other words, PBL out-
performed a traditional instructional approach in enhancing students’ computation 
skills involving both whole numbers and decimal numbers.  

    Effects on Enhancing Students’ Self-Effi cacy 
and Academic Interest 

 This study also examined the intervention effects on students’ self-effi cacy and aca-
demic interest. The PBL approach primarily improved the students’ social self- 
effi cacy, whereas it had little impact on their academic self-effi cacy compared to the 
traditional approach. One interpretation might be that the experimental group had 
ample opportunity for teacher–student and student–student interactions. The mathe-
matics class was no longer a competitive environment in which the students needed 
to compete to answer the questions. If there was a disagreement, the students had 
opportunities to share differences and express their ideas and suggestions, which may 
have resulted in a higher level of willingness to collaborate among these students 

    Table 7    Posttest mistakes 
in applying rules of 
whole number to decimal 
computation for each 
operation   

 Second category of response  Control  MA   χ  2 /Sig. 

 Division  12  8  1.09/.297 
 Multiplication  17  6  7.54/.006 
 Addition  5  4  0.13/.723 
 Subtraction  4  8  1.58/.208 
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(Hmelo, Gotterer, & Bransford,  1997 ). This might explain the higher level of social 
self-effi cacy in the experimental group. The limited impact on academic self- effi cacy 
might be due to the intervention duration of only 1 month on one instructional unit. 
During an intervention with a relatively short duration, it might be diffi cult to change 
students’ overall impressions and attitudes toward mathematics learning. In addition, 
the learning of decimals was a relatively challenging unit, and the students might 
have experienced some level of anxiety. Thus, it might be unrealistic to expect a rapid 
change in students’ academic self-effi cacy after a 1-month intervention. 

 In terms of academic interest, the students in the experimental group reported a 
higher level of academic interest than did those in the control group. The PBL 
approach emphasized student-centered instruction during the choice of problem situ-
ations, collaboration and discussion in class, and refl ections on solutions. The teach-
ers were facilitators of learning. The focus of the class was to maintain the students’ 
interest and provide more opportunities for self-exploration. The instruction included 
interesting and challenging problem situations (examples provided in Appendix  5 ), 
and the students were able to freely express their opinions and experience a sense of 
accomplishment after they solved the problems. As a result, they reported a higher 
level of academic interest. Although similar problem situations provided by the text-
books might be available to students in the control group, no efforts were made to 
give students opportunities for self-exploration and self-refl ection.  

    Effects on Enhancing Students’ Metacognition 

 Vosniadou ( 1999 ) emphasized the importance of metacognition during children’s 
mathematical problem-solving processes. In the present study, the measure of stu-
dents’ awareness of their strategy use was to examine students’ metacognition. The 
results indicated that students in the experimental group were more likely to explic-
itly describe their own computation procedures and were more likely to discover 
essential features of the computation procedures. It appeared that the PBL approach 
not only guided the students to explore the rationales for computation, but also pro-
vided opportunities for the development of students’ metacognition. The error clinic 
was designed for review classes. The teachers provided reminder cards to guide the 
students to externalize the metacognitive procedures, such as analyzing and explor-
ing the rationales of computation errors, and self-revising computation procedures 
(Alan & Hennie,  1990 ; Tong & Zhang,  2004 ).  

    Effects on Conceptual Change in Decimals 

 When presented with the open-ended prompt regarding decimal division, 14 stu-
dents in the experimental group were able to explicitly explain essential features of 
decimal division. Only one student in the control group provided an answer showing 
a conceptual understanding of decimal division. This could be due to the fact that 
students in the control group were given few opportunities in class to self- refl ect on 
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computational procedures and errors, and thus they might have a lower level of 
metacognition when asked to verbalize procedures and essential features of decimal 
computation. Chinese students are traditionally trained to execute computations or 
work out problems, but are not provided with ample opportunities to verbally elabo-
rate their understanding of specifi c concepts or computations. The PBL approach 
appeared to help students develop their metacognition. 

 Moreover, in addition to being able to elaborate on decimal computation, it is 
also important to examine whether students can actually execute the computation 
procedure correctly. If a student can only explain how to do decimal computation, 
but fails in actual computation, then the student may not have achieved conceptual 
understanding. The posttest revealed that the experimental group had signifi cantly 
fewer students making computation errors and that the group as a whole made sig-
nifi cantly fewer computation errors than did the control group, which suggests that 
PBL had a positive impact on conceptual change. 

 The analysis of types of pretest computation errors revealed that students in both 
the experimental group and the control group frequently made mistakes of aligning 
place value, carrying, and displacement of the decimal point. During the posttest, the 
experimental group had fewer students making mistakes and as a group made fewer 
mistakes on the three types of computation errors. The three types of computation 
errors revealed essential differences between whole number computation and deci-
mal computation. In whole number computation, the last place is the units place; 
thus, students automatically aligned place value based on the last digit (units place), 
instead of the same place value (e.g., units place to units place, tens place to tens 
place). When the students were conducting decimal computation, they also mechani-
cally aligned the place value based on the last digit of the decimal numbers. The deci-
mal point is unique for decimal numbers. Sometimes students arbitrarily placed the 
decimal point and randomly deleted “0” after the decimal point. The errors related to 
aligning place value indicated the need for students to understand the computation 
rules of both whole numbers and decimal numbers. Although strategies of borrowing 
and carrying in whole numbers and decimal numbers are not considerably different 
from each other, the introduction of decimal point concepts results in increased cog-
nitive workload and increased use of working memory. The use of reminder cards in 
the experimental group helped the students to divide complex computations into 
smaller steps, which might have decreased their computation errors. For computa-
tion errors that were unique to decimal numbers, the intervention showed a positive 
impact. In contrast, for general computation errors that did not differ between whole 
numbers and decimal numbers, such as carelessness and computation order, the 
intervention did not show as much impact because the students could directly trans-
fer computation knowledge and skills from whole numbers to decimal numbers. 

 In the posttest, the researchers designed some whole number computations 
and decimal computations with identical digits, with the only difference being the 
decimal point placed in decimal computation (e.g., 7.8 × 0.60 vs. 78 × 60). Some 
students correctly completed the whole number computation, but made errors 
on the corresponding decimal computations. Because of the introduction of the 
decimal point, some students made errors by directly transferring whole number 
computation rules to decimal computation. In the multiplication computation in 
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particular, some students disregarded the differences between the computation rules 
for whole numbers and those for decimal numbers, such as deleting the redundant 
“0” after a decimal point or arbitrarily applying whole number computation rules to 
decimal computation (Markovits & Even,  1999 ). The control group made signifi -
cantly more second category of responses (i.e., whole number computation is cor-
rect, but decimal computation is incorrect) on multiplication than did the 
experimental group. For division, addition, and subtraction, the two groups of stu-
dents did not show signifi cant differences with respect to this type of error. This 
suggests that the decimal point is a challenging concept and that decimal computa-
tion, particularly in decimal multiplication, is diffi cult to master. Prior knowledge of 
whole number computation might interfere with decimal computation, and so the 
students’ computation errors varied. 

 In short, the analysis of computation errors and how students explicitly explained 
decimal division indicated that students tended to rely on prior knowledge and com-
putation rules to work out decimal computation. PBL helped the students to deal 
explicitly with rationales of computation rules and to differentiate between whole 
number and decimal computations. To some degree, this approach promoted con-
ceptual change regarding some erroneous conceptions of computation rules.   

    Limitations and Conclusions 

 This study has implications for educational practitioners and future researchers. 
However, there are a number of limitations of the study that suggest caution in gen-
eralizing the results. First, the students were not randomly assigned to two groups, 
although they shared many commonalities and showed similar performance on most 
measures during our pretests. Second, the number of problems in the decimal com-
putation tests was relatively small, which might explain the relatively low internal 
consistencies for the pretest and posttest. There was not the same number and type 
of items in the pretest as in the posttest, although the diffi culty level of items in the 
pretest and posttest was similar, according to the textbook we referred to. Third, 
some variables could not be controlled, such as students’ prior beliefs about learning 
mathematics and about decimal and whole number computation, teachers’ beliefs 
about mathematics learning and decimal computation, and teachers’ knowledge 
about students’ misconceptions. Fourth, ideally, learning behavior is better assessed 
by using a variety of methods (e.g., qualitative and quantitative methods) to provide 
a relatively comprehensive view of an individual’s learning behavior. Because of 
limited resources, we were unable to videotape teacher–student interactions and 
were unable to provide a systematic qualitative analysis of changes in learning 
behaviors. Fifth, the traditional PBL approach is often utilized in small group set-
tings. Due to the reality of the Chinese school system, it was impossible to have a 
very small student–teacher ratio to conduct the PBL. Thus, our study primarily 
relied on group discussions and activities that could take place simultaneously with 
all students. Although this was not an ideal way to implement the PBL, it provided 
insights for future Chinese teachers who might implement a similar approach in 
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large classroom settings. Finally, the intervention was implemented intensively over 
a 1-month period, and there was no longitudinal follow-up to examine the persis-
tence of the treatment effect. 

 This study revealed the importance of exposing students to their mathematics 
errors. Computation errors helped students to discover computation problems and 
provided opportunities for conceptual change. The PBL approach is driven by chal-
lenging, open-ended, ill-defi ned, and ill-structured PBL (as in the examples provided 
in Appendix  5 ). Our conclusions are in line with prior research fi ndings where stu-
dents were exposed to challenges and were guided to refl ect on their misconceptions. 

 This study also has implications for teachers’ roles during instruction. During 
PBL instruction, teachers serve only as facilitators. In contrast, during traditional 
instruction, teachers often emphasize the teaching of computation rules instead of 
the conceptual understanding of decimals. Discussion of computation errors is not 
encouraged in traditional instruction, which might result in students’ resistance to 
disclosing their computation errors, and some students might hide exercise books to 
avoid sharing them with other students. When new learning content is introduced, it 
is important to allow students the opportunities to refl ect on errors and causes, to 
enhance metacognition, and to promote the construction of new knowledge.     

       Appendix 1: Teaching Scripts for Teaching New Decimal Division 

     1.    Introduction to the problems and divide students into fi ve groups to solve the 
problems. 
 “We have successfully overcome the decimal in multiplication. Now, it occurs in 
computation of division. We have new challenges now. Does anybody have any 
ideas to solve the problem? Now, let us divide the class into fi ve groups and we 
will work on fi ve division problems, including whole number divided by deci-
mal, decimal smaller than 1, and decimal larger than 1. We want to see which 
group can come up with more solutions. When we explain the solutions, you 
need to tell us the procedures to reach the solution. What types of principles do 
you use to solve the problem?”   

   2.    Encourage students to solve the problems with their own problem-solving methods. 
 Based on previous experience, students are asked to create hypotheses, such as 
dealing with decimal division like division for whole numbers, ignoring the dec-
imal point, and following rules of division for whole numbers fi rst and then plac-
ing the decimal point.   

   3.    Guided practice 
 Students are asked to report their problem-solving methods to the class, and the 
teacher guides the students to refl ect on these methods. The teachers guide the 
students to differentiate the differences between these questions. They encourage 
the students to refl ect on the principles of multiplication and division that they 
have learned in their previous classes. The teachers ask the students to use mul-
tiplication to verify the results for division. The students are asked to raise ques-
tions and summarize the principles for decimal division.   
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   4.     Students modify their results and report their results to the class.   
   5.    Transfer and application. 

 Provide additional problems for students to practice, including two-digit 
decimals.      

      Appendix 2: Teaching Scripts for Reviewing Previous 
Contents (Decimal Division Error Clinic) 

     1.    Introduction to the problems. 
 The students form fi ve groups to examine errors in the worksheet. Say: “Thank 
you for joining error clinic. Today, we will focus on examining errors in deci-
mal division. It is hoped that we will all be able to solve different challenges in 
decimal division.” Then, the teacher distributes the worksheets.   

   2.    Encourage students to solve the problems and explain the errors that they found, 
such as errors due to misunderstanding of principles or careless errors.   

   3.    Guided practice. 
 The teacher guides students to draw conclusions about their problem-solving 
methods, help students make their reminder cards, and encourage students to 
refl ect on their problem-solving experiences. Ask the students to summarize the 
causes of mistakes, such as assuming decimal division is similar to division of 
whole numbers.   

   4.    Students modify their results, establish their own reminder cards, and report 
their results to the class.   

   5.    Transfer and application. 
 Ask the students to give an example of mistakes they made in decimal compu-
tation during the previous week.      

     Appendix 3: PBL Procedure 
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         Appendix 4: Treatment Fidelity Checklists 

 New lectures  Yes/No 

 1. Provide problem-based learning situations at the beginning of classes 
 2. Small group discussion 
 3. Students form hypotheses and try to work out solutions 
 4. Students report discussion results group by group 
 5. Teacher provides feedback and analyzes differences and relations between 

different problems 
 6. Students break into small groups for further discussion 
 7. Students report further discussion results 
 8. Application and transfer 

 Review classes  Yes/No 

 1. Provide problem-based learning situations and welcome students to error clinic 
 2. Small group discussion to fi nd own mistakes 
 3. Teacher provides guidance 
 4. Teacher provides reminder cards, uses scaffolding, and coaches students to be able 

to fi ll out reminder cards 
 5. Students report their discussion report and report what is on reminder card 
 6. Application and transfer, students create problems for others 

         Appendix 5: Sample Problems from the Curriculum 

 Samples for ill-defi ned and ill-structured problems 

  Directions : Please check the following computation procedures and see whether 
they are right. Please correct computations that were executed incorrectly. 

      

    Samples for ill-defi ned and ill-structured problems 

  Directions : Are the following computation procedures right? If no, please check them. 

      

    Samples for challenging problem 
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  Directions : (1) In a parking lot, the parking rate is 2.50 Yuan/h if it is within 1 h. (2) 
After the fi rst hour, the parking rate is 2.50 Yuan/0.5 h. Uncle Li paid 12.5 Yuan, 
then how many hours did he park in the parking lot? 

      
    (Sources: Lu & Yang,  2005 )
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