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   Foreword   

 Although this is the third book in the  Research in Mathematics Education  series, 
this is the volume, as series editors, we fi rst thought about editing ourselves. There 
are three reasons why we chose this topic for our fi rst coedited volume. First, we 
both have experience conducting large-scale studies. While Cai has used mixed 
methods in all of his three related lines of research (cross-national comparative 
studies, mathematical problem solving and posing, and curriculum studies), his 
recent funded research has been longitudinally investigating the effect of curricu-
lum on algebra learning (LieCal). Middleton began his career studying teacher col-
laboration in systemic initiatives and has continued to utilize large-scale methods as 
both the backdrop and focus of inquiry. Second, we both see the need for the fi eld 
of mathematics education to encourage more large-scale studies. Third, while in 
recent years a signifi cantly greater number of books have been published in math-
ematics education [See Hwang, S. & Cai, J. (2014). Book series in mathematics 
education: An overview of a growing resource.  Journal for Research in Mathematics 
Education ,  45 (1), 139–148], none, to date, has focused on large-scale studies in 
mathematics education. Our knowledge of the fi eld as well as our knowledge of the 
scholars who grapple with issues inherent to large-scale studies led us to believe that 
it is the right time to put such a volume together. 

 The goals we have set for the series are to publish the latest research in the fi eld 
in a timely fashion. This design is particularly geared towards highlighting the work 
of promising graduate students and junior faculty working in conjunction with 
senior scholars. The audience for this monograph series consists of those in the 
intersection between researchers and mathematics education leaders—people who 
need the highest quality research, methodological rigor, and potentially transforma-
tive implications ready at hand to help them make decisions regarding the improve-
ment of teaching, learning, policy, and practice. In addition to meeting the goals we 
set for the series, this volume has at least the following three features. The fi rst 
feature is its broad coverage of topics, illustrating the use of large-scale methods in 
a variety of lines of inquiry. The studies reported in this volume involve various 
aspects of mathematics education, such as curriculum, teaching, learning, teacher 
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learning, assessment, equity, and policy. The second feature is the variety of 
 empirical bases used. Some studies in this book have used existing large-scale data 
sets; in others, researchers collected original data. The third feature of this volume 
is its discussion of methodological issues that cut across particular studies, thus 
highlighting key factors anyone interested in large-scale work must ponder. Readers 
of this volume should gain methodological insights for conducting large-scale stud-
ies. Because of these features, this book should be useful for graduate seminars 
related to mathematics education research. 

 We thank all the authors’ for the generous contribution of their time and intel-
lectual effort to this volume. In particular, we would like to extend our gratitude to 
Stephen Hwang for joining us in the fi nal stage of editing this volume. 

 Finally, we are grateful for the support of Melissa James and her assistants from 
Springer in developing and publishing this book series, as well as their support in 
publishing this volume.  

      Newark ,  DE ,  USA      Jinfa     Cai    
     Tempe ,  AZ ,  USA      James     Middleton       

Foreword
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      Why Mathematics Education Needs 
Large- Scale Research 

                James     A.     Middleton     ,     Jinfa     Cai     , and     Stephen     Hwang   

         Over the years our community has benefi tted greatly from the application of large-
scale methods to the discernment of patterns in student mathematics perfor-
mance, attitudes, and to some degree, policies and practices. In particular, such 
research has helped us discover differential patterns in socioeconomic, gender, and 
ethnic groups and point out that, as a system, mathematics curriculum and instruc-
tion has hardly been equitable to all students. From the National Center on Education 
Statistics (in the US), large scale studies such as High School and Beyond, the 
Longitudinal Study of American Youth, and the National Assessment of Educational 
Progress came important calls to focus attention on improving instruction for mar-
ginalized populations and to increase emphasis on more complex problem solving 
than had typically been the norm (Dossey & Wu,  2013 ). 

 But these studies have been less useful, historically, in helping us design and 
implement our responses to their call. Mathematics curriculum design has been, 
typically, an intense form of educational engineering, wherein units or modules are 
developed and piloted in relatively insular settings, with large-scale fi eld tests held 
at or near the end of development. Arithmetic materials, for example, have been 
informed by a large  body  of small to medium  scale  studies of the development of 
children’s mathematical thinking. Algebra, which has many fewer studies of 
 learners’ thinking, is even more dependent upon small-scale studies. Towards the 
end of the 1990s and into the early 2000s, policy devoting more research funding on 
effi cacy studies renewed interest in experimental and quasi-experimental methods, 
sample size, and generalizability of results (Towne & Shavelson,  2002 ). The push 
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has been to demonstrate the impact of different education interventions on mathe-
matics performance and achievement statistically. 

 One notable study conducted in this period evaluated the impact of SimCalc, a 
computer-facilitated system for representing and manipulating functions and coor-
dinating representations with simulation (animations) and real-world data (Roschelle 
& Shechtman  2013 ; Roschelle, Tatar, Hedges, & Shechtman  2010 ). In this set of 
studies, the authors examined implementation of SimCalc in over 100 schools (150 
teachers, 2,500 students) throughout Texas. 

 This study is a good example of many of the issues facing large-scale research 
today. For example, the authors took care to select schools from urban as well as rural 
areas and admitted that urban schools were under-sampled as well as those that served 
African-American students. In particular, the reality of working with intact classrooms, 
in schools drawn non-randomly from widely different communities, forced the authors 
to utilize statistical controls to equilibrate experimental versus control groups across a 
variety of demographic and attitude variables, to insure that performance differences 
are meaningfully attributed to the intervention rather than to presage variables. 

 In addition, fi delity of implementation is an issue impacting the internal validity 
of a study. The authors had to implement a wide battery of assessments to determine 
the degree to which SimCalc-as-implemented refl ected SimCalc-as-intended. What 
is noteworthy in this study is the use of multiple indices to understand the imple-
mentation of the program as integral to assessing its impact. The authors used a 
pre-post design to assess student performance and collected teacher knowledge 
assessments and tests of teacher mathematical knowledge for teaching, teacher atti-
tude questionnaires, teacher logs, teacher interviews, and coordinated this data with 
demographic data. Such a wide geography of implementation, as well as a wide 
demography showed that, despite variation in implementation, the structure of the 
tools themselves constrained student and teacher behavior to be roughly in line with 
the design intent. 

 Hierarchical Linear Modeling (HLM) was used to preserve the levels of nested 
effects (students within classes). Results showed that students who utilized SimCalc 
in their classes outperformed a control group with effect sizes ranging from .6 to .8 
or .9 for complex items (focusing on proportionality for younger students and func-
tions for older students). Even low-complexity items showed signifi cant effect sizes, 
though lower than those found for complex items (ranging from .1 to .19). 

 So, this study and others (see Romberg & Shafer,  2008 ) show that interventions 
can be developed, theoretically, and analyzed experimentally at a large enough scale 
to give us some confi dence that, if employed elsewhere, there is a good probability 
the intervention will result in meaningful improvement of teacher practice and 
student learning. 

 But also, large-scale studies can help us theoretically, by providing a check against 
a set of fi ndings drawn from a number of diverse, small-scale exploratory studies. 
Even a body of data as coherent and long-standing as that for proportional reasoning 
can be found wanting. In “Exploring the Impact of Knowledge of Multiple Strategies 
on Students’ Learning about Proportions,” Vig, Star, Depuis, Lein, and Jitendra (this 
volume), for example, show us that large-scale data can provide a cross-check on the 
continued utility of some models developed across many small-scale studies. For 
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example, they found in a study of implementation of a unit designed to teach propor-
tional reasoning and associated content that cross- multiplication as a wide-ranging 
strategy may be much less prevalent now than in previous years due to changes in 
curriculum and instruction. This illustrates the potential from large data to see new 
things that are impossible to discern on the small scale and to judge the generality of 
fi ndings of small-scale research in the larger population. 

 The Institute for Education Sciences and NSF (U.S. Department of Education & 
National Science Foundation,  2013 ) present six classes of research in their 
 Common Guidelines for Education Research and Development : (1) Foundational 
Research, (2) Early Stage or Exploratory Research, (3) Design and Development 
Research; (4) Effi cacy, (5) Effectiveness, and (6) Scale-up. From exploring new 
phenomena in Exploratory research, or development of new theories in Foundational 
research, to the examination of the effectiveness of interventions across a wide 
range of demographic, economic, and implementation factors in Scale-Up research, 
scale is a critical factor to establish the believability of our conceptual models and 
the potential effi cacy of our designed innovations in mathematics education. 

 What exactly is the scale that would constitute compelling evidence of inter-
vention effi cacy? What is the appropriate scale that would convince the fi eld that 
inequities exist? That those same inequities have been ameliorated signifi cantly? 
What scale would convince us that a long-standing research fi nding may no longer 
be as prevalent? These are unanswered questions that the chapters in this book can 
help us answer. 

    What Is Meant by “Large Scale?” 

 In this chapter, we introduce this book by asking the fundamental question, “What 
is meant by Large Scale?” In particular, the word “Large” is problematic, as it must 
be compared with something “small” to be meaningful. Anderson and Postlethwaite 
( 2007 ), in their comparison of small versus large scale program evaluation research, 
provide a convenient taxonomy of factors that distinguish issues of scale: (1) Sample 
size, (2) purpose of the research, (3) generalizability of results, (4) type and 
complexity of data analysis, and (5) cost. Anderson and Postelthwaite’s discussion 
is limited to studies of program evaluation, but the issues they raise are clearly rel-
evant to curriculum, teaching, learning, and other more basic research foci. We will 
introduce chapters in this volume utilizing the fi rst four of these issues. Cost is a 
factor that is determined, in part, by each of the fi rst four and will be woven into our 
 discussion as appropriate.  

    Sample Size 

 At fi rst pass, we can defi ne “Large” in terms of the sheer size of the sample(s) being 
examined. Chapters in this book address samples on the order of 2,500 participants, 
to three orders of magnitude greater for international data sets. Small, therefore, 
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would include the undertaking just held up as an exemplar for large scale, the work 
of Rochelle and colleagues. The scale of such studies, in terms of sample size, there-
fore, must be tempered with the kinds of methods used. Complex methods that 
employ multiple measures, including qualitative approaches such as interviews and 
observation, can be considered “Large” with samples in the hundreds, as opposed to 
relatively “simple” studies that may employ only a single measure. 

 Thomas, Heck, and Bauer ( 2005 ) report that many large-scale surveys must 
develop a complex method for determining the sampling frame so that important 
subpopulations with characteristics of interest (SES, ethnicity, grade level, for 
example) will be insured representation. A simple random sample, in many cases, 
will not yield enough members of the target subpopulation to generate adequate 
confi dence intervals. In “Longitudinally Investigating the Impact of Curricula and 
Classroom Emphases on the Algebra Learning of Students of Different Ethnicities,” 
Hwang, Cai, Shih, Moyer, and Wang (this volume) illustrate this issue clearly. Their 
work on curriculum implementation required a sample large enough disaggregate 
results for important demographic groups. Their research shows that while achieve-
ment gaps tended to lessen for middle school students engaged in reform-oriented, 
NSF-sponsored curricula, the performance gap between White students and 
African-American students remained robust to the intervention. These results show 
demonstrably that curriculum implementation is not uniform for all ethnic groups, 
and that we have much work to do to create tasks and sequences that  do  address the 
cultural and learning needs of all students. 

 Likewise, in “A Randomized Trial of Lesson Study with Mathematical Resource 
Kits: Analysis of Impact on Teachers’ Beliefs and Learning Community,” Lewis 
and Perry (this volume) performed a randomized control trial of lesson study imple-
mentation, examining the impact of a set of support materials that provide imbed-
ded professional development, and a structure for neophytes to implement lesson 
study on fractions with fi delity. The authors took great pains in their sampling frame, 
to establish the equivalence of control versus treatment groups. Their results show 
that such support improves teachers’ knowledge of fractions, their fi delity of imple-
mentation of lesson study, and subsequent student performance on fractions. Their 
use of multiple methods, across multiple levels (students, teachers, teacher lesson 
study groups) also highlights how studies across diverse geography and demogra-
phy can explore the effi cacy of locally organized professional development (with 
nationally designed support) versus larger policy-level organization. 

 For government agencies, these sampling issues are often addressed through 
multi-stage cluster sampling, often including oversampling of under-represented 
groups. These strategies have implications for the calculation of standard errors in 
subsequent analyses, particularly if within-group variation is smaller than cross- 
group variation. “A Review of Three Large-Scale Datasets Critiquing Item Design, 
Data Collection, and the Usefulness of Claims,” “Using NAEP to Analyze Eighth-
Grade Students’ Ability to Reason Algebraically,” and “Homework and Mathematics 
Learning: What Can We Learn from the TIMSS Series Studies in the Last Two 
Decades?” (Orletsky, Middleton & Sloane, this volume; Kloosterman et al., this 
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volume; and Zhu, this volume) each deal with these complex sampling issues, both 
practically as the authors implement studies that must take sample weighting into 
account and by methodological critique of secondary databases. 

 Researchers without the fi nancial wherewithal of government agencies often 
must resort to other methods for insuring the sample of a study effectively represents 
some general population. Matching participants across experimental units on a 
variety of important covariates is a statistical method for making the case that exper-
imental units are  functionally  equivalent prior to an intervention, and therefore, that 
any differences found after the study are due solely to the intervention. Such meth-
ods do not account for  all  preexisting variation in groups; some systematic variation 
is inevitably unaccounted for. Lakin and Lai ( 2012 ), for example, show that the 
generalizability of standardized tests can be much lower than for non- ELLs. Their 
study showed that ELL students would have had to respond to more than twice as 
many mathematics items and more than three times as many verbal items for the 
instrument to show the same precision as non-ELL students. Care must be taken, 
then, to not underestimate the standard error of measurements for subpopulations. 

 In “A Lesson for the Common Core Standards Era from the NCTM Standards 
Era: The Importance of Considering School-level Buy-in When Implementing and 
Evaluating Standards Based Instructional Materials, Kramer, Cai, & Merlino (this 
volume) performed a quasi-experiment examining the impact of school-level atti-
tudes and support on the effi cacy of two NSF-supported middle school curricula. 
Using data from a Local Systemic Change project, they assessed “Will to Reform,” 
a survey-proxy for fi delity of implementation, roughly defi ned as teacher buy-in to 
the curriculum, and principal support for the curriculum. Carefully matching, statis-
tically, schools implementing either  Connected Mathematics Project  or  Mathematics 
in Context , they found that choice of material did not matter so much as the degree 
to which schools supported the curricula, teachers showed buy- in to the methods, 
and principals supported teachers’ reform. The ability to match schools across sev-
eral potential nuisance factors (such as prior mathematics and reading scores, 
demographics, SES)  requires  a large enough sample to provide adequate variability 
across all matching factors. 

 Regardless of the techniques used, the point is to reduce the overall systematic 
variation between experimental units enough to claim that the residual variation has 
a relatively minor effect. Careful choice of covariates is critical to make this claim, 
in addition to randomization or other equilibration techniques. 

    Purpose of the Study 

 Small-scale studies tend to be used towards the beginning of a research program: To 
explore new phenomena for which existing measures are not yet developed. Many 
focus on developing measures, drafting tasks for curriculum and assessment, or for 
exploring new teaching practices. Large-scale studies, in contrast, tend to be 
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employed after such methods or instruments have been piloted and their use justifi ed, 
and the phenomena to which they apply have been adequately defi ned. Anderson 
and Postlethwaite ( 2007 ) defi ne the purpose of large-scale studies as describing a 
system as a whole and the role of parts within it. But the complexity of the system 
and the type of understanding to be gained from the study greatly impact how large 
the scale must be. 

 When examining a relatively simple system (say, performance on a test of pro-
portional reasoning), the relatively low cost of administering a single measure, rela-
tive to the necessary power for detecting a particular effect, makes a “large” scale 
smaller, proportionally, than when examining the interaction between a set of vari-
ables. In general, the more variables one is interested in, the larger the scale one 
must invest in. But this is even more crucial if the  interaction  among variables is 
under study. Even relatively simple factorial designs to test interaction effects 
require a polynomially increasing sample size as the number of interactions 
increases. When ordered Longitudinally, concepts assessed in year 1 of a study, for 
example, do not ordinarily have a one-to-one relationship with concepts in subse-
quent year. Thus, the combinatorial complexity of human learning requires a huge 
sample size if the researcher is interested in mapping the potential trajectories learn-
ers may travel across a domain (Confrey & Maloney, this volume; Hwang, et al., 
this volume; Lewis & Perry, this volume). 

 In contrast, when the number of potentially interacting variables is high, the 
analysis is fi ne-grained (such as interviews of individual learning trajectories or 
observation of classroom interactions), and the purpose of the study is to create a 
new model of the phenomenon, smaller sample sizes may be needed to distinguish 
subtle differences in effects of tasks, questioning techniques, or other relevant factors. 
Middleton et al. (this volume), in “A Longitudinal Study of the Development of 
Rational Number Concepts and Strategies in the Middle Grades,” show that, with 
only about 100 students, intense interview and observation techniques over several 
years can be considered large scale due to the purpose of the study as modeling 
student development of rational number understanding. The authors found that, 
contrary to their initial hypotheses, students’ understanding grew less complex 
over time due to key biases in models used to teach fractions and ratios. 

 In “Engineering [for] Effectiveness in Mathematics Education: Intervention at 
the Instructional Core in an Era of Common Core Standards,” Confrey and Maloney 
(this volume) provide a reconciliation of these extremes. They make the case that 
fi ndings across  many  such studies can highlight the interplay among factors central 
to what they term the “instructional core”—the complex system bounded by cur-
riculum, assessment, and instruction. The scale here is defi ned as the extent of the 
common efforts across studies. They call for the creation of collaborative efforts 
among large-scale development and implementation projects and the development 
of technologically-facilitated systems of data collection and sharing to facilitate 
analysis of this complex system  as  a complex system, using modern analytics.  
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    Generalizability and Transportability of Results 

 Generalizability is a valued outcome of most large-scale studies. We report data not 
just as a description of the local, individual participants and their behavior, but as a 
model for  other  participants. When we test the effi cacy of a teacher professional 
development program, for example, we are reporting our belief that the effects 
found can be replicated, under similar conditions, in some population of teachers. 
For primarily quantitative data, generalizability is established by the sampling 
frame—the methods by which the author makes the case that the sample represents 
the population of interest—the operational defi nition of the measure, and the 
appropriateness of the analyses. Standard errors are used to fi nd the probability that 
a measure adequately refl ects the typical behavior of the population. For such stud-
ies, size really does matter: The sample size is inversely proportional to the standard 
error. The issues of the complexity of sampling frames and the analyses mentioned 
above are largely important due to their impact on generalizability. 

 For other studies, those that use more qualitative methods, or those that cannot 
make random assignment to conditions, generalizability is diffi cult to impossible to 
establish statistically. Instead, a concept from design research becomes useful: 
Transportability of results. Transportability has to do with the functionality of the 
innovation being studied. Curricula, for example, may have different ways of being 
applied depending on teacher knowledge, available technology, state and local level 
standards, and so on. How robust the curriculum is, and how adaptable it is when 
transported from one situation to another, is a critical consideration for studies of 
applicability (Lamberg & Middleton,  2009 ). 

 In “Challenges in Conducting Large-Scale Studies of Curricular Effectiveness: 
Data Collection and Analyses in the COSMIC Project,” Tarr and Soria (this volume) 
address both of these issues adroitly in their multi-level study of the impact of cur-
riculum type on student achievement. The authors had to take multiple measures of 
prior achievement from state-level tests, convert them to  z -scores, then map the state 
 z -scores to NAEP scores to model student achievement as a result of reform-ori-
ented curricula versus more traditional curricula. Effects of teachers, due to lack of 
observational data, were modeled using paper and pencil scales of teacher beliefs as 
proxies. Moreover, because so many teacher variables had potential impact on stu-
dent achievement, potentially obscuring the impact of curriculum type, the authors 
reduced these dimensions using Principle Components Analysis. In this study of 
4,600 students across 135 teachers, the sheer number of variables measured, and 
their potential interactions necessitated a large scale to have enough power to detect 
any effect curriculum might have had. Through iterative multi-level models, reduc-
ing the dimensionality of the system each iteration   , they found that curriculum 
DOES matter, but prior achievement, opportunity to learn, and teacher effects medi-
ate curriculum signifi cantly. 

 The scale and sampling frame for this study establishes good generalizability of 
the results in a statistical sense. However, the iterative methods used in this chapter 
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allowed the authors to show that many key variables impact the transportability of 
different curricula from one situation to another. Curriculum matters, but not to the 
exclusion of factors of implementation.  

    Type and Complexity of Data Analysis 

 “Large” is also determined, to a great extent, by the methods used to answer the 
research question. Observational methods, for example, because of their inherent 
cost in terms of time and analytic complexity, may constitute only dozens of records, 
depending on whether or not single units are observed multiple times, or whether 
multiple units are observed once or twice. 

 Shih, Ing, and Tarr (this volume), in “Addressing Measurement Issues in Two 
Large-Scale Mathematics Classroom Observation Protocols,” for example, critique 
two different observational protocols, designed to view the same classroom phe-
nomena, regarding how they account for, and treat as parameters sources of error 
variation. Their analysis highlights the need to run comparative analyses of reliabil-
ity across competing or even seemingly complementary methods. One issue appears 
to be particularly important: Protocols aiming to determine general features of prac-
tice may tend to ignore or gloss over important differences in content and curricu-
lum, which are the  central  features of other protocols, while those protocols focusing 
on the within-effects different tasks and curricula may report results that do not 
generalize across those factors. They also provide methodological insight by show-
ing that utilization of multiple raters may improve reliability of observational proto-
cols more effectively than increasing the number of items on a scale. 

 Like observation, face-to-face interview methods, all things being equal, will not 
allow samples as large as phone or online interviews. In the world of survey meth-
ods, the ability to use computerized (including online) collection methods enables 
larger sample sizes and more complex methods of assigning items to individuals. 
These methods, of course, both depend on, and interact with, the kinds of research 
questions being asked. As Shih et al. show, questions about the generalizability of a 
known fi nding requires more data than questions about the possible ways in which 
teachers might implement a particular concept in their class (also see Lewis et al., 
this volume). 

 In “Turning to Online Courses to Expand Access: A Rigorous Study of the 
Impact of Online Algebra I for Eighth Graders,” Jessica Heppen and her col-
leagues (Heppen, Clements, & Walters, this volume) provide an excellent example of 
how the unit of analysis, coupled with the research question, infl uences what we 
consider “large.” They report an effi cacy study of providing online access to Algebra 
I to rural eighth-grade schools, which, heretofore had limited access to the content 
(some of the surveyed schools only had four eighth graders, presumably making 
staffi ng and curriculum adoption impractical and/or cost-prohibitive). In their study, 
the unit of analysis is  schools . Schools are the appropriate unit for studying cur-
riculum access, as individual students are typically nested within available curriculum, 
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and typically schools adopt a single set of materials (see also Kramer, Cai, & 
Merlino, this volume). Thirty fi ve schools receiving online access to Algebra 1 were 
compared to 33 control schools. The authors report that providing such access can 
improve eighth-grade performance as well as improve the probability of subsequent 
advanced mathematics coursetaking as students move to high school. 

    Characteristics of the Measurement 

 Size may matter, but what is being “measured” matters as well. It is clear, for 
example, from the high degree of variability and low goodness of fi t for participant 
scores in mathematics assessments, that a large amount of any person’s score is 
error of measurement. Any effect, therefore, includes not only true differences in the 
variable of interest, but also a whole host of spurious effects (Shadish, Cook, & 
Campbell,  2002 ). 

 Seltiz ( 1976 ) discusses the different components that make up a typical effect in 
social research. These effects include: (1) Stable characteristics other than those 
intended to be measured (such as the person’s motivation in mathematics impacting 
their effort on a test of performance); (2) Relatively transient factors such as health 
or fatigue; (3) Variation in the assessment situation, for example, taking a test in a 
testing center versus the classroom or interviewing a teacher in her room versus in 
the researcher’s lab; (4) Variation in administration (different instructions given or 
tools made available); (5) Inadequate sampling of items; (6) Lack of clarity of mea-
suring instruments; and (7) Variation due to mechanical factors, such as marking an 
incorrect box on a multiple choice test, of incorrect coding of an interview item. 

 Multiple-methods and mixed methods (e.g., Mujtaba, Reiss, Rodd, & Simon, 
this volume) provide both statistical confi dence and qualitative depiction of typical 
or expected attitudes, practices, or student behaviors in context and help the 
researcher understand when one or more of these factors may play an important role 
in measurement.  

    Error of Measurement 

 Inadequate or inconsistent sampling of items from the conceptual domain under 
study reduces the degree to which we can have confi dence in the results of any 
assessment utilizing those items. In “Using NAEP to Analyze Eighth-Grade 
Students’ Ability to Reason Algebraically,” Kloosterman et al. (this volume) per-
form a secondary analysis of NAEP items, classifying them by their mathematical 
content, and then analyzing student performance for that content  longitudinally . 
Their study represents a heroic effort just getting access to, and classifying NAEP 
items, given the proprietary nature to which specifi c item content and wording is 
guarded by the National Center for Education Statistics. Their results show that US 
eighth students’ performance on NAEP, both overall and for algebra-specifi c content, 
has improved steadily from 1990 to 2011. Analysis of different items, however, 
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shows consistent diffi culty in content associated with proportional reasoning and on 
equations and inequalities utilizing proportional concepts. As a nationally represen-
tative sample, their works illustrate how huge-scale data can simultaneously provide 
us with information regarding how we are improving (or not), in mathematics 
instruction, but also provide specifi c critique on areas where we may still be falling 
short despite overall improvement. 

 For studies that assess the structure of variables in a network model or that 
employ advanced regression methods, the critical relationship between the number 
of items used to measure a construct and its reliability becomes extremely impor-
tant. Even if each item is an excellent measure of its individual construct, the degree 
to which the items, together, predict some larger class of understandings can be 
eroded through their incorporation into a subscale. This increases the error of 
estimate of the latent variable. 

 Ebby and Sirinides (this volume) studied the interaction among several key 
variables, heretofore studied separately, in “Conceptualizing Teachers’ Capacity for 
Learning Trajectory-Oriented Formative Assessment in Mathematics”. They report 
on the development of an instrument to measure several aspects of teachers’ 
Mathematical Knowledge for Teaching, including their assessment of the validity of 
the mathematics students used to solve problems, their assessment of students’ 
mathematical thinking, and their orientation towards thinking of students’ work in a 
learning trajectory. Fourteen hundred teachers were assessed by 15 different raters 
in this study! Using structural equation modeling (SEM), the authors found that 
teachers utilize their assessment of the validity of the mathematics to help them 
diagnose students’ mathematical thinking. Their understanding of children’s 
mathematical thinking, in turn, impacts their understanding of the students’ 
learning trajectory. Together, these three variables signifi cantly impact teachers’ 
instructional decision making.  

    Complexity of the Measure 

 Assessments that measure multiple constructs versus a single one run into the 
tendency to under-sample the domain for each sub-construct, increase fatigue due 
the length of the administration of the assessment, and subsequently increase the 
number of mechanical errors recorded. Mujtaba et al. (this volume) clearly illustrate 
this in “Methodological issues in mathematics education research when exploring 
issues around participation and engagement”. The authors studied motivational 
variables and their individual and collective impact on students’ intended choice of 
mathematics in post-compulsory education. Multi-level modeling allowed the 
authors to account for school-based variation, to focus analyses on individual deter-
minants of future course choice. What scale afforded the authors was an opportunity 
to examine  multiple  variables in concert, without sacrifi cing predictive validity of 
any variable apart from the others. Intrinsic motivation in mathematics, beliefs    
about extrinsic material gain from studying mathematics and advice all were shown 
to be signifi cant contributors to students’ decisions.  
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   P = “Publish” 

 Large-scale studies are prone to errors due to “fi shing.” Because, particularly for 
secondary data analysis, researchers have access to so many variables at once, the 
tendency to run analyses without clear hypotheses or theoretical justifi cation is 
almost too easy. The probability values of these results may be very low, due to the 
effect of large sample size on the standard error of measurement. The literature is 
currently full of fi ndings of dubious utility, because the probability that a correlation 
is zero due to random chance may be very small. But how large is the correlation? 
For experimental research, an effect may have low probability of occurrence by 
random chance. But how large is the effect? Large-scale studies, because of the rela-
tive stability that large samples provide for estimates, can give us indication of the 
size of effect of an intervention, and therefore its potential practical signifi cance. 

 Orletsky et al. (this volume), in “A Review of Three Large-Scale Datasets 
Critiquing Item Design, Data Collection, and the Usefulness of Claims,” compare 
and contrast three large-scale longitudinal studies (ELS, NAEP, & TIMSS), exam-
ining the potential threats to validity that are probable when performing secondary 
data analysis. In particular, because of the relationship between sample size and 
standard error of estimate, the tendency for large-scale “fi ndings” to have low 
 p - values  may yield  many  spurious results. Heppen et al. (this volume) utilize the 
narrow standard errors of large-scale research methodologically in a clever and 
unique way by hypothesizing that a  lack of  statistically signifi cant side effects of an 
intervention may be considered supportive evidence for its effi cacy. When com-
bined with  signifi cant  performance outcomes, large sample sizes enable researchers 
to examine unintended consequences of interventions statistically. 

 Zhu (this volume), in “Homework and Mathematics Learning: What Can We 
Learn from the TIMSS Series Studies in the Last Two Decades?,” utilized the 
TIMSS database to compare the mathematics homework practices of fi ve east Asian 
nations with three Western nations. Overall, though there were key differences from 
nation to nation, homework practices were found to be highly similar. Well over 
90 % of teachers surveyed assigned homework. Homework varied from about ½ h 
per day (US, Japan, England), to about 45 min per day (Singapore). Most home-
work consisted of worksheet problems. One key fi nding shows that across all the 
studied nations, the prevalence of classroom discussion of homework problems has 
steadily increased from 1995 to 2011. Without large samples capable of being dis-
aggregated by nation, the stability of these fi ndings would have been near  impossible 
to establish.  

   Level of Data Analysis 

 Many of the chapters in this volume address this issue explicitly, so we do not go 
into depth here. Suffice it to say that learning studies where students can be 
randomly assigned to experimental conditions require fewer records than nested 
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designs. HLM and other multi-level methods are only valuable if the appropriate 
number of participants is sampled  at each level . Within group variation then 
becomes an issue, depending on the heterogeneity of students within classrooms, or 
classrooms within schools. The more within group variation, the more groups will 
be needed to establish the group effect (Hwang et al., this volume; Kramer et al., this 
volume; Lewis & Perry, this volume).    

    Summary 

 This monograph is timely in that the fi eld of mathematics education is becoming 
more diverse in its methods, and the need to investigate the effi cacy of policies, 
tools, and interventions on mathematics teaching and learning is becoming more 
and more acute. In particular, the diverse ways in which students from a variety of 
backgrounds and with a variety of interests can become more powerful, mathemati-
cally, is still an open question. While examples can be provided with investigations 
of a few students in a few classrooms, the generality of those examples across the 
tremendous diversity of conditions of implementation in the world must be estab-
lished with studies of a scale large enough to detect and estimate the probabilities of 
interventions’ effectiveness with populations of interest disaggregated. 

 The chapters in this book show that large scale studies can be both illuminative—
uncovering patterns not yet seen in the literature, and critical—changing how we 
think about teaching, learning, policy, and practice. The authors examine topics as 
diverse as motivation, curriculum development, teacher professional development, 
equity, and comparative education. Organizationally, we divide the chapters into 
four thematic sections:

   Section I: Curriculum Implementation  
  Section II: Teachers and Instruction  
  Section III: Learning and Dispositions  
  Section IV: Methodology    

 But, it must be noted that most of this work crosses lines of teaching, learning, 
policy, and practice. The studies in this book also cross the boundaries of the six 
types of research discussed in the IES/NSF  Common Guidelines for Education 
Research and Development  ( 2013 ). We have selected these authors because their 
research and commentary are complex, illuminating problems to look out for, 
 methodologically, as well as insight for how to better create robust, generalizable 
information for the improvement of curriculum, teaching, and learning. We antici-
pate this volume will help researchers navigate this terrain, whether engaging in 
designing and conducting effi cacy research on the one hand, or analyzing secondary 
data on the other.     
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A Lesson for the Common Core Standards Era 
from the NCTM Standards Era: 
The Importance of Considering School-Level 
Buy-in When Implementing and Evaluating 
Standards-Based Instructional Materials

Steven Kramer, Jinfa Cai, and F. Joseph Merlino

Those who cannot remember the past are condemned  
to repeat it.

George Santayana

In June 2010, the Council of Chief State School Officers and National Governor’s 
Association promulgated the Common Core State Standards (CCSS) for mathemat-
ics and literacy (CCSSO/NGA, 2010). The new standards are expected to “stimulate 
significant and immediate revisions…in classroom curriculum materials (Council 
of Chief State School Officers, Brookhill, & Texas Instruments, 2011).” Similarly, 
the new Next Generation Science Standards may require educators to develop and 
implement new instructional materials (NSTA, 2012).

Today’s new standards build on previous efforts, including earlier standards pro-
mulgated by the National Council of Teachers of Mathematics (NCTM, 1989, 2000, 
2009a, 2009b). Soon after the publication of the first Standards document (NCTM, 
1989), the National Science Foundation (NSF) funded development of a number of 
elementary, middle, and high school mathematics curricula (hereafter referred to as 
“NSF-funded curricula”) designed to implement the Standards. Studies evaluating 
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the effectiveness of the NSF-funded curricula can provide important lessons for 
today’s new curriculum reform efforts.

The current study investigates the effectiveness of NSF-funded middle school 
mathematics curricula implemented with the assistance of the Greater Philadelphia 
Secondary Mathematics Project (GPSMP). The GPSMP, operating between 1998 
and 2003, was an NSF-funded Local Systemic Change (LSC) initiative. This study 
differs from previous studies by evaluating the mediating effects of a school-level 
measure of stakeholder buy-in. We found that the degree of principal and teacher 
buy-in had a large impact on curriculum effectiveness. These results have  potentially 
important implications for today’s efforts to implement new instructional materials, 
providing insights both about how to support implementation and about how to 
evaluate the effectiveness of those materials.

 Background

The original NCTM Standards emphasized student reasoning as being central to 
learning mathematics. Mathematics curriculum materials that had been in wide-
spread use prior to promulgation of the Standards were perceived as placing too 
much emphasis on procedural fluency at the cost of ignoring conceptual under-
standing and applications (Hiebert, 1999). Based on early field trials of new curri-
cula designed to implement the Standards, developers cautioned that teachers could 
find it difficult to change their practice (Cai, Nie, & Moyer, 2010). The NSF 
attempted to address this issue by establishing the LSC Initiative. The LSC theory 
of action argued that providing teachers with extensive professional development in 
the context of implementing the new NSF-funded curricula would result in teachers 
having both the inclination and capacity to implement the curricula. Between 1995 
and 2002, NSF funded 88 multi-year LSC mathematics and/or science projects in 
Grades K-12 (Banilower, Boyd, Pasley, & Weiss, 2006).

The passage of the No Child Left Behind Act in 2001 and the establishment of the 
What Works Clearinghouse in 2002 heralded a new wave of educational reform focus-
ing on student assessment and “scientifically based research” to investigate the effects 
of educational innovations (Slavin, 2002). Researchers began investigating the effec-
tiveness of NSF-funded mathematics curricula. Syntheses of this early research tended 
to report positive achievement effects on researcher-administered tests using open-
ended problems, but near-zero achievement effects on standardized tests measuring 
basic mathematical skills (Cai, 2003; Kilpatrick, 2003; Slavin, Lake, & Groff, 2008; 
U.S. Department of Education, 2007a). These early studies of NSF-funded curricula 
generally used a quasi-experimental intent-to-treat analysis, comparing achievement 
growth in schools and/or classrooms implementing new curricula with achieve-
ment growth in matched comparison schools/classrooms that implemented business-
as-usual curricula. As shown in Fig. 1, intent-to-treat views curriculum implementation 
as a black box, comparing the achievement of students assigned to Treatment class-
rooms to the achievement of students assigned to Comparison classrooms without 
regard to actual classroom instruction (see, e.g., Riordan & Noyce, 2001).
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Recently, social science researchers have become concerned about information 
that is obscured by intent-to-treat studies. Evaluators have emphasized the impor-
tance of focusing not only on average effects, but also on mediating factors which 
can affect program outcomes when delivered under naturalistic conditions 
(Vuchinich, Flay, Aber, & Bickman, 2012). Among the potential mediating factors, 
evaluators have put particular emphasis on fidelity of implementation (Flay et al., 
2005; U.S. Department of Education, 2007b). In an extensive review of the litera-
ture, O’Donnell (2008) defined fidelity of implementation as the degree to which an 
intervention is implemented as originally intended in the program design. Without a 
measure of fidelity of implementation, researchers may not be able to determine 
whether unsuccessful outcomes are due to an ineffective program or are due to fail-
ure to implement the program as intended (Dobson & Cook, 1980; Forgatch, 
Patterson, & DeGarmo, 2005; Hohmann & Shear, 2002; O’Donnell, 2008). As 
shown in Fig. 2, researchers focusing on fidelity of implementation differentiate 
between the intended curriculum embodied in curriculum materials, the imple-
mented curriculum as seen in the classroom, and the attained curriculum as reflected 
in tests and other measures of student achievement (Cai, 2010). O’Donnell (2008) 
extended the concept of fidelity to include both fidelity to structure and fidelity to 
process. Fidelity to program structure means actually using the program materials as 
intended—and will be seen only in Treatment groups. Fidelity to process, in con-
trast, involves implementing processes congruent with the underlying program the-
ory of action and might be seen in both Treatment and Control/Comparison groups.

Recent effectiveness studies have indeed confirmed an interaction between 
 fidelity and treatment effects. In an evaluation of a supplemental elementary school 
math intervention aimed at increasing computational fluency, VanDerHeyden, 
McLaughlin, Algina, and Snyder (2012) found that a measure of fidelity to structure 
in Treatment classrooms predicted higher achievement on statewide test scores. 
Four recent studies evaluated inquiry-based middle school mathematics or science 
curricula while investigating fidelity to process (Cai, Wang, Moyer, Wang, & Nie, 
2011; O’Donnell & Lynch, 2008; Romberg, Folgert, & Shafer, 2005; Tarr et al., 
2008). All four found that Treatment classrooms with high fidelity to process 

Attained 
Curriculum

Learning/achievement
can be measured.

Intended
Curriculum

Fig. 1 Intent-to-treat 
evaluation model
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Fig. 2 Evaluation model with implementation fidelity
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showed more achievement growth than either Control classrooms or Treatment 
classrooms with low fidelity to process.

While many researchers and funders investigating program effectiveness have 
focused on fidelity of implementation, other researchers have taken a contrasting 
mutual adaptation or co-construction perspective that views fidelity of implementation 
itself as too simplistic a construct (e.g., Cho, 1998; Remillard, 2005). The mutual adap-
tation perspective emphasizes that any curriculum implementation necessarily involves 
teachers transforming the written curriculum, working with those materials to co- 
construct the enacted curriculum.

Researchers working on design experiments have used an evolutionary metaphor 
to describe this view. Some program changes are “lethal mutations” which decrease 
quality of learning, whereas other changes are “productive adaptations” which 
increase quality of learning (Brown & Campione, 1996; Design-Based Research 
Collective, 2003). Brown and Edelson (2001) described one such “productive adap-
tation” to the Global Warming Project (GWP), an inquiry-based middle school sci-
ence curriculum that Brown had helped develop. They described how one teacher, 
Janet, implemented The Sun’s Rays, an investigation that occurs approximately 
midway through the GWP.

Rather than have her students follow the “recipe” for doing the lab, she decided to turn the 
activity into an opportunity for them to engage in experimental design. Instead of providing 
them with a set list of materials, she gave them access to a host of supplies which she gath-
ered from her own supply closet and borrowed from other teachers. And rather than just 
connect the elements of the lab model to the actual phenomena they represented, she relied 
on the model throughout the lesson as a means to stimulate deep reflection and analysis of 
the results (p. 15).

The authors viewed Janet’s extensive adaptations as consistent with the program 
philosophy and, if anything, an improvement on the original lesson materials.

The current study extends the “implementation fidelity” model in Fig. 2 by intro-
ducing buy-in, a concept taken from research into Comprehensive School Reform 
(Cross, 2004; Glennan, Bodilly, Galegher, & Kerr, 2004; Schwartzbeck, 2002). 
While buy-in is often discussed in the Comprehensive School Reform literature, the 
buy-in concept has seldom been formally defined. One exception is Turnbull (2002), 
who used a five-part operational definition for buy-in to a school reform model. 
Teachers bought in to the model if they understood the model, believed they could 
make the model work, were personally motivated to do so, and believed the model 
was good for their school and would help them become better teachers. Our defini-
tion of buy-in is consistent with Turnbull’s, but more general, applying not only to 
comprehensive school reform, but to any school program, and to principals and 
other stake-holders as well as to teachers. Our definition is also influenced by a co- 
construction view of program implementation. We define buy-in as the degree to 
which stakeholders understand the underlying program theory and embrace that 
theory. Stakeholders who buy in to a program are less likely to introduce lethal 
mutations—and, to the degree their ability and situation allows, they are more likely 
to introduce productive adaptations. When applied to curriculum materials, buy-in 
reflects stakeholders’ attitudes toward, beliefs about, and understandings of those 
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materials. It is hypothesized that stakeholders with strong buy-in will be more likely 
to implement a program with fidelity to both structure and process.

Buy-in might be easier to measure than fidelity, especially fidelity to process. 
Measures of buy-in might be obtained via interviews or surveys of teachers and 
other stakeholders, or even indirectly via interviews or surveys of teacher leaders 
and mentors, whereas measures of fidelity to process might require teacher logs or 
classroom observations. Furthermore, professional development and other efforts to 
support program implementation might be more successful if such efforts seek to 
secure buy-in and help teachers and other stakeholders become active co- constructors 
of the curriculum, rather than seeking only to help them implement the program 
with fidelity to its structure and processes. Figure 3 (modified from Remillard, 
2005) represents a curriculum evaluation model incorporating both buy-in and fidel-
ity of implementation.

Buy-in has not often been addressed by curriculum effectiveness studies. In their 
evaluation of four elementary school math curricula, Agodini et al. (2010) asked 
teachers to state their interest in using their assigned curriculum again, if they were 
given a choice. The authors reported mean responses by curriculum, but did not 
attempt to analyze whether choosing “yes” correlated with higher achievement, per-
haps because the dichotomous variable may have been too weak a measure of buy-
 in to achieve valid results. Similarly, in their evaluation of an intervention 
implementing supplemental math curriculum materials, VanDerHeyden et al. 
(2012) measured teacher-rated “acceptability” of the intervention by computing the 
school-level mean of teacher responses to 15 Likert-scale items measuring the pro-
gram’s perceived effectiveness, practicality, ease of implementation, potential risks, 

Teacher
Lesson Plans

(Planned
Curriculum

Implemented
Curriculum

Attained
Curriculum

Teacher

School-aggregated Teacher Buy-in,
Individual Teacher Buy-in, and

Principal Buy-in
can be measured.

Fidelity to Structure and
Fidelity to Process
can be measured.

School
Environment
(principal and

colleagues)

Learning/achievement
can be measured. 

Curriculum
Materials

context

Fig. 3 Evaluation model with buy-in and implementation fidelity
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etc. The authors did not report whether or not schools with high average teacher 
buy-in achieved better results than did schools with low average teacher buy-in. An 
unpublished supplemental analysis did not detect any correlation between buy-in 
and achievement, but because buy-in variation among the schools was not large and 
the sample consisted of only seven Treatment schools, the data available would 
have very low power to detect any such correlation (A. VanDerHeyden, personal 
communication, 2013). Thus, the current study breaks new ground by quantitatively 
analyzing the relationship between buy-in and program effectiveness.

The current study investigates the effectiveness of one particular LSC, the 
GPSMP. The GPSMP operated between 1998 and 2003. The study was commis-
sioned by NSF in 2003 to use retrospective data to analyze GPSMP effects at twenty 
middle schools that implemented one of two NSF-funded middle school curricula, 
either Mathematics in Context (MiC) or Connected Mathematics (CMP). This study 
differs from previous studies of NSF-funded curricula in that it investigates the 
effectiveness not only of the curricula themselves, but of the LSC theory of action, 
which combined curriculum adoption with extensive professional development for 
teachers. The study also differs from previous studies by using a measure of buy-in 
as a mediating variable.

Over its 5 years of operation, the GPSMP provided an average of 59 h of profes-
sional development to each of 249 middle school teachers at the 20 middle schools 
that participated in the retrospective study. GPSMP differed from some other LSCs 
in that mentors working for the project supplemented professional development by 
providing extensive assistance to mathematics teachers implementing NSF-funded 
curricula.

The LSC theory of action predicted that, at most middle schools, implementing 
an NSF-funded mathematics curriculum combined with extensive teacher profes-
sional development would lead to sufficiently high fidelity curriculum implementa-
tion so that positive impacts on student achievement might be expected. In contrast, 
anecdotal reports from GPSMP mentors indicated that this was not the case. The 
mentors reported that even when all schools participated in extensive professional 
development activities, there remained systematic differences among middle 
schools in quality of implementation. These differences appeared to be a function of 
initial teacher and principal assent or buy-in and district-level support for the new 
curriculum, a factor we have named “Will to Reform.”

The mentors’ focus on the importance of Will to Reform was supported by previ-
ous research investigating conditions that facilitate or inhibit the process of imple-
menting a new curriculum. Important factors identified included the teachers’ buy-in, 
as well as support from school principals and district superintendents (e.g., Fullan & 
Pomfret, 1977; Krainer & Peter-Koop, 2003; Little, 1993). The LSC capstone report 
(Banilower et al., 2006) also noted that, over time, LSC Principal Investigators came 
to feel that school principals had a larger impact on the quality and impact of program 
implementation than had been recognized in the original theory of action.

This paper has two goals. First, it evaluates the effects of a moderately large scale 
(20 middle schools) implementation of the LSC model (adopting a problem-based 
mathematics curriculum combined with extensive professional development) on 
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student achievement, as measured by high-stakes, state-administered, standardized 
mathematics tests. Second, it focuses on Will to Reform, a school-level measure of 
buy-in to implementing the problem-based curriculum. It investigates how Will to 
Reform interacts with the LSC model to predict student achievement.

As shown in Fig. 3, teacher/curriculum interactions take place within a wider 
school context. While researchers from the 1980s (e.g., Goodlad, 1983) emphasized 
that teachers tend to work in isolation, more recent research has found that teachers 
see themselves as part of a larger coordinated system of instruction. For example, 
Kennedy (2004) reported that, when planning and implementing lessons, teachers 
often focused on their obligation to make sure students mastered the particular con-
tent the teachers who received their students the following year would expect them 
to have learned. Congruent with this “coordinated system” view, the GPSMP men-
tors described a school-wide gestalt Will to Reform. Consequently, it was reason-
able to believe that this school-level measure of buy-in might mediate the effect of 
curriculum on student achievement. While it would have been worthwhile to evalu-
ate the effects of buy-in measured at the teacher-level in addition to the effects of 
buy-in measured at the school level, the retrospective nature of our data made doing 
so impossible. Also due to the retrospective nature of the data, we do not have avail-
able any direct measure of implementation fidelity. Thus, the current study investi-
gates how school-level buy-in variables interact with curriculum materials to predict 
student achievement, without considering the effects of any intervening variables. 
Nonetheless, establishing whether or not such school-level buy-in variables predict 
student achievement is an important first step towards studying the more complete 
model displayed in Fig. 3.

 Method

 Achievement Measures

Student achievement was measured using eighth-grade state mathematics tests: the 
New Jersey Grade Eight Proficiency Assessment (GEPA) and the Pennsylvania 
System of State Assessment (PSSA) test. There are several advantages to using 
these two tests as the measure of student achievement. High stakes state tests mea-
sure what Confrey et al. (2004) called “curriculum alignment with systemic 
factors”—i.e., the degree to which students achieved the learning goals laid out for 
them by local authorities. Between 1999 and 2004, the GEPA was designed to 
assess student mastery of the New Jersey Core Curriculum Content Standards for 
Mathematics (New Jersey Department of Education, 1996). Subsequent to 1998, the 
Grade 8 PSSA assessed mastery of the Pennsylvania Academic Standards for 
Mathematics (Pennsylvania Department of Education, 1999). By using students’ 
scores on both GEPA and PSSA, we assessed mathematics content that was both 
important to local stakeholders and well-aligned with the state curriculum goals.
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 Will-to-Reform Scale

An independent educational research firm located in Philadelphia, PA was employed 
to gather information about program implementation within each of the districts 
participating in the GPSMP follow-on. Two qualitative researchers were assigned to 
the project. They interviewed school administrators, teachers, and math supervisors 
at each of the schools, talked to the mentors, and reviewed hundreds of pages of 
notes mentors had made about their interactions with GPSMP schools. They also 
collected quantitative data on the amount of professional development attended by 
teachers at the various districts.

At the same time, the GPSMP mentors were asked to rate teachers and school 
administrators on their Will to Reform. They did so blind to the work of the two 
independent qualitative investigators. In February, 2006, the two qualitative 
researchers, the mathematics mentor(s) for each school/district, and the GPSMP 
Principal Investigator held a meeting to compare ratings of each school on Will to 
Reform.1 Will to Reform was determined as the sum of a school’s gestalt rating on 
each of four subscales: Teacher Buy-in, Principal Support, District Coherence, and 
Superintendent Support. In advance of the meeting, the scales were defined in a 
fairly cursory manner, with a more detailed definition developed by group consen-
sus at the meeting.

Teacher Buy-in:

1 = Low Buy-in. Some teachers avoid professional development, taking personal 
leave days since they would “rather miss a workshop day than a school day.” 
Most teachers who do attend professional development go through the motions: 
they tend not to ask questions and tend not to be responsive. There is a subset of 
teachers who are vocal in criticizing the new program, including complaining to 
parents about it. In schools with adequate test scores, some teachers express the 
attitude, “If it ain’t broke, don’t fix it.” In schools with lower test scores, teachers 
tend to see the problem as being located in “kids today,” “parents today,” “society 
today,” or in poor elementary school teaching. No matter what the test scores, 
there is a tendency for teachers to believe that the curriculum and pedagogy 
“won’t work with our type of kids.”

3 = Medium Buy-in. Teachers tend to view themselves as professionals. They are 
willing to be team players and implement what the school asks of them. They 
make an effort to attend professional development, as long as they receive a sti-
pend for doing so. They tend to believe that their old ways of teaching might be 
improved, and to be willing to give something new a shot.

1 We attempted to keep raters as blind as possible to student test achievement data. Before they 
started their research, the qualitative researchers were instructed not to review such data. Further, 
we asked mentors not to discuss or compare standardized test data across districts when making 
their ratings. However, it is possible that during the time when mentors were working with the 
districts they had learned whether test scores were improving, and perhaps even developed some 
sense about which schools were seeing relatively weaker or relatively stronger improvement.
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5 = High Buy-in. Teachers tend to be excited about the new program and are eager 
to attend related professional development regardless of the pay. There is already 
a school culture supporting learning for the staff as well as for the students. 
Teachers tend to participate vocally in professional development and in math 
meetings and are willing to have others come in and observe them and provide 
feedback. As a group, teachers are proactive in dealing with the community and 
the school board, organizing parent meetings and similar activities. They aren’t 
just walking into curriculum change, but have been building up to it: looking at 
student data to diagnose problems, trying out new teaching techniques like coop-
erative learning, etc. In general, the curriculum fits with where the majority had 
already been going.

Although only three levels (low, medium, and high) were described, each rater 
could rate Teacher Buy-in as “2” (between low and medium) or “4” (between 
medium and high).

Principal Support:

1 = Individual does not support the program. He/she may give lip service to it in 
front of district officials, but in private will criticize it.

2 = Neutral and disengaged. Often, mentors had never met these individuals even 
after spending many hours working with teachers in the building.

3 = Generally supportive of the program, but not an advocate; allows it to happen, 
takes an interest, but not willing to go out and fight for it. If there is any flak from 
the community, the principal defers to math teachers, who are expected to be the 
experts and defend what they are doing.

4 = Not only supportive, but also an advocate. Talks about the program in public 
meetings, and runs “interference” defending teachers from any community criti-
cism. Lets teachers know that he/she is strongly behind the new curriculum.

5 = Supportive and an advocate, and a mathematics instructional leader. The princi-
pal understands the mathematics and learning theory behind the curriculum. He/
she uses this knowledge to inform discussions with teachers about classroom 
practice, to inform teacher observations, to decide what types of professional 
development activities are appropriate for the staff, etc.

District Coherence:

1 = Program is incoherent. There is a lot of conflict and/or disagreement among the 
school board, superintendent, principals, teachers, and community about exactly 
where the program should go or what should be done.

3 = Medium coherence. There is no overt or obvious conflict about mathematics 
among the school board, superintendent, principals, and teachers. Community 
disagreements tend to be dealt with in a spirit of communication, not conflict.

5 = High coherence. Everyone is “pulling in the same direction.” Programs like 
ongoing professional development for new teachers and advanced professional 
development are in place. District support staffs take an active interest in the 
math program, in collecting data about mathematics achievement, etc.
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Similar to Teacher Buy-in, although only three levels (incoherent, medium 
coherent, and high coherent) were described for district coherence, each rater could 
rate District Coherence as “2” (between incoherence and medium coherence) or “4” 
(between medium coherence and high coherence).

Superintendent Support:

1 = Individual does not support the program. In cases where this happened, it tended 
to be a superintendent who inherited a predecessor’s program, and who was 
interested in setting a new direction.

2 = Neutral and disengaged. Again, these tended to be superintendents who inher-
ited the math program, but who were not actively hostile to it.

3 = Generally supportive of the program, but not an advocate; allows it to happen, 
takes an interest, but not willing to go out and fight for it.

4 = Not only supportive, but also an advocate. Talks about the program in public 
meetings, and runs “interference” defending principals and teachers from any 
community criticism. Lets principals and teachers know that he/she is strongly 
behind the new curriculum.

5 = Supportive and an advocate, and a mathematics instructional leader. The super-
intendent understands the mathematics and learning theory behind the curricu-
lum and can use this knowledge in explaining what the district is doing, and in 
making plans with principals and other instructional leaders.

To rate a school on each subscale, each member in the group first described any 
information and experiences relevant to that school. The description was intended 
to cover the period from initial implementation through the spring of 2004, so indi-
viduals were asked to describe information relative to the overall tenor of teacher 
buy-in, district coherence, and support of principals and superintendents about the 
implementation during this period. Then, the group as a whole developed a consen-
sus rating for each factor for each particular school. Although the rating scales were 
developed using retrospective data, they were based on the input of independent 
observers who had interviewed relevant stakeholders and reviewed detailed field 
notes taken by the mentors, plus the observations of the mentors themselves, who 
had acted as participant-observers. (Recall that the average math teacher at these 
middle schools participated in 59 h of professional development, much of it either 
one-on-one with the mentor or in group sessions taught by the mentor.) Additional 
observations and information were provided by the GPSMP Principal Investigator 
who had worked closely with district administrators and principals throughout the 
5-year GPSMP project.

Each Treatment school was assigned a composite Will-to-Reform score by sum-
ming the subscale scores. Since each of the four subscales was scored from 1 to 5, 
the composite Will-to-Reform score could theoretically vary from a minimum of 4 
to a maximum of 20. In practice, there was wide variation among Treatment schools 
in Will to Reform, with an observed minimum score of 5 and an observed maximum 
score of 19. Across the 20 Treatment schools, the mean Will-to-Reform score was 
11.5 and the standard deviation was 3.62. Figure 4 displays a dot-plot of the observed 
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Will-to-Reform scores at the 20 Treatment schools. While necessarily imperfect 
due to the retrospective nature of the data, Will to Reform was a reasonable proxy 
measure for school-wide buy-in to the NSF-funded math curriculum that each 
Treatment school had implemented with GPSMP support.

 Comparison Schools

School districts in suburban Pennsylvania and New Jersey are usually small, com-
posed of one or two high schools and their feeder elementary and middle schools. 
For this reason, the participating GPSMP school districts each contained only one 
to four middle schools. Within each participating district, all middle schools adopted 
the chosen reform curriculum. Thus, we matched each GPSMP middle school to 
similar Comparison schools that were located in other, similar districts in the same 
state (either Pennsylvania or New Jersey).

Each GPSMP middle school was matched to a unique set of Comparison schools 
according to similar demographics (as reported by the National Center for Education 
Statistics 2004 data base) and test scores prior to GPSMP implementation. We 
chose to match using pre-determined “calipers” (maximum distance) on a set of 
covariates. While a number of studies have used propensity scores to match 
Treatment and Comparison groups (e.g., Stuart, 2007), for our study calipers had 
two advantages over propensity scores. Calipers allowed us to prioritize among 
covariates so that we matched most closely on baseline math scores and second 
most closely on baseline reading scores—the two covariates that were the best 
 predictor of later-year math scores. Second, we found that while propensity scores 
match the entire set of Treatment schools so that on average they are similar to 
Comparison schools on each covariate, propensity scores might match an individual 
Treatment school to Comparison schools that are very different on specific covari-
ates. The statistical models we used assumed that each Treatment school was indi-
vidually matched to similar Comparison schools. Using calipers enabled us to 
accomplish this goal.

To select Comparison schools, we required a match within ±0.2 standard devia-
tions on baseline scores in eighth grade mathematics and reading scores. We chose 

Fig. 4 Dot plot of observed Will-to-Reform scores
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0.2 standard deviations following the rule-of-thumb described by Rubin (2001) for 
propensity scores. For other variables, we aimed at finding schools within roughly 
the same quintile. Experience with data sets from several states (Arkansas, Illinois, 
Massachusetts, Michigan, Minnesota, Pennsylvania, New York, and Washington) 
led us to estimate that on average this could be accomplished by accepting schools 
within approximately ±17 % on Free and Reduced lunch and ±27 % on Percent 
White. We set the calipers for acceptable distance in Percent other races to be the 
same as calipers for Percent White. The actual matching proceeded along the 
 following steps:

First, we first identified “Priority One” matches, defined as follows:

 1. School-level Grade 8 math and reading scores in the “baseline year,” which we 
defined as the school year prior to beginning GPSMP-supported professional 
development and/or curriculum implementation (1998 for all but one treatment 
school in Pennsylvania, and 1999 for New Jersey schools and the remaining 
Pennsylvania school), were within ±0.2 school-level standard deviations.

 2. Within ±17 % Free and Reduced Lunch.
 3. Within ±27 % for EACH of the following races: White, Black, Hispanic, Asian, 

and Native American.
 4. Greater than 40 students enrolled in eighth grade in 2004.
 5. School organization: Schools where students attended grades 6–8 but not earlier 

were matched to similar schools (either 6–8 or 6–12). Schools where students 
attended grades 5–8 were matched to similar schools (either 5–8 or K-8). Junior 
High schools (grades 7–8) were matched to other Junior High schools.

After identifying the set of Priority One Comparison schools, we sorted by three 
variables, in order: closeness of baseline math scores, closeness of baseline reading 
scores, and percent free/reduced lunch. For each Treatment school, we selected the 
top ten Priority One matches. (We used a predetermined algorithm to assign each 
Comparison school matching more than one Treatment school to one unique 
Treatment school.) If fewer than ten Priority One matches existed, we accepted all 
Priority One matches. In the few cases where this process yielded fewer than three 
Comparison schools, we used a predetermined algorithm to relax our criteria until 
we identified three acceptable Comparison schools. Table 1 compares Treatment to 
matched Comparison schools on baseline math and reading scores, as well as demo-
graphic variables. Because each Treatment school was paired with 3–10 Comparison 
schools, depending on how many good matches were available, for each variable we 
computed the average reported in Table 1 by first computing the mean for 
Comparison schools within each school-group, and then averaging across the 20 
school-groups. Table 2 lists for each Treatment school the school’s Will-to-Reform 
score, its math achievement growth between baseline year and 2004, the average 
math achievement growth of its matched comparison schools, and the number of 
Comparison schools identified by our matching algorithm. For each Treatment and 
Comparison school, math achievement growth was computed as within-state school 
level z-score in 2004 minus within-state school level z-score in baseline year.
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Table 1 Average baseline ability and demographic characteristics of schools in the study

Variable
Treatment 
schools (n = 20)

Comparison 
schools (n = 118)

Baseline Math (in school-level 
standard deviations from state mean)

0.09 0.11

Baseline Reading (in school-level 
standard deviations from state mean)

0.18 0.17

Percent free/reduced lunch (%) 28 29
Percent White (%) 78 86
Percent Black (%) 9 8
Percent Hispanic (%) 10 4
Percent Asian (%) 3 2
Percent Native American (%) <1 <1

Table 2 Mean growth for treatment and comparison schools

Will-to- 
Reform score

Growth for 
treatment 
school

Mean growth  
comparison 
schools

Number of 
comparison schools

School 1 8 −0.03 −0.05 3
School 2 11 −0.52 0.27 10
School 3 7 −0.80 −0.23 10
School 4 19 0.54 −0.31 3
School 5 14 −0.63 0.03 10
School 6 15 0.11 0.11 10
School 7 16 1.12 −0.28 3
School 8 9 −0.82 0.27 3
School 9 8 −0.25 0.06 3
School 10 5 −0.51 0.46 3
School 11 8 −0.37 −0.20 10
School 12 16 0.05 −0.01 4
School 13 14 0.98 0.68 3
School 14 8 −1.09 0.18 4
School 15 12 0.32 0.37 3
School 16 11 −0.29 −0.20 10
School 17 13 −0.10 −0.09 10
School 18 13 0.12 −0.08 7
School 19 13 −0.18 −0.25 6
School 20 10 0.00 0.06 3
Mean −0.12 0.04
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 Statistical Model

Each school and all its Comparison schools were assigned to the same unique 
“school group.” Further, all schools in each district plus all their Comparison schools 
were assigned to the same unique “district group.” We used a growth model identi-
cal in form to Hierarchical Linear Models (HLMs) that track growth in individual 
achievement over time—but in our case, schools served as the “individuals” whose 
growth we were analyzing. Thus, the 4-level model measured observations, nested 
within schools, nested within school-groups, nested within district-groups. There 
were either six or seven observations per school, one for the mean math test score 
in the spring of each school-year from 1998 through 2004. (As noted above, for a 
few school groups the baseline year was 1999 instead of 1998.) We used an unstruc-
tured correlation matrix to model the six or seven observations within each school 
as being correlated with each other. We allowed the effects of year, of treatment, and 
of treatment-by-year to vary randomly between school-groups and between district- 
groups. (Because each school-group consisted of a Treatment school and all its 
matched Comparison schools and each district-group consisted of the Treatment 
schools within a district and all their matched Comparison schools, groups were 
defined by underlying similar characteristics that might lead to correlated results.) 
We treated State (Pennsylvania or New Jersey) as a fixed effect and allowed the 
fixed effect of “year” to vary between the two states. All statistical tests were run 
using SAS Proc Mixed. The “Satterthwaite” formula was used to estimate degrees 
of freedom.

Investigating the main effect of Treatment. To investigate the “main effects” of 
adopting an NSF-funded curriculum (either CMP or MiC) with GPSMP support,  
we used the model in Eq. 1:

 

Math Test Score Baseline Score New Jersey Year

New Jer

= + +
+

b b
b

1 2

3

* *

* ssey Year Treatment Treatment Year
Error Terms

* * * *+ +
+ ( )

b b4 5

 

(1)

Definitions. Math Test Score: Mean score on the eighth-grade state math test (PSSA 
in Pennsylvania or GEPA in New Jersey) at a particular school in a particular year. 
For each year, these scores were standardized to a school-level z-score by subtract-
ing the statewide average of school mean test scores and dividing by the statewide 
standard deviation of school mean test scores. This is analogous to what other large 
scale program evaluations have done (e.g., Garet et al., 2008) when they recentered 
student achievement data on each state’s distribution by creating standard scores, 
except that we used schools, instead of students, as the unit-of-analysis.

Baseline Score: Model-estimated 1998 mean score for the Pennsylvania 
Comparison schools.

β1: Difference between model-estimated 1998 mean score for Pennsylvania 
Comparison schools and model-estimated 1998 mean score for New Jersey 
Comparison schools.
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β2: Yearly growth rate in z-score for Pennsylvania Comparison schools. Because the 
dependent variable was a within-year z-score, this parameter would be signifi-
cantly different from zero only if over time math test scores at the Comparison 
schools were systematically getting better or worse than test scores at other 
schools in Pennsylvania—an unlikely prospect.

β3: Difference between the yearly growth rate in z-score for Pennsylvania 
Comparison schools and yearly growth rate in z-score for New Jersey schools. 
Like β2, this parameter would ordinarily be near zero.

β4: Model-estimated difference between Math Test Score at Treatment schools and 
Math Test Score at Comparison schools in the baseline year, 1998. Because each 
Treatment School was matched to Comparison schools using baseline test scores, 
by design this parameter was near zero.

β5: This is the parameter of primary interest in the main-effects model. It is the dif-
ference in yearly achievement growth rate between Treatment and Comparison 
schools. A positive value would indicate that on average implementing 
Mathematics in Context or Connected Mathematics under the LSC model had a 
positive effect on achievement growth. A negative value would indicate that on 
average the program had a negative effect on achievement growth.

Error Terms: These were the error terms computed by the 4-level HLM. The fol-
lowing error terms were used: random differences among school groups in baseline 
score, yearly growth rate, baseline treatment effect, and treatment-by-growth inter-
action; random differences among district groups in baseline score, yearly growth 
rate, baseline treatment effect, and treatment-by-growth interaction; and seven cor-
related error terms for each year-within-school.

Investigating the effect of Will to Reform. We theorized that strong school-wide Will 
to Reform might catalyze the impact of NSF-funded middle school curricula, 
whereas low school-wide Will to Reform might interfere with the impact of the cur-
ricula. To test this theory, a valid and intuitively appealing approach would be to add 
for each Treatment school a recentered “Will-to-Reform” variable, i.e., the original 
Will-to-Reform score recentered around the middle value of 12 (halfway between 4 
and 20).2 For each comparison school, the recentered Will-to-Reform variable 
would be entered as zero. The new model would then add Will-to-Reform and Will-
to- Reform*Year as fixed effects. The Will-to-Reform*Year slope would test whether 
the Will-to-Reform variable predicted how much achievement grew at Treatment 
schools, relative to achievement growth at other Treatment and Comparison schools.

This intuitively appealing approach had one potential drawback. Perhaps schools 
tended to have higher or lower Will to Reform because of some underlying back-
ground characteristic that was also associated with achievement growth. For exam-
ple, perhaps baseline year achievement scores might predict Will to Reform and 

2 We recentered Will-to-Reform because otherwise the main effects for Treatment in Eq. 2 (reported 
in Table 4) would have been misleading. Table 4 would have reported Treatment effects at imple-
mentation schools where the Will-to-Reform was 0, a score below the minimum possible actual 
score of 4.
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also predict achievement growth. In that case, Will to Reform might be correlated 
with achievement growth, but the correlation would be due to underlying school 
characteristics, not to the interaction between Will to Reform and the Treatment. One 
way to control for this possibility was to take advantage of each Treat ment school’s 
similarity to its matched comparison schools. In this model, each Treatment school’s rec-
entered Will-to-Reform score would be assigned both to the Treatment school and 
to its matched comparison schools. Then, four additional variables would be added to 
Eq. 1: Will-to-Reform, Will-to-Reform*Year, Will-to- Reform*Treatment, and Will-
to-Reform*Treatment*Year. A positive slope for the Will-to-Reform*Treatment*Year 
interaction term would indicate that Treatment schools with high Will to Reform 
had a larger growth rate, relative to their matched Comparison schools, than did 
Treatment schools with low Will to Reform. A negative slope would indicate the 
opposite.3

Because both of these models were defensible, we ran each separately. Results of 
the two models were nearly identical. We report results from the second model, 
since that model theoretically did a better job controlling for possible spurious 
results. The model we used is described in Eq. 2.
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Definitions of new parameters

β6: The effect of Will to Reform on predicted mean 1998 scores for Comparison schools. 
It is possible that initially high-achieving Treatment schools might have syste-
matically lower or higher Will to Reform than low-achieving Treatment schools.  

3 It might appear that, by assigning each Treatment school’s recentered Will-to-Reform score to its 
matched comparison schools, we are claiming that Will-to-Reform is a meaningful construct for the 
comparison schools, and further that the Will-to-Reform happens to be exactly the same at the 
matched comparisons as at the Treatment school. That is not what we have done. Will-to-Reform is 
our (retrospective and imperfect) measure of school-level buy-in at the Treatment school to their 
reform math curriculum. The matched comparison schools did not implement a reform math curricu-
lum, so Will-to-Reform is not a meaningful concept for them. Within our HLM, by assigning the 
same value of Will-to-Reform to all members of a school-group we have made Will-to-Reform a 
variable that applies to school-groups, not to individual schools within a school-group. Conceptually, 
the HLM first estimates the growth over time at each school by computing slope for Year within that 
school. Then, the HLM estimates how Treatment affects the growth rate in each school-group by 
computing the slope for Treatment*Year within that school-group. Finally, the HLM estimates how 
Will-to-Reform impacts Treatment effects by computing across school groups the slope of Will-to-
Reform*Treatment*Year. To be imprecise but conceptually correct, the model is treating 
Treatment*Year as a dependent variable with school-group as unit of analysis, and Will-to- Reform as 
the independent variable. In this way, parameter β9 in Eq. 2 estimates whether the effect of Treatment 
in school-groups where the Treatment school had a high Will-to-Reform is different from the effect 
of Treatment in school-groups where the Treatment school had a low Will-to-Reform.
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If this were the case, then our matching procedures would ensure each school’s 
matched comparison schools would have similarly high or low baseline math scores.

β7: The effect of Will to Reform on the difference in baseline math scores between 
a Treatment school and its matched Comparison schools. Our matching proce-
dures were designed to ensure that this parameter would be close to zero, since 
in theory each Treatment school would have nearly the same baseline scores as 
its Comparison schools. Including this term in the model corrected for any 
remaining noise caused by imperfect matching.

β8: The effect of a school-group’s Will-to-Reform score on predicted growth rate at 
its Comparison schools. Some demographic characteristics were associated with 
a higher achievement growth rate. For example, between 1998 and 2004 in 
Pennsylvania, low-SES middle schools improved their eighth-grade math test 
scores more than did high-SES middle schools. If demographic characteristics 
also predicted the Will to Reform of a Treatment school, then it is possible that 
school- groups whose Treatment school had high Will to Reform might have sys-
tematically higher (or lower) achievement growth rates than school-groups 
whose Treatment school had low Will to Reform.

β9: This is the parameter of primary interest in the Will-to-Reform model. It mea-
sures the degree to which Will to Reform was associated with an increased or 
decreased difference in growth rate between a Treatment school and its matched 
Comparison schools. A positive slope would indicate that implementing 
Mathematics in Context or Connected Mathematics under the LSC model had a 
more positive effect in high Will-to-Reform schools than in low Will-to-Reform 
schools. A negative slope would indicate the opposite.

 Results

 Overall Treatment Effects

None of the parameters in Eq. 1 differed significantly from zero. Most importantly, 
the slope of Treatment*Year was not significantly different from zero (t = −0.44, 
p = 0.6714), with a mean treatment effect of only −0.012 school-level standard devi-
ations per year. Thus, on average, mathematics achievement growth at the 20 treat-
ment schools was not statistically different from math achievement growth at 
matched similar schools.

A rough 95 % confidence interval indicates that each year the Treatment schools’ 
growth rate differed from that at Comparison schools between −0.064 school-level 
standard deviations per year and +0.041 school-level standard deviations per year. 
Over 6 years, this difference in growth rate would predict a 95 % confidence that the 
total effect of Treatment by 2004 would be in the confidence interval (−0.38, +0.25) 
school-level standard deviations, i.e., very near zero. Table 3 reports all fixed effects 
of the Main Effects model.
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 Buy-in Effects

To investigate the interaction between Will to Reform and the effects of the two 
NSF-funded curricula, we used a HLM that in essence compared the value-added of 
high Will-to-Reform Treatment schools to the value-added of low Will-to-Reform 
Treatment schools. That is, we compared the degree to which growth in eighth 
grade math scores from the baseline year (1998 or 1999) through 2004 of high ver-
sus low Will-to-Reform schools exceeded growth at their matched Comparison 
schools.

Figure 5 provides a simplified visual display of this analysis. The Composite 
Will-to-Reform scale was a sum of four scales scored from 1 to 5, so possible scores 
ran from 4 to 20. As the figure shows, GPSMP Treatment schools scored over a 
wide range of possible Will-to-Reform scores, from a minimum of 5 to a maximum 
of 19 on the composite scale. The figure displays the “Value Added” at each 
Treatment school—i.e., how much math achievement growth from the baseline 
through 2004 at the Treatment school exceeded growth at its matched Comparison 
schools—as a function of Will to Reform. Figure 5 clearly shows that students in the 
treatment schools with high values of Will to Reform had higher growth from the 
baseline to 2004 on state test scores than those students in the treatment schools 
with low values of Will to Reform. By the end of 6 years of treatment, some high 
Will-to-Reform schools showed an increase in state test scores of more than 1 
school-level standard deviation (about 0.4 student-level standard deviations) in 
comparison to their matched schools while some low Will-to-Reform schools 
showed a decrease of more than 1 school-level standard deviation.

The actual HLM, described in Eq. 2, calculated each school’s growth rate based 
on data from all available years, providing a more accurate and stable estimate than 
would have been possible using just the baseline and 2004 test scores used to create 
Fig. 5. The analysis showed a statistically significant slope for only one parameter: 
β9, the Will-to-Reform*Treatment*Year interaction (t = 4.51, p < .0001), with a 
mean effect size of 0.021 standard deviations per Will-to-Reform point per year 
(95 % confidence interval between 0.012 and 0.030). That is, the higher a Treatment 

Table 3 SAS proc mixed solution for fixed effects, modeling treatment effects on yearly growth

Effect

Standard

STATE Estimate Error DF t Value Pr > |t|

Intercept 0.238 0.253 4.23 0.94 0.399
STATE NJ −0.241 0.515 8.81 −0.47 0.652
STATE PA 0
YEAR*STATE NJ 0.004 0.021 36.5 0.20 0.843
YEAR*STATE PA −0.006 0.007 17.8 −0.76 0.455
YEAR 0
TREAT −0.030 0.030 108 −0.99 0.326
YEAR*TREAT −0.012 0.026 9.95 −0.44 0.671
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school’s score on Will to Reform, the more achievement grew relative to that of 
matched Comparison schools. For detailed fixed effects from this analysis, see 
Table 4 in the appendix.

In practical terms, how much impact did the slope of 0.021 school-level standard 
deviations per Will-to-Reform point per year have on the relative effectiveness of 
Treatment schools? Our model’s estimates for the three growth parameters in Eq. 2 
were β5 = 0.002, β8 = 0.000, and β9 = 0.021 where β5 is the predicted growth rate dif-
ference between a Treatment school and its matched Comparison schools if the 
Treatment school had a middle value of 12 on the Will-to-Reform scale, β8 is the 
(unsurprisingly zero) impact of a Treatment school’s Will-to-Reform score on 
achievement growth at its matched Comparison schools, and β9 is the impact of Will 
to Reform on achievement growth at the Treatment school. Thus, the predicted 
impact of the GPSMP Treatment at a school with the lowest observed Will-to- 
Reform score of 5 (7 less than 12) would be 0.002+ (−7*0.021) = −0.145 school-
level standard deviations per year, or −0.87 school-level standard deviations over 6 
years. That is, by 2004, a school that implemented a Reform curriculum but had the 
lowest Will to Reform would be expected to be performing about 0.87 school-level 
standard deviations below its matched comparison schools. Assuming a normal dis-
tribution, this would be enough to bring a school from the 50th percentile in math 
scores statewide in 1998 down to the 19th percentile in 2004. In contrast, the pre-
dicted impact of GPSMP Treatment at a school with the highest observed Will-to- 
Reform score of 19 (7 more than 12) was 0.002 + (+7*0.021) = 0.149 school-level 
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Fig. 5 Math achievement growth at treatment school from base year through 2004, minus math 
achievement growth at matched comparison schools (dMATHgrowth) as a function of composite 
Will-to-Reform score (COMPOSITE)
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standard deviations per year, or 0.89 school-level standard deviations over 6 years. 
That is, by 2004, a school that implemented a Reform curriculum but had the high-
est Will to Reform would be expected to be performing about 0.89 school-level 
standard deviations above its matched comparison schools. Assuming a normal dis-
tribution, this would be enough to bring a school from the 50th percentile in math 
scores statewide in 1998 up to the 81st percentile in 2004.

Movements of roughly this magnitude were in fact visible in the data set. For 
example, there were three middle schools in the data set (designated School 10, 
School 7, and School 4) that at the start of the GPSMP program in 1998 had the 
same PSSA score, at the 22nd percentile of all middle schools in Pennsylvania. 
School 10 (with the lowest observed Composite Will-to-Reform score of 5) moved 
from the 22nd percentile in 1998 down to the 18th percentile in 2004. In contrast, 
School 7 (tied for the second-highest observed Composite Will-to-Reform score of 
16) moved from the 22nd percentile in 1998 up to the 69th percentile in 2004. 
School 4 (with the highest observed Composite Will-to-Reform score of 19) moved 
from the 22nd percentile in 1998 up to the 46th percentile in 2004.

Equation 2 did not control for reading achievement because both MiC and 
CMP incorporate extensive reading and thus might potentially improve eighth-
grade reading as well as math scores. Nonetheless, we conducted a secondary 
analysis of Will-to-Reform effects on mathematics achievement while controlling 
for each school’s reading score each year. After controlling for eighth-grade read-
ing scores, the interaction between “Will to Reform” and the effects of GPSMP on 
mathematics achievement growth remained statistically significant (t = 2.86, 
p < 0.005). The point estimate for Will-to-Reform Effects was 0.011 school-level 
standard deviations per Will-to-Reform point per year (see Table 5). Thus, even 
after  controlling for reading growth that might have been partly caused by the new 

Table 4 SAS proc mixed solution for fixed effects, modeling composite Will-to-Reform effects 
on treatment-by-year slope

Effect

Standard

STATE Estimate Error DF t Value Pr > |t|

Intercept 0.214 0.293 4.55 0.73 0.500
STATE NJ −0.215 0.563 7.59 –0.38 0.712
STATE PA 0
YEAR*STATE NJ 0.004 0.022 24.8 0.17 0.867
YEAR*STATE PA −0.004 0.009 4.12 –0.39 0.716
YEAR 0
TREAT −0.029 0.031 107 –0.94 0.348
YEAR*TREAT 0.002 0.016 125 0.10 0.920
WILL-TO-REFa −0.044 0.054 17 –0.82 0.426
TREAT* WILL-TO-REFa 0.007 0.008 105 0.88 0.384
YEAR* WILL-TO-REFa −0.0002 0.002 11.7 –0.09 0.930
YEAR*TREAT*WILL-TO-REFa 0.021 0.005 124 4.51 <.0001

aRecentered composite Will to Reform
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math program, math achievement at a school with the highest Will-to-Reform 
score would grow roughly 7*0.011 standard deviations faster than its comparison 
schools each year, or .462 standard deviations over 6 years—enough to bring a 
school from the 50th percentile in math scores statewide in 1998 up to the 68th 
percentile in 2004.

 Effects of Will-to-Reform Subcomponents

While there was a significant interaction between composite Will To Reform and 
mathematics achievement growth, we were also interested in how each of the four 
Will-To-Reform subcomponents affected achievement growth. To that end, we ran 
four separate analyses and found that two of the components (Principal Support and 
Teacher Buy-in) were by themselves significant predictors of curriculum effective-
ness. That is, when we replaced the Will-to-Reform variable in Eq. 2 with each of 
the individual subscale variables in turn, we could confirm the statistical signifi-
cance of Principal-Support*Treatment*Year (p = 0.0007) and Teacher-Buy- 
in*Treatment*Year (p = 0.0074) (See Tables 6 and 7).

On their respective five-point scales, Principal-Support*Treatment*Year had a 
slope of 0.05 school-level standard deviations, and Teacher-Buy-in*Treatment*Year 
had a slope of 0.04 school-level standard deviations. Over 6 years, a school with 
principal buy-in of 5 would be expected to outperform a school with principal buy-
 in of 1 by (5 − 1)*0.05*6 = 1.2 school-level standard deviations. Over the same 

Table 5 SAS proc mixed solution for fixed effects, modeling composite Will-to-Reform effects 
on treatment-by-year slope, after controlling for school-level reading achievement

Effect

Standard

STATE Estimate Error DF t Value Pr > |t|

Intercept 0.073 0.157 4.86 0.47 0.659
YREADa 0.610 0.024 842 25.74 <.0001
STATE NJ −0.031 0.297 7.48 −0.10 0.920
STATE PA 0
YEAR*STATE NJ −0.014 0.019 20.3 −0.76 0.454
YEAR*STATE PA 0.001 0.008 5.11 0.13 0.905
YEAR 0
TREAT −0.050 0.035 109 −1.44 0.153
YEAR*TREAT −0.00007 0.014 121 −0.00 0.996
COMPCTRb −0.021 0.027 16.1 −0.78 0.447
YEAR*COMPCTRb 0.002136 0.002189 13.2 0.98 0.347
TREAT*COMPCTRb 0.006141 0.009673 105 0.63 0.527
YEAR*TREAT*COMPCTRb 0.01125 0.003929 121 2.86 0.005

aCurrent year mean eighth-grade reading score for the school
bRecentered composite Will to Reform
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period, a school with teacher buy-in of 5 would be expected to outperform a school 
with teacher buy-in of 1 by (5 − 1)*0.04*6 = 0.96 school-level standard deviations.

It is important to note that the two school-level components of Will to Reform 
were not completely independent constructs. In fact, Principal Support and Teacher 
Buy-in were significantly correlated with each other (r = 0.686, p < 0.01). None of 
the other correlations among the four components of Will to Reform were statisti-
cally significant (See Table 8).

Table 6 SAS proc mixed solution for fixed effects, modeling principal buy-in effects on treatment-
by- year slope

Effect

Standard

STATE Estimate Error DF t Value Pr > |t|

Intercept 0.145 0.263 5.33 0.55 0.603
STATE NJ −0.093 0.521 9.58 –0.18 0.864
STATE PA 0
YEAR*STATE NJ 0.002 0.021 31.9 0.07 0.943
YEAR*STATE PA −0.005 0.008 20.7 −0.63 0.534
YEAR 0
TREAT −0.026 0.032 107 −0.80 0.424
YEAR*TREAT 0.005 0.021 8.29 0.25 0.809
PRINCCa −0.190 0.122 13.3 −1.55 0.145
TREAT*PRINCCa 0.018 0.027 109 0.67 0.504
YEAR*PRINCCa −0.001 0.007 27.1 −0.13 0.901
YEAR*TREAT*PRINCCa 0.052 0.015 76.5 3.54 0.0007

aZero-centered Principal buy-in

Table 7 SAS proc mixed solution for fixed effects, modeling teacher buy-in effects on treatment-
by- year slope

Effect

Standard

STATE Estimate Error DF t Value Pr > |t|

Intercept 0.163 0.259 4.79 0.63 0.558
STATE NJ −0.067 0.527 9.49 −0.13 0.902
STATE PA 0
YEAR*STATE NJ −0.007 0.020 136 −0.32 0.747
YEAR*STATE PA 0.0004 0.007 120 0.06 0.956
YEAR 0
TREAT −0.030 0.031 108 −0.94 0.351
YEAR*TREAT −0.003 0.018 8.21 −0.16 0.876
TCHRBUYINCa −0.145 0.109 14.2 −1.34 0.203
TREAT*TCHRBUYINCa 0.004 0.022 108 0.19 0.850
YEAR*TCHRBUYINCa 0.009 0.0057 121 1.84 0.068
YEAR*TREAT*TCHRBUYINCa 0.036 0.012 24.9 2.92 0.0074

aZero-centered aggregate teacher buy-in
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Neither of the two district-level variables was, by itself, a significant predictor 
for mathematics achievement growth (for Superintendent-Support*Treatment*Year, 
p = 0.3184, and for District-Coherence *Treatment*Year, p = 0.0791). The lack of 
statistical significance for district-level Will-to-Reform subcomponents may be an 
artifact of the small number of Treatment districts in the sample (only 9 district-
groups, vs. 20 school-groups). Nonetheless, we cannot at this time confirm the inde-
pendent importance of district-level Will-to-Reform subcomponents on the 
effectiveness of NSF-funded middle school mathematics curricula.

 Discussion

In their comprehensive review of experimental and quasi-experimental studies 
that investigated the outcomes of mathematics programs for middle and high 
schools, Slavin et al. (2008) found a “lack of evidence that it matters very much 
which textbook schools choose (p. 42).” In particular, they reported a mean effect 
size of 0.00 standard deviations for 24 studies of NSF-funded curricula. At first blush, 
our findings appear to support the contention that choice of textbook doesn’t matter. 
In our quasi-experimental study of 20 middle schools that adopted an NSF-funded 
math curriculum, the main effect was a statistically non-significant negative 0.012 
school- level standard deviations per year.

However, when we added to our model Will to Reform, a measure of school- 
level buy-in to the new curriculum, we found that choice of textbook appears to 
have mattered very much indeed. Middle schools with very high scores on the Will-
to- Reform scale saw dramatic improvements in mathematics achievement after 
adopting Connected Mathematics or Mathematics in Context with professional 
development support provided by the GPSMP. Middle schools with very low scores 
on the Will-to-Reform scale saw just as dramatic drops in mathematics achievement 
after adopting one of the new curricula—even though they too received significant 
professional development support from the GPSMP.

Our study also confirmed the importance of both the Teacher Buy-in and the 
Principal Support components of Will to Reform. The district-level components of 
Will to Reform—Superintendent Support and District Coherence—could not be 
confirmed as being independently important. It should be noted, however, that our 
sample consisted of only nine districts. A better test of district-level components 
would require a larger study incorporating a larger number of districts.

Table 8 Correlations between components of Will-to-Reform scale

Teacher buy in District coherence Superintendent support

Principal support 0.686a 0.291 0.093
Teacher buy-in 0.286 0.094
District coherence 0.329

aCorrelation is significant at the 0.01 level (2-tailed)
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When considered in light of a co-construction view of program implementation 
(see Fig. 3), our results are consistent with a second finding reported by Slavin et al. 
(2008): reforms to instructional process strategies can have a strong positive effect 
on mathematics achievement. In our view, the implemented curriculum is a result 
not of the curriculum materials alone, but of an interaction between the teacher and 
the curriculum materials, as mediated by such factors as school context and teacher 
buy-in. That is, instructional processes, which actually affect learning, can only be 
predicted when curriculum materials and teachers’ reactions to them are considered 
together.

This study is only a first step towards using the evaluation model displayed in 
Fig. 3 to study the effects of curriculum materials. Our study was limited by the 
retrospective nature of the data available. Will to Reform and its subscales were less 
than ideal measures of school-level buy-in. They were subject to potential limita-
tions such as observer bias. Further, because we developed ratings by consensus, we 
did not have any measures of construct reliability. Moreover, our study did not have 
any teacher-level measure of buy-in, which might have been a more accurate predic-
tor of program implementation than the school-level measures we used. Neither did 
we have available any direct measures of fidelity to implementation structure or 
fidelity to implementation process. To confirm the evaluation model and gain a 
deeper understanding of the interaction between buy-in, implementation fidelity, 
and student outcomes, future studies will need to correct these problems. Ideally, 
such studies would also include qualitative data documenting whether curriculum 
materials actually undergo lethal mutations in classrooms with low buy-in and pro-
ductive adaptations in classrooms with high buy-in.

Future work to develop better measures of buy-in will need to consider trade-offs 
between the detail needed to obtain valid measures and the expense of collecting 
data. Would a Likert-type questionnaire for teachers, similar to that used by 
VanDerHeyden et al. (2012), have produced similar results to ours? Could a yes/no 
question about wanting to use the curriculum again, similar to that used by Agodini 
et al. (2010), have been sufficient?

In addition to replicating our findings using better measures of buy-in combined 
with measures of other variables in our model, it is also important to investigate 
whether our findings are applicable to other settings. Would a similar process occur 
in high school? In elementary school? Does buy-in predict results for subject matter 
other than mathematics? Compared to the reforms we implemented, many reforms 
(e.g., Saxon mathematics and Success for All language arts) are much more scripted. 
For such curricula, would strong buy-in lead to productive adaptations and positive 
results? Would weak buy-in lead to lethal mutations and negative results?

The retrospective nature of our study, in addition to limiting what independent 
variables we could study, limited us in several other ways. Only school-level, not 
student-level, data were available. A more detailed data set using student instead of 
school as unit-of-analysis would provide more precise estimates of program effects 
and would make it possible to investigate differential impacts on differing sub-
groups of students. Also, we had available only one measure of curriculum effect, 
the high-stakes eighth-grade mathematics tests administered by the local state 
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(Pennsylvania or New Jersey). A more diverse set of dependent variables would 
have been desirable. Past research has found that both Math in Context and 
Connected Mathematics tend to have a more positive impact on measures like the 
Balanced Assessment of Mathematics that are explicitly designed to test student 
problem-solving skill (Kilpatrick, 2003; Romberg et al., 2005; Tarr et al., 2008). 
Additionally, this was a quasi-experiment. While quasi-experiments can provide 
important and valid findings—especially when, as we did, they use large data bases 
and careful matching techniques—randomized control trials are less prone to error 
and provide more certain results.

Nonetheless, our results have potentially important implications for current and 
future implementations of instructional materials such as those designed to imple-
ment the newer Common Core State Standards or the Next Generation Science 
Standards. Researchers evaluating new instructional materials should strive to test 
the full model displayed in Fig. 3, including measures of principal buy-in, of school- 
wide teacher buy-in, and of individual teacher buy-in, as well as measures of struc-
tural fidelity and of process fidelity to the implementation. Further, quantitative data 
should be supplemented with qualitative data reporting how curriculum materials 
are adapted when those materials are actually used in the classroom.

Implementers of new instructional materials would be wise to attend to the  
role of principals and teachers as co-constructors of the planned and implemented 
curriculum—either by selecting materials that are a good match for local staff, or 
else by working closely with staff to ensure buy-in and minds-on implementation. 
Results of the current study support the hypothesis that doing so might encourage 
productive adaptations that improve student learning, while failing to do so might 
encourage lethal mutations that retard student learning.
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color as compared to White students? The purpose of this study is to use the data 
from a longitudinal project to explore this research question. We begin by describing 
the larger longitudinal project of which this study is a part.

 Background

 The LieCal Project

In our project, Longitudinal Investigation of the Effect of Curriculum on Algebra 
Learning (LieCal), we used a longitudinal design to examine the similarities and 
differences between a Standards-based curriculum called the Connected 
Mathematics Program (CMP) and more traditional curricula (non-CMP). The CMP 
curriculum has been more broadly implemented than any other Standards-based 
curriculum at the middle school level. In the 2002–2003 school year, CMP was used 
in nearly 2,500 school districts in the United States. It has been used in all 50 states 
and some foreign countries (Rivette, Grant, Ludema, & Rickard, 2003; Show-Me 
Center, 2002). Thus, it provided us with a useful context to study student achieve-
ment in Standards-based and more traditional mathematics curricula. We investi-
gated not only the ways and circumstances under which the CMP and non-CMP 
curricula affected student achievement gains, but also the characteristics of these 
reform and traditional curricula that hindered or contributed to the gains.

The LieCal Project was designed to provide: (a) a profile of the intended treat-
ment of algebra in the CMP curriculum with a contrasting profile of the intended 
treatment of algebra in non-CMP curricula; (b) a profile of classroom experiences 
that CMP students and teachers have, with a contrasting profile of experiences in 
non-CMP classrooms; and (c) a profile of student algebra-related performance 
resulting from the use of the CMP curriculum, with a contrasting profile of student 
algebra-related performance resulting from the use of non-CMP curricula. One 
aspect of the LieCal analysis was an examination of potentially differential effects 
of curriculum and procedural and conceptual emphases in the classroom on the 
achievement of students of color. The longitudinal growth curve analysis of the 
LieCal data produced mixed results with respect to the achievement of students of 
color (Cai, Wang, Moyer, Wang, & Nie, 2011). Although the CMP curriculum con-
tributed to significantly higher growth than the non-CMP curricula for all ethnic 
groups on more conceptually oriented measures (e.g., open-ended tasks), the situa-
tion was more complex for achievement on more procedurally oriented measures. 
African-American CMP students had a smaller growth rate on computation and 
equation solving than students from other ethnic groups and African-Americans 
using a non-CMP curriculum. However, the CMP program had a positive impact on 
Hispanic students’ growth in these areas. In this paper, we present results from a 
cross-sectional analysis of student growth within each grade level. This analysis 
allows us to probe effects that are significant at individual grades, but which were 
not uncovered in our longitudinal analysis.
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 Algebra Readiness

The LieCal Project focused on the effects of the CMP and non-CMP curricula on 
middle-school students’ learning of algebra. Middle school algebra lays the founda-
tion for the acquisition of tools for representing and analyzing quantitative relation-
ships, for solving problems, and for stating and proving generalizations (Bednarz,
Kieran, & Lee, 1996; Carpenter, Franke, & Levi, 2003; Kaput, 1999; Mathematical 
Sciences Education Board, 1998; RAND Mathematics Study Panel, 2003). Thus, 
algebra readiness has been characterized as the most important “gatekeeper” to 
success in school mathematics (Pelavin & Kane, 1990), which has itself been 
considered a broader gatekeeper to educational and economic opportunities (Moses, 
Kamii, Swap, & Howard, 1989; Nasir & Cobb, 2002).

In particular, success in algebra and geometry has been shown to help narrow the 
disparity between minority and non-minority participation in post-secondary oppor-
tunities (Loveless, 2008). Research shows that completion of an Algebra II course 
correlates significantly with success in college and with earnings from employment. 
The National Mathematics Advisory Panel (2008) found that students who complete 
Algebra II are more than twice as likely to graduate from college as students with 
less mathematical preparation. Furthermore, the African-American and Hispanic 
students who complete Algebra II reduce the gap between their college graduation 
rate and that of the general student population by 50 %. However, success in high 
school algebra is dependent upon mathematics experiences in the middle grades, 
and middle school is a critical turning point for students’ development of algebraic 
thinking (College Board, 2000).

 Conceptual and Procedural Emphases

In a Standards-based curriculum like CMP, there is a greater emphasis on concep-
tual understanding and problem solving than on procedural knowledge. Students are 
expected to learn algorithms and master basic skills as they engage in explorations 
of worthwhile problems. However, a persistent concern about Standards-based 
curricula is that the development of students’ higher-order thinking skills comes at 
the expense of fluency in computational procedures and symbolic manipulation.  
In addition, it is not clear whether this potential trade-off might play out differently 
for students from different ethnic backgrounds. Some reports have suggested that 
Hispanic and African-American students using the CMP curriculum may in fact 
show greater achievement gains than students from other backgrounds (Rivette 
et al., 2003). Our previous longitudinal analysis of the LieCal data using growth 
curve modeling showed that, over the three middle school years, CMP students’ 
gains in conceptual understanding did not come at the expense of procedural skills 
(Cai et al., 2011). The use of either the CMP or a non-CMP curriculum improved 
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the mathematics achievement of all students, including students of color. Moreover, 
the use of CMP contributed to significantly higher problem-solving growth for all 
ethnic groups (Cai et al., 2011). However, African-American students experienced 
greater gain in symbol manipulation when they used a traditional curriculum. 
Additional research is needed to assess whether and how the use of a Standards- 
based curriculum such as CMP can improve both the problem-solving and symbol- 
manipulation achievement of all students while helping to close achievement gaps 
(Lubienski & Gutiérrez, 2008; Schoenfeld, 2002).

At the same time, it is not sufficient to examine the achievement outcomes of 
students in different ethnic groups without also considering the ways that those 
outcomes are shaped through students’ experiences in school (Lubienski & 
Bowen, 2000). For example, since the effectiveness of a curriculum depends criti-
cally on how it is implemented by teachers in real classrooms, studies of the effec-
tiveness of Standards-based curricula must examine how teachers actually use the 
curricula (Kilpatrick, 2003; NRC, 2004; Wilson & Floden, 2001). Indeed, Tarr 
and his colleagues (2008) have found that the nature of the learning environment 
moderates the effects of Standards-based curricula. In particular, they noted that 
such curricula are associated with a positive impact on student achievement only 
when they are implemented in Standards-based learning environments. However, 
it is not clear whether the use of Standards-based curricula within Standards-
based learning environments influences the achievement of students from differ-
ent ethnic groups in the same way (Lubienski, 2000). Lubienski (2002) explicitly 
questions whether “some students enter the mathematics classroom better posi-
tioned than others to learn in the ways envisioned in the Standards” (p. 109) and, 
thus, whether such pedagogies might exacerbate rather than mitigate achievement 
differences. Research in mathematics education has not yet adequately addressed 
such questions.

Thus, to determine the effects of curriculum on learning, and in particular, on the 
learning of groups of students with different ethnic backgrounds, it is essential to 
take into account the classroom experiences of the teachers and students who are 
using the different curricula. In this paper, we consider features of classroom 
instruction related to conceptual and procedural emphases when we examine the 
impact of curricula on students’ learning of algebra. In particular, we examine the 
extent to which teachers emphasize concepts and procedures in their classroom 
instruction. As was reported by Moyer, Cai, Nie, and Wang (2011), CMP teachers 
placed more emphasis on conceptual understanding in their instruction, whereas 
non-CMP teachers placed more emphasis on procedural knowledge. We seek to 
better understand how these emphases play out in the achievement of different 
groups of students using the CMP and non-CMP curricula. In this paper, we take a 
cross-sectional approach and examine the achievement of students of color at each 
grade level while controlling for the conceptual and procedural emphases in 
classroom instruction.
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 Method

 Sample

The LieCal project was conducted in 14 middle schools of an urban school district 
serving a diverse student population. When the project began, 27 of the 51 middle 
schools in the district had adopted the CMP curriculum, and the remaining 24 had 
adopted more traditional curricula. Seven schools were randomly selected from the 
27 schools that had adopted the CMP curriculum. After the seven CMP schools 
were selected, seven non-CMP schools were chosen based on comparable demo-
graphics. In sixth grade, 695 CMP students in 25 classes and 589 non-CMP students 
in 22 classes participated in the study. We followed these 1,284 students as they 
progressed from grades 6 to 8. Approximately 85 % of the participants were minor-
ity students: 64 % African-American, 16 % Hispanic, 4 % Asian, and 1 % Native 
American. Male and female students were almost evenly distributed.

 Assessing Students’ Learning

Learning algebra involves honing procedural skills with computation and equation- 
solving, fostering a deep understanding of fundamental algebraic concepts and the 
connections between them, and developing the ability to use algebra to solve prob-
lems. Thus, to assess students’ learning of algebra, it is important to consider their 
conceptual understanding, their symbol manipulation skills, and their ability to 
solve problems. We used state standardized test scores in mathematics and reading 
as measures of prior achievement. The state tests were administered in the fall of the 
students’ sixth-, seventh-, and eighth-grade years (2005, 2006, and 2007). We used 
LieCal-developed multiple-choice and open-ended assessment tests as dependent 
measures of procedural knowledge and conceptual understanding in algebra, respec-
tively. The two LieCal-developed tests were administered on 2 consecutive days of 
testing during the students’ regular classroom periods. In all, they were adminis-
tered four times, once as a baseline in the fall of 2005, and again each spring (2006, 
2007, and 2008).

The LieCal multiple-choice tests assessed whether students had learned the 
basic knowledge required to perform competently in introductory algebra. We 
chose to use multiple-choice items because of their potential for broad content 
coverage and objective scoring, their highly reliable format, and their low cost of 
scoring. Each of the four parallel versions of the multiple-choice test (F05, Sp06, 
Sp07, and Sp08) comprised 32 questions that assessed five mathematical compo-
nents: translation, integration, planning, computation (or execution), and equation 
solving. The first four of these components are based on Mayer’s (1987) model for 
analyzing cognitive components in solving word problems. Translation and inte-
gration involve the representing phase of problem solving, while planning and 
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computation (execution) involve the searching phase of problem solving. To repre-
sent a problem, a student must be able to put the elements of a problem together 
into a coherent whole and translate them into an internal representation, such as an 
equation. In the searching phase of problem solving, the student must first plan the 
solution, and then find and execute an adequate algorithm. The LieCal multiple-
choice tests included six items for each of Mayer’s four cognitive components, and 
eight items to assess equation solving. For this paper, we report on the results from 
the translation, computation, and equation-solving components of the multiple-
choice tasks.

The LieCal open-ended tests assessed students’ conceptual understanding and 
problem-solving skills. In the open-ended tasks, students were asked to provide 
explanations of their solutions as part of their responses to the problems. The tasks 
used in these tests were adopted from various projects including Balanced
Assessment, the QUASAR Project (Lane et al., 1995), and a cross-national study 
(Cai, 2000). In the fall of 2005, the LieCal sixth graders were given a baseline open- 
ended assessment with six tasks. Since only a small number of open-ended tasks 
can be administered in a testing period, and since grading students’ responses to 
such items is labor-intensive, we distributed the non-baseline tasks over three forms 
(five items in each form) and used a matrix sampling design to administer them. 
Thus, starting in the spring of 2006, each third of the students was administered one 
of the three forms. The forms were rotated in the two subsequent administrations so 
that eventually each student received all three forms.

From one testing administration to another, 10 of the 32 multiple- choice items 
were identical, while the other 22 items were new, but parallel. The ten identical 
items were composed of two items from each of the five components. They served 
as linking items in the analysis. In a similar way, at least two identical open- ended 
tasks served as linking items from one form to another and one testing administra-
tion to another. We used standard scores to report and analyze the student achieve-
ment data. A two-parameter partial-credit Item Response Theory (IRT) model was 
used to scale student assessment data on each of the five components in the multi-
ple-choice tasks as well as on the open-ended tasks (Hambleton, Swaminathan, & 
Rogers, 1991; Lord, 1980). Because IRT models simultaneously compute item
difficulty and student ability, the use of linking items made it possible to place assess-
ment results on the same scale even if students responded to different tasks at 
different times. Additional details and examples of the items and tasks used in the 
LieCal assessments can be found in Cai et al. (2011).

The multiple-choice items were scored electronically, either right or wrong. 
The open-ended tasks were scored by middle school mathematics teachers, who 
were trained using holistic scoring rubrics that had been developed previously by 
the investigators. Two teachers scored each response. On average, perfect agree-
ment between each pair of raters was nearly 80 %, and agreement within 1 point 
out of 6 points (on average) was over 95 % across tasks. Differences in scoring 
were arbitrated through discussion.
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 Conceptual and Procedural Emphases as Classroom-Level 
Variables

Mathematical proficiency includes both conceptual and procedural aspects (NRC, 
2001), and teachers can shape instruction in ways that emphasize either or both 
aspects. We used conceptual and procedural emphases as classroom variables when 
examining the impact of curriculum on students’ learning. To do so, we estimated 
the levels of conceptual and procedural emphases in the CMP and non-CMP class-
rooms using data from 620 lesson observations of the LieCal teachers, which we 
conducted while the students were in grades 6, 7, and 8. Each class was observed 
four times per year, during two consecutive lessons in the fall and two in the spring. 
Further details about the observations are documented in Moyer et al. (2011).

One component of the observation was a set of 21 items using a 5-point Likert 
scale to rate the nature of instruction for each lesson. Of the 21 items, four were 
designed to assess the extent to which a teacher’s lesson had a conceptual emphasis. 
For example, observers rated a lesson’s conceptual emphasis using the following 
item: “The teacher’s questioning strategies were likely to enhance the development 
of student conceptual understanding/problem solving.” Another four items were 
designed to determine the extent to which a teacher’s lesson had a procedural 
emphasis. For example, observers rated a lesson’s procedural emphasis using this 
item: “Students had opportunities to learn procedures (by teacher demonstration, 
class discussion, or some other means) before they practiced them.” Factor analysis 
of the LieCal observation data confirmed that the four procedural-emphasis items 
loaded on a single factor, as did the four conceptual-emphasis items. Since students 
changed their classrooms and teachers as they moved from grade 6 to grade 7 and 
from grade 7 to grade 8, each student could have a different procedural (or concep-
tual) score each year for 3 years. However, within each grade all students in the 
same classroom were assigned the same procedural (and conceptual) score.

 Quantitative Data Analysis

To examine student growth within each school year while controlling for multiple 
factors such as gender, ethnicity, and classroom conceptual and procedural emphases, 
we used hierarchical linear modeling (HLM). Although we originally created three-
level hierarchical models (students nested within teachers nested within schools) 
with the mathematics achievement measures as outcome measures, the school sam-
ple sizes and the relatively small intraclass correlation coefficients ultimately sup-
ported the use of two-level models (students nested within teachers). For each 
dependent variable and grade level, an unconditional model of the form:

 
Y p eij j ij= +0  
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p b rj j0 00 0= +

 

was fitted, where Yij is the achievement of child i in classroom j, p0j is the mean 
mathematics achievement of classroom j, b00 is the grand mean, eij is the random 
student effect, and r0j is a random classroom effect. The unconditional models were 
tested to determine the intraclass correlation coefficients for each model.

After the unconditional models were fitted, two sets of conditional cross- sectional 
HLM analyses were conducted. The first set of these models was composed of 
cross-sectional hierarchical linear models that included student-level variables and 
a curriculum variable. These models used four of the LieCal-developed student 
achievement measures: open-ended, translation, computation, and equation solving. 
Each HLM model used data from one of the four dependent achievement measures 
in one of three middle grades, together with an independent prior achievement mea-
sure, namely the results of the state mathematics testing in the fall of the corre-
sponding year. So, each model examined a single type of learning within a specific 
grade level. Since we had four achievement measures at each of three grade levels, 
there were 12 cross-sectional models in this first group.

The next set of models built on the first group of models by adding two classroom- 
level variables: the conceptual emphasis of the classroom and the procedural empha-
sis of the classroom. These cross-sectional HLM models were of the following form:

Level-1 Model

 

Y p p X p X

p

ij j j ijk j ijk= + −( ) + −( )
+

− −
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Level-2 Model

 
p b b b bj j0 00 01 02 03= + + +CMP Conceptual emphasis Procedural emphasiss j jr+ 0  

In these models, pij is the student level slope capturing the effect of achievement 
due to classroom-level variable i with teacher j, b0j is the school-level slope captur-
ing the effect of achievement due to classroom-level variable j. Interactions between 
conceptual emphasis, procedural emphasis, and curricula were tested, but found to 
be not significant.

 Results

We first present data from the state standardized tests of mathematics and reading 
that were used as measures of prior achievement. We then present the results of our 
HLM analyses in two parts. First, we report on the cross-sectional HLM models that 
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included student-level and curriculum variables. Then, we examine the impact of 
including the classroom-level conceptual and procedural emphasis variables in the 
models.

 State Standardized Tests

Table 1 shows the mean scores each year for CMP and non-CMP African-American, 
Hispanic, and White students on the state standardized tests of mathematics and 
reading.

The reading scores show a notable difference across the three student groups. For 
African-American and White students, growth over the middle grades in reading 
scores was comparable across curricula, ranging from an increase of 22.97 to 27.74 
points. However, the Hispanic CMP students’ reading scores grew more than any 
other student group, regardless of curriculum (36.69 points). In contrast, the 
Hispanic non-CMP students’ reading scores grew by only 14.15 points.

 Student-Level and Curriculum Cross-Sectional HLM Models

Analysis of combined CMP and non-CMP data. Table 2 shows the standardized 
results from an examination of the performance of African-American and Hispanic 
students relative to White students, when controlling for prior achievement, gender, 
and curriculum (but not conceptual and procedural classroom emphases).

In the sixth grade, an achievement gap was seen between African-American stu-
dents and White students on all four student achievement measures, and between 
Hispanic students and White students on the open-ended, computation, and equation- 
solving measures. The gaps on the open-ended and equation-solving measures 
remained in the seventh grade for both groups. However, performance on the compu-

Table 1 Mean scores on state standardized mathematics and reading tests

Fall 2005 Fall 2006 Fall 2007

Math Reading Math Reading Math Reading

CMP
African American 460.96 460.47 486.62 469.01 486.31 483.44
Hispanic 463.12 451.17 495.60 467.66 501.46 487.86
White 502.41 505.61 528.65 519.44 539.74 531.30
Non-CMP
African American 464.05 459.03 494.86 472.83 492.17 485.01
Hispanic 477.49 459.92 496.13 468.03 500.42 474.07
White 497.79 508.89 536.55 519.24 538.72 536.63
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tation and translation measures had equalized across the groups. In the eighth grade, 
the only gap that remained was on the open-ended items. The overall trend was a 
gradual decline or elimination of the achievement gap among the ethnic groups.

Analyses of separated CMP and non-CMP data. To better understand whether 
the use of the CMP curriculum reduced achievement gaps, we conducted sepa-
rate parallel analyses for CMP and non-CMP students. The results are shown in 
Tables 3 and 4.

Recall that in the analysis of the combined CMP and non-CMP student data, 
achievement gaps for the translation and computation measures occurred only in the 
sixth grade, where there were three such gaps: White students outperformed 
African-American students on both measures, and White students outperformed 

Table 2 Effect of ethnicity on standardized mathematics achievement

Grade 6 Grade 7 Grade 8

African  
American Hispanic

African  
American Hispanic

African  
American Hispanic

Open-ended −0.50*** −0.21* −0.26** −0.22* −0.28*** −0.13*
Translation −0.24** – – – – –
Computation −0.37*** −0.22* – – – –
Equation  
solving

−0.35** −0.23* −0.24** −0.22* – –

*p < .05, **p < .01, ***p < .001

Table 3 Effect of ethnicity on standardized mathematics achievement for CMP students

Grade 6 Grade 7 Grade 8

African  
American Hispanic

African  
American Hispanic

African  
American Hispanic

Open-ended −0.40** – −0.27** −0.31* −0.36** −0.28**
Translation – – – – – –
Computation −0.43** – – – −0.22* –
Equation  
solving

−0.35* – −0.44** −0.45** −0.23** −0.22*

*p < .05, **p < .01, ***p < .001

Table 4 Effect of ethnicity on standardized mathematics achievement for non-CMP students

Grade 6 Grade 7 Grade 8

African  
American Hispanic

African  
American Hispanic

African  
American Hispanic

Open-ended −0.91*** – −0.23* – −0.26** –
Translation −0.37* – – – – –
Computation −0.27** −0.35** – – – –
Equation  
solving

– – – – – –

*p < .05, **p < .01, ***p < .001
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Hispanic students on computation. Although all three gaps persisted for the non- CMP 
students when we separated the CMP and non-CMP data, they did not all persist for 
the CMP students. That is, of these three gaps, the only one that persisted for the 
CMP students at sixth grade was the African-American gap in computation. In grades 
7 and 8, the parity on computation and translation achievement that we observed in 
the combined CMP and non-CMP data was preserved in the separate analyses, except 
for the appearance of a gap between CMP eighth-grade African- American students 
and White students on computation items.

Mirroring the results from the combined data, our analyses of the separated data 
showed that White students outperformed African-American students on open- 
ended items across all three grades regardless of curriculum. For students using 
CMP, White students also outperformed Hispanic students on these items in grades 
7 and 8 (but not grade 6). However, for non-CMP Hispanic students, there were no 
achievement gaps on the open-ended items.

With respect to the equation-solving items in the combined analysis, White stu-
dents outperformed African-American and Hispanic students in grades 6 and 7, 
with no achievement gap in grade 8. The parallel CMP and non-CMP analyses 
indicate that these gaps were attributable to the CMP students; there were no 
achievement gaps found for equation-solving items among the non-CMP students. 
For CMP students, White students outperformed African-American students in all 
three grades, and White students outperformed Hispanic students in grades 7 and 8. 
The equation-solving gaps are most pronounced in seventh grade; their magnitude 
appears to decline in eighth grade.

 Student-Level, Classroom-Level, and Curriculum HLM Models

Analysis of combined CMP and non-CMP data. We built on the results of Table 2 
with the addition of the conceptual emphasis and procedural emphasis classroom- 
level variables. Our goal in adding these variables to the analysis was to begin to 
probe the complexity that underlies conclusions we might otherwise draw from 
one-dimensional comparisons of students in different ethnic groups. With respect to 
the analysis of the combined sample of CMP and non-CMP students, however, con-
trolling for the classroom-level variables did not greatly perturb the results save for 
the disappearance of the gap in Hispanic students’ performance on open-ended 
tasks in the eighth grade.

Analyses of separated CMP and non-CMP data. We again conducted parallel analy-
ses for the CMP and non-CMP students, this time controlling for the conceptual 
and procedural emphasis classroom-level variables. The results are presented in 
Tables 5 and 6. Compared to the results of the models without controlling for the 
conceptual and procedural emphasis variables, some differences were apparent. 
For the CMP students, two achievement gaps were no longer statistically signifi-
cant with the addition of the classroom variables: eighth-grade African-American 
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students on computation items, and eighth-grade Hispanic students on equation- 
solving items. For the non-CMP students, the performance gaps of sixth-grade 
African-American students on translation and computation items ceased to be 
significant. However, a performance gap appeared for sixth-grade non-CMP 
Hispanic students on open-ended items.

To summarize, in the analysis of the combined student groups (CMP and non- 
CMP) that included the classroom conceptual and procedural emphasis variables, 
by the end of eighth grade the performance of Hispanic students was not signifi-
cantly different from White students on all four achievement measures. Similarly, 
the performances of eighth-grade African-American and White students were not 
significantly different except on the open-ended items; there was no achievement 
gap by the end of eighth grade between African-American and White students on 
translation, computation, and equation-solving items. When analyzed as separate 
groups, through the middle grades the CMP and non-CMP students of color, par-
ticularly African-American students, generally showed achievement gaps on 
open- ended items compared to White students using the same curriculum. Within 
the CMP student group, there were also persistent achievement gaps for African- 
American students on equation-solving items.

Table 5 Effect of ethnicity on standardized mathematics achievement for CMP students 
controlling for conceptual and procedural emphases

Grade 6 Grade 7 Grade 8

African  
American Hispanic

African  
American Hispanic

African  
American Hispanic

Open-ended −0.40** – −0.28** −0.30** −0.36** −0.29**
Translation – – – – – –
Computation −0.37** – – – – –
Equation  
solving

−0.35* – −0.45** −0.44** −0.21** –

*p < .05, **p < .01, ***p < .001

Table 6 Effect of ethnicity on standardized mathematics achievement for non-CMP students 
controlling for conceptual and procedural emphases

Grade 6 Grade 7 Grade 8

African  
American Hispanic

African  
American Hispanic

African  
American Hispanic

Open-ended −0.90*** −0.33* −0.27* – −0.23** –
Translation – – – – – –
Computation – −0.33** – – – –
Equation  
solving

– – – – – –

*p < .05, **p < .01, ***p < .001
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 Discussion

In examining how Standards-based curricula such as CMP affect the mathematics 
learning of students of color, it is important to use nuanced analyses to look beyond 
one-dimensional comparisons (Lubienski, 2008). The longitudinal growth curve 
analysis of the LieCal data provided mixed conclusions regarding the use of the CMP 
curriculum with students of color (Cai et al., 2011). Although, over the course of the 
middle grades, African-American and Hispanic students had growth rates similar to 
students not in their ethnic groups on the open-ended and translation measures, 
African-American CMP students had smaller growth rates on the computation and 
equation-solving measures. However, Hispanic CMP students did not exhibit this 
pattern. The cross-sectional HLM analysis in this paper provides additional detail 
not captured in the longitudinal analysis.

Overall, when the CMP and non-CMP students are combined, the results of the 
cross-sectional analysis show a trend of decreasing gaps in achievement within each 
year. Whereas Hispanic and African-American students score significantly lower 
than White students on most or all of the measures at the end of sixth grade, by the 
end of eighth grade, only the open-ended measure still reflects a gap for that year. 
Moreover, when the differences between conceptual and procedural emphases in 
the classroom are controlled, the only difference that remains for eighth grade is in 
African-American students’ performance on the open-ended tasks. Our cross- 
sectional analysis also pinpointed the longitudinal analysis’ finding regarding the 
African-American students’ slower growth rate on computation tasks as being 
largely limited to the sixth grade.

When the cross-sectional analysis is limited to the CMP students, the open-ended 
measure reflects a persistent gap between White students and students of color. 
Similarly, for African-American students in the CMP group, equation solving 
remains an area of challenge throughout the middle grades. Even when classroom 
conceptual and procedural emphasis variables are included, these gaps remain. 
Indeed, the open-ended performance gaps in the CMP analysis do not vanish or 
even consistently decrease over the course of the middle grades, as many of the 
other performance gaps do. This result suggests that there may be a need to seek 
opportunities within the CMP curriculum to develop open-ended problem-solving 
skills more robustly to better serve students of different ethnic backgrounds.

It is interesting to note how the influence of classroom emphasis variables on 
equation solving, translation, and computation played out differently for different 
student groups. On the one hand, the profile of Hispanic CMP students’ equation- 
solving performance was somewhat different from the African-American CMP 
students’. Although the African-American CMP students’ equation-solving gaps at 
grades 6–8 persisted when our analyses controlled for differences in the conceptual 
and procedural emphasis variables, the Hispanic CMP students’ deficit in grade 8 
disappeared. This result implies that differences in classroom conceptual and proce-
dural emphases, not curriculum, appear to account for the Hispanic CMP students’ 
performance gap in equation solving in the eighth grade.
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For the translation and computation measures, on the other hand, the pattern is 
reversed, occurring at sixth grade (not eighth) for African-American non-CMP stu-
dents (rather than Hispanic CMP students). More specifically, when controlling for 
classroom emphasis, the achievement gap on the translation and computation mea-
sures disappeared for the sixth grade African-American non-CMP students, but the 
gap in their Hispanic counterparts’ performance on computation remained signifi-
cant. This result implies that differences in classroom conceptual and procedural 
emphases, not curriculum, appear to account for the African-American non-CMP 
students’ performance gap in translation and computation in the sixth grade. These 
differences in the effects of classroom emphasis on Hispanic and African-American 
students’ performance merit further exploration.

The differences in student growth on the state standardized reading test suggest 
an additional avenue for analysis. Whereas the African-American and White stu-
dents’ reading scores increased at similar rates, the increase in the Hispanic CMP 
students’ reading scores was markedly higher than for either the Hispanic non-CMP 
students or the other student groups. This may reflect the development of English 
language learners within the Hispanic student group. Indeed, the orientation in 
CMP toward instructional contexts that actively involve students in using language 
and discourse may be particularly supportive of English language learners 
(Moschkovich, 2002, 2006). However, it is not immediately clear how the differ-
ence in improvement on reading performance for the CMP Hispanic students might 
influence performance on the mathematical measures used in this study. Indeed, 
there remains a performance gap for the eighth-grade Hispanic CMP students on 
open-ended tasks, which would seem to be the type of task most amenable to 
increased performance due to improved reading skills.

In conclusion, the longitudinal and cross-sectional analyses paint complemen-
tary pictures of the effects of the CMP curriculum for students of color. Though 
African-American students’ computation skills appeared to grow more slowly 
across grades 6–8, the effect of this difference seems to have been primarily limited 
to grade 6. However, the persistent gaps between African-American students and 
White students on the open-ended and equation-solving measures, even when class-
room emphases are taken into account, invite further investigation.
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      Exploring the Impact of Knowledge 
of Multiple Strategies on Students’ 
Learning About Proportions 

             Rozy     Vig    ,     Jon     R.     Star     ,     Danielle     N.     Dupuis    ,     Amy     E.     Lein    , and     Asha     K.     Jitendra   

          Proportional reasoning is widely considered a major goal of mathematics education 
in the middle grades, where problems involving the use of proportional reasoning are 
most frequently encountered (Common Core State Standards Initiative,  2010 ; 
National Council of Teachers of Mathematics,  2000 ; National Research Council, 
 2001 ). The core of proportional reasoning, which involves multiplicative thinking, is 
foundational for more advanced mathematics (e.g., algebra, geometry, trigonometry, 
and calculus) encountered in high school and college (National Mathematics 
Advisory Panel,  2008 ). The development of proportional reasoning among students 
is a complex process that progresses gradually over many years (Lamon,  1999 ; Lesh, 
Post, & Behr,  1988 ). In spite of the centrality and promise of proportional reasoning 
in the middle grades, students experience great diffi culty with this content domain 
(Lamon,  2007 ; Lobato, Ellis, & Zbiek,  2010 ; NRC,  2001 ). As an illustration consider 
a simple missing value proportion problem, 2/25 =  n /500. According to the National 
Assessment of Educational Progress ( 2009 ), 52 % of eighth-grade students failed to 
choose the correct answer of  n  = 40 from among a list of  multiple- choice options. 

 In response to such student diffi culties, a great deal of research has explored the 
teaching and learning of proportions (Behr, Harel, Post, & Lesh,  1992 ; Boyer, 
Levine, & Huttenlocher,  2008 ; Fujimura,  2001 ; Fuson & Abrahamson,  2005 ; Lamon, 
 2007 ; Lesh et al.,  1988 ; Litwiller & Bright,  2002 ; Pitta-Pantazi & Christou,  2011 ; 
Van Dooren, De Bock, Hessels, Janssens, & Verschaffel,  2005 ). Most prominently, 
the Rational Number Project (e.g., Behr et al.,  1992 ; Cramer, Post, & Currier,  1993 ; 
Harel & Behr,  1989 ; Lesh, Behr, & Post,  1987 ) has exerted a major infl uence on 
scholarship, curriculum, and policy around the teaching and learning of fractions, 
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ratios, and proportions. While the peak of research on rational numbers may have 
been in the 1980s and early 1990s, work on proportional reasoning continues. More 
recently scholars have explored teacher knowledge of proportional reasoning (see, 
for example, Berk, Taber, Gorowara, & Poetzl,  2009 ), the role of multiple represen-
tations and/or technology in supporting students’ understanding of proportional rea-
soning (see, for example, Fujimura,  2001 ), and the broader application of proportional 
reasoning to STEM curricula (see, for example, Bakker, Groenveld, Wijers, 
Akkerman, & Gravemeijer,  2014 ). 

 In this chapter, we revisit an issue that fi rst emerged in the work of the Rational 
Number Project but has not been carefully explored in some time—namely, the strate-
gies that students use when solving simple proportion problems. Our interest is in 
learning more about how students approach proportion problems, whether these 
approaches may have changed since this issue was last explored over 20 years ago, 
and whether strategy use has an impact on students’ future learning about proportion. 

    Theoretical Background 

 Proportional reasoning refers to the ability to understand (interpret, construct, and 
use) relationships in which two quantities (ratio or rates) covary and to see how 
changes in one quantity are multiplicatively related to change in the other quantity. 
The presence of a multiplicative relationship between quantities and also within 
quantities is considered a defi ning feature of a problem that requires proportional 
reasoning (Behr et al.,  1992 ). Typically, a proportion is defi ned as a statement of 
equality between two ratios. An example and commonly seen task relating to pro-
portions in the elementary and middle school mathematics curriculum is to fi nd the 
value of  z  that makes a proportion such as 3/9 = 6/ z  a true statement. 

 Of the many strategies that could be used to solve this kind of proportion prob-
lem, three (see Table  1 ) have been discussed at length in the literature (e.g., Post, 
Behr, & Lesh,  1988 ). The fi rst is known as the cross-multiplication strategy (or 
CM), which involves multiplication across a problem’s diagonals. For the problem 
3/9 = 6/ z , CM could be used to rewrite the proportion as 3 z  = 9(6), and solve for  z  to 

   Table 1    Strategies for solving simple proportion problems   

 Cross-multiplication strategy  Equivalent fractions strategy  Unit rate strategy 

 Solve for  z :  
3

9

6


z
    Solve for  z :  

3

9

6


z
    Solve for  z :  

3

9

6


z
   

  
3 9 6· ·z 

   

  

3

9

2

2

6
18 




 

z
z

   

  
3 3 9·      

  

3 54

54 3

z

z


     

  
9 2 18·        

6 3 18·      

  z  18      z  18      z  18    
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yield an answer of  z  = 18. The second strategy is referred to here as the equivalent 
fractions strategy (or EF); EF involves examining the two ratios in a proportion and 
using their equivalence to solve for an unknown. 1  For the problem 3/9 = 6/ z , EF 
could be used to determine 2 as the multiplicative constant needed to arrive at an 
equivalent fraction; since 3 times 2 is 6, it follows that 9 times 2 is 18, so  z  = 18. 
Finally, we refer to a third strategy as the unit rate strategy (or UR); UR involves 
examining the multiplicative relationship  within  the quantity, determining the scalar 
multiple within a ratio or rate and using it to arrive at the missing value. 2  In the 
problem 3/9 = 6/ z , one could employ UR by noticing that 3/9 has a scalar multiple 
of 3, meaning that the denominator is three times as large as the numerator. The 
value of  z  can then be determined by multiplying 6 by 3 to arrive at 18. Note that the 
unit rate strategy (as we defi ne it) does not require the explicit identifi cation of a unit 
rate (in this case, 1/3)—only that the idea of a unit rate is implicitly used to deter-
mine the missing value of the variable.

   It is worth noting that, while each of these strategies, if executed correctly, can 
yield the correct answer, one can argue that certain strategies may be easier than 
other strategies for particular problems. For example, for the problem 4/5 = 8/ x , EF 
might be considered easier than UR, since (especially for elementary and middle 
school students) using the multiplicative relationship between 4 and 8 to determine 
a solution (4 times 2 is 8, so 5 times 2 is 10;  x  = 10) is easier than using the multipli-
cative relationship between 4 and 5 (4 times 1.25 is 5, so 8 times 1.25 is 10). 
Conversely, for the problem 5/15 = 9/ x , UR (5 times 3 is 15, so 9 times 3 is 27; 
 x  = 27) is arguably easier than EF. 

 The existing literature on how students approach simple proportion problems 
such as the ones above suggests that students tend to rely heavily on the cross- 
multiplication strategy (Cramer & Post,  1993 ; Stanley, McGowan, & Hull,  2003 ). 
The consensus among many mathematics educators is that such a reliance on CM is 
problematic, primarily because of the belief that students often do not understand 
what they are doing when they perform the CM algorithm (e.g., Lesh et al.,  1988 ). 
Furthermore, some have characterized CM as a conceptually opaque or even 
 conceptually vacuous algorithm, in that multiplication across a diagonal is generally 
not considered a valid mathematical operation, and the algorithm does not make 
clear why it is permissible to perform this action for CM (e.g., Lesh et al.,  1988 ). 

 In response to these types of concerns, many mathematics educators and research-
ers have advocated (1) delaying or even eliminating formal instruction in cross mul-
tiplication as a strategy for solving proportion problems and (2) teaching more 
intuitive strategies for proportion problems fi rst (Cramer & Post,  1993 ; Ercole, 
Frantz, & Ashline,  2011 ; Lesh et al.,  1988 ; Stanley et al.,  2003 ). This de-emphasis 
on cross multiplication and advocacy of strategies such as EF has been steadily 

1   The equivalent fraction strategy is sometimes referred to as the factor-of-change method and 
involves attending to the multiplicative relationship between two ratios (Ercole et al.,  2011 ). 
2   The unit rate strategy is sometimes referred to as the factor-of-change method (or scalar method) 
and involves the attending to the multiplicative relationship within each ratio (Ercole et al.,  2011 ). 
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increasing since the Rational Number Project initially proposed it in the late 1980s. 
The Rational Number Project reports evidence in support for these recommenda-
tions; for example, when instruction is delayed on cross multiplication, students tend 
to use the unit rate strategy most frequently (Cramer & Post,  1993 ; Post et al.,  1988 ). 

 The extent to which the two suggestions above have been implemented into prac-
tice is unclear. As noted above, the majority of work that explored students’ strate-
gies for solving simple proportion problems occurred in the 1980s and early 1990s, 
as part of the Rational Number Project. Given the signifi cant changes that have 
occurred in US elementary and middle school mathematics curricula in the past 20 
years, we were interested in revisiting the issue of how students approach these 
types of problems today. Despite apparent consensus for the two suggestions above, 
we are not aware of any recent studies that document changes since the 1980s and 
1990s in how students approach simple proportion problems. As a result, it is worth 
noting that we began this study expecting to fi nd that students continue to rely heav-
ily or exclusively on cross multiplication for solving simple proportion problems. 

 In this chapter, we consider the following questions. First, do students continue 
to rely upon CM as a primary strategy for solving proportion problems, or have the 
past decades of de-emphasis of CM and advocacy of strategies such as UR and EF 
had an impact? Second, if students no longer rely as exclusively on CM, what 
potential impact might this have on their learning about proportional reasoning 
more generally? These questions were explored within the context of a larger 
research project investigating the impact of a curriculum unit on ratio, proportion, 
and percent word problems on student learning, as described below.  

    Method 

 As part of a study evaluating a 6-week curriculum unit on ratio, proportion, and 
percent problem solving, students were administered a pretest that evaluated their 
knowledge of strategies for solving simple proportion problems. Elsewhere we 
report the results of the larger study (Jitendra, Star, Dupuis, & Rodriguez,  2013 ); 
here our interest is in the strategy profi le of students as demonstrated on the pretest 
and the relationship between students’ strategy profi les and their future learning 
from the intervention. 

    Participants 

 Participants were 430 seventh-grade students drawn from 17 classrooms at three 
middle schools in two suburban school districts. Of the 430 students, 208 (48 %) 
were male, 200 (47 %) were eligible to receive free or reduced priced lunch, 37 
(9 %) were English language learners, and 50 (12 %) received special education 
services. There were 216 (50 %) Caucasian students, 124 (29 %) African American 
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students, 57 (13 %) Hispanic students, 23 (5 %) Asian students, and 9 (2 %) American 
Indian students. The mean student age was 12.5 years (SD = 0.4 years). Within the 
larger study, all 430 students were in classrooms that implemented the intervention. 

 The two districts used either  Math Thematics Book 2  (Billstein & Williamson, 
 2008 ), a reform-oriented curriculum developed with funding from the National 
Science Foundation or  Math Course 2  (Larson, Boswell, Kanold, and Stiff ( 2007 )), 
a more “traditional” mathematics curriculum.  

    Intervention 

 The complete details of the 6-week intervention are described elsewhere (Jitendra 
et al.,  2013 ). In brief, the intervention contained 21 scripted lessons where students 
were introduced to the concepts of ratio, proportion, and percent and were taught 
strategies for how to solve ratio, proportion, and percent word problems. Each les-
son required students to make use of schematic diagrams, multiple solution strate-
gies, and metacognitive strategies. In prior studies, this intervention had been found 
to be effective (e.g., Jitendra et al.,  2009 ), and the present study was designed to 
build on and extend existing work on the intervention’s effi cacy.  

    Measures 

 Students completed a 45 min pretest before the intervention and then a 45 min post-
test at the conclusion of the intervention. The common questions on the pretest and 
posttest were taken or adapted from state, national, and international standardized 
tests and had been used in prior studies investigating the effi cacy of the intervention. 

 The posttest was designed to measure students’ learning from the intervention; 
all problems related to ratio, proportion, and percent problem solving. The posttest 
contained 3 open-response questions and 21 multiple-choice questions. As an 
example, one of the posttest multiple-choice problems was, “A machine uses 2.4 L 
of gasoline for every 30 h of operation. How many liters of gasoline will the machine 
use in 100 h?” Possible responses were 7.2, 8.0, and 8.4 L. 

 With respect to the pretest, of interest here are four problems that appeared only 
on the pretest and were designed to assess students’ knowledge (prior to the inter-
vention) for solving simple proportion problems (see Table  2 ). Within the 45 min 
pretest, students were given 15 min to complete these four problems. Problems 3 
and 4 were considered as “prompted” items, in that students were shown one strat-
egy (CM) and prompted to try to solve the simple proportion problem in a different 
way. The assumption guiding the inclusion of these two problems was that students 
knew and would rely upon CM; the items sought to determine whether students 
knew any other strategies for approaching this type of problem. We predicted that 
students would have trouble on problems 3 and 4, due to a lack of knowledge of 
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strategies other than CM. Problem 3 was designed to suggest the use of EF, given 
the relationship between the two denominators of the problem (7 and 21). Problem 
4 was designed to suggest the use of UR, given the relationship between the numer-
ator and denominator of the given ratio (5 and 20).

   Table 2    Pretest problems on strategy use   

 Item  Type 

 1. Solve for  x . Show your work and circle your answer.  Unprompted 

  

3

5 15


x

   
 Describe how you solved the problem in 1–2 sentences 

 2. Solve for  y . Show your work and circle your answer  Unprompted 

  

2

8

3


y    
 Describe how you solved the problem in 1–2 sentences 

 3. Miguel was asked to solve the problem for  x :  Prompted 

  

2

7 21


x

   
 Here is his solution:  Please solve this same problem again but in 

a different way. Show your work below 

  

2

7 21
7 2 21

7 42

7

7

42

7
6



 






x

x

x

x

x
   

 Describe how you solved the problem in 1–2 sentences 
 4. Ayana was asked to solve the 

problem for  y : 
 Prompted 

  

5

20

2


y    
 Here is her solution:  Please solve this same problem again but in 

a different way. Show your work below 

  

5

20

2

5 40

5

5

40

5
8









y

y

y

y    
 Describe how you solved the problem in 1–2 sentences 
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   In contrast, problems 1 and 2 were unprompted in that students could use what-
ever strategy they wanted for solving the proportion problems. We expected most 
students to use CM for problems 1 and 2. Problem 1 was designed to suggest the use 
of EF, while problem 2 was designed to suggest the use of UR. Problems 1 and 2 
appeared on a single page of the pretest and problems 3 and 4 were placed on the 
next page. Students were instructed not to work backwards and to complete the test 
in the order that the problems were presented.  

    Strategy Coding 

 Posttests and the four pretest problems of interest were scored by two independent 
coders, who met to resolve all disagreements. For the scoring of the four pretest 
problems, students’ strategies were coded based on which of the three strategies 
described above were used. Students’ written mathematical work (in the “show your 
work below” box of each problem), as well as students’ description “in 1–2 sen-
tences” were used in determining a strategy code. 

 A student’s strategy was coded as EF when the student indicated the (horizontal) 
relationship between the two denominators and used this relationship to fi nd the 
value of the unknown. For example, for problem 1, 3/5 =  x /15, one student wrote, “5 
goes into 15 three times, but I need to times the numerator by 3 too—which is 9”. 
The UR code was given when a student’s work indicated awareness of the (vertical) 
relationship between the numerator and denominator of one of the ratios in the pro-
portion and used this relationship to determine the unknown. For example, for prob-
lem 2, 2/8 = 3/ y , one student wrote, “ y  = 12, because you divide 2/8 = 4 and then you 
do 3 times 4 = 12”. The CM code was given when a student multiplied across the 
diagonals of the problem. For example, for problem 1, one student wrote, “Well 
what I did was multiply 3 times 15 and I got 45 so what I did was times 9 times 5 
and I get 45.” Arithmetic errors in executing the strategy were not taken into consid-
eration in the strategy coding, as we were primarily interested in capturing student 
strategy and not the correctness of the solution. 

 In addition to codes for CM, UR, and EF, we also coded for the presence of com-
mon erroneous ways that UR and EF could be applied—when additive rather than 
multiplicative reasoning was used. For EF, we used the code “mal-EF” to indicate 
when a student made use of an additive relationship between denominators to deter-
mine the unknown. For example, on problem 1, 3/5 =  x /15, one student noted that 15 
was 10 more than 5, noting, “I added ten on the bottom. So I added ten on the top.” 
Similarly, we used the code “mal-UR” to note when a student used an additive rela-
tionship between numerator and denominator to fi nd the unknown. For example, 
again on problem 1, one student noticed that 5 was 2 less than 3 and wrote, “I just 
thought of the pattern and just subtracted 2 from 15, which was 13.” We did not use 
a mal-CM code, as we found no instances in which students applied the CM strategy 
in an erroneous way. 
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 In addition, an OC or “other correct” code was used to indicate a correct strategy 
other than CM, UR, or EF. For example, on problem 2, 2/8 = 3/ y , one student multi-
plied each ratio by the reciprocal of 3/ y  which results in the equivalent equation 
2 y /24 = 1. The student went on to explain, “after I multiplied by the reciprocals I got 
 y  = 12.” The code OI or “other incorrect” was used when students had a decipherable 
strategy that involved steps that were not mathematically permissible. For example, 
again on problem 2 (2/8 = 3/y), one student multiplied the two numerators to arrive at 
a new numerator (2 times 3 = 6), then multiplied all three of the given numbers in the 
problem to arrive at a new denominator (2 times 3 times 8 = 48), and then reduced the 
resulting fraction (6/48) to arrive at the missing value (6/48 = 3/24 so  y  = 24). Note 
that the “incorrect” in OI refers to the steps of the strategy, rather than to the correct-
ness of the answer, just as the “correct” in OC refers to the steps of the strategy rather 
than the correctness of the answer. Finally, we coded as “none” any instances where 
students arrived at an answer without showing any work or left the problem blank. In 
addition, for problems 3 and 4 (the prompted items where the problem is solved 
using CM and students are asked to use a different strategy), students received a code 
of “none” when they used CM to solve these problems—in essence, copying over the 
strategy that was already provided in the problem statement.   

    Results 

 Due to missing data, below we report the results based on the 423 students who 
completed the pretest and the 414 students who completed both the pretest and the 
posttest. We begin by reporting on students’ strategy use at pretest. We then examine 
the relationship between strategy profi les at pretest and students’ scores at posttest. 

    Strategy Use at Pretest 

 Recall that we expected (based on the literature) that students would rely on CM as 
their preferred strategy for these problems, and that the pretest problems were 
designed with the assumption that many students knew CM already. As shown in 
Table  3 , these expectations were completely off base. Only 27 students (6 %) used 
CM on problems 1 and 2 on the pretest. (Recall that CM was illustrated on the 
prompted problems 3 and 4 and thus students could not use CM on these problems.) 
Of these 27 students, only 8 (2 %) used CM for both problems 1 and 2. Students’ 
use of UR was small (12 % of students), but it is noteworthy that there were almost 
twice as many students who used UR as used CM.

   To our surprise, EF was very widely used by students in our sample. Seventy- 
seven percent of students showed knowledge of the EF strategy. Almost all of these 
students used EF on both problems 1 and 3 (60 % of the total sample), with a few 
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students using EF for only problem 1 (9 % of the total sample) or only problem 3 
(8 % of the total sample). Note that problems 1 and 3 were the ones that were 
designed to be optimal for EF—where the problem numbers made EF easily appli-
cable. Clearly EF was the preferred strategy for most students; furthermore, when 
the numbers in the problem indicated that EF would be possible, the majority of 
students consistently used EF. 

 Students’ reliance on EF can also be seen in the prevalence of mal-EF—the strat-
egy where students try to use EF but erroneously reason additively rather than mul-
tiplicatively. On problems where the relationship between denominators in the 
simple proportion problem was obviously multiplicative (such as problems 1 and 
3), students overwhelmingly used EF correctly; only 3 students (1 %) used mal-EF 
on problem 1, for example. But on problems where the relationship between denom-
inators was not overtly multiplicative, many students attempted to determine the 
additive relationship between denominators to solve for the unknown: 31 % of stu-
dents used mal-EF on problem 2. Similarly, while only 1 student used mal-EF on 
problem 3, 36 students (9 %) used mal-EF on problem 4. 

 Students’ interest in using EF whenever possible (even if this meant using a 
mal- adaptive version of EF, mal-EF) is further illustrated by examining all students 
who used EF on at least one problem, to see which of these students also used mal-
EF on at least one problem. Almost half of EF users (43 %) used mal-EF on at least 
one problem. In addition, recall that our assessment was also designed to examine 
students’ knowledge of multiple strategies, but the predominance of EF was the 
clear take-away. Most students (66 %) only used one strategy (of the three strate-
gies of interest here—CM, UR, and EF) on the four pretest questions. For almost 
all (63 % of all students, or 95 % of one-strategy students) of these students, this 
one strategy was EF. 

 An additional goal of the pretest was to explore students’ knowledge of which 
strategies were most appropriate for a given problem. As noted above, some prob-
lems were designed to potentially elicit EF while others hoped to elicit UR. Our 
original aim was to determine not only whether students knew strategies other than 
CM but also whether they were able to select the most appropriate strategy for a 
given problem. Because students rarely used CM, and because EF was so widely 
used, it was no longer of interest (or even feasible) to look for which students knew 
the most appropriate strategy for a given problem.  

    Table 3    Pretest strategy use and posttest mean scores   

  n   %   M   SD 

 Used EF  327  77  19.93  5.12 
 Used UR  52  12  22.27  4.66 
 Used CM  27  6  18.42  5.54 
 Did not use EF, UR, or CM  77  19  13.55  5.31 
 Used exactly one (EF, UR, or CM)  277  67  19.34  5.16 
 Used multiple strategies (at least two of EF, UR, or CM)  60  15  21.93  4.74 
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    Relationship Between Strategy Profi le and Posttest Performance 

 In addition to exploring students’ strategy profi les on the pretest, a second focus of 
the present analysis is the nature of the relationship between students’ strategies at 
pretest and their performance on the posttest. As such, a series of independent- 
samples  t -tests and a one-way ANOVA were conducted. There are three main 
fi ndings. 

 First, students with knowledge of at least one strategy (EF, UR, or CM) on the 
pretest scored higher on the posttest than students who did not exhibit knowledge of 
EF, UR, or CM at pretest,  t (412) = 9.52,  p  < .001. Given the predominance of EF, one 
might interpret this result as suggesting that students who knew EF outscored those 
who did not know EF. A direct examination of this possibility indicated that it was 
indeed the case: Students who knew EF scored higher than those who did not know 
EF,  t (335) = 2.03,  p  = .043. 

 Second, although only a few students used CM on the pretest, these students 
performed  no worse  on the posttest than those students who knew EF. There was no 
difference between posttest scores of students who knew CM ( M  = 18.42) and those 
who did not use CM but did use EF and/or UR ( M  = 19.92),  t (335) = 1.42,  p  = .157. 
Not only did the literature’s prediction about students’ overreliance on CM not hold 
in our sample, but those students who did use CM learned as much as those who did 
not use CM. It is also interesting to note that students who used UR did better on the 
posttest ( M  = 22.27) than those who did not use UR but did use EF and/or CM 
( M  = 19.36),  t (335) = 3.77,  p  < .001. 

 Finally, students who used more than one strategy on the pretest (typically, EF 
plus one other strategy) outperformed students who only knew one strategy, who in 
turn scored higher than those who did not use any strategies on the pretest (see 
Table  3 ),  F (2, 411) = 52.89,  p  < .001. Although only a few students used more than 
one strategy on the pretest (15 %), these students did quite well on the posttest.   

    Discussion 

 Our aims in this study were to explore students’ strategies for solving simple pro-
portion problems and to determine whether and how knowledge of one or more 
strategies impacted students’ learning from our intervention. There were four main 
results. First and surprisingly, students relied quite heavily at pretest on EF. Our 
review of the literature suggested that either CM would be used/known by most 
students, or that (when instruction on CM was delayed) UR would be the most com-
mon strategy (Cramer & Post,  1993 ; Post et al.,  1988 ). However, the majority of 
students in our study either knew only EF or knew EF in addition to one or more 
other strategies. 

 To better understand why so many students in this district were using EF, we 
informally talked to teachers and also examined the math texts that were in use at 
the elementary and middle schools in the district. Although (judging from the textbooks 
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and teachers’ reports) students had not received any prior instruction in how to solve 
simple proportion problems, we found that the text’s treatment of equivalent frac-
tions in fourth grade provided the foundations for the EF strategy. Our results sug-
gest that many students were able to recall their work with equivalent fractions in 
fourth grade as they attempted to solve unfamiliar simple proportion problems in 
our study in the seventh grade. Furthermore and somewhat anecdotally, these dis-
tricts were geographically relatively close to the University of Minnesota, home of 
several key members of the Rational Number Project, and apparently received pro-
fessional development for many years that was consistent with the Rational Number 
Project suggestions about delaying formal instruction on CM. Regardless of the 
reasons, we fi nd it noteworthy that claims made in the past about students’ overreli-
ance on cross multiplication may now (in some districts) be a bit dated. Perhaps due 
to the greater diversity and types of curricula in use in elementary schools, EF now 
appears to be the strategy of choice, at least for students in the districts that were 
included in the present study. 

 Second, while EF was the preferred strategy for students at pretest, results indi-
cate that the widespread use of EF brought its own set of challenges. A central 
concern noted in the literature about CM is that students often do not know concep-
tually what they are doing and thus seem to be blindly following the CM algorithm. 
Another related concern is that CM fails to emphasize the proportionality that is 
central to thinking about and solving simple proportion problems. Many scholars 
view EF as improving on both of these concerns: EF may be better connected to 
conceptual knowledge (related to fractions and ratios), and EF appears to fore-
ground proportionality. However, our results suggest that, for many students, EF 
brings challenges of its own. In particular, many students in our sample overgeneral-
ized EF—in the interest of applying EF as often as possible, many students errone-
ously used EF additively rather than multiplicatively. It is certainly encouraging that 
(a) these students seemed to spontaneously apply a strategy that they learned for 
working with equivalent fractions to proportion problems and (b) these students 
appear to see the similarities between proportion problems and equivalent fractions. 
However, the frequency of overgeneralization—where students attempted to apply 
EF where the problem numbers made it diffi cult to do so, and then erroneously 
modifi ed EF so that was applied additively, is problematic. 

 Third, the results of the current study show that prior knowledge of one or more 
solution methods can have a positive impact on students’ ability to learn from an 
instructional intervention for proportional reasoning. This result is consistent with a 
growing body of research in mathematics education and psychology that suggests 
that students’ learning is enhanced when they have the opportunity to learn multiple 
methods and compare and contrast them (e.g., Rittle-Johnson & Star,  2007 ). Finally, 
students who used CM performed no worse on the posttest than those who did not 
use CM but did use EF and/or UR. 

 Taken as a whole, these results suggest that much has changed in the many years 
since the Rational Number Project began investigating students’ strategies for sim-
ple proportion problems. If the two districts in the present study are indicative of 
national trends, we do not see the same reliance on cross multiplication as earlier 
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studies might have predicted—equivalent fractions was clearly the strategy of 
choice. While some mathematics educators might fi nd the prevalence of EF to be an 
encouraging sign, it is also the case that students’ diffi culties with solving simple 
proportion problems persist. Clearly more work is needed to better understand the 
nature of students’ diffi culties with solving simple proportion problems—decreasing 
reliance on cross multiplication as a default strategy may not have been suffi cient to 
signifi cantly advance student understanding of this important mathematical topic.     
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the greatest market share. The subject-specifi c  curriculum option included popular 
textbooks produced by several different publishers (e.g., Glencoe, McDougal Littell, 
Prentice Hall) that were remarkably similar in topic coverage and lesson structure. 

 The primary goal of the COSMIC project is to investigate whether there are dif-
ferential curricular effects on secondary school students’ mathematics learning using 
multiple measures of student achievement: two project-developed tests and one 
standardized measure. More specifi cally, based on content analyses of both curri-
cula, we developed a  fair test  of common objectives and a test of  mathematical 
reasoning and problem solving , each primarily comprised of constructed-response, 
rubric-scored items. Employing two-parameter Item Response Theory (IRT) using 
 item diffi culty  and  item discrimination  indices, we generated scale scores for each 
student on each project-developed test. 1  We also assessed student learning using a 
 standardized measure , the Iowa Test of Educational Development: Mathematical 
Concepts and Problem Solving, a 40-item multiple-choice test. To draw causal infer-
ences between curricular programs and student outcomes, we gauged the fi delity of 
implementation of curricular materials using several techniques, including class-
room observations, opportunity to learn (OTL) data, and teacher surveys. 2  

 Our research design was quasi-experimental because neither teachers nor stu-
dents were randomly assigned curriculum. Nonetheless, schools asserted that stu-
dents were not tracked into one particular path, integrated or subject-specifi c, based 
on prior achievement, gender, race/ethnicity, or other student characteristics. The 
study included over 4,600 students taught by 135 teachers within 15 schools in fi ve 
states over 3 years. Given the inherent nested data structure (students within class-
rooms, classrooms within schools), we constructed three-level hierarchical linear 
models (HLM) of three distinct measures of student learning.  

    Results of the COSMIC Project 

 The COSMIC project yielded results of cross-sectional and longitudinal analyses, 
reported previously but briefl y summarized here. In cross-sectional analyses of stu-
dent learning outcomes in Algebra 1 or Integrated I, after controlling for a variety of 
student-level characteristics and teacher-level factors, Grouws et al. ( 2013 ) reported 
a differential curricular effect in favor of the integrated program. Specifi cally, stu-
dents in the integrated program scored signifi cantly higher than students in the 
subject- specifi c program on all three outcome measures: the  fair test  of common 
objectives (Test A), assessment of mathematical reasoning and problem solving 
(Test B), and on the standardized measured—Iowa Tests of Educational Development 
Problem Solving and Concepts, Level 15 (ITED-15). Additionally, teacher 

1   For a robust description of the test development process, see Chávez, Papick, Ross, and Grouws 
( 2011 ). 
2   For detailed descriptions of the conceptualization and development of multiple measures of 
implementation fi delity, see Tarr, McNaught, and Grouws ( 2012 ). 
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 experience and OTL were signifi cant predictors of student outcomes on Test A and 
the ITED-15. Student demographic data (e.g., gender, race/ethnicity, Individualized 
Educational Program [IEP]) added precisions to the models but were not a central 
focus of our study. Interestingly, there was a signifi cant cross-level interaction on 
Test A and Test B—on both assessments, students with higher prior mathematics 
achievement benefi ted more from the integrated program than did students from the 
subject-specifi c program. 

 In Year 2 cross-sectional analyses of student learning in Geometry or Integrated II, 
Tarr, Grouws, Chávez, and Soria ( 2013 ) detected a differential effect in favor of the 
integrated program but on the standardized measure (ITED-16) only; curriculum 
type was not a signifi cant predictor of student achievement on the fair test of common 
objectives (Test C) or the assessment of mathematical reasoning and problem solving 
(Test D). Teacher factor scores for OTL were a signifi cant predictor of student scores 
on all three outcome measures, and factor scores measuring the Classroom Learning 
Environment (CLE) were signifi cantly associated with higher performance on Test C 
and Test D. Similar to Grouws et al. ( 2013 ), Tarr et al. detected a signifi cant cross- level 
interaction on Test C—students with higher prior achievement were better served by 
the integrated program than the subject-specifi c program. 

 In Year 3 cross-sectional analyses of student learning in Algebra 2 or Integrated III, 
Chávez, Tarr, Grouws, and Soria ( 2015 ) reported a differential curricular effect in 
favor of the integrated program on the fair test of common objectives (Test E) only. 
Across curricular programs, students scored comparably on the standardized 
measure (ITED-17). No test of mathematical reasoning and problem solving was 
administered in Year 3. In addition to curriculum type, several teacher-level vari-
ables were signifi cant predictors of student achievement on Test E. For example, 
Orientation, a measure of teachers’ beliefs about reform-oriented practices had a 
signifi cant positive effect; that is, students whose teachers espoused practices com-
monly associated with the NCTM  Standards  scored signifi cantly higher on Test E. 
Surprisingly, professional development in the past 12 months was signifi cantly 
associated with lower scores on Test E, as was the class-level mean percent of stu-
dents eligible for free and reduced lunch (%FRL). Signifi cant effects of Orientation 
and %FRL were similarly found in analyses of ITED-17 scores. 

 In a longitudinal analysis of student scores on the ITED across Years 1–3, Tarr, 
Harwell, Grouws, Chávez, and Soria ( 2013 ) modeled the intercept (i.e., mean 
ITED-15 scale scores) and linear slopes (i.e., growth rate of ITED scale scores 
across years). In the intercept model, curriculum type was a statistically signifi cant 
predictor of ITED-15 scores, with students in an integrated curriculum scoring more 
than 8 points higher than those in a subject-specifi c curriculum. Overall, IEP was 
the largest fi xed effect indicating that, with other predictors held constant, students 
with an IEP program scored on average 13 points lower on the ITED-15 compared 
to students not having an IEP. Prior mathematics achievement was likewise a sig-
nifi cant predictor of ITED- 15 scores, as was the case for OTL, with classrooms with 
greater opportunities for students to learn associated with higher ITED-15 scores. 
Finally, Minority students on average scored more than 7 points lower on the ITED-
15 than White students. None of the predictors were statistically signifi cant modera-
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tors of linear growth rates. Stated alternatively, students in the integrated curriculum 
scored signifi cantly higher on the ITED-15 and experienced similar growth rates 
across the years, thereby maintaining their advantage over students in the subject-
specifi c curriculum after 3 years of high school mathematics. 

 This brief summary of results obscures many of the issues and complexities 
encountered by the COSMIC research team during data collection and analyses. 
In the following sections, we discuss key challenges related to our collection and 
analyses of student data, teacher data, and the construction of multilevel models of 
student outcome measures.  

    Issues Related to Collection and Analysis of Student Data 

 To add precision in the detection of curricular effects, our models included teacher- 
level and student-level variables that were hypothesized to explain variation in stu-
dent outcomes. In particular, based on previous investigations of curricular 
effectiveness (e.g., Harwell et al.,  2007 ; Post et al.,  2008 ), we expected students’ 
prior mathematics achievement to be strongly associated with student performance. 
However, the lack of a common measure of prior achievement presented method-
ological challenges. Additionally, several issues arose with respect to composition 
of the student sample including (a) students missing a prior mathematics achieve-
ment score, (b) the absence of free-and-reduced lunch (FRL)-status at the student 
level, (c) students who migrated across curricular paths, and (d) students who did 
not participate in all 3 years of the study. In this section, we discuss the nature of 
these problems, how they were ultimately resolved, and justify our decisions. 

    Lack of a Common Measure of Prior Achievement 

 Our quasi-experimental design necessitated that comparability be established by 
matching samples or making statistical adjustments using, among other factors, 
prior achievement measures. However, a pre-test administered to all students is 
rarely feasible in large-scale studies of curricular effectiveness across multiple states 
such as ours and, even it was feasible, there were several concerns about it including 
student motivation, asking for additional testing dates, and purchasing and scoring 
the exams. Consequently, we opted for a reasonable alternative, namely the utiliza-
tion of scores on state-mandated grade 8 tests, typically administered in the spring 
of the academic year immediately preceding Year 1 of the study. These high-stakes 
tests generally purport to measure student achievement in mathematics at a common 
point in time (grade 8), and so they provided useful information in characterizing 
student knowledge prior to curricular treatments in the COSMIC project. 
Nevertheless, state tests are usually not nationally normed and are scored using dif-
ferent scales. Moreover, because participating school districts were located in fi ve 
US states, it was important to acknowledge and subsequently adjust for differences 
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in student achievement  across  states, as average National Assessment of Educational 
Progress (NAEP) scores vary considerably across states. Consider results of the 
2011 NAEP: An “average” grade-8 mathematics score of 299 in Massachusetts, the 
highest performing US state, is comparable to the 75th percentile in New Mexico 
which ranks 44th in state NAEP, while an “average” grade-8 mathematics score in 
New Mexico is comparable to the 25th percentile in Massachusetts. Therefore, 
efforts to map students’ prior achievement onto a common scale needed to account 
for achievement patterns across US states in our sample. 

 For the vast majority of students in COSMIC, grade 8 scores on state-mandated 
tests were not nationally normed. In these cases, we converted students’ scores in each 
state to  z -scores before mapping these scores onto an NAEP scale score (see National 
Center for Education Statistics,  2007 ). We called the resulting score the COSMIC 
Prior Achievement (CPA) Score. Figure  1  depicts the process of transforming student 
prior achievement data into CPA Scores, and we offer the following illustrative 

  Fig. 1    Transforming student prior achievement data into CPA Scores       
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 contrasting examples. Consider the fi rst example in which, in grade 8, some students 
in District B were assessed using a nationally normed mathematics achievement test. 
In these cases, we simply converted their scores to a national  z -score, which we then 
mapped onto the NAEP scale for grade 8. Therefore, a grade 8 student in State X scor-
ing at the mean ( z  = 0) was assigned to the mean NAEP scale score for State X while 
a student scoring 1 standard deviation above the mean was assigned a NAEP scale 
score that corresponded to the mean NAEP scale score plus 1 standard deviation.  

 Consider a second illustrative example in which Student A has a scale score of 
709 on the 2005 grade 8 test mandated in State Y (Fig.  2 ). Because the assessment 
for State Y is  not  a nationally normed test, we converted this student’s scale score to 

  Fig. 2    Generation of CPA score for sample student       
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a state  z -score using descriptive statistics for the 2005 State Y test: a mean score of 
682 and a standard deviation of 35. As depicted in Fig.  3 , this state  z -score was then 
mapped onto the NAEP Scale Score: State Y had an average NAEP scale score of 
264 and a standard deviation of 35, yielding a CPA score of 289. Thus, although 
Student A scores 0.77 standard deviations above the mean relative to grade 8 stu-
dents in State Y, Student A scored approximately 0.28 standard deviations above the 
mean relative to grade 8 students in the USA (see Fig.  3 ).   

 The resulting mapping student scores onto the CPA scale yielded an approxi-
mately normal distribution, and this property was characteristic of student samples 
in all 3 years. In subsequent analyses, CPA was used as a student-level variable and 
yielded the greatest effect sizes in cross-sectional analyses.  

    Composition of Student Sample 

    Students Missing Prior Achievement Measure 

 With one exception, all school districts were cooperative in supplying student 
records, including scores on state-mandated testing programs (subsequently con-
verted to CPA scores) and demographic data including gender, race/ethnicity, and 
whether the student qualifi ed for Free/Reduced Lunch or special services (IEP). 

Student A’s NAEP
equivalent

State test
distribution

Mean of state test
Student A’s score

NAEP national mean

NAEP
distribution

  Fig. 3    Mapping Student A’s state scale score onto the NAEP scale       
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However, District R was surprisingly non-compliant in sharing prior achievement 
data despite having pledged to do so in principled (IRB) agreements. In said district, 
an administrator did not respond to repeated requests for student records over the 
span of several months. When the school district offi cial fi nally responded to our 
request, he offered promises that the data would be forthcoming but did not follow 
through. When pressed, the administrator indicated that student achievement scores 
were diffi cult to compile or were incomplete due to the transient nature of its stu-
dent population. However, the standoff ended only after we expressed our plans to 
send a member of our project team to work side-by-side with his staff to scrounge 
student records. A member of our project team was not dispatched to collect student 
records because the district fi nally acquiesced to our request and provided prior 
achievement scores for almost 75 % of students; about 25 % of students were miss-
ing this key indicator of prior knowledge. 

 The absence of a prior achievement measure for District R and, to a much lesser 
extent, in other school districts, called into question how to handle such student 
cases in cross-sectional and longitudinal analyses. Should we impute missing prior 
achievement scores or exclude these student cases? Student cases without a prior 
achievement measure could be discarded without introducing bias provided they are 
 missing completely at random . Similarly, such cases  missing at random  can be 
excluded provided the regression controls for the variables that affect the probabil-
ity of “missingness.” Some argue that it is generally impossible to prove that data 
are missing at random because “we cannot be sure whether data are missing at 
random, or whether the missingness depends on unobserved predictors or the 
 missing data themselves” (Gelman & Hill,  2006 , p. 531). Although there are many 
available techniques for imputing missing data (e.g., mean imputation), we ulti-
mately excluded student cases in which no prior achievement measure was avail-
able. Because of the critical importance of controlling for differences (Frank,  2000 ; 
What Works Clearinghouse,  2008 ) in mathematics profi ciency, students who did 
not have a measure of prior mathematics achievement were excluded from the sam-
ple. The critical role of prior achievement as a covariate was evident in results of 
cross- sectional analyses. Specifi cally, CPA was the strongest predictor of student 
outcomes with effect sizes ranging from 0.53 (Test B) to 0.59 (ITED-15) in Year 1, 
from 0.53 (ITED-16) to 0.59 (Test D) in Year 2, and from 0.51 (ITED-17) to 0.53 
(Test E) in Year 3. In principle, given the strong predictive power of students’ prior 
achievement, we could have imputed CPA scores using scores on multiple measures 
of student learning but doing so would have violated fundamental assumptions upon 
which our models depended. Accordingly, we instead justifi ed the missing-at- 
random assumption by including as many student-level predictors in our model, 
including gender, race/ethnicity, IEP-status, among others, thereby reducing the 
existence of possible “lurking variables” that might be attributed to missingness. 
Interestingly, District R dropped the integrated program after Year 2. Because no 
student from District R completed 3 years of the integrated program, they were 
excluded from longitudinal sample, thereby lessening the problem of missing prior 
achievement scores.  
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    Missing FRL-Status at the Student Level 

 In our original research design, the effects of socioeconomic status (SES) were to be 
modeled at the student level using FRL-status as a proxy for SES. However, citing 
privacy concerns, District W was reluctant to provide information regarding Free/
Reduced Lunch (FRL)-status at the individual student level despite our assurances 
(and IRB consensual agreements) that all project data would remain confi dential 
and secure. Notwithstanding the concerns regarding student confi dentiality, District 
W willingly provided FRL information but at the class level, not student level. For 
example, for Teacher A, district administrators indicated that 7 of 29 students in 
second period Algebra 1 qualifi ed for FRL as did 9 of 24 students in third period 
Algebra 1. In the absence of such information at the student level, we were faced 
with a decision regarding how to model the effects of FRL. Given that more than 
80 % of our student sample was not missing FRL-status, one idea was to randomly 
assign FRL-status to students in each class. Thus, in the case of Teacher A, 7 of 29 
students would be selected at random and coded as qualifying for FRL. Alternatively, 
we entertained the notion of using other demographic data and logistic regression to 
predict which 7 of Teacher A’s 29 students qualifi ed for FRL. Because of the error 
likely introduced, we rejected both of these ideas and instead we opted to model 
FRL at the class level. Thus, for each teacher in the study, we computed the percent-
age of students qualifying for FRL and used the measure as a teacher-level variable; 
in doing so, we eliminated FRL as a student-level variable. Additionally, we 
 modeled the effects of FRL at the school level as well. 

 Our decision regarding FRL data yielded some interesting fi ndings. Most nota-
bly, in the absence of FRL at the student level, the effects of race/ethnicity might 
have been  overestimated ; similarly, the effects of FRL at the teacher level might 
have been  underestimated . In particular, in cross-sectional analyses, we detected 
achievement gaps between African American and White students as well as between 
Hispanic and White students. However, at the teacher level, %FRL was largely not 
a signifi cant predictor of student outcomes. Because some student groups (espe-
cially African American, American Indian/Native American, and Hispanic) are sig-
nifi cantly more likely to qualify for the FRL program (National Center for Education 
Statistics,  2010 ), it is possible that race was confounded with SES at the student 
level. If so, then the true predictive value of FRL would be greatly diminished at the 
teacher- and school levels, and this appears to be the case in our study—after con-
trolling for race/ethnicity at the student level, FRL did not yield signifi cant predic-
tive power at the teacher- or school level.  

   Students Who Migrated Across Curricular Paths 

 The offering of dual (parallel) curricular paths—integrated and subject specifi c—
within participating high schools was inarguably a key strength of our research 
design. However, some school districts offered dual curricular options only as a 
compromise, to assuage various stakeholders including students, teachers, and 
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parents. Given the availability of distinct curricular options, it was expected that, 
once a student selected a particular curriculum type, he would continue in the same 
pathway for the three-course sequence. In other words, we expected students who 
began in Integrated I in Year 1 of the study would progress into Integrated II and 
Integrated III in Years 2 and 3, respectively. Although most students “stuck” with 
their initial selection of curriculum type, there was some migration across 3 years of 
high school mathematics, and this was most prominent in District T. 

 As depicted in Fig.  4 , 61 of 460 students switched out of the integrated pathway 
after Year 1, enrolling in Geometry instead of Integrated II in Year 2. Similar migra-
tion was evident as 15 of 339 Algebra 1 students changed pathways after Year 1, 
enrolling in Integrated II in Year 2 instead of Geometry. Further migration contin-
ued into Year 3 as 15 of 377 students who completed Integrated II enrolled in 
Algebra 2 or Precalculus while 4 of 325 moved from the subject-specifi c option into 
Integrated III in Year 3. The reasons behind such patterns in enrollment were beyond 
the scope of our study and therefore not examined. Although curriculum “migrants” 
were included in cross-sectional analyses, these cases were excluded from our lon-
gitudinal analyses because they did not complete a 3-year sequence of mathematics 
courses in a single curriculum path. We considered students who migrated across 
paths to be “hybrid” cases, essentially cross-pollinated by two curricular options 
that were the central focus of our longitudinal study. Although curricular migration 
was most evident in District T, it was relatively non-prevalent overall as fewer than 
2.67 % of students crossed pathways.   

  Fig. 4    The fl ow of students across curricular paths and courses for one school district       
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   Students Who Participated Fewer than 3 Years 

 For the longitudinal study, our target population was students who completed 
3 years of an integrated or subject-specifi c mathematics program. In most school 
districts, students moved through the study as a single cohort, completing all 3 years 
of mathematics in the same high school, typically beginning as grade 9 students 
enrolled in Integrated I or Algebra 1. In a few school districts, grade 9 students were 
housed in junior high (or middle) school buildings and subsequently changed build-
ings when they entered high school in Year 2 of the study. In one large school dis-
trict (District W), at least some Year 1 participants studied in high schools that were 
not a part of the study in Year 2. Moreover, at least some students in Year 2 were 
previously enrolled in a junior high school that was not a part of the study in Year 1. 

 Because of these circumstances, not every student participated in all 3 years of 
the study, as shown in Table  1 . Specifi cally, the nature of the Year 1 sample is rep-
resented by the fi rst 4 rows of the table: Students participating in Years 1, 2, and 3 
(row 1), Year 1 only (row 2), Years 1 and 2 only (row 3), and Years 1 and 3 only 
(row 4). The composition of student samples of Years 2 and 3 is similarly discerned 
by examining the entries for the second and third columns, respectively: Students 
who participated in Years 2 and 3 only (row 5), Year 2 only (row 6), and Year 3 only 
(row 7). It is worth noting that there are a variety of reasons why students provided 
only 1 year of outcome data. Students may have failed the course, enrolled in 
another school within the district that did not participate in the study, moved out of 
the school district completely, or been absent on testing dates in subsequent years, 
to name a few.

   For cross-sectional analyses, all students who provided prior achievement data 
(CPA) and data on outcome measures were included in the sample regardless of 
whether they continued in the study. However, the longitudinal sample required that 
students complete 3 years of high school mathematics, as represented by rows 1, 4, 
5, and 7 of Table  1 . Whereas most students in the longitudinal study are represented 
by row 1, we decided to explore whether or not it made a difference to include stu-
dents who provided fewer than 3 years of data. To that end, we coded students who 
did not provide 3 years of data as Missing (i.e., missing outcome scores in at least 1 
year). The inclusion of students missing at least one ITED score increased the sam-
ple size but had essentially no effect on the intercept and linear slopes in our models. 
Specifi cally, in the longitudinal model Missing was not a signifi cant predictor of 

   Table 1    Composition of the 
student sample in cross- 
sectional studies  

 Year 1  Year 2  Year 3 

 X  X  X 
 X 
 X  X 
 X  X 

 X  X 
 X 

 X 
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student achievement—the magnitude of  t -values was −0.28 for intercept and 0.19 on 
linear slope related to time. Because our analyses yielded essentially the same results 
 with  and  without  the Missing predictor, we decided to include all students who com-
pleted their third year of high school mathematics, Integrated III or Algebra 2.    

    Issues Related to Collection and Analysis of Teacher Data 

 Our research design necessitated the documentation of curriculum implementation 
and the classroom learning environment. To that end, the COSMIC project team 
made a total of 326 classroom visits to 109 teachers during the fi rst 2 years of data 
collection. Given the composition of our sample in most cases, classroom observa-
tions necessitated travel outside of the state of Missouri by 3–6 members of the 
research team. Although there were many merits in conducting classroom visits, 
these travel excursions were nonetheless pricy because they included the costs of 
airfare, parking, car rental, lodging, and per diem. Despite efforts to minimize travel 
expenses, the COSMIC project did not have suffi cient funds to conduct classroom 
observations in Year 3, thereby relegating us to rely on surveys of teachers’ curricu-
lum use, demographics, and beliefs about teaching and learning mathematics. As a 
research team, we were genuinely concerned about the loss of observational data, 
particularly given the signifi cant predictive power of Classroom Learning 
Environment (CLE) factor scores on Test C and Test D. Teacher scores on three 
CLE subscales—Focus on Sense Making (.880), Reasoning About Mathematics 
(.855), and Students’ Thinking in Instruction (.835)—loaded heaviest on the CLE 
factor, and these scores were generated from classroom observations. Without 
observational data, how could measure the unique contributions of  curricular effects  
and the effects of  classroom instruction ? 

 To address the lack of observational data in Year 3, we opted for a measure of 
teacher beliefs about reform-oriented teaching practices. Data on teacher beliefs 
were collected using 32 fi ve-point Likert scale items on the Initial Teacher Survey, 
administered to all teachers across 3 years of the COSMIC project. Principal 
Components Analysis of teachers’ belief responses extracted three factors that we 
named (1) reform-oriented practices, (2) didactic approaches, and (3) self-effi cacy. 
The factor analysis yielded a scale score for each individual teacher on each of the 
three factors. Drawing on previous studies of teacher beliefs (Elis, Malloy, Meece, 
& Sylvester,  2007 ), we use “reform-oriented practices” to broadly refer to a teach-
er’s use of instructional practices that align with NCTM Standards ( 1989 ,  1991 , 
 2000 ). We named the factor score for teacher beliefs about reform-oriented prac-
tices, Orientation. Results of the Year-3 study indicate Orientation was a signifi cant 
predictor of student scores on both Test E and ITED-17, with positive effect sizes of 
 g  = 0.15 and  g  = 0.14, respectively. In the absence of observational data, the 
Orientation variable provided an approximation to  unobserved  teaching practices, 
thereby enabling us to ascertain the unique contribution of curricular effects above 
and beyond the effects of classroom instruction. 
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 In addition to the challenge of separating curricular and instructional effects, in 
Year 3 we could not use scale scores on the seven teacher factors used in Year 1 and 
Year 2 cross-sectional analyses. These factor scores offered a  relative  measure of 
the teacher attribute for each of the seven factors. Because we were unable to collect 
observational data in Year 3, we used a proxy for each teacher factor and included 
them in our models. More specifi cally, Opportunity to Learn (OTL) Index (measur-
ing percentage of textbook lessons taught) was used as a proxy for the OTL factor 
(based on multiple teacher variables). Similarly, the Textbook Content Taught 
(TCT) Index (measuring the extent to which teachers, when teaching textbook con-
tent, followed their textbook, supplemented their textbook lessons, or used alterna-
tive curricular materials) was used as a proxy for the Fidelity factor. Likewise, PD12 
(the number of hours of professional development in the last 12 months) was used 
as a proxy for the PD factor (comprised of multiple teacher variables). It is impor-
tant to note that each of these proxies were  absolute  (not relative) measures. Thus, 
the OTL Index, in principle, ranged from 0 (indicating no textbook lessons were 
taught) to 100 (indicating all textbook lessons were taught). By way of contrast, the 
OTL factor scores were  z -scores that ranged from about −2.5 to +2.5 and repre-
sented an individual teacher’s relative position with respect to all teachers. Our use 
of proxies in Year 3 analyses resulted in different interpretation of slope coeffi cients 
in our models. For example, in Year 3 a one-increment increase in OTL Index was 
tantamount to 1 % greater coverage of textbook lessons; in Year 1 and Year 2, a 
 one- increment increase in OTL factor scores represented a 1 standard deviation 
increase in how much OTL the individual teacher afforded students compared to all 
teachers. Our use of proxy measures likewise made it somewhat cumbersome to 
make direct comparisons of cross-sectional results across 3 years.  

    Issues Related to Modeling Student Outcomes 

 Prior to conducting quantitative analyses, the COSMIC project team engaged in 
discussions about what variables should be included to model the effects of curricu-
lum type and curriculum implementation and on students’ mathematical learning. 
Given the data structure, we knew our models needed to take into account student 
demographics (e.g., IEP-status, prior achievement) as well as teacher characteristics 
(e.g., experience, professional development). Even though these variables were not 
central to the study, they potentially held explanatory power and, without their inclu-
sion, our models might be misspecifi ed. Of course, our models also needed to 
include variables that directly addressed our research questions: curriculum type and 
curriculum enactment, that latter of which included multiple measures of implemen-
tation fi delity. But is it possible to have too much data where results would be incom-
prehensible, and how much is too much? In total, we had 27 teacher variables—too 
many variables to model, particularly given the inherent interdependencies among 
them. For example, fi delity of implementation of curricular materials and teacher 
satisfaction with the textbook are conceptually related, not independent—as 
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textbook satisfaction increases, it is reasonable to expect greater adherence to the 
textbook. We used Principal Components Analysis (PCA) to responsibly and sub-
stantially reduce the number of teacher-level variables, resulting in a more manage-
able and coherent data set comprised of 7 teacher factors: Opportunity to Learn 
(OTL), Classroom Learning Environment (CLE), Fidelity of Implementation 
(FIDELITY), Technology and Collaboration (TECH & COLLAB), Professional 
Development (PD), Knowledge of Standards (STANDARDS), and Experience. Our 
factor analysis enabled us to detect interdependencies as well as to ascertain which 
teacher variables did not “perform” well and were therefore tenuous. The teacher 
factor scores were included in cross-sectional analyses in Years 1 and 2. However, 
they were excluded in Year 3 because the lack of observational data, thereby greatly 
diminishing the number of teacher variables. 

 To test our research hypothesis on whether particular factors were associated 
with student learning, we developed a “full” model that included all pertinent vari-
ables. To some, the full model tells the entire story: Some variables (e.g., CPA) offer 
signifi cant predictive power while others simply do not. However, a contrary posi-
tion is that parsimonious “reduced” models (containing only signifi cant predictors) 
tell the story more coherently. In our view, the story is best told by including both 
the “full” and “reduced” models and consistent with this view, we reported the 
“full” and reduced “fi nal” models in all three cross-sectional reports. However, 
there are multiple approaches to achieving a fi nal model. For example, instead of 
removing all the statistically nonsignifi cant variables in one block, we chose to 
remove variables using an iterative process. We justify this decision because one-
step removal could potentially eliminate variables that may be signifi cant but are 
being suppressed by the inclusion of all the variables. 

 In cross-sectional analyses, each dependent measure warranted its own parsimo-
nious model to describe the infl uence of curriculum on student learning. As an 
example of the iterative process used to develop parsimonious models, we provide 
a complete overview of the models of ITED-16 scores in Table  2 . Whereas the ini-
tial (full) model and reduced (fi nal) model were reported by Tarr et al. ( 2013 ), the 
intermediary models were not reported due to space limitations. The fi rst model 
contains the full set of 22 variables: 6 student-level, 14 classroom-level (including 
four interaction terms), 1 school-level, and 1 cross-level interaction. Initially, 8 vari-
ables had  p -values of less than or equal to .05 but the dichotomous Curriculum vari-
able (0 = subject-specifi c, 1 = integrated) was not among them. Mindful of our 
central objective to investigate curricular effects, we retained Curriculum in the 
second iteration but removed two nonsignifi cant interaction variables 
(Curriculum × CLE, Curriculum × Fidelity) and the school-level predictor. The third 
iteration excludes another nonsignifi cant interaction term (Curriculum × FRL), leav-
ing 18 variables in the model including Curriculum (with  p  = 0.106). Interesting, by 
removing Curriculum × FRL, the interaction Curriculum × OTL changed in signifi -
cance and this might have not been observed without using a one-step reduction. 
The fourth iteration removes a block of six nonsignifi cant variables at the teacher 
level—5 teacher factor scores and Time_LD (% to class period devoted to lesson 
development), leaving 12 variables in the model. At this point, Curriculum is a 
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 signifi cant predictor ( p  = 0.001). We sought to further reduce the model, and in the 
fi fth iteration we excluded CLE and Curriculum × CPA whose  p -values were 0.081 
and 0.099, respectively. In the sixth model, we excluded Curriculum × OTL because 
its  p -value had risen to 0.112. In the seventh iteration, we excluded FRL because its 
 p -value was 0.072. This fi nal model includes only signifi cant predictors, therefore 
making it simpler to interpret. However, which of the seven models best “tells the 
story” of student achievement on ITED-16? It depends. One could argue the full 
model tells the story in its entirety; yet, with the inclusion of 22 variables, one might 
counter-argue that the full model is bloated and results are somewhat incomprehen-
sible. Perhaps the “true” story lies somewhere in between the full and fi nal models. 
For example, the fourth model contains 12 variables, all of which have associated 
 p -values less than 0.10. However, is the customary  p  = 0.05 too strict as the thresh-
old of signifi cance? The rigidity of your beliefs about signifi cance thresholds deter-
mines which of the seven models in Table  2  is most appropriate.

       Conclusion 

 Relationships between on curriculum, instruction, and student learning have long 
been the focus of mathematics education research. In recent decades, curriculum 
reform initiatives and innovative curricular materials have been introduced to 
address the historical lagging mathematics achievement of US students. As improv-
ing student performance in STEM fi elds has become a national priority, federal 
funding has supported several large-scale, rigorous studies of curricular effective-
ness. Funded by the National Science Foundation, the COSMIC project sought to 
ascertain relationships between curriculum type, curriculum enactment, and student 
learning. However, attributing student learning to a particular curricular program is 
both a massive, complex, and expensive undertaking. 

 In the COSMIC project, our research team confronted numerous challenges in 
the collection and analysis of student and teacher data—some anticipated, others 
unanticipated—each of which needed to be resolved. We anticipated the lack of a 
common measure of students’ prior achievement but we did not expect one school 
district’s reluctance to provide student scores on their state-mandated achievement 
test. We expected the problem of missing data but did not anticipate one school 
district’s refusal to provide FRL-status at the student level. And while we antici-
pated some students would not complete 3 years of high school mathematics, we did 
not expect some students to migrate across curricular paths. Furthermore, although 
observational enhanced an already robust set of teacher data in Years 1 and 2, the 
lack of classroom visits in Year 3 introduced challenges that we simply did not 
anticipate. Finally, we grappled with several issues in modeling the effects of stu-
dent and teacher characteristics, curriculum type, and curriculum implementation, 
including  whether  and  how  to reduce the models. With this chapter, we hope our 
discussion of these key challenges provides further insights into how the COSMIC 
project studied curricular effectiveness in secondary mathematics and informs the 
data collection and analyses of future large-scale studies in mathematics.     
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      Turning to Online Courses to Expand Access: 
A Rigorous Study of the Impact of Online 
Algebra I for Eighth Graders 

             Jessica     B.     Heppen     ,     Margaret     Clements    , and     Kirk     Walters   

            Overview 

    A body of research shows that Algebra I operates as a gateway to more advanced 
mathematics courses in high school and college, and that students who succeed in 
Algebra I in middle school have more success in math throughout high school and 
college than students who take Algebra I later (e.g., Nord et al.,  2011 ; Smith,  1996 ; 
Spielhagen,  2006 ; Stevenson, Schiller, & Schneider,  1994 ). Based on this research, 
policymakers have persistently called for broadening access to Algebra I in eighth 
grade (e.g., U.S. Department of Education,  1997 ). More recently, the 2008 report by 
the National Mathematics Advisory Panel recommended that “all prepared students 
[should] have access to an authentic algebra course” and that schools and districts 
should prepare more students to enroll in such a course by eighth grade ( 2008 , 
p. 23). This recommendation is evident in the content and sequencing of topics of 
the Common Core State Standards for Mathematics (CCSSM), which are 
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confi gured to effectively prepare all K–7 students for eighth-grade Algebra I 
(National Governors Association Center for Best Practices & Council of Chief State 
School Offi cers,  2010 ). 

 A push to prepare more students to take Algebra I in eighth grade creates the 
need for more Algebra I teachers and classes in middle schools. Some districts and 
schools are able to respond to this need while others are not. National grade 8 
Algebra I enrollments increased from 16 % in the 1990s to 31 % in 2007 (Loveless, 
 2008 ), suggesting that many middle schools have found ways to increase students’ 
access to “formal” Algebra I courses or equivalent content. With the large-scale 
adoption of the CCSSM now taking effect, this access is likely to continue to 
increase—perhaps even dramatically—in the coming years. 

 However, there are gaps in course access for eighth-grade students in schools 
across the country and particularly in rural areas. An analysis of data from the Early 
Childhood Longitudinal Study (ECLS-K; U.S. Department of Education,  2009a ) 
indicated that nationally, approximately 25 % of students who scored in the highest 
quartile on the study’s fi fth-grade math assessment were not enrolled in a formal 
Algebra I course in eighth grade (Walston & Carlivati McCarroll,  2010 ). Additional 
analysis of ECLS-K data indicated that, compared to urban or suburban schools, a 
larger proportion of high-achieving students do not take Algebra I in eighth grade in 
rural schools. Thirty-nine percent of students attending rural schools who scored in 
the highest quartile on the fi fth-grade assessment were not enrolled in Algebra I in 
eighth grade. A similar picture emerges when examining school-level access to 
Algebra I for eighth graders. Nationally, 16 % of all schools serving eighth graders 
report they do not offer Algebra I to eighth graders; in rural areas the rate is 24 % 
(compared to 21 % of urban schools and 9 % of suburban schools; U.S. Department 
of Education,  2009a ). 

 In schools that do not offer Algebra I, curriculum offerings may be limited by a 
number of constraints including staffi ng, space, and enrollment. These issues are 
particularly prevalent in small or rural schools, where student populations are low 
and attracting qualifi ed and experienced teachers is diffi cult (Hammer, Hughes, 
McClure, Reeves, & Salgado,  2005 ; Jimerson,  2006 ). In such schools, there is often 
a paucity of funds to hire teachers with specialized content knowledge to teach rela-
tively small classes that are not offered to all students. As technology capacity grows 
in schools around the country, online courses are increasingly seen as a viable means 
for expanding curricular offerings and expanding access to key courses, especially 
in small and rural schools (Hanum, Irvin, Banks, & Farmer,  2009 ; Picciano & 
Seaman,  2009 ; Schwartzbeck, Prince, Redfi eld, Morris, & Hammer,  2003 ). 

 This chapter describes a study that focused on broadening eighth-grade students’ 
access to Algebra I through an online course. The online course was offered to 
eighth graders, mostly from rural schools, who were considered academically ready 
for Algebra I (i.e., were “algebra-ready”), but who attended a middle-grade school 
that did not typically offer a formal Algebra I course. The primary goal was to deter-
mine whether using an online course to broaden access to Algebra I in eighth grade 
could improve algebra-ready students’ knowledge of algebra in the short term, open 
doors to more advanced course sequences in the longer term, or both. 
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 The secondary goal was to determine whether there were any unintended conse-
quences (side effects) of offering online Algebra I to students identifi ed as algebra- 
ready by their schools. For one, did taking an online Algebra I course in the eighth 
grade have an impact on these students’ general mathematics achievement at the 
end of eighth grade? Also, offering the online Algebra I course to the higher- 
achieving students could lead to academic tracking that wouldn’t otherwise exist 
and this could have unintended consequences for the eighth graders in the school 
who remain in the general mathematics course—through, for example, peer effects, 
changes in course emphasis, or smaller class sizes. 

 This study was designed to rigorously assess the effects—positive and nega-
tive—of offering an online Algebra I course on all eighth graders in middle schools 
with no access or limited access to Algebra I. This includes schools in which there 
were no opportunities for academically ready students to take Algebra I, as well as 
schools in which a limited number of academically ready students could take 
Algebra I at a nearby school if schedules and transportation needs could be accom-
modated. This study sought to produce useful information for education decision 
makers considering investing in an online course as a means of broadening access 
to Algebra I in grade 8, particularly in rural schools. 

 The randomized controlled trial was conducted in 68 mostly rural middle schools 
in Maine and Vermont that offered limited or no access to Algebra I to eighth grad-
ers. Half of the schools were randomly assigned to offer an online Algebra I course 
to students they considered academically ready for the course; the other half of the 
schools conducted business as usual during the study year (2008–2009). A total of 
211 algebra-ready students took the online course as part of the study, and while 
only 43 % of them completed the entire course, over 82 % of them completed more 
than half the course. As described in this chapter, implementation of the course 
played out as expected in some ways, and not as expected in others. 

 Algebra-ready students in schools that offered the course were compared with 
their counterparts in control schools. These students in control schools typically 
took a general mathematics class for eighth graders—however, we found that these 
eighth-grade math classes had a substantial focus on algebraic content (in nearly 
all of the control schools, the eighth-grade math class had a focus on algebraic 
content of 50 % or more). Moreover, although the expected counterfactual was the 
absence of access to a formal Algebra I course, 20 % of the eligible, algebra-ready 
students in control schools took either a traditional, classroom-based or online 
Algebra I course in their middle school or traveled to the local high school to take 
the course. 

 The results showed that offering Algebra I as an online course to students con-
sidered academically ready by their schools is an effective way to broaden access 
in schools that do not typically offer Algebra I to eighth graders, or do so only on 
a limited basis. Taking the course signifi cantly improved students’ algebra achieve-
ment at the end of eighth grade, and signifi cantly increased their likelihood of 
taking advanced math courses in high school (based on ninth- and tenth-grade 
coursetaking patterns). The course also had no discernible side effects for the 
algebra- ready students on their general math achievement, or on achievement and 
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coursetaking outcomes for the remaining eighth graders, those who were not ready 
to take Algebra I. 

 In this chapter, we summarize the background and rationale for the study, the 
research design, sample, and measures. We describe the online course and how it 
was implemented, and summarize the fi ndings. We conclude with a summary of 
implications of the fi ndings, and future directions for rigorous research on 
technology- based math interventions.  

    Background and Rationale 

 The background for this study is based both on research on the benefi ts of taking 
Algebra I prior to high school and the lack of research on the effectiveness of online 
courses, despite the rapid increase in adoption of online courses for many reasons, 
including expanding curriculum offerings. 

    Signifi cance of Algebra I 

 Algebra I is a gatekeeper course because it is a prerequisite for the high-school 
mathematics and science courses considered essential, if not required, for getting 
into college. High-school mathematics courses are ordered sequentially; students 
must successfully complete Algebra I before taking subsequent mathematics 
courses (Smith,  1996 ; Wagner & Kieran,  1989 ). If students succeed in Algebra I, 
they typically take Geometry, Algebra II, and then more advanced courses, such as 
Trigonometry, Precalculus, and Calculus. 1  Several research studies have shown that 
success in Algebra I is highly correlated with enrollment in more advanced math 
and science courses (Atanda,  1999 ; Kilpatrick, Swafford, & Findell,  2001 ; 
Lacampagne, Blair, & Kaput,  1995 ; Nord et al.,  2011 ). 

 Previous research, mainly correlational, suggests that having access to Algebra I 
in eighth grade benefi ts at least some students. Using data from the 1988 National 
Educational Longitudinal Study, Stevenson et al. ( 1994 ) examined the relationship 
between students’ mathematics and science opportunities in grade 8 and their later 
opportunities in mathematics and science in high school (see also Schneider, 

1   The Algebra I → Geometry → Algebra II sequence is known as the traditional mathematics cour-
setaking pathway (Common Core Standards Initiative,  2010 ; National Mathematics Advisory 
Panel,  2008 ). Some schools reverse the order of Algebra II and Geometry, yielding an Algebra 
I → Algebra II → Geometry sequence; this ordering is less common than the traditional sequence. 
Other schools offer an integrated course pathway that combines the content of Algebra I, Geometry, 
and Algebra II into integrated courses, which typically have generic names, such as Mathematics 
1, Mathematics 2, and Mathematics 3 (National Governors Association Center for Best Practices, 
Council of Chief State School Offi cers, 2010; National Mathematics Advisory Panel,  2008 ). 
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Swanson, & Riegle-Crumb,  1998 ). They defi ned three course sequences, each of 
which hinged on students taking Algebra I:

•     Advanced : Completion of both Geometry and Algebra II or any higher level 
course by grade 10  

•    Intermediate : Completion of either Geometry or Algebra II by grade 10  
•    Low : Completion of neither Geometry nor Algebra II by grade 10    

 According to the study, 42 % of students who took Algebra I in grade 8 partici-
pated in an advanced course sequence in high school. In contrast, only 12 % of stu-
dents who did not take Algebra I in grade 8 participated in an advanced course 
sequence. The study’s authors conclude that math course opportunities in eighth 
grade are related to students’ subsequent opportunities to take, and succeed in, 
advanced course sequences in high school. Another study using the same data found 
that 60 % of students who took Calculus by grade 12 had taken algebra in eighth 
grade (National Center for Education Statistics, U.S. Department of Education  1996 ). 

 Research also suggests that students who take Algebra I in middle school subse-
quently have higher math skills that are sustained over time. Smith ( 1996 ) used data 
from the High School and Beyond study to estimate the relationship between  middle 
school algebra and later mathematics outcomes, controlling for differences in student 
background (social and demographic background, aptitude, and academic emphasis 
or interest in mathematics). Students who took Algebra I in middle school completed 
an average of 1 more year of mathematics courses than students who took Algebra I 
in high school (2.3 versus 1.3 years). They also outscored their counterparts who 
took Algebra I in high school on the High School and Beyond mathematics assess-
ment in both grades 10 and 12. Similarly, Spielhagen ( 2006 ) used data from a large 
urban district to compare high school and college outcomes of students with and 
without access to Algebra I in grade 8 and concluded that eighth graders who were 
provided access to Algebra I followed a more advanced coursetaking sequence in 
high school than those with similar academic abilities who took Algebra I in grade 9. 

 In turn, taking advanced mathematics courses in high school (typically defi ned 
as completing courses above Algebra II) is related to college and future success. 
For example, Horn and Nuñez ( 2000 ) found that three-quarters of students who 
participated in an advanced coursetaking sequence in high school enrolled in 
4-year colleges. Adelman ( 1999 ,  2006 ) found that the odds of completing college 
are twice as high for students who take a sequence of advanced mathematics 
courses in high school. Enrollment in higher-level mathematics and science courses 
in high school is also related to future educational and employment opportunities 
(Gamoran & Hannigan,  2000 ; U.S. Department of Education,  1997 ). Rose and 
Betts ( 2001 ) showed that students who take higher-level mathematics classes in 
high school have higher earnings 10 years after high-school graduation, even after 
controlling for background characteristics and eventual educational attainment 
(see also Jabon et al.,  2010 ). 

 Thus the established links between success in Algebra I and subsequent high- 
school mathematics coursetaking and later postsecondary outcomes are clear 
(though not causal). However, less clear is whether having more algebra content in 
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earlier grades similarly benefi ts coursetaking and later outcomes for students. As 
mentioned previously, the CCSSM is structured to prepare K–7 students for an 
eighth-grade Algebra I course. The CCSSM accomplishes this by incorporating 
algebraic concepts into earlier grades, starting in kindergarten with patterns, and 
building throughout elementary and middle school (National Governors Association 
Center for Best Practices & Council of Chief State School Offi cers,  2010 ). By 
eighth grade, students who do not take a formal Algebra I course are likely to have 
access to a substantial amount of algebraic content in their regular grade 8 mathe-
matics class. Future research will be able to determine the degree to which this 
deepening and expansion of algebra in earlier grades benefi ts student learning over 
time. Nevertheless, some students in schools that offer substantial algebra through-
out middle school are still ready for a formal Algebra I course, and presumably, 
successfully completing a formal Algebra I course before entering high school will 
enable those students to participate in more advanced coursetaking sequences than 
they otherwise would.  

    Use of Online Courses to Expand Offerings 

 In schools that do not offer particular classes because of a lack of resources such as 
space and available teachers, online courses are one way to provide courses to inter-
ested or eligible students. Offering coursework virtually is a strategy that schools 
use to expand the curricula available to their students (National Education 
Association,  2006 ), particularly in small schools and isolated communities that do 
not have access to critical courses in science, technology, engineering, and mathe-
matics (Picciano & Seaman,  2009 ; Tucker,  2007 ). 

 The increasing popularity of online courses is driven by both technological 
advancements and the fl exibility with which online courses can provide access to 
content and instruction (   U.S. Department of Education,  2009b ). Online courses 
allow schools to take advantage of a broader pool of qualifi ed teachers, which can 
enable students to take courses that are otherwise not offered or taught by qualifi ed 
teachers. 

 Some researchers and education stakeholders suggest that online courses may pres-
ent an affordable option for expanding students’ access to courses to schools with lim-
ited funds by reducing costs for teaching staff or school facilities (Anderson, Augenblick, 
DeCesare, & Conrad,  2006 ; Greaves, Hayes, Wilson, Gielniak, & Peterson,  2010 ; Moe 
& Chubb,  2009 ; Smith & Mitry,  2008 ). However, studies determining whether this is 
actually the case for online learning in K–12 settings have yet to be conducted (Offi ce 
of Educational Technology, U.S. Department of Education,  2012 ). 

 The use of online courses in K–12 settings has been on the rise over the past 
decade. According to the National Center for Education Statistics (NCES), 37 % of 
school districts used technology-based distance learning during 2004–2005 
(Zandberg & Lewis,  2008 ). By 2009–2010, NCES reported that the proportion had 
grown to 55 % (Queen & Lewis,  2011 ). As of 2007, 28 states had virtual high- 
school programs, enabling students to take online courses in addition to their 
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school-based courses to fi ll curriculum gaps (for example, Advanced Placement 
[AP] courses) or providing opportunities for credit recovery (Tucker,  2007 ). While 
the exact number of students involved in online learning is not available, the Sloan 
Consortium conducted a national survey of K–12 public school districts in 2007–
2008 and estimated that the total number of K–12 public school students engaged in 
online courses exceeded one million—a 43 % increase from the 700,000 students 
reported in 2005–2006 (Picciano    & Seaman,  2009 ). 

 In the majority of districts using technology-based distance learning in the NCES 
studies, fully online courses are typically offered to students otherwise enrolled in 
traditional brick-and-mortar schools, as opposed to students taking all of their 
courses online. When asked about their reasons for providing online courses, over 
half of all responding districts listed “providing courses not otherwise available at 
the school” as one of the most important. 

 Surveys of K–12 public schools have suggested that rural districts and schools 
are especially interested in online learning. In the Sloan Consortium surveys, 
respondents from small rural school districts reported that they use online courses 
to provide opportunities they would not otherwise be able to offer (Picciano & 
Seaman,  2009 ). Two other surveys examined the prevalence of rural schools’ use 
of distance learning, a broader category that overlaps with online learning. In 
these surveys, a majority of rural educators reported using distance education to 
expand access to advanced coursework for students (Hanum et al.,  2009 ; 
Schwartzbeck et al.,  2003 ).  

    Prior Research on Online Course Effectiveness 

 The study summarized in this chapter was the fi rst to rigorously test the effi cacy of 
using an online course to broaden access to a course to which students’ access was 
otherwise limited. What little rigorous research exists has focused on comparing 
online learning with traditional face-to-face learning, mostly at the postsecondary 
level. Though the  Access to Algebra I  study was not designed to compare online 
Algebra I to traditional face-to-face versions of the course, this literature is relevant 
because it provides information on the utility of online courses as an educational 
experience compared with traditional face-to-face coursework. A meta-analysis of 
99 studies conducted primarily in postsecondary settings found that online instruc-
tion yields positive effects relative to face-to-face instruction (U.S. Department of 
Education,  2009b ). 2  

 One prior study included in the meta-analysis examined the effects among 
eighth- and ninth-grade students of an online Algebra I course relative to a face-to- 
face Algebra I course (O’Dwyer, Carey, & Kleiman,  2007 ). In this quasi- 

2   Studies that qualifi ed for inclusion in the meta-analysis used an experimental or quasi-experimen-
tal design (if quasi-experimental, the study must have included statistical controls for prior 
achievement). They also reported data suffi cient for calculating effect sizes per the What Works 
Clearinghouse ( 2008 ) guidelines. 
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experimental study, students in 18 classrooms participating in the Louisiana Algebra 
I Online Project were compared with students in comparison classrooms on out-
comes including an end-of-year Algebra I assessment. At the end of the school year, 
the difference in scores between students in the two types of classrooms on an 
algebra posttest was not statistically signifi cant, 3  suggesting that online Algebra I 
can produce outcomes that are similar to the outcomes in traditional Algebra I 
courses. This study provided foundational information on potential effects of online 
Algebra I, and the current study, while neither designed nor intended to directly 
compare the effectiveness of online versus face-to-face Algebra I courses, builds on 
O’Dwyer et al.’s fi ndings.   

    Study Design and Methodological Considerations 

 Given this research and policy context, this study rigorously tested the impact of 
expanding access to Algebra I to eighth-grade students by offering an online course 
in schools that do not typically offer Algebra I in grade 8. It is the fi rst randomized 
controlled trial testing the impact of providing an online Algebra I course on stu-
dents’ mathematics achievement and coursetaking trajectories over time. 
Furthermore, the study was designed to investigate whether changing mathematics 
instruction in this way resulted in any unintended consequences. 

    Goals and Research Questions 

 The primary goal of the study was to measure the effects of offering an online 
Algebra I course to eighth graders considered algebra-ready in schools that do not 
typically offer the course. The related research questions asked whether access to 
online Algebra I improves these students’ knowledge of algebra in the short term 
and whether it opens doors to more advanced mathematics course sequences in the 
longer term. Specifi cally:

    1.    What is the impact of offering an online Algebra I course to algebra-ready stu-
dents on their algebra achievement at the end of grade 8?   

   2.    How does offering an online Algebra I course to algebra-ready students affect 
their likelihood of participating in an advanced course sequence in high school?     

 The secondary goal of the study was to estimate whether offering online Algebra 
I to students considered ready for algebra resulted in potential unintended conse-
quences (or side effects) for any of the eighth-grade students. The motivations for 
exploring the secondary research questions were twofold. First, offering the online 

3   The  p -value associated with the coeffi cient representing the difference in posttest scores between 
students in online and face-to-face classes was 0.093. 
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Algebra I course may affect algebra-ready students in unintended ways, for exam-
ple, by adversely affecting their general math achievement. Second, providing 
online Algebra I to algebra-ready students may have unintended consequences for 
non-algebra-ready students—the students who remain in the general mathematics 
course. When the algebra-ready students are removed from the general eighth-grade 
math class, outcomes for the remaining students may be affected because of peer 
effects, smaller class sizes, a change in course emphasis (for example, less algebra), 
or other reasons. 

 The study design, described in this section, allowed us to address these issues in 
a secondary set of research questions:

    1.    What is the effect of providing online Algebra I to algebra-ready students on 
their general mathematics achievement at the end of grade 8?   

   2.    What is the effect of providing online Algebra I to algebra-ready students on the 
following outcomes for  non- algebra-ready students?

•    End-of-eighth grade algebra achievement  
•   End-of-eighth grade general math achievement  
•   Planned high-school math coursetaking        

 By answering the primary and secondary research questions, this study exam-
ined what happens to the entire population of eighth graders—including potential 
benefi ts and possible negative consequences—when a school uses an online course 
as a way to offer Algebra I to students considered academically ready for the course. 
The study thus sought to inform decision makers who are considering investing in 
an online course as a means to broaden access to Algebra I in grade 8.  

    Study Design 

 This study was a randomized experimental trial with random assignment of 
schools to condition. Schools in Maine and Vermont that did not offer a full sec-
tion of Algebra I to eighth graders (as of the 2007–2008 school year) were eligible 
for the study. Sixty-eight eligible schools were randomly assigned to one of two 
study groups. Schools in the treatment condition received the online algebra 
course for the 2008–2009 school year; schools in the control condition did not 
receive the online Algebra I course during the 2008–2009 school year, and offered 
their usual math curriculum and instruction for all students. 4  

 In all cases, students were identifi ed as academically ready for Algebra I in 
eighth grade in spring 2008 (as rising seventh graders),  prior to random assignment . 
This way, knowledge of whether a school was or was not going to be offering the 
online course could not affect decisions about which students would be eligible. 

4   Schools in the control group received the online course for the 2009–2010 school year. All 
schools (treatment and control) were provided the online course for 2 consecutive years. 
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This process produced two groups of algebra-ready students (those in treatment 
schools and those in control schools) that were statistically similar on all measured 
characteristics at baseline (as described in the “Sample” section below). 

 For the sample of algebra-ready students, this study was also longitudinal in 
design. The premise of “pushing down” Algebra I to grade 8 is that it prepares 
students for more rigorous coursetaking in mathematics through high school, 
which better prepares them to succeed in advanced course sequences that prepare 
them for college. Therefore, of critical interest from a policy perspective is the 
extent to which offering an online algebra course to students who would other-
wise not have been able to take Algebra I in grade 8 has a sustained impact on 
their mathematics coursetaking in high school. For this reason, researchers 
tracked the algebra-ready students who attended participating schools into high 
school to collect mathematics coursetaking information (grade 9 courses and 
grades and grade 10 planned courses) at the end of grade 9. These data were used 
to categorize students as participating in an advanced mathematics course 
sequence in high school. 5  

 To estimate the impacts of online Algebra I on relevant outcomes for the algebra- 
ready students, we compared outcomes for students in treatment schools with those 
in control schools at the end of grade 8 (spring 2009) and at the end of grade 9 
(spring 2010). Owing to random assignment and the fact that algebra-ready students 
were identifi ed in all schools prior to random assignment, the comparison of algebra- 
ready students in treatment and control schools (arrow 1 in Fig.  1 ) provides an unbi-
ased estimate of the effects of online Algebra I on these students. In this way, the 
study revealed the overtime effects on students’ mathematics achievement of using 
an online course to broaden access to Algebra I for students who otherwise would 
have no access or only limited access to a formal Algebra I course until high school.  

 Because schools were the unit of assignment, the students in treatment and con-
trol schools who were not academically ready for Algebra I can also be compared 
to obtain an unbiased estimate of the effect (or “side effect”) of the offering of 
online Algebra I to algebra-ready students on the students who remained behind in 
the general eighth-grade math classes (see arrow #2 in Fig.  1 ). As shown in Fig.  1 , 
algebra-ready and non-algebra-ready students were not compared to each other; 
each group of students was only compared to their counterparts in schools in the 
other condition. 

 Research studies often have multiple research questions which may produce 
mixed fi ndings. Mixed fi ndings, while interesting, can make it diffi cult to draw 
 conclusions about the effectiveness of the intervention being tested. Therefore, prior 
to conducting the study, we determined the combination of results with which we 
would consider the online Algebra I course a successful means for broadening 

5   We did not follow non-algebra-ready students into high school because of cost constraints (there 
were approximately three times as many non-algebra-ready students as eligible students) and 
because assessing the impact of the online Algebra I course on algebra-ready students’ subsequent 
high-school coursetaking was most critical and relevant for the study. 
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access. Specifi cally, we a priori determined that we would consider the online 
course a success if we saw both:

•    A statistically signifi cant positive impact on either algebra-ready students’ alge-
bra scores at the end of eighth grade  or  high-school coursetaking.  

•   The absence of statistically signifi cant negative side effects on eligible or non-
algebra- ready students. 6     

 Only this combination of results would provide evidence that there are benefi ts 
of adopting an online Algebra I course for eligible, algebra-ready students without 
signifi cant negative consequences to them or the non-eligible students in their 
schools. Ultimately, the intended outcome of the study was to provide rigorous 
evidence to help districts and schools determine whether adopting an online Algebra 
I course is a good choice in middle schools where access is limited.  

    Analytic Methods 

 All analyses were conducted separately on the algebra-ready and non-algebra-ready 
student samples. The samples used for analyses are intent-to-treat samples, meaning 
that all students with consent who were identifi ed as eligible for Algebra I before 

6   For the secondary questions, the study was not designed to determine whether the groups are 
statistically equivalent. A lack of statistical signifi cance for an impact estimate does not mean that 
the impact being estimated equals zero. Rather, it means that the estimate cannot reliably be distin-
guished from zero, an outcome that may refl ect the small magnitude of the impact estimate, the 
limited statistical power of the study, or both. For the secondary questions, lack of statistical sig-
nifi cance was defi ned as a difference with a  p -value greater than 0.05, at 80 % power. 
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  Fig. 1    Framework for estimating impacts of online Algebra I on algebra-ready students and non-
algebra- ready students.  Notes : Algebra-ready students were those considered by their schools—
prior to random assignment—to be eligible to take Algebra I if the course could be offered. 
Non-algebra-ready students were the eighth graders in the participating schools in fall 2008 that 
had not been on the schools’ list of eligible students       
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random assignment were included in the eligible student sample, whether or not 
they enrolled in or stuck with the online Algebra I course. 

 Given the nested structure of the data (the clustering of students within schools), 
we used multilevel models with students nested within schools to estimate the 
impacts of online Algebra I on the study outcomes. Analyses of continuous out-
come measures (including algebra and general math posttest scores) used hierarchi-
cal linear modeling (Raudenbush & Bryk,  2002 ); analyses of coursetaking sequences 
used hierarchical generalized linear models that assumed a Bernoulli sampling dis-
tribution and logit link function (   McCullagh & Nelder,  1989 ; Raudenbush & Bryk, 
 2002 ). To increase the precision of the estimates in these analyses, we used a set of 
baseline characteristics as covariates, including school factors (state and school 
size) and student factors (baseline math achievement scores from the prior year’s 
state assessment, and demographics including gender, eligibility for free or reduced- 
price lunch, and special education status). 

 If an impact estimate was statistically signifi cant, it is possible to conclude with 
some confi dence that the online Algebra I course had an effect on the outcome being 
assessed. If an impact estimate was not statistically signifi cant, the nonzero estimate 
may be a product of chance. To maintain the probability of falsely detecting a sta-
tistically signifi cant result ( p  < 0.05) if there were no true impact on either of the two 
primary outcomes (algebra achievement and high-school coursetaking for algebra- 
ready students), we adjusted the statistical signifi cance level for each of the two 
primary outcomes to 2.5 % (Bonferroni correction). 

 The study had low rates of missing data. To handle missing data, we used mul-
tiple imputation by chained equations. Multiple imputation models were specifi ed 
on the basis of the analysis of predictors of missingness; they included student and 
school covariates and interaction terms between student covariates.   

    Study Sample 

 In this section, we describe the schools and students who participated in the study. 

   School Recruitment 

 The target population included schools in Maine and Vermont that served students 
in grade 8 and did not offer a stand-alone Algebra I class in 2007–2008, when 
recruitment for the study took place. 7  These two criteria—serving grade 8 students 

7   A stand-alone class was defi ned as one full section of Algebra I taken by at least 20–25 % of grade 
8 students in the school, with a dedicated teacher. This proportion was derived from the percentage 
of grade 8 students in the northeast US who took Algebra I as of 2007, which was 25 % 
(U.S. Department of Education,  2007 ). 

J.B. Heppen et al.



107

and not offering stand-alone Algebra I—plus the willingness to comply with the 
requirements of the study were the only eligibility criteria for participation. 

 Based on our knowledge of the educational landscape in these states, we knew 
in advance that there would likely be substantial amounts of algebraic content pro-
vided to eighth graders in schools that participated. Rather, we sought the participa-
tion of schools in which a stand-alone, “formal” Algebra I class was not offered to 
at least 20–25 % of eighth-grade students, and where expanding access could 
potentially yield benefi ts for some students. (During the course of the study, we 
collected information about the amount and type of algebra taught in math classes 
in study schools, to clarify the “treatment contrast” for the online course.) Schools 
eligible to participate in the study offered algebraic content to at least some students 
in several different ways. Eligible schools included those in which some students 
took Algebra I in the local high school (when scheduling and transportation 
allowed), and those in which some students sat in the “back” of the eighth-grade 
math class with an Algebra I textbook. Schools that offered part or all of a full 
Algebra I course to some but not all of their algebra-ready students were also eli-
gible for the study, as were schools that typically delivered Algebra I content to 
some students by providing accelerated material in the context of the regular grade 
8 mathematics curriculum. 

 The study was conducted in two states in the Northeast region, Maine and 
Vermont. Maine was chosen because in addition to relatively low overall enroll-
ments in Algebra I among grade 8 students (20–25 % in 2007), the state had a strong 
technology initiative that could support the infrastructure needed to offer an online 
course in schools. The Maine Learning Technology Initiative provided all grade 8 
students and teachers in Maine with their own laptop computer for use throughout 
the school year, both in and out of school. Students were thus familiar with using 
computers as part of their daily educational activities (Berry & Wintle,  2009 ; 
Silvernail & Gritter,  2007 ). The technology infrastructure in Maine helped drive 
interest in online courses. 

 Vermont was selected because it shares demographic and geographic character-
istics with Maine that were factors in the selection of Maine for the study. 
Specifi cally, Vermont has the second-highest proportion of rural schools in the 
United States, after Maine (Johnson & Strange,  2007 ) and these schools serve stu-
dents who, although racially and ethnically homogenous, are diverse in socioeco-
nomic status. Like rural schools in Maine, rural schools in Vermont fi nd it challenging 
to offer a full range of courses to students who might benefi t from them. Although 
at the time of the study Vermont did not have the laptop initiative that Maine had, 
the state had both the necessary technological capacity and an interest in exploring 
ways to use technology to improve education. 

 During recruitment, we informed schools of the study requirements if they were 
randomized to the treatment group. First, students taking the online Algebra I 
course would take the course as their grade 8 mathematics course, not as a supple-
mental course to the general grade 8 mathematics class. Second, each participating 
student would have access at school to a computer with a high-speed Internet con-
nection. Access to a computer was necessary for students to access the course and 
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communicate with the online teacher. 8  Third, schools were required to assign a 
class period during the school day during which students would access the online 
Algebra I. The online class had to occur with the same frequency and duration as 
the regular grade 8 mathematics classes, but schools could schedule the period 
whenever they wanted, create multiple periods during the school day, and deter-
mine the location of the online course (for example, the regular classroom or the 
library). Fourth, schools would provide a staff member to serve as an on-site proc-
tor to support the students taking the online course. 

 Based on power calculations conducted while planning the study, we aimed to 
recruit a minimum of 60 schools to participate to achieve a minimum detectable 
effect size of 0.25 standard deviations (for continuous outcomes like math achieve-
ment scores). A total of 68 schools agreed with the terms for participation and 
signed on to participate.  

   Description of Participating Schools 

 The 68 participating schools were spread across Maine and Vermont. Sixty-two 
were rural schools. The grade 8 enrollments for the schools ranged from fewer than 
4 to nearly 150 students, with an average enrollment of 32 students. Fifty-two 
schools (76 %) served grades pre-K–8 or K–8; 10 schools (14 %) served middle 
grades (grades 5–8, 6–8, or 7–8); and the remaining six schools served other grade 
spans including K–12, 7–12, and 3–8. 

 On average, the participating schools had the following characteristics, accord-
ing to the Common Core of Data as of the 2007–2008 school year:

•    The average total enrollment for study schools was 186 students.  
•   94 % of the schools were Title I schools.  
•   48 % of the students were eligible for free or reduced-price lunch.  
•   95 % of the students were white.  
•   53 % of the students scored at or above the profi ciency level on the state mathe-

matics assessment in the 2007–2008 school year.    

 As mentioned earlier, all schools were required to identify algebra-ready stu-
dents who would be offered the online course if the school was randomized to the 
treatment group. The eligible, algebra-ready students were rising eighth graders 
whom schools perceived as having the requisite skills at the end of grade 7 to take 
Algebra I in 2008–2009. 9  Before random assignment, the 68 participating schools 

8   Technology requirements and system specifi cations were provided to all schools during recruit-
ment and again to the schools in the treatment group before the beginning of the 2008–2009 school 
year. 
9   Schools made decisions about which students were ready for algebra on the basis of teacher per-
ceptions of preparedness; grades in mathematics classes through grade 7; scores on state assess-
ments; and scores on other assessments, such as algebra readiness tests. The research team did not 
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identifi ed a total of 468 eligible students, or an average of 6.9 students per school. 
These students represented 23 % of the rising grade 8 students in participating 
schools as of spring 2008. 

 To randomly assign schools to condition, we stratifi ed by size and state and 
assigned half of the schools within each block to the treatment group and the other 
half to control. A total of 35 schools were assigned to the treatment group and 33 
schools were assigned to the control group. All 68 schools cooperated with data 
collection and fully participated in the study during the 2008–2009 school year. 
This participation included implementation of the online Algebra I course in all 35 
treatment schools.  

   Description of Students in Participating Schools 

 As described above, the study included two samples of eighth-grade students: alge-
bra-ready students and non-algebra- ready students. At the start of the 2008–2009 
school year, 445 eligible, algebra-ready students were enrolled in the 68 participat-
ing schools. (A total of 23 students had moved over the summer.) They represented 
22 % of the eighth-grade students in participating schools. The other eighth graders 
who were attending the study schools totaled 1,554 students and comprised the non-
eligible student sample. Table  1  provides a breakdown of the number of schools and 
students in the study.

   To describe the study sample and check for baseline equivalence of the treat-
ment and control groups, we collected information about students’ background 
characteristics from administrative records from the state for Maine participants 
and from the supervisory unions (school districts) for Vermont participants. These 
data included race and ethnicity, gender, eligibility for free or reduced-price lunch, 
and eligibility for special education services. The administrative data also included 
prior achievement on state math assessments taken the year before the study, when 
students were in seventh grade. The Maine state assessment is given in the spring 
of each year; the scores collected were from spring 2008. The Vermont state assess-
ment is given in October each year; the scores collected were from fall 2007. 
Because Maine and Vermont use different tests, it was necessary to translate scores 
into a common metric. All scores were standardized to  Z -scores using the mean 
and the standard deviation of the test scores within each state, including only 
schools participating in the study (algebra-ready and non-algebra-ready samples 

impose a defi nition or set of criteria for algebra readiness on the participating schools for two main 
reasons. First, there were no common instruments across all schools that were administered prior 
to random assignment that were specifi cally measures of algebra readiness. Second, the study 
aimed to test the effectiveness of offering an online Algebra I course in a real-world context, where 
local decision-making about student eligibility for the course would be the norm. We found that the 
students identifi ed as algebra-ready had, as expected, signifi cantly higher prior math achievement 
scores than those who were not. 
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   Table 1    Number of schools and students per condition as of fall 2008   

 Item  Total  Treatment  Control   p -value 

 Number of schools  68  35  33   a  
 Number of grade 8 algebra-ready 
students 

 445  218  227  0.670 

 Number of grade 8 non-algebra-ready 
students 

 1,554  782  772  0.800 

 Total number of grade 8 students  1,999  1,000  999  0.982 
 Average number of algebra-ready 
students per school (standard deviation) 

 6.54 (5.23)  6.23 (5.21)  6.73 (5.32)  0.698 

 Average number of grade 8 students 
per school (standard deviation) 

 31.94 
(37.01) 

 31.00 
(40.93) 

 32.94 
(32.96) 

 0.830 

   Note:  Sample includes 68 schools (35 treatment, 33 control) and 1,999 students (445 eligible stu-
dents, 1,554 non-eligible students). Algebra-ready students were identifi ed before random assign-
ment in June 2008. Tests of signifi cance were conducted using two-tailed  χ  2  and independent 
sample  t -tests 
  Source : Records obtained from each school before random assignment (June 2008) and school 
rosters examined in fall 2008 
  a Not applicable, because schools were allocated to treatment and control using a block randomized 
procedure  

combined). Student records were available for more than 97 % of the students 
attending study schools. 

 Table  2  summarizes the characteristics of students in the participating schools as 
of fall 2008. It shows baseline characteristics for the two student samples overall 
(across conditions) and by condition.

   Based on pre-random assignment data from the prior school year, we found no 
signifi cant differences between the treatment and control groups on any measured 
demographic characteristics and prior mathematics achievement between algebra- 
ready students in treatment schools and control schools. The same was true for 
 non-algebra- ready students in treatment and control schools, indicating that the ran-
dom assignment of schools to condition successfully produced groups of students 
that were statistically comparable. 

 As expected, there were some differences between the algebra-ready and non-
algebra- ready student samples, providing empirical evidence that schools identifi ed 
higher-achieving students as algebra-ready. In particular,

•    32 % of algebra-ready and 46 % of non-algebra-ready students in the study par-
ticipated in the National School Lunch program (i.e., received free or reduced- 
price lunch).  

•   3 % of algebra-ready and 17 % of non-algebra-ready students received special 
education services.  

•   On average, algebra-ready students scored nearly 1 standard deviation above the 
sample mean on their grade 7 state mathematics test ( z  = 0.95). The average 
among non-algebra-ready students was 0.24 standard deviations below the mean.  
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   Table 2    Baseline student characteristics of algebra-ready and non-algebra-ready student samples   

 Characteristic  Overall  Treatment  Control   p -value 

  Algebra-ready students  
 Percent with free or reduced-price lunch 
( n  = 436) 

 32  34  30  0.596 

 Percent receiving special education services 
( n  = 437) 

 3  3  4  0.622 a  

 Percent limited English profi cient ( n  = 437)  3  5  2  0.646 a  
 Percent female ( n  = 440)  49  49  49  0.833 
 Percent racial/ethnic minority ( n  = 440)  7  8  5  0.975 
 Mean grade 7 score on state mathematics 
assessment (standardized) b  ( n  = 437) 

 0.95 
(0.69) 

 0.97 
(0.59) 

 0.94 
(0.77) 

 0.584 

  Non-algebra-ready students  
 Percent with free or reduced-price lunch 
( n  = 1,403) 

 46  46  47  0.883 

 Percent receiving special education services 
( n  = 1,419) 

 17  19  16  0.255 

 Percent limited English profi cient ( n  = 1,419)  3  4  2  0.927  a  
 Percent female ( n  = 1,439)  50  49  50  0.731 
 Percent racial/ethnic minority ( n  = 1,438)  5  7  4  0.596  a  
 Mean grade 7 score on state mathematics 
assessment (standardized) b  ( n  = 1,403) 

 −0.24 
(0.86) 

 −0.25 
(0.84) 

 −0.22 
(0.89) 

 0.609 

   Source : Maine state department of education and Vermont supervisory unions; study records 
 Sample includes 68 schools (35 treatment, 33 control); Full samples included 440 algebra-ready 
students (218 treatment, 222 control); and 1,445 non-algebra-ready students (744 treatment, 701 
control); 4 control schools had no non-eligible students. Student sample sizes vary for each row, 
based on the amount of missing data for each student characteristic 
 Values are unadjusted. Differences in student characteristics by condition were tested using a 
model that accounts for the clustered data structure and blocking used for randomization. Figures 
in parentheses are standard deviations 
  a The model did not converge to produce estimates when controlling for fi ve state by size dummy 
blocking variables. Reported  p -value represents a model that controls for state and two dummy 
indicators for medium and large schools rather than their interactions 
  b State mathematics scores were standardized by using the mean and standard deviation of the test 
scores within each state, including only schools participating in the study. Data were missing for 
fewer than four algebra-ready students; data were also missing for 42 non-algebra-ready students 
(23 from treatment schools and 19 from control schools)  

•   In fall 2008, the average pretest score for algebra-ready students was 349.9 
(SD = 23.3); for non-algebra-ready students, the average pretest score was 312.6 
(SD = 27.2).    

 Signifi cance tests confi rmed that algebra-ready students scored higher on mea-
sures of prior math achievement than non-algebra-ready students. They were also 
less likely to receive free or reduced-price lunch or special education services. The 
two samples of students were similar on other demographic characteristics, includ-
ing gender, race/ethnicity, and English profi ciency.   
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    Measures 

 We collected a range of data for this study from fall 2008 through spring 2010, 
including the already-described background characteristics data for the schools and 
students participating in the study to describe the sample, check for baseline equiva-
lence, and use as covariates in impact analyses. In this section we describe the data 
collected to measure key aspects of implementation and to measure the study 
outcomes. 

    Implementation Measures 

 To measure implementation of the online course in treatment schools, we used 
data archived from the online course itself and weekly logs completed by the in-
class online course proctors. We also conducted site visits to each treatment 
school. To measure aspects of mathematics instruction including content in both 
treatment and control schools, we used teacher surveys and collected classroom 
materials. 

  Online course activity data : The online course management system used to 
deliver the course (Moodle) automatically logs and stores data documenting online 
course activity of students, online teachers, and proctors. For all online course sec-
tions, Moodle records the date and time that users logged into the system, as well 
as the sender, recipient, and content of all messages. The system also records the 
content accessed by students, quiz and exam grades, and records of teachers’ and 
proctors’ review of student grades. These logs were the primary source of infor-
mation used to assess online teachers’ monitoring of and communication with 
students. The study team “observed” direct online interactions between online 
teachers and their students using these archived data. For each of the ten online 
course sections, we randomly selected 1 school day each month over an 8-month 
period (October–May) and downloaded all online activity over a 24-h period for a 
total of 80 observations. 

  Proctor logs : Each week on-site proctors recorded the amount of time they spent 
performing specifi c types of activities as part of their proctor role. Data from the 
logs were used to monitor implementation across treatment schools. All proctors 
completed at least half of their weekly logs. 

  Site visits : Study team members visited every treatment school once during 
the 2008–2009 school year to assess the extent to which the online course was 
being implemented as intended. At each school, we noted the physical location of 
students taking the online course and proctor activities while students accessed 
the course. 
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  Teacher survey : We administered a web-based teacher survey in spring 2009 to 
all grade 8 mathematics teachers in study schools and to online Algebra I teach-
ers. The survey served two main purposes. First, it provided data on characteris-
tics of the teachers (for example, degree earned, years of teaching experience). 
Second, it provided data on the organization and delivery of grade 8 mathematics 
instruction in treatment and control schools, as well as in the online Algebra I 
classes. For example, the survey collected information about the number of stu-
dents enrolled in each section of grade 8 mathematics and the different types of 
learning opportunities provided to students, including differentiated and acceler-
ated learning opportunities (such as Algebra I). The response rate on the teacher 
survey was 95 %. 

  Classroom materials : To describe the content coverage in the general grade 8 
mathematics classes in study schools, the study team worked closely with par-
ticipating teachers to collect detailed sets of instructional materials, including 
pacing guides and course syllabi, textbook information/tables of contents, class-
room assignments, and exams. When collecting these instructional materials, the 
study team used a structured protocol to capture how much of the curriculum/
textbook each teacher completed and the associated mathematics topics. Math 
content experts staffed on the study analyzed the annotated materials and calcu-
lated the percentage of class time spent on algebra topics, using a code of 1–4 
(1 = 25 % of time spent on algebra, 2 = 50 % of time spent on algebra, 3 = 75 % 
of time spent on algebra, 4 = 100 % of time spent on algebra). The study team 
obtained classroom instructional materials for 90 % of the eighth-grade math 
classes in study schools.  

    Outcome Measures 

  Algebra and general math posttests : The posttests were computer-adaptive assess-
ments administered to all grade 8 students in participating schools in May and June 
2009. The posttest was delivered as a 40-item test that included 20 items from a 
general mathematics item bank and 20 items from an algebra item bank. 

 The items given to each student were targeted to ability level, depending on their 
answers to previous questions. The general math item bank included approximately 
1,000 items distributed across six domains (number, computation and estimation, 
measurement, geometry, probability and statistics, and algebraic concepts) ranging 
in diffi culty from the fi fth- to eighth-grade level. Scores were generated by a linear 
transformation of the underlying Rasch scale and are reported on a scale of 200–
400. The algebra item bank contained approximately 300 items, and scores are 
reported on a scale of 400–500. 

 Although students took both tests in the same sitting, the algebra posttest scores 
represent the primary achievement measure at the end of grade 8. (Scores on the 
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general mathematics posttest were a secondary measure of achievement at the end 
of grade 8.) Response rates on the algebra and general mathematics posttests were 
99 % for the algebra-ready students and 94 % for the non-algebra-ready students. 10  

  High-school math coursetaking : To measure high-school math coursetaking for 
the algebra-ready students, we collected actual course enrollment and grades for 
grade 9 and planned coursetaking for grade 10 from the high schools that students 
attended the next year (2009–2010). 

 Specifi cally, we collected course titles and grades for the mathematics courses 
taken in ninth grade and course titles for the math courses in which students planned 
to enroll for tenth grade. We collected this information from the high schools the 
algebra-ready students attended in grade 9, and we obtained usable coursetaking 
data for 427 algebra-ready students (97 % of the sample). 

 For the non-algebra-ready students, we simply collected  planned  high-school 
math coursetaking information. 11  We obtained this information from the participat-
ing middle schools. We collected the name of the planned ninth-grade math course 
for each student at the end of eighth grade, in spring 2009. These data were made 
available to the study team for 93 % of the non-algebra-ready students. (Planned 
courses and the high-school students planned to attend were also provided by the 
middle schools for 97 % of the algebra-ready students.) 

 Coding of high-school coursetaking data was based on methods used by the 
NCES for the National Assessment of Educational Progress and Education 
Longitudinal Study transcript studies. Transcript coding protocols guided the 
extraction of course identifi ers. Mathematics education experts coded the course 
titles, using the Classifi cation of Secondary School Courses, which is based on 
information available in school catalogs and other information sources 
(U.S. Department of Education,  2007 ). 

 The creation of the coursetaking indicators based on these codes was guided by 
previous research on typical high-school course sequencing and defi nitions of 
“advanced,” “intermediate,” or “low” high-school course sequences by Schneider 
et al. ( 1998 ) and Stevenson et al. ( 1994 ). In US high schools, the typical sequence 
is Algebra I → Geometry → Algebra II → Precalculus/Trigonometry → Calculus. 
Advanced, intermediate, and low sequences are defi ned by where students are in 
this pipeline during each year of high school. The study team drew on this research 
to defi ne two coursetaking sequences for the study: “advanced” for algebra-ready 
students and “intermediate” for non-algebra-ready students. 

10   However, scores based on less than 5 min of testing were determined to be invalid by the test 
developer and thus were dropped and treated as missing. For the algebra posttest, there were fewer 
than four such cases in the algebra-ready student sample and 118 in the non-algebra-ready sample 
(73 in treatment and 45 in control). 
11   Data on high-school mathematics coursetaking were not collected for the non-algebra-ready 
 students because of cost constraints and the determination that assessing the impact of online 
Algebra I in grade 8 on subsequent coursetaking was most critical and relevant for the already-
ready students. 
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 For algebra-ready students (who were followed into high school), the study team 
coded whether their actual grade 9 courses and grades and planned grade 10 courses 
were indicative of an  advanced  sequence, defi ned by Schneider et al. ( 1998 ) as the 
successful completion of Geometry and Algebra II by grade 10. 

 Algebra-ready students were coded as participating in an advanced course 
sequence if they met the following criteria:

•    Completed a full-year course above Algebra I or equivalent in grade 9.  
•   Earned an end-of-year grade of C or above in the grade 9 course (if more than 

one grade 9 course was taken, the grade had to be C or higher in the most 
advanced course taken to meet this criterion).  

•   Enrolled in Algebra II (or the next course in the sequence) for grade 10.    

 Students who did not meet all three criteria were coded as not participating in an 
advanced course sequence. 

 For non-algebra-ready students, we assumed that they would not follow an 
advanced sequence in high school, since they had not been identifi ed as “ready 
for algebra” as rising eighth graders. We therefore coded whether their planned 
grade 9 courses were indicative of an  intermediate  sequence, defi ned by 
Schneider et al. ( 1998 ) as the successful completion of Algebra I in grade 9 and 
Geometry in grade 10. Non-algebra-ready students were assigned codes for 
planned grade 9 courses according to whether or not the course for grade 9 was 
at or above Algebra I.   

    The Online Algebra I Course: Course Content, Online 
Teachers, and On-Site Proctors 

 To identify the online course for the study, we established a set of criteria that 
matched the study’s design to examine the impact of offering an online Algebra I 
course to broaden grade 8 students’ access. One criterion was that the content of the 
online Algebra I course represent what is typically taught in a high school-level 
Algebra I course. Along these same lines and to increase the external validity of the 
study, we selected an online course provider with an existing Algebra I course that 
was being used by secondary schools in the United States. A second criterion was 
that the online course provider would hire, train, and supervise the online teachers. 
This criterion was considered essential given the study’s focus on rural schools, 
which typically do not have the resources to provide an Algebra I teacher or course 
to their grade 8 students. 

 We identifi ed 11 online course providers that offered an Algebra I course and 
interviewed those who were willing to consider participating in the study. At the 
conclusion of the interviews, Class.com was the only online course provider whose 
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online Algebra I course met the study’s criteria and who would agree to participate 
in the randomized study and to operate within the study’s parameters. 

 In a traditional face-to-face course, the classroom teacher determines the course 
content covered, as well as the pace of instruction. In most online courses, the 
expectation is that students will work primarily on their own and that their progress 
in the course will be supervised or monitored by an online teacher and, in some 
cases, by an on-site school staff member. The online Algebra I course implemented 
for the study included these three components: the online course curriculum, online 
teachers, and school staff who served as on-site “proctors.” These three components 
are described in the following sections. 

    Course Content 

 While the structure and content of the Class.com online Algebra I course was simi-
lar to that of many Algebra I courses in terms of the curriculum and assignments, the 
mode of instruction represents a signifi cant departure from what students typically 
encounter in a face-to-face course. The Class.com course used an  asynchronous  
online instructional model, which means that students and online teachers were not 
online at the same time. The role of the online teacher was to supervise students’ 
learning and progress through the course. All communication between the online 
teachers and their students took place through asynchronous (non-instant) messages 
sent through the online course management system. 

 The Class.com course was divided into two parts, Algebra IA and Algebra IB, 
with each part designed to be equivalent to a semester in a traditional middle- or 
high-school Algebra I course. Algebra IA had 5 units, which addressed symbols 
and number properties, functions and equations, equations and problem solving, 
inequalities and absolute value, and polynomials. Algebra IB had four core units, 
which focused on functions and relations, systems of equations and inequalities, the 
simplifi cation of rational and radical expressions, and quadratic equations. Two 
additional units focused on statistics and probability. 

 Even though students worked primarily independently while logged into the 
course, the stated expectation for the study was that students would follow a sched-
ule for completing each topic, and that they would complete the course by the end 
of the academic year. According to Class.com, students needed 32–34 weeks (160–
170 days) of 40–50 min of instruction each day to complete Algebra IA and 
IB. During the study year (2008–2009), both Maine and Vermont mandated a 
 175- day school year for grade 8 students, which theoretically provided suffi cient 
time for students to complete both parts of the Algebra I course. 

 Each of the topics in the online course was designed to be completed in a single 
class period. The course material for each topic was presented to students in the 
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form of an electronic, interactive textbook. The following are examples of types of 
course material and instruction activities that students encountered daily. 12 

•    All topics began with static text for students to read, with rollover defi nitions 
available for important terms that appeared in bold.  

•   Computer-scored fi ll-in-the-blank “your-turn” problems embedded within les-
sons and end of lesson practice problem sets were a primary component of the 
online course. Students could receive immediate feedback on whether their 
answers were correct or incorrect by selecting the “Check My Answers” option. 
However, it was the students’ responsibility to complete the problems, check 
their answers, and follow-up if they did not understand something, as the online 
course management system did not record whether students attempted the prac-
tice problems or not. Students’ progress through the course was entirely based on 
their performance on quizzes and exams, not on daily problem sets.  

•   For some of the topics, online teachers developed “chalktalks” for their students 
and posted them through the online course management system. These were 
mini-lessons consisting of a short video with an audio voiceover describing the 
solution steps of the problem presented.  

•   Interactive activities were a part of the course but were available to students less 
frequently than other noninteractive activities. The complexity and instructional 
purpose of the interactive activities varied, and included interactive demonstra-
tions, guided questions, and open-ended prompts.  

•   Quizzes (both practice and graded) were included at the end of each lesson, and 
exams (both practice and graded) were given at the end of each unit. Quizzes and 
exams consisted of item sets randomly generated by the course management 
system from the Class.com item bank.    

 For each topic, students typically encountered an average of seven web pages of 
static and interactive text, one or more chalktalks, eight “your-turn” problems, and 
ten practice set problems. Topics ended with a summary of key ideas.  

    Online Teachers 

 Class.com hired eight teachers from its network of mathematics teachers to serve as 
online teachers for the study. The eight online teachers taught a total of ten online 
course sections in the 35 treatment schools; the average number of students per sec-
tion was approximately 20 students. All of the online teachers were certifi ed to teach 
math and met both states’ “highly qualifi ed teacher” criteria. Class.com provided a 
2-day training workshop before the beginning of the school year (attended by all 
online teachers) and an optional 1-day workshop in January 2009 (attended by six of 

12   The examples are drawn from the Slope-Intercept topic of the Other Forms of Linear Equations 
lesson in the Linear Equations unit. 
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the online teachers). The purpose of the summer training was to familiarize the 
teachers with the structure and operation of the online course, demonstrate how to 
operate the courseware and use the embedded communication tools, and suggest 
methods for guiding student progress. The January workshop reviewed the topics 
presented in the summer workshop. Class.com also provided a senior mathematics 
specialist to oversee the administration of the online course.  

    On-Site Proctors 

 Participating schools agreed to assign students taking the online Algebra I course to 
a regular class period that met with the same frequency and duration as the regular 
eighth-grade math classes and to provide a school staff member who would be avail-
able to students during the designated class periods. The role of the proctor was to 
ensure that students had access to the required technology, proctor exams, supervise 
students’ behavior, serve as a personal contact for students and parents, and serve as 
the liaison between the online teacher and the school or parents. Because their role 
did not include providing math instruction, proctors did not need to be certifi ed 
math teachers. The schools selected the staff members who served as proctors. 

 The on-site monitors also participated in a training workshop prior to the begin-
ning of the 2008–2009 school year. The training session covered the structure of the 
online course and provided hands-on training on operating the courseware, includ-
ing viewing students’ progress through the course, accessing their assessment 
scores, and using the embedded communication tools. The training also suggested 
methods for helping students keep track of their own progress.   

    Implementation Findings 

 In this section, we describe the implementation of the online course in treatment 
schools, and the content of the math classes taken by algebra-ready and non-algebra- 
ready students in control schools. As described in the Measures section, we collected 
several types of implementation data to describe the implementation of the online 
Algebra I course, including archived data collected by the online course management 
system, weekly proctor logs, and in-person observations on site visits. To describe 
the content of the math classes, we collected and analyzed classroom materials. 

    Online Course Activity 

 We used the archived online course data to conduct “virtual observations” of the 
online course activity including the interactions between the online teachers and 
students. These data included information about when and how often students and 

J.B. Heppen et al.



119

teachers logged into the course, various types of online activity, and all online com-
munication between the online teachers and students. As noted above, we randomly 
selected one school day each month (October through May) for each of the ten 
online course sections and then downloaded and coded all online activity that 
occurred during a 24-h period. The result was a total of 80 observations (eight per 
section). In this section, we describe what we learned from these observations. 

  Student log - ins : Students were expected to log into the online course at least once 
per day. However, the archived course data showed that only 75 % of students tak-
ing the course logged into on average during each of the 24-h observation periods. 
This is in line with anecdotal reports from Class.com that students missed a number 
of days, particularly in the second half of the year, because of grade- or school-wide 
activities. 13  

  Online teacher activities : According to Class.com, the role of online teachers 
was to grade written assignments, review students’ scores on quizzes and exams, 
coach and motivate students, conduct online discussions, and demonstrate concepts 
and processes. During the 2-day training workshop for the online teachers, Class.
com demonstrated the means through which teachers could use the online course 
management system to monitor students’ progress in the course and to communi-
cate with them asynchronously. 

 During the training, Class.com indicated that online teachers would be expected 
to monitor students’ progress on a daily basis and communicate with them on most 
days. To assess the regularity with which online teachers actually logged in to the 
course to monitor student activity, we analyzed the archived online course activity 
data to tally how often each section’s online teacher logged on to the course man-
agement system at least once during each of the 24-h observation periods, as well as 
the online activities in which they engaged while online. 

 We found that the online teachers:

 –    Logged into the online course at least once during almost all of the observation 
periods 96 %)  

 –   Monitored students’ login activity in only 70 % of the observed sessions  
 –   Examined student grades and course progress in only 43 % of the observation 

periods    

  Teacher – student communications : Class.com was explicit about its expectation 
that online teachers should communicate with students on a daily basis through the 
messaging feature of the online course management system; this included sending 
messages to students or reading and responding to messages from students within 
24-h. To determine the frequency of teachers’ communication with individual stu-
dents, we fi rst counted the number of teacher-to-student messages. Then, we coded 
the content of the message as providing administrative feedback (for example, 
grades, the pace at which a student was progressing through the course), mathe-
matics content (for example, encouraging understanding, refl ection or critical 

13   We were not able to compare this to attendance in control schools, because we did not have 
mathematics class-specifi c attendance data for students in control schools. 
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thinking; providing constructive feedback; and using incorrect answers as learning 
opportunities), or some other content (such as greetings). 

 We found that teachers did send at least one message in almost all of the observa-
tions. However, only 27 % of students taking the course were recipients of these 
messages. About half of the observations included an instance of teachers sending a 
message containing administrative feedback and teachers directed these messages 
to 13 % of their students on average. Teachers sent even fewer messages that con-
tained mathematics content; these messages occurred in 18 % of the observations 
overall and were directed to 13 % of the students in each section, on average. 

 Online teachers were quite responsive to the messages they received from stu-
dents. At least one student asked their online teacher a question through the course 
messaging system in 81 % of the observed sessions, and the online teachers almost 
always replied to students’ messages within 24-h. As was the case with the teacher- 
initiated messages, only some of the students participated in these communications; 
on average, only 10 % of the students in a section sent a message to the online 
teacher during one of the observed periods.  

    On-Site Proctors 

 Even though the proctor role as defi ned for the study did not include providing math 
instruction, in 28 of the 35 treatment schools (80 %), the proctor was the eighth- 
grade mathematics teacher. In most of these cases, the proctor was teaching the 
regular eighth-grade math class at the same time they were responsible for supervis-
ing the online students. In 24 of these schools, students taking the online course sat 
in a designated area of the same classroom where the proctor/mathematics teacher 
was simultaneously teaching the regular eighth-grade math class to other students. 
In other treatment schools where the proctor was the eighth-grade mathematics 
teacher, students sat in a location near the classroom while the teacher taught the 
regular eighth-grade math class (e.g., an unoccupied neighboring classroom, the 
hall). In treatment schools in which the proctor was not the eighth-grade math 
teacher, other teachers in the school, the principal, or an education technology spe-
cialist served as the proctor. These proctors had other simultaneous responsibilities 
in addition to monitoring the online students such as lesson-planning and grading, 
performing administrative tasks, or supervising a computer lab. 

 Although the role of the proctor as defi ned for the study did not include provid-
ing mathematics instruction, the proctors were a source of instructional support for 
online students. This was not surprising given that so many of them (80 %) were 
eighth-grade math teachers, but was not initially expected at the outset. Proctors’ 
weekly logs revealed that they spent an average of about 50 min a week throughout 
the year answering students’ algebra-related questions and 10–14 min a week 
answering non-algebra math questions. They also assisted students with technical 
issues for about 8–10 min per week. According to the logs, the proctors communi-
cated with the online teachers only for about 5–6 min per week.  
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    Online Course Completion Rates 

 As described above, the online course was a full-year course. Students could move 
slightly ahead or spend extra time covering topics as necessary, but the course was 
not intended to be completely self-paced and the expectation was that students 
would fi nish the course by the end of the academic year. 

 We found that the pace at which students actually progressed varied, as did rates 
of course completion. Student “completed” a unit by passing the respective end-of- 
unit test with a score of 60 % or higher. We defi ned passing for the study as 60 % or 
higher because the standard criterion for “passing” varied across participating 
schools, with some setting the passing criterion at 60 % and others at 70 %. The 
60 % threshold was chosen so that students would not be held to higher standards 
by the course than was typical for their school. 

 We found that about 43 % of the 211 algebra-ready students who took the course 
completed all 9 units of Algebra IA and IB, and another 39 % completed all of IA and 
some of IB (6, 7, or 8 units). Another way of looking at this is that algebra-ready stu-
dents, on average, completed 7.5 of the 9 Algebra I units, or 85 % of the online course. 

 Interestingly, while we found variation in course completion rates both within 
and between course sections, student background characteristics including gender, 
race/ethnicity, limited English profi ciency, eligibility for free or reduced-price lunch 
special education services, or—surprisingly—prior year scores on the state mathe-
matics achievement tests did not predict course completion.  

    Course Content in Control Schools: Treatment Contrast 

 We analyzed classroom materials to capture the content of the general math courses 
offered in control schools, as these courses as taken by the algebra-ready students in 
control schools served as the contrast to the online Algebra I course in treatment 
schools. The classroom materials we collected included the name of the textbook 
used and any of the following that were available: course syllabi, curricular pacing 
guides, annotated tables of contents of mathematics textbooks, and course exams. 
Mathematics content experts on the study team coded the general grade 8 class 
materials, indicating the degree to which they focused on algebraic content: 25, 50, 
75, or 100 %. We used just four categories because detailed pacing information was 
available from too few schools to estimate more precisely (by, for example, the 
number of weeks spent on algebra). 

 We found that in control schools, over 90 % of the eighth-grade math classes had 
a curricular focus on algebraic content of 50 % or higher. More than one-third 
(35 %) of the control schools had a focus on algebra of 75 %, and 16 % had an 
algebraic focus of 100 %. As noted earlier, we had expected the general math 
courses in control schools to include a substantial amount of algebraic content, 
based on our review of state content standards and recruitment discussions with 
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state and local educators, and this was confi rmed. However, it is important to note 
that without a separate comparison group of schools that was unaware of the study, 
there is no way to know whether the amount of algebra in the study control schools 
represents what is typical or whether the amount of algebra offered was affected by 
participation in the study. 

 Our analysis of classroom materials also found that in seven control schools, 
most (94 %) of the algebra-ready students took a separate Algebra I course at their 
middle school or the local high school. In total, 45 algebra-ready students in control 
schools took a formal Algebra I course, representing 20.3 % of the total sample of 
algebra-ready students in control schools. Some of these students took a face-to- 
face Algebra I course and others took an online course from a different provider 
(i.e., not Class.com).  

    Summary of the Implementation Findings 

•     Most schools opted  not  to place students taking the online course in a separate 
space or at a different time from the regular eighth-grade math class.

 –    In most (80 %) of the treatment schools, the regular eighth-grade math teacher 
served as the proctor.  

 –   In 69 % of the schools, students taking the online course sat in the same class-
room as students taking the regular eighth-grade math class.     

•   The types and amount of interaction between students taking the online course 
and their teachers and proctors deviated from our expectations.

 –    Online teachers spent less time communicating directly with students than 
expected. The online teachers logged in to the course at least once a day to 
monitor students’ activity or progress, but they communicated directly with 
only about 25 % of the students every day. Communications containing math 
content were infrequent; however, when a student contacted the online teacher 
directly, the teacher almost always (96 % of the time) replied within 24-h.  

 –   In-class proctors spent more time providing math content support than 
expected. Although the proctors’ role did not require providing math instruc-
tion, they spent an average of about 60–75 min per week answering 
 algebra- related or other non-algebra-related math questions for students tak-
ing the online course.     

•   Rates of course completion in the online course varied.

 –    The average number of course units completed by students who took the 
course was 7.5, or 85 % of the online course.  

 –   43 % of the online algebra students completed the entire course, including all 
9 core units of the full-year course (5 units in Algebra IA and 4 in IB).  

 –   82 % of the online algebra students completed the fi rst half of the course 
(Algebra IA) and part of Algebra IB.         
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    Impact Findings 

 In this section, we fi rst present the results of analyses conducted to test the primary 
research questions regarding the direct effects of offering online Algebra I to 
algebra- ready eighth graders on their algebra achievement at the end of grade 8 and 
their likelihood of participating in an advanced math course sequence in high school. 
Second, we present results of analyses conducted to test the secondary research 
questions, regarding potential “side effects” of offering online Algebra I to algebra- 
ready eighth graders on their general math achievement and outcomes for their non-
algebra- ready peers. 

    Impacts on Algebra-Ready Students’ Algebra Scores 
and High- School Coursetaking 

  Algebra score at the end of grade 8 : We used a two-level hierarchical model with 
students nested within schools to estimate the impact of online Algebra I on algebra- 
ready students’ algebra assessment scores at the end of eighth grade. To improve the 
precision of the impact estimates, we included students’ prior state mathematics test 
scores and background characteristics (gender, eligibility for free or reduced-price 
lunch, and special education status) as covariates in the model. School-level covari-
ates included blocking variables (state and school size dummy variables). Except 
for the treatment status indicator, all covariates were centered on the grand mean. 

 We found that algebra-ready students in schools randomly assigned to offer the 
online Algebra I course scored higher on the algebra posttest than their counterparts 
in schools that did not receive the course (Table  3 ). The average algebra score for 
algebra-ready students in treatment schools was 5.53 scale score points higher than 
the average score for eligible students in control schools (effect size = 0.40). This 
difference is equivalent to moving students from the 50th to the 66th percentile in 
achievement by taking the online course   . 14 

14   As described above, 20 % of algebra-ready students in control schools took a formal Algebra I 
course; some of these students took a traditional face-to-face version of the course and others took 
an alternate online version of the course. The study was not designed to compare the outcomes of 
algebra-ready students in treatment schools with those of subgroups of students in control schools 
and it would be inappropriate to conduct signifi cance tests for these comparisons. However, to 
address questions regarding how the algebra scores of algebra-ready students in treatment schools 
compared to those of algebra-ready students in control schools who took a formal Algebra I course 
in grade 8 and algebra-ready students in control schools who did not take a formal Algebra I course 
in grade 8, we report the observed means for these three groups below. It is important to note that the 
study was not designed to test for the statistical signifi cance of these differences and that the means 
reported below are based on the original and not imputed data, are not model-adjusted, and should 
be interpreted with caution. The observed Promise Assessment posttest mean scores were 447.91 
(SD = 15.12) for algebra-ready students in treatment schools, 444.00 (SD = 11.16) for algebra-ready 
students in control schools who took a formal Algebra I course, and 440.98 (SD = 12.56) for algebra-
ready students in control schools who took their schools’ eighth-grade general mathematics course. 
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    High-school coursetaking : We used a two-level hierarchical generalized linear 
model, appropriate for binary outcomes, to estimate the effect of online Algebra I in 
eighth grade on the likelihood of participating in an advanced mathematics course 
sequence in high school for algebra-ready students. The model assumed a Bernoulli 
sampling distribution and logit link function (McCullagh & Nelder,  1989 ; 
Raudenbush & Bryk,  2002 ) and controlled for the same student- and school-level 
covariates as the model used to test the impact of online Algebra I on algebra-ready 
students’ algebra scores. 

 The outcome measure for this analysis was participation in an advanced course 
sequence, based on the ninth-grade math courses taken, grades earned, and the 
course planned for grade 10. Students were considered advanced if they took a 
course above Algebra I in ninth grade, passed their ninth grade course with a grade 
of C or higher, 15  and enrolled in Algebra II or higher for tenth grade. 

 The results indicate that algebra-ready students from schools randomly assigned 
to offer the online Algebra I course were signifi cantly more likely to follow an 
advanced mathematics course sequence than their counterparts in schools that did 
not offer the course (Table  4 ). Specifi cally, the average probability of participating 
in an advanced course sequence was 0.26 for algebra-ready students from control 
schools and 0.51 for algebra-ready students from treatment schools. The online 
course yielded a difference in the probability of participating in an advanced course 
sequence of 0.25, meaning that algebra-ready students from treatment schools were 

15   If students took more than one mathematics course in grade 9, they had to have earned a grade 
of C or better on the more advanced grade 9 course to meet this criterion. 

   Table 3    Impact of online Algebra I on algebra scores of algebra-ready students in treatment and 
control schools   

 Mean in treatment schools
(standard deviation) 

 Mean in control schools 
(standard deviation) 

 Estimated impact 
(standard error)   p -value  Effect size 

 447.17 
(15.04) 

 441.64 
(12.29) 

 5.53 a  
(1.57) 

 0.001  0.40 

   Source:  Algebra scores on study-administered computer-adaptive algebra posttest 
  Note : Sample includes 68 schools (35 treatment, 33 control) and 440 algebra-ready students (218 
treatment, 222 control). The treatment group and control group means are the model-adjusted 
mean scores for algebra-ready students, controlling for all covariates in the impact model. The 
effect size was calculated using a pooled standard deviation of the outcome for algebra-ready stu-
dents in treatment and control schools that incorporates both within and between imputation vari-
ance (SD  =  13.78) 
  a Two-tailed statistical signifi cance. Because of a multiple comparison adjustment that accounts for 
two primary analyses, a  p -value less than 0.025 is considered statistically signifi cant  
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nearly twice as likely to participate in an advanced mathematics course sequence as 
algebra-ready students in control schools. 16 

    Summary of main analyses : Offering online Algebra I to algebra-ready eighth 
graders yielded benefi ts for both their algebra achievement at the end of grade 8 and 
their coursetaking patterns in high school. As intended, offering Algebra I as an 
online course in eighth-grade-enabled eligible students to learn a substantial amount 
of algebra while still in middle school and made them more likely to bypass Algebra 
I in high school, thus opening doors to more advanced math courses as they moved 
through the pipeline. These results were consistent across a number of alternative 
model specifi cations that we tested as sensitivity analyses.  

    Impacts on Algebra-Ready Students’ General Math 
Achievement and Non-Algebra-Ready Students’ Outcomes 

 The primary focus of the impact of access to online Algebra I for algebra-ready stu-
dents was on their algebra achievement at the end of eighth grade and subsequent 
high-school coursetaking. A secondary outcome was their achievement at the end of 

16   To address questions regarding how the percentage of algebra-ready students in treatment 
schools participating in an advanced mathematics course sequence compared to the percentage 
of algebra-ready students in control schools who took a formal Algebra I course in grade 8 and 
the percentage of students in control schools who did not take a formal Algebra I course in grade 
8, we report the observed percentages for these three groups below. Again, it is important to note 
that the study was not designed to test for the statistical signifi cance of these differences and that 
the percentages reported are based on the original and not imputed data, are not model-adjusted, 
and should be interpreted with caution. The observed percentage of students participating in an 
advanced mathematics course sequence was 54 % for algebra-ready students in treatment 
schools, 42 % for algebra-ready students in control schools who took a formal Algebra I course, 
and 24 % for algebra-ready students in control schools who took their schools’ eighth-grade 
general mathematics course. 

   Table 4    Predicted probability of algebra-ready students participating in an advanced math course 
sequence in high school   

 Treatment school 
(standard error) 

 Control school 
(standard error) 

 Difference in probability 
attributed to online Algebra I   p -value 

 0.51 (0.07)  0.26 (0.05)  0.25 a   0.007 

   Source : Coursetaking data collected from high-school algebra-ready study students attended in 
2009–2010 
  Note:  Sample includes 68 schools (35 treatment, 33 control) and 440 students (218 treatment, 222 
control). Coursetaking patterns were coded as representing successful completion of a course 
above Algebra I in grade 9 and enrollment in Algebra II or a higher course in grade 10) or not. The 
probabilities are the average model-predicted probabilities, controlling for all covariates specifi ed 
for the model 
  a Two-tailed statistical signifi cance. Because of a multiple comparison adjustment that accounts for 
two primary analyses, a  p -value less than 0.025 is considered statistically signifi cant  
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eighth grade on a general math test. A signifi cant negative effect on this outcome could 
signal a potential downside of offering an online Algebra I course to eligible students. 

 To test whether access to online Algebra I affected eligible students’ general 
mathematics scores, we used the same two-level model with general mathematics 
scores as the outcome. The results revealed no signifi cant difference by condition 
(effect size = 0.14) (Table  5 ). 17 

   We conducted three additional secondary analyses to determine the impact of 
offering Algebra I online to eligible students on  non -algebra-ready students’ out-
comes. The three outcomes of interest were algebra and general mathematics scores 
at the end of eighth grade and planned ninth grade courses. For these analyses, non-
algebra- ready students in treatment schools were compared with non-algebra-ready 
students in control schools. 

 The analytic sample for these analyses included 1,445 non-algebra-ready stu-
dents enrolled in the 68 participating middle schools (744 in treatment schools and 
701 in control schools; 4 control schools had no non-eligible students). 

 To estimate impacts on non-algebra-ready students’ algebra and general math 
posttest scores, we used a two-level hierarchical model with students nested within 
schools. (The models were identical to those described earlier for algebra-ready 
students for the same achievement outcomes.) 

 The results showed no signifi cant differences in algebra or general mathematics 
posttest scores between non-algebra-ready students in schools that offered online 
Algebra I and their non-algebra-ready counterparts in control schools (Table  6 ). The 
impact of online Algebra I translates to an effect size of 0.06 on algebra scores and 
0.02 on general mathematics scores, neither of which is statistically signifi cant.

   To estimate the effect of offering online Algebra I (to  algebra - ready  eighth grad-
ers) on non-algebra-ready students’ probability of enrolling in Algebra I in grade 9 
(as per an intermediate course sequence), we fi rst coded planned ninth grade courses 
for non-algebra-ready students as “1” for intermediate (a course at or above Algebra I) 

17   The lack of a signifi cant difference does not defi nitively show that general math scores for alge-
bra-ready students in treatment and control schools were equivalent. It simply implies that the 
difference was not large enough to be distinguished from chance, given the size of the sample. 

   Table 5    Impact of online Algebra I on algebra-ready students’ general math scores at the end of 
grade 8   

 Treatment schools 
(standard deviation) 

 Control schools 
(standard deviation) 

 Estimated impact 
(standard error)   p -value  Effect size 

 361.42 (24.79)  357.82 (25.43)  3.60 (2.80)  0.204  0.14 

   Source : General mathematics scores on study-administered Promise Assessment posttest 
  Note:  Sample includes 68 schools (35 treatment, 33 control) and 440 students (218 treatment, 222 
control). The treatment and control group means are the model-adjusted mean scores for algebra- 
ready students, controlling for all covariates in the impact model. Result is not statistically signifi -
cant. The effect size was calculated using a pooled standard deviation of the outcome for eligible 
students in treatment and control schools that incorporates both within and between imputation 
variance (SD  =  25.22)  
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   Table 6    Impact of online Algebra I on non-algebra-ready eligible students’ algebra and general 
mathematics scores at the end of grade 8   

 Subject area 

 Treatment 
schools (standard 
deviation) 

 Control schools 
(standard 
deviation) 

 Estimated 
impact 
(standard error)   p -value  Effect size 

 Algebra  430.76 (15.36)  429.80 (15.64)  0.96 (1.25)  0.443  0.06 
 General 
mathematics 

 324.86 (28.42)  324.21 (30.04)  0.65 (2.41)  0.789  0.02 

   Source:  Algebra and general mathematics scores on study-administered posttests 
  Note:  Sample includes 68 schools (35 treatment, 33 control) and 1,445 non-eligible students (744 
treatment, 701 control); 4 control schools had no non-algebra-ready students. Estimates were aver-
aged across 10 multiply imputed datasets. The treatment and control group means are the model- 
adjusted mean scores for non-algebra-ready students, controlling for all covariates in the impact 
model. Results are not statistically signifi cant. Effect sizes were calculated using a pooled standard 
deviation of the outcome for non-algebra-ready students in treatment and control schools that 
incorporates both within and between imputation variance (SD  =  15.50 for Algebra and 29.39 for 
General Mathematics)  

   Table 7    Predicted probability of non-algebra-ready students enrolling in intermediate mathematics 
course sequence in grade 9   

 Treatment schools 
(standard error) 

 Control schools 
(standard error) 

 Difference in probability 
attributed to online Algebra I   p -value 

 0.89 (0.04)  0.79 (0.06)  0.10  0.099 

   Source:  Planned courses indicated by study students at the end of grade 8 
  Note:  Sample includes 68 schools (35 treatment, 33 control) and 1,445 non-eligible students (744 
treatment, 701 control); 4 control schools had no non-algebra-ready students. Estimates were aver-
aged across 10 multiply imputed datasets 
 Probabilities are the average model-predicted probabilities, controlling for all covariates specifi ed 
for the model. Result is not statistically signifi cant  

and “0” for not intermediate (a course below Algebra I, such as Pre-algebra). Next, 
we used a two-level hierarchical model for binary outcomes. We found that the dif-
ferences between students in treatment and control school were not statistically sig-
nifi cant (Table  7 ).

    Summary of secondary analyses : Offering online Algebra I to algebra-ready 
eighth graders yielded no signifi cant side effects on their general math achievement 
scores or on any of the measured outcomes for non-algebra-ready students in the 
same schools. As with the primary analyses, these results were consistent across a 
number of alternative model specifi cations that we tested as sensitivity analyses. 
The secondary analyses were important to test because adopting the online Algebra 
I course in treatment schools represented a departure from business-as-usual math 
instruction, where algebra-ready and non-algebra-ready students were typically 
(though not strictly) heterogeneously mixed in general eighth-grade math classes. 

 First, our fi nding that taking online Algebra I did not negatively affect algebra- 
ready students’ general math achievement responds to potential concerns that 
 students who take Algebra I in eighth grade—in this case as an online course—will 
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miss out on general math content. Grade 8 state math assessments are not algebra 
assessments, and some schools may worry that offering online Algebra I will lead 
to lower profi ciency rates. The study fi ndings suggest that students who take online 
Algebra I in eighth grade do not score signifi cantly differently on a general math 
assessment than they would have had their schools not offered the online course. 

 Second, our fi nding that offering online Algebra I to algebra-ready students did not 
negatively affect outcomes for non-algebra-ready students responds to concerns about 
potential side effects of introducing tracking in schools that typically have heteroge-
neously mixed math classes. Preselecting some students as academically ready for 
algebra and then offering the online Algebra I course to those students meant that the 
higher-achieving students were not members of the general math class with the rest of 
the eighth graders in the school. It was conceivable that the result might be a watering 
down of the content of the regular eighth-grade math course, which in turn could yield 
lower achievement for students in those classes. Our study was carefully designed to 
test for such side effects and the results were clear that they were not present.   

    Conclusions and Future Directions 

 The combination of fi ndings in this study showed that the implementation of an 
online Algebra I course to broaden students’ access to Algebra I could effectively 
increase student performance on algebra content and enhance their probability of 
taking advanced coursework in high school. A successful intervention in this context 
was defi ned as one that yielded positive impacts on either end-of-eighth grade alge-
bra achievement  or  subsequent high-school coursetaking for algebra-ready students, 
with no signifi cant negative side effects on their general mathematics scores or on 
any achievement or coursetaking outcomes for non-algebra-ready students. The 
results showed that algebra- ready students with access to online Algebra I in grade 8 
outperformed their counterparts in control schools on an end-of-year algebra assess-
ment and were more likely to follow an advanced course sequence in high school. 
There were no obvious side effects of the course on algebra-ready students’ end-of- 
year general mathematics achievement or on any of the non-algebra-ready students’ 
measured outcomes. Thus, the results suggest that offering an online course to alge-
bra-ready students in eighth grade is an effective way to broaden access to the spe-
cifi c course, and later, to more challenging mathematics course opportunities, for 
students in schools that do not typically offer Algebra I to eighth graders. 

 The study was designed to provide information to educators who are looking for 
ways to offer a key gateway course (Algebra I) to their grade 8 students who are 
ready for it, but for various reasons cannot typically offer full access to the course 
in a standard or traditional way. The goal for the intervention was to not only have 
an impact on algebra-ready students’ short-term algebra knowledge but also infl u-
ence a sequence of mathematics opportunities and outcomes over time. The hypoth-
esis associated with the primary questions for this study was that offering an online 
Algebra I course would benefi t the eligible students’ outcomes in contrast to the 
mathematics instruction they would have received in absence of the online course. 
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 It may seem obvious that students with access to an online Algebra I course in 
grade 8 should learn more algebra and take more advanced courses earlier in high 
school than those that do not. For multiple reasons, however, the results observed in 
the primary and secondary analyses were not necessarily obvious and addressed 
gaps in the research base. First, before this study, there was no prior rigorous evi-
dence that an online version of a formal Algebra I course could be offered to grade 
8 students by schools that do not typically offer the course, in terms of technology 
and content support. Second, though the logistical implementation of the course 
went as planned, just under half (43 %) of the algebra-ready students who enrolled 
in the course fully completed it, meaning that many of the eligible students in the 
treatment group were not exposed to the entire course. At the same time, algebra-
ready students in control schools were exposed to a substantial amount of algebraic 
content in the context of their general mathematics classes, and one out of fi ve 
algebra-ready students in control schools actually  did  take a formal Algebra I course 
either in a traditional classroom setting or in an alternate online program. Despite 
these circumstances, this study still demonstrated that the intervention as imple-
mented was more effective in promoting students’ success in mathematics than 
existing practices in these schools. 

    Limitations of the Study and Future Research Directions 

 This study was conducted with a sample of schools in Maine and Vermont that met 
the eligibility criteria for participation and agreed to take part in a random assign-
ment study. Many of these schools were small (48 % had grade 8 enrollments of less 
than 17 students), and 90 % were in rural areas. While we know that 24 % of rural 
middle-grade schools do not offer Algebra I (U.S. Department of Education,  2009a ), 
it is not clear whether the study schools represent rural schools located in other parts 
of the region or country. Nor do we know the extent to which the results observed in 
these schools generalize to other schools interested in using online courses to 
expand access to Algebra I to grade 8 students. 

 The online course that we evaluated in this study was Class.com’s Algebra I course, 
which was similar in content and focus to the offerings of other providers. However, 
it is not clear that similar results would have been observed had another course pro-
vider been chosen. Moreover, the results observed in this study cannot necessarily be 
generalized to more recently developed online courses, including online courses that 
have been developed to refl ect the content and structure of the CCSSM. 

 For these and other reasons, replication of this study is necessary to gain a better 
understanding of the potential impacts of using an online course to expand access to 
Algebra I to grade 8 students. This is particularly important as the proportion of 
students enrolling in grade 8 Algebra I increases with the wide-scale adoption and 
implementation of the CCSSM. In particular, future studies should examine longer-
term effects of access to online Algebra I in grade 8—through high school, college, 
and even beyond. This study included a 1-year follow-up to track students from 
grade 8 into high school. A longer study is needed to assess whether access to online 
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Algebra I in grade 8 continues to have an impact on participation in advanced math-
ematics coursetaking through the end of high school. 

 As the use of online courses continues to increase in US schools, future research 
should continue to study their effects on student coursetaking patterns and achieve-
ment in key content areas. Further investigation of the effectiveness of online courses 
should contrast the offering of them with various relevant business-as-usual situa-
tions. These include school settings where students lack access to specifi c courses 
(where the control group does not take the course) as well as school settings where 
particular courses are oversubscribed or taught by under-qualifi ed or uncertifi ed 
teachers (where the control group would take a standard face-to-face version of the 
online course). More research is also needed regarding the ideal roles for online teach-
ers and on- site proctors, both for fully online courses and in blended learning models. 
Our implementation fi ndings suggest that future research should further examine 
issues related to communication between online teachers and students, both in general 
and specifi cally about subject matter content, as well as the nature and type of sup-
port—instructional and otherwise—needed by students from their on-site proctors. 

 Schools around the country, particularly those in rural areas, are in search of 
innovative ways to expand their course offerings. To address this need, this study 
focused on the use of an online course to provide access to Algebra I in schools that 
do not typically offer the course in grade 8. It did not compare the effects of taking 
online Algebra I versus a standard face-to-face version of the course in grade 8, and 
the results should not be interpreted to indicate that offering online Algebra I is bet-
ter than (or as good as) offering a face-to-face Algebra I course to eighth graders. In 
addition, given that the study compared the offering of an online Algebra I course to 
a lack of (or limited) access to Algebra I in grade 8, it is not possible to isolate the 
portion of the observed effects that is due to the fact that the course was online. As 
noted in the earlier description of the intervention under test, the content of the 
course (Algebra I) cannot be untangled from the mode of instruction (online). Thus 
it is possible that broadening access to any type of formal Algebra I course to 
 algebra-ready grade 8 students would yield similar effects. In this way, this study 
provides some of the fi rst experimental evidence about the effects of offering 
Algebra I in middle school, contributing to an existing body of research that is 
growing but fraught with challenges related to selection. Continued rigorous 
research into the effects of expanding options for more students to take Algebra I in 
middle school will further contribute to a growing understanding of how best to 
increase equity and access to mathematics opportunities in high need schools.     
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A Randomized Trial of Lesson Study 
with Mathematical Resource Kits: Analysis 
of Impact on Teachers’ Beliefs and Learning 
Community

Catherine C. Lewis and Rebecca Reed Perry

Both theory and empirical findings suggest that improvement of teaching is not a 
one-shot activity: It requires ongoing effort by teachers, who must integrate 
improvements into the complex juggling act of classroom practice (e.g., Clarke & 
Hollingsworth, 2002; Lampert, 2001). To change teaching successfully often 
requires repeated cycles of classroom trial, reflection, feedback, and revised trial. 
For example, (Schorr & Koellner-Clark, 2003) chronicle the experience of a teacher 
who changed his classroom teaching with the intention of having students contrib-
ute to the construction of mathematical ideas in the classroom. He was initially 
pleased with his effort, but when he showed video of his classroom practice to col-
leagues, they saw the class discussion as lacking in mathematical rigor. Their reac-
tions led him to reevaluate the quality of his class discussions and engage in further 
work to better establish mathematical focus while building student contributions.

Situations like those described by Schorr and Koellner-Clark (2003), in which 
teachers must engage in repeated cycles of experimentation and reflection to 
improve practice, are probably more the rule than the exception, even though mod-
els of professional learning impact often show a unidirectional arrow from profes-
sional development program to change in instruction (see review by Clarke & 
Hollingsworth, 2002). If repeated cycles of experimentation are typically needed to 
improve one’s teaching, then what are the implications for the design of profes-
sional learning programs? For example, how might we design professional learning 
programs to catalyze development of the beliefs and dispositions needed to continue 
such challenging, ongoing work?

This chapter reports a randomized, controlled trial of lesson study supported by 
mathematical resources. The experimental treatment, described in more detail 
below, significantly increased the mathematical knowledge of both participating 
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teachers and students, as reported elsewhere (Gersten, Taylor, Keys, Rolfhus, &
Newman-Gonchar, 2014). This chapter focuses, however, on two “Intermediate 
Outcomes” shown in Fig. 1: teachers’ beliefs and teacher learning community. We 
examine (1) the impact of the intervention (lesson study with mathematical 
resources) on teachers’ beliefs and teacher learning community and (2) the role of 
teachers’ beliefs and teacher learning community as mediators of teachers’ and stu-
dents’ increases in mathematical knowledge.

 Background on Lesson Study

As shown on the left side of Fig. 1, lesson study is collaborative, practice-based 
professional learning in which teachers study the academic content of the curricu-
lum and plan, enact, observe, and analyze a live classroom lesson (Fernandez & 
Yoshida, 2004; Lewis & Hurd, 2011; Lewis & Tsuchida, 1997, 1998; Perry &
Lewis, 2010; Stigler & Hiebert, 1999; Wang-Iverson & Yoshida, 2005). As shown 
in the center of Fig. 1, the practice-based cycles that comprise lesson study are 
hypothesized to improve instruction by simultaneously improving five basic inputs 
to instruction: teachers’ knowledge; teachers’ beliefs and dispositions; teacher 
learning community; learning resources and tools; and system features.

Although the term “lesson study” often evokes images of lesson planning, in fact 
lesson planning is just a small portion of lesson study. It may be useful to think of 
lesson study and other familiar professional learning approaches as overlapping 
circles in a Venn diagram to highlight the characteristics lesson study shares with 
other familiar professional learning approaches. For example, lesson study overlaps 
with many other professional learning approaches in the shared element of teachers’ 
study of content knowledge, which previous research has identified as a feature of 
effective professional learning (Garet, Porter, Desimone, Birman, & Yoon, 2001) 
and which in lesson study occurs most heavily during the first parts of the lesson 
study cycle, when teachers engage in kyouzai kenkyuu, the study of content and cur-
riculum materials (Takahashi, Watanabe, Yoshida, & Wang-Iverson, 2005). In 
Japan, the teacher’s manual provides a key resource for kyouzai kenkyuu, since it 
includes discussion of both the curriculum content and of common student thinking 
and misconceptions (Lewis, Perry, & Friedkin, 2011). In the current study, 
 mathematical resource kits were designed to substitute for the materials available to 
Japanese teachers as they conduct kyouzai kenkyuu.

A second element of lesson study is observation of live practice, and this element 
is shared, for example, with many professional learning programs that include 
coaching or mentoring (e.g., Campbell & Malkus, 2011), although lesson study 
focuses on observation of students rather than on critique of teaching. A third ele-
ment of lesson study is analysis of student thinking and student work; again, many 
well-known professional learning approaches strongly emphasize this element 
(Carpenter, Fennema, Franke, Levi, & Empson, 1999). In lesson study, teachers 
observe students as they think and work, as well as analyzing student work products. 
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A fourth element of lesson study is teacher-led inquiry. Lesson study asks teachers 
to pose and investigate research questions about practice and to answer them through 
the study of live practice; this element is shared with approaches to professional 
learning such as action research, self-study, and inquiry (e.g., Noffke & Somekh, 
2009). A fifth element of lesson study is collaboration with colleagues (e.g., 
McLaughlin & Talbert, 2006), which is intended to build ongoing instructional 
collaboration and to reshape school routines to better focus on improvement of 
classroom practice (Sherer & Spillane, 2011).

In summary, lesson study, which originated in Japan and has been practiced there 
for over a century, combines familiar elements including study of content and 
curriculum, study of student thinking and work, and observation of live instruction, 
with collaborative planning and analysis of instruction. These elements are brought 
together in cycles of teacher-led inquiry.

 Method

 The Study Design and Conditions

The tension between teacher “ownership” of an innovation and its faithful imple-
mentation is a quintessential dilemma of educational reform. Our intervention 
approached this dilemma by joining a teacher-led form of professional learning–
lesson study–to research-based mathematics resources. We designed the mathemat-
ics resource kits because, as noted above, some US teacher’s manuals do not provide 
sufficient information on mathematical content and student thinking to support the 
kyouzai kenkyuu during the first phase of lesson study (Lewis et al., 2011).

Using an electronic mailing list (lsnetwork@mailman.depaul.edu) and personal 
contacts, we recruited groups of US educators to engage in locally led lesson study, 
using resource kits centrally designed and distributed by our group. Since local 
educators took responsibility for recruiting lesson study teams and organizing and 
managing their own learning with the resource kits, this model departs substantially 
from centrally planned and “delivered” professional development in which educa-
tors are expected to faithfully implement a centrally designed set of instructional 
changes (Lewis, Perry, & Murata, 2006). The design of the experimental condition 
was intended to support local flexibility for users, by allowing each lesson study 
group to collaboratively make its own locally appropriate decisions about partici-
pants, use of the fractions resources we provided, and time allocation for lesson 
study and for specific components of the work.

More than 100 groups requested an opportunity to participate in the study. Four 
criteria were considered in selecting the sample of 39 sites: permission from local 
authorizing agencies and administrators; willingness to be randomly assigned to a 
study condition; site demographic characteristics (we sought diversity in region of 
the USA, urbanicity and student socioeconomic status); and the ability to participate 
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within our study time frame. In the interest of supporting naturally occurring 
collaborative groups, we did not specify group membership, except to require that 
at least one group member be a classroom teacher within grades 2–5. Since some 
lesson study groups find it beneficial to collaborate across grades, groups could 
include educators at other levels or from non-classroom positions (e.g., mathemat-
ics coach). Educators who responded to our call for participation recruited local 
groups of 4–9 educators.

Triads of demographically matched sites (matched where possible on district and 
SES of students served) were created and one site from each triad was assigned by 
random draw to each of the three study conditions. Random assignment was not
performed until after groups had completed teacher and student pre-assessments. 
Condition 1 (C1) is the primary experimental treatment and consists of lesson study 
supported by a mathematical resource kit focused on fractions (described further in 
Lewis & Perry, 2014, and summarized in Fig. 2). Because we worried that the math-
ematical resource kit might be experienced by teachers as prescriptive, thereby 
undermining the sense of inquiry that should be integral to lesson study, we designed 
Condition 2 (C2) as a control treatment in which teachers conducted lesson study 
without the fractions resource kit, on a topic of the group’s own choosing other than 
fractions. We asked C2 groups to avoid fractions both for practical reasons (to avoid 
cross-condition “contamination,” since many districts had groups in more than one 
condition) and for ethical reasons (we did not want to put local mathematics educa-
tors who had recruited more than one group in the position of withholding resources 
from some groups). C2 groups did receive sections 4 and 5 of the resource kit (see 
Fig. 2), the generic materials to support lesson study. These included tools and pro-
tocols to help groups set norms, anticipate student thinking, and plan, observe, and 
discuss a research lesson. Groups in Condition 3 (C3) received no materials from 
our group, but participated in all study procedures (such as pre- and post- assessment) 
and received the study stipend upon documentation of expenses for professional 
development. C3 thus served as a control for selection factors (such as willingness 
to participate in lesson study) and for study procedures (such as study assessments 
and stipend). Groups in all three conditions were offered a $4,000 stipend upon 
documentation of expenses related to professional learning (e.g., substitutes, sti-
pends for after-school work, course fees). The average length of participation (cal-
endar days from student pretest to posttest) was roughly comparable across 
conditions: 91 days for Condition 1 groups; 80 days for Condition 2 groups; and 84 
days for Condition 3 groups. No groups dropped out of the study, and only one 
teacher failed to complete the study.

Figure 2 summarizes the materials in the resource kit. Overall, the resource kit 
was designed to maintain the qualities of lesson study that are appealing to educa-
tors such as active investigation of a problem of practice, study of student thinking, 
and application of newly learned ideas in the classroom, while also providing ready 
access to mathematical resources. The basic flow of the toolkit, summarized in 
Fig. 2, begins with teachers solving mathematics tasks individually, sharing solu-
tions, predicting how students might solve the tasks, and then examining actual 
student responses. Teachers then examine curriculum materials and research on 
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Introduction

Section 1: Mathematics Tasks to Solve and Discuss

Groups do and discuss problems such as Problem 2: “Find two fractions between 

and 1 and write them here,” then study associated sample student work.

Section 2: Curriculum Inquiry: Different Models of Fractions 

Groups examine different fraction models, the Japanese textbook and fractions 

curriculum trajectory, and classroom video of fractions instruction.  Groups also 

solve a hands-on fractions task mirroring one shown on the video (“Mystery Strip”).

Section 3: Choosing a Focus for Your Lesson Study Work

Groups choose either Path A or Path B.  Path A centers around an introduction to 

fractions using the linear measurement context. Path A groups study materials  

based on the Japanese curriculum introduction to fractions (e.g., lesson plans; 

Japanese elementary Course of Study; Teaching Manuals). Path B groups study and 

read about another aspect of fractions, such as: 1) understanding that fractions are 

accumulations of unit fractions; or 2) understanding fractions on the number line, 

etc.

Section 4: Planning, Conducting, and Discussing the Research Lesson

Groups follow lesson study protocols, guidelines, and suggestions on reflection

included in this section.

Section 5: Lesson Study Refresher: Overview and Suggestions for Getting 

Started

Groups new to lesson study may refer to this section for background information on 

how to conduct lesson study (e.g., setting norms in the group or choosing a research

topic).

how to conduct lesson study (e.g., setting norms in the group or choosing a research

1
2

Fig. 2 Fractions resource kit: summary and examples of contents
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fractions, with a particular focus on the linear measurement representation and how 
it may help students understand fractions as rational numbers. Many of the resources 
in this section are drawn from the Japanese curriculum, including a textbook, teacher’s 
edition, lesson plan, and video of a Japanese educator introducing fractions to a US 
class, using the linear measurement representation of fractions. Finally, lesson study 
groups plan, conduct, observe, and discuss at least one research lesson on fractions, 
followed by reflection on what they learned during the lesson study cycle.

 Measurement of Teachers’ Beliefs and Teacher Learning 
Community

The central portion of Fig. 1 posits that change in teachers’ beliefs and dispositions 
is one route by which lesson study produces changes in instruction. Changes in 
beliefs and dispositions may directly influence instruction; for example, change in 
beliefs about the value of student struggle may lead a teacher to give students more 
time to struggle with a challenging problem. Changes may also operate indirectly; 
for example, a strengthened sense of efficacy may allow a teacher to engage in the 
repeated cycles of experimentation needed to successfully implement a new teach-
ing strategy that initially proves difficult.

A large body of research documents the ways that teachers’ beliefs, dispositions, 
and identity both influence and are influenced by professional learning experiences 
(Clarke & Hollingsworth, 2002; Goldsmith, Doerr, & Lewis, 2014; Zech, Gause- 
Vega, Bray, Secules, & Goldman, 2000). (In the current work, we do not try to 
distinguish among beliefs, dispositions, and identity, but refer to them all using the 
term “beliefs.”) Teachers’ expectations for student achievement have been the focus 
of a number of studies that have shown, for example, that opportunities to closely 
observe students can increase teachers’ expectations (Borko, Davinroy, Bliem, &
Cumbo, 2000; Chazan, Ben-Chaim, & Gormas, 1998; Kazemi & Franke, 2004; Lin, 
2001; Puchner & Taylor, 2006), as can collegial learning that focuses on student 
thinking (Lin, 2002; Tobin & Espinet, 1990). Since working with colleagues to 
closely observe students is a core feature of lesson study, we included survey items 
designed to measure teachers’ expectations for student achievement.

Another type of belief that may be important to instructional improvement is 
interest in student thinking and in eliciting it during instruction because student 
thinking can provide crucial instructional feedback to teachers (e.g., Grandau, 2005; 
Kazemi & Franke, 2004; Remillard & Bryans, 2004; Seymour & Lehrer, 2006; 
Steinberg, Empson, & Carpenter, 2004). We included four survey items designed 
to measure teachers’ sense of efficacy in eliciting and using students’ mathematical 
thinking.

Inquiry stance toward practice and identity as a learner and teacher of mathematics 
is a third focus of the survey items we selected for inclusion. Prior research has
shown that professional learning can impact teachers’ inquiry stance, leading to 
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increased use of analysis and knowledge-based reasoning and allowing a shift away 
from an evaluative stance (Sherin & Han, 2004; Sherin & van Es, 2009; Ticha & 
Hospesova, 2006; van Es & Sherin, 2008). Items in this area focused on teachers’ 
interest in learning about mathematics and its teaching–learning. Prior research
shows that teachers’ identities as learners and teachers of mathematics can shape, 
for example, their learning from mathematics curriculum materials (Remillard &
Bryans, 2004; Spillane, 2000). Because the resource kits we provided to the teach-
ers in this study included curriculum and research materials, four survey items 
tapped teachers’ perception that research and curricular materials (including those 
from other countries) are useful to teachers.

Another hypothesized route of lesson study influence on instruction (see Fig. 1) 
is through changes in the teacher learning community. Prior research indicates that
professional development can, for example, engender collegial encouragement and 
support that enables teachers to try new types of teaching (Britt, Irwin, & Ritchie,
2001; Chazan et al., 1998; Manouchehri, 2001) and to see colleagues as a source of 
useful feedback and knowledge (Fisler & Firestone, 2006; Taylor, Anderson, Meyer, 
Wagner, & West, 2005; Thijs & van den Berg, 2002; Zech et al., 2000). The duration 
of the current study was somewhat brief to expect development of the teacher learn-
ing community, as it included just one cycle of lesson study. However, we included 
in the survey a number of items focused on workplace collaboration, including a 
number of items from established measures of school-site professional community 
(e.g., Michigan State University, 2003; CRC, 1994) and some new items designed 
to tap the perceived efficacy of working with colleagues to improve mathematics 
teaching (“Collegial Learning Effectiveness”).

The pre- and post-teacher survey included the items shown in Appendix, which 
were interspersed for administration along with some additional items such as self- 
ratings of fractions knowledge (not reported here). Factor analysis and item content 
review were used to construct the scales, which are shown in Appendix along with 
scale alphas and item sources.

 Measurement of Teachers’ and Students’ Fractions Knowledge

Since some of our analyses examine the impact of teachers’ beliefs and teacher 
learning community on the development of fractions knowledge, we briefly describe 
the assessments of teachers’ and students’ fraction knowledge. The measure of 
teachers’ fraction knowledge was a 33-item assessment, with 21 of the items drawn 
from Learning Mathematics for Teaching (2007) and the remaining items drawn 
from other sources including Diagnostic Teacher Assessments in Math and Science
(Center for Research in Mathematics and Science Teacher Development, 2005); 
New Zealand Maths (Ward & Thomas, 2009); and mathematics education research 
and curriculum materials (Beckmann, 2005; Newton, 2008; Norton & McCloskey, 
2008; Post, Harel, Behr, & Lesh, 1988; Schifter, 1998; Zhou, Peverly, & Xin, 2006).
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Because the study included students in grades 2–5, three overlapping assessments 
of students’ fraction knowledge were constructed, including between 17 items (for 
grade 2–3 students) and 41 items (for grade 5 students) drawn from sources 
including published mathematics education research (Hackenberg, Norton, Wilkins, 
& Steffe, 2009; Saxe, 2007; Van de Walle, 2007); the National Assessment of 
Educational Progress (Institute of Education Sciences/National Center for Education
Statistics (IES/NCES), 2007); Japanese teachers’ manuals and student texts 
(Hironaka & Sugiyama, 2006); and the California Standards Test (California 
Department of Education, 2005).

In addition to the survey and assessment data, we collected written reflections at 
the end of the lesson study cycle from teachers in both lesson study conditions in 
response to the following prompt:

Describe in some detail two or three things you learned from this lesson study cycle that you 
want to remember, and that you think will affect your future practice. These might be things 
about fractions or mathematics, about teaching, about student learning, or about working 
with colleagues. (If you don’t feel you learned anything from this cycle of lesson study, 
please note that and identify changes that might have made the lesson study work more 
productive for you.)

 Data Collection

Teacher and student pre-assessments were mailed out to the sites, along with guide-
lines for administration. Once the completed assessments had been mailed back and 
received in our office, the site was randomly assigned to a condition and the appro-
priate study materials (for example, the resource kit) were mailed out to the site. 
Post-assessments were mailed out at the end of the study period. Participants in
Conditions 1 and 2 (the lesson study conditions) were also asked to video record 
their lesson study meetings and research lessons, to collect materials from the lesson 
study cycle (such as student work and lesson plans), and to complete reflection 
forms at the end of each meeting and at the end of the lesson study cycle. Sites peri-
odically mailed these data to our office. Due to budgetary constraints, we did not
observe or attempt to measure changes in teachers’ regular classroom instruction.

The 39 groups of educators included groups in 11 US states and the District of
Columbia and in 27 school districts, totaling 213 teachers across the three study 
conditions. Table 1 provides demographic information on the teachers by study con-
dition. The treatment and control conditions are generally comparable in teachers’ 
years of experience and grade-level assignment. However, teachers in the treatment 
group were more likely to have a math degree or credential than control teachers 
(χ2(2, N = 213) = 10.39, p = .006) and also had slightly more lesson study experience 
(t(122) = 2.756, p = .007), although the means for lesson study experience of all three 
conditions were in the range of 1–2 years. To control for baseline differences, these 
two teacher characteristics were included as covariates in subsequent analyses.
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Although we suggested a time allocation of about 12–14 group meetings (including 
at least one classroom research lesson) for completion of the study requirements, 
groups organized their own meeting logistics, determining the total time, number of 
meetings, and meeting length. As a result, group participation time varied. Excluding 
time for assessments, estimated participation time for Condition 1 groups ranged 
from 7 to 42 h and time for Condition 2 groups ranged from 1.5 to 29 h. Meeting 
time was calculated from video records and self-reported meeting schedules to the 
extent they were available. Video records may err on the side of underestimation, 
since groups sometimes started the video camera late or let it run out before the 
meeting ended. Because teachers in Condition 3 engaged in various professional 
development activities (some individually, some in groups) a comparable participa-
tion figure is difficult to calculate. For example, teachers in one Condition 3 group 
jointly attended a regional mathematics conference, while other groups requested 
stipend funds to support future lesson study efforts. Variability in time devoted to 
lesson study (within the two lesson study conditions) is probably due to a range of 
factors. For example, some groups asked members to review materials as “home-
work,” so that some of their time did not get picked up in the video record. Likewise, 
time spent planning the lesson or talking with group members outside of formal 
group meetings did not get captured. Hence, the time estimates should be consid-
ered imprecise. One factor we could identify that impacted participation time is that 
groups that decided to teach the research lesson more than once tended to have 
longer participation times.

Table 1 Demographic data at study baseline

Indicator  
(dichotomous  
variable-D;  
continuous  
variable-C)

Percentage if dichotomous; mean (SD) if
continuous

Tests of difference 
between condition 1 and 
other control groups 
combined

All  
groups  
(N = 213)

Cond 1  
(N = 73)

Cond 2  
(N = 73)

Cond 3  
(N = 67) X2/t df p

Elementary grade  
teacher (D)

87 % 86 % 92 % 84 % X2 = 2.23 211 .329

Less than 5 years  
experience (D)

28 % 23 % 25 % 37 % X2 = 4.07 211 .130

More than 15 years  
experience (D)

25 % 27 % 30 % 18 % X2 = 3.01 211 .223

Math degree/ 
credential (D)

11 % 21 % 4 % 9 % X2 = 10.39 211 .006

Lesson study  
experience  
(C, scale 1–5)

2.27  
(1.32)

2.63  
(1.48)

2.10  
(1.29)

2.06 
(1.09)

t = 2.76 122 .007
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 Data Analysis

HLM analyses were conducted to assess the impact of the experimental condition 
on changes in teachers’ beliefs and teacher learning community. For teacher out-
comes, we used a two-level HLM model with teachers at Level 1 (n = 213) and 
groups at Level 2 (n = 39) to account for the nesting of teachers within lesson study 
groups. We chose three Level 1 covariates on the basis of baseline data and prior 
similar research: pretest value on the scale, lesson study experience, and possession 
of a mathematics degree or credential (Akiba, Chiu, Zhuang, & Mueller, 2008; 
Birman et al., 2009; Bloom, Richburg-Hayes, & Black, 2007; Desimone, Smith, &
Ueno, 2006; Hill, 2010; Smith & Desimone, 2003). For each outcome measure, the 
Level 1 pretest value, the dummy indicator for possession of a math degree/creden-
tial, and lesson study experience (continuous variable) were included as grand-mean 
centered variables in the model (Raudenbush & Bryk, 2002). At Level 2, we 
included as an uncentered variable the group assignment to Condition 1 (lesson 
study with resource kit), assigned a value of 1, and a value of 0 otherwise. Our pri-
mary interest in this analysis was the estimate of the treatment effect on each of the 
six measures of belief and teacher learning community, captured by the Level 2 
parameter γ01 in the fully conditional model shown below.

Level-1 Model

 

Yij j j ij j ij
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In addition to the HLM analyses to look at the impact of experimental assign-
ment on the six outcome measures (beliefs and teacher learning community), we 
conducted additional HLM analyses designed to explore the impact of the six belief 
and teacher community measures on teachers’ and students’ development of frac-
tions knowledge during the study period. Specifically, we investigated whether the 
six measures of teachers’ beliefs and learning community predicted changes in 
teachers’ and students’ fractions knowledge.
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 Results

Table 2 shows the pre- and post-intervention scores and change scores for teachers’ 
beliefs and teacher learning community for all three study conditions, as well as 
t-tests for the comparison of change rates between the experimental treatment  
(lesson study with mathematical resource kit) and the combined control conditions 
(lesson study only and locally chosen professional development). HLM analyses are 
shown in Table 3; they indicate a positive and statistically significant impact of the 
experimental treatment on two of the six scales: Collegial Learning Effectiveness, 
and Expectations for Student Achievement. In addition, the intervention shows a 
marginally significant impact on the Using and Promoting Student Thinking scale.

To avoid inflating the experiment-wise significance level, we limit significance 
testing to comparison of Condition 1, which is the full experimental treatment, with 
the remaining conditions. Tables 4 and 5 show the results of HLM analyses that 
examine changes in the teacher belief and teacher learning community measures as 
mediators of teachers’ and students’ change in fractions knowledge. Table 4 indi-
cates that increases in collegial learning effectiveness and in professional commu-
nity both significantly predict teachers’ gain in fractions knowledge during the study 
period for the overall study sample. Likewise, Table 5 indicates that increase in 
teachers’ collegial learning effectiveness significantly predicts students’ gain in 
fractions knowledge during the study period.

The end-of-cycle written reflections provide insights into the kinds of experiences 
that increased teachers’ beliefs in the effectiveness of learning with colleagues:

This has made me think of how essential it is to observe other teachers and take as many 
ideas as possible to integrate in my classroom.

I think this was my 7th or 8th cycle of working with lesson study and every time I am 
amazed at the amount of growth and learning that happens professionally for me…. The big-
gest impact for me is having more ears around the room listening to the students’ conversa-
tions and what they are actually thinking. For example, during one of the lessons, a pair of 
students had recorded the correct fraction and written it the correct way, however,  
I overheard one partner say to the other, “1/2 means we have 1 m and 2 more.” During a typical
lesson and without “extra” ears around the room, the classroom teacher would have thought 
that pair of students knew the answer and the misconception would not have been noted.

I found it so helpful to come together as a team, look closely at work that we had 
recently observed in action, and not all agree at what the student demonstrated. This made 
it clear to me that my “research” can be flawed if I am not listening and watching closely as 
my students talk and solve problems.

I feel the collaboration piece is one of the greatest benefits for each of us. As I look back 
at each of the reflection notes, it is amazing how many things were discussed and how many 
different perspectives came out as we discussed any research or topics as part of the discus-
sion.… The collaboration piece is also important during the lesson.… With more eyes there 
is more information, which we have found helps us create better lessons with more student 
learning. Even after the second lesson, our post lesson discussion has us thinking about 
what we still could improve and where to go from here. I definitely feel that the lack of col-
laboration is a weakness in our American schools. (italics not in original)

Likewise, the reflections highlight experiences that increased teachers’ expecta-
tions for student achievement:

As I watched the lesson unfold I saw how, with good intentions, we teachers stop the 
 thinking of our students by providing too much scaffolding.… I saw students working 
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themselves from an incorrect answer to recognizing the answer was wrong, puzzling over 
how to correct it only to have a teacher ask “yes–no” questions that stopped their problem 
solving and led them to the correct answer. I recognize this trait in myself and have com-
mitted myself to allowing the students time to struggle…

My students discovered on their own that the more you divide the whole the smaller the 
fractional parts.… Because of this discovery many students began to make awesome con-
nections.… Once when comparing 3/4 and 5/6 Daniella claimed that she can compare the
fractions just by looking at them. Other students thought it would be too difficult because 
the size of the parts and number of parts were different. Daniella used her understanding of
unit fractions to compare the numbers. She said that 3/4 is 1/4 away from equaling 1 whole
but 5/6 is only 1/6 away from equaling 1 whole, 1/4 is larger than 1/6, so 3/4 is less than 5/6.
This came completely unprompted and it led to a student explaining and demonstrating 
using fraction strips and the other students agreeing and taking part in a cool discovery. This 
never happened before because I never put much time as a 5th grade teacher into my student 
understanding of unit fractions.

I love that one teacher did a 360 [complete turnaround] from her initial response to the 
math lesson, “My students cannot do this,” to “I would love to see my students do this.” 
That raising of the bar, while at the same time knowing the students well enough to plan for 
success, proved to be the best surprise of all.

 Discussion

The HLM analyses indicate that participation in lesson study with mathematical 
resources significantly increased two of the six outcome measures related to teach-
ers’ beliefs and teacher learning community: Expectations for Student Achievement 
and Collegial Learning Effectiveness. The intervention also had a marginally sig-
nificant effect on a third outcome: Using and Promoting Student Thinking. End-of-
cycle reflections illuminate the specific experiences that enabled these changes in 
beliefs, such as hearing other teachers’ perspectives and seeing students respond to 
a challenging mathematical task.

Although we generally combined the two control groups for analysis to avoid 
inflating the experiment-wise significance levels, examining the data for all three 
conditions provides insights into how lesson study with the specially designed 
mathematical resources (Condition 1) differed from more typical lesson study 
(Condition 2) and from locally chosen professional development other than lesson 
study (Condition 3). Going down the “change” columns in Table 2 for each of the 
three conditions suggests that the two control conditions may be more similar to 
each other than to the experimental condition (lesson study with the mathematical 
resource kit) in terms of impact on teachers’ beliefs and professional learning com-
munity. Why would this be? The mathematical resources provided to Condition 1 
teachers may have catalyzed more opportunities to change beliefs than the resources 
Condition 2 teachers located on their own. For example, the mathematical resources 
included fractions chapters from a Japanese teacher’s edition, and previous research 
has shown major differences between USA and Japanese teacher’s editions, such as 
more presentation of varied student thinking in the Japanese vs. the US teacher’s 
edition (28 % vs. 1 % of statements) and more discussion of the rationale for tasks 
and instructional design (10 % vs. 0 %) (Lewis et al., 2011). So the resource kits 
may have catalyzed a more substantial collegial discussion than the materials (such 
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as US teacher’s editions) located by Condition 2 groups, making colleagues more 
valuable in making sense of the materials. A number of participants mentioned how 
helpful it was to see how colleagues solved the math tasks; it is likely that Condition 
2 lesson study groups located, solved, and discussed fewer tasks than did teachers 
using the resource kit, since it included a number of mathematical tasks and specific 
prompts to solve them individually and then discuss.

Similarly, the resource kit’s emphasis on linear measure models and unit fractions 
seem to have been useful in revealing students’ mathematical potential. The linear 
measure model made it easy for students to compare 3/4 and 5/6 (as noted by the
teacher quoted above) and to use this in classroom discussion, which in turn allowed 
the teacher to see students’ potential to reason mathematically. After describing stu-
dents’ “awesome discovery” the teacher wrote: “This never happened before because 
I never put much time as a 5th grade teacher into… unit fractions.” Condition 2 teach-
ers, who sought out lesson materials on their own, may have had a harder time finding 
materials that supported such changes during the brief period of the study.

One interesting feature of the findings is the difference in results for the two scales 
related to learning from colleagues: Collegial Learning Effectiveness and Professional
Community. These scales differ in two major ways. First, several of the items on the 
Professional Community scale focus on all colleagues at the school site, for example:
“There is a lot of discussion among teachers at this school about how to teach.” In 
contrast, the Collegial Learning Effectiveness scale refers to colleagues self-identi-
fied by the respondent, for example, “I have learned a great deal about mathematics 
teaching from colleagues.” Since the lesson study we report was conducted by small 
groups of teachers, not by all teachers in a school, differences between the two mea-
sures would be expected if teachers’ attitudes toward their lesson study colleagues do 
not necessarily extend to the broader set of all colleagues at their school site. A sec-
ond difference between the scales is that the Professional Community scale focuses
on the frequency of learning with colleagues, whereas the Collegial Learning 
Effectiveness Scale focuses on its usefulness and impact (for example, whether 
respondents believe they have learned about student thinking from colleagues). 
Finally, the Collegial Learning Effectiveness Scale is more  heavily focused on math-
ematics (4 of 5 items) than the Professional Community Scale (2 of 6 items). Hence,
Collegial Learning Effectiveness is better designed to pick up changes in usefulness 
of collegial learning among educators with whom the respondent collaborates, as 
opposed to frequency of collegial interaction within the school as a whole.

Another interesting aspect of Table 2 is that scores on many of the scales declined 
in the 3–4 months period between the baseline administration (usually in September) 
and the final administration (usually in January), especially in the two control 
groups. The September administration may have captured the most hopeful moment 
of the school year.

One limitation of this study is that several of the scales have a relatively small 
number of items, marginal scale reliability, and little or no prior evidence of predictive 
validity. Given the length of the fractions assessment, there was not sufficient time to 
administer a large number of survey items related to beliefs or teacher learning com-
munity. Many existing scales (with evidence of predictive validity) did not seem ade-
quately aligned to the intervention at hand, lesson study by a small group of educators 
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at a site (or across sites) on a particular topic within mathematics (fractions). More 
thorough investigation of the middle box of Fig. 2, the changes that occur during les-
son study in teachers’ beliefs and collegial relationships, is certainly warranted.

 Conclusions

As far as we are aware, this is the first randomized, controlled trial of a lesson study 
intervention, and we believe that it contributes in several ways to the current research 
base on professional learning. First, it documents that in a brief period of about 3 
months, self-organized groups of educators scattered across the USA, supported by 
mathematical resource kits, were able to conduct lesson study that significantly 
increased not only their own and students’ knowledge of fractions but also their 
expectations for student achievement and the reported efficacy of working with col-
leagues–beliefs that may have enormous implications for future efforts to improve. 
Prior qualitative research has provided evidence of changes in teachers’ beliefs and
professional relationships during lesson study (e.g., Lewis, Perry, & Hurd, 2009; 
Murata, 2003), and the current study confirms these changes in a much larger sample 
using a randomized trial. The findings suggest the fruitfulness of  taking a much 
closer look at the middle box of Fig. 1 to document the changes in beliefs and colle-
gial work that may allow lesson study to produce changes in both teachers’ and stu-
dents’ learning and to support teachers’ continued learning from practice over time.

Given the arguments made at the outset that improvement of instruction is likely 
to require teachers to engage in repeated cycles of trial and revision, it is essential to 
identify the beliefs and collegial learning structures that allow teachers to keep up 
this effortful work over time. Our findings indicate that the intervention  significantly 
increased teachers’ perceptions of the usefulness of collegial work and their expec-
tations for student achievement and that these changes significantly predicted 
increases in teachers’ and students’ mathematical knowledge over the study period. 
This was true for the intervention group and for the study sample as a whole.

Finally, the results of this study should encourage us to think in new ways about 
scale-up of instructional improvement. The intervention was “low-touch,” in that 
local, self-managed groups of educators worked independently at a distance from 
us, without any centralized supervision. These groups organized their learning in 
ways that made sense locally, rather than adhering to centrally prescribed rules 
designed to achieve implementation fidelity. In this way, the intervention supported 
educators’ own agency and leadership, while also allowing them to build their math-
ematical knowledge.

These results suggest a promising solution to the conundrum of faithful imple-
mentation of high-quality materials versus teachers’ “ownership” of professional 
learning. Through a lesson study process supported by mathematical resources, 
teachers can participate in a process that values their ideas and leadership, while at 
the same time increasing their expectations for student achievement and the effec-
tiveness of their collegial work, as well as their own mathematical knowledge and 
that of their students.
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 Appendix: Scales to Measure Teachers’ Beliefs and Teacher 
Learning Community

Stem: “Please indicate how well each of the following statements describes your
attitude” (Rated on a 5-point scale ranging from 1 (“strongly disagree”) to 5
(“strongly agree.”)).

Expectations for student achievement (7 items; Alpha = .63 on pretest; .64 on posttest)

No matter how hard I try, some students will not be able to learn aspects of mathe-
matics (reverse coded) (McLaughlin & Talbert, 2001).

My expectations about how much students should learn are not as high as they used 
to be (reverse coded) (McLaughlin & Talbert, 2001).

Students who work hard and do well deserve more of my time than those who do 
not (reverse coded) (McLaughlin & Talbert, 2001).

The attitudes and habits students bring to my classes greatly reduce their chances 
for academic success (reverse coded) (McLaughlin & Talbert, 2001).

There is really very little I can do to ensure that most of my students achieve at a 
high level (reverse coded) (McLaughlin & Talbert, 2001).

Most of the students I teach are not capable of learning material I should be teaching 
them (reverse coded) (McLaughlin & Talbert, 2001).

By trying a different teaching method, I can significantly affect a student’s achieve-
ment (CRC, 1994).

Using and promoting student thinking: (4 items; .63 at pretest and .68 at posttest)

I am able to figure out what students know about fractions (Project-developed).
I have some good strategies for making students’ mathematical thinking visible 

(Project-developed).
I can help students “catch up” who come to me lacking in math skills (Adapted from 

CRC, 1994).
When students are confused about fractions, I am able to provide good examples 

and explanations (Project-developed).

Interest in mathematics and inquiry stance (8 items; Alpha = .74 on pretest; .84 on 
posttest)

I enjoy teaching mathematics (Horizon Research, 2000).
I like solving mathematics problems (Project-developed).
Student mathematical thinking is fascinating to me (Project-developed).
I think of myself as a researcher in the classroom (Project-developed).
I am always curious about student thinking (Adapted from MSU, 2003).
I actively look for opportunities to learn more mathematics (Project-developed).
I am interested in the mathematics taught at many grade levels (Project-developed).
I would like to learn more about fractions (Adapted from LMT, 2007).

Research relevance for practice (4 items; .64 at pretest and .66 at posttest)

Educational research often provides useful insights for teaching (Project-developed).
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In general, curriculum materials from other countries are not useful (Project-developed).
Most research is not relevant to my needs as a teacher (Project-developed).
I find it interesting to read about a variety of educational programs and ideas 

(Project-developed).

Collegial learning effectiveness (5 items; .62 on pretest and .63 on posttest; based 
on items adapted from CRC, 1994 and Horizon Research Inc., 2000.)

I have learned a lot about student thinking by working with colleagues.
Working with colleagues on mathematical tasks is often unpleasant (reverse coded) 

(Project-developed).
I have good opportunities to learn about the mathematics taught at different grade 

levels (Adapted from CRC, 1994).
I have learned a great deal about mathematics teaching from colleagues.
I find it useful to solve mathematics problems with colleagues (Project-developed).

Professional Community (6 items; .80 at pretest and .82 at posttest)

My colleagues and I regularly share ideas and materials related to mathematics 
teaching.

Mathematics teachers in this school regularly observe each other teaching classes as 
part of sharing and improving instructional strategies.

I feel supported by other teachers to try out new ideas in teaching.
There is a lot of discussion among teachers at this school about how to teach 

(Adapted from CRC, 1994; MSU, 2003).
I plan and coordinate with other teachers (MSU, 2003).
I don’t know how other teachers in this school teach (Adapted from CRC, 1994).
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      Conceptualizing Teachers’ Capacity 
for Learning Trajectory-Oriented Formative 
Assessment in Mathematics 

             Caroline     B.     Ebby      and     Philip     M.     Sirinides      

          TASK (Teachers’ Assessment of Student Knowledge) is an online tool designed to 
measure teacher’s capacity for learning trajectory-oriented formative assessment in 
mathematics, specifi cally focusing on their ability to analyze student work and 
make instructional decisions based on that work. Formative assessment has proved 
to be one of the most powerful current educational practices in terms of improving 
student learning (Black & Wiliam,  1998 ; Kluger & DeNisi,  1996 ). A meta-analysis 
of more than 250 studies on formative assessment indicates substantial evidence 
linking formative assessment with higher student achievement, with typical effect 
sizes ranging from an impressive 0.4–0.7 (Black & Wiliam,  1998 ). Yet numerous 
studies have concluded that teachers struggle to make effective use of student learn-
ing data (Datnow, Park, & Wohlstetter,  2007 ; Heritage, Kim, Vendlinski, & Herman, 
 2009 ; Kerr, Marsh, Ikemoto, Darilek, & Barney,  2006 ; Young,  2006 ). 

 While the term formative assessment is often used erroneously in educational 
contexts to refer to assessment instruments themselves, it is more accurately defi ned 
as a process whereby an assessment provides feedback to both the learner and the 
teacher and this feedback causes an adjustment in instruction (Bennett,  2014 ; Black 
& Wiliam,  1998 ; Shepard,  2008 ). Formative assessment is therefore fundamentally 
an interpretive process. Effective formative assessment—assessing student under-
standing relative to a standard or goal, providing feedback to the student in the form 
of instructional guidance, and continually working to diminish the gap between the 
student’s performance and the instructional goal—requires that teachers are able to 
understand and analyze student thinking to develop an instructional response that 
will move the learner forward. TASK is an open-ended measure situated in the con-
text of looking at student-generated work that can be used to measure these specifi c 
aspects of teacher knowledge and also explore the nature of that knowledge. 
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 In this chapter, we begin by articulating the conceptual framework behind learn-
ing trajectory-oriented formative assessment and describing the instrument, scoring 
rubrics, and ongoing development of TASK. We then present the results of a large- 
scale fi eld test of TASK, both in terms of the overall results and additional studies 
of the properties of the instrument. We also draw on the results of this fi eld test to 
investigate the relationships between various dimensions of teachers’ ability to ana-
lyze student work in mathematics and their instructional decision making. 

    Conceptual Framework: Learning Trajectory-Oriented 
Formative Assessment 

    At the foundation of formative assessment is a clear understanding of the gap 
between the learner’s current state of understanding and the learning goal or stan-
dard. A well-designed assessment should illuminate the learner’s current state so 
that the gap is evident. The assessment becomes formative only when (1) the infor-
mation provides useful feedback to the learner, (2) the information provides useful 
feedback to the teacher, and (3) the teacher is able to provide an instructional 
response that will help the learner move closer to the goal. This is an iterative pro-
cess, the cycle repeating until the gap is closed and new learning goals are estab-
lished (Bennett,  2014 ; Black & Wiliam,  1998 ; Heritage,  2008 ). 

 Learning progressions, or “successively more sophisticated ways of thinking 
about a topic” (National Research Council,  2007 , p. 219), have recently become 
prominent in mathematics educational research as well as in conceptualizations of 
assessment and instruction (Clements & Sarama,  2004 ; Confrey,  2008 ; Daro, 
Mosher, & Corcoran,  2011 ; Sztajn, Confrey, Wilson, & Edgington,  2012 ). 
 Learning trajectories , as they are most often called in mathematics education, can 
provide a guiding framework as teachers assess where students are in the trajec-
tory of learning those concepts and skills and then use that information to design 
and enact instructional responses that support students’ movement along that tra-
jectory towards the learning goal (Heritage,  2008 ). Learning trajectories can be 
described as a path through the complex terrain of a particular mathematical topic 
(Battista,  2011 ; Daro et al.,  2011 ). While this path is not necessarily linear, knowl-
edge of the key stages or levels that characterize this path can help teachers both 
determine where students are and what experiences are likely to help them move 
forward. In other words, knowledge of learning trajectories can enhance the 
 formative assessment process. 

 In conceptualizing the knowledge that teachers need to implement effective for-
mative assessment in the classroom, we draw upon a conception of teaching as a 
complex activity that is dependent on distinct but interconnected bodies of knowl-
edge (Ball, Thames, & Phelps,  2008 ; Putnam & Borko,  2000 ; Shulman,  1987 ). 
Arguing that teachers draw on knowledge that is distinct from either knowledge of 
subject matter, Shulman defi nes  pedagogical content knowledge  (PCK) as “the ways 
of representing and formulating the subject matter that make it comprehensible to 
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others” (p. 9) and frames it as the intersection between content and pedagogy. 
Building on this work to study the work that teachers do when teaching mathematics 
in the classroom setting, Ball and colleagues have further defi ned and delineated 
mathematical knowledge for teaching (MKT) by breaking down the domain of con-
tent knowledge into  common content knowledge ,  specialized content knowledge,  
and  horizon content knowledge  and pedagogical content knowledge into  knowledge 
of content and students ,  knowledge of content and teaching , and  knowledge of con-
tent and curriculum  (Ball et al.,  2008 ). 

 More recently, Sztajn et al. ( 2012 ) bring together research on learning trajecto-
ries with research on teaching to propose the construct of  learning trajectory-based 
instruction  as “teaching that uses student learning trajectories as the basis for 
instruction (p. 147).” In addition to presenting a learning trajectory interpretation of 
the six MKT categories, they defi ne a learning trajectory interpretation of formative 
assessment as the case where teachers are “guided by the logic of the learner” rather 
than only by disciplinary goals when eliciting student thinking and providing feed-
back to students. In developing the TASK instrument and analyzing the results of 
the fi eld test, we draw on these frameworks to explore how teachers actually make 
sense of evidence of student thinking for their instruction.  

    The TASK Instrument 

 We designed the TASK instrument to capture and explore teacher knowledge in 
relation to learning trajectories in several core mathematical content areas. Open- 
ended prompts were designed to elicit the information teachers glean from student 
work and the instructional response they develop based on that evidence. While the 
MKT is an established measure of “mathematics knowledge for teaching,” these 
multiple choice measures have not been as useful in capturing teacher reasoning or 
more subtle manifestations of teacher conceptual change (Goldsmith & Seago, 
 2007 ). Hill, Ball, and Schilling ( 2008 ) describe the challenges of using multiple 
choice measures to assess “knowledge of content and students,” or teachers’ knowl-
edge of mathematical thinking and learning, including the fact that performance can 
be infl uenced by test-taking skills or mathematical content knowledge. They con-
clude that open-ended items may be a more effective way to assess the kind of rea-
soning skills about student thinking that are called for in classroom-based 
instructional practice. We have developed, fi eld tested, and validated TASK to pro-
vide a contextualized measure of teachers’ ability to (a) analyze students’ mathe-
matical thinking within a grade-specifi c content area in relation to research-based 
learning trajectories, and (b) formulate effective instructional responses. 

 We began the development of TASK by fi rst determining what kinds of knowledge 
are brought to bear in the process of formative assessment. Formative assessment 
involves a critical shift from  scoring  student work to  interpreting evidence  of student 
thinking and considering that evidence in light of research on the development of 
understanding of mathematical content. With this in mind, we initially posited that the 
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following six domains of knowledge are relevant for  learning trajectory - oriented 
formative assessment :

    1.     Content Knowledge —At the most basic level, teachers need to be able to under-
stand and correctly solve math problems that assess the content they are 
teaching.   

   2.     Concept Knowledge —To assess student understanding, teachers must be able to 
identify and articulate the concept and related sub-concepts that a particular 
mathematics problem or item is assessing.   

   3.     Mathematical Validity —Once a teacher administers an assessment to a student, 
he/she must be able to understand the logic or mathematical validity of the strat-
egy that the student uses to solve the problem. 1    

   4.     Analysis of Student Thinking  ( AST )—To build on student thinking, teachers need 
to be able to go beyond determining whether or not a response is correct or incor-
rect to identify the underlying conceptual understanding or misconceptions that 
are present in student work.   

   5.     Learning Trajectory Orientation  ( LTO )—After analyzing the strategy a student 
uses to solve a math problem, teachers need to be able to position that strategy 
along a learning trajectory for the respective math content. Thus, teachers must 
have a sense of what the developmental progress looks like for the particular 
math concept and where to place students along that continuum and be able to 
use this as a framework to interpret and respond to student thinking.   

   6.     Instructional Decision Making  ( IDM )—Finally, teachers must choose an appro-
priate instructional response and be able to describe why that instructional inter-
vention is designed to move students from their current level of understanding 
along the developmental trajectory towards greater understanding.    

  To further explore these domains, we constructed a performance assessment that 
requires teachers to draw upon and articulate these types of knowledge in the con-
text of classroom practice. Specifi cally, we situated TASK in the activity of looking 
at and responding to a carefully designed set of typical student responses to a 
 mathematics problem in a particular content area. The student responses character-
ize different levels of sophistication of student thinking as well as common miscon-
ceptions that are supported by mathematics education research. Through an online 
instrument, teachers are presented with the student work and then led through a 
series of questions designed to measure these six key domains of knowledge related 
to the specifi c mathematical concept that is being assessed. 

 Seven TASK instruments have been developed in the following mathematics 
content areas: (1)  addition , for teachers in grades K-1; (2)  subtraction , for teachers 
in grades 2–3; (3)  multiplicative reasoning , for teachers in grades 3–5; (4)  fractions , 
for teachers in grades 3–5; (5)  proportional reasoning  for teachers in grades 6–8; (6) 
 algebraic reasoning  for teachers in grades 7–12; and (7)  geometric reasoning , for 

1   As Ball et al. ( 2008 ) point out, determining whether a students’ thinking is mathematically sound 
requires a kind of knowledge that a person with strong knowledge of mathematics content who is not 
a teacher may not necessarily possess. It is therefore distinct from common content knowledge. 
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teachers in grades 9–12. These content areas represent core or fundamental mathe-
matical ideas at the different grade level bands, and the TASKs are designed around 
key concepts in those domains (e.g., part/whole, equivalency, and magnitude for 
fractions). While the content areas are different across grade levels, all TASKs fol-
low a consistent structure in both the prompts and the fact that the student work 
refl ects key stages in the development of student thinking in the content area. The 
K-8 TASKs focus around six samples of student solutions; however, for algebra and 
geometry, since the problems have a higher level of complexity and longer student 
responses, there are only four samples of student work for the teacher to interpret. 

 An example of the different levels of sophistication of students’ thinking and 
common strategies and misconceptions that are embedded in the student responses 
is presented in the fractions TASK for grades 3–5 in Fig.  1 . The problem involves 
reasoning about whether two fractional quantities combine to make a whole. As 
shown in Fig.  1 , Abby, Carla, and Devon’s work refl ect the use of visual models to 
make sense of parts and wholes, while Brad and Emma’s work demonstrate more 
abstract reasoning about equivalence and addition. Carla, Devon, and Frank’s work 

  Fig. 1    Problem and designed student responses from the grades 3–5 fractions TASK       

   Each carton holds 24 oranges. Kate’s carton is 1/3 full. Paul’s carton is 2/4 
full. If they put all their oranges together, would Kate and Paul fi ll one 
whole carton?  

  Solve the problem. Show your work.   
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are less developed and contain misconceptions about partitioning, part/whole under-
standing, and the meaning of fractions. In this way, the student work represents 
some of the important landmarks that have been identifi ed in current research on 
children’s learning of fractions as well as an overall progression from concrete to 
more abstract understanding of fractional quantities (Confrey,  2008 ; Lamon,  2012 ; 
Steffe & Olive,  2010 ). Thus, TASK is designed to provide a realistic context from 
which to elicit information about what teachers pay attention to when they examine 
student strategies that they are likely to come across in their own classrooms.  

   Similarly for the other content areas, student work was constructed to represent 
key stages in the development of addition, subtraction, multiplication, proportional 
reasoning, and algebraic thinking, with student responses refl ecting strategies of 
different levels of sophistication as well as strategies refl ecting both procedural and 
conceptual errors. 

 The prompts are shown in relation to each dimension of knowledge and method 
of scoring in Table  1 . Three of the response types are forced-choice or short answer 
and can be scored automatically while the rest are constructed responses scored by 
trained raters with a rubric or a combination of a coding scheme and rubric. The 
rubrics, described in the next section, are based on a four point ordinal scale to char-
acterize the teachers’ orientation towards the interpretation of the student work on a 
continuum that ranges from general to procedural to conceptual to developmental.

   Table 1    TASK prompts and scoring   

 Domain of 
teacher knowledge  Prompt  Scoring  Scale 

 Content 
knowledge 

 Examine the math problem and state 
the correct answer 

 Automated  Correct/incorrect 

 Concept 
knowledge 

 Explain what a student at that grade-
level needs to know and/or understand 
to solve the problem 

 Scored and 
coded by 
rater 

 Rubric score (1–4) 

 Mathematical 
validity 

 Examine the solutions of 4–6 typical 
students and determine if their solution 
processes are mathematically valid 

 Automated  Percent correct 

 Analysis of 
student thinking 

 Comment on four students’ solution 
process in terms of what the work 
suggests about the student’s 
understanding of the mathematics 

 Scored and 
coded by 
rater 

 Rubric score (1–4) 

 Learning trajectory 
orientation 

 Rank each student’s solution of the level 
of sophistication of the mathematical 
thinking that is represented 

 Automated  Rubric score (1–4) 

 Explain the rationale for the rankings 
given to each student 

 Scored 
by rater 

 Rubric score (1–4) 

 Instructional 
decision making 

 Suggest instructional next steps and 
explain the rationale for those next 
steps for two student solutions 

 Scored 
by rater 

 Rubric score (1–4) 
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   As described above, the six samples of student work were constructed to represent 
both correct and incorrect solution strategies, common conceptual errors, as well as 
a range of sophistication of strategies. To prevent the instrument from becoming too 
time-consuming, respondents were asked to comment on a subset of four solution 
strategies, but then to rank and explain their ranking for all six. The four solutions 
represent beginning, transitional, and advanced strategies (with correct answers) as 
well as one solution that refl ected a correct strategy with a conceptual error and 
incorrect answer. Likewise, respondents were only asked to describe instructional 
responses for two of the solutions: (a) a correct, but less sophisticated response to the 
problem and (b) a response with a conceptual weakness. 

 TASK was developed as an online instrument where teachers are sent an email link 
to complete the survey. Respondents move through several screens where the student 
work is shown as it is in Fig.  1  along with the respective prompts. Responses for 
mathematical validity and ranking are entered by clicking on radio buttons (see Fig.  2  
below), while the open-ended responses for concept knowledge, analysis of student 
thinking, ranking-rationale, and instructional decision making are entered into text 
boxes. Respondents also have the option to expand their view of the student work by 
hovering the mouse over the image. A benefi t of the online administration is that the 
system can target reminders to non-respondents to achieve a high response rate.  

  Fig. 2    Ranking screen of the online TASK       
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    Scoring Rubric 

 The rubrics that raters used to score specifi c prompts about student work were 
based on a four-point ordinal scale to capture the overall orientation toward 
teaching or student understanding. We developed this rubric from the pilot data 
(described in the next section) through both an inductive and deductive process. 
First, a team of researchers read the entire set of responses to generate initial catego-
ries and codes to capture what teachers were referencing in their responses to each 
question. These codes were then grouped into larger categories, drawing on existing 
research in mathematics education to guide the analysis in terms of the degree to 
which the response refl ected elements of a learning trajectory orientation. The dis-
tinction between procedures, or what students did, and concepts, or what students 
understood, became salient across all domains. The shift from procedural to more 
conceptual views of mathematics has long been promoted in mathematics reform 
literature (e.g., Hiebert,  1986 ; National Council of Teachers of Mathematics,  1988 ; 
National Research Council,  2001 ), and since learning trajectories by nature focus 
on conceptual development, a conceptual orientation toward student work was rated 
as higher than one that was only procedural. More recently, research on learning 
trajectories has promoted a developmental view, where students’ conceptual knowl-
edge develops in relation to instruction along a predictable path toward more com-
plex and sophisticated thinking (Battista,  2011 ). Therefore, for a response to be at 
the highest level of the rubric, we determined that a teacher’s focus on conceptual 
understanding must have evidence of drawing upon a developmental framework. 
We then had four ordinal categories (general, procedural, conceptual, and learning 
trajectory) that applied to each question on the TASK. The general rubric shown in 
Table  2  describes each of the TASK rubric categories. These categories are seen as 
cumulative where each level builds on the one before it; therefore, a conceptual 
response might also contain some procedural focus. Four domains were scored with 
more specifi c and detailed versions of this rubric: Concept Knowledge, Analysis of 
Student Thinking, Learning Trajectory Orientation, and Instructional Decision 
Making (Ebby, Sirinides, Supovitz, & Oettinger,  2013 ).

   For Concept Knowledge and Analysis of Student Thinking, raters were asked to 
utilize a coding scheme organized in the form of a checklist, with descriptors under 
the main categories: general/superfi cial, procedural, conceptual, and learning trajec-
tory. After the raters assigned the relevant codes, they used those results to help 
determine a rubric score. This technique also allows for tabulation of the specifi c 
concepts and procedures that are referenced by teachers which can be used to 
decompose patterns of teacher responses within each of the rubric categories. 

 The sample teacher responses shown below in Table  2  are taken from the pilot 
administration of the grades 6–8 proportions TASK. Teachers are describing a piece 
of student work where the strategy refl ected a conceptual error stemming from addi-
tive thinking and led to an incorrect response. The sample teacher responses refl ect 
different levels of analysis of that evidence: at the lowest level, the teacher evaluates 
the strategy but misses the nature of the conceptual error completely. At the proce-
dural level, the teacher describes what the student did to get the incorrect answer, but 
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does not relate this to underlying conceptual understanding. At the conceptual level, 
the teacher recognized the proportional understanding in part of the student’s solu-
tion strategy. The learning trajectory response is further distinguished by interpreting 
the students’ use of doubling in terms of multiplicative reasoning and the conceptual 
error in terms of additive reasoning, an important distinction in established learning 
trajectories for proportional reasoning (e.g., Confrey,  2008 ; Lamon,  2012 ).  

    Ongoing TASK Development 

 TASK began with a pilot administration in the fall of 2011 with a convenience 
sample of 60 teachers and at least 10 responses at each grade band. The pilot data 
were used for two purposes. The fi rst purpose was to begin development of the 
detailed scoring rubrics for each domain of the instrument and the second was to 
advance the design of the instrument. Both the actual responses and participant 
feedback contributed to our modifi cations of the instrument. Based on what we 
learned from this feedback, the instruments were substantially modifi ed and scoring 
rubrics were developed. 

 In the spring of 2012, we administered TASKs in 6 content areas to a sample of 
about 1,800 teachers in grades K-10 from 5 public school districts in 5 states. 
Recruitment for this validation study used a stratifi ed random sample of teachers by 
grade/subject; however, participation was voluntary. The fi ve districts vary in terms 

    Table 2    TASK rubric levels and descriptions   

 Score  Category  Description  Sample response 

 4  Learning 
trajectory 

 Response draws on 
developmental learning 
trajectory to explain 
student understanding or 
develop an instructional 
response 

 Devon shows that he has some basic 
understanding of multiplicative reasoning when 
it comes to doubling both quantities of the rate. 
However, he then goes to additive reasoning to 
get to $20. He is not distinguishing the 
difference between multiplying and adding/
subtracting in relation to proportionality 

 3  Conceptual  Response focuses on 
underlying concepts, 
strategy development, or 
construction of 
mathematical meaning 

 Devon has just a beginning understanding 
of a proportion as demonstrated by doubling 
both 12 and 15. He knew he needed to get to 
$20, but he didn’t know how to use the 
proportion so he subtracted 

 2  Procedural  Response focuses on a 
particular strategy or 
procedure without 
reference to student 
conceptual understanding 

 Devon did not fi gure out the cost per can. 
He subtracted $10 so he also subtracted 10 
cans but 1 can is not equivalent to $1 

 1  General  Response is general or 
superfi cially related to 
student work in terms of 
the mathematics content 

 Devon had a good strategy but did not 
perform the operations correctly 
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of size, student demographics, and programs of math instruction. Overall, about 
1,400 teachers completed the TASK, 2  for a 74 % response rate. Fifteen raters, 
including researchers with math content expertise and experienced mathematics 
teachers and coaches, were trained to code the open-ended responses for references 
to procedures and concepts and then make an overall judgment about a teachers’ 
written response in relation to the four point rubric. TASKs were only scored by 
raters after they had established a reliability of at least 75 % direct agreement on all 
of the rubric scores with other reliable raters. Drawing from the results of the analy-
sis of this fi eld test data, much of which is described in the sections that follow, we 
have refi ned the TASK instrument to focus on the three most salient and robust 
domains: Analysis of Student Thinking (AST), Learning Trajectory Orientation 
(LTO), and Instructional Decision Making (IDM) while further streamlining the 
coding and analysis process. 3  In addition, we are developing multiple forms for 
repeated administrations as well as new TASKs in additional content areas.   

    Large-Scale Field Trial Results 

    Descriptive Statistics 

 Analysis of the fi eld test data resulted in descriptive statistics for each of the domains 
on each TASK using unit weighting scoring as the average of scores within domain 
(Ebby et al.,  2013 ). Across the domains examined on the TASK the majority of 
teacher responses were procedural, focusing on what the student did to solve the 
problem, rather than underlying conceptual understanding or sophistication of rea-
soning. Table  3  shows the breakdown of rubric scores for the domains of AST, LTO, 
and IDM. While these results are briefl y summarized below, a more complete analy-
sis of the descriptive results can be found in our interactive report (Supovitz, Ebby, 
& Sirinides,  2014 ).

    Analysis of student thinking  ( AST ). In this domain, the vast majority of teacher 
responses were procedural, focusing on what the student did to solve the problem 
rather than commenting on underlying conceptual understanding. Fewer than one 
fi fth of the teachers surveyed, across all grade levels, interpreted the student solu-
tions in terms of underlying conceptual understanding. The highest level of proce-
dural responses were found in grades K-1 addition (93 %), while the highest level 
of conceptual and learning trajectory responses (19 %) were found in grades 3–5 
fractions. Particularly striking is the fact that all of the responses for proportions in 
grades 6–8 were either general or procedural, with 21 % of the teachers providing 

2   Thousand two hundred and sixty-one fully completed TASKs in fi ve content areas were analyzed 
from this fi eld test. Responses to the geometry TASK have not yet been analyzed. 
3   For example, the latest version of the TASK for multiplicative reasoning includes some multiple 
choice questions to augment the open ended prompt for Instructional Decision Making. 

C.B. Ebby and P.M. Sirinides



169

only general analyses of student work (e.g., “understands proportions” or “demon-
strates strong reasoning.”). The results highlight the widespread lack of a concep-
tual focus in teachers’ analysis of student thinking around proportions among 
middle grades teachers. 

  Learning trajectory orientation  ( LTO ). Again the vast majority of teachers 
explained their ranking of student work by pointing to procedural aspects of student 
work rather than what students understood or how that understanding was situated 
in a learning trajectory. It should be noted that teachers were somewhat more suc-
cessful in choosing the ranking than they were in providing a reasoned rationale for 
that ranking, though fewer than half of teachers in grades K-8 were able to correctly 
order student strategies in terms of sophistication. 

  Instructional decision making  ( IDM ). Across all grade levels, the majority of 
teachers’ instructional suggestions for specifi c students focused on teaching a stu-
dent a particular strategy or procedure rather than on developing mathematical 
meaning or understanding. The percentage of teachers who gave conceptual or 
learning trajectory responses was highest for algebra and lowest for addition in 
grades K-1. 

 Together, these results suggest that there is a great deal of room for growth in 
relation to teacher’s ability to interpret and respond to conceptual understanding in 
student work, and even more so in relation to learning trajectories. We also used 
these results to provide information back to the participating districts in the form of 

   Table 3    Percent of teacher responses by TASK domain, content, and score   

 Domain/content/grade   n   General  Procedural  Conceptual  Learning trajectory 

 AST 
 Addition (K-1)  246  4  93  3  0 
 Subtraction (1–2)  185  13  76  11  0 
 Fractions (3–5)  376  7  73  18  1 
 Proportions (6–8)  291  21  79  0  0 
 Algebra (9–10)  163  9  88  3  0 

 LTO (rationale) 
 Addition (K-1)  246  0  83  17  0 
 Subtraction (1–2)  185  4  69  22  5 
 Fractions (3–5)  376  9  76  14  1 
 Proportions (6–8)  291  14  78  7  1 
 Algebra (9–10)  163  15  57  26  2 

 IDM 
 Addition (K-1)  246  13  79  8  0 
 Subtraction (1–2)  185  19  59  20  2 
 Fractions (3–5)  376  22  60  16  2 
 Proportions (6–8)  291  28  55  14  3 
 Algebra (9–10)  163  15  46  30  9 

   Note : 1,261 teacher responses to the TASK were collected in spring 2012  
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reports that detailed the relative proportion of teachers at each grade level who 
responded at each level of the rubric in each domain. These reports were designed 
to allow districts to view both strengths and weaknesses in their teachers’ capacity 
for learning trajectory-oriented formative assessment.  

    Instrument Properties 

 The design of the instrument and validation methods were directly infl uenced by the 
 Standards for Educational and Psychological Testing  (American Educational 
Research Association, American Psychological Association, & National Council on 
Measurement in Education,  1999 ), which provides strong guidelines for high- 
quality and technically sound assessments. Our methods of ongoing instrument 
validation were chosen to supply evidence that the resulting scores from this theo-
retically grounded instrument are reliable and valid for the purposes of evaluating 
teachers’ capacity for learning trajectory-oriented formative assessment in mathe-
matics. Unless otherwise noted, data for these analyses were collected from the 
large-scale fi eld trial described above. The technical report (Ebby et al.,  2013 ) pro-
vides more details about the measurement studies for the TASK. 

 To examine the validity of TASK scores as a measure of pedagogical content 
knowledge, we have analyzed its association with another similar established test, 
the measures of Mathematical Knowledge for Teaching (MKT) (Ball et al.,  2008 ; 
Hill, Schilling, & Ball,  2004 ; Schilling, Blunk, & Hill,  2007 ). The MKT is a mea-
sure of the Common Content Knowledge and Specialized Content Knowledge that 
teachers need for effective mathematics instruction. The MKT is most aligned with 
the TASK domains of Content Knowledge and Mathematical Validity, but we expect 
that there would still be a positive, though smaller, relationship with the other 
domains, for which no validated measures exist. In the technical report (Ebby et al., 
 2013 ), we present descriptive statistics and correlation matrices for domain scales 
and the MKT separately for each TASK based on a sample of 486 teachers across 
the fi ve districts. We fi nd that the statistical associations of MKT and TASK domains 
refl ect a low relationship and note that correlations are largest ( r  = 0.56) for TASK 
domains with the most variance. 4     The positive direction and low magnitude of the 
statistics suggests that the constructs are related but distinct from MKT. 

 Collectively, results from a series of ongoing instrument validation studies are 
generating evidence that the instrument yields reliable and valid scores of teachers’ 
learning trajectory-oriented formative assessment capacity in mathematics, is feasi-
ble for widespread use in a variety of settings, and provides useful reporting of results. 
Ongoing research studies will focus on how TASK can be used to measure change in 
teacher knowledge over time and whether it can predict student outcomes.   

4   We are mindful that score reliabilities for the TASK are still under investigation and that correlations 
may be underestimated in the presence of measurement error (i.e., attenuation) (Lavrakas,  2008 ). 
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    Pathways Analyses 

 In this section, we highlight an investigation of the relationships between the vari-
ous dimensions of teachers’ ability to analyze student work in mathematics and 
their instructional decision making. More specifi cally, we investigate the relation-
ships between: (1) mathematical validity; (2) analysis of student thinking; (3) learn-
ing trajectory orientation; and (4) instructional decision making. 5  The theoretical 
framework is based on the research literature in mathematics education and our 
hypothesis that analyzing student work for underlying conceptual understanding 
should contribute to a more sophisticated instructional response. Given the current 
focus on learning trajectories in mathematics education research, and standards, we 
also investigated whether the ability to place student work in a learning trajectory 
would have an effect on instructional decision making, and if so, how strong that 
relationship is compared to other dimensions. 

 The conceptual framework guiding the empirical study is summarized by the 
structural pathways in Fig.  3 . This framework includes a series of relationships 
among independent and dependent constructs, which characterize the mechanism 
through which the analysis of student work infl uences instructional decision mak-
ing. The analysis of student work in terms of Mathematical Validity (MV), Analysis 
of Student Thinking (AST) and Learning Trajectory Orientation (LTO) is theorized 
to affect instructional decision making (IDM). Additionally, AST is theorized to be 

5   We do not include the domains of content knowledge or concept knowledge in this analysis as we 
do not expect them to have as strong of an infl uence on instructional decision making. 

  Fig. 3    Conceptual model of teachers’ assessment of student knowledge and instructional decision 
making       
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indirectly predictive of IDM through its effect on LTO. Finally, MV indirectly 
affects IDM through AST’s direct and indirect paths to IDM. It is important to note 
that our method of analysis (described below) cannot be employed as a causal mod-
eling approach because it cannot satisfy assumptions of directionality (Duncan & 
Hodge,  1963 ) or spurious correlation (Simon,  1957 ). As such, study fi ndings do not 
adopt a causal interpretation, in the sense of confi rming a presumed hypothesized 
network of causation. Rather this study sheds light on the tenability of the theorized 
causal model and results may be used as grounds for future research to further 
investigate causal mechanisms that are implied by this correlational study.  

 For this study, a statistical modeling approach was needed to meet several ana-
lytic goals. First, the study of indirect effects required the modeling of mediating 
variables. Path analysis (Wright,  1934 ) met this need because it offered a single 
framework for a system of multiple equations. Another analytic goal was the inclu-
sion of latent variables in the model. This study examined relationships among 
theorized dimensions that pertain to learning trajectory-oriented formative assess-
ment, which are not measured directly, but rather are measured by the TASK using 
a set of indicators and rubrics. Structural equation modeling (SEM) expands the 
path analysis framework to include a measurement model. In the measurement 
component of the SEM, latent variables are modeled as exogenous predictors of 
multiple observed items. The structural component of SEM specifi es relationships 
among latent or observed variables. A benefi t of using SEM is that both the mea-
surement model and the structural model are estimated as one system of equations. 

 An empirical model was specifi ed according to the structural pathways in the 
conceptual model (Fig.  3 ). Each of the four hypothesized domains were modeled as 
unobserved factors represented by the ten constituent rubric scores using all 1,261 
complete TASK records. The latent factors were identifi ed in the model by assign-
ing each a variance of one, making the factor covariance interpretable as a factor 
correlation. The observed data were analyzed as continuous outcomes and the path-
ways between factors were freely estimated parameters. The model was estimated 
using Full Information Maximum likelihood using MPlus 7.1. 

 The full structural equation model defi ned by the structural pathways specifi ed 
by our conceptual model was estimated and did not meet conventional thresholds 
for model fi t, with a signifi cant overall model chi square statistic and RMSEA = 0.18 
(recommended < 0.10). Despite the marginal fi t of the model, we fi nd that all path 
coeffi cients in the structural model are statistically signifi cant and consistent with 
the hypothesized direction of the relationships. The three antecedent dimensions 
accounted for 23 % of variation in instructional decision making and the estimated 
direct, total indirect, and total effects presented in Table  4  are all statistically signifi -
cant at  p  < 0.05. Table  5  presents the standardized estimated correlation matrix for 
the latent variables.

    Estimated correlations between TASK domains are positive, as expected. 
Further, all correlations are low suggesting that the measured domains are not 
highly associated (Cohen,  1988 ). The direction and magnitude of the statistics 
across TASK instruments suggests that the domains we are measuring are distinct. 
Across the subject areas, we observe that the largest correlations are between 
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the domains of Analysis of Student Thinking (AST) and Learning Trajectory 
Orientation (LTO). In addition, Analysis of Student Thinking (AST) is more 
strongly correlated with each of the other domains, particularly in grades K-5, sug-
gesting that overlap exists between this domain and the other domains. 

 These results are interpreted as preliminary fi ndings that will inform ongoing 
instrument development as well as alternative conceptual models that may improve 
the fi t of the measurement and structural components using a second round of multi- 
district TASK data. The ability of a teacher to analyze student thinking in terms of 
conceptual understanding was the largest predictor of instructional decision making 
in both its direct and total effect. A teacher’s ability to assess the mathematical 
validity of student work is also predictive of IDM with nearly half of the total effect 
being mediated by their analysis of students’ thinking and learning trajectory orien-
tation. Overall, these fi ndings provide preliminary evidence that a teacher’s depth of 
understanding of student thinking may have the largest total effect on instructional 
decision making in terms of the degree to which these decisions draw upon learning 
trajectories with a signifi cant amount of that relationship being mediated by the 
teachers’ learning trajectory orientation. 

 These results confi rm and add to some of the existing fi ndings of qualitative stud-
ies of the relationship between teachers’ interpretation of student work and their 
ability to develop informed instructional responses. In studying teachers’ use of 
interim test data, Goertz, Oláh, and Riggan ( 2009 ) found that teachers who inter-
preted student errors conceptually, rather than only procedurally, were more likely 
to generate substantive instructional responses. Similarly, in analyzing teacher logs, 
Riggan and Ebby ( 2013 ) found a clear linkage between the way teachers analyze 
their student work and the nature of the instructional responses they develop. 
Teachers who described student work in terms of conceptual understanding were 
more likely to state that they would reteach the content differently using strategies 
that were tailored to the individual student. Adding to this research base, our analy-
sis of TASK suggests that the depth of teachers’ interpretation of student work is 
moderately related to their tendency to develop a learning trajectory-oriented 
instructional response.  

   Table 4    Standardized direct, 
indirect, and total effects on 
instructional decision making   

 Direct  Total indirect  Total 

 MV  0.089  0.072  0.161 
 AST  0.234  0.055  0.289 
 LTO  0.153  –  0.153 

   Note : All estimates are signifi cant at  p  < 0.05  

   Table 5    Standardized 
estimated correlation matrix 
for the latent variables   

 MV  AST  LTO  IDM 

 MV  1.00 
 AST  0.224  1.00 
 LTO  0.058  0.259  1.00 
 IDM  0.118  0.179  0.114  1.00 
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    Building Capacity for Effective Mathematics Instruction 

 TASK was developed as a tool for researchers and evaluators to assess teacher 
capacity for learning trajectory-oriented formative assessment and the impact of ini-
tiatives that seek to develop that capacity. The development of TASK and the various 
ongoing studies described in this chapter has led to some key fi ndings about the 
instrument itself, the current capacity of teachers to interpret student thinking in rela-
tion to learning trajectories, and the nature of the knowledge that teachers need for 
effective mathematics instruction. TASK was developed to explore and measure an 
understudied component of mathematical knowledge for teaching: teacher knowl-
edge in the context of formative assessment. Taken together, our analyses highlights 
three key domains—analysis of student thinking, learning trajectory orientation, and 
instructional decision making—that advance the conceptualization of the teacher 
knowledge required for learning trajectory-oriented formative assessment. 

 Our results offer empirical evidence that teachers’ tendency to analyze student 
thinking for underlying conceptual understanding is related to their ability to develop 
instructional responses that build on the current state of students’ thinking to move 
them towards more sophisticated understanding. Yet the vast majority of teachers 
surveyed across grade levels analyzed student work procedurally, in terms of what 
students did to solve the problem, rather than in relation to underlying conceptual 
understanding. Given the current emphasis in mathematics education on rigor as a 
balance between conceptual and procedural understanding, this suggests that there is 
a great deal of room for growth in teacher capacity to identify, interpret, and respond 
to students’ conceptual understanding. Furthermore, results point to understanding a 
learning trajectory orientation, or the ability to order different student strategies in 
terms of the sophistication of mathematical thinking, as rooted in analysis for con-
ceptual understanding and an immediate predictor of instructional decision making. 

 The TASK instrument is thus an important step towards identifying more pre-
cisely the components of teacher knowledge that can infl uence and potentially 
improve classroom instruction. TASK also represents an important new tool for 
researchers in mathematics education that has the capability to gauge more than just 
content knowledge or general pedagogical content knowledge. The ability to mea-
sure teacher knowledge, capacity, and growth in relation to the understanding and 
use of learning trajectories will become increasingly important as states and dis-
tricts work to train teachers to reach the goals of new and more rigorous standards.     
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    The NAEP Assessments 

 NAEP assessments take place in the areas of the arts, civics, economics, geography, 
mathematics, reading, science, technology and engineering literacy, US history, and 
writing. Economics and technology have only been assessed once but other content 
areas are assessed every 2–10 years. There is also a NAEP High School Transcript 
Study (HSTS) that provides high school transcripts of students who participated in 
one of the NAEP content area studies. The No Child Left Behind act (NCLB,  2001 ) 
requires that mathematics and reading be assessed every 2 years and, because these 
areas have been assessed since the early 1970s, there are more data sets available for 
them than for other areas. 

 The National Center for Education Statistics (NCES), which administers NAEP, 
provides reports on overall fi ndings after each NAEP mathematics assessment (e.g., 
Braswell et al.,  2001 ; National Center for Education Statistics,  2012 ). A major advan-
tage of NAEP as opposed to state-level or college entrance exams (e.g., SAT) is that 
NAEP data come from a representative national sample of students and thus conclu-
sions drawn from these data are valid for the United States as a whole. A student 
taking the mathematics portion of NAEP completes at most 30 of the 150 or more 
mathematics items in the pool at each grade level. The remaining items are com-
pleted by different individuals so when results from all students are combined, there 
is information on a wide variety of mathematics concepts and skills. In addition, each 
student who completes NAEP mathematics items, along with the teacher and princi-
pal of that student, completes a background questionnaire focusing on things like 
language used at home (student), years of experience (teacher), and percentage of 
students in the school receiving free or reduced-price lunches (principal). 

 There are currently two NAEP mathematics programs, Long-Term Trend (LTT) 
NAEP and Main NAEP. LTT NAEP began in the early 1970s and from 1978 through 
2004 used the same items, so it was possible to track performance on those items for 
a long period of time (Kloosterman,  2010 ,  2011 ,  2014 ). This assessment collects 
data on 9-, 13-, and 17-year-old students and, while it was updated after 2004, the 
LTT mathematics NAEP is still predominantly an assessment of the basic skills that 
were taught in the twentieth century. In contrast, Main NAEP for mathematics, 
which originated in 1990, collects data on students in grades 4, 8, and 12, and has 
items that are continually updated to be representative of mathematics curricula in 
use at the time of each assessment. The 2009 Main NAEP mathematics assessment, 
for example, used 159 items at grade 8. Of these, 46 were in the algebra strand. 

 Although all NAEP assessments provide data broken down by demographic sub-
group, Main NAEP collects data on enough students in every state to report results 
on a state-by-state basis. The confi dence interval for the national sample is usually 
less than 1 scale point on either side of the mean and thus national scale scores 
are very accurate. State scores are less accurate with confi dence intervals for states 
of 2–3 points on either side of the mean. After each administration, roughly one-
fourth of the items are replaced so that there are enough items to track trends over 
time while allowing for updates to keep the assessment consistent with changes 
in curriculum. Most retired items are released to the public and available online 
(see   http://nces.ed.gov/nationsreportcard/itmrlsx    ). One of the reasons that items are 
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retired is that they no longer represent what is being taught in schools and thus the 
National Center for Education Statistics (NCES) cautions that released items are not 
necessarily representative of the NAEP assessment as a whole. 1  

    NAEP Framework and Scoring 

 NAEP items are based on frameworks, or assessment blueprints, that are updated 
periodically to refl ect curricular shifts. The NAEP mathematics frameworks for 
grades 4 and 8 have changed minimally since the 1990s, allowing for comparison of 
performance trends over time. The grade 12 framework changed signifi cantly before 
the 2005, 2009, and 2013 assessments making performance trend analyses more 
complicated at this grade level. 

 The National Assessment Governing Board (NAGB) is charged with maintaining 
the framework documents. The current version of the framework (NAGB,  2012 ) sets 
assessment guidelines in four categories: mathematics content, mathematical com-
plexity, item format, and assessment design. Each NAEP assessment item aligns to a 
content objective from one of fi ve content strands: Number Properties and Operations; 
Measurement; Geometry; Data Analysis, Statistics, and Probability; and Algebra. 
The assessment framework calls for the greatest emphasis on number properties and 
operations at grade 4 and on algebra at grades 8 and 12. In addition, a mathematical 
complexity level of low, moderate, or high is reported for each item. NAGB defi nes 
mathematical complexity as the level of demand on thinking and takes into account 
what mathematics students are asked to do in a particular task. The framework speci-
fi es that about 50 % of assessment time should be spent on moderate level tasks with 
the remainder split between low and high complexity tasks. 

 The NAEP framework outlines three item formats: multiple choice, short- 
constructed response, and extended-constructed response. Designed to span all 
three mathematical complexity levels, multiple-choice items at grades 8 and 12 
have fi ve distractors and those at grade 4 contain four. In contrast to extended- 
constructed response items that often have multiple parts and require a written 
explanation in support of an answer, short-constructed response items require a 
brief response such as a numerical answer, a simple drawing, or a brief explanation. 
The NAEP framework calls for 50 % of the testing time to be devoted to multiple- 
choice items and the remaining 50 % of the time spent on short- or extended- 
constructed response items. The framework also calls for the use of calculators and 
manipulatives or tools on a limited number of items and includes recommendations 
for accommodations for students with disabilities. 

 The NAEP assessment is not designed to report individual student scores. 
Instead, the results represent the achievement of the national sample and its various 

1   Our analysis of the mathematics items released at grades 4 and 8 in recent years indicates that they 
are reasonably representative of the content and format of items found on the current assessment. 
Items released most recently are closer in content to current items than items released in the 1990s. 
Because of the major changes in the framework and content of the grade 12 assessment after 2000, 
grade 12 items released prior to 2005 are not representative of the current grade 12 assessment. 
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subgroups. NAEP results are reported in two ways: scale scores and achievement 
levels (NCES,  2012 ). Scale scores range from 0 to 500 for grades 4 and 8 and from 
0 to 300 at grade 12. Average scale scores are determined through Item Response 
Theory (IRT) statistical procedures. NAEP reports a composite scale score for 
mathematics as a whole as well as scale scores for each of the fi ve content strands 
at grades 4 and 8. Reporting at grade 12 is the same except that measurement and 
geometry are combined into a single strand. NAEP also reports results in terms of 
the percentage of students performing within the achievement levels of basic, profi -
cient, and advanced. The formal defi nition of each level is complex, but in general, 
grade 8 students performing at the basic level are expected to have developed pro-
cedural and conceptual knowledge of objectives within the fi ve content strands. 
Students falling within the profi cient category are able to apply procedural and con-
ceptual knowledge to problem-solving situations, while students within the 
advanced category are able to generalize and synthesize this knowledge across the 
fi ve content strands. Examples of items at each profi ciency level can be found on the 
NAEP website (  http://nces.ed.gov/nationsreportcard/itemmaps/    ).  

    Access to NAEP Data 

 In addition to providing items no longer used in the assessments along with data on 
student performance for those items, the NAEP website (  http://nces.ed.gov/nation-
sreportcard    ) provides a software tool for doing basic analyses of student perfor-
mance. Called the  NAEP Data Explorer , this tool allows a researcher to compare 
things such as performance of Hispanic grade 8 students who are eligible for free or 
reduced-price lunch to performance of Hispanic grade 8 students who are not eli-
gible. Analyses can be done for the entire United States or an individual state 
although, because the number of private school students sampled in some states was 
small, state-level analyses are restricted to public school students only. There are, 
however, signifi cant limitations to the types of analyses that can be done with the 
online tool. To complete more complex analyses, researchers must have the original 
data set, which requires a secure site license (see   http://nces.ed.gov/statprog/
instruct.asp    ). The analyses described in this chapter required use of the full data set 
because we needed performance information on items for each year they were 
administered and because we wanted to do analyses that went beyond the basic 
statistical analyses provided with the online  Data Explorer .   

    What Can NAEP Tell Us About Students’ Algebraic 
Reasoning Skills? 

 Since the early years of NAEP, mathematics educators have provided interpretive 
reports based on the specifi c items used for the mathematics assessment. Of the 
reports that focused on algebraic reasoning, for example, Chazan et al. ( 2007 ) 
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reported that gains in the algebra strand were greater than gains in any other content 
strand for grades 4 and 8 from the mid-1990s through 2003 but that large gaps in 
performance based on race/ethnicity persisted. These researchers also found that 
performance on items used at both grades 4 and 8 was always higher at grade 8 
although the amount of difference between grades varied substantially by item. 
Looking at NAEP performance of grade 8 students, Sowder, Wearne, Martin, and 
Strutchens ( 2004 ) reported on 10 algebra items that were used in 1990, 1992, 1996, 
and 2000. Two of those items focused on patterns. For the fi rst item, students were 
told that a pattern of As and Bs repeated in groups of 3 and then asked to fi ll in the 
missing letters in the sequence  A B  _  A  _  B  _ _ _. Performance on this item increased 
from 50 % answering correctly in 1990 to 64 % answering correctly in 2000. The 
second item, although multiple choice, was much more diffi cult. Students had to 
identify the number of the term of the sequence 1/2, 2/3, 3/4, 5/6, … that was equal 
to 0.95. Performance increased from 19 % answering correctly in 1990 (essentially 
the chance level) to 27 % answering correctly in 2000. Relative to other items, these 
were fairly substantial jumps. Performance also increased signifi cantly on two of 
six items involving algebraic expressions or equations (5 and 6 % increases), and on 
both items involving graphing (7 and 14 %). 

 In a more general review of research on algebra learning, Kieran ( 2007 ) identifi ed 
three broad categories of research: understanding letter-symbolic algebra, under-
standing multiple representations in algebra, and using algebra in the context of word 
problems. With respect to letter-symbolic algebra, Kieran notes that recent research 
often focuses on factors that make algebra diffi cult to learn. For example, MacGregor 
and Stacey ( 1997 ) found that when presented with algebraic  expressions and equa-
tions, students sometimes ignore variables, replace them with constant values, or 
treat them simply as names rather than representations of a range of values. Obviously, 
such interpretations make it diffi cult to understand the meaning of the variables and 
expressions. With respect to multiple representations, Kieran referenced a study by 
Lobato, Ellis, and Munoz ( 2003 ) that found that students studying the slope-intercept 
form of a linear function often interpreted slope as the amount a line goes up rather 
than as a ratio. Lobato et al. recommended more instructional focus on covariation to 
help students see that slope is a relationship between two variables rather than just an 
increase in one. In her summary of research on algebra in the context of word prob-
lems, Kieran indicated that many studies show that when the option presents itself, 
students often want to use informal methods rather than formal algebraic methods 
(i.e., writing and solving equations). In brief, research on the learning of algebra 
documents that while students use logical processes when presented with algebra 
problems, they sometimes get incorrect answers because their logic is based on inap-
propriate assumptions or procedures that do not work in the context provided. 

 Looking across content areas, D’Ambrosio, Kastberg, and Lambdin ( 2007 ) 
argued that factors beyond item content affected student performance. In particular, 
they argued that item wording and item format impacted student performance and 
that the impact varied by demographic subgroup. 

 In the research reported here, we extended prior studies of algebraic reasoning 
and studies of what NAEP data say about algebra learning by analyzing student 
performance on grade 8 algebraic reasoning items used between 2003 and 2011. 
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More specifi cally, this study used the 2003–2011 data on items that require alge-
braic reasoning to address the questions of what grade 8 students in the United 
States know about the forms of algebraic reasoning outlined in previous NAEP 
work and by Kieran and how that knowledge changed between 2003 and 2011. 

    Method 

 The data set for this study was all grade 8 algebra-related Main NAEP mathematics 
items used between 2003 and 2011. Items were divided into the categories of (a) 
patterns, relations, and functions, (b) algebraic representations, (c) variables and 
expressions, and (d) equations and inequalities. Tables were constructed showing 
the items in each category along with performance on those items for each year they 
were administered. 

 We developed a coding scheme to facilitate identifi cation of items relevant to 
given topics such as patterns or reading graphs. The scheme, which uses the fi ve 
content strands identifi ed in the 2011 NAEP framework (NAGB,  2010 ), includes a 
simplifi ed list of topics featured in two monographs (Kloosterman & Lester,  2004 , 
 2007 ) produced by earlier iterations of our project. We also added an additional 
subtopic—fractions, decimals, and percents—as a part of the number properties and 
operations strand because of the heavy focus on this topic in the monographs. All 
items coded to fractions, decimals, and percents were also coded to other objectives 
such as number sense or algebraic representations. 

 The NAEP secure data set identifi es the content area for each item but not the 
subtopic. Information about the subtopic would have been helpful for our coding, 
but our system was not designed to recreate the offi cial NAEP coding. Instead, it 
was designed to allow researchers to easily fi nd items that might be related to topics 
of interest. To this end, we allowed for multiple codes. Two members of the project 
team coded each item but made no attempt at consensus, reasoning that an item 
might be of interest for the subtopic if either team member found it relevant. While 
this process identifi ed all possible items for each subtopic, it led to inclusion of 
some items that were not an ideal fi t for some of the subtopics. Thus, when the cod-
ings were used to place items into categories, authors eliminated released items that 
did not provide much insight into the primary topic and non-released items on 
which too little was known to verify that the items fi t the category. 

 The algebra items that make up the four tables in this chapter resulted from the 
coding process. Exact format items that have been released to the public and the 
diagrams that accompanied some items can be seen by using the year, block, and 
item number given after the item description in the tables to identify the item in 
the NAEP online  Questions Tool  (  http://nces.ed.gov/nationsreportcard/about/
naeptools.asp    ). Only general information can be provided on non-released items 
such as Item 7 in Table  1 .

   Some items, including Item 15 in Block 8 of the grade 8 items released in 2011, 
appear in more than one table. This item (Item 10 in Table  1  and Item 22 in Table  2 ) 
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focuses on the graph of a function and thus fi ts both in Table  1 , which includes func-
tions, and in Table  2 , which includes algebraic representations. In each table, items 
were further sorted into subcategories, such as number line and graphs under alge-
braic representations (Table  2 ). The tables, along with patterns and trends in the data 
identifi ed by the authors based on those tables, form the results section of this chap-
ter. Note that while NAEP classifi es items into one of fi ve primary content strands, 
our coding scheme identifi ed items in content strands other than algebra when those 
items required algebraic reasoning to complete. For example, Item 2005-M12 #12 
(Item 4 in Table  2  and shown in Fig.  1 ) was identifi ed as a number properties and 
operations item in the secure data set. Members of our project team, however, coded 
it as (a) number sense, (b) fractions, decimals, and percents (both under number 
properties and operations), and (c) algebraic representations (under algebra) because 
it involved aspects of each of these subtopics.

        Results 

 Scale scores for overall NAEP and for the algebra strand for students in grade 8 
between 1990 and 2013 are shown in Fig.  2 . As can be seen in the fi gure, there was 
consistent growth at grade 8 although the rate of growth has varied somewhat across 
the years. Scores in 2013 were signifi cantly higher ( p  < .05) than any previous year 
both in overall performance and in algebra.  

  Patterns, relations, and functions . Table  1  shows the 20 items used between 2003 
and 2011 that required understanding and use of (a) patterns, (b) graphs of func-
tions, or (c) other relation or function skills. The table includes either the actual 
wording or a description of each item and the percentage of students who responded 
correctly each year the item was administered. Within each subgroup in the table, 
items are ordered from highest to lowest with respect to proportion of students 
answering correctly. 

0.005

A. 0.0010

0.0054

0.0055

0.006

0.055

B.

C.

D.

E.

What number is represented by point A on the number line above?

0.006

A

  Fig. 1    NAEP item 2005-M12 #12       
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 Item 1 in Table  1 , which involved a pattern of shaded wedges within a circle, 
was the easiest algebraic reasoning item in the years analyzed. The item was also 
administered at grade 4 where 74 % of students answered correctly. The fact that 
the fi gure provided the fi rst three and the fi fth elements of the pattern along with 
the visual representation of the pattern likely contributed to the high percentage of 
students answering correctly. Item 2 in Table  1 , which required students to fi nd the 
next two numbers in the pattern 1, 6, 4, 9, 7, 12, 10, and write the rule used to fi nd 
the numbers, was also given at grade 4 where 40 % answered correctly. The differ-
ence in performance between fourth and eighth grade is typical of trends found on 
Long- Term Trend NAEP, where items have been used at multiple grade levels 
more often than on Main NAEP (Kloosterman,  2014 ). It is interesting to note that 
these items, like many of those used at multiple levels on LTT NAEP, focus on 
content that is usually not taught after fourth grade yet older students did signifi -
cantly better. 

 The three most diffi cult pattern questions for eighth graders were numbers 5 
though 7. Items 6 and 7 required written explanation and students regularly have 
problems with items where they have to provide an explanation or justifi cation 
(Arbaugh, Brown, Lynch, & McGraw,  2004 ). Item 5 tells students that there is a 
constant ratio between terms in the sequence 35, 280, 2,240 but even with that infor-
mation, only about one third were able to calculate the next term. Given that calcu-
lators were not allowed for this item, it is hard to know whether students did poorly 
because they did not know what to do to fi nd the next term or because they could 
not do the relatively complex paper-and-pencil calculations. 

 Few students could relate a linear equation to its graph (Item 9) or identify an 
equation where the value of  y  increased by 6 when the value of  x  increased by 2 
(Item 20). On the other hand, almost all students could infer straightforward infor-
mation from a graph (Items 10a and 10b) and over half could infer average speed 
from a graph of time and distance (Item 10c). The fact that only 19 % could explain 
why the line showing distance would end when the destination point was reached 
(Item 10d) is another example of how hard it is for most students to explain math-
ematical concepts in writing. 

  Fig. 2    NAEP overall scale scores and algebra scale scores. Data come from the  NAEP data 
explorer  (  http://nces.ed.gov/nationsreportcard/naepdata/    )       
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 The items classifi ed as “other” in Table  1  required a variety of skills with equations 
and relations. Item 19 was diffi cult (27 % answered correctly in 2007) likely because 
two pieces of information had to be added to a chart, and then a generalization had to 
be made for the item to be fully correct. On the positive side, 85 % of students were 
successful on at least one part of the item. Of the remaining items, performance was 
over 50 % only on Items 11 and 12. 

 Looking at Table  1  as a whole, one gets the sense that some, but certainly not all, 
eighth graders can understand and explain relationships between two variables in 
different settings and formats. The items in the table range from the purely visual 
(Item 1) to the connection between symbols and graphs (Item 9), to the purely 
graphical (Item 11). Taken together, they provide a good sense of what eighth-grade 
students know with respect to patterns and functions. 

  Algebraic representations . Table  2  shows performance on items involving algebraic 
representations. As was the case in Table  1 , performance was stable or increasing 
modestly over time on most items. Items 1 and 2 were the only items that were also 
given at grade 4. Item 1 involved a number line where increments were tenths rather 
than whole numbers. Performance on this item was substantially better at grade 8 
than at grade 4 (89 % vs. 44 % in 2005). A correct response for Item 2 involved 
writing a whole number (3) and fractional quantities (3½, 3¾) on a number line. 
Eighth graders did substantially better than fourth graders (77 % vs. 45 % in 2009). 
Items 7 and 9 required identifying the coordinates of a point and, taken together, 
suggest that 70 % or more of eighth graders have this skill. 

 Item 14 involved interpolating the  x -intercept of a curve that crossed the  x -axis 
nearly midway between 1 and 2. Half of students selected the correct answer (1.4) 
but 18 % selected −2, indicating that they had little sense of what the graph repre-
sented, and another 17 % selected 1.1, suggesting they knew the answer had to be 
more than 1 but had no sense of how much more than 1. Performance on Item 25 
improved from 55 to 65 % between 2005 and 2009. This item focused on identify-
ing the equation of a line when given a table with coordinates of 4 points on the line. 
The substantial improvement indicates that students are getting better at plugging  x  
and  y  coordinates into an equation to see if they represent points on the line. Item 11 
was similar to item 25 in that it required checking values but rather than the equa-
tion of the line, students had to fi nd the points on a grid to see whether they were on 
the line. The 8 % gain on this item from 2005 to 2009, together with the gain on item 
25 suggests that students are getting better at using graphical as well as numerical 
representations of linear functions. However, the percentage of students who could 
identify the graph of  y  = −2 x  + 1 (Item 20) was just above the chance level so even 
though many eighth graders can plot points, few are able to use slope and intercept 
or determine which points to plot to connect an equation and a graph. 

  Variables and expressions . Table  3  focuses on understanding and use of variables 
and expressions. Performance on these items was relatively stable except for items 
2 and 12, where there was signifi cant improvement. Item 2 required identifi ca-
tion of an expression to represent 4 more than twice a given number indicating 
that more students are becoming profi cient at this type of task. Item 12 required 

P. Kloosterman et al.
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understanding of the term square root so the improved performance there indicates 
more middle school students understand square roots. The relatively strong perfor-
mance on Item 1 (73 % in 2007) shows that by the time they are in eighth grade, 
many students can interpret expressions written with multiple variables ( m  ×  p  in 
this case). The strong performance on Item 9 (80 % in 2007) shows that most eighth 
graders understand what it means to substitute a value into an expression. Less than 
half know that 6( x  + 6) is 6 x  + 36 (Item 4). Item 8 was by far the most challenging 
of any of the algebra items as only 1 % answered correctly in 2011. The item 
included a sign saying that the fi rst CD is $12 and additional CDs were $6 (includ-
ing tax) and students had to write an expression for the cost of buying  n  CDs. A 
common mistake was failing to account for the fi rst CD in the expression and thus 
writing 12 + 6 n  rather than 12 + 6( n  − 1) or 6 + 6 n . Looking at Items 1, 2, 4, and 8 as 
a group indicates that many eighth graders can write simple variable expressions 
(Items 1 and 2) but far fewer know more than basic rules for combining variable 
expressions (Item 4) and very few can write linear expressions, where the constant 
is not obvious (Item 8).

    Equations and inequalities . Table  4  includes items that involve equations and 
inequalities. Items 5 and 6 are related in that both involved problems that could be 
solved by writing and solving simple equations ( x  + 2 x  = 18 in Item 5,  x  + 3 x  = 152 in 
Item 6). The similarity in performance on the two items (52 and 47 % in 2007) may 
be misleading. One could argue that a higher proportion of students correctly 
answered Item 5 because they only had to identify the equation needed to solve the 
problem. However, because the numbers in Item 5 were small it is possible that if 
students had been asked to  solve  Item 5, use of guess and check would have made 
the percentage of students answering correctly higher. The numbers in Item 6 were 
large enough that, even though there were only 5 answer choices to test, guess and 
check was a relatively diffi cult strategy compared to writing and solving an equa-
tion. Sixteen percent of students selected 38 as the correct answer to Item 6, which 
suggests that these individuals found the number of hot dogs sold by solving an 
equation or by guess and check but failed to remember that they were being asked 
for the number of hot dogs that Carmen rather than Shawn sold. When those who 
incorrectly selected 38 are pooled with those who correctly solved the problem, it 
suggests that the number of individuals who can solve linear combination problems 
is higher than performance on either Item 5 or 6 indicates. The supposition that 
some students prefer informal methods of solving linear combination problems is 
supported by looking at Item 18, which is solvable using the equation 2.5 x  + 1(5 −  x ) = 8 
or 1 x  + 2.5(5 −  x ) = 8. Performance on this constructed response item was quite good 
(76 % in 2007) and the need to use decimals when writing and solving equations for 
this item strongly suggests that many if not most successful students used a guess 
and check or other informal solution method. The fact that students were asked for 
two pieces of information (number of newly released movies and number of clas-
sics) probably improved performance because students had to think about what the 
number they calculated represented.

P. Kloosterman et al.
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        NAEP as a Database of Student Understanding 

 The primary goal of the analyses reported here was to use performance on NAEP 
items to determine the strengths and weaknesses of American students when it comes 
to algebraic reasoning. A secondary goal was to identify items where performance 
changed substantially between 2003 and 2011. The large number of algebraic rea-
soning items used by NAEP since 2003, in addition to the large proportion of those 
that were released, makes NAEP an excellent source of student performance on a 
wide range of algebraic tasks. For example, the fact that only 25 % of students identi-
fi ed the equation of a line when shown a linear graph in 2007 (Item 9 in Table  1 , a 
5-option multiple-choice item) is strong evidence that by the spring of eighth grade, 
most students cannot connect simple linear equations and their graphs. Performance 
on Item 18 in Table  1  (31 % correct in 2011) shows they are not much better at iden-
tifying the equation of a line that passes through a given point and has a negative 
slope. The performance trend on Items 11 (48–56 %), and 25 (55–65 %) in Table  2  
strongly suggests that students are getting better at plotting points to see the connec-
tion between coordinates, equations, and graphs. This is one aspect of grade 6 
Common Core State Standard (CCSS) 6.NS.C.8 (see   http://www.corestandards.org    ). 
While the improvement is encouraging, about 1/3 of grade 8 students had not mas-
tered this part of a grade 6 standard. A major focus of the CCSS grade 8 Expressions 
and Equations domain is connecting lines with equations and using pairs of simulta-
neous linear equations to solve problems. Performance near the chance level on 
items that focus on relating equations and graphs (e.g., Items 20 and 21 in Table  2 ) 
suggests that it will take a while before grade 8 students are mastering grade 8 CCSS. 

 The fact that performance on most items has been relatively stable in recent years 
indicates that using items released several years ago as indicators of current student 
performance is justifi ed. Even during the years 1990 through 2003 when performance 
in the area of algebra was increasing substantially, there was relatively modest gain 
on many NAEP algebra items (Chazan et al.,  2007 ; Sowder et al.,  2004 ); the minimal 
gains on items between 2003 and 2011 are, therefore, not that surprising. Given that 
the grade 8 NAEP items tend to focus on CCSS in grades 5 through 7, the low perfor-
mance and modest rate of improvement on many items indicates that it may be many 
years before most grade 8 students are meeting the expectations of the CCSS. 

    Themes in the Algebra Data 

 In addition to documenting progress on various components of algebraic reasoning, 
the data reported here provide several insights into mathematics learning in general. 
The fi rst of those is that many students learn skills long after the time at which those 
skills are introduced. This is consistent with other analyses of NAEP items used at 
more than one grade level (Blume, Galindo, & Walcott,  2007 ; Kastberg & Norton, 
 2007 ; Kloosterman,  2014 ; Warfi eld & Meier,  2007 ) and is also consistent with theo-
ries of learning that indicate that students are impacted by informal settings 
(Bransford et al.,  2006 ). 
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 Another major theme is that problem complexity makes a substantial difference 
in the proportion of students who answer an item correctly. This is consistent with 
analyses of NAEP items to see what, besides content knowledge, makes them dif-
fi cult (D’Ambrosio et al.,  2007 ). Test developers have long been aware that changes 
in context and wording affect problem diffi culty (Ferrara, Svetina, Skucha, & 
Davidson,  2011 ) so this theme is not a surprise. NAEP data are useful because they 
include items with similar content but have substantial variation in the proportion of 
students answering correctly. Given that assessments of student knowledge of CCSS 
will be high stakes for students, teachers, and schools, it is essential that wording 
and context be considered in interpretation of performance on individual items. 

 A third theme, which has been identifi ed in many smaller scale studies, is that 
students try to make sense of mathematics; but given the large number of details 
they are expected to master, many come to incorrect conclusions. Early research on 
incorrect conclusions included study of error patterns in mathematics (Ashlock, 
 2006 ) and much of the current psychology of mathematics learning is based on the 
idea that students attempt to make sense of mathematics (Cobb,  2007 ). With respect 
to algebra, Kieran ( 2007 ) notes that algebra students interpret problems and try to 
use algebraic procedures that make sense to them even though those interpretations 
and procedures are not applicable to the situation at hand. In this study, there were 
items such as Item 3 in Table  2  where the correct response looked like a thermom-
eter laid on its side. Recall that performance on this item was considerably better 
than a similar item (Item 5), where there was no context on which to make an infer-
ence. Another example is the CD sale item (Item 8 in Table  3 ), where only 1 % 
provided an expression that accounted for the fact that the fi rst CD bought was more 
expensive than additional CDs. The NAEP data set does not give a specifi c fi gure 
for the percentage of students who made this mistake but the examples of incorrect 
responses provided show that many students realized they were supposed to write 
an expression (i.e., they applied a procedure that made sense to them) yet failed to 
account for the price of the fi rst CD. Because NAEP data are representative of the 
United States as a whole, performance on this item shows that eighth graders across 
the country have a very diffi cult time writing expressions that represent sequences 
where the fi rst term is different from the others. 

 In brief, although released items are available online, this study went far beyond 
what is available online by (a) categorizing items with algebra content by subtopic, 
(b) documenting trends in performance over time on items, and (c) including data 
on secure items. This is important information for those trying to document strengths 
and weaknesses in algebra instruction. We now move to a discussion of issues 
related to research using large-scale databases.   

    Conceptual, Logistical, and Methodological Issues 
in the Use of NAEP Data 

 As can be seen from our analysis of algebraic reasoning of eighth graders, 
NAEP provides a powerful data set for documenting student performance on a 
wide variety of mathematical tasks. There are, however, a number of conceptual, 
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logistical, and methodological issues that make research using NAEP data 
 challenging. We now discuss some of those issues in relation to the results we 
have presented. 

    Analyses Are Limited by the Data Available 

 In most research studies, questions are identifi ed from the literature or the fi eld and 
then instruments and procedures are designed to collect data to answer those ques-
tions. When using NAEP, or any large-scale assessment data, researchers must 
defi ne questions that can be answered, at least partially, by the data available. There 
are many answers to the question of what constitutes algebraic reasoning, but for the 
purposes of this study, it is simply performance on the algebraic reasoning items in 
Tables  1 ,  2 ,  3 , and  4 . This includes the ability to see geometric and visual patterns, 
to defi ne and interpret variables, to construct and interpret graphs, and to solve word 
problems involving linear equations. As can be seen in the tables, there is substantial 
variation in performance depending on the exact nature of the tasks on these topics. 

 Many studies using NAEP data (e.g., Innes,  2012 ; Wei,  2012 ) assume that scores 
for mathematics in general, or in algebra, are valid. It is important to be as specifi c 
as possible about the NAEP items because verbatim reporting of items (in the case 
of released items) and clear item descriptions (in the case of non-released items) 
allows readers to see for themselves what is being measured and thus the extent to 
which NAEP items match their conceptions of what constitutes algebraic reasoning. 
We are also explicit about our categorization of items because others may have 
somewhat different classifi cations. For example, of the fi ve number line items in 
Table  2 , only Item 5 is in the NAEP algebra strand. Items 1–4 are in the number and 
operations strand but we included them because understanding of number lines and 
integers is essential background for coordinate graphing, which is normally consid-
ered part of the algebra curriculum. 

 It is interesting to note that Items 3 and 5 in Table  2  both require selecting a num-
ber line to meet specifi c criteria yet they come from different strands. Performance 
on Items 3 and 5 was substantially different (59 % on Item 3 vs. 37 % on Item 5), 
and we believe this is primarily due to two factors. The fi rst is the fact that all the 
distractors for Item 3 were continuous lines running from −20 to +120 so students 
had to choose the line with dots fi lled in at −20 and +120 and a continuous segment 
between them. Item 5 was similar in that all the distractors were lines marked at −5 
and +5. In Item 5, however, students were told to identify the number line that 
showed the  whole  numbers less than 5. None of the distractors had any values higher 
than 5 so the keys to getting a correct answer were (a) selecting a number line with 
dots at each whole number rather than a number line with a continuous segment, and 
(b) realizing that whole number meant only numbers greater than or equal to zero. 
The percentage of students selecting the distractor showing all values less than 5 was 
almost the same as the percentage answering correctly indicating that many did not 
know that negative numbers could not be whole numbers. The second factor explain-
ing the difference in performance between Items 3 and 5 is context. Item 3 was about 
temperature range in a city while Item 5 simply asked for a set of whole numbers. 
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The correct answer for Item 3 included all the values from −20 to +120 and looked 
like a horizontal thermometer. These cues probably helped some students. Item 5 
had no real world context so students had to rely exclusively on what they knew 
about number lines from their mathematics instruction. 

 Finally, we note that had we restricted our study of number lines in the context of 
algebraic reasoning to items that were in the NAEP algebra strand, it would appear 
that a relatively small percentage of eighth-grade students have the solid knowledge 
of number lines necessary to use and construct graphs in the  x  −  y  plane. Including 
the number line items from the number and operations strand shows that many stu-
dents have at least some knowledge of the principles behind coordinate graphs.  

    Access to Secure NAEP Data 

 User of NAEP data know that NCLB requires relatively quick release of fourth- and 
eighth-grade Main NAEP mathematics results, and thus when data are collected in 
the spring of a year, overall results are available in fall of the same year. The secure 
data set, however, is usually not released until much later. In the case of the LTT 
NAEP, the spring 2008 data set was not released until February of 2012. The only 
2011 Main NAEP data used for this study came from the 2011 released items 
because the secure data set had not been released at the time this chapter was writ-
ten—two and a half years after data collection was completed. Such delays mean, 
of course, that it is diffi cult to provide timely reports based on a secure data set. 

 In our experience, receiving and maintaining a secure site license has been rela-
tively easy (see   http://nces.ed.gov/pubsearch/licenses.asp    ) although there are 
restrictions on how the data are stored and used that need to be followed. One of 
these restrictions, for example, is that the data must be used on a computer that is 
not networked in a room with restricted access. For us, this meant that we had to buy 
special licenses for programs like SPSS and SAS because most licensed software is 
designed to periodically check the validity of the license by communicating with a 
server and that cannot happen unless a computer is networked. Another issue is that 
all users must sign non-disclosure agreements, and those agreements must be 
approved before users can access the data. Approval of new users has been rela-
tively fast, but each license is currently restricted to seven users so we had to get a 
second license to accommodate our entire research group. 

 Another logistical issue for content specialists using the secure NAEP data is that 
while the data sets received from NCES contain all data collected for a given assess-
ment, they only include very general descriptions of the items on which the data are 
based. Most researchers using the NAEP data do statistical analyses on the overall 
fi ndings and for them, item content is not an issue—as noted previously they accept 
the items as valid measures of what students should know. For those interested in 
exactly what NAEP measures, there is a process that allows researchers to view 
non-released (secure) items by visiting the Institute for Education Sciences (IES) in 
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Washington, DC. The approval process has taken us months and notes taken at 
viewing sessions were restricted to information that was very general. With the large 
number of items to view, we have found it useful to go to viewing sessions with lists 
of items where we have seen unusual patterns in performance and then spend most 
of our viewing time analyzing those items. Otherwise, we cannot remember enough 
about the items to understand unusual patterns we see in the secure data. 

 Descriptions of secure items can be included in publications but only when they 
are described in general terms, as seen in the results tables provided in this chapter. 
We included secure algebra items in this chapter to provide readers with a sense of 
what can be said about such items although we normally only use a secure item in 
our item-by-item analyses when we can be specifi c enough about the item to show 
that it provides insight that released items do not provide. Given the substantial 
number of items that have been released every 2 years since 2003, it has become 
easier than it was a decade ago to rely on released items to draw conclusions about 
student knowledge on most topics. We use secure items more often when we build 
scales of items on a specifi c construct. As explained later in this chapter, we use fi t 
analyses to be sure that the secure items are measuring the same latent variable as 
the released items in the scales.  

    Using Statistical Software with NAEP Data 

 In addition to the logistical issues of getting a license and authorizing users, there 
are issues in the use of a data set where the sampling design means that the majority 
of the data are missing for every respondent and that respondents in some demo-
graphic categories count less toward overall scores than others. For example, NAEP 
oversamples American Indian students in many states to have enough of these stu-
dents to report results for American Indians at the state level. Thus, when state-level 
scores for all students are calculated, the responses of each American Indian student 
count less so that the overall score is representative of the student demography in 
the state. 

 Fortunately, there are tools available that take the large amount of missing data 
and the sampling weights into account. One option is  AM  (  http://am.air.org    ). This 
software is available for download and does much more than the online  Data 
Explorer  (  http://nces.ed.gov/nationsreportcard/naepdata    ) although it has signifi cant 
limitations. 

 Along with the secure data set, NAEP provides open-source control statements 
for SPSS, SAS, and STATA so that NAEP data can be used with these software 
programs. Using these commands requires much more knowledge of the programs 
than is required for standard analyses but it does allow for relatively sophisticated 
analyses using NAEP data. In particular, multi-level modeling is not possible with 
the  Data Explorer  or  AM , and thus any hierarchical analyses must be done using 
more robust software packages.  
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    What Does It Mean to Say That a Certain Percentage 
of Students Answered an Item Correctly? 

 Although it is easy to tell from the secure data set whether a given student answered 
an item correctly, calculating the percentage of students who correctly answer a given 
item requires a set of decisions. Valid item response codes included in the secure data 
set include traditional item responses (correct and incorrect) and special codes (illeg-
ible, off-task, I don’t know, nonrateable, omitted, not reached, and multiple responses). 
In offi cial NAEP results, including those reported on the NAEP website, “not 
reached,” “illegible,” and “I don’t know” responses are treated as incorrect while 
“omitted” and “multiple” responses are treated as incorrect for constructed response 
items and fractionally correct on multiple-choice items. All other responses are 
treated as missing data and not taken into account in the scaling process. When we 
calculated the percentage correct on the NAEP items used for this study, we took the 
view that only the codes representing correct responses by students account for their 
achievement. Thus, in this chapter the special responses except “I don’t know” are 
treated as missing codes and not included in the analysis. This often means that the 
percent correct for released items reported in the online  Questions Tool  does not 
match the percent correct in our tables. At times it is useful to have analyses that are 
consistent with standard NAEP practice and, given that there is debate in the psycho-
metric community about how to deal with special responses (Brown, Dai, & Svetina, 
 2014 ; Brown, Svetina, & Dai,  2014 ; Misley & Wu,  1996 ), we make the decision on 
how to deal with such responses based on the audience we are writing for.  

    Limitations on Analyses by Demographic Subgroup 

 Because of the number of students completing NAEP, there is a great deal of statisti-
cal power for analyses. With the large number of background and demographic 
variables available for NAEP, it is possible to run analyses on subgroups of the 
population—analyses that can be very helpful in specifi c settings. For example, it is 
relatively easy to see if the gap in performance between Hispanic students in Indiana 
who are eligible for free lunch and their counterparts who are not eligible is greater 
or less than the gap of their Black peers. However, when analysis is restricted to 
Hispanic and Black students within a given state, the standard errors for the popula-
tions are much larger than they are for national results for all students. When look-
ing at differences in performance on individual items, statistical power decreases 
further because only those students who complete the item in question can be 
included in the analysis. This is not to say that analyses for subgroups are inappro-
priate, but larger differences are needed to make claims involving statistical signifi -
cance. We have conducted item-level analyses similar to those reported in this 
chapter and found that when percentage correct of one group differs from another 
group by at least 2 %, that difference is usually statistically signifi cant ( p  < .05) for 
the entire national sample but differences of 4 % may not be signifi cant when analy-
ses are restricted to specifi c states.   
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    Looking Forward 

 Knowing how well students across the United States perform on specifi c aspects of 
mathematics will always be important to curriculum developers and, one would 
hope, to policy makers who impact what is being taught in schools. In particular, 
with the adoption of the Common Core State Standards (CCSS,   http://www.cores-
tandards.org    ), we project that there will be substantial interest in how well students 
perform on items that assess those standards. To the best of our knowledge, the 
National Assessment Governing Board has no immediate plans to shift the NAEP 
frameworks to be more in alignment with the CCSS. Even if such alignment eventu-
ally comes to pass, it will be several years before an NAEP assessment would have 
items based on the CCSS. Thus, for the time being, we assume there will be interest 
in identifying existing NAEP items that assess skills and concepts identifi ed by 
CCSS. In our case, there are plans to report performance on both released and secure 
items that connect with CCSS. Looking at items reported in this chapter, the case 
can be made that some are good indicators of CCSS. For example, results for Item 
9 in Table  3  (If  x  = 2 n  + 1, what is the value of  x  when  n  = 10?) provide information 
on the extent to which students have the background knowledge and skills to solve 
linear equations in one variable (CCSS Standard 8.EE.7). Other NAEP items, how-
ever, do not appear to be measures of any concepts addressed within the CCSS. Item 
1 from Table  1 , for example, involves a pattern of shading in a fraction circle. 
Although it might be possible to argue that this item represents patterns similar to 
what the CCSS outline for the elementary grades, it is hard to see how this item 
represents anything in the middle school CCSS. 

 Perhaps the biggest question at this point is whether NAEP’s role in assessing 
student learning will change when students start completing the PARCC (  http://
www.parcconline.org/parcc-assessment    ) and Smarter Balanced  (  http://www.smart-
erbalanced.org/smarter-balanced-assessments/    ) assessments. Although these 
assessments will not provide data on students from all states, they take place at 
grades 3 to 8 and 11 and align with the CCSS. Moreover, they will be high-stakes 
tests for teachers and schools. Thus, it is possible that the NAEP governing board 
will consciously avoid any movement toward alignment with the CCSS in fear that 
NAEP results will be seen as an indicator of achievement on the CCSS when that 
was never the intent of the NAEP program. 

    Subscales for Specifi c Mathematics Skills 

 With the CCSS and the aforementioned categorization system in mind, we are doing 
more of the types of analyses reported here. We believe that more can be done to 
quantify performance on specifi c constructs by combining performance on clusters 
of items. For example, reasoning about similar triangles or solving linear equations 
in two variables can be viewed as distinct constructs, each of which has items that 
focus on those constructs. Assessment items associated with similar triangles or 
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linear equations have a range of diffi culties—some linear equations, for example, 
are harder to solve than others. However, within each construct, students and items 
are assumed to behave consistently with respect to their profi ciencies and diffi cul-
ties. If a student can answer a particular item, they probably can answer any item 
that is easier, and if a student cannot answer an item, they probably cannot answer 
any item that is more diffi cult. When a group of students and items behaves in this 
consistent manner, there is strong evidence that the items refl ect a valid construct, 
and that the students possess a meaningful profi ciency or cognitive skill that is nec-
essary to respond successfully to those items. This method of analysis is called 
construct-referenced measurement (Brown & Wilson,  2011 ; Wilson,  2005 ). 
Identifying and describing constructs is of interest to the research community 
because they offer insight into the nature of specifi c mathematics skills. We see the 
identifi cation of specifi c constructs, and the sets of NAEP items that measure those 
constructs, as a productive direction for further research. Our initial applications of 
construct-referenced measurement to the NAEP data are described below.  

    Psychometric Issues 

 Tables  1 ,  2 ,  3 , and  4  in this chapter represent our perceptions of sets of items that 
should fi t together to form constructs. We have begun testing the extent to which the 
items in the tables actually represent constructs using construct-referenced mea-
surement. Specifi cally, we use the item response data from these items to build one- 
parameter item response models from the Rasch family. We use a combination of 
the basic Rasch model (Rasch, 1960/ 1980 ) for dichotomous data and the partial 
credit model (Masters,  1982 ) for polytomous data. We estimate student profi cien-
cies and item diffi culties using joint maximum likelihood (JML) estimation, using 
the psychometric software  ConQuest 3.0  (Adams, Wu, & Wilson,  2012 ). 

 The psychometric analysis produces a  fi t statistic  for each item, a residual-based 
measure of how well the data associated with the item fi ts the assumption of a uni-
dimensional construct. In other words, we examine the degree to which students 
respond to the item in a way that is consistent with their profi ciencies and the item’s 
diffi culty. Although there are several types of fi t statistics, we prefer to examine the 
weighted mean-square statistic, which acts as an effect size indicator that is not 
sensitive to outliers. If the item responses are consistent with the students’ profi cien-
cies and the items’ diffi culties, the weighted mean-square fi t statistics will be 
approximately normally distributed with a mean of 1.00. Obvious deviations from 
this distribution represent a problem with the hypothesis that the items are associ-
ated with a single specifi c profi ciency or skill. 

 The most common deviation from the expected distribution is when a fi t statistic 
is a clear outlier. An outlying fi t statistic indicates that an item is not representative 
of the hypothesized skill. This may be because the skill required to respond to that 
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item is different than expected because the item requires one or more additional 
skills beyond the one expected, or because the item is confusing or tricky for some 
students. Importantly, an outlying fi t statistic does  not  indicate that an item is neces-
sarily easier or more diffi cult than the other items. When an outlying fi t statistic 
identifi es a misfi tting item, content and pedagogical experts should be consulted to 
determine which of these possible explanations is most likely. 

 Another deviation from the expected distribution is when the fi t statistics clus-
ter into two groups, one less than 1.00 and one greater than 1.00. This generally 
indicates that these two sets of items are associated with different skills. One 
hypothesis we tested was whether different skills are required to respond to items 
involving equations in two variables when the equations are linear (Items 7 
through 14 in Table  4 ) versus when they contain a quadratic term (Items 15 and 
16 in Table  4 ). When we analyzed these items together as a subscale, the fi t statis-
tics for the items containing a quadratic term did not stand out as outliers, imply-
ing that despite being more diffi cult, they are associated with the same underlying 
skill. A second hypothesis we tested was whether different skills are required to 
respond to items involving inequalities in one variable (Items 19 and 22 in 
Table  4 ) versus equations in one variable (Items 1–6 in Table  4 ). When we ana-
lyzed these items together as a subscale, the fi t statistics for the items containing 
inequalities clustered together and stood apart from the others, implying that solv-
ing inequalities does represent a distinct skill. Across the algebra items, there also 
appear to be distinct profi ciencies associated with extending patterns, understand-
ing and using variables and expressions, and understanding and using coordinate 
grids and graphs. 

 In closing, we reiterate the importance of NAEP (and other large common data 
sets) as a source of valuable information for mathematics curricula and teaching. 
Traditional item analyses that show how well students do on specifi c mathematics 
tasks are important because education professionals without training in statistics 
can understand them and because they provide a concrete picture of what students 
know or at least do under the constraints of the testing conditions. It is important, 
however, to look for new ways to build arguments about how performance in math-
ematics is  changing . The construction of IRT scale scores for the 1990 NAEP 
allowed for comparison of overall mathematics performance across years for the 
fi rst time. With the use of IRT and other statistical techniques we are showing that 
it is possible to quantify and track performance on skills that are more specifi c than 
the algebra scales NAEP now uses but also more general than what can be deter-
mined from individual items. This middle level of analysis is proving to be useful 
both in teasing out development of skills over time and in the identifi cation of the 
different profi ciencies that, together, contribute to this development.      
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      Homework and Mathematics Learning: 
What Can We Learn from the TIMSS 
Series Studies in the Last Two Decades? 

             Yan     Zhu    

             Homework Is an Important Issue Inside 
and Outside of Academia 

 Homework as a way to extend learning beyond the classroom is a generally 
 recommended or common practice in many educational systems nowadays. 
However, the research community has not reached consensus about its importance, 
nor about the amount and type of homework students should be assigned. A brief 
review of the history of the homework debate in the USA may help to unravel the 
complexities of the issue. The debate can be traced back to the late 1800s and has 
gone in cycles ranging from more rote practice to more learner-centered tasks, and 
from more allotted time to less allotted time (Cooper, Robinson, & Patall,  2006 ; Gill 
& Schlossman,  2004 ). 

 According to Herrig ( 2012 ), although the late nineteenth century and early twen-
tieth century marked a period of homework emphasis focusing on memorization 
and rote practice, it is actually the progressive education movement that began a 
public dialogue regarding homework. In concert with the public’s concern about 
homework affecting the health of children, the movement led an attack on home-
work. At that time, some even declared that homework was nothing but “legalized 
criminality” (Nash, cited in Gill & Schlossman,  2004 ). In the 1950s and 1960s, with 
a decline in the progressive education movement and the USSR’s successful launch 
of  Sputnik , homework started to be viewed as a necessary condition guaranteeing 
learning (Canadian Council on Learning,  2009 ). However, the onset of the Vietnam 
War again led public opinion away from support for homework during the 1960s 
and 1970s as the public’s attention was diverted from the academic excellence 
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movement (also see Center for Public Education,  2007 ). Following the publication 
of  A Nation at Risk  in 1983, the public’s focus and education’s response was brought 
towards a new view of homework as providing both character-building and aca-
demic benefi ts throughout the 1980s and 1990s. Regarding these cyclical changes, 
Hallam ( 2004 ) suggested that they refl ected the political and economic concerns of 
the time. In this sense, the pendulum may continue swinging between favor and 
disfavor of homework depending on the social and economic challenges of the day. 

 One focal point in the homework debate is whether doing homework benefi ts 
students’ learning. Three basic types of research studies have emerged from efforts 
to examine the relationship between homework and students’ achievement (Cooper, 
 1989 ; also see Zhu & Leung,  2012 ). One class of studies compares homework with 
no homework. Most of these studies revealed effects favoring homework (including 
14 out of 20 studies (1962–1986) in Cooper’s  1989  review and all six studies 
(1987–2003) in Cooper et al.’s  2006  synthesis). Most of these positive effects were 
further found to be grade-level related; that is, high school students benefi ted most 
followed by junior high students with the effect barely noticeable for elementary 
students. While Cooper and his colleagues synthesized the studies of the impact of 
having homework on students’ learning in various school subjects,    Austin’s ( 1979 ) 
review focused on studies about mathematics homework between 1900 and 1977. 
This included 16 studies showing signifi cant differences favoring students who 
were assigned mathematics homework and another 13 studies showing no differ-
ence. The second class of studies compares homework with in-class supervised 
learning (i.e., homework-like in-class activities). These also detected a strong grade- 
level effect. In particular, in-class supervised study was generally proved superior to 
homework at the primary level and a reversed pattern was observed at the junior 
high level and above. The third class of studies used statewide or national surveys to 
correlate the amount of time students spent on homework with their achievement 
scores. Cooper et al.’s ( 2006 ) work on 69 correlations revealed 50 in a positive 
direction, and his earlier work (Cooper,  1989 ) also showed that the majority (43 out 
of 50) favored homework. In these studies, a strong grade-level association again 
was prevalent. 

 Although many of the studies reviewed in Cooper and his colleagues’ work 
reported a positive effect of homework on students’ achievement, Cooper and many 
others (e.g., Cooper,  1989 ; Cooper et al.,  2006 ; Cooper, Lindsay, Nye, & Greathouse, 
 1998 ; Kohn,  2006 ; Trautwein & Köller,  2003 ) claimed that the link between home-
work and achievement is far from clear. One essential reason is that most of these 
studies are simply correlational and make no claims about an explicit causal link 
(e.g., Blazer,  2009 ; Cooper,  2008 ). There are also researchers suggesting that the 
relationship between homework and achievement could be nonlinear (e.g., Keys, 
Harris, & Fernandes,  1997 ; NSW Department of Education and Communication, 
 2012 ). As a matter of fact, both proponents and opponents can easily fi nd support-
ing evidence from research to sustain their respective views about the effects of 
homework. Many review works have been devoted to producing lists of such advan-
tages and disadvantages from the perspective of students’ learning (e.g., Center for 
Public Education,  2007 ; Queensland Department of Education & the Arts,  2004 ). 
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 It is clear that homework has recently become an even more important issue not 
only inside academia but also outside of academia (Canadian Council on Learning, 
 2009 ). For instance, when the most recent PISA announced that Shanghai students 
again ranked fi rst on all three assessed subjects, the number of hours these students 
spent on homework per week immediately aroused heated discussion among the 
public (13.8 h, the most among all the participating education systems). In the 
USA, Kralovec and Buells’ book  The End of Homework  received massive media 
attention and spawned an ongoing debate between the anti-homework and pro-
homework contingents (Vatterott,  2009 ). In the UK, a recent intense debate fol-
lowed news about one British high school’s announcement that it will go 
“homework free” but lengthen the school day. 1  In France, the president is even 
making the issue of homework a major part of his reelection campaign, promising 
to abolish homework if reelected. 2  In Australia, Rindlefl eish and Alexander’s 
media report  The War on Homework  published in  The Sunday Mail  (Queensland) 
has resulted in increased parental concerns about the amount of homework expected 
outside of school time (Queensland Department of Education & the Arts,  2004 ). In 
fact, the national umbrella organization of parents and citizens groups in Australia, 
the Australian Council of State School Organizations, argued that there is no evi-
dence that students benefi t from the practice and that it has become an overbearing 
invasion of family life. 3      

    Effects of Homework Are Inclusive 

 Kohn ( 2006 ) points out that there is no conclusive evidence showing that homework 
provides any benefi ts, either academic or nonacademic, to students. A proper ques-
tion that therefore might be posed is, “Under what conditions is homework benefi -
cial for students’ learning, and what kinds of homework are effective for various 
learning goals?” 

 Regarding criticism on the inconclusive and even incoherent effects of home-
work, Blazer ( 2009 ) may provide some insights. Homework is a diffi cult variable to 
study directly, uncontaminated by other variables. Researchers have found that the 
impact of homework on students is affected by many other factors (NSW Department 
of Education and Communication,  2012 ), such as students’ understanding of the 
purpose of homework (e.g., Warton,  1997 ), their attitudes toward homework, learn-
ing and achievement (e.g., Cooper, Jackson, Nye, & Lindsay,  2001 ; Corno,  2000 ; 

1   See  The Homework Debate , retrieved on September 6, 2013, from  http://northshoremums.com.
au/the-homework-debate/ 
2   See  France ’ s Hollande Promises Pupils  “ No More Homework ”, retrieved on October 11, 2012, from 
 http://www.france24.com/en/20121010-hollande-promises-school-children-no-more-homework-
education-reform-france/ 
3   See  Parents in Australia Call for Ban on Homework , retrieved on April 10, 2007, from  http://
www.foxnews.com/story/2007/04/10/parents-in-australia-call-for-ban-on-homework/ 

Homework and Mathematics Learning: What Can We Learn…

http://northshoremums.com.au/the-homework-debate/
http://northshoremums.com.au/the-homework-debate/
http://www.france24.com/en/20121010-hollande-promises-school-children-no-more-homework-education-reform-france/
http://www.france24.com/en/20121010-hollande-promises-school-children-no-more-homework-education-reform-france/
http://www.foxnews.com/story/2007/04/10/parents-in-australia-call-for-ban-on-homework/
http://www.foxnews.com/story/2007/04/10/parents-in-australia-call-for-ban-on-homework/


212

Epstein, Simon, & Salinas,  1997 ; Lange & Meaney,  2011 ; O’Rourke-Ferrara, 
 1998 ), and their feelings of empowerment in the design and allocation of homework 
tasks (e.g., Cooper & Valentine,  2001 ; Smith,  2000 ; Warton,  2001 ). However, 
Blazer ( 2009 ) maintained that homework itself is also infl uenced by more factors 
than any other instructional strategy, including student ability, motivation, grade 
level, variation in homework completion (e.g., when and how), and home environ-
ment (e.g., Cooper et al.,  2006 ; McPherson,  2005 ). 

 Some other researchers attribute the “complex, fragmented, and contradictive” 
fi ndings to methodological limitations in homework research (e.g., Corno,  1996 ; 
Inglis,  2005 ; Kralovec & Buell,  2001 ; Miller & Kelley,  1991 ; Paschal, Weinstein, & 
Walberg,  1984 ; Redmond,  2009 ; Trautwein,  2007 ; Trautwein, Köller, Schmitz, & 
Baumert,  2002 ; Trautwein, Lüdtke, & Pieper,  2007 ). Concerned about the lack of 
randomized procedures, for example, Cooper ( 2001 ) discussed the “extraordinary 
variability of results” (p. 28). Besides a similar critique about non-randomization, 
Vatterott ( 2009 ) further pointed out homework research was often conducted with 
small sample sizes such as a few students or a few classrooms. Trautwein and Köller 
( 2003 ) challenged that much of homework research suffered from not taking the 
hierarchical nature of most homework data into account. According to them, a large 
percentage of variation in homework can be caused by classroom and school effects; 
in other words, a large portion of the effect of homework is related to the school a 
student attends and the specifi c class in which a student is enrolled (also see Maltese, 
Tai, & Fan,  2012 ). Consistent with this concern, Klangphahol, Traiwichitkhun, and 
Kanchanawasi ( 2010 ) advised that homework-related research studies should pay 
careful attention to the data with multilevel variance to avoid incorrect research 
conclusions and they claimed that the variables related to homework are, by nature, 
multilevel and hierarchical nested data. Moreover, Trautwein and Köller ( 2003 ) 
found that longitudinal data is sparse in homework research and they noted that the 
existing longitudinal studies mainly included only a small sample of students. 

 Bearing these cautions in mind, this study examines the role of homework played 
in students’ school life through analyzing the homework-related data from the 
 Trends in International Mathematics and Science Study  (TIMSS), one of the most 
extensive large-scale international survey studies of students’ schooling and 
achievement. With the analysis of the relevant data focusing on the subject of math-
ematics at the eighth grade level in all fi ve rounds of the study series from 1995 to 
2011, the study also aims to examine whether the role of homework has changed in 
the last two decades. It is believed that the changes in homework practice and its 
role can, to a certain degree, mirror the political and economic concerns of the time, 
as argued by Hallam ( 2004 ). Eight education systems were selected for the present 
study, including all fi ve East Asian ones (Chinese Taipei, Hong Kong SAR, Japan, 
Korea, and Singapore) and three Western ones (i.e., Australia, England, and the 
USA). To get a fuller appreciation of the contexts in which students learn, TIMSS 
collected extensive background data from students, teachers, school principals/head-
masters, and curriculum experts. Therefore, the homework issue can further be 
examined at different levels of curriculum (i.e.,  intended curriculum  as expressed in 
policy rhetoric,  implemented curriculum  as practiced in real life and in school and 
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classroom practices, and  attained curriculum  as manifested in learner experiences 
and outcomes). Furthermore, with such a stratifi ed design, the hierarchical nature 
of homework data has been accounted for in TIMSS. Correspondingly, all the 
analyses in this study are using appropriate weighting (i.e., Students: TOTWGT; 
Mathematics Teachers: MATWGT; Schools: SCHWGT) to achieve more precise 
system-level data.  

    Changes in TIMSS Investigations About Homework 
from 1995 to 2011 

 As a worldwide comprehensive ongoing comparison of students’ mathematics and 
science knowledge as well as their learning experience, TIMSS could not ignore 
homework as an important element in students’ school life in its investigation. As a 
matter of fact, all fi ve rounds of the surveys included specifi c items on homework 
practices in both the teacher and student questionnaires. In more recent rounds, 
specifi c sections entitled “homework” (2003T, 2007S, 2007T, and 2011S) 4  or 
“mathematics homework” (2011T) started to appear in the surveys with some 
additional items about homework in other sections. 

 In student questionnaires, frequency of assigning homework and time spent on 
doing homework are the two common themes in all rounds of the surveys. In con-
trast to TIMSS 2011, the other four TIMSS years consistently asked students about 
homework-related classroom activities. While the questionnaires in the 1990s sug-
gested four such activities, only two were included in the 2000s. The settings of 
questions in the teacher questionnaires showed similar features to those in the 
student questionnaires across the years. Both frequency and amount of time again 
appeared in all the TIMSS years. Although all the teacher questionnaires included 
items about homework-related classroom activities, a greater variety can be seen in 
the 1990s (8 vs. 5). Furthermore, the teacher questionnaires in all but TIMSS 2011 
included items about homework types with more types in the 1990s (10 vs. 3). 

 All these changes seem to imply that homework practice has received decreasing 
attention in the 2000s. However, two new items about parental involvement in 
 students’ homework practices fi rst appeared in the TIIMSS 2011 student question-
naire. The earlier surveys (TIMSS 1999, TIMSS 2003, and TIMSS 2007) included 
only one relevant item asking school principals whether the school requested par-
ents to ensure their children completed homework. This change may suggest that 
TIMSS researchers have started to pay more attention to parents’ roles in students’ 
learning experience. Regarding the topic of homework practices, the design of 
TIMSS 2011 is seemingly more comprehensive, as practices from all three impor-
tant parties (i.e., students, teachers, and parents) have been investigated so that 
students’ homework experiences can be depicted in a more holistic manner.  

4   T stands for teacher questionnaires, whereas S stands for student questionnaires. 
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    Is There a System-Level Homework Policy Available? 

 When looking into homework policies in different education systems, the TIMSS 
studies assessed the issue from different perspectives in different TIMSS years; in 
other words, the data were collected from three parties, including school leaders, 
curriculum experts, and the TIMSS encyclopedia. Each of the parties were required 
to report different aspects of homework policy in their respective system. 
Correspondingly, the results about homework policy in this study are presented 
separately by these different information providers. 

 To school leaders, TIMSS 1995/1999 asked who had primary responsibility for 
establishing homework policies in schools. The possible options for the item include 
“not a school responsibility,” “school’s governing board,” “principal,” “department 
head,” and “teachers.” Figure  1  shows clearly that school teachers played a main role in 
Chinese Taipei, Japan, Korea, and the USA, whereas department heads took the pri-
mary responsibility in Hong Kong SAR and Singapore. Australia is the only system 
where no single party had primary responsibility; in other words, all four parties had 
some role in this work. Moreover, more responsibilities were handed over to school 
governing boards in Hong Kong SAR, department heads in Korea, and principals in the 
USA from TIMSS 1995 to TIMSS 1999. The within-system Chi-square tests 5  reveal 

5   Effect size for a Chi-square test (on nominal data) is expressed by Cramer’s  φ  (small:  φ  = 0.10, 
medium:  φ  = 0.30, large:  φ  = 0.50), when a signifi cant  χ 2  is detected. 

  Fig. 1    Primary responsible parties for establishing homework policies in schools 
Note. Chinese Taipei started to participate in the TIMSS series studies in 1999; no data on this item 
were available for England       
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that the changes between years were insignifi cant in Singapore, trivial in Australia, 
Hong Kong SAR, and Japan (i.e.,  φ  < 0.10), and small in Korea and the USA (i.e., 
 φ  < 0.30). Moreover, the magnitude of cross- system differences grew from nearly large 
in TIMSS 1995 ( φ  = 0.49) to large in TIMSS 1999 ( φ  = 0.57).  

 The TIMSS 2007 curriculum questionnaire set one item directly asking  curriculum 
experts whether there was a policy to assign mathematics homework at the eighth grade 
for schooling in their respective systems. Out of the eight systems, only Korea stated 
“yes.” However, the experts from Korea further elaborated that the Korean policy was 
only applicable to probability and statistics, and homework in the other strands was 
assigned by teachers’ discretion. Curriculum experts in both Australia and England 
highlighted that homework policy should be a school-based decision, whereas those in 
Chinese Taipei believed that teachers should be responsible. In comparison, the situa-
tion was most complex in the USA, where homework policies varied by state, district, 
school, and sometimes within districts and schools. Interestingly, curriculum experts in 
Singapore claimed that “There is no need for such a policy” and those in Hong Kong 
SAR commented that “Assignment guidelines are for teachers’ reference only.” 

 Besides the questionnaire-based data, TIMSS 2007/2011 provided rich informa-
tion on homework policies across education systems in its encyclopedia (see Mullis 
et al.,  2008 ,  2012 ). Although information on Australia, Chinese Taipei, Japan, and 
Korea was not included, the other four systems summarized how they dealt with 
homework at a policy level. While none of these systems established a system-wide 
offi cial policy on homework, both Hong Kong SAR and England gave recommen-
dations on the frequency and/or amount of homework for primary and secondary 
school students. In addition, Hong Kong SAR and Singapore highlighted the impor-
tance of providing feedback on homework.  

    How Often Do Students Receive Homework 
in Mathematics from Teachers? 

 In all the TIMSS years, mathematics teachers were asked to report the frequency that 
they assigned homework to their mathematics classes. In TIMSS 1995/1999/2011, 
the options 6  ranged from never (1) to every day (5), while TIMSS 2003/2007 asked 
for the relevant information via two separate questions, one checking whether the 
teachers assigned homework at all and the other asking for the frequency on a 3-point 
Likert scale ranging from every or almost every lesson (1) to some lessons (3). 7  

 The data on the “never” option in TIMSS 1995/1999, the “I do not assign math-
ematics homework” option in TIMSS 2011, and the corresponding items in TIMSS 
2003/2007 showed that in all eight education systems, more than 90 % of the 

6   A 5-point Likert scale was used in TIMSS 1995/1999/2011 (1: never, 2: less than once a week, 3: 
once or twice a week, 4: 3 or 4 times a week, 5: every day); the fi rst option in TIMSS 2011 was 
stated as “I do not assign mathematics homework”. 
7   A 3-point Likert scale was used in TIMSS 2003/2007 (1: every or almost every lesson, 2: about 
half the lessons, 3: some lessons). 
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mathematics teachers assigned homework to their students (see Fig.  2 ). In particu-
lar, in all but TIMSS 1995, all the Hong Kong teachers reported that they assigned 
 homework, while a higher percentage of mathematics teachers from Japan and 
Korea said they did not. Furthermore, all the systems except for Hong Kong SAR 
showed an overall downward tendency in frequency of assigning homework. In 
short, more teachers started to not assign mathematics homework to their students, 
though the changes were generally small (in particular, all  φ s are smaller than 0.20 
and changes in Chinese Taipei and the USA were trivial,  φ  < 0.10).  

 Because the teacher questionnaires in TIMSS 1995/1999/2011 used nearly the 
same ascending 5-point Likert scale to measure teachers’ homework assigning fre-
quency, a comparison across the three TIMSS years was carried out. In addition, 
TIMSS 2003/2007/2011 asked students to report on a reversed Likert scale how 
often they received homework from their mathematics teachers. 8  Table  1  lists the 
average frequencies across the systems over the years, which showed that teachers 
from most systems tended to assign mathematics homework less frequently in later 
years from both the teachers’ and the students’ perspectives. However, a clear 
increasing tendency was observed in Chinese Taipei.

   Though it appears that Japanese mathematics teachers gave students homework 
more frequently in TIMSS 2011 than TIMSS 1999, nearly returning to the TIMSS 
1995 level, their homework assigning frequencies remain the lowest or next to the 
lowest among the eight investigated systems. From TIMSS 1995 to TIMSS 2011, 
both teachers and students from Japan reported that the average homework assigning 
frequencies were consistently below “3” on an ascending 5-point Likert scale; in 
short, mathematics homework was assigned less than “once or twice a week” on 
average in Japan. A similarly low frequency was also found in England. In contrast, 

8   Though TIMSS 1995/1999 student questionnaires also had one item on homework assigning 
frequency, they used a different 4-point Likert scale for the measurement (1: almost always, 2: 
pretty often, 3: once a while, 4: never). Due to the incomparability, no analysis was done on TIMSS 
1995/1999 student data on this item. 
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  Fig. 2    Percentages of eighth grade mathematics teachers who reported that they assigned home-
work to their TIMSS classes       
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mathematics teachers from the USA consistently assigned homework at a high 
   frequency. As a matter of fact, the USA is the only system among the eight where 
both teachers and students reported average homework assigning frequencies above 
“4” (i.e., 3 or 4 times a week). 

 Among the fi ve rounds, only TIMSS 2011 used a similar Likert scale to measure the 
homework assigning frequency from both teachers’ and students’ perspectives. It is 
interesting to see that there was a high consistency between the two parties in some 
systems but low consistency in others. In particular, the Wilcoxon signed ranks tests 9  
reveal the highest consistency in Chinese Taipei ( r  = 0.01) and the lowest in Hong Kong 
SAR ( r  = 0.33). Moreover, the comparison showed that the number of systems where 
teachers’ self-reported frequencies were higher than those given by their students is the 
same as the number of systems having the reverse relationship (i.e., 4 vs. 4).  

    How Much Time Do Students Spend 
on Mathematics Homework? 

 In the TIMSS surveys, both teachers and students were asked to estimate how 
much time one student needs to spend on homework. The stems of the items 10  show 
that the estimation was not on a day/week/month-base but time per assignment. 

9   Effect size for a Wilcoxon signed rank test (on matched ordinal data between two groups) is 
expressed by  r  (small:  r  = 0.10, medium:  r  = 0.30, large:  r  = 0.50), when a signifi cant  Z  is detected. 
10   The item stem in the teacher questionnaire is “when you assign mathematics homework to the 
TIMSS class, about how many minutes do you usually assign?” and that in the student question-
naire is “when your teacher gives you mathematics homework, about how many minutes do you 
usually spend on your homework?” 

TIMSS ���� TIMSS ���� TIMSS ���� TIMSS ���� TIMSS ����

TR TR ST ST TR ST

AUS 3.78 3.78 3.65 3.47 3.52 3.40
TWN NA 3.56 3.39 3.82 3.95 3.94
HKG 3.63 3.68 3.98 4.04 3.64 4.01
JPN 2.98 2.64 2.63 2.79 2.88 2.68
KOR 3.39 3.15 3.43 2.84 3.09 2.78
SGP 4.18 4.15 4.11 3.88 3.60 3.85
USA 4.11 4.20 4.39 4.35 4.02 4.21
ENG 3.01 2.99 2.89 2.81 2.81 2.87

   Table 1    Mathematics homework assigning frequencies at the eighth grade level in eight education 
systems       

   Note :  TR  stands for teacher responses and  ST  stands for student responses (reversed). The home-
work assigning frequencies are measured on an ascending 5-point Likert scale (see footnote 7)  
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While teachers were advised to make the estimation based on an average student in 
their classes, students reported the time based on their own individual experiences. 
Different from the topic of homework assigning frequency, the TIMSS teacher sur-
veys investigated the time-spent issue on a very similar 5-point Likert scale 11  across 
the years, making a cross-year comparison feasible. In addition, the measurement 
scales used in the student questionnaires 12  were very close to the ones in the teacher 
version in the 2000s. 

 The analysis reveals clearly that in all systems but Chinese Taipei, the time 
amount estimated by students declined, and the greatest declines were observed in 
Australia and England followed by the USA (see Table  2 ). In addition, the data 
showed that the big decline in Australia and England occurred from TIMSS 2003 
to TIMSS 2007 but the rate of decline slowed recently. The reverse pattern was 
found in Hong Kong SAR and Singapore. The decline in Japan, Korea, and the 
USA was comparatively steady. Among the eight systems, students from Korea and 
Japan gave the shortest time duration estimations, while those from Singapore gave 
the longest.

   Compared to their students’ reports, the teachers’ estimations were less consis-
tent across the systems. Figure  3  reveals that the time amounts reported by the 
teachers from Japan, Singapore, and the USA had an overall downward tendency, 
while the teachers from some other systems appeared to start to have an increasing 
demand on the time necessary for doing homework, particularly between TIMSS 

11   A 5-point Likert scale was used on the items about time spent (1: fewer than 15 min (or “15 min 
or less” in TIMSS 2011), 2: 15–30 min (or “16–30 min” in TIMSS 2011), 3: 31–60 min, 4: 
61–90 min, 5: more than 90 min). One additional option “I do not assign homework” in TIMSS 
1995 questionnaire was merged with “less than 15 min” in the later analysis. 
12   In the two most recent TIMSS years, student questionnaires added one more option on the time 
spent item (TIMSS 2007: zero minutes; TIMSS 2011: my teacher never gives me homework in 
mathematics), which was combined with “1–15 min” to be recoded as “15 min or less” for the later 
analysis. 

1995 1999 2003 2007 2011

TR TR TR ST TR ST TR ST

AUS 1.87 2.08 1.93 2.31 2.00 2.07 1.99 1.94

TWN NA 2.52 2.42 2.30 2.48 2.41 2.54 2.31

HKG 2.27 2.46 2.30 2.44 2.36 2.43 2.31 2.20

JPN 2.05 2.05 2.03 2.18 2.02 2.09 1.94 1.99

KOR 2.45 2.24 2.04 1.96 2.16 1.90 2.22 1.84

SGP 2.75 2.82 2.65 2.69 2.48 2.65 2.57 2.49

USA 2.20 2.26 2.23 2.28 2.14 2.10 2.00 1.95

ENG 2.46 2.41 2.30 2.39 2.29 2.07 2.29 2.01

   Table 2    Estimated time spent on mathematics homework at eighth grade level in eight education 
systems       

   Note :  TR  stands for teacher responses and  ST  stands for student responses. The estimated time 
duration is measured on an ascending 5-point Likert scale (see footnote 12)  
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2003 and TIMSS 2011. Consistent with the fi ndings from the students’ estimations, 
homework assigned by teachers from Singapore required the longest period of time. 
However, from the teachers’ perspectives, the least time-consuming homework was 
not found in Asia but Australia.  

 Due to the fact that mathematics teachers and their students gave the estimation 
of time spent on homework based on different perspectives, inconsistencies between 
the two parties are expected. Among the eight systems, the teachers and their stu-
dents from the USA gave the closest estimations (see Fig.  4 ), while the largest gaps 
were observed in Korea. Interestingly, while TIMSS 2003 saw six systems in which 
students gave higher duration estimations than their teachers, only Japan maintained 
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  Fig. 3    Time spent on homework estimated by eighth grade mathematics teachers       
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  Fig. 4    Differences in estimations on time spent on homework between eighth grade mathematics 
teachers and their students in eight systems 
Note. The differences are calculated via teachers’ average estimations minus students’ average 
estimations; the estimations from both parties were measured on a 5-point Likert scale       
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this pattern in TIMSS 2011 with the gap getting smaller. Teachers from Chinese 
Taipei and Korea continued to give higher duration estimations than their students 
and the gaps widened overall, with the teachers’ estimation going up faster than 
their students.   

    What Types of Mathematics Homework Do Teachers Assign? 

 The issue of what types of tasks are included in homework is also an important 
aspect to be considered when assigning homework. It has been argued that the qual-
ity of homework assigned is likely to be more important than the quantity (e.g., Cai 
et al.,  2012 ; Canadian Education, Ontario Institute for Studies in Education, & 
University of Toronto,  2010 ; Epstein & Van Voorhis,  2001 ; Van Voorhis,  2004 ; 
Walker,  2011 ). Although all but TIMSS 2011 included items to ask teachers about 
this aspect of homework, a greater variety of response choices for the types of 
homework items was shown in the 1990s. Compared to the practices on the most 
frequently used types of homework (i.e., “worksheets or workbook” and “problem/
question sets in textbook”), greater differences were found in the usage of the least 
frequently used types of homework. Table  3  lists the top two and bottom two types 
of homework in terms of their utilization frequencies by eighth grade mathematics 
teachers in each system in TIMSS 1995 and TIMSS 1999.

TIMSS 1995 TIMSS 1999

(1) (2) (9) (10) (1) (2) (9) (10)

AUS PQ WW OR KJ PQ WW KJ OR

TWN NA NA NA NA WW PQ WI KJ

HKG PQ WW WG KJ PQ WW WI KJ

JPN PQ WW WI WG PQ WW WI WG

KOR PQ WW KJ WI PQ RT WI KJ

SGP PQ WW WI KJ PQ WW WR KJ

USA PQ WW KJ OR PQ WW KJ OR

ENG PQ WW OR KJ WW PQ WG KJ

   Table 3    Top two and bottom two types of homework assigned by eighth grade mathematics 
 teachers in terms of their utilization frequencies in TIMSS 1995 and TIMSS 1999       

   Note : (1) The numbers in parentheses are the ranks of each type of homework in terms of the 
 utilization frequencies 
 (2) Ten types of homework were listed in TIMSS 1995/1999 surveys, including  WW  worksheets or 
workbook,  PQ  problem/question sets in textbook,  RT  reading in a textbook or supplementary mate-
rials,  WR  writing defi nitions or other short writing assignment,  SI  small investigation(s) or gather-
ing data,  WI  working individually on long term projects or experiments,  WG  working as a small 
group on long term projects or experiments,  FC  fi nding one or more uses of the content covered, 
 OR  preparing oral reports either individually or as a small group, and  KJ  keeping a journal  
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   It can be seen that tasks that heavily involved communication skills (i.e., OR or 
KJ) were assigned as homework by mathematics teachers least frequently in most 
systems (except for Japan). In fact, in the three western systems (i.e., AUS, ENG, 
and USA), both preparing oral reports and keeping journals were less assigned as 
homework than many other types of homework. The East Asian systems also shared 
some commonalities among themselves; that is, long term projects/experiments 
were one type of homework with a low assigning frequency. 

 The analysis reveals that there were big differences in the utilization frequen-
cies 13  among different types of homework within a system as well as across systems 
in the 1990s. The most frequently used type of homework was assigned by mathe-
matics teachers at least “sometimes” (i.e.,  m  > 3) with the exception of Japan (TIMSS 
1995/1999) and England (TIMSS 1999). Teachers from Hong Kong SAR (e.g., 
TIMSS 1995: 3.96) and Singapore (e.g., TIMSS 1999: 3.82) assigned “problem/
question sets in textbook” as homework nearly “always.” In contrast, the least fre-
quently used types of homework were assigned by mathematics teachers no more 
than “rarely” (i.e.,  m  < 2). For instance, teachers from Japan used long term projects/
experiments as a group just slightly more than “never” (TIMSS 1995: 1.03; TIMSS 
1999: 1.05). The within-system analyses revealed that the largest difference was 
observed in Hong Kong SAR between “problem/question sets in textbook” and 
“keeping a journal” (TIMSS 1995:  r  = 0.92; TIMSS 1999:  r  = 0.90). In fact, the cor-
responding differences in the other systems were about as large, with the smallest 
difference being in the USA between “problem/question sets in textbook” and “pre-
paring oral reports either individually or as a small group” (TIMSS 1995:  r  = 0.77; 
TIMSS 1999:  r  = 0.80). 

 In contrast, there were only three types of homework investigated in TIMSS 
2003/2007, and they were measured on a 3-point Likert scale. 14  A comparison 
between the types listed in TIMSS 1995/1999 and those in TIMSS 2003/2007 
shows that the types stated in the later years are broader, whereas the earlier ones are 
more specifi c. In particular, both types WW and PQ in TIMSS 1995/1999 can be 
regarded as “doing problem/question sets” in TIMSS 2003/2007. Similarly, types 
SI, WI, and WG can be grouped into “gathering data and reporting” and type FC is 
close to “fi nding one or more applications of the content covered.” Some types of 
homework in TIMSS 1995/1999 were not investigated in the later years, such as 
those involving communication skills. 

 It is clear that teachers from all eight systems used “doing problem/question 
sets” for students’ homework most frequently (see Fig.  5 ). Except for Japan in 
TIMSS 2003 ( m  = 2.40), the average frequencies in both TIMSS 2003 and TIMSS 

13   The measurement is based on a 4-point Likert scale (1: never; 2: rarely; 3: sometimes; 4: always). 
A fi fth option “I don’t assign homework” was used in TIMSS 1995, which was recoded as missing 
data in the later analysis. 
14   TIMSS 2003/2007 used a 3-point Likert scale (1: always or almost always, 2: sometimes, 3: 
never or almost never), which was reversed into an ascending order in the later analysis so as to 
ease the interpretation. 

Homework and Mathematics Learning: What Can We Learn…



222

1.00

1.50

2.00

2.50

3.00

AUS TWN HKG JPN KOR SGP USA ENG

1.00

1.50

2.00

2.50

3.00

AUS TWN HKG JPN KOR SGP USA ENG

1.00

1.50

2.00

2.50

3.00

AUS TWN HKG JPN KOR SGP USA ENG

  Fig. 5    Frequencies of three types of homework assigned by eighth grade mathematics teachers in 
eight systems in TIMSS 2003 and TIMSS 2007       
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2007 in all the systems were above 2.50 on a 3-point Likert scale. Mann–Whitney 
 U  tests 15  revealed insignifi cant or trivial between-year changes in frequency in all 
the systems but Japan ( r  = 0.12). Homework about “gathering data and reporting” 
was assigned least frequently, which was particularly true in Japan (TIMSS 2003: 
1.11, TIMSS 2007: 1.10). The greatest change in the use of this type of homework 
occurred in Chinese Taipei with a decrease of about 0.23 points in terms of  utilization 
frequency ( r  = 0.22). The changes in the other systems were either insignifi cant or 
trivial. On homework about “fi nding one or more applications of the content cov-
ered,” Japanese teachers again reported a lower frequency than the other systems. 
These fi ndings are consistent with those revealed in TIMSS 1995/1999. This sug-
gests that in most cases, teachers from Japan tended to assign various types of 
homework at a low frequency. The between-year changes on application-related 
homework in all the systems were either insignifi cant or trivial.  

 In six systems, “applications of the content covered” used as homework was 
assigned more frequently than “gathering data and reporting” in both TIMSS 2003 and 
TIMSS 2007. However, the reverse was observed in Australia in TIMSS 2003 and 
England in both TIMSS years. The comparisons of the utilization frequencies between 
the two less used homework types found the smallest differences in Australia in both 
TIMSS years and the largest in Singapore in TIMSS 2003 ( r  = 0.52) and Chinese Taipei 
in TIMSS 2007 ( r  = 0.50). Furthermore, Friedman tests 16  showed that the differences in 
utilization frequencies across the three homework types in most systems were about 
trivial in both TIMSS years (i.e.,  W  > 0.60) but small in Australia (TIMSS 2003: 
 W  = 0.57) and Hong Kong SAR (TIMSS 2003:  W  = 0.52, TIMSS 2007:  W  = 0.56).  

    What Mathematics Homework-Related Activities 
Were Carried Out in Classes? 

 While homework is mainly assigned for students’ after-school studies, many teach-
ers also often used it to organize in-class activities. TIMSS 1995/1999 teacher ques-
tionnaires suggested eight mathematics homework-related classroom activities and 
fi ve were also investigated in TIMSS 2003/2007/2011. In the student  questionnaires, 
four relevant classroom activities were found in TIMSS 1995/1999 and two in 
TIMSS 2003/2007. Table  4  lists these survey items across different TIMSS years.

   Due to the fact that the measurement scales used in TIMSS varied across differ-
ent versions of the surveys as well as among different years, some adjustments have 
been made to make the cross-version and cross-year comparisons feasible. As a 
result, all the scales on the relevant items were recoded into an ascending 3-point 

15   Effect size for a Mann-Whitney U test (on independent ordinal data between two groups) is 
expressed by  r  (small:  r  = 0.10, medium:  r  = 0.30, large:  r  = 0.50), when a signifi cant  U  is detected. 
16   Effect size for a Friedman test (on matched ordinal data across more than two groups) is 
expressed by Kendall’s  W  (small:  W  = 0.60, medium:  W  = 0.40, large:  W  = 0.20), when a signifi cant 
 χ 2  is detected. 
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Likert scale, which is a reversed version of the scale used in the TIMSS 
2003/2007/2011 teacher surveys. 17  

 In all but TIMSS 2011, students were asked about how often they began their 
mathematics homework in class. The data showed that this occurred in classrooms 
in the USA most frequently, at least “sometimes” ( m  > 2). In contrast, students from 
Korea began their homework in class at the lowest frequency except for TIMSS 
2007 (replaced by England). Regarding this practice, some researchers have 
 compared the effectiveness of homework completed in school vs. homework 
 completed at home. They generally found that the later practice has a greater effect 
on achievement, especially at the higher grade levels (e.g., Cooper,  1994 ; Keith & 
Diamond,  2004 ). Kirk and Ward ( 1999 ) suggested some possible explanations for 
the phenomenon, including that working on homework in school may take away 
instructional time and schools may not provide an environment allowing students to 
concentrate fully on their homework (also see Blazer,  2009 ). 

 Among the listed mathematics homework-related classroom activities, fi ve 
were investigated in all the TIMSS years in teacher questionnaires, including 
homework- based discussion, students’ self-correction of homework, monitoring of 
homework completion, giving feedback on homework, and homework contributing 
to students’ grades/marks. The analyses showed that, of these fi ve activities, math-
ematics teachers from all eight systems monitored students’ homework completion 
most frequently except in three cases (i.e., AUS1999, TWN2011, and SGP1995; 
see Table  5 ). Moreover, teachers in the USA and England monitored more fre-

17   TIMSS 2003/2007/2011 teacher surveys used a descending 3-point Likert scale (1: always or 
almost always, 2: sometimes, 3: never or almost never). 

   Table 4    TIMSS survey items on mathematics homework-related classroom activities at eighth 
grade level       

   Note: S  stands for student questionnaire items and  T  stands for teacher questionnaire items. Items 
about similar activities but worded differently are listed together in the table  
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quently than teachers in other systems, whereas teachers in Japan monitored least 
frequently expect in one case (TWN2007). Kruskal–Wallis tests 18  showed that the 
magnitudes of the utilization frequency differences in the monitoring practices 
across the systems was at a medium level, ranging from 0.10 ( ƞ  2  in TIMSS 2011) 
to 0.12 ( ƞ  2  in TIMSS 1995).

   In contrast, on the least-frequent homework-related classroom activities, greater 
cross-system inconsistencies were observed. Furthermore, some cross-year changes 
in the least-frequent homework-related classroom activities were found in Australia 
and the USA, particularly between the 1990s and 2000s. For each type of homework- 
related classroom activity, a series of cross-system comparisons of their utilization 
frequencies were carried out for all fi ve TIMSS surveys. Besides “monitoring of 
homework completion,” “giving feedback on homework” and “students’ self- 
correction of homework” were another two classroom activities for which the cross- 
system differences maintained a medium level in the 2000s (i.e.,  ƞ  2  < 0.14). Though 
the cross-system differences for the other two classroom activities were at a large 
level in TIMSS 1995 (i.e.,  ƞ  2  > 0.14), only on “homework-based in-class discussion” 
did the systems keep great discrepancies in all the years (highest  ƞ  2  in TIMSS 2011: 
0.39). On “homework contributing to students’ grads/marks,” the magnitude of 
cross-system difference decreased to  ƞ  2  = 0.17 in TIMSS 2011. Finally, the eight sys-
tems had increasingly similar practices related to “giving feedback on homework” 
with the magnitude of the difference in the most recent TIMSS being  ƞ  2  = 0.02. 

 Besides the cross-system comparison, a series of cross-year comparisons within 
each system were carried out to examine how frequently each system used home-
work to organize different classroom activities across the TIMSS years. It was 
found that on the use of homework to organize in-class discussion, the cross-year 

18   Effect size for a Kruskal Wallis test (on independent ordinal data across more than two groups) 
is expressed by  ƞ 2  (small:  ƞ 2  = 0.01, medium:  ƞ 2  = 0.06, large:  ƞ 2  = 0.14), when a signifi cant  χ 2  is 
detected. 

   Table 5    Most-frequent (MF) and least-frequent (LF) mathematics homework-related classroom 
activities at eighth grade level in eight systems from TIMSS 1995 to TIMSS 2001   

 1995  1999  2003  2007  2011 

 MF  LF  MF  LF  MF  LF  MF  LF  MF  LF 

 AUS  M  C  F  C  M  G  M  G  M  G 
 TWN  NA  NA  M  C  M  C  M  F  D  C 
 HKG  M  C  M  C  M  C  M  C  M  C 
 JPN  M  D  M  D  M  D  M  D  M  D 
 KOR  M  G  M  G  M  D  M  D  M  D 
 SGP  F  G  M  G  M  G  M  G  M  G 
 USA  M  C  M  C/D  M  F  M  F  M  F 
 ENG  M  C  M  C  M  C  M  C  M  C 

   Note :  C  students’ self-correction of homework,  D  homework-based in-class discussion,  F  giving 
feedback on homework,  G  homework contributing to students’ grades/marks,  M  monitoring on 
homework completion  
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  Fig. 6    Cross-year changes on the utilization frequencies of homework-related classroom 
activities in eight systems       

differences in all eight systems were at least at a medium level, ranging from 0.09 
( ƞ  2  in England) to 0.19 ( ƞ  2  in Japan). The average utilization frequencies of this 
type of classroom activity in all the systems revealed an increasing tendency across 
TIMSS years with the highest frequency in Chinese Taipei (TIMSS 2011:  m  = 2.84). 
In comparison, the changing trends on the other four types of classroom activities 
across the systems showed greater variances, particularly on “homework contribut-
ing to students’ grades/marks” (see Fig.  6 ).  

 In all the East Asian systems but Chinese Taipei, the magnitudes of the frequency 
changes in all the classroom activities except monitoring practices were about 
medium. In contrast, the magnitudes in the USA and England on all but homework- 
based in-class discussions were relatively small ( ƞ  2  < 0.06).  
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    How Much Were Parents Involved in Students’ Homework? 

 It is believed that parents are a valuable asset to promoting student success, 
 especially during their children’s after-school time (e.g., Balli, Wedman, & Demo, 
 1997 ; Chandler, Argyris, Barnes, Goodman, & Snow,  1986 ; Epstein,  1988 ; Horsley 
& Walker,  2008 ; Leone & Richards,  1989 ; Patall, Cooper, & Robinson,  2008 ; Van 
Voorhis,  2003 ; Xu & Corno,  1998 ). Beginning from TIMSS 1999, parental involve-
ment in students’ homework was investigated, though not specifi cally with respect 
to mathematics homework. In particular, TIMSS 1999/2003/2007 asked school 
principals/headmasters whether the schools expect/request parents to ensure their 
children completed homework. While this item was more at an expectation level, 
two new items appeared in the TIMSS 2011 student questionnaires asking for par-
ents’ actual monitoring behaviors on students’ homework. 

 More than 90 % of the schools in all the six systems other than Japan and Korea 
expected/required students’ parents to check their children’s homework completion 
(see Fig.  7 ). Across the three TIMSS years, schools in Australia and Chinese Taipei 
did not have big changes on this “policy,” while fewer schools from Hong Kong 
SAR, Singapore, and the USA seemed to have this expectation of parents in TIMSS 
2007 as in TIMSS 1999. In contrast, the percentages of schools having this require-
ment in Japan increased steadily from 44.6 % in TIMSS 1999 to 84.6 % in TIMSS 
2007. Korea maintained a comparatively low level of this expectation; in TIMSS 
2007, there were only about 54.1 % of Korean schools having such a policy, which 
was far lower than the other seven systems.  

 From the students’ perspective, TIMSS 2011 revealed that parents from Korea 
spent the least time on monitoring whether their children set aside time for 
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  Fig. 7    Percentages of schools having expectations/requirements on parents to ensure their children 
complete homework at the eighth grade level in eight systems from TIMSS 1999 to TIMSS 2007
 Note . No data were available in TIMSS 1999 and TIMSS 2003 in England       
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 homework. 19  Interestingly, parents from the three Western systems were found to be 
involved in such monitoring of time more frequently than those from East Asia (see 
Fig.  8 ). In particular, parents from Australia, England, and the USA did so at least 
“once or twice a week” (i.e.,  m  > 3), whereas parents from Korea and Japan did so 
no more than “once or twice a month” (i.e.,  m  < 2). Among the fi ve East Asian sys-
tems, parents from Singapore and Hong Kong SAR seemed to have closer practices 
to those from Western systems.  

 Compared to monitoring whether students reserved time for homework, par-
ents from Korea and Japan appeared to care more about whether their children did 
their homework. The reverse was observed in the other systems. However, once 
again, parents from the Western systems were found to check whether their chil-
dren did their homework more frequently than those from the East Asian systems. 
The largest difference was revealed between Hong Kong SAR and England 
( r  = 0.34); parents from Hong Kong SAR checked no more than “once or twice a 
month” ( m  = 1.61), while parents from England did so nearly “once or twice a 
week” ( m  = 2.98). In addition, within-system analyses found that parents from 
Hong Kong SAR ( ∆  = 0.73,  r  = 0.54) and Singapore ( ∆  = 0.75,  r  = 0.55) showed 
greater differences between the two homework monitoring behaviors than the 
other systems.  

19   A 4-point Likert scale was used on the two parent-related items in TIMSS 2011 (1: every day or 
almost every day, 2: once or twice a week, 3: once or twice a month, 4: never or almost never), 
which was reversed before the analysis to ease the interpretation. 
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  Fig. 8    Frequencies of two types of parental monitoring activities on homework at eighth grade 
level in eight systems in TIMSS 2011       

 

Y. Zhu



229

    Summary and Conclusions 

 Homework as “an important extension of in-school opportunities to learn” (Good & 
Brophy,  2003 ) has been around for decades. Over the years, considerable research 
has been conducted regarding the effects of homework on students’ learning. As a 
result, the debate over homework has also raged on for years and continues to be a 
controversial topic today. Both supporters and adversaries of homework could pro-
duce a long list of consequences of homework to sustain their own standpoints. In 
fact, homework is a hot button issue not only inside academia but also outside. It 
appears that nobody is totally free from the homework debate, from the masses up 
to national leaders. 

 One important reason for the fragmented and often confl icting fi ndings about 
homework is suggested to relate to the complex nature of homework. Not only is the 
impact of homework on students’ learning affected by many other factors, but also 
homework itself is infl uenced by more factors than any other instructional strate-
gies. From a methodological point of view, researchers have argued that many exist-
ing studies suffer from methodological fl aws, such as small sample sizes and not 
taking the hierarchical nature of homework data into account. According to them, 
many fi ndings about homework have been infl ated. 

 Through analyzing the homework-related data from the  Trends in International 
Mathematics and Science Study  (TIMSS), this study aims to depict a comprehen-
sive picture of the role homework plays in students’ school lives. As one of the most 
extensive international survey studies, the TIMSS collected contextual data from 
students, teachers, school principals/headmasters, and curriculum experts every 4 
years. In this sense, not only has the hierarchical element been accounted for, but 
also changes in homework practices over the years. Moreover, such multilevel data 
also allow each participating system to assess the alignment between the intended 
and implemented/attained curriculum from the perspective of homework. 

 At the  intended curriculum  level, though many systems reported that there was 
no system-wide policy about homework, assigning homework was recommended or 
common practice. There are also some systems providing recommendations on the 
frequency and amount of homework as well as guidance and feedback on home-
work. Many systems believed that schools and teachers are responsible for assign-
ing homework mainly based on students’ abilities and needs. The data from TIMSS 
1995/1999 showed that the primary responsibility is mainly on teachers in Chinese 
Taipei, Japan, Korea, and the USA and on department heads in Hong Kong SAR 
and Singapore. Some changes were observed from TIMSS 1995 to TIMSS 1999; 
that is, school governing boards in Hong Kong SAR and principals in the USA 
started to take more responsibility for establishing homework policy. 

 At the  implemented / attained curriculum  level, more than 90 % of the eighth 
grade mathematics teachers from the eight investigated systems reported that they 
assigned homework to their students. However, the data also found that in all 
but Hong Kong SAR, over time more teachers started to not assign homework, 
though the changes were small. From both the teachers’ and students’ perspectives, 
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teachers from most of the systems tended to assign mathematics homework less 
frequently than before. Among the eight systems, teachers from Japan assigned 
mathematics homework no more than “once or twice a week,” while their colleagues 
in the USA did so at least “3 or 4 times a week.” Furthermore, a comparison between 
teacher data and student data found that the two groups reported similar frequencies 
of assigning homework in Chinese Taipei, but students and teachers reported quite 
different frequencies in Hong Kong SAR and Korea. 

 Besides frequency, the amount of time spent on homework is another important 
factor when concerning students’ workload. Across the, TIMSS years, based on 
their estimations for an average student, teachers from Japan, Singapore, and the 
USA appeared to make decreasing demands on the length of time necessary for 
doing homework. In contrast, teachers from the other systems tended to request 
more homework time in recent years. Among the systems, teachers from Singapore 
assigned mathematics homework requiring the longest period of time to complete 
and their Australian colleagues were found least demanding in this respect. However, 
the student data revealed somewhat different results. Across the, TIMSS years, 
according to the students, the amount of time they spent on homework generally 
decreased, except in Chinese Taipei. While Singapore again was the system where 
students needed to spend the longest period of time on homework, students from 
Korea and Japan worked on homework for the least amount of time. Furthermore, 
in all but Japan, teachers have recently tended to report longer homework time esti-
mations than their students nowadays; the reverse was observed in earlier years. 

 As argued above, the quality of homework may be more infl uential in students’ 
learning experiences than the quantity of homework. In all the systems, “worksheets 
or workbooks” and “problem/question sets in textbook” were the most commonly 
used homework types. Tasks heavily involving communication skills were rarely 
assigned as mathematics homework in most systems (except for Japan). Teachers 
assigned the most commonly used types of homework at least “sometimes” and in 
some systems, the frequency was even close to “always.” In contrast, for the uncom-
monly used types, teachers in some systems almost “never” assigned them as stu-
dents’ mathematics homework. Great differences in utilization frequencies among 
various types of homework were observed in all the systems in all the TIMSS years. 
In addition, the data showed that teachers in Japan tended to use all types of tasks as 
homework at a lower frequency than their colleagues from other systems. 

 Besides its value in extending learning opportunities beyond school, homework 
is also valuable in building on students’ learning at school. In fact, the TIMSS sur-
veys have suggested various kinds of homework-related in-class activities. Of these 
activities, teachers from all eight systems almost always monitored their students’ 
homework completion with the highest frequency across all the TIMSS years. 
However, teachers from different systems had greatly differing practices with 
respect to the least-frequent homework-related in-class activities. In particular, 
teachers in Japan and Korea rarely had homework-based discussions; teachers in 
Chinese Taipei and England rarely asked students to do self-correlation of home-
work; teachers in Singapore and Australia seldom used homework to contribute to 
students’ grades/marks; and teachers in the USA did not give much feedback on 
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homework. All these different practices could, to a certain degree, refl ect teachers’ 
different understandings about the function as well as the purpose of using home-
work for their students’ learning. 

 The TIMSS surveys investigated homework practices at various curriculum lev-
els. The results showed that the degree of alignment between these hierarchical 
levels varied across systems. In general, on popular practices, different systems 
showed a high commonality, while on those unpopular ones, more variation was 
revealed. Such information is particularly valuable for systems to refl ect on their 
own practices in a global context. Moreover, given the cyclic design of the TIMSS, 
the data from the TIMSS allow each system to measure changes within itself over 
the years. This is useful for reviewing the coherence between the desired and actual 
state of the educational system, and is particularly informative for policy makers 
and curriculum developers. 

 Over the years, TIMSS has also made changes in its measurement designs, which 
imply some important messages about homework practices. First, homework- 
related items are now grouped under specifi c sections entitled “homework” or 
“mathematics homework” rather than being scattered as in the early TIMSS  surveys. 
This may suggest that homework has become an indispensable component of stu-
dents’ school lives. In fact, when preparing the TIMSS encyclopedia, many systems 
included “homework policies” as one important section in their respective chapters. 
Though the analysis revealed that some teachers did not use homework in their 
mathematics teaching, the important role of homework in students’ mathematics 
learning was generally recognized by the majority of the teachers around the world. 
In this aspect, teachers from Japan appeared to make the least use of homework, 
which might be related to the higher prevalence of cram schools in their system than 
in all the other systems. 

 Second, frequency and amount of homework are the two common themes inves-
tigated in all rounds of the TIMSS surveys. Though there are items on the types of 
tasks included in homework and homework-related in-class activities in almost all 
the TIMSS surveys, the variety of types goes down from the 1990s to 2000s. This 
may be related to the fi ndings from the early surveys that certain types of tasks and 
in-class activities received more attention from teachers while others were hardly 
used. There are two possible reasons for the low level of variety. One is related to 
diffi culty in implementation (particularly about designing and evaluating) and the 
other is related to teachers’ beliefs about the value of homework in students’ math-
ematics learning. More investigations will need to be carried out to uncover the 
underlying causes. 

 Third, both teachers’ and students’ perspectives about their homework practices 
were investigated in the TIMSS surveys. This two-level design takes into consider-
ation the differences between the implemented and attained curriculum. In fact, this 
study did fi nd many discrepancies between the two different perspectives in many 
systems and in most the TIMSS years. Moreover, the corresponding data are also 
more in line with the hierarchical nature of homework data. Therefore, they are 
more methodologically sound for further analysis on how homework practices by 
different parties infl uence students’ learning. 
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 Finally, starting from TIMSS 1999, parents’ roles in students’ homework 
received attention from the TIMSS researchers. In the most recent round, the rel-
evant investigation on parental involvement has been moved from the “intended” 
level to “attained” level. That is, the focus shifted from what parents were expected/
required to do to what parents have actually done with their children’s homework 
practice at home. This change embodies one function of homework as a bridge 
between school and home. In other words, parents’ involvement could play an 
important role in the process of students doing homework via their monitoring and 
assistance, and students’ experiences with homework at home can be seen as a 
kind of extension of school learning. This change in the TIMSS design may refl ect 
that students’ learning is not only limited to the school context, but happens in a 
broader context.     
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      Effect of an Intervention on Conceptual 
Change of Decimals in Chinese Elementary 
Students: A Problem-Based Learning 
Approach 

             Ru-De     Liu      ,     Yi     Ding      ,     Min     Zong     , and     Dake     Zhang    

          In this chapter, we described a study that compared a problem-based learning (PBL) 
approach to a traditional approach for teaching decimal concepts to 76 Chinese fi fth 
graders. This chapter started with a review of literature regarding conceptual change, 
challenges in teaching decimals to elementary students, the PBL in relation to self- 
effi cacy, and the rationales for conducting the present study. Then, we elaborated 
the PBL approach as an intervention approach in an independent sample of fi fth 
graders. Finally, we discussed implication of PBL in educational settings. 

 Decimal fraction learning is considered one of the cornerstones of mathematics 
education internationally (Stacey et al.,  2001 ). In the United States, formal instruc-
tion of decimal fractions begins in fourth grade and continues throughout all second-
ary grade levels (National Council of Teachers of Mathematics (NCTM),  2000 ). The 
NCTM Standards require third to fi fth graders to be able to understand and convert 
fractions, decimals and percentages. And students older than sixth graders should 
fl exibly solve problems involving fractions, decimals and percentages. In China, 
decimals and fractions are also introduced to students at the elementary level begin-
ning in fourth grade (Zong,  2006 ). 
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 A substantial number of studies have demonstrated that children have diffi culties 
understanding decimals (Baturo,  1998 ; Hiebert & Wearne,  1983 ; Ni & Zhou,  2005 ; 
Resnick et al.,  1989 ; Sackur-Grisvard & Leonard,  1985 ; Stacey & Steinle,  1998 ; 
Stafylidou & Vosniadou,  2004 ; Vamvakoussi & Vosniadou,  2004 ). Diffi culty with 
fractions (including decimals and percent) has been identifi ed as a pervasive prob-
lem and is a major obstacle preventing students from progressing in mathematics, 
including algebra (National Mathematics Advisory Panel,  2008 ). Even a consider-
able number of adults continue to hold such misconceptions (Putt,  1995 ; Silver, 
 1986 ; Stacey et al.,  2001 ). Therefore, exploring how to help children develop their 
decimal knowledge is a priority for educational researchers. 

 In addition to the technical aspects of learning specifi c mathematics concepts, 
noncognitive variables play a role in student performance in mathematics. One such 
factor is students’ self-effi cacy. Bandura ( 1986 ) has argued that self-effi cacy has a 
powerful impact on academic achievement. Research regarding mathematics 
 self- effi cacy has indicated that, in comparison to their counterparts with low self- 
effi cacy, students with high self-effi cacy demonstrate stronger persistence in diffi cult 
problem-solving situations and have better execution results in mathematics compu-
tation (Collins,  1982 ; Hoffman & Schraw,  2009 ). Thus, exploring self- effi cacy in the 
context of mathematics learning has been of interest to educators and researchers. 

    A Conceptual Change Approach to Explain Children’s 
Diffi culties with Decimals 

 Rational numbers, including integers, terminating decimals, and repeating deci-
mals, are numbers that can be expressed as a/b (both a and b are integers, and b can 
not be zero) (Vamvakoussi & Vosniadou,  2010 ). A single rational number, such as 
½, can be represented in several ways (e.g., 5/10, 50/100, or 0.5), which all have the 
same value and are all alternative representations of the same rational number. In 
this chapter, we use the term “decimals” to refer to decimal representations of ele-
ments (i.e., a subset) of the set of rational numbers; we do not discuss decimals such 
as  π  that are not rational numbers. 

 The conceptual change approach has been recently used to explain students’ 
persistent misconceptions regarding rational numbers (Vosniadou,  2007 ; Vosniadou 
& Verschaffel,  2004 ). Children’s initial number frameworks are essentially natural 
numbers, which possess discreteness, whereas rational numbers have the feature of 
density, closely related to the concept of infi nity (Hannula, Maijala, Pehkonen, & 
Soro,  2001 ; Malara,  2001 ; Merenluoto & Lehtinen,  2002 ). Natural numbers follow 
the successor principle (Vamvakoussi & Vosniadou,  2010 ) that all natural numbers 
are well ordered. Each natural number has a defi nite position in a sequence (e.g., 3 
is the third number in the sequence of natural numbers), but rational numbers do not 
have this feature. When non-natural numbers, such as decimals and fractions, are 
introduced to students, their prior number frameworks based on natural numbers 
might hinder their understanding of the non-natural numbers. 
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  Misconceptions . Previous literature has documented substantial information 
regarding the diffi culties students usually encounter when they learn decimals. 
A common misconception is the notion that  longer is larger  (Moskal & Magone, 
 2000 ; Moss,  2005 ; Roche,  2005 ), in which students evaluate the value of a decimal 
number by comparing the number of its digits (e.g., 0.56 is larger than 0.8). A con-
trasting misconception is that  shorter is larger , in which the students confuse deci-
mals with  fraction denominators (Steinle & Stacey,  2004 ). For example, in one 
study, children consistently judged that the larger number had fewer digits to the 
right of the decimal point; thus, 2.43 was larger than 2.897 (Sackur-Grisvard & 
Leonard,  1985 ). Another misconception,  multiplication makes bigger  (Fischbein, 
Deri, Nello, & Marino,  1985 ; Steffe,  1994 ), is true for natural numbers other than 
one, but is incorrect for decimal or fractional numbers less than one. Misconceptions 
can also arise in children’s understanding of the density and infi nity features of deci-
mals. Finally, children often have diffi culty with combining a string of digits into a 
single decimal quantity (Hannula et al.,  2001 ; Malara,  2001 ; Merenluoto & 
Lehtinen,  2002 ; Resnick et al.,  1989 ). 

 Children’s misconceptions are often associated with over-generalization from 
their knowledge of natural numbers. For example,  longer is larger  and  multiplica-
tion makes bigger  may originate in children’s experiences with comparing whole 
numbers. Children’s diffi culty with understanding the infi nity feature (i.e., there are 
infi nitely many decimal numbers between any two different decimals) of decimals 
can also be associated with their existing concept of whole numbers (Nunes & 
Bryant,  2007 ). In the domain of whole numbers, a number is a set of units of one, 
whereas in decimals, there is no minimum unit corresponding to ones. Instead, the 
minimum unit of decimals could be tenths, hundredths, thousandths, and so on. 
Children tend to intuitively generalize their mathematical reasoning skills regarding 
whole numbers to solving problems with decimals, which often leads to errors.  

    Existing Interventions for Teaching Decimals 

 The literature has documented programs that help children, sometimes identifi ed as 
having had low achievement, to learn decimals. Two studies (Resnick, Bill, & 
Lesgold,  1992 ; Resnick, Bill, Lesgold, & Leer,  1991 ) emphasized the importance of 
helping low-SES African American parents to understand algebra and decimals and 
thus to provide their children with a better learning environment at home. Another 
study (Rao & Kane,  2009 ) helped children with intellectual disabilities to learn deci-
mal calculation using a behavioral simultaneous prompting procedure in which the 
teacher delivered the target stimuli and the controlling prompt simultaneously; thus, 
the children did not have time to respond independently and therefore did not learn 
the task with errors. 

 Several existing interventions have taught students decimal concepts using rep-
resentation techniques, such as using a number line and blocks to represent the 
place values. Hiebert and Wearne (Hiebert,  1988 ; Wearne,  1990 ; Wearne & Hiebert, 
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 1988 ,  1989 ) conducted a group of studies using representation techniques. These 
studies emphasized using manipulatives (blocks) to promote conceptual under-
standing of decimals. The researchers taught students using place-value blocks in 
which different shaped blocks were named to represent different place values. 
Specifi cally, large cubes represented a unit, a fl at block represented a tenth of a unit, 
and a long block represented a hundredth of unit. Results showed that fourth through 
sixth graders made notable improvement based on the intervention. Similarly, Swan 
( 1983 ) used representation techniques (a number line model) to help students under-
stand the meaning of decimal notation and found that the students made consider-
able progress. Woodward, Baxter, and Robinson ( 1999 ) also successfully used 
visual representations (e.g., wood block rectangles, squares, or cubes) to teach basic 
decimal concepts to children with learning disabilities. 

 One group of studies focused on the effects of exposing children to their miscon-
ceptions regarding problem solving, where decimals were used. For example, Swan 
( 1993 ) compared two classes whose teachers had adopted two different teaching 
styles. One class was taught with a “positive-only” teaching style. First, the teachers 
explained the concepts and methods of using a number line; then, the students prac-
ticed using this method but were not asked to mark their work or diagnose errors. 
Another class was taught using a “confl ict teaching style,” in which the teacher 
initially gave students problems that exposed them to misconceptions and taught 
students a method using a number line; then, the teacher led a discussion of the 
students’ errors and misconceptions. The “confl ict teaching style” resulted in sig-
nifi cantly more progress in children’s achievement than the “positive-only style.” 
The results suggested that exposing children to their misconceptions helped them to 
overcome their errors. Another study by Pierce, Steinle, Stacey, and Widjaja ( 2008 ) 
revealed the importance of identifying college students’ diffi culties with decimals. 
In this study, nursing students were given a decimal problem-solving test that identi-
fi ed the students’ misunderstandings of particular items. Next, the teacher used vari-
ous models to illustrate the place value and base ten concepts, and students were 
encouraged to ask questions and provide responses. This study found signifi cant 
improvement by the students on a delayed post-intervention test, and the research-
ers concluded that it was necessary to expose students to their errors and plan for 
remediation of students’ misconceptions before teaching procedure rules. 

 Similarly, Huang, Liu, and Shiu ( 2008 ) revealed the effectiveness of exposing 
students to incorrect examples to facilitate their conceptual understanding of deci-
mals. Sixth graders were exposed to incorrect examples when learning the meaning 
of decimals (e.g., in 5.4, saying the .4 represents 4 ones instead of 4 tenths). After 
4 weeks, these students performed better than students who were not presented with 
incorrect examples. 

 In summary, existing interventions have suggested the importance of exposing 
students to their mathematical misconceptions and errors. Researchers have reported 
that providing incorrect examples or examining students’ own mistakes can pro-
mote deeper refl ection on correct concepts (VanLehn,  1999 ) and increase students’ 
frequency of choosing correct strategies (Siegler,  2002 ). Based on these fi ndings, it 
is plausible to assume that PBL would be effective for improving children’s concep-
tual understanding of decimals.  
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    Problem-Based Learning and Self-Effi cacy 

 PBL is a student-centered instructional strategy in which students learn through 
solving problems in groups and making refl ections on their problem solving experi-
ences. PBL is rooted in constructivist theories of learning that stress the importance 
of learners being engaged in constructing their own knowledge (Mayer,  2004 ; 
Palincsar,  1998 ). In PBL, students work in groups and are challenged with open 
ended and ill-defi ned problems. PBL is highly student-centered: Students are 
encouraged to explore the solutions and direct the problem solving process by 
themselves, and teachers only serve as facilitators (Hmelo & Guadial,  1996 ; 
Quntana, et al.). PBL is reported to be effective in enhancing content knowledge 
and fostering the development of communication, problem-solving, and metacogni-
tive skills (Hmelo-Silver, Duncan, & Chinn,  2007 ). PBL has been shown to be 
effective in various empirical studies as described by Hmelo-Silver et al. For exam-
ple, “there is an extensive body of research on scaffolding learning in inquiry- and 
problem-based environments (Collins, Brown, & Newman,  1989 ; Davis & Linn, 
 2000 ; Golan, Kyza, Reiser, & Edelson,  2002 ; Guzdial,  1994 ; Jackson, Stratford, 
Krajcik, & Soloway,  1996 ; Reiser,  2004 ; Toth, Suthers, & Lesgold,  2002 ” (p. 100, 
Hmelo-Silver, Duncan, & Chinn,  2007 ). Theory based and empirically validated 
strategies for effectively scaffolding students during PBL have been developed by 
many researchers (Hmelo-Silver,  2006 ; Hmelo-Silver, Duncan & Chinn  2007 ; 
Reiser et al.,  2001 ). PBL is often used to assist learning of complex tasks. Complex 
tasks often require scaffolding to help students engage in sense making, self-man-
agement of their problem-solving processes, and facilitate students to articulate 
their thinking and refl ect on their learning experiences (Quintana et al.,  2004 ). 
Scaffolding helps to reorganize complex tasks and reduce cognitive load by struc-
turing a task in a way that allows the learners to focus on relevant aspects of the task 
(Hmelo-Silver,  2006 ). 

 Many challenging tasks require both adequate skills and self-effi cacy, which is 
about one’s beliefs about whether or not one can successfully complete a task 
(Bandura,  1986 ). The relationship between PBL and self-effi cacy has gained increas-
ing attention. For example, self-effi cacy was a signifi cant predictor of science 
achievement in middle school students in a computer-enhanced PBL environment 
(Liu, Hsieh, Cho, & Schallert,  2006 ). For adult learners, specifi c instructional strate-
gies (i.e., authentic problems of practice, collaboration, and refl ection) used in PBL 
were reported to improve levels of self-effi cacy in undergraduate computer science 
students (Dunlap,  2005 ). For educators, those with higher scores of self-effi cacy 
demonstrated a signifi cantly higher use of a PBL approach, direction instruction, and 
communication skills in mathematics teaching (Ordonez-Feliciano,  2010 ). 

 However, there are no studies dealing with the application of PBL to the instruc-
tion of decimal fractions in Chinese elementary students with consideration of stu-
dents’ self-effi cacy. We were particularly interested in the PBL approach in Chinese 
students partially due to the fact that traditional Chinese mathematics instruction 
often follows a curriculum-centered approach with relatively large student–teacher 
ratios, making few opportunities available for students to be exposed to a PBL 
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 environment. Given that previous studies have found that exposing students to their 
misconceptions or errors and to challenging problems was effective in enhancing 
their conceptual understanding of decimals, the purpose of the present study was to 
investigate the following questions: (a) Does a PBL approach outperform a tradi-
tional instructional approach to enhance conceptual change in decimal computa-
tion? (b) Does a PBL approach outperform a traditional instructional approach to 
promote metacognition, measured by explicit interpretation of strategy use? and (c) 
Does a PBL approach lead to a higher level of self-effi cacy and academic interest 
than a traditional instructional approach?  

    Method 

    Design 

 This study utilized a quasi-experimental design to compare pretest and posttest 
measures. The independent variable was the instructional method, consisting of a 
PBL approach in the experimental group and a traditional instructional approach in 
the control group.  

    Participants and Setting 

 The instructors were two experienced mathematics education teachers. One investi-
gator majoring in educational psychology was on site for training, progress monitor-
ing, and data collection. Each classroom had one experienced teacher as the lead 
teacher. The two classes of students had mathematics classes at different time periods 
on each day, so the investigator was able to observe classroom activities and col-
lected data both in the control group and the experimental group for similar amounts 
of time to avoid the Hawthorne Effect. The participants were 76 fi fth graders at an 
elementary school in the urban area of Beijing in Mainland China. The students were 
in two parallel classes, which were chosen because they were equivalent in terms of 
the students’ performance in mathematics. Both classes followed the same mathe-
matics curriculum, had a similar pace (teaching unit by unit according to textbook), 
used the same curriculum-based exams (designed by curriculum committees at the 
school), and the two teachers had comparable teaching experiences (i.e., years of 
teaching mathematics, teaching similar students at similar schools). Both teachers 
were new to the two groups because data collection started in the beginning of the 
school year. One class ( n  = 38) received experimental PBL instruction that empha-
sized problem-based scenarios for teaching and students’ own computation errors 
and prior experiences for discussion and problem analysis. The other class ( n  = 38) 
received traditional instruction that emphasized curriculum-centered lecture and use 
of demonstration examples from the textbooks. All students were with normal 
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intellectual abilities and were enrolled in regular classroom settings. Students’ prior 
whole number and decimal number knowledge was similar due to the highly uniform 
school instruction implemented in Chinese schools.  

    Dependent Measures 

  Decimal computation test . To quantitatively measure students’ conceptual change in 
decimals, we developed two sets of decimal computation tests. The measurement 
instruments used in this study involved a pretest (eight items in total) and a posttest 
(ten items in total). The pretest and posttest involved computation of both decimal 
and whole number problems. The pretest had three items that involved whole num-
ber computation only. Of the other fi ve items relevant to decimals in the pretest, three 
of them involved decimal computation only and two of them involved mixed com-
putation. The posttest had four items that involved whole number computation only. 
Of the other six items relevant to decimals in the posttest, four of them involved deci-
mal computation only and two of them involved mixed computation. Each test 
included pairs of corresponding decimal and whole number items, as explained in 
Table  1 . The computations included addition, subtraction, multiplication, and divi-
sion. These items were chosen from  Beijing Compulsory Education Curriculum 
Reform Experimental Materials of Mathematics in Elementary School - Volume IX  
(Lu & Yang,  2005 ). The pretest and posttest items were not identical due to consid-
eration of the curriculum taught during the 22 classes. The pretest functioned as a 
placement test to examine whether the experimental group had similar prior knowl-
edge as the control group. The posttest functioned as a summative test to measure 
whether students had mastered designated computation skills after receiving 22 
classes of formal instruction. The diffi culty levels of the pretest and posttest were 
consistent with curriculum content. Cronbach’s alpha was .63 for the pretest and 0.72 
for the posttest. Because of the limited testing time, we only designed eight items for 
the pretest and ten items for the posttest. The relatively low reliabilities might be 
attributable to the number of testing items we had. Sample items are listed in Table  1 .

    Qualitative measure of students ’  conceptual understanding of decimal division . 
Students’ conceptual change was qualitatively measured by an open-ended question 
on the posttest to examine students’ conceptual understanding of decimal division. The 
open-ended question asked, “Currently, there is a student who does not understand 
decimal division. Please elaborate your procedures of problem solving. For example, 
tell this student what to do fi rst, what to do as a second step, and then what else.” 
  Self - effi cacy survey . A self-report questionnaire was developed based on Qin ( 2003 ) 
and Zhang ( 2005 ) to explore (a) social self-effi cacy, (b) academic self- effi cacy, and 
(c) academic interest. The questionnaire utilized a 6-point Likert scale ranging from 
 completely unlike me  to  completely like me . The subtest of social self- effi cacy 
included six items, with 36 points as the highest score. The subtest of academic self-
effi cacy included seven items, with 42 points as the highest score. The subtest of 
academic interest included seven items, with 42 points as the highest score. 
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The internal consistency coeffi cients were 0.71, 0.92, and 0.92 for the three  subtests, 
respectively. The survey was administered to students during both the pretest and 
the posttest. Sample items are listed in Table  1 .  

    Coding and Scoring 

  Decimal computation test . First, a graduate assistant who was unaware of the pur-
pose of the study scored the decimal computation test using an answer key. 
Specifi cally, items on the test were scored as correct or incorrect, with one point 
awarded if the correct answer was given. In the pretest, there were fi ve items involv-
ing decimal computation. In the posttest, there were six items involving decimal 

        Table 1    Sample problems in probes   

 Measures  Sample items 

  Computation tests  ( All items included ) 
 Pretest computation  10.1÷0.2 (decimal)  0.9 + 2.32 (decimal) 

 15 × 0.8 (mixed)  5.85 × 0.60 (decimal) 
 101÷2 (whole number)  9 + 232 (whole number) 
 585 × 60 (whole number)  100 − 2.56 × 5 + 32.5÷10 (mixed) 

 Posttest computation  1.21÷0.2 (decimal)  0.9 + 3.25 (decimal) 
 5.58 − 0.9 (decimal)  7.8 × 0.60 (decimal) 
 120÷20 (whole number)  9 + 325 (whole number) 
 78 × 60 (whole number)  2.56 × 5 + 32.4÷10 − 4.85 (mixed) 
 2.5 × 18 − 0.67 + 0.5÷5 (mixed)  558 − 9 (whole) 

  Sample items of self - effi cacy  and  interest survey  
 Students are asked to rate on a Likert scale (i.e., 1–6, 1 stands for completely disagree and 6 
stands for completely agree) according to each item 
 Social self-effi cacy 
questionnaire 

 Sample A: I can successfully interpret my thoughts to my classmates 
 Sample B: When other students talk with me, I do not know what I 
should talk about with them 

 Academic self-effi cacy 
questionnaire 

 Sample A: If I have suffi cient time, I can learn mathematics well 
 Sample B: I can learn math even if some contents are very diffi cult 

 Academic interest 
questionnaire 

 Sample A: I like math class more than I do other subjects 
 Sample B: The problems discussed in math class are very interesting 

    Note : In the pretest computation, 10.1 ÷ 0.2 (decimal) corresponds with 101 ÷ 2 (whole number); 
0.9 + 2.32 (decimal) corresponds with 9 + 232 (whole number); 5.85 × 0.60 (decimal) corresponds 
with 585 × 60 (whole number). In the posttest computation, 1.21 ÷ 0.2 (decimal) corresponds with 
120 ÷ 20 (whole number); 7.8 × 0.60 (decimal) corresponds with 78 × 60 (whole number); and 
0.9 + 3.25 (decimal) corresponds with 9 + 325 (whole number). Between pretest and posttest com-
putation, 10.1 ÷ 0.2 (decimal division) corresponds with 1.21 ÷ 0.2; 101 ÷ 2 (whole number divi-
sion) corresponds with 120 ÷ 20; 0.9 + 2.32 (decimal addition) corresponds with 0.9 + 3.25; and 
5.85 × 0.60 (decimal multiplication) corresponds with 7.8 × 0.60; 9 + 232 (whole number addition) 
corresponds with 9 + 325. There are two mixed (whole number and decimal number) computation 
problems in pretest and posttest, respectively  
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computation. We calculated students’ total scores on the pretest and posttest and also 
calculated their decimal computation scores in pretest and posttest, respectively. 

 Second, as there were paired whole number and decimal items in each of the two 
tests, the students’ answers were classifi ed into four categories: (1) whole number 
computation is correct, and decimal computation is also correct; (2) whole number 
computation is correct, but decimal computation is incorrect; (3) whole number 
computation is incorrect, and decimal computation is also incorrect; and (4) whole 
number computation is incorrect, but decimal computation is correct. The second 
category of responses indicated that the students were unable to correctly apply 
whole number computation rules to decimal computation. 

 Third, we coded for errors to examine the mistakes students made during their 
problem solving. The investigators used a coding system to categorize seven types 
of computation errors in both groups: aligning place value, carrying, displacement 
of decimal point, carelessness, mnemonics, computation order, and missing values 
(see Table  2 ). Most Chinese textbooks have a student version and an instructor ver-
sion, and the instructor version provides details such as exercise items, solutions, 
and common types of errors. The classifi cation of computation errors was designed 
based on the types of errors suggested by the instructor version of the mathematics 
textbook utilized in the school.

    Qualitative measure of students ’  procedural understanding of decimal division . 
There was one open-ended question in the posttest to qualitatively examine students’ 
procedural understanding of decimal division. Students’ levels of awareness of the 
strategies they used were categorized into three types, including missing or inaccu-
rate (i.e., incorrect answers), nonessential (i.e., answers regarding general computa-
tion rules that applied to whole numbers but did not apply to decimal numbers), and 
essential answers (i.e., answers that were essential for decimal computations or 
answers showing correct examples or decimal computation rules) (see Table  2 ). 

  Self - effi cacy survey . Scores on negatively worded items were reverse coded. 
A higher score indicated a higher level of self-effi cacy. Students were rated as “0” 
when they chose  completely unlike me  and were rated as “6” when they chose  com-
pletely like me . 

  Inter - rater agreement . Another graduate assistant rescored 30 % of the tests. Inter-
rater agreement was computed as the percentage of  the number of agreements 
divided by the total number of rated items. Inter- rater agreement was 95 %.  

    Procedures 

 Following the pretest assessment, one intact class became the PBL group and the 
other intact class became the control group. Because the two participating classes 
had identical curriculum, similar class schedules and similar instructional 
approaches, the selection of the PBL group and control group was totally random. 
Students in the PBL group received the intervention during fi ve classes per week for 
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     Table 2    Coding scheme for computation errors and awareness of strategy use   

 Descriptors  Examples 

  Coding for different types of computation errors  
 Aligning  Lining up the decimal points as below 

 0.9  0.9 
 + 3.25   + 3.25  
 4.15  3.34 

 Carrying  Students made mistakes during carrying 
numbers between different unit positions 

 0.9 
 + 3.25  
 3.15 

 Displacement  Students placed the decimal point at wrong 
place after calculation 

 7.8 × 0.60 = 0.468 

 Carelessness  Due to carelessness, students made mistakes 
like miscopying of numbers, omission, or 
skipping of calculation steps 

 “I accidentally put 
0.12 as 0.18” 

 Mnemonics  Students retrieved incorrect multiplication facts  “3 times 7 is 22” 
 Computation 
order 

 Students did not calculate according to 
computation order, such as (1) calculating from 
left to right, (2) calculation in parenthesis 
should be done fi rst, (3) exponents or radicals 
should be done next, (4) multiplication and 
division should be done in the order in which it 
occurs, and (5) addition and subtraction should 
be done in the order in which it occurs 

 In the example of 
“2.56 × 5 + 32.4 ÷ 
10 − 4.85 = ?,” the student 
did not calculate 
multiplication and division 
before they calculated 
addition and subtraction 

 Missing  During pretest measures, students had not yet 
learned decimal division, thus students chose to 
give up on some of the items 

 “Can I skip this problem?” 

  Coding for conceptual understanding of decimal computation  
 Missing or 
inaccurate 

 Students provided inaccurate answers or did 
not provide any answers 

 “Well, I am not supposed 
to explain that” 
 “Let me think about it” 
 “That is good” 

 Nonessential  Students provided only general computation 
rules that applied to whole numbers but did not 
apply to decimal numbers 

 “Decimal division is pretty 
much like division of whole 
numbers” 
 “You compute it like 
division of whole numbers, 
then add a decimal point 
afterwards” 

 Essential  Students provided answers that were essential 
for decimal computations, used correct 
examples, or mentioned important decimal 
computation rules 

 “To divide by a decimal, 
multiply that decimal by a 
power of 10 great enough to 
obtain a whole number” 
 “When we multiply the 
divisor, we also need to 
multiply the dividend” 
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4½ weeks during the school day, for a total of 22 classes. Each session of class 
lasted approximately 40–45 min. The control group continued to have their regular 
mathematics classes (i.e., fi ve classes per week for 4½ weeks), for a total of 22 ses-
sions. The major teaching content for both classes was decimal multiplication and 
division, which covered two units of the textbook. The complete content for that 
semester included seven units. 

  Teacher training . The instructor for the experimental group had utilized a PBL 
approach for more than 5 years and was very familiar with PBL. She received 1 
week of additional training on the PBL approach before the intervention started. 
The purpose of the training was to help the teacher to conduct the intervention in the 
designated manner and to train the teacher to be proactive. The teacher relearned the 
PBL approach, had opportunities to practice how to teach students using the PBL 
approach, and received feedback from the investigator during the training. The 
investigator developed the teaching scripts (see Appendices  1  and  2 ), which were 
studied by the instructor of the experimental group to prepare for teaching the les-
sons. For the control group, the investigator observed classroom activities and col-
lected data. For the experimental group, the investigator was on site for observation, 
progress monitoring (i.e., making sure the teacher was following the teaching 
scripts), and data collection. The investigator spent a similar amount of time in each 
classroom for observation and data collection. 

  Assessment conditions . Assessment conditions refer to the pretest assessment prior 
to the intervention and the post-intervention assessment. Pre- and post- intervention 
tests were administered using paper and pencil for all students. Experimenters did 
not provide any  prompting or feedback regarding the accuracy of students’  solutions. 
Students were provided with suffi cient time to complete the test and the survey. 

  Experimental group . The experimental group adopted a PBL approach. The stu-
dents began with specifi c problem scenarios and the teacher provided them with 
opportunities to reveal their computation errors and prior experiences. The teacher 
encouraged the students not only to explain the patterns of computation errors, but 
also to analyze the causes of computation errors. The teacher in the PBL group 
encouraged an open learning atmosphere and supported the students’ reliance on 
prior learning experiences to guide their learning behaviors. 

 The instructional materials included projectors, experiment record sheets, and 
reminder cards. The reminder cards provided hints to the students when the prob-
lems were presented; for example, after the computation, the reminder cards helped 
the students to self-check the computational procedure, such as “I have checked the 
placement of the decimal point.” Therefore, reminder cards were considered an 
effective method to monitor students’ metacognition (Tong & Zhang,  2004 ). 

 The teacher gradually faded out the use of reminder cards as the instruction pro-
gressed. Specifi cally, at the beginning of the instruction, the teacher provided the 
students with complete reminder cards. The teacher determined the instructional 
framework and distributed the reminder cards to every student in the classroom. 
After discussion, the students summarized the types of computation errors made by 
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all of the students in the class and noted the computation errors on the reminder 
cards according to a scaffolding framework. As the instruction progressed to 
approximately halfway through the intervention, the teacher provided the students 
with partially completed reminder cards. Each student analyzed only computation 
errors that he or she made and then noted the types of errors on the reminder cards. 
Each student could individualize his or her reminder card. 

 For both new lecture and review classes, the PBL curriculum followed similar 
procedures, including class preparation, instruction, and PBL. The focus was to 
analyze the students’ prior experiences and design a PBL environment to motivate 
the students to think through problems and work out solutions. During the instruc-
tional procedure, the focus was to facilitate group discussion, analyze problems, and 
guide students to come up with solutions to solve problems. The initial PBL ses-
sions helped students to identify errors and analyze prior experiences. The later 
PBL sessions emphasized exercises tapping into metacognition, such as analyzing 
types of computation errors, discussing the rationales for errors, and self-revising 
computation errors. Appendices  1  and  2  present examples for a new lecture and a 
review class. Appendix  3  presents a fl owchart of the PBL approach guiding our 
intervention. 

  Control group . The teacher in the control group closely followed the instructional 
guidelines used for the regular curriculum. Traditional Chinese mathematics instruc-
tion focuses on a curriculum-based teaching approach. Due to a relatively large 
student–teacher ratio (e.g., 40 or 50:1), lecture that closely follows the curriculum 
is often the main teaching method. Due to the mandatory teaching content specifi ed 
by the Ministry of Education of the People’s Republic of China, teachers often 
closely follow guidelines in the curriculum as a typical practice. Although the 
teacher of the control group had opportunities to question students, few opportuni-
ties were available for small-group discussion, close interaction between the teacher 
and students, and students’ refl ection on their own errors and prior experiences. The 
4½-week instructional activities included new lectures and review classes for deci-
mal multiplication and decimal division. For the new lectures, the teacher intro-
duced new concepts based on the textbook, started with demo exercises, explained 
rules of computation, asked the students to complete exercises, and provided stu-
dents with opportunities to ask questions. During the review classes, the teacher 
primarily relied on demo items in the textbook to explain computation errors, and 
the discussion of patterns of computation errors was based on teaching experience 
rather than on actual computation errors that occurred during the students’ exercises. 
Thus, the discussion of computation errors was not specifi c, and the teacher did not 
provide the students with opportunities to refl ect on their own computation errors. 
The most frequently used method was to discuss classical computation errors 
addressed by the textbook as examples. Although there were opportunities for 
teacher–student interaction, most of the demo items had fi xed answers, which were 
not likely to challenge students’ higher levels of reasoning. The teacher typically 
gave students general praise but did not provide specifi c feedback.  
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    Treatment Fidelity 

 In addition to the fi rst investigator who was on site for data collection and progress 
monitoring, a second investigator independently observed ten treatment sessions in 
the experimental group to assess fi delity or quality of implementation of specifi c 
performance indicators. Treatment fi delity checklists are provided in Appendix  4 . 
Half of the sessions were new lectures and half of the sessions were review classes. 
The observation sessions were equally distributed throughout the intervention period. 
The teacher used a teaching script to guide the teaching strategy during each class 
session. In addition, for each session, the fi rst and third author used a checklist, which 
listed the key instructional components, to evaluate teachers’ adherence to the 
assigned instructional condition type. The second investigator judged the adherence 
of the instructor’s teaching based on the presence or absence of the features listed on 
the fi delity checklist. The overall treatment fi delity was .92 for the sessions observed.   

    Results 

    Pretreatment Group Equivalency 

 We used ANOVA tests to examine pretreatment group equivalency on the decimal 
computation test, self-effi cacy questionnaire, and academic interest survey. Results 
indicated no signifi cant difference between the two groups on the total computation 
test,  F (1, 74) = 0.044,  p  = 0.835; the decimal computation test (i.e., decimal compu-
tation in computations involved decimals only and mixed numbers),  F (1, 74) = 0.633, 
 p  = 0.429; the social self-effi cacy questionnaire,  F (1, 73) = 0.048,  p  = 0.828; the aca-
demic self-effi cacy questionnaire,  F (1, 73) = 3.783,  p  = 0.056; or the academic inter-
est survey,  F (1, 73) = 3.633,  p  = 0.061 (see Table  3 ).

   We also compared computation errors made by the two groups of students during 
the pretest. Both groups appeared to make the most frequent computation errors in 
aligning place value, carrying, and displacement of the decimal point. In both groups, 
a large number of students chose to skip the questions because they had not learned 
decimal division prior to the intervention. The chi-square test indicated nonsignifi cant 
differences in the distribution of the seven computation errors with the exception of 
displacement of the decimal point,  χ  2  = 5.775,  p  = 0.038 (see Table  6 ), with better per-
formance in the control group.  

    Quantitative Measure of Students’ Conceptual Change in Decimals 

  Total computation . We performed an ANOVA test (with the pretest difference as a 
covariate) on the posttest scores to assess the effects of instruction on students’ total 
computation performance. Results indicated a signifi cant difference between groups 
at posttest,  F (1, 74) = 10.063,  p  = 0.002 (see Table  3 ), favoring the PBL group. 
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  Decimal computation . An ANOVA test on the posttest scores revealed that the 
experimental group outperformed the control group on decimal computation (i.e., 
the decimal computation and mixed items),  F (1, 74) = 9.215,  p  = 0.003 (see Table  3 ). 
Due to the fact that the pretest (which served as a placement test) and posttest 
(which served as summative evaluation) did not have the same question items, 
within-group comparison of pretest and posttest scores for each group could not be 
conducted. We conducted univariate analysis of variance to further control for dif-
ferences in pretest decimal computation performance (termed Pre-De in Table  3 ). 
The analysis results in Table  4  indicated a signifi cant main effect caused by group 
difference (i.e., experimental group vs. control group) and a nonsignifi cant main 
effect of pretest decimal computation performance.

       Students’ Self-Effi cacy and Academic Interest 

  Self - effi cacy . An ANOVA test (with the pretest difference as a covariate) on the 
post-survey of self-effi cacy revealed signifi cantly higher social self-effi cacy in the 
experimental group,  F (1, 73) = 35.723,  p  = 0.000. Although the control group 
reported relatively higher academic self-effi cacy, the test did not indicate a signifi -
cantly higher score than the score of the experimental group,  F (1, 73) = 02.30, 
 p  = 0.134 (see Table  3 ). In terms of within-group comparison, we conducted a 
paired samples  t  test. The control group did not show signifi cant improvement on 
either social self-effi cacy or academic self-effi cacy after 22 sessions of classes. 
The experimental group showed signifi cant improvement on both social self-effi cacy 
( p  = .000) and academic self-effi cacy ( p  = .000) after receiving the entire intervention. 

  Academic interest . An ANOVA test (with the pretest difference as a covariate) on 
the post-survey of academic interest indicated signifi cantly higher academic interest 
in the experimental group over the control group,  F (1, 73) = 18.950,  p  = 0.000 (see 
Table  3 ). We also conducted a paired samples  t  test to examine within-group 

   Table 4    Univariate analysis of variance of posttest decimal computation in two groups   

 Source  Type III sum of squares  df  Mean square   F   Sig 

 Corrected model  23.375 a   2  11.687  6.125  .003 
 Intercept  132.046  1  132.046  69.200  .000 
 Pre-De  5.361  1  5.361  2.810  .098 
 Group  16.104  1  16.104  8.439  .005 
 Error  139.296  73  1.908 
 Total  1,339.000  76 
 Corrected total  162.671  75 

   Note :  a  R  squared = .144 (adjusted  R  squared = .120);  Pre - De  all decimal computation pretest 
(including decimal computation in mixed computation),  Post - De  Dependent variable, all decimal 
computation posttest (including decimal computation in mixed computation)  
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improvement. The control group did not show signifi cant improvement on 
 academic interest from pretest to posttest measures, whereas the experimental 
group demonstrated signifi cant improvement.  

    Qualitative Measure of Students’ Conceptual Change in Decimals 

 The posttest included an open-ended item that asked, “Currently, there is a student 
who does not understand decimal division. Please elaborate your procedures of 
problem solving. For example, tell this student what to do fi rst, what to do as a sec-
ond step, and then what else.” Approximately two thirds of the students in the con-
trol group chose to give up, and another one third of the students provided answers 
showing no conceptual understanding of decimal division (e.g., using whole num-
ber rules for decimal computation). Only one student in the control group provided 
an answer showing a conceptual understanding of decimal division. In contrast, 14 
students in the experimental group explained essential features associated with 
computation of decimal division. We used the coding scheme listed in Table  2  to 
classify the narrative responses provided by the students, including missing or inac-
curate, nonessential, and essential answers. The Monte Carlo chi-square test 
revealed signifi cant differences in the distribution of the three types of answers in 
the two groups,  χ  2  = 15.857,  p  = 0.000 (see Table  5 ). Students in the experimental 
group were more likely to explicitly describe their computation procedures and 
demonstrated understanding of unique features of decimal computation that differ 
from whole number computation (see Table  5 ).

       Students’ Computation Errors 

 Given that the pretest and posttest instruments did not consist of the same number of 
testing items, a comparison of absolute numbers of computation errors on the pretest 
and posttest measures was not conducted. There were no signifi cant differences 
among the computation errors between the experimental group and the control group 
during the pretest measures, with one exception (more errors occurred on displace-
ment of the decimal point for the experimental group). In other words, prior to the 
treatment, students in the experimental group had similar or slightly worse 

    Table 5    Qualitative analysis 
of students’ conceptual 
understanding of decimal 
computation   

 Type of answers  Control  MA  Total   χ  2 /Sig. 

 Missing  26  14  40  15.857/.000 

 Nonessential  11  10  21 
 Essential  1  14  15 
 Total  38  38  76 

R.-D. Liu et al.



251

computation skills than did those in the control group. Students in the experimental 
group did not have a better computation foundation before the treatment. For every 
single type of computation error made during the posttest, those in the control group 
made more errors than did those in the experimental group. The students in the con-
trol group had relatively more computation errors on aligning, carrying, displace-
ment of the decimal point, and mnemonics. Computation errors made by the students 
in experimental group were primarily errors on aligning, carrying, and displacement 
of the decimal point. The experimental group had fewer students who made compu-
tation errors and as a group made fewer total computation errors (see Table  6 ).

   The data in Figs.  1  and  2  present the total number of items with computation 
errors and the total number of students who made computation errors in the two 
groups. The trends in the two fi gures consistently indicate that students in the exper-
imental group made fewer computation errors and had fewer students who made 
errors. For each type of computation error, a chi-square test was performed with a 2 
(pretest, posttest) × 2 (control group, experimental group) contingency table on the 
number of errors the students made of that type. The results showed signifi cant 

      Table 6    Analysis of pre- and-posttest computation errors   

 Error type 

 Pretest  Chi-square  Posttest  Chi-square 

 Control  MA   χ  2 /Sig.  Control  MA   χ  2 /Sig. 

 Aligning  15(12)  27(19)  3.619/.282  23(18)  11(6)  7.664/.006 
 Carrying  15(12)  15(13)  .252/1.000  28(20)  13(9)  2.427/.119 
 Displacement  14(12)  24(22)  5.775/.038  22(19)  12(10)  5.573/.018 
 Carelessness  4(4)  7(6)  1.151/.734  13(12)  8(6)  1.891/.169 
 Mnemonics  5(4)  9(8)  2.023/.523  20(12)  5(5)  7.649/.006 
 Computation order  5(5)  8(8)  .835/.361  4(4)  3(3)  .642/.423 
 Missing  86(37)  66(32)  7.060/.173  NA  NA  NA/ NA 

   Note : Numbers within the parentheses indicate the number of students who made the errors  

  Fig. 1    Comparison of number of posttest computation errors in each group       
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 differences in the distribution of aligning, displacement of the decimal point, and 
mnemonics,  χ  2  = 7.664,  p  = 0.006;  χ  2  = 5.573,  p  = 0.018;  χ  2  = 7.649,  p  = 0.006 (see 
Table  6 ), for which students in the experimental group had signifi cantly fewer 
errors. In terms of carrying, carelessness, and computation order, there were no 
signifi cant  differences between the two groups,  p  = 0.119,  p  = 0.169,  p  = 0.423 (see 
Table  6 ).    

    Analysis of Relations Between Whole Number 
and Decimal Computation 

 Some computation rules for whole numbers are similar to those for decimals; how-
ever, other computation rules are different. The students’ answers to the paired 
whole number and decimal test items were classifi ed into four categories: (1) whole 
number computation is correct, and decimal computation is also correct; (2) whole 
number computation is correct, but decimal computation is incorrect; (3) whole 
number computation is incorrect, and decimal computation is also incorrect; and (4) 
whole number computation is incorrect, but decimal computation is correct. The 
second category of responses indicated that the students were unable to correctly 
apply rules of whole number computation to decimal computation. Thus, the second 
type of error tapped into our research interest regarding the relations between whole 
number computation and decimal number computation. If students demonstrated 
that their whole number computation was correct but decimal computation was incor-
rect, we assumed that the students did not achieve conceptual change. A chi- square 
test was conducted to compare differences between the two groups in this type of 
error pattern for addition, subtraction, multiplication, and division, respectively (see 
Table  7 ). It appeared that the two groups of students signifi cantly differed in this 
type of error on multiplication. Students in the control group tended to make more 

  Fig. 2    Comparison of number of students in each group who made errors on posttest       
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such errors on multiplication than did the experimental group. For division,  addition, 
and subtraction, the two groups of students did not show signifi cant differences in 
this type of error,  p  = 0.297,  p  = 0.723,  p  = 0.208, respectively (see Table  7 ).

        Discussion 

 The purpose of this study was to evaluate and compare the effectiveness of a PBL 
instructional approach and a traditional instructional approach for teaching decimal 
multiplication and division to Chinese fi fth-grade elementary students. We exam-
ined students’ conceptual change in decimal computation both quantitatively and 
qualitatively. The results showed that the students in the experimental group had a 
higher accuracy rate on computation and were more likely to explain their computa-
tion procedures and principles of computation strategically. 

    PBL and Improvement in Computation Skills 

 The fi ndings revealed a signifi cant intervention effect for computation skills in the 
experimental group when compared to the control group. In other words, PBL out-
performed a traditional instructional approach in enhancing students’ computation 
skills involving both whole numbers and decimal numbers.  

    Effects on Enhancing Students’ Self-Effi cacy 
and Academic Interest 

 This study also examined the intervention effects on students’ self-effi cacy and aca-
demic interest. The PBL approach primarily improved the students’ social self- 
effi cacy, whereas it had little impact on their academic self-effi cacy compared to the 
traditional approach. One interpretation might be that the experimental group had 
ample opportunity for teacher–student and student–student interactions. The mathe-
matics class was no longer a competitive environment in which the students needed 
to compete to answer the questions. If there was a disagreement, the students had 
opportunities to share differences and express their ideas and suggestions, which may 
have resulted in a higher level of willingness to collaborate among these students 

    Table 7    Posttest mistakes 
in applying rules of 
whole number to decimal 
computation for each 
operation   

 Second category of response  Control  MA   χ  2 /Sig. 

 Division  12  8  1.09/.297 
 Multiplication  17  6  7.54/.006 
 Addition  5  4  0.13/.723 
 Subtraction  4  8  1.58/.208 
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(Hmelo, Gotterer, & Bransford,  1997 ). This might explain the higher level of social 
self-effi cacy in the experimental group. The limited impact on academic self- effi cacy 
might be due to the intervention duration of only 1 month on one instructional unit. 
During an intervention with a relatively short duration, it might be diffi cult to change 
students’ overall impressions and attitudes toward mathematics learning. In addition, 
the learning of decimals was a relatively challenging unit, and the students might 
have experienced some level of anxiety. Thus, it might be unrealistic to expect a rapid 
change in students’ academic self-effi cacy after a 1-month intervention. 

 In terms of academic interest, the students in the experimental group reported a 
higher level of academic interest than did those in the control group. The PBL 
approach emphasized student-centered instruction during the choice of problem situ-
ations, collaboration and discussion in class, and refl ections on solutions. The teach-
ers were facilitators of learning. The focus of the class was to maintain the students’ 
interest and provide more opportunities for self-exploration. The instruction included 
interesting and challenging problem situations (examples provided in Appendix  5 ), 
and the students were able to freely express their opinions and experience a sense of 
accomplishment after they solved the problems. As a result, they reported a higher 
level of academic interest. Although similar problem situations provided by the text-
books might be available to students in the control group, no efforts were made to 
give students opportunities for self-exploration and self-refl ection.  

    Effects on Enhancing Students’ Metacognition 

 Vosniadou ( 1999 ) emphasized the importance of metacognition during children’s 
mathematical problem-solving processes. In the present study, the measure of stu-
dents’ awareness of their strategy use was to examine students’ metacognition. The 
results indicated that students in the experimental group were more likely to explic-
itly describe their own computation procedures and were more likely to discover 
essential features of the computation procedures. It appeared that the PBL approach 
not only guided the students to explore the rationales for computation, but also pro-
vided opportunities for the development of students’ metacognition. The error clinic 
was designed for review classes. The teachers provided reminder cards to guide the 
students to externalize the metacognitive procedures, such as analyzing and explor-
ing the rationales of computation errors, and self-revising computation procedures 
(Alan & Hennie,  1990 ; Tong & Zhang,  2004 ).  

    Effects on Conceptual Change in Decimals 

 When presented with the open-ended prompt regarding decimal division, 14 stu-
dents in the experimental group were able to explicitly explain essential features of 
decimal division. Only one student in the control group provided an answer showing 
a conceptual understanding of decimal division. This could be due to the fact that 
students in the control group were given few opportunities in class to self- refl ect on 
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computational procedures and errors, and thus they might have a lower level of 
metacognition when asked to verbalize procedures and essential features of decimal 
computation. Chinese students are traditionally trained to execute computations or 
work out problems, but are not provided with ample opportunities to verbally elabo-
rate their understanding of specifi c concepts or computations. The PBL approach 
appeared to help students develop their metacognition. 

 Moreover, in addition to being able to elaborate on decimal computation, it is 
also important to examine whether students can actually execute the computation 
procedure correctly. If a student can only explain how to do decimal computation, 
but fails in actual computation, then the student may not have achieved conceptual 
understanding. The posttest revealed that the experimental group had signifi cantly 
fewer students making computation errors and that the group as a whole made sig-
nifi cantly fewer computation errors than did the control group, which suggests that 
PBL had a positive impact on conceptual change. 

 The analysis of types of pretest computation errors revealed that students in both 
the experimental group and the control group frequently made mistakes of aligning 
place value, carrying, and displacement of the decimal point. During the posttest, the 
experimental group had fewer students making mistakes and as a group made fewer 
mistakes on the three types of computation errors. The three types of computation 
errors revealed essential differences between whole number computation and deci-
mal computation. In whole number computation, the last place is the units place; 
thus, students automatically aligned place value based on the last digit (units place), 
instead of the same place value (e.g., units place to units place, tens place to tens 
place). When the students were conducting decimal computation, they also mechani-
cally aligned the place value based on the last digit of the decimal numbers. The deci-
mal point is unique for decimal numbers. Sometimes students arbitrarily placed the 
decimal point and randomly deleted “0” after the decimal point. The errors related to 
aligning place value indicated the need for students to understand the computation 
rules of both whole numbers and decimal numbers. Although strategies of borrowing 
and carrying in whole numbers and decimal numbers are not considerably different 
from each other, the introduction of decimal point concepts results in increased cog-
nitive workload and increased use of working memory. The use of reminder cards in 
the experimental group helped the students to divide complex computations into 
smaller steps, which might have decreased their computation errors. For computa-
tion errors that were unique to decimal numbers, the intervention showed a positive 
impact. In contrast, for general computation errors that did not differ between whole 
numbers and decimal numbers, such as carelessness and computation order, the 
intervention did not show as much impact because the students could directly trans-
fer computation knowledge and skills from whole numbers to decimal numbers. 

 In the posttest, the researchers designed some whole number computations 
and decimal computations with identical digits, with the only difference being the 
decimal point placed in decimal computation (e.g., 7.8 × 0.60 vs. 78 × 60). Some 
students correctly completed the whole number computation, but made errors 
on the corresponding decimal computations. Because of the introduction of the 
decimal point, some students made errors by directly transferring whole number 
computation rules to decimal computation. In the multiplication computation in 
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particular, some students disregarded the differences between the computation rules 
for whole numbers and those for decimal numbers, such as deleting the redundant 
“0” after a decimal point or arbitrarily applying whole number computation rules to 
decimal computation (Markovits & Even,  1999 ). The control group made signifi -
cantly more second category of responses (i.e., whole number computation is cor-
rect, but decimal computation is incorrect) on multiplication than did the 
experimental group. For division, addition, and subtraction, the two groups of stu-
dents did not show signifi cant differences with respect to this type of error. This 
suggests that the decimal point is a challenging concept and that decimal computa-
tion, particularly in decimal multiplication, is diffi cult to master. Prior knowledge of 
whole number computation might interfere with decimal computation, and so the 
students’ computation errors varied. 

 In short, the analysis of computation errors and how students explicitly explained 
decimal division indicated that students tended to rely on prior knowledge and com-
putation rules to work out decimal computation. PBL helped the students to deal 
explicitly with rationales of computation rules and to differentiate between whole 
number and decimal computations. To some degree, this approach promoted con-
ceptual change regarding some erroneous conceptions of computation rules.   

    Limitations and Conclusions 

 This study has implications for educational practitioners and future researchers. 
However, there are a number of limitations of the study that suggest caution in gen-
eralizing the results. First, the students were not randomly assigned to two groups, 
although they shared many commonalities and showed similar performance on most 
measures during our pretests. Second, the number of problems in the decimal com-
putation tests was relatively small, which might explain the relatively low internal 
consistencies for the pretest and posttest. There was not the same number and type 
of items in the pretest as in the posttest, although the diffi culty level of items in the 
pretest and posttest was similar, according to the textbook we referred to. Third, 
some variables could not be controlled, such as students’ prior beliefs about learning 
mathematics and about decimal and whole number computation, teachers’ beliefs 
about mathematics learning and decimal computation, and teachers’ knowledge 
about students’ misconceptions. Fourth, ideally, learning behavior is better assessed 
by using a variety of methods (e.g., qualitative and quantitative methods) to provide 
a relatively comprehensive view of an individual’s learning behavior. Because of 
limited resources, we were unable to videotape teacher–student interactions and 
were unable to provide a systematic qualitative analysis of changes in learning 
behaviors. Fifth, the traditional PBL approach is often utilized in small group set-
tings. Due to the reality of the Chinese school system, it was impossible to have a 
very small student–teacher ratio to conduct the PBL. Thus, our study primarily 
relied on group discussions and activities that could take place simultaneously with 
all students. Although this was not an ideal way to implement the PBL, it provided 
insights for future Chinese teachers who might implement a similar approach in 
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large classroom settings. Finally, the intervention was implemented intensively over 
a 1-month period, and there was no longitudinal follow-up to examine the persis-
tence of the treatment effect. 

 This study revealed the importance of exposing students to their mathematics 
errors. Computation errors helped students to discover computation problems and 
provided opportunities for conceptual change. The PBL approach is driven by chal-
lenging, open-ended, ill-defi ned, and ill-structured PBL (as in the examples provided 
in Appendix  5 ). Our conclusions are in line with prior research fi ndings where stu-
dents were exposed to challenges and were guided to refl ect on their misconceptions. 

 This study also has implications for teachers’ roles during instruction. During 
PBL instruction, teachers serve only as facilitators. In contrast, during traditional 
instruction, teachers often emphasize the teaching of computation rules instead of 
the conceptual understanding of decimals. Discussion of computation errors is not 
encouraged in traditional instruction, which might result in students’ resistance to 
disclosing their computation errors, and some students might hide exercise books to 
avoid sharing them with other students. When new learning content is introduced, it 
is important to allow students the opportunities to refl ect on errors and causes, to 
enhance metacognition, and to promote the construction of new knowledge.     

       Appendix 1: Teaching Scripts for Teaching New Decimal Division 

     1.    Introduction to the problems and divide students into fi ve groups to solve the 
problems. 
 “We have successfully overcome the decimal in multiplication. Now, it occurs in 
computation of division. We have new challenges now. Does anybody have any 
ideas to solve the problem? Now, let us divide the class into fi ve groups and we 
will work on fi ve division problems, including whole number divided by deci-
mal, decimal smaller than 1, and decimal larger than 1. We want to see which 
group can come up with more solutions. When we explain the solutions, you 
need to tell us the procedures to reach the solution. What types of principles do 
you use to solve the problem?”   

   2.    Encourage students to solve the problems with their own problem-solving methods. 
 Based on previous experience, students are asked to create hypotheses, such as 
dealing with decimal division like division for whole numbers, ignoring the dec-
imal point, and following rules of division for whole numbers fi rst and then plac-
ing the decimal point.   

   3.    Guided practice 
 Students are asked to report their problem-solving methods to the class, and the 
teacher guides the students to refl ect on these methods. The teachers guide the 
students to differentiate the differences between these questions. They encourage 
the students to refl ect on the principles of multiplication and division that they 
have learned in their previous classes. The teachers ask the students to use mul-
tiplication to verify the results for division. The students are asked to raise ques-
tions and summarize the principles for decimal division.   
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   4.     Students modify their results and report their results to the class.   
   5.    Transfer and application. 

 Provide additional problems for students to practice, including two-digit 
decimals.      

      Appendix 2: Teaching Scripts for Reviewing Previous 
Contents (Decimal Division Error Clinic) 

     1.    Introduction to the problems. 
 The students form fi ve groups to examine errors in the worksheet. Say: “Thank 
you for joining error clinic. Today, we will focus on examining errors in deci-
mal division. It is hoped that we will all be able to solve different challenges in 
decimal division.” Then, the teacher distributes the worksheets.   

   2.    Encourage students to solve the problems and explain the errors that they found, 
such as errors due to misunderstanding of principles or careless errors.   

   3.    Guided practice. 
 The teacher guides students to draw conclusions about their problem-solving 
methods, help students make their reminder cards, and encourage students to 
refl ect on their problem-solving experiences. Ask the students to summarize the 
causes of mistakes, such as assuming decimal division is similar to division of 
whole numbers.   

   4.    Students modify their results, establish their own reminder cards, and report 
their results to the class.   

   5.    Transfer and application. 
 Ask the students to give an example of mistakes they made in decimal compu-
tation during the previous week.      

     Appendix 3: PBL Procedure 
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         Appendix 4: Treatment Fidelity Checklists 

 New lectures  Yes/No 

 1. Provide problem-based learning situations at the beginning of classes 
 2. Small group discussion 
 3. Students form hypotheses and try to work out solutions 
 4. Students report discussion results group by group 
 5. Teacher provides feedback and analyzes differences and relations between 

different problems 
 6. Students break into small groups for further discussion 
 7. Students report further discussion results 
 8. Application and transfer 

 Review classes  Yes/No 

 1. Provide problem-based learning situations and welcome students to error clinic 
 2. Small group discussion to fi nd own mistakes 
 3. Teacher provides guidance 
 4. Teacher provides reminder cards, uses scaffolding, and coaches students to be able 

to fi ll out reminder cards 
 5. Students report their discussion report and report what is on reminder card 
 6. Application and transfer, students create problems for others 

         Appendix 5: Sample Problems from the Curriculum 

 Samples for ill-defi ned and ill-structured problems 

  Directions : Please check the following computation procedures and see whether 
they are right. Please correct computations that were executed incorrectly. 

      

    Samples for ill-defi ned and ill-structured problems 

  Directions : Are the following computation procedures right? If no, please check them. 

      

    Samples for challenging problem 
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  Directions : (1) In a parking lot, the parking rate is 2.50 Yuan/h if it is within 1 h. (2) 
After the fi rst hour, the parking rate is 2.50 Yuan/0.5 h. Uncle Li paid 12.5 Yuan, 
then how many hours did he park in the parking lot? 

      
    (Sources: Lu & Yang,  2005 )
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 Introduction

Research in the area of rational number knowledge and proportional reasoning has pro-
duced many important findings on how students think about and operate with rational 
numbers (Behr, Harel, Post, & Lesh, 1992; Behr, Lesh, Post, & Silver, 1983; Empson, 
Junk, Dominguez, & Turner, 2006; Kieren, 1976). The complex nature of this research 
has yet to discover a clear picture or model of how rational number knowledge develops 
over time. Some conjectures have been made concerning rational number development 
from cross-sectional studies, but without longitudinal evidence such trajectories are dif-
ficult to confirm. Defining a framework for interpreting students’ understanding along a 
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developmental path, if one exists, is a desired goal. Without such a framework, the 
research base will remain fragmented and primarily focused on further examination of 
understandings of a particular subconstruct’s origin and phenomenology instead of the 
essential transitions among contexts and conceptions that should mark a more mature 
rational number understanding among constructs (Streefland, 1993).

Investigations into the way that young children are introduced to whole number 
operations have revealed certain barriers to rational number learning due to the 
inconsistencies between the mathematics of whole numbers and the mathematics of 
fractions (Bransford, Brown, & Cocking, 1999; Mack, 1993; Middleton, van den 
Heuvel-Panhuizen, & Shew, 1998). For example, the rules of thumb multiplying 
makes larger and dividing makes smaller when working with whole numbers 
become problematic when students must consider cases involving multiplication or 
division by proper fractions (Kieren, 1993). Recent research has led to a belief that 
the common part–whole introduction of fractions is not as effective in removing 
early-knowledge barriers to the mathematics of fractions as an approach emphasiz-
ing the ideas of partitioning and unit which are more closely related to thinking 
about fractions as quotients (Empson, 1999; Lamon, 2006; Mack, 1993; Streefland, 
1993). But how might this partitioning approach assist students in gaining concep-
tual knowledge in other subconstructs such as measurement? Understanding the 
transitional paths from one subconstruct to another across the field of rational num-
ber concepts is paramount to building a meaningful model of rational number learn-
ing. It is clear, moreover, that this sought-after developmental trajectory is complex 
and will not follow a simple one-dimensional path, moving in an orderly, linear 
fashion from one subconstruct to another. Rather, it depends upon content and rep-
resentations emphasized in instruction as well as contextual referents that give rise 
to initial conceptions of multiplicative quantities (Lamberg & Middleton, 2002, 
2009). In fact, middle-school children who traverse this complex path will no doubt 
face barriers and perhaps take detours that divert, prolong, or even stall their prog-
ress toward rational number understanding in the course of compulsory instruction.

 Longitudinal Analysis

Rational number understanding has been termed a “watershed concept” (Kieren, 
1976). Fractions, ratios, and proportional reasoning are key underpinnings of alge-
bra, calculus, statistics, and other higher mathematics that are becoming more and 
more critical for the development of workplace skills (Oksuz & Middleton, 2005). 
Cross-sectional studies of students at different ages are the norms for the field in 
examining students’ reasoning and development (see for example, the work of 
Empson et al., 2006). This body of work has aided in the development of new cur-
ricular tasks and sequences aimed at providing a more theoretically defensible and 
psychologically connected approach to the teaching and learning of rational number 
(Carpenter, Fennema, & Romberg, 2012; Lamberg & Middleton, 2009; Lesh, Post, 
& Behr, 1988; Streefland, 1993; Toluk & Middleton, 2004).
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However, due to their cross-sectional design, this body of work does not provide 
a coherent developmental picture of rational number knowledge as students move 
across several grade levels (Carraher, 1996). More recent studies, however, give us 
a glimpse of how this knowledge might develop, beginning with the ideas of unit 
and equivalence, then gradually developing the five interconnected interpretations 
or “subconstructs” that predominate the language of the field: Part–whole, measure, 
operator, quotient, and ratio (Lamon, 2006).1 The work reported here, supported 
through a grant from the National Science Foundation, has allowed us to trace these 
changes in understanding related to learning rational number concepts as they 
developed over the middle-school years where this content is most heavily stressed. 
The results of the study are intended to contribute theoretically to the understanding 
of numbers and operations and pragmatically to the further design of curriculum 
materials and pedagogical strategies that will positively impact students’ ability to 
think, represent, and communicate their understanding of rational number concepts 
and procedures over time.

The importance of knowing how rational number knowledge and proportional 
reasoning develop through the middle grade levels is prompted in part by the fact that 
such knowledge forms the foundation for the study of higher mathematics. This need 
is further evidenced by the fact that students in the United States have demonstrated 
weaknesses in these topic areas in comparative studies with other international stu-
dent populations such as the Trends in International Mathematics and Science Study 
(Kelly, Mullis, & Martin, 2000; Mullis, Martin, Gonzalez, & Chrostowski, 2004). 
Some investigators have shown that even postsecondary students have difficulty rep-
resenting fraction magnitudes (Bonato, Fabbri, Umiltà, & Zorzi, 2007).

Besides these reasons that pertain specifically to academic progress and global 
competitiveness, fundamental understanding of rational number is necessary for a 
well-informed citizenry which includes but is not limited to interpreting graphs and 
other data displays, projecting trends and forecasts, comparing quantities multipli-
catively, and basic consumer and home skills.

 Issues in Mapping Students’ Growing Knowledge

In this study, we traced individual students’ development of each of the rational num-
ber subconstructs through a constructivist lens. On the individual level, we utilized 
individual interviews, following a target sample of students from the sixth grade 
through the eighth grade to assess their growth individually. Yet we also recognize 
that the development of rational number knowledge in a classroom is distributed 
across members of student groups or the class, coordinated between internal and 
external structures, and across time where results of earlier tasks and events transform 

1 It must be noted that these five subconstructs are not the only way to parse student reasoning or 
mathematical manifestations of these concepts. Confrey, Maloney, Nguyen, Mojica, and Myers 
(2009), for example, provide a rich alternative framework.
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the nature of later events (Hollan, Hutchins, & Kirsh, 2000; Roth & McGinn, 1998). 
We therefore observed students’ mathematics classes twice per week, coordinating 
our understanding of their individual growth with their classroom experiences.

The inscriptions or representational tools recorded and analyzed in student 
 interviews and in class observations provided a way to describe the propagation of 
rational number knowledge across classroom participants and within a single stu-
dent’s mind over time (e.g., Lamberg & Middleton, 2002). Examining student 
inscriptions was essential in our study due as they documented the form of knowl-
edge at the moment of instruction and developmental sequence in which the knowl-
edge arose. Inscriptions also served as the object of collective negotiations of 
meaning between the student and class, student and teacher, and student and 
researcher, and were appropriated (transported from one person to another) allow-
ing us to trace the diffusion of knowledge across the 3 years of the study, when they 
appeared spontaneously in interview sessions.

In summary, this study is aimed at understanding the intellectual resources indi-
vidual children bring to bear in developing rational number understanding and the 
classroom norms and practices that constrain and enable individual development 
longitudinally. Specifically, the scope of work is intended to advance the field of 
rational number learning by:

 1. Uncovering patterns and mechanisms of individual development in students’ 
understanding of rational numbers and proportional reasoning

 2. Integrating the current piecemeal body of research on rational number into a 
coherent developmental model by examining how understanding of rational 
number subconstructs evolve concurrently and interactively.

 3. Developing insight into the ways in which classroom instruction, especially the 
use of and talk around inscriptions impact students’ ability to think about, repre-
sent, and communicate their understanding of rational number concepts and 
operations as it develops over time.

 4. Generating transportable models of rational number development that can be 
factored into teacher pre- and in-service staff development to promote quality 
instructional practices in the future.

 Method

 Setting and Participants

This study analyzes data collected over a 20-month period in a longitudinal study 
conducted in an urban K-8 school located in the southwestern United States. The 
approximately 850 students enrolled in the school were predominately from a 
Hispanic lower-middle-class background. Over 90 % of the students received free 
or reduced lunch. Sixth-, seventh- and eighth-grade students participated in the 
study. Their classrooms were equipped with whiteboards on two walls, lined with 
low bookshelves and were furnished with round and rectangular tables at which 
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students were typically seated in groups of four to six students. Students attended 
mathematics class daily. Each class lasted for 70 min except Wednesdays, when 
classes were shortened to 55 min to accommodate after-school teachers’ meetings. 
The District-selected mathematics curriculum consisted of the NSF-sponsored, 
Mathematics in Context (2003) series supplemented with Arizona Instrument to 
Measure Standards (AIMS) test preparation materials, which the teachers used on 
an alternating basis. Some teachers favored drill and practice more than others, and 
these sessions lasted from 10 to 45 min in a typical 70-min class period. A signifi-
cant number of the students in all three classes were English Language Learners 
(ELL). As a school norm, teachers tried to seat the ELL students with classmates 
whose English was sufficient to assist them as needed. Participating teachers often 
used overhead projectors during instruction.

Although the exact enrollment in each class varied over the 3 years of the study, 
the average ratio of teacher to students in the sixth-, seventh-, and eighth-grade 
classes was 1–30. The sixth-grade class was self-contained, where a single teacher 
conducted instruction in all subjects. The seventh- and eighth-grade classes fol-
lowed a middle-school format where students traveled to different classrooms for 
subject instruction. Additionally, some seventh- and eighth-grade students were 
given the opportunity to attend a resource class for extended mathematics instruc-
tion. In this special resource class (held twice per week), students worked in small 
groups on challenging problems outside of the regular mathematics curriculum. As 
a part of the classroom norms in the resource class, students were expected to work 
together and present group solutions to the whole class.

 Data Collection Procedures: Interviews  
and Classroom Observations

 Interviews

To make comparisons across students possible, we designed parallel interview pro-
tocols to assess rational number knowledge across all five subconstructs (Behr et al., 
1992; Lamon, 2006). These protocols were administered to all students enrolled in 
the study in the first and last two interview cycles of the school year, regardless of 
the grade level. The tasks in the first pair of these parallel protocols were the same 
in terms of context and level of difficulty, and they covered the subconstructs of 
operator, quotient, and part–whole. The other parallel pair involved the subcon-
structs of measurement and ratio. Both pairs of parallel protocols were administered 
in the fall and spring semesters to assess individual growth over time, which included 
both ability to correctly solve problems, and also, changes in preferred strategies for 
solving problems.

In addition to these parallel protocols administered to all interviewees, we cap-
tured the impact of curricular tasks and instruction using class-specific individual 
interview protocols with prompts adapted from tasks in the district-adopted 
Mathematics in Context (2003) curriculum. Like the parallel protocols described 
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above, these additional tasks focused on one or more of the five subconstructs of 
rational number, but utilized the inscriptions and language that we observed being 
developed in students’ classes.

 Interview Procedures and Coding

All interviews (common, parallel protocols, and grade-specific protocols) were vid-
eotaped. Special attention was given to recording the students’ written inscriptions 
and their verbal “think aloud” responses. Interviewers attempted to capture stu-
dents’ intuitive, procedural, and conceptual knowledge of rational numbers and 
track their change over time. Interviewers were trained to listen closely and care-
fully prompt students for additional thinking without commenting on the appropri-
ateness of any of their solution strategies. Students who spoke little English were 
interviewed by interviewers fluent in both English and Spanish.

Each protocol was coded across five dimensions: (1) Problem subconstruct (the 
anticipated conception of rational number we hypothesized the problem would 
elicit); (2) Students’ solution strategies (Convert to common fractions; Use of 
equivalent ratios; Measurement division; Multiply by a scale factor (operator); Part/
Whole; Proportional Reasoning; Relating to a similar problem; or No Strategy 
observed/Strategy not code-abled); (3) Whether the strategy utilized was developed 
ad hoc, or if it had been previously observed in the student’s class; (4) Whether the 
problem was solved correctly; and (5) Whether the problem strategy led to a sensi-
ble answer mathematically even if the answer was technically incorrect.

Analyses traced the proportion of strategies utilized across each of the interviews 
as students moved from early sixth grade, through the seventh grade, and finally, as 
they prepared to finish the eighth grade, comparing differences in strategy use for 
each of the four other variables.

Table 1 displays the number of students in cohorts who were individually inter-
viewed by grade and by year. Arrows represent student groups followed up through 
successive grade levels. During the first year of the study, 53 sixth graders and 11 
seventh graders participated. Eleven new sixth graders, four new seventh graders, 
and seven eighth graders entered the interview process in the second year, while 38 
of the previous sixth graders and 8 of the previous seventh graders continued into 
the seventh grade and eighth grade, respectively.

6th grade 7th grade 8th grade Total

1st year 53 11 -- 64

2nd year 11 38+4 8+7 68

3rd year 12 9 32+4+4 61

Total 76 62 55 102

Table 1 Participants 
involved in individual 
interviews
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In the third year, 12 new sixth graders and 4 eighth graders entered the interview 
process, while 9 of the previous seventh graders and 38 of the previous eighth grad-
ers remained in the study. Among these 38 students, 32 were retained from the sixth 
grade across the 3 years. As a result, a total of 102 students took part in individual 
interviews during the 3-year study, and the 32 students who were followed over  
3 years became our focus group in this paper.

 Classroom Observations

In addition to individual interviews, the mathematics classes of students participat-
ing in the study were videotaped twice weekly. These 70-min observations were 
conducted to provide a contextual reference within which we embedded individual 
interviews and analyses. Interviewers were able to see their student interviewees 
engaging in mathematical activities within a social setting, to see what inscriptions 
occurred in the classroom, which were favored, and to look for clues to the origins 
of the problem solving and reasoning strategies students used in interview settings. 
While targeted students interacted in groups or whole class situations, our cameras 
recorded their development of mathematical notations and representations within 
the sociolinguistic structure of the classroom.

 Assessment of Students’ Rational Number Performance

There were two major purposes for collecting performance data: (1) to compare 
performance of our sample to a national/international sample; and (2) to describe 
student growth over time quantitatively. Quantitative assessment data were gathered 
at four time points: at the end of the fall semester in year 1, the beginning and end 
of year 2, and the beginning and end of year 3. Questions were drawn from released 
items from national/international mathematics assessments, the Trends in 
International Mathematics and Science Study (Martin & Kelly, 1998; International 
Association for the Evaluation of Educational Achievement, 2001; International 
Association for the Evaluation of Educational Achievement, 2005) and the National 
Assessment Educational Progress (NAEP). Utilizing questions from TIMSS and 
NAEP tests also allowed for comparisons of these students with students of similar 
age throughout the country and around the world.

To determine the rational number constructs the test items represented, the origi-
nal form was piloted using a separate sample to ensure appropriate content and 
discrimination across the three grades. Three items were excluded due to the stu-
dents’ extremely low percentage of correct responses. As a result, the assessment 
consisted of 27 items, assessing 11 categories of rational number including: 
Ordering fractions, part–whole, ratio, relationships between fraction and decimal, 
proportion, linear measurement, rates, percent, equivalent fraction, operator, and 
decimal notation. Among the 27 items, 4 were free-response (item 1, 9, 18, and 21), 
while the remaining items were multiple-choice (see Table 2).
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Table 2 Test item information

Item 
# Source Type Item content

1 TIMSS 
95

Ordering fractions Write a fraction that is larger than 2/7

2 TIMSS 
99

Part–whole Which shows 2/3 of the square shaded?

3 NAEP 
98

Part–whole What fraction of the rectangle ABCD is shaded?

4 TIMSS 
99

Ordering fractions Given two common fractions. Which of these fractions 
is smallest?

5 NAEP 
03

Ratio Given two ratios. Which of the following ratios is 
equivalent to the ratio of 6:4?

6 NAEP 
92

Relation between 
fraction and 
decimal

Given a common fraction, which is closest in value to 
0.52?

7 TIMSS 
99

Part–whole Given a picture. What fraction of the circle is shaded?

8 TIMSS 
99

Part–whole Given a picture. Robin and Jim took X cherries from a 
basket. What fraction of the cherries remained in the 
basket?

9 TIMSS 
99

Proportion John and Mark sold X magazines. Knowing the total 
amount of money, how much money did Mark receive?

10 TIMSS 
99

Part–whole Penny had a bag of marbles. How many marbles were 
in the bag to start with?

11 TIMSS 
95

Ratio Given a picture with numbers, what is the ratio of red 
paint to the total amount of paint?

12 NAEP 
03

Linear measure Given a picture, the distance from Bay City to Exton is 
60 miles, what is the distance from Bay City to 
Yardville?

13 TIMSS 
99

Rates A runner ran 3,000 m in exactly 8 min. What was his 
average speed in meters per second?

14 TIMSS 
95

Percent From 60 cents to 75 cents, what is the percent increase 
in the price?

15 TIMSS 
03

Ordering fractions Given two common fractions. In which of these pairs 
of # is 2.25 larger than the first number but smaller 
than the second number?

16 TIMSS 
99

Proportion If there are 300 calories in 100 g, how many calories 
are there in a 30 g portion of this food?

17 TIMSS 
95

Ratio 3/5 of the students are girls. Add 5 girls and 5 boys, 
which statement is true of the class?

18 NAEP 
03

Linear measure Given a picture, a dot shows where 1/2 is. Use another 
dot to show where 3/4 is

19 TIMSS 
99

Equivalent fraction In which list of fractions is all of the fractions 
equivalent?

20 NAEP 
03

Linear measure 3/4 of a yard of string is divided into pieces; they are 
1/8 yard long each. How many pieces?

(continued)
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Each test had two forms, A and B, which differed only in item order. Assessments 
were given to the entire sixth, seventh, and eighth grades, and students sitting next to 
each other received different test forms to prevent cheating. Since students included 
in the study were predominately Hispanic, a Spanish version of the test was created, 
translated by faculty and graduate assistants fluent in Spanish. Students were asked 
for their test language preference, and although most students were of Hispanic 
decent, only a few students preferred to take the Spanish version. Data were collected 
based on the students’ original responses to test items, and were coded according to 
their correct (1) or incorrect (0) answers to items. Summing the number of correct 
responses formed a student’s total score. Scores were also computed for items within 
each rational number subconstruct represented in the NAEP and TIMSS items.

 Results

 Comparison of Performance of Sample  
to a National/International Sample

Table 3 displays the number of students and gender distribution in each grade tested. 
Numbers in parentheses represent the number of classes involved in the testing at 
each grade level.

To benchmark our students against (inter)national norms, we compared mean 
performance and proportion correct for each of the 24 comparable items on the 
performance assessment. In terms of overall performance, students in our sample 
students scored at or just below the level of middle schoolers around the nation (for 
NAEP items) and the world (for TIMSS items). Only 10 of the 24 comparable items 

Table 2 (continued)

Item 
# Source Type Item content

21 TIMSS 
95

Operator Luis runs 5 km each day, the course is 1/4 km long. How 
many times through the course does he run each day?

22 TIMSS 
99

Decimal Which of these is the smallest number?

23 TIMSS 
95

Ordering fractions Which list shows the numbers from smallest to largest?

24 TIMSS 
95

Ratio The ratio of girls to boys is 4:3. How many girls are in 
the class

25 TIMSS 
99

Ratio The tables show some values of x and y, what are the 
values of P and Q?

26 TIMSS 
03

Decimal Divide a number by 100. By mistake multiplying it by 
100, obtained an answer of 450. What was the right 
answer?

27 TIMSS 
03

Decimal 45 L of fuel; consumer 8.5 L per 100 km. After 
traveling 350 km, how much remained?
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showed statistically significant differences in percent, correct. These differences 
centered around the predominant focus on Part/Whole fraction instruction in our 
observed classes. We propose that this instructional bias, which is typical of fraction 
instruction in the United States, resulted in a predominance of the use of Part/Whole 
strategies to the exclusion of other learned strategies—strategies which ultimately 
are more efficient, conceptually meaningful, and that are useful for more 
 sophisticated ratio and proportional reasoning problems.

 Comparison of Performance at Different Grade Levels

Table 4 presents students’ average score and standard deviation by grade level for 
each administration. One way Analysis of Variance was performed on percent cor-
rect using grade as an independent variable. Post hoc Scheffe tests show that, eighth- 
grade students outperformed sixth and seventh graders for all administrations 
(p < 0.05). Seventh graders outperformed sixth graders on administration 2 only. 
Sixth graders scored on average, higher than seventh graders on the first administra-
tion, but the difference is not statistically significant (p > 0.05). Students grew signifi-
cantly over time, with greatest gains appearing, not surprisingly during the academic 
years, with very little, but some growth occurring over the summer periods.

Table 3 Number of students participating in each test administration broken out by gender

Sixth grade
N (n)

Seventh grade
N (n)

Eighth grade
N (n)

Total
N

Test 1 74 (3) 27 (1) – 101
Female/male 33/41 14/13 – 47/54

Test 2 22 (1) 84 (3) 62 (2) 168
Female/male 12/16 35/49 29/33 76/92

Test 3 27 (1) 74 (3) 51 (2) 152
Female/male 16/11 32/42 26/25 74/78

Test 4 28 (1) 65 (3) 80 (3) 173
Female/male 16/12 35/30 34/46 85/88

Test 5 26 (1) 61 (3) 85 (3) 172
Female/male 15/11 32/29 43/42 90/172

Table 4 Mean and standard deviation of student test scores

Test Sixth grade Seventh grade Eighth grade

1 (Fall, year 1) 9.39 (3.16) 8.56 (3.33) –
2 (Fall, year 2) 6.73 (3.15) 9.71 (3.70) 12.81 (5.52)
3 (Spr, year 2) 8.48 (2.62) 10.46 (4.05) 14.73 (6.46)
4 (Fall, year 3) 7.89 (2.62) 8.88 (3.36) 10.88 (4.45)
5 (Spr, year 3) 8.96 (3.23) 9.51 (4.52) 13.22 (4.96)

Note: The bold items show the trajectory of sixth graders in year 1 as they matriculated through 
seventh and eighth grade
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 Describing Students’ Mathematics Achievement over Time

As we studied the results of individual interviews (see below), it became apparent 
that the students we were interviewing displayed more capability for solving ratio 
and proportion problems than the larger sample of students in the school that did not 
receive interviewing. To determine if a Hawthorne effect explained this difference in 
student abilities, average test scores for students who were interviewed in the study 
and peers who were never interviewed were separately computed and plotted in 
Fig. 1. The number of students in the former group was 33 and latter group was 56. 
Figure 1 presents a mean plot for these two groups of students across five test points.

It is obvious from the figure that interviewed students’ mathematics performance 
increased steadily, and even accelerated over time. While non-interviewed students’ 
mathematics performance did not increase from the beginning of study till the time 
when the third test was given, they linearly increased starting at about the third test 
(after 15 months of school time had elapsed). Although separate hierarchical linear/
nonlinear models could be specified for each of these two groups to examine and com-
pare student’s growth on mathematics achievement over time, we decided to apply a 
two-level linear model to only the interviewed group, with the following justification:

 1. Thirty-three students were target students in this study, and we had a large body 
of qualitative data for each of these 33 students. This made it possible to combine 
both qualitative and quantitative data outcomes to describe students’ learning 
trajectories.

Fig. 1 Growth in rational number performance for students interviewed in the study versus non- 
interviewed students
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 2. Among the 33 students in the interviewed group, only 4 data points were 
missing.

 3. Among 56 students in the non-interviewed group, 50 % of data points were miss-
ing, and only 9 students completed all 5 tests. It would not have satisfactory 
power to apply linear model to this group.

The following two-level linear model was specified to interviewed group as 
following:

Level 1: Total monthti i i ti ti= + ( ) +β β0 1 r

Level 2: 
β β γ
β β γ
0 00 0

1 10 1

i i

i i

= +
= +

where:

Totalti: the observed math achievement score of individual i at month level t
β0i: the estimated status when month = 0
β1i: the estimated growth rate for individual i per monthti where month is a time- 

related variable
rti: the residual of individual i at month level t, which was assumed to have a mean 

of zero and equal variance of σ2 across grades
β00: the average true status when month = 0
β10: the average slope for the population
γ0i: the difference between the individual intercept and the average true status when 

month = 0
γ1i: the difference between individual slope and average slope
γ0i and γ1i are assumed to have MVN with a mean of zero and equal variance

We estimated fixed effects: β00, β10 and random effects: eti, γ0i, γ1i

In this model, predictors in level 1 (i.e., β0i and β1i) became criterion variables in 
Level 2, allowing students to have different starting points and growth rates. This 
model assumed that a straight line adequately represented each person’s true change 
over time and that any deviations from linearity observed in the sample data resulted 
from random measurement error rti. The model was examined by using HLM 6.0 
software. Table 5 presents the results.

Table 5 Linear model of growth in math achievement (unconditional model)

Fixed effect Coefficient SE t ratio p value

Mean status at month = 0, β00 9.03 0.57 15.52 0.000
Mean slope, β10 0.16 0.02 7.93 0.000
Random effect Variance component df χ2 p value
Status at month = 0, γ0i 8.21 32 120.99 0.000
Slope, γ1i 0.0055 32 50.94 0.018
Level-1 error, eti 4.63
Correlation between γ0i and γ1i 0.74
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The estimated mean intercept, β̂00 , and mean growth rate, β̂10 , for the math 
achievement data was 9.03 and 0.16, respectively. This means that the average math 
achievement score at month = 0 was estimated to be 9.03 and students were gaining 
an average 0.16 of a score per month. Both the mean intercept and growth rate have 
large t statistics indicating that both parameters are necessary for describing the 
mean growth trajectory of math achievement.

The estimates for the variances of individual growth parameters β0i and β1i were 
8.21 and 0.0055, respectively. The χ2 statistics for γ0i was 120.99 (df = 32, p < .05 ), 
leading us to reject the null hypotheses and conclude that students vary significantly 
in month = 0. The χ2 statistics for γ1i was 0.0055 (df = 32, p < .05 ), leading us to 
reject the null hypotheses and conclude that there is also significant variation in 
students’ math achievement growth rates. The variance of γ1 0 0055i = .  implied an 
estimated standard deviation of 0.074. Thus, a student whose growth was one stan-
dard deviation above average was expected to grow at the rate of 0.16 + 0.074 = 0.234 
scores per month. The correlation between mean and slope was 0.74, suggesting 
that students with a higher score at the starting point tended to learn faster.

In other words, interviewed students showed slightly, but significantly lower ini-
tial performance than non-interviewed students, but over time, they learned more, 
and at a faster rate, resulting in a set of learners with markedly different capabilities 
than the uninterviewed students in the school. Recall that there were nonsignificant 
differences overall in the performance of our sample with the (inter)national norms. 
Some kind of Hawthorne effect, therefore, must have occurred as a function of the 
student interview process. The reasons for this will be discussed following the rest 
of the results.

 Interview Results

We present two cases to illustrate key transitional points in students’ development 
for two of the subconstructs distinguishing our sample’s performance from that of 
the (inter)national sample: Part–whole and ratio. These cases do not capture all 
students’ developmental details, not even all of the details for the two students cho-
sen. However, they illustrate common cognitive challenges and dilemmas students 
faced, and they show common realizations that moved students towards a deeper 
and more useful understanding in the two primary rational number subconstructs 
where sample students differed from their (inter)national peers. As such they can be 
thought of as representative of the larger sample of student growth patterns in these 
two areas for sampled students, but illustrative of the differences in international 
curriculum and learning. We are developing a full account of students’ individual 
trajectories in a follow-up paper.
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 Elias: Part–Whole and Unitization

The case of Elias presents an example of how a student can extend a well-developed 
understanding of part–whole concepts and unitization to navigate through other 
rational number subconstructs, employing this knowledge to guess and check solu-
tions in less familiar contexts (Fig. 2). Elias, like most of the interviewed samples, 
reflected a well-developed notion of fractions as part–whole concepts. When asked 
to express part–whole responses to contextualized questions, he responded with 
fraction notation, languages, and labels indicating an understanding of units and 
what each portion or unit represented. His was flexible, moving among suggested 
units, appropriately representing new, equivalent part–whole ratios correctly.

In describing the different units, for example, in a case of 4 cans out of a case of 
24 cans of soda, Elias’ was able to flexibly change the unit from 24 cans to one 
6-pack and then to two 6-packs. With each new given unit, Elias correctly calculated 
the correct fraction and labeled his answer in terms of the appropriate unit. Thus the 
4 cans became one-sixth of the 24 cans, two-thirds of a 6-pack, or one-third of two 
6-packs.

Within the other rational number subconstructs, Elias’ intuitive knowledge 
appeared to lack the depth necessary to transition smoothly into formal. For exam-
ple, although he had an implicit understanding of ratio and could correctly solve 
simple ratio problems, he was not able to use this implicit understanding to explain 
his reasoning and computation in ratio terms (e.g., a to b, a per b, a for b, etc.). The 
following vignette illustrates his difficulty when he had to alter a recipe that called 
for 2 cups of flour and 1 cup of sugar because the cook only had ½ cup flour. In this 
particular context, the relationship between flour and sugar is a fairly simple  

Fig. 2 Elias’ flexible unitization
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part–part ratio (two parts flour to one part sugar). Elias immediately identified the 
correct numerical answer, but his explanation emphasized the partitioning of two 
cups of flour into four ½ cups. He then described a process of partitioning one cup 
of sugar until he finally revealed a method of taking away three ¼ cups, leaving one 
¼ cup as the amount of sugar needed.

Elias: Hm…sugar… you would need ¼.
Interviewer: How did you get that?
Elias: Cause if you cut 1 into half, wait…if you cut 2 into half it would equal 1, and 

if you cut 1 into half you cut…I am getting myself confused. I’m gonna do it 
another way. If you take 2 minus ¼ it would be ¼ . .. ½ I mean would equal 1 ½, 
take away ½ again, and it would equal 1 and it would equal ¼ of a cut, so it would 
be 1, 2, 3, 4, so it would be 4.

Interviewer: Draw a picture if you need to.
Elias: Oh yeah, if you have ¼ + ¼ + ¼ and how much sugar would you need there are 

3 of these and take away to get ¼. This is my strategy, but you won’t get it.

Elias was able to solve this problem quickly, without visible calculations, yet, as 
we have seen, when encouraged to reveal his thinking process, he expressed 
 frustration in making himself clear to the interviewer and never explicitly described 
the proportional relationship between the flour and sugar quantities given in the 
original recipe. If Elias’ understanding of the ratio subconstruct was developed 
beyond familiar part–whole relationships to part–part or part–part–whole, we would 
expect him to better attend to and express the multiplicative relationship involved in 
changing the quantities of flour and sugar (i.e., the amount of sugar is ½ the amount 
of flour). What we see here is a reliance on Part–whole reasoning, with a fallback 
on a Measure conception as evidenced by Elias’s iteration of a ¼ unit. Like the 
majority of our sample, Elias used these two conceptions approximately 60 % of the 
time in his interviews. Rarely did he utilize equivalent ratios, proportional reason-
ing, or multiplication by a scale factor (operator conception) to solve rate and pro-
portion problems.

 Inez: Ratio Subconstruct

One of the most dramatic examples of growth in the ratio subconstruct was seen in 
the test scores and protocol work of Inez. During her mid-sixth grade year Inez was 
only able to correctly answer 4 out of the 13 ratio problems on the common test 
drawn from TIMMS and NAEP questions. By the fall semester of her seventh-grade 
year, she was able to answer 10 of the 13 correctly, dipping slightly to 8 at the end 
of that year, but coming back strongly in her eighth-grade year to a score of 11. 
What made this development interesting was her admitted lack of familiarity with 
ratio vocabulary and instructor-initiated inscriptions. In several conversations with 
her interviewer, Inez expressed a limited knowledge of the word “ratio” and with 
the ratio table method, which was used extensively by her seventh-grade teacher. 
Comments by Inez such as “What is the ratio?” and “I heard about ratio table but I 
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don’t know about ratio.” seemed to indicate that she wasn’t aware of the formal 
language or notations typically associated with ratio problems.

In one protocol session during her sixth-grade year, Inez was given a problem to 
find the amount of calories in 30 g of ice cream given the fact that 450 calories were 
in 100 g. She tried to divide 450 by 30 and stated “We already have 30 g, so we can 
ignore the 100.” It wasn’t until the interviewer prompted her to determine the 
amount of calories in 1 g of ice cream, that she seemed to recognize the relationship 
between the original quantities of calories and grams and was able to find a specific 
ratio, a unit rate. By mid-year Inez started to show her own usage of a unit rate. 
Figure 3 shows her work in determining how many more cookies must be added to 
a given amount of cookies to maintain the initial ratio of cookies to guests.

Interviewer: You are shopping for a party and you buy 24 cookies for 8 people. Your 
cell phone rings and you are told that four more people are coming to the party. 
How many more cookies will you have to buy to keep the ratio the same? How 
many total cookies will you need?

Inez: We have 24 cookies and only 8 people. So each person will get three cookies. 
So when 4 more people are coming, we have to multiply by 4, so 12 more  cookies 
and all together we need 36 cookies.

Despite her lack of familiarity with formal ratio symbols and operations, Inez, 
like many of our sample students, was able to solve a variety of contextual ratio 
problems by using her own personal notation for assigning correspondence between 
ratio quantities. From the fall semester of her sixth-grade year to protocols through-
out her seventh-grade and eighth-grade year, Inez used an “=” to pair ratio quantities 
and then worked efficiently with this pairing to build up or down to a desired solu-
tion. In Fig. 4, for example, she established a relationship between 90 lions in the 
zoo with 1,800 kgs of food. Once she wrote this “equality” on her paper, she then 
divided or multiplied both sides as needed to create other equivalent ratios, often 
also adding corresponding parts of these pairs to solve given problems. Eventually 
she found the unit rate of 20 kg for one lion and then demonstrated her knowledge 
of how to use this rate to determine the number of kilograms for any given number 
of lions.

Fig. 3 Inez’s use of a unit 
ratio
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During the last year of the study, Inez was confronted by the interviewer about 
her use of the “equal sign” inscription for a ratio problem. Inez was quick to say that 
she knew that the two numbers were not really “equal,” but that this was her own 
way of organizing the information in the problem. It was clear from her work that 
this method of organization provided a structure within which she could move eas-
ily to create equal ratios as needed.

Inez is also indicative of our sample students in that, informal, in-the-moment 
notations were used extensively, along with very few teacher-sanctioned  inscriptions 
(like the ratio table, for example). These ad hoc inscriptions had meaning for each 
individual student, but were not capitalized on by the teachers in an attempt to sys-
tematically make them more formal and precise.

 Summary of Interview Data

Interview protocols were coded based on the type of problem presented (Part–
Whole, Measure, Quotient, Ratio, or Operator), strategies employed to solve the 
problem (including the use of heuristics, super-strategies, and taught procedures), 
and the sensibility of students’ strategies and the correctness of their answers. 
Emulating the wonderful interpretive method of Carpenter and Moser (1984) for 
young children’s arithmetic strategy development, we represent the development of 
children’s strategies as graphs showing the proportion of each coded strategy over 
time. The following four figures show demonstrably that students enter into rational 
number instruction with a variety of strategies, both informal and formal for solving 
a wide variety of problem types. These strategies echo the general research on ratio-
nal number development in that the predominant way of approaching problems 
appears to be conceptualizing them as Part–Whole, with smaller proportions of 
strategies focusing on using benchmark fractions, common denominator strategies, 
and even some proportional reasoning, though this was very rare (<5 % of total 
strategies). Through instruction, certain strategies became preferred in the partici-
pating students’ classrooms. In particular, the use of fraction bars and ratio tables 
favored the development of benchmark fractions, measure strategies, and some use 
of equivalent ratios and proportional reasoning.

Fig. 4 Inez’s equals sign 
used as “colon” ratio symbol
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Findings show that sensible approaches to problem solution tended to lead to 
generation of correct answers (see Figs. 5 and 6). The proportions of strategies 
coded as sensible were nearly identical to the proportions of correct answers. The 
trend for the development of sensible and correct strategies shows that the propor-
tion of problems solved using Part/Whole reasoning decreased over time, being 
supplanted by measure (quotitive division) strategies, relating problem quantities to 
benchmark fractions, and also by a variety of ad hoc strategies made up on the spot 
to solve the problem. Part–Whole, however, remained the dominant strategy pre-
ferred by students, even by the end of the eighth grade.

Examining errors, we show that, ad hoc strategies, were the most prominent 
strategies chosen when the strategies did not make sense for the problem situation 
(see Fig. 7). This indicates that for a large number of interview problems, students 
neither learned nor were able to generate, a meaningful method of solution, and 
instead relied on trial-and-error and other means–end solution methods. Fully 40 % 
of students’ responses were idiosyncratic, and this trend remained relatively con-
stant over the entire course of the longitudinal study. Part–Whole methods were the 
second-most prominent strategies used in ways that did not make sense for the prob-
lem context. Moreover, Part–Whole strategies were used most in cases where stu-
dents’ strategies yielded incorrect solutions. This echoes our comparisons with the 
(inter)national sample.

0%

20%

40%

60%

80%

100%

1
2

3
4

relate to

proport

part

none

X by scale

measure

equiv rat

common

Fig. 5 Strategy type leading 
to sensible answers across 
four parallel administrations 
of interview protocols 
2005–2007

0%

20%

40%

60%

80%

100%

1
2

3
4

relate to

proport

part

none

X by scale

measure

equiv rat

common

Fig. 6 Strategy type leading 
to technically correct answers 
across four parallel 
administrations

J.A. Middleton et al.



283

The most disappointing trend in our data suggests that potentially powerful 
methods of solution to rational number problems, such as proportional reasoning, 
the use of equivalent ratios, and common denominator strategies were neither 
stressed in students’ classes (until well into the eighth-grade year), nor evident in 
their acquisition of strategies across the middle grades. Instead, the teachers focused 
class time on the use of robust-but-inefficient conceptual strategies such as the use 
of the fraction bar and ratio table. These strategies were heavily used in the  students’ 
textbooks, but were not exclusively emphasized there, indicating considerable 
teacher preference in the kinds of strategies legitimized in their instructional prac-
tices (Fig. 8).

Because our data are drawn from primarily poor, urban, largely Latino schools, 
we want to be careful generalizing the exact developmental trajectory of students’ 
strategies to the rest of the United States. However, inasmuch as other middle- 
school curricula continue to overemphasize the use of part–whole conceptualiza-
tions of fractions, underemphasize the notion of fractions as indicated division, and 
underemphasize methods of computation that build strong understanding of factors 
and multiples, units, and partitions (e.g., Lamon, 2002; Ni & Zhou, 2005; Sophian, 
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2007; Thompson & Saldanha, 2003), it is likely that similar trends are occurring 
across many schools. Data on NAEP and TIMSS (National Science Foundation, 
2002; NCES, 1999) show that US students generally lack understanding and skills 
in these and other areas related to proportional reasoning.

 Discussion

A major objective of this longitudinal study was to contribute significantly to the 
research base on rational number learning by exposing patterns and mechanisms of 
development in students’ understanding of rational numbers and by reorganizing 
the current fragmented body of research into a more coherent developmental model; 
illustrating how rational number subconstructs evolve concurrently and interac-
tively along the road to a more profound knowledge of rational number concepts. 
The former goal is realized in this manuscript, but the latter is still a major challenge 
for the field. In particular, the coherence of instruction for teaching rational number, 
and especially the problematic concepts of ratio and proportion is still lacking, 
resulting in continued fragmentation of knowledge in the US children, favoring less 
sophisticated conceptualizations in this subject matter, than evidenced by students 
in the TIMSS 1999 and 2003 samples. Curriculum and teaching appear to be the key 
levers here (e.g., Saxe, Diakow, & Gearhart, 2012; Saxe, Gearhart, & Seltzer, 1999) 
as we were able to show that instructional strategies that favored Part–Whole con-
ceptions predominated in our sample classrooms, leading to an overreliance on 
Part–Whole conceptualizations by students, yielding performance deficits in com-
parison to the international norm on more powerful concepts of rate, ratio, and pro-
portional reasoning.

Despite the narrow demographics of our studied samples, we see our results as 
transportable to the US educational system in general. In the United States, research 
clearly shows that instruction in rational number tends to favor Part–Whole inter-
pretations far more than other interpretations of fractions (Ni & Zhou, 2005; 
Sophian, 2007; Thompson & Saldanha, 2003). Use of measure, quotient, and ratio 
subconstructs are much less evident. The unfortunate point of this is that a Part–
Whole understanding of fractions does not allow the student to deal with units other 
than one without tremendous difficulty. As a result, improper fractions become con-
fusing (Mack, 1993). Fraction division, in particular becomes conceptually impos-
sible. In countries like Japan and China, who traditionally perform better on 
international assessments of fractions and algebra, rational numbers are explained 
in terms of measurement models like the number line or area models, as the result 
of any division problem, and as a multiplicative comparison of dividend and divisor, 
numerator, and denominator (Moseley, Okamoto, & Ishida, 2007).

Our study reinforces earlier work that suggests that in rational number develop-
ment, students tend to utilize a small number of robust-but-inefficient strategies 
which are applicable across a variety of situations. In the reported project, for 
 example, we found that students who did not have ready access to procedures for 
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determining factors and multiples of whole numbers were greatly hampered in their 
capacity to solve complex problems involving fractions, particularly fractions in 
proportional relationships. Conversely, students who DO have ready access to effi-
cient procedures are able to solve problem subgoals in real time and progress 
towards successful problem resolution much more readily (Kim et al., 2007).

Moreover, in our data, overall, we have seen children using powerful iterative 
methods, such as the repeated halving strategy, far beyond their proficiency with 
other methods of computing fractions (e.g., finding common denominators, divid-
ing numerator and denominator by a common factor). Students persisted in the use 
of these iterative strategies even though they had earlier demonstrated the ability to 
conceptualize fractions as indicated division, knowledge of and the ability to use 
factors and multiples, and the ability to solve complex problems using a division 
procedure.

Siegler, Thompson, and Schneider (2011) show that sixth graders show great 
variability of strategy use. They found that selection of strategies depended upon 
students’ familiarity with solving problems with some arithmetic operations but not 
others. They found, however, that strategy use was highly variable within arithmetic 
operations. The sixth grade in the United States appears to be a key transitional 
grade, where students struggle to consolidate learned strategies for whole number 
arithmetic, and reconcile these with new rational number strategies they are cur-
rently learning.

Empson, Levi, and Carpenter (2011) show “there is a broad class of children’s 
strategies for fraction problems motivated by the same mathematical relationships 
that are essential to understanding high-school algebra and that these relationships 
cannot be presented to children as discrete skills or learned as isolated rules. The 
authors refer to the thinking that guides such strategies as Relational thinking.” 
What we found in our current study is that our studied children came into the sixth 
grade armed with a number of fine strategies for thinking about fraction problems. 
What failed to happen for many of our studied students is that over the course of 
their 3 years in middle school, they were not able to develop relational thinking for 
fractions much beyond Part–Whole and Measure conceptions.

 Conclusions

In conclusion, we found that:

 1. Children come to the middle grades with many useful ways of thinking about 
and solving rational number problems.

 2. Children leave middle school with only a slightly expanded set of skills. They 
tend to rely on ad hoc, means–end reasoning and reliance on simple Part/Whole 
conceptions of fractions as opposed to developing more efficient and powerful 
methods of computation.
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 3. Teaching of fractions overemphasizes conceptual strategies using inscriptions 
like the fraction bar and ratio table, leaving little time to develop proportional 
reasoning, common denominator, and other equivalent fraction methods of 
solution.

 4. The very act of interviewing children, only once every 3 weeks, is an interven-
tion that leads them to learn more and achieve better than their matched counter-
parts. Even though teaching the children was not a goal of this study, interviewed 
children demonstrated significantly higher gains on TIMSS and NAEP items 
than their peers.

 Commentary on the Issue of Scale in Intensive Interview 
and Observational Methods

At first glance, the scale of our study, comprising 204 students—of which all 204 
were administered quantitative assessments of their rational number knowledge, 
102 were interviewed, and 32 remained in the study for the full 3 years of the 
 project—would generally not be considered large when compared to the samples 
reported in other studies in this book. However, as pointed out in the introductory 
chapter of this volume, scale depends on a variety of factors, not just the size of the 
sample. In our case, the scale is determined by two factors: (1) methods utilized; and 
(2) characteristics of the measurement.

Individual constructivist teaching experiments of approximately 45 min took 
roughly 2¼ hours to transcribe. Analysis of each interview took an additional 1.5 h 
on average. Multiplying these factors by 102 students, interviewed 9 times per year 
for 3 years, we get a total experimenter time of roughly 12,500 h for our qualitative 
work. For the quantitative assessments, administration of tests to all 204 students 
pre- and post- each year, coding responses and analysis of the quantitative data took 
roughly 300 additional experimenter hours. A bit more can be added to account for 
cleaning up TIMSS and NAEP data to bring our rough estimate close to 13,000 h of 
work (we do not count reading, writing, meetings, and other preparatory/reflective 
work in these estimates, nor do we count the 2 h per week of classroom observa-
tions, plus transcription and analysis). Clearly, the qualitative methods employed to 
uncover students’ thinking constituted the vast majority of our researcher time. 
Every additional student added to our sample added an additional week (40.5 
researcher hours equivalent) of effort. Given restrictions of funding, relative to the 
sensitivity of measurement we needed to track students’ development of strategies 
over time, 102 students as ongoing informants was at the upper limits of scale 
possible.

So scale, as a construct in mathematics education must be thought of in terms of 
the complexity of the questions asked, the intensity of the data collection process, 
and the density of the data record. We benefited from this understanding of scale in 
that our interview protocols and performance assessments shared a common scheme 
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by which problems could be coded. By utilizing and combining sensitive  idiographic 
techniques such as interviews and observations, with (inter)nationally validated 
tasks on the performance assessment, we were able to identify a key weakness in the 
instruction of our sample, and tie this weakness to inadequate development of pro-
portional reasoning.
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      Measuring Change in Mathematics Learning 
with Longitudinal Studies: Conceptualization 
and Methodological Issues 
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          Learning is about growth and change. Learning is often demonstrated by changes in 
student achievement from one point in time to another. Therefore, researchers and 
educators are interested in academic growth as a means to understand the process of 
student learning. In mathematics education, there has been a growing interest in 
using longitudinal designs to examine and understand student learning over time. 
Researchers face a number of issues of measuring change using such designs. 
In this chapter, we draw on our experience gained from two longitudinal studies of 
mathematics learning to discuss various issues of measuring change in student 
learning. We start with a brief introduction of the two studies. Then we discuss the 
conceptualization and measures of change in mathematics learning. Third, we dis-
cuss issues of analyzing and reporting change. Finally, we discuss how to interpret 
changes in mathematics achievement in longitudinal studies appropriately. 

    Two Longitudinal Studies Examining Curricular Effect 
on Student Learning 

 This chapter draws on two longitudinal projects that studied the effects of curricu-
lum on student learning. The fi rst project was conducted in China and addressed the 
question, “Has curriculum reform made a difference?” by looking for changes in 
classroom practice and consequently in student learning. This project (hereafter 
called the China project) compared the effect of a new, reform-oriented elementary 
mathematics curriculum to that of the conventional curriculum on classroom 
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practice and student learning outcomes. The second project—the LieCal project 
(Longitudinal Investigation of the Effect of Curriculum on Algebra Learning)—was 
conducted in the USA. This project was designed to investigate both the ways under 
which a reform curriculum did or did not have an impact on student learning in 
algebra, and the characteristics of the curricula that led to student achievement 
gains. Both projects looked into changes in classroom practice by examining the 
nature of classroom instruction, analyzing cognitive features of the instructional 
tasks implemented in different classrooms, the characteristics of classroom interac-
tions, and changes in student learning outcomes. 

 The China project and the LieCal project shared similarities in their designs and 
data analyses. In particular, both projects addressed a set of common and critical 
questions about teaching and learning using reform-oriented curricula, including: 
(1) Does the use of the reform-oriented curriculum affect the quality and nature of 
classroom teaching; (2) Do students improve at solving problems, as the developers 
of the reform-oriented curricula claim; (3) Do students sacrifi ce basic mathematical 
skills with the reform-oriented curriculum; and (4) To what extent does the use of 
the reform-oriented curriculum improve learning for all students?  

    Conceptualizing and Measuring Change in Student Learning 

 Student learning takes place in various domains; two major domains are cognitive 
and affective (Krathwohl,  2002 ), each with multiple factors infl uencing what is 
learned, how it is learned, and how it is remembered and used. Here, we will focus 
on the cognitive domain, and in particular on mathematical thinking, to illustrate the 
issues of how to conceptualize and measure change in student learning. We will 
briefl y touch on the affective domain afterwards. 

 Although there is no consensus on what mathematical thinking is, it is widely 
accepted that there are many aspects of mathematical thinking that warrant exami-
nation (Cai,  1995 ; Ginsburg,  1983 ; Schoenfeld,  1997 ; Sternberg & Ben-Zeev, 
 1996 ). Studies of mathematics learning over the years have included a focus on 
identifying those ways that students demonstrate a propensity to “think mathemati-
cally” in their actions. For example, Polya found that capable problem solvers 
employ heuristic reasoning strategies to solve problems (Polya,  1945 ). Being able 
to self-generate useful analogies while solving a problem is an example of a  heuristic 
that capable solvers demonstrate as they solve problems. In addition, Krutetskii 
( 1976 ) found that able students are more likely than less able students to use gener-
alizations in their mathematical problem solving. Other researchers have described 
and explained mathematical thinking as distinct from the body of mathematical 
knowledge, focusing on processes such as specializing, conjecturing, generalizing, 
and convincing (Burton,  1984 ). More recently, mathematical thinking has been 
characterized in terms of the learner being able to develop strong understandings in 
mathematical situations (Kieran & Pirie,  1991 ) and making connections among 
concepts and procedures (Hiebert & Carpenter,  1992 ). 
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 These studies suggest that we need to use multiple measures to assess the 
 mathematical thinking of students. For example, although we know that it is impor-
tant for students to have algorithmic knowledge to solve many kinds of problems, 
this does not ensure that they have the conceptual knowledge to solve nonroutine or 
novel problems (Cai,  1995 ; Hatano,  1988 ; Steen,  1999 ; Sternberg,  1999 ). Hence, it 
is crucial that studies of mathematical thinking include tasks that measure students’ 
high-level thinking skills as well as their routine problem-solving skills that involve 
procedural knowledge. Indeed, as the heart of measuring mathematical performance 
is the set of tasks on which achievement is to be assessed, it is desirable to use vari-
ous types of tasks to measure the different facets of students’ mathematical thinking 
and gauge student growth in mathematics learning (Betebenner,  2008 ; Mislevy, 
 1995 ; National Research Council (NRC),  2001 ). 

 Recognizing the need to assess mathematical thinking broadly, both the China 
project and the LieCal project used multiple measures of student achievement. Most 
of the assessment tasks used in both projects came from Cai’s earlier work ( 1995 , 
 2000 ), in which he investigated Chinese and US students’ mathematical thinking. 
The design of the achievement measures in each project was guided by the follow-
ing considerations: (1) a combination of multiple-choice and open-ended assess-
ment tasks should be used to measure students’ performance; (2) different cognitive 
components, specifi cally, the four components of Mayer’s ( 1987 ) cognitive model 
(translation, integration, planning, and computation), should be attended to in the 
multiple choice tasks; and (3) in responding to open-ended tasks, students should 
show their solution processes and provide justifi cations for their answers. 

 Because of their potential for broad content coverage and objective scoring, 
their highly reliable format, and their low cost, multiple-choice questions were 
used to assess whether students had learned basic knowledge and skills in mathe-
matics. However, it is relatively diffi cult to infer students’ cognitive processes 
from their responses to multiple-choice items; such questions are more appropriate 
for measuring procedural knowledge and basic skills than conceptual understand-
ing. Thus, open-ended tasks were also included to assess student achievement in 
both projects. The open-ended tasks provided a better window into the thinking 
and reasoning processes involved in students’ problem solving (Cai,  1997 ). The 
use of various types of assessment tasks provided the information to address ques-
tions such as, “Does the curricular emphasis on conceptual understanding come at 
the expense of fl uency with basic mathematical skills?” For example, the China 
project showed that both students who received the reform-oriented curriculum 
and those who did not receive the curriculum had signifi cant improvement in 
 performance on computation and on routine and open-ended problem solving 
over time. However, the non- reform group showed a faster rate of improvement 
on the measure of computation. The LieCal project demonstrated that students 
receiving the reform-oriented CMP curriculum (Connected Mathematics Program, 
a  Standards -based curriculum) showed a faster rate of improvement than the 
 students receiving non-CMP curricula on the measures of solving open-ended 
tasks. However, the two groups did not differ in growth rate on the measure of 
computation and equation solving. 
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 Research has also shown that changes in learning experiences can lead to changes 
in feelings towards mathematics, perception of mathematics, and consequently 
commitment to think mathematically. For example, Schoenfeld ( 1992 ) demon-
strated how students’ beliefs about mathematics could be changed with the experi-
ence of being engaged in solving authentic mathematical problems. Reform-oriented 
mathematics curricula aim not only to help students think mathematically but also 
to nurture their positive beliefs and attitudes toward learning mathematics. 
Therefore, the China project administered multiple measures of affective outcomes 
(interest in learning mathematics, classroom participation and views of what math-
ematics is about) several times. It was found that, although the students showed 
signifi cant gains in the three measures of cognitive achievement, their interest in 
learning mathematics declined from the start of fi fth grade to the end of sixth grade 
for both the reform and non-reform group, with a steeper decline for the non-reform 
group. This highlights the importance of considering change in students’ mathemat-
ical learning broadly so that changes can be understood in a broader context of 
learning. In particular, it highlights the importance of longitudinal analyses so that 
growth rates can be estimated for key learning variables.  

    Analyzing and Reporting Change 

 The major purpose of a longitudinal study is to examine change and the correlates 
or causes of change over time. Because learning is fundamentally about growth and 
change, analyzing and reporting change in students’ academic achievement is a 
signifi cant endeavor for the study of learning. However, change is often diffi cult to 
document well, given the myriad variables and factors that may infl uence changes 
in students’ learning. It is even more challenging to identify the causes of a change 
when change is detected. A sound analysis of longitudinal data relies on a sound 
study design that includes the use of multiple measures of the same variables over 
time to help enhance the internal validity of the study (Fisher & Foreit,  2002 ; Linn, 
 2007 ). Given the multifaceted nature of the mathematical thinking that the LieCal 
and China projects were studying, both projects used three cognitive measures of 
mathematics achievement (computation, routine problem solving, and complex 
problem solving) to gain a detailed picture of student growth in mathematics 
achievement and a possible curricular correlate to the growth. 

 Within the confi nes and constraints of non-randomized experimental design, the 
primary question about change in student achievement that our studies were 
designed to answer was whether or not there was any meaningful difference in 
growth rate in mathematics achievement among groups of students using different 
curricula (Cai, Wang, Moyer, Wang, & Nie,  2011 ; Ni, Li, Li, & Zhang,  2011 ). 

 At the same time, the projects were also designed to address other factors that 
might affect the students’ mathematics achievement growth rate. For example, the 
LieCal project considered how the conceptual or procedural emphasis of classroom 
instruction might moderate the curricular infl uence on the growth rate of students’ 
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mathematics achievement. To measure these classroom variables, as the students 
progressed from sixth through eighth grade, we conducted over 500 lesson observa-
tions of over 50 mathematics teachers participating in the project. Each LieCal class 
was observed four times, during two consecutive lessons in the fall and two in the 
spring. Trained observers recorded extensive minute-by-minute information about 
each lesson using a detailed, 28-page observation instrument. The data from these 
observations were used to characterize key aspects of each lesson, including the 
degree of conceptual and procedural emphasis of instruction in the CMP and non- 
CMP classrooms (Moyer, Cai, Wang, & Nie,  2011 ). 

 In the China project, each of 60 participating teachers and their classrooms was 
observed for three lessons on three consecutive days. The videotaped lessons were 
analyzed in terms of cognitive features of implemented instructional tasks and pat-
terns of classroom discourse. The project found signifi cant differences in instruction 
between the reform and non-reform classrooms (   Li & Ni,  2011 ). With the measured 
aspects of classroom instruction, it became possible to examine the relations 
between curriculum, classroom instruction, and student learning. 

 In addition, both the LieCal project and the China project attended to elements of 
the students’ sociocultural backgrounds that might infl uence change in student 
achievement. Classrooms in the USA have become increasingly ethnically diverse, 
and there have been persistent concerns about disparities in the mathematics 
achievement of different ethnic groups. This is particularly true with respect to areas 
such as algebra and geometry, where success has been shown to help narrow dis-
parities in post-secondary opportunities (Loveless,  2008 ). Given that middle school 
mathematics experiences can lay the foundation for students’ development of alge-
braic thinking, the LieCal project explored potential differential effects of reform 
and traditional curricula on the mathematics performance of students from different 
ethnic groups (Cai, Wang et al.,  2011 ; Hwang et al.,  2015 ). 

 The China project took into consideration socioeconomic status (SES) as well. 
This variable was measured because one purpose of the project was to examine 
whether achievement gaps between higher SES students and low SES students 
would decrease or increase in the different aspects of mathematics achievement 
over time in relation to the different mathematics curricula. 

    Analyzing and Reporting Change Quantitatively 

 With these purposes in mind, both studies employed a panel design in which a 
cohort is followed for a period of time and a common set of instruments is adminis-
tered repeatedly over that period (Ma,  2010 ). The studies produced data with a 
hierarchical structure of individual students nested within classes, classes nested 
within schools, etc. For this type of hierarchically structured data, the technique of 
hierarchical linear modeling (HLM), and in particular multilevel growth modeling, 
is appropriate and effective for examining change at both the individual and the 
group level. This is because this method is able to account for the correlated 
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observations of the different levels due to the clustering effects and thus relax the 
assumption of independence of observations for the traditional regression analysis 
(Raudenbush & Bryk,  2002 ). Therefore, both projects used HLM models to answer 
their research questions. The HLM analyses revealed that, in the China project, the 
students showed a faster growth rate in computation and solving routine problems 
than in solving open-ended problems, and that this trend was more pronounced for 
the students receiving a conventional curriculum than those receiving a reform cur-
riculum. The LieCal project used four two-level HLM models (one for each out-
come measure) with the mean of conceptual emphasis or procedural emphasis 
across 3 years as a teaching variable together with student ethnicity and curriculum 
type nested in schools (Cai, Wang et al.,  2011 ). The results of the HLM analysis 
showed that students who used CMP had a signifi cantly higher growth rate than 
non-CMP students on open-ended problem-solving and translation tasks while 
maintaining similar growth rates on computation and equation-solving tasks. Thus, 
the relatively greater conceptual gains associated with the use of the CMP curricu-
lum did not come at the cost of basic skills. 

 In addition, to gain a fi ner-grained picture of the curricular impact and also as a 
validation of the results of the HLM analyses, Cai, Wang et al. ( 2011 ) compared the 
percentage of students receiving the CMP curriculum who obtained positive gain 
scores to the percentage of students receiving non-CMP curricula who obtained 
positive gain scores. These calculations showed the relative sizes of the groups of 
students whose performance increased on each of the outcome measures whereas 
the results of the HLM analyses estimated an overall difference in the means of the 
gain scores between the two groups of students. For example, we found that 89 % 
of CMP students had positive gains in open-ended problem-solving tasks over the 
course of the middle grades. This was a statistically signifi cantly larger percentage 
than for the non-CMP students, of whom 83 % showed gains in open-ended prob-
lem solving. With respect to computation, despite the fact that the mean gains were 
not signifi cantly different between the CMP and non-CMP students, we found that 
a larger percentage of non-CMP students than of CMP students showed positive 
gains (78 % vs. 60 %). With respect to equation-solving, however, the two groups 
were not signifi cantly different either in mean gains or in percentage of students 
with positive gains (e.g., 50 % of student group A receiving non-CMP curricula 
obtaining positive gain scores and 70 % of student group B receiving the CMP 
 curriculum doing so) (Cai, Wang et al.,  2011 ). 

 Using a broad set of measures over time within a study also allows for the collec-
tion of information on what trade-offs may be faced with different curricula and 
about what can be realistically expected in typical classrooms (Brophy & Good, 
 1986 ). The China project showed that the non-reform group demonstrated faster 
growth in profi ciency in computation skills from the fi fth grade to the sixth grade, 
and they outperformed the reform group students in the fi nal assessment. Also, the 
reform group students kept their initial advantage in solving open-ended problems, 
as they performed better than the non-reform group on the fi rst assessment and the 
growth rates for the two groups were similar. Nevertheless, given the nature of the 
design, it could not be concluded that the reform group’s better performance on 
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complex problem solving was merely due to the curriculum or to their better initial 
status. However, the reform group appeared to have achieved a relatively more bal-
anced development in the three measures of mathematics achievement, computa-
tion, routine problem solving, and complex problem solving. 

 The China project was also concerned with whether or not the different curricula 
would help reduce achievement gaps between students from different family back-
grounds. The project found that the achievement gaps in computation skills between 
students of high SES backgrounds and those of low SES were narrowed signifi -
cantly from their fi fth grade to sixth grade, but there was no narrowing of the gap in 
solving open-ended mathematics questions. This was the case for both groups using 
either a reform curriculum or conventional curriculum. The closing achievement 
gap in computation but not in solving open-ended mathematics questions suggested 
that instructional conditions that facilitate mathematical explaining, questioning, 
exchanging, and problem solving are most valuable for students from low SES fam-
ilies because low SES families are less likely to be able to afford the conditions to 
facilitate high-order thinking (Ni et al.,  2011 ).  

    Analyzing and Reporting Change Qualitatively 

 To deepen analyses of curricular effect on change in student learning it is necessary 
to look beyond measuring performance differences in terms of mean scores on vari-
ous types of tasks between groups of students receiving different types of curricula. 
As useful as such comparisons may be, they do not provide a complete profi le of 
what students who use different curricula can and cannot do. Two students may 
receive the same score on a task but use very different solution strategies or make 
very different types of errors. To inform these comparisons of performance on indi-
vidual tasks, some additional exploration of the thinking and methods that led stu-
dents to their answers is required. 

 The use of open-ended assessment tasks makes it possible not only to measure 
students’ higher-order thinking skills and conceptual understanding, but also to ana-
lyze students’ solution strategies, representations, and mathematical justifi cations 
(Cai,  1997 ). The strategies that students employ and the ways that they represent 
their solutions can provide insight into their mathematical ideas and thinking pro-
cesses. For example, in the LieCal project, we supplemented our analysis of the 
correctness of answers with a longitudinal analysis of the changes in students’ strat-
egies over time (Cai, Moyer, Wang, & Nie,  2011 ). Figure  1  shows the doorbell 
problem, an open-ended task used in the LieCal assessments. In this problem, stu-
dents were asked to generalize from the given pattern of doorbell rings.  

 Student performance on this task were analyzed longitudinally over the course of 
3 years and found that, in general, both CMP and non-CMP students increased their 
generalization abilities over the middle school years and that CMP students devel-
oped, on average, greater generalization abilities than non-CMP students. More spe-
cifi cally, the success rate for each question improved over time for both CMP and 
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non-CMP students, but the CMP students’ success rate increased signifi cantly more 
than that of the non-CMP students on questions A and C in the doorbell problem 
over the course of the middle grades (Cai, Moyer et al.,  2011 ). 

 By examining the students’ solution strategies on this open-ended task, we 
obtained further data to inform and confi rm this fi nding. We coded the solution 
strategies for each of these questions into two categories: abstract and concrete. 
Students who chose an abstract strategy generally formulated an algebraic represen-
tation of the relationship between the ring number and the number of guests enter-
ing at that ring (e.g., the number of guests who enter on a particular ring of the 
doorbell equals two times that ring number minus one). These students then were 
able to use their generalized rule (e.g., to determine the ring number at which 299 
guests entered). In contrast, those who used a concrete strategy made a table or a list 
or noticed that each time the doorbell rang two more guests entered than on the 
previous ring and so added 2’s sequentially to fi nd an answer. 

 Looking at the changes over time in the solution strategies students employed to 
solve the doorbell problem, we found that both CMP and non-CMP students increased 
their use of abstract strategies over the middle grades. Indeed, in the fall of 2005, only 
one CMP student and none of the non-CMP students used an abstract strategy to cor-
rectly answer question A, but in the spring of 2008, nearly 9 % of the CMP students 
and 9 % of the non-CMP students used abstract strategies to correctly answer ques-
tion A. Similarly, nearly 20 % of the CMP students and 19 % of non- CMP students 
used an abstract strategy to correctly answer question B by the spring of 2008. 
Although only a small proportion of the CMP and non-CMP students used abstract 
strategies to correctly answer question C in the spring of 2008, the rate of increase for 
the CMP students who used abstract strategies from the fall of 2005 to the spring of 
2008 was signifi cantly greater than that for non-CMP students ( z  = 2.58,  p  < .01). 

Making Generalizations

Sally is having a party.

The first time the doorbell rings, 1 guest enters.

The second time the doorbell rings, 3 guests enter.

The third time the doorbell rings, 5 guests enter. 

The fourth time the doorbell rings, 7 guests enter.

Keep going in the same way.  On the next ring a group enters that has 2 more persons than
the group that entered on the previous ring.

A. How many guests will enter on the 10th ring? Explain or show how you found your
    answer.

B. How many guests will enter on the 100th ring? Explain or show how you found your
    answer.

C. 299 guests entered on one of the rings.  What ring was it? Explain or show how you
    found your answer.

D. Write a rule or describe in words how to find the number of guests that entered on each
     ring.

     Fig. 1    The doorbell problem used in the LieCal open-ended assessment       
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Thus, these results provided additional detail that informed our conclusion that both 
CMP and non-CMP students increased their generalization abilities over the middle 
school years, but that on average, the CMP students developed their generalization 
ability more fully than did non-CMP students. 

 The China project did a similar qualitative analysis of the solution strategies that 
students employed to solve open-ended mathematics questions. A similar observa-
tion was obtained that the students receiving the new curriculum were more likely 
to use a more generalized strategy (e.g., algebraic or arithmetic representation) to 
solve open-ended questions such as the doorbell problem than the students receiv-
ing the conventional curriculum (Ni, Li, Cai, & Hau,  2009 ). The advantage of using 
the more generalized strategy became evident in students’ solutions to the part of 
the doorbell problem where 299 guests enter.  

    Analyzing and Reporting Change Beyond the Grade Band 

 Generally speaking, mathematics curricula are designed to address the needs of 
students within a particular grade band, whether it be the elementary, middle, or 
secondary grades. Analyses of curricular effect, however, should not be limited to 
the grades in which students encounter the curriculum. Indeed, students’ experi-
ences with mathematics curricula can set them up for success or failure in their 
future mathematics classes. Thus, it is important for longitudinal curriculum analy-
ses to follow students beyond the grade band in which they experience a curriculum 
to gauge the long-term effects of the curriculum. 

 The LieCal project initially measured curricular effect on students’ learning of 
algebra while they were still in middle school. The middle school results suggested 
a potential parallel with fi ndings from studies of Problem-Based Learning (PBL) in 
medical education (Hmelo-Silver,  2004 ; Vernon & Blake,  1993 ). Specifi cally, med-
ical students who were trained using PBL approaches performed better than non- 
PBL (e.g., lecturing) students on clinical components in which conceptual 
understanding and problem solving ability were assessed, but performed as well as 
non-PBL students on measure of factual knowledge. When the medical students 
were assessed again 6 months to a few years later, the PBL students were found to 
perform better than their counterparts on clinical components and measures of fac-
tual knowledge (Vernon & Blake,  1993 ). 

 Thus, the LieCal project subsequently followed 1,000 of the CMP and non-CMP 
students into high school to investigate the hypothesis that the superior conceptual 
understanding and problem solving abilities gained by CMP students in middle 
school might result in better performance on delayed assessments of procedural skill, 
conceptual understanding, and problem solving. We used measures of open- ended 
problem solving in the ninth grade, basic mathematical skills (on the state test) in the 
tenth grade, and problem solving and posing in the 11th grade to probe the long-term 
effects of the CMP and non-CMP curricula that the students had used in middle 
school. On all three measures, we found that the use of the CMP curriculum in 
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middle school had positive effects, not only on students’ middle school performance, 
but also on their high school performance (Cai, Moyer, & Wang,  2013 ). 

 More specifi cally, we found that, controlling for middle school achievement, the 
ninth grade, former CMP students performed as well as or signifi cantly better than 
the non-CMP students on open-ended mathematics problems. On the tenth grade 
state standardized test of basic mathematical skills, we found that the CMP students 
had a signifi cantly higher scaled mean score than the non-CMP students (Cai, 
Moyer, & Wang,  2013 ). This result held for a series of analyses of covariance con-
trolling for the students’ sixth grade baseline scores on LieCal multiple choice and 
open-ended tasks as well as for their sixth, seventh, and eighth grade state standard-
ized mathematics test scores. Similarly, on problem-posing tasks administered in 
the 11th grade, we examined the performance of groups of CMP and non-CMP 
students who had performed similarly on their sixth grade baseline examinations 
(Cai, Moyer, Wang, Hwang, et al.,  2013 ). We found that the CMP students were 
more likely to pose problems that correctly refl ected the mathematical conditions of 
the given problem situation than the comparable non-CMP students. Moreover, a 
detailed analysis of the students’ problem-solving performance and strategy use 
showed that the CMP students appeared to have greater success algebraically 
abstracting the relationship in the problem-solving task (Cai, Silber, Hwang, Nie, 
Moyer, & Wang,  2014 ). Together, these results point to the longer-term effects of 
curriculum and thus highlight the importance of analyzing and reporting change 
beyond the immediate grade band in which a curriculum is implemented.   

    Interpreting Change in Mathematics Achievement 

 Interpreting change in mathematics achievement means identifying the causes that 
may be responsible for the observed change. This is an extremely important task for 
advancing knowledge of how educational inputs are related to educational outputs 
and thus to inform educational practice. It is also an extremely diffi cult task to 
accomplish. Below we describe our approach to interpreting change in our longitu-
dinal studies and the lessons we have learned in the process (Cai, Ni, & Lester, 
 2011 ). In particular, we focus on the importance of establishing equivalent groups 
of students in comparative curricular studies and on the need for a conceptual model 
that informs an initial hypothesis. 

    Equivalence of Student Sample Groups 

 Both the LieCal and China studies were designed to investigate curricular infl uence 
on change in student learning outcomes by comparing two curricula. To infer any 
causal links between a curriculum and observed change in student learning out-
comes in this type of comparative study, it is of paramount importance to set up 
equivalent groups of students to receive the curricula (NRC,  2004 ). However, it is 
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often challenging to implement random assignment of students to one or the other 
curriculum because of administrative and ethical constraints. When this is not pos-
sible, it is wise to collect as much information as possible about the student sample 
and consider how any observed change in student achievement may be associated 
with characteristics of the student sample in addition to the curriculum factor. The 
LieCal project randomly selected reform curriculum schools, and was able to obtain 
information on the prior achievement of the students to create statistically compa-
rable groups by selecting comparable non-reform schools. However, this was not 
possible in the Chinese project. The researchers could not equate the groups statisti-
cally because they lacked prior achievement data. This resulted in a high degree of 
uncertainty about the observed changes in student achievement being due to the 
different curricula the students had received. The problem might have been miti-
gated if the Chinese project had, for example, administered an intelligence test and 
used it as a control variable in the analyses. However, a problem would still have 
remained because intelligence test scores are only moderately correlated with 
school achievement. This underscores the importance of obtaining adequate infor-
mation about student populations prior to the beginning of a comparative study.  

    Initial Conceptual Model 

 One must have a theory or hypothesis, regardless how rudimentary it may be at fi rst, 
to design a curriculum study that can test how curricular infl uence is related to class-
room instruction and, in turn, to students’ mathematics achievement (Christie & 
Fierro,  2010 ; NRC,  2004 ; Weiss,  1998 ). In the LieCal project, we used the concep-
tual model shown in Fig.  2  of the relations among curriculum, teaching and learning 
to frame our investigation of the factors or processes that likely caused the observed 
changes in students’ mathematics achievement (e.g., Cai & Moyer,  2006 ). We con-
sidered that curriculum materials including curriculum standards, textbooks, and 
teacher manuals would affect the kinds of learning tasks that the teachers selected 
and implemented and the types of classroom discourse that the teachers engaged in 
with their students. The nature of the learning tasks and classroom discourse imple-
mented in the classroom would in turn affect learning processes and learning out-
comes for students.  

 It would be ideal to test the entire set of relations described in Fig.  2  simultane-
ously and conclusively. However, this is almost impossible to implement techni-
cally. Among other issues, one major obstacle is that a measurement model involving 
so many variables would produce a covariance matrix so complicated that it would 
be impossible to make a sensible estimation of the parameters concerned (Ni, Li, 
Cai, & Hau,  in press ; Raudenbush & Bryk,  2002 ). This complication is made even 
more acute by the diffi culty in reliably measuring the variables. 

 Facing this challenge in our projects, we used the problem-solving heuristic of 
“divide-and-conquer” to address our research questions. After having observed the 
changes in students’ mathematics achievement and their association with the type of 
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curriculum being implemented, the LieCal project used HLM analyses to investi-
gate whether the conceptual or procedural emphasis of classroom instruction mod-
erated the curricular infl uence on the achievement gains of the students. However, 
these variables did not show any meaningful infl uence. We then looked into the 
effect of the cognitive demand of instructional tasks. Using the classifi cation scheme 
of Stein and Lane ( 1996 ), the instructional tasks actually used in the CMP and non- 
CMP classrooms were classifi ed into four increasingly demanding categories of 
cognition: memorization, procedures without connections, procedures with connec-
tions, and doing mathematics. We found that the distributions of types of instruc-
tional tasks in the CMP and non-CMP classrooms were signifi cantly different, with 
CMP teachers implementing a higher percentage of cognitively demanding tasks 
(procedures with connections and doing mathematics) than non-CMP teachers (Cai, 
 2014 ). In contrast, non-CMP teachers implemented a signifi cantly higher percent-
age of tasks with low cognitive demand (memorization or procedures without con-
nections). Moreover, we found that this variable was a signifi cant predictor of 
achievement gains in the students receiving either curriculum. 

 Similarly, following the conceptual framework in Fig.  2 , the China project exam-
ined the relationships of the cognitive features of instructional tasks (high cognitive 
demand, multiple representations, and multiple solution-strategies) to teacher– 
student classroom discourse on the one hand (Ni, Zhou, Li, & Li,  2014 ) and to stu-
dents’ mathematics achievement gains on the other hand in the Chinese mathematics 
classrooms (Ni, Zhou, Li, & Li,  2012 ). The results showed that high cognitive 
demand tasks were associated with teachers’ high-order questions, which in turn led 
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  Fig. 2    Framework used in the two projects (Cai,  2007 ; Cai & Moyer,  2006 ; Ni et al.,  in press )       
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to students’ highly participating responses. However, teachers tended to be more 
authoritative in evaluating student responses when they used high cognitive demand 
tasks or high-order questions. It was unexpected that teachers tended to ask low- 
order Yes or No questions when they elicited multiple solution methods from stu-
dents for an instructional task. It appeared that the teachers just wanted students to 
talk more but did not press students to be accountable for their answers when pursu-
ing multiple solution methods. Concerning the effects of the cognitive features of 
instructional tasks on student learning, the China project found that the cognitive 
features did not predict achievement gain on any of the cognitive learning outcomes 
(computation, routine problem solving, and complex problem solving). However, 
high cognitive demand of instructional tasks was shown to positively predict affec-
tive outcomes including students’ expressed interest in learning mathematics, class-
room participation, and a more dynamic view about mathematics. In turn, the 
indicators of students’ positive attitude towards learning mathematics were signifi -
cantly associated with their cognitive learning outcomes. These results illustrated 
the richness, complexity, and uncertainty of the links from the written curriculum to 
the implemented curriculum in classrooms and then to the achieved curriculum as 
shown in changes in student learning. 

 Our experience with the two projects indicates that a conceptual framework, 
such as the one in Fig.  2 , is a necessary tool for planning and executing a quality 
longitudinal study of students’ mathematics learning in relation to curricula and 
classroom instruction.   

    Conclusion 

 The LieCal project and the China project provide opportunities for us to consider 
the challenges in conducting high-quality longitudinal research into student learn-
ing. It is clear that the constructs we are interested in measuring are broad, requiring 
both careful defi nitions and well-chosen measures to address properly. If we wish to 
measure growth and change in students’ academic achievement, it is necessary to 
use a variety of measures that address multiple facets of that growth and change. To 
characterize the effects of curriculum on student learning, diverse measures of con-
ceptual understanding, procedural skill, problem-solving and problem-posing abili-
ties, and interest and attitude toward learning mathematics are all useful tools. 

 In addition, the contexts and structures within which students learn guarantee that 
the data we collect will be complex. The methods of analyses we choose must there-
fore be suitable for the structure of the data and be suffi ciently robust to take into 
consideration the many infl uences on student learning. Social and socioeconomic 
factors, the nature of classroom instruction, and many other factors can infl uence 
student learning, and thus the design of studies that include these factors must be 
carefully considered. Of course, no study design, however solid it may be, can address 
all of the potential infl uences. As we have done in planning the LieCal and China 
projects, researchers must use their conceptual models and hypotheses strategically 
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to choose what to address and how, given the constraints of experimental design and 
ethical considerations. 

 As we consider the results from these two projects, we look forward to continued 
longitudinal research that seeks to conceptualize, measure, analyze, and interpret 
change in student learning. We conclude with a fi nal note on the role of experimen-
tal studies and our expectations for them. It is important to note that the analyses 
done by both the LieCal project and the China project about the relations between 
classroom processes and gains in student mathematics achievement were descrip-
tive in nature. Therefore, experimental studies are yet required to test and prove a 
causal link of the classroom processes to student learning outcomes. However, these 
correlational fi ndings were derived from naturalistic situations in which the class-
rooms differed with respect to factors such as teachers’ allocation of time to aca-
demic activities, classroom organization, and student backgrounds. The patterns of 
association observed in these situations do provide meaningful results that can 
guide further experimental studies and classroom practice (Brophy & Good,  1986 ). 

 Of course, not every experimental study using random assignment will produce 
causal links between a set of assumed factors and the observed outcomes. Conversely, 
it is always questionable for a non-randomized study to draw such causal links. 
Indeed, caution is always appropriate when interpreting the results of any single 
study. Consequently, consistency and replication of fi ndings is the key to the gener-
alization of any fi nding. A good example of this is the evaluation of the federally 
funded early childhood programs in the USA (Heckman, Doyle, Harmon, & 
Tremblay,  2009 ; Reynolds,  2000 ). On the one hand, the implementation of early 
childhood education varied in different states and communities. This made general-
ization of any particular fi nding about its effectiveness diffi cult. On the other hand, 
the assemblage of evaluations of programs that were carried out in diverse situations 
provided an excellent opportunity to examine whether or not a given fi nding about 
the effects of the programs could be observed across different circumstances. 
Converging evidence was obtained that indicated that the cognitive advantages for 
the children participating in the programs tended to disappear approximately 3 
years after leaving the programs. However, those children who participated did ben-
efi t in terms of increased likelihood of retention in grade school, high school gradu-
ation, college education, and employment. The conclusions that arose from the 
convergence of consistent fi ndings and the replication of those fi ndings across 
diverse contexts have subsequently contributed to well-informed educational policy 
and practice for early childhood education. Similar concerted efforts are required to 
examine the robustness of fi ndings about the infl uences of curricular and classroom 
variables on gains in student mathematics achievement in different circumstances 
and with different methods.     
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Critiquing Item Design, Data Collection, 
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             Introduction 

 The number of government-coordinated longitudinal educational studies currently 
available to mathematics educators is somewhat staggering. There exist interna-
tional studies such as the Trends in International Mathematics and Science Study 
(TIMSS) and the Program for International Student Assessment (PISA). Additionally, 
national-level studies exist such as the National Assessment of Educational Progress 
(NAEP), the National Education Longitudinal Studies (NELS) program, High 
School and Beyond (HS&B), Educational Longitudinal Study of 2002 (ELS:2002), 
and the High School Longitudinal Study of 2009 (HSLS:09) among others. This is 
just a partial listing of all of the studies completed or currently underway. If the 
number of longitudinal studies is staggering, then the number of research papers and 
reports based on the longitudinal studies is overwhelming. ELS:2002 has several 
hundred reports and papers associated with it on the NCES website alone; these 
reports do not include externally published reports from universities and private 
research fi rms which adds more layers to the information available. 

 In this chapter, we offer some background information on the design of large- 
scale studies and then focus on three studies as important cases illustrating critical 
issues for secondary data analysts interested in issues of mathematics teaching, learn-
ing, policy, and practice. The three were chosen because of their distinctly different 
missions. We then discuss item design and data collection after mentioning some 
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salient details of each study. This is followed by an examination of the issues raised 
by cluster sampling, a technique common to the three studies and, increasingly, to 
others. We conclude with a discussion of the validity and usefulness of the claims 
made based on these studies. 

 The three studies we chose to examine in detail are the Education Longitudinal 
Study of 2002 (ELS:2002), TIMSS, and the NAEP. ELS:2002 was chosen because of 
its longitudinal design and its focus on the social, economic, and other environmental 
factors affecting a student. TIMSS was chosen because it is an international assess-
ment, and NAEP was chosen because of its focus on academic change in the USA. 

    Education Longitudinal Study of 2002 

 ELS:2002 is a nationally representative, longitudinal study of 15,000 tenth graders 
and their parents, also surveying students’ mathematics and English teachers, and 
school administrators. Data collection began in 2002, when students were in tenth 
grade. Mathematics achievement was assessed in the tenth grade, and again in the 
12th grade. Students were followed up through their postsecondary years in 2005, 
2006, 2012, and most recently in 2013. High school transcripts were also recorded. 
The intent of the study was to assess students’ trajectories from the beginning of high 
school into postsecondary education, the workforce, and beyond, hopefully highlight-
ing key trends in course-taking, achievement, support systems, and patterns of college 
access and persistence that occur in the years following high school completion. 

 In all, over 6,000 data points were recorded for each student. The data included 
questions for parents, teachers, and schools (see   nces.ed.gov/surveys/els2002/
policy.asp     for a comprehensive list). The mathematics test consisted of 81 questions 
covering fi ve conceptualized levels: (1) simple arithmetical operations with whole 
numbers; (2) simple operations with decimals, fractions, powers, and roots; (3) 
simple problem solving, requiring the understanding of low-level mathematical 
concepts; (4) understanding of intermediate-level mathematical concepts and/or 
multistep solutions to word problems; and (5) complex multistep word problems 
and/or advanced mathematics material (Bozick & Lauff,  2007 ). 

 Mathematics items are developed using the following method: (1) Items are writ-
ten with a specifi c framework in mind, sampling from different mathematical con-
tent domains (e.g., number, algebra, geometry, and statistics), with numerous items 
from each domain written in several formats such as multiple choice, open response, 
and so on; (2) Items in the pool are then typically reviewed by experts and teachers 
and subjected to extensive editing and refi nement; (3) Items are then fi eld tested 
with students; (4) Items are then calibrated using Item Response Theory (IRT) mod-
eling; and then (5) a subset of items are chosen that exhibit utility for discrimination 
among student responses. This process may be iterated several times before any 
given year’s item pool is selected. Additionally each year items are “retired” from 
the pool for two reasons: (1) Some items do not display good discrimination among 
student responses and (2) representative items are used to inform the public about 
the general content of the test. 
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 A special note about IRT methods is appropriate here, because their use is so 
 ubiquitous among large-scale assessments. IRT uses patterns of answers to determine 
an estimate of students’ achievement across different test forms. Each item on the test 
is rated for diffi culty, discriminating ability, and guessing factor. Unfortunately, ELS, 
like TIMSS and NAEP, does not provide information regarding the specifi c process for 
item development. Additionally, it is impossible, without traveling to the Department 
of Education headquarters in Washington, DC, to view the actual items on the assess-
ment. This is true of all three studies examined. Beyond describing utilizing an itera-
tive process using committees of stakeholders, the process of item development 
remains obscure. The TIMSS and NAEP technical manuals provided substantially 
more background information and theoretical justifi cation than the ELS:2002.  

    National Assessment of Educational Progress 

 NAEP is the largest ongoing, nationally representative and continuing assessment 
of American students. 10,000–26,000 students are tested each year, providing the 
nation with a “Report Card” of sorts by which to judge state, regional, and national- 
level trends. Two forms of NAEP exist: (1) the long-term trend assessment 
(LTTNAEP) measures subject-matter achievement in mathematics and reading 
every 4 years, whereas (2) the main NAEP measures subject-matter achievement in 
mathematics, reading science, writing, the arts, civics, economics, geography, US 
history, and technology and engineering literacy (TEL) every 2 years. Both forms of 
NAEP gather data on instructional experiences, and examine school-level environ-
ments, albeit LTTNAEP only surveys students while the main NAEP surveys stu-
dents, teachers, and gathers data concerning school facilities. Both forms gather 
data in a manner to facilitate reporting the results for various populations (grades) 
of students and also for groups within those populations based on characteristics 
such as sex and ethnicity (  http://nces.ed.gov/nationsreportcard    ). Since NAEP 
reports on populations and groups within populations, individual school or student 
scores are not available. State-level reports are available along with some large 
urban district reports. 

 Important features of NAEP include that it is essentially the same assessment 
from year to year, allowing comparison of cohorts on roughly the same metric. Due 
to its rather complex sampling procedure, data does not represent students, but 
grades, states, regions, demographics, and higher levels of social organization. 
Representative samples of students are gathered at grades 4, 8, and 12 for the main 
NAEP, and samples of students at ages 9, 13, or 17 years are assessed for LTTNAEP 
(  nces.ed.gov/nationsreportcard/    ). 

 Items for mathematical achievement questions for NAEP are based on a frame-
work developed by the National Assessment Governing Board. The framework pro-
vides four points of consideration: (a) the theoretical basis for the assessment; (b) 
the types of items that should be included in the assessment; (c) how the items 
should be designed; and (d) how the items should be scored (  nces.ed.gov/nationsreportcard    ). 
The mathematics framework conceptualizes fi ve content areas and requires that 
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each question measure one of them. The fi ve areas include number properties 
and operations, measurement, geometry, algebra and data analysis with statis-
tics and probability. 

 Both LTTNAEP and the main NAEP include items from all fi ve areas and both 
measure basic skills along with the recall of defi nitions; however, each form of the 
NAEP has a different focus. In particular the main NAEP emphasizes problem solv-
ing and reasoning. The framework also requires a balance among content, complex-
ity, format, and context. Both NAEP forms allow a calculator on some items and 
allow manipulatives for other items which is unique among the three studies being 
examined. 

 Data collection for NAEP varies depending on grade level, content, and assess-
ment level, e.g., national, state, or district. At the state level, assessments for math-
ematics average 100 public schools and 2,500 students with 30 students per grade 
per subject being selected randomly in each school. A method of stratifi ed random 
sampling within categories of schools is used for schools with similar characteris-
tics. At the national level samples of schools are selected to represent the diverse 
population of students in the USA based on the Common Core of Data (CCD), 
which is a comprehensive list of operating public schools in the USA. The number 
of schools and students selected is suffi cient to separately analyze the four NAEP 
regions of the country. Data on sex, race, degree of urbanization of school location, 
parent education, and participation in the National School Lunch Program (NSLP) 
is also collected. Students may also be classifi ed as students with disabilities or as 
English language learners. 

 A separate sampling of private schools is taken to produce data concerning their 
performance at the regional and national level. To avoid nonresponse bias, in 2003 the 
NAEP changed their required reporting rate for schools in the sample from 70 to 85 %.  

    Trends in International Mathematics and Science Study 

 TIMSS is an international study, conducted every 4 years. The latest iteration (2011, 
the next administration is slated for 2015) included over 500,000 students in 60 
countries. Over 20,000 students from more than 1,000 schools in the USA partici-
pated (  http://nces.ed.gov/timss/    ). 

 Data on content knowledge and cognitive abilities is collected along with back-
ground information about the student, teacher, school resources, curriculum, and 
instruction. Since its inception (TIMSS 1999, but see also its precursors, the First 
and Second International Mathematics Studies, 1966–1972 and early 1980s, respec-
tively), TIMMS has assessed the mathematics and science achievement of US 
fourth- and eighth-grade students. The program began testing 12th-grade students 
on the third TIMSS in 2007. The framework for TIMSS assessments generally, and 
for item design specifi cally, is different from ELS:2002 and NAEP because of its 
international aspect. The item design and data collection process is “an extensive 
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collaborative process involving many individuals and expert groups from around 
the world…” (Mullis, Martin, Ruddock, O’Sullivan, & Preuschoff,  2009 ). 1  

 Item design for TIMSS is based on two dimensions: content and cognitive. The 
content dimension specifi es the domains to be tested. Domains are broad mathemat-
ical strands such as algebra, geometry, and number. The domains vary based on 
whether it is the grade 4 or grade 8 assessment. The cognitive dimension specifi es 
the thinking process that is to be assessed: knowing, applying, or reasoning. Unlike 
the content domains, the cognitive domains remain the same across grades. The 
 TIMSS 2011 Assessment Frameworks  handbook gives detailed justifi cations and 
explanations for each aspect of the dimensions and domains. Like NAEP, TIMSS 
uses a matrix clustering process to develop eight test books of equal diffi culty, con-
tent, and cognitive coverage. “Equal diffi culty” is determined using probabilities of 
answering correctly for items in fi eld trials. 

 The design framework specifi cally requires simplicity of language to decrease 
the reading load for both questions and answers, thus taking into account language 
differences across participating nations. Additionally, multiple choice answers and 
distractors must be “written to be plausible, but not deceptive.” Constructed- 
response questions require the development of scoring rubrics that capture gradients 
of correct answers and also wrong answers since “[D]iagnosis of common learning 
diffi culties in mathematics and science as evidenced by misconceptions and errors 
is an important aim of the study” (Mullis et al.,  2009 , p. 129).   

    Sampling Issues 

 Analyzing mathematical achievement on these three case assessments requires 
understanding the nature of the sampling process utilized for both  data units  (stu-
dents and/or organizations) and items. For data units, because they utilize cluster 
sampling the NAEP and TIMSS studies require that three considerations be made 
regarding measurement and parameter estimation. First, multiple  plausible  values 
for each student must be used for each analysis. Second, the sampling design is not 
simple random sampling within blocks; therefore, sampling weights for key units of 
school organization, geographic region, and demographics must be used to generate 
unbiased estimates of population parameters. Third, cluster sampling changes the 
calculation of standard errors so special procedures must be used to adjust for the 
design when computing confi dence intervals. 

 With regards to item sampling, the design of ELS:2002 and TIMSS nests items 
within booklets; not every mathematics item is in every booklet, and therefore levels 
of items are not crossed with levels of students. Instead, equivalent clusters of items 
are assigned to each test booklet. This process increases measurement error in the 

1   Bracey ( 1997 ) reported that Albert Beaton, while Director of TIMSS, remarked on several occa-
sions that there are two things one doesn’t want to watch being made (sausage and legislation), and 
this should include a third: international test items. 
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scores for each student. To adjust for this TIMSS recommends that fi ve plausible 
values taken at random from each student’s estimated distribution of achievement 
scores be used as an index of student profi ciency. 

 Regardless of the sampling issue confronted, if the researcher is interested in 
generalizing fi ndings to sub-populations, understanding and utilizing sampling 
weights is critical for effective parameter estimation. Fortunately, each study pro-
vides sampling weights to be used during analysis in the dataset. According to the 
TIMSS technical report (2011), statistical software programs like SAS and SPSS 
calculate error estimates based on simple random samples. TIMSS and ELS:2002 
recommend the adoption of the jackknife repeated replication (JRR) technique 
which splits single samples into multiple subsamples (Efron & Stein,  1981 ). The 
technique then uses fl uctuations among the subsamples to estimate the overall vari-
ability in sampling. TIMSS further suggests using the SPSS version of the 
 International Database Analyzer  (IDB) software. 

 ELS:2002 conceptualized data analysis at four levels (ELS:2002 in NCES 2006- 
344, 2005): (1) Cross-sectional profi les of the nation’s high school sophomores and 
seniors (as well as dropouts after spring of the sophomore year); (2) Longitudinal 
analysis (including examination of life-course changes); (3) Intercohort compari-
sons with American high school students of earlier decades; and (4) International 
comparisons: US 15-year-olds to 15-year-olds in other nations. Each of these levels 
requires a different set of weights, since the sub-population to which student 
responses are generalized involves imputing scores across different booklets, differ-
ent student populations each subsequent year of the longitudinal study, and different 
demographics (e.g., age, gender, ethnicity, SES).  

    Validity 

 It is necessary to address two issues before critiquing the validity of these three 
studies and by extension other large-scale studies. First, to avoid confusion or a defi -
nitional debate, we utilize defi nitions from the landmark work of Shadish, Cook, 
and Campbell ( 2002 ), hereafter abbreviated as SCC for readability. Statistical and 
internal validity are found in the second chapter while construct and external valid-
ity are located in Chap.   3    . 

 Second, before analyzing the validity of a study, it is important to understand the 
stated goal of the study. If, for example, a study makes no causal claims, then to 
criticize the external validity of the study misapplies the concept of external valid-
ity. We note, however:

  …in the case of generalizations to persons, settings, treatments, and outcomes that were not 
studied, no statistical test of (threats to external validity) is possible. But this does not stop 
researchers from generating plausible hypotheses about likely interactions, sometimes based 
on professional experience and sometimes on related studies, with which to criticize the 
generalizability of experimental results and around which to design new studies. (SCC, p. 86) 
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   This means that using study results beyond the author’s intended usage is 
 permissible if the purpose is to generate plausible hypothesis and design new  studies 
that  can  test these hypotheses rigorously; nonetheless, a fi rst level critique must be 
based on whether the study met its goals in a valid manner and this is only possible 
if the goals of a study are apparent. 

 After an extensive search, we conclude that ELS:2002 did not have a formally 
stated mission or goal. It did have two stated focus questions that provide some help 
in determining the unstated goals of the program:

•    What are students’ trajectories from the beginning of high school into postsec-
ondary education, the workforce, and beyond?  

•   What are the different patterns of college access and persistence that occur in the 
years following high school completion? (  http://nces.ed.gov/surveys/els2002    )    

 Additionally, the NCES website breaks the ELS:2002 into six “policy and 
research issues”: (1) transitions, (2) equity, (3) cognitive growth, (4) course taking, 
(5) school effectiveness, and (6) social capital. Each of these issues has multiple 
(10–25) listed research questions. The cognitive growth questions pertinent to this 
critique are:

•    What are the trajectories of cognitive growth over time for different groups of 
students?  

•   How do course taking patterns relate to different rates of cognitive growth?  
•   At what levels of profi ciency do students score in reading and mathematics?  
•   Which background factors are associated with higher achievement?  
•   What is the role of student involvement/academic and extracurricular engage-

ment in predicting cognitive growth?  
•   What is the infl uence of language profi ciency and use on tested achievement?  
•   Which background factors and family variables are associated with higher 

achievement?  
•   What is the role of parental involvement in student achievement and other outcomes?  
•   How is teacher quality related to achievement gains over time?  
•   How are school-level characteristics related to cognitive growth?  
•   How well are high schools preparing students for higher education and the world 

of work?  
•   What school and teacher factors are associated with different levels of cognitive 

growth?    

 These research questions each carry multiple issues of validity and usefulness. 
Many of these issues will be examined in the following sections. 

 The primary stated mission of the NAEP is to assess what America’s students 
know and can do in various subject areas. However, there are now two faces to the 
NAEP: the main NAEP and the LTTNAEP study. The NCES website claims that 
these two parts to the NAEP “…makes it possible to meet two important objectives: 
to measure student progress over time, and as educational priorities change, to 
develop new assessment instruments that refl ect current educational content and 
assessment methodology.” 
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 To measure student progress over time, the LTTNAEP assessment stays essen-
tially the same from year to year, with only carefully documented changes. This 
permits NAEP to provide a clear picture of student academic progress over time. The 
main NAEP is changing towards computer-based assessments matching the stated 
objective of developing new assessment instruments. It is unclear how the types of 
items, and the sampling procedure for NAEP will change, if at all, to take advantage 
of computer-based administration (  http://nces.ed.gov/nationsreportcard    ). 

 The International Association for the Evaluation of Educational Achievement 
(IEA), the parent organization for TIMSS, states that its mission is to “conduct 
comparative studies of student achievement in school subjects to inform educational 
policies and practices around the world” (TIMSS 2011 Executive Summary, p. 1). 
By comparing education systems in terms of their organization, curricula, instruc-
tional practices, and corresponding student achievement, TIMSS situates its goals 
clearly within policy analysis. It also dedicates itself to the improvement of teaching 
and learning in science and mathematics, and its curricular and instructional com-
ponents align with this goal. 

 Our validity critiques are organized into four separate types: statistical, internal, 
construct, and external. Each type of validity has a brief introductory explanation 
followed by a breakdown into subtypes with specifi c example threats related to the 
three studies. The example threats we cite include both published results and our 
own musings. Some of these example threats are connected to multiple subtypes, 
e.g., homeschooling. In these cases a detailed explanation is offered when the spe-
cifi c example fi rst appears. 

 Throughout the critique, words such as treatment, curriculum, ethnicity, funding, 
and teacher qualifi cations are conceptualized as an independent variable, whereas 
mathematical achievement is considered a dependent variable. We also consider the 
total “treatment” duration to be from the start of formal schooling as opposed to just 
the particular year in school, i.e., a student in fourth grade has 4–5 years of treat-
ment (depending on kindergarten attendance), not just one—the fourth grade. 

    Statistical Validity 

 Statistical validity considers whether a presumed cause and effect are linked, or 
whether two hypothetically related factors covary. If they do covary, then the 
strength of the covariance must be considered to determine possible causal relation-
ships. Nine threats to statistical validity are listed by SCC. We offer example threats 
for eight of them. 

  Violated Assumptions of Statistical Tests . The assumption of independent distrib-
uted errors is fundamental to most statistical tests. Violating it introduces bias into 
the estimation of standard errors. Nested designs account for much of this issue; 
however, large international studies may fi nd it diffi cult to account for the diversity 
of the nested samples. For example, a small country with a relatively homogeneous 
culture such as Norway will have a simpler nested structure than the USA 
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  Fishing and Error Rate Problem . It has long been known that, if hypothesis testing 
is repeatedly used on the same data set then the probability of making a Type I error 
grows substantially with each successive test (exceeding 60 % with 20 tests and 
90 % with 50 tests) unless corrections such as a sequential Bonferroni technique are 
applied (Benjamini & Hochberg,  1995 ). All the large-scale studies reported here are 
at their core  data acquisition studies ; none exist to test a specifi c hypothesis. Given 
the nature of the studies and the large data sets gathered, multiple teams of research-
ers separated by time and distance looking at the same data set constitute a kind of 
distributed and extended fi shing expedition. However, few studies utilizing these 
data apply appropriate correction factors for Type I error rate, nor is the cumulative 
effect of fi shing across research groups estimated. 

  Unreliability of Measures . It seems obvious that if either the dependent or indepen-
dent variable is measured poorly, then any fi ndings of covariance may be spurious. 
All three studies reported checking the reliability of the mathematics portion of 
their assessments; however, upon reading multiple technical manuals for all three 
studies, we found no references to the reliability of the survey questions (e.g., 
Garden & Orpwood,  1996 ). For example, ELS:2002 surveys mathematics teachers 
concerning whether a student has fallen behind and further queries why the student 
has fallen behind. The responses available to the teacher were student health prob-
lems, disciplinary problems, lack of effort, lack of English language profi ciency, 
and other. No evidence is available that a check was conducted on the accuracy of 
teachers’ responses, their interpretation of the prompts, and students’ actual reasons 
for falling behind. 

  Restriction of Range . Restrictions on the dependent variable (mathematical achieve-
ment) introduce possible fl oor and ceiling effects. This may cause a decrease in 
variance and a lack of power. When the independent variable is overly restricted 
possible effects may be eliminated completely. Considering TIMSS and the depen-
dent variable, it is possible that certain countries have a substantial number of stu-
dents that are capable of performing well above their grade level in mathematics; 
however, the exceptional ability of these students is lost because the item pool does 
not include questions beyond grade level. IRT models may then smooth over any 
subsequent skew. 

 However, examination of item response patterns at least insures a normal distri-
bution of IRT scores, making rankings of student performance across the midspread 
of the data reasonably accurate. Coupled with the relatively small standard errors 
afforded by such samples, restriction of range is a relatively minor problem, if at all, 
for these data sets. 

  Unreliability of Treatment Implementation . This refers to the uneven or non- standard 
implementation of independent variables. Examples include measuring or 
changing:

•    School funding but not how the funding is spent  
•   Teacher professional development but not the type or rigor of the program 

(Garet, Porter, Desimone, Birman, & Yoon,  2001 )  
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•   Teacher education in credit hours but ignoring the type and rigor of course work  
•   National or intended curriculum, but ignoring the implemented and achieved 

curriculum    

 We found evidence of these types of issues in all three studies. For example, 
ELS:2002 surveyed teachers asking them how many hours of professional develop-
ment they have had in the last year on how to teach special education students. There 
were no further questions asked concerning rigor, content, or implementation. 
Teachers were also asked on the ELS:2002 how many mathematics classes (not hours 
or credits) they took as part of their undergraduate studies. The survey made no dis-
tinction between a 2-day conference; a non-credit remediation course taken at a com-
munity college; and a fi ve credit-hour accelerated freshman calculus course. The 
TIMSS teacher survey did not ask the number of undergraduate hours in mathemat-
ics; it simply asked if the teacher had a BA and if education, mathematics, or math-
ematics education was the primary area of study. 

  Extraneous Variance in Experimental Settings . Covariance may be incorrectly 
determined if errors are infl ated due to environmental conditions. This may manifest 
itself as an uncomfortable temperature or background noise in the classroom on the 
day of the assessment. It may include extreme weather, power outages, or a recent 
unusual event at the school. The literature review found minimal references to these 
sorts of issues beyond minimal cautions in the directions for the test administrator. 
It can be assumed that such variables are relatively random for sampled units; 
schools are unlikely to change the temperature of their classroom systematically for 
the testing situation, and therefore the only source of error is likely random error. 

  Heterogeneity of Units . This may reduce the probability of detecting covariance 
between the independent and dependent variables. This is a signifi cant threat in 
diverse countries such as the USA (Bracey,  2000 ). SCC suggest sampling students 
who are homogeneous in regards to characteristics correlated with major outcomes 
(p. 51). For example, all three studies record classroom characteristics such as the 
teacher–student ratio. Policy decisions regarding classroom size, the number of 
teachers needed, and funding, may be made based on achievement scores and this 
ratio in an attempt to boost mathematics scores. However, it may be that smaller 
classroom sizes will have no effect on students with high socioeconomic index 
(SEI) scores whereas students with lower SEI scores will benefi t. This result cannot 
be parsed out of the data if the classrooms are heterogeneous in regards to SEI. If a 
limited number of classrooms are SEI homogeneous, then a signifi cant result may 
be found, but the external validity (generalization) of the result would be weak.  

    Internal Validity 

 The internal validity of a study concerns the systematic design and conduct of the 
study so that the only variables infl uencing the results are the ones being studied. 
In brief, internal validity concerns design of instruments, assignment of units to 
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experimental conditions, and to equivalence of measures and conditions over 
administrations in longitudinal designs. Internal validity is critical to the establish-
ment of claims from data in survey research in that it enables the researcher to 
estimate the extent to which spurious effects, extraneous variation, and equivalence 
of experimental units across administrations contribute to the variability in the 
response variable being modeled. For example, each of the reviewed studies took 
extreme care in defi ning the sampling frame for selecting students across political 
and demographic strata. Because randomization into experimental units is not pos-
sible for survey methods, random selection of large-sized samples within demo-
graphic blocks enables researchers to create randomly assigned, functionally 
equivalent subgroups that may differ on one salient independent variable (say, num-
ber of homework hours per week; e.g., Perie, Moran, & Lutkus,  2005 ). While not as 
powerful as a true experiment, such statistical controls, when repeated for numerous 
random subsamples (using bootstrapping or permutation methods, for example), 
can isolate the overall effects of an independent factor on the response variable. 
Then, disaggregation into important subgroups as a whole can help estimate the dif-
ferential effect of the independent factor across those groups. In such a manner, 
policy can be critiqued for its equity and impact. 

 Of the nine different threats to internal validity identifi ed by SCC, we focus on 
fi ve that particularly impact large-scale studies, and particularly among those, stud-
ies that attempt to collect coherent longitudinal data: Selection, History, Regression, 
Attrition, and Instrumentation. 

  Selection . If particular differences in the average characteristics of experimental 
groups exist prior to treatment then any differences measured after treatment may 
not be due to the treatment. Randomization is the theoretical method of avoiding 
selection bias; however, the issue is the representativeness of samples. True ran-
domization and selected representative samples introduce issues raised under the 
statistical validity subtype of  heterogeneity of units . True randomization may intro-
duce extreme heterogeneity and attempting to select representative samples intro-
duces tautological issues. For demographics, both ELS:2002 and NAEP oversample 
key demographics (e.g., ethnicity) to ensure appropriate sample size and heteroge-
neity of units. 

 For TIMSS, it is important to keep in mind that some participating nations did 
not strictly follow sampling protocol. Only six of the 21 countries that participated 
in the advanced math test met the standards for sampling on the third TIMSS. On 
the standard math and science tests, eight countries met the sampling criteria 
(Bracey,  2000 ). In particular, countries took samples from varying percentages of 
their total in-school student population. These rates varied from 97 to 77 % (Bracey, 
 1998 ). Questions about which groups of students were not selected from, what were 
their common characteristics if any, and why were they not selected from remain 
largely unanswered (Bracey,  1998 ). Holliday and Holliday ( 2003 ) suggested that 
some education ministries intentionally ignored sampling protocols. 

 Additionally, the average age differences in tested student populations for the 
“end of secondary school” advanced mathematics and physics tests varied by nearly 
3 years. It depended on each country’s defi nition of “end of secondary school.” For 
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some countries it is 12th grade, and for others it is the 14th grade, including 2 years 
of specialized mathematics and science instruction (Bracey,  1998 ,  2000 ). 

 Another issue was raised by Hong ( 2012 ) who pointed out that international 
studies generally only sample countries with suffi cient resources and commitment 
to conduct the study; however, the IES did report that it is increasing fi nancial assis-
tance on the next TIMSS to convince more countries to participate (Reddy,  2006 ). 

 All three analyzed assessments undersample students who leave school early or 
drop out. TIMSS collected data on the size of the school-leaving cohort and 
acknowledged that these students were not sampled. Loveless ( 2008 ) wrote, “This 
percentage varied greatly, from more than 50 % in South Africa to about 35 % in the 
United States to 12–15 % in Norway and France” (p. 29). 

  History . This threat refers to all relevant events that occur between the start of treat-
ment and posttest that might have produced the effect even without the treatment. 

 As an example, consider a large urban school district that after doing poorly on 
the mathematics section of the NAEP decides to improve their mathematics class-
rooms by remodeling them with the latest technology. The next time the district 
takes the NAEP their scores improve and credit is given to the upgraded mathemat-
ics facilities. However, a few researchers note that because the district fared poorly 
last time on the NAEP,

•    Several new mathematics teachers have been hired in the district.  
•   Mathematics teachers modifi ed their assessments to match the layout (feel) of 

the NAEP.  
•   Mathematics teachers modifi ed their lessons to spend more time on topics covered 

by the NAEP; of course, this means that they spent less time on other topics.  
•   Several practice tests were given in the weeks before the NAEP.    

 All of these are plausible reasons for the district’s improvement on the NAEP; 
hence, any study or claim that concluded that the classroom improvements led to the 
increased scores could be threatened with claims of poor internal validity. 

 Multi-year age differences of students taking the same test (discussed earlier 
under  Selection ) can also be considered a historical threat to internal validity. A 
student will not get better at algebra by simply living longer; however, life experi-
ences may make story problems more meaningful by allowing the student to better 
understand their context (   Holliday & Holliday,  2001 ). 

 TIMSS sometimes seems inconsistent concerning the “length of treatment” for 
which the independent variable was applied. TIMSS clearly understands that eth-
nicity affects the entire time span of students’ lives. However, the manner in which 
it decides which items to include on the fourth-grade assessment indicates that it 
considers the length of the fourth grade to be the treatment time since it ignores 
earlier intended curriculum. TIMSS decides items by examining the intended 
national curriculum for all participating nations at the fourth-grade level and then 
suggesting items which participating countries score on a scale running from accept-
able to unacceptable (TIMSS Technical Report, Volume I, 1995, p. 2–5). An item 
appearing on TIMSS must appear in at least 70 % of the national curriculums and 
not be unacceptable to more than 30 % of the countries. Cogan and Schmidt ( 2002 ) 
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found that several countries had a limited national curriculum meaning that a large 
number of questions which appeared on the assessment were not covered in the 
fourth grade of these countries. This seemingly should have led to poor scores; 
however, several of these countries did well. An analysis of their entire national cur-
riculum showed that the material had been covered in earlier years. Studies which 
examine the fourth-grade inputs (independent variables) of countries that did well 
on TIMSS but that ignore the entire history of the students could be threatened with 
claims of poor internal validity. 

  Regression . SCC pointed out that treatment selections are sometimes made because 
a respondent received a very low score on some measure (p. 57); however, this low 
measure may be a one-time event for the respondent who typically would have 
scored much higher. In the case of this critique, a country or district may receive 
funding for some intervention (e.g., teacher professional development) because of 
low mathematics scores; however, the low scores may have been the result of an 
undetermined one-time factor, such as bad weather in the days prior to the assess-
ment which interrupted the regular review and preparations of the students. 

 We did not fi nd any convincing instances of this threat  external  (e.g., bad 
weather) to the reviewed studies This is not surprising because the large number of 
districts, schools, and students sampled makes this threat less likely (not to mention 
nations in TIMSS). However, Cogan and Schmidt ( 2002 ) concluded that particular 
sets of items disadvantaged particular countries and that different sets of questions 
would have likely changed the rankings of some countries. This means that a poor 
showing on TIMSS may be rectifi ed on the next TIMSS simply by choosing a dif-
ferent set of questions—a regression to the mean for that country. Any study of an 
intervention administered between the assessments which appeared to have positive 
results could have its internal validity challenged. 

  Attrition . The internal validity issue of attrition is that if a particular subgroup of 
people tend to drop out of the study, then the study may show treatment results even 
though none actually exist. All studies that use longitudinal data collection are 
threatened by attrition and corresponding incomplete or missing data sets. 

 Bozick and Lauff ( 2007 ) reported the following rates for ELS:2002. The initial 
number of selected sophomores was 17,600. Approximately 15,400 completed a 
base-year questionnaire, for a weighted response rate of 87 %. When the sophomores 
had become seniors a follow-up interview took place. The follow-up interview 
looked at 16,500 students, of whom 15,000 participated, for a weighted response rate 
of 89 %. One year after the sample members should have graduated from high 
school, transcripts were requested. At least one transcript was collected for 14,900 of 
the 16,400 eligible students, for a weighted response rate of 91 %. These numbers 
show that the data collected by ELS:2002 generally met the de facto guidelines that 
a study must maintain an 85 % response rate to avoid validity threats due to attri-
tion—a remarkable accomplishment! However, it is also necessary to examine the 
response rates of any subgroup for which claims are to be made. Several authors 
(e.g., Strayhorn,  2009 ) caution and give techniques for adjusting large databases 
especially if a particular group seems to be more prone to dropping out of the study. 
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  Instrumentation . A change in a test may mimic a treatment effect, causing spurious 
claims about the effects of policies or practices established in the interim period 
between administrations. Since the assessments reviewed in this paper all use 
cluster sampling of items, not every student gets the same items on each administra-
tion. This puts a premium on establishing equivalencies across test booklets. IRT 
controls for this issue fairly well, selecting items that have similar performance 
characteristics and response probabilities.  

    Construct Validity 

 Two major issues exist when examining construct validity: clearly specifying the 
construct and then measuring it. Specifying the construct requires identifying proto-
typical units and this is often diffi cult because researchers do not agree on the fea-
tures of the prototype. See Shadish et al. ( 2002 ), Lakoff ( 1985 ), and Mervis and 
Rosch ( 1981 ) for a discussion of categorization and prototype diffi culties. Even if 
the construct can be agreed upon, measuring it is an imprecise science due to both 
imprecise construct defi nition, and poor operationalization. SCC list 14 threats to 
construct validity. We found applicable examples for eight of these threats that per-
tain especially to large-scale survey methods: Inadequate explication of constructs; 
Construct confounding; Mono-Operation bias; Mono-method bias; Confounding 
constructs with levels of constructs; Reactive self-report changes; Experimenter 
expectancies; and Resentful demoralization. Threats we do not identify here, such as 
 Novelty and Disruption Effects , and  Treatment Diffusion , are certainly present in all 
studies with such complicated designs, but are not easily assessable from secondary 
documentation and therefore are not analyzed in this chapter. Threats such as 
 Treatment Sensitive Factorial Structure  are also inherent to the highly complex 
teaching and learning systems being studied: As the number of potential subgroups, 
independent factors, and potential group × factor interactions increases, the ways in 
which those permutations impact the variation in assessment subscales also increases. 

  Inadequate Explication of Constructs . SCC suggested that there are four common 
errors in explicating constructs (p. 74): (1) the construct is too general; (2) the con-
struct is too specifi c; (3) the construct used is wrong; and (4) two or more constructs 
are unknowingly being measured in one study operation. In all three studies the 
explication of constructs was their weakest part. 

 Each of the assessment programs contains a component that administers an 
assessment focused on mathematics; however, the overriding construct of the math-
ematics assessment is never explained by any of the studies. Though it is never 
explained, perhaps it is “mathematical achievement.” Beaton, Linn, and Bohrnstedt 
writing for the NAEP Validity Studies (NVS) panel, wrote in 2012 that the NAEP 
had always measured achievement in the past but that it was now time to consider 
measuring predictive achievement with an emphasis on preparedness “to qualify for 
entry-level college courses leading to a degree or job training without the need for 
remediation” (p. 1). Changing the construct defi nition forces test designers to 
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change the operational defi nition, making comparison across administrations of 
NAEP (should this new defi nition be applied) diffi cult at best. 

 Studying Hong ( 2012 ), it appeared that teacher effectiveness was being mea-
sured by TIMSS, though their measurements were operationalized through multiple 
choice mathematics questions. If this appearance is correct, then both internal and 
construct validity are diffi cult to defend: internal validity is threatened by causal 
direction confusion, and construct validity is threatened by an error of multiple 
constructs being measured in a single operation. 

 Wang ( 2001 ) cautioned that the instrument and items being used by TIMSS to 
measure mathematical achievement will de facto become mathematics. He argued 
that reforms in mathematics and science teaching in the USA and Japan “…stress 
higher order thinking, complex scientifi c and mathematical reasoning and hands-on 
experience…and call for problem solving and fi rst-hand, original investigations” 
(p. 19). However, Lange ( 1997 ) found that the TIMSS test “…measures mostly 
lower learning outcomes by means of predominantly multiple choice format…” 
(p. 3). Further, Lange pointed out that there were 429 multiple choice but only 29 
extended-response items on the assessment. Wang continued, “Because students 
were tested on subsets of questions from this item pool, the TIMSS scores cannot 
refl ect the kinds of outcomes that are emphasized in reform initiatives that focus on 
higher order thinking and hands-on experiences” (p. 19). Cogan and Schmidt ( 2002 ) 
mentioned that countries that did well on TIMSS are considered to have a “world 
class” curriculum (p. 2); hence, if your students do well on lower order thinking 
problems, then you have a world class curriculum. 

 Ndlovu and Mji ( 2012 ) suggested that, if South Africa wants to improve its 
results, then it should align the curriculum to teach items on the test. One-third of 
the items on TIMSS are released after each assessment, so curricular alignment is 
possible. Construct validity is threatened because the construct has morphed into 
the operation; however, internal validity is also threatened because it would not be 
treatments per se that improved results; rather, it would be the test itself that changed 
the results to the test. 

 TIMSS has the additional problem of having to seek consensus for each item on 
the assessment (see Internal Validity:  History  for details). This interferes with 
selecting the best item to operationalize a construct. A similar problem exists for all 
assessments which select from a pool of potential items. The problem is that selected 
items require a level of variance for reliability and to avoid fl oor and ceiling effects. 
This means that the best items (in the sense of prototypical) may not be selected to 
operationalize the construct, but to optimize response variability. 

 As mentioned at the beginning of this section, the construct of mathematics 
achievement is never adequately explained by any of the studies; however, all three 
of the studies operationalized the construct as being able to correctly answer mul-
tiple choice questions (though NAEP and TIMSS also use alternate formats for 
some items). There are at least two issues with this operational concept: (1) multiple 
choice questions can be successfully solved in a variety of ways which do not mea-
sure the construct (e.g., utilizing test-taking strategies) and (2) few of the items 
resemble real-world mathematics usage. 
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 In the fi rst case, facilities that prepare students to take large-scale tests recom-
mend fi rst eliminating impossible answers and then back calculating the remaining 
answers into the question rather than solving the problem directly to determine the 
answer. This solution technique is especially simple and quick if calculators are 
allowed. An analysis by Tarr, Uekawa, Mittag, and Lennex ( 2000 ) on eighth-grade 
calculator usage as part of TIMSS missed these inappropriate uses of a calculator. 
We were not able to fi nd a direct reference to such uses with respect to any of the 
three studies included in this paper, but the general idea is illustrated in this discus-
sion of the SAT test.

  When dealing with algebra, some equations and word problems can get nasty. However, 
you’ve got choices, right? Plug them in and see which one works. Who needs to do any real 
calculations when you can beat the system like that? When you’re given general variables 
in specifi c ranges, plug in numbers in that range to see what works. Remember that the test 
[SAT] is designed to be possible even without a calculator. If you’re getting weird, 
unfriendly answers where you have to use a calculator, like a quadratic equation that can’t 
be factored nicely for a solution, you’re probably off the right track. (  http://sat.learnhub.
com/lesson/1713    ) 

   Something is being tested, but construct validity claims are defi nitely threatened 
by the use of such techniques by students. TIMSS mitigated this threat somewhat 
with a small percentage of open-ended questions, but that still leaves potential prob-
lems related to the second case. 

 In the second case, every multiple test question lacks external validity in terms of 
format: mathematics problems in the real world do not provide multiple answers to 
choose from. The answers must be constructed by the learner. In addition, most 
released problems from these assessments are not situated within realistic applica-
tion contexts. Contexts are not strictly necessary for external validity as defi ned by 
SCC, but are necessary for external validity of the type suggested by Beaton, Linn, 
and Bohrnstedt ( 2012 ). 

  Construct Confounding . It is diffi cult to devise an experimental operation that mea-
sures only one construct. For example, a test operation in the form of a question 
concerning geometry is attempting to measure students’ understanding of the right 
triangle construct. The question must either use abstract notation or actual measures 
(in degrees for example). The students’ abilities to understand abstract notation is 
not the construct being tested, but it is tested nonetheless. This is also true if degrees 
are used; students’ understanding of measurement is tested even though it is not the 
construct of interest. Related to this is the defi nitional fact that all mathematics word 
problems require reading and mathematics skills to successfully solve them. 

 Holliday and Holliday ( 2003 ) had several such concerns with TIMSS. The con-
cerns were centered on the issue of language (see Griffo,  2011  for similar concerns 
on the NAEP). On a particular item, English speaking students were asked to calcu-
late using monetary units of “zeds.” No doubt, this was an attempt by the item writ-
ers to not feature any one country’s currency; however, “zed” is a common term as 
the last letter of the alphabet in all English speaking countries except the USA. 
A second issue that W. G. Holliday and B. W. Holliday mention is the exclusive use 
of the metric system. They acknowledge that US students are taught the system, but 
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that the students do not use it outside of the classroom. Both of these issues are an 
example of an operation measuring more than one construct (i.e., the item is mea-
suring mathematics  and  metric system knowledge). 

 Rather than the language, Wang ( 1998 ) analyzed the technical content of ques-
tions on TIMSS and found several example items that high-knowledge students 
might have missed because of their deep thinking. For example, Wang noted (p. 38) 
that a particular mathematics item asked students

  A chemist mixes 3.75 mL of solution A with 5.625 mL of solution B to form a new solution. 
How many milliliters does this new solution contain? (Item #K2,   http://www.csteep.bc.edu/
timssl/Items.html    ) 

   The correct answer according to TIMSS is the simple sum of 9.375 mL. However, 
high-knowledge students would potentially answer incorrectly for at least two rea-
sons: (1) they already have knowledge of signifi cant fi gures and (2) they know that 
depending on the solutions being mixed (e.g., an alcohol-based and a water-based 
solution) the total is not additive and will be less than expected. This item is particu-
larly interesting since the reason for students answering it “incorrectly” could be 
different across students. That is, the second construct being tested is unknown and 
may be different across students. 

  Mono - Operation and Mono - Method Biases . SCC clearly state this threat: “Because 
single operations both underrepresent constructs and may contain irrelevancies, 
construct validity will be lower in single-operation research than in research in 
which each construct is multiply operationalized” (p. 75). This threat can be avoided 
by including multiple items on a test for each construct being studied; however, 
Wang ( 2001 ) reminded readers

  Because students tested in TIMSS had been enrolled in school for several years, measuring 
the cumulative achievement in a short testing period represented a considerable challenge. 
As with any large-scale assessment, a short test may not suffi ciently cover what students 
have learned so far. As it usually demands more time and effort from the test takers, a 
lengthy test can cause a low response rate (p. 18). 

   Wang’s reminder applies to any large-scale assessment including the NAEP and 
ELS:2002. Further complicating this are issues of language, culture, and necessary 
item variance. Language and culture both introduce irrelevancies (see the subtype 
 Construct Confounding ) which must be mitigated with additional items to preserve 
construct validity. 

 In addition, if all constructs are operationalized or measured in the same manner 
then the method of answering may introduce unintended treatment effects. Referring 
back to    Wang’s (2001) warning (Construct Validity:  Inadequate Explication of 
Constructs ) that the assessment is de facto becoming mathematics, if the constructs 
of large-scale tests were measured in varying ways then both Wang’s issue and the 
mono-method bias would be mitigated. Possible variations include oral-response 
items; multiple choice questions with 12 answers available (and time constraints); 
manipulatives required to answer correctly; and reference materials available that 
are not test specifi c. Attempts to mitigate this threat are being implemented, particu-
larly for newer iterations of NAEP, which has added computer administration and 
extended response items to its assessment repertoire. 
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  Confounding Constructs with Levels of Constructs . A construct, such as homework, 
may be confused with the level of the construct, such as homework for 30 min or 
more. The construct validity of a study is threatened if it does not differentiate 
between binomial, polynomial, and various scaled measures. 

 The ELS:2002 collected data on student involvement in extracurricular activi-
ties. It collected frequency of involvement and the type of involvement: academic, 
athletic, service, or social. Publication NCES 2005-338 presented several statistics 
concerning students’ success rates and their involvement in extracurricular activi-
ties. Some of the data was analyzed and presented based on membership alone; that 
is, without regard to the time a student actually spent on the activity or the achieve-
ment of the student (e.g., intramural, varsity, or captain). This part of the report 
should be carefully examined concerning the construct validity of any claims (posi-
tive or negative) concerning student achievement based on or infl uenced by extra-
curricular activities. 

 All three studies collected information on the construct of mathematics home-
work from students. Questions posed to the students included the amount of time 
spent, number of pages read, number of problems solved, and whether a computer 
or calculator was used. The studies ignored or were unable to measure the level of 
effi ciency or intensity with which students approached their homework. Any study 
conclusion concerning the amount of homework time spent should be carefully ana-
lyzed for threats to construct validity from the lack of considering levels of effi -
ciency or intensity—to draw an analogy, it is not the time spent in a gym, but rather 
what is done in the gym that counts. 

  Reactive Self - Report Changes . This threat to construct validity is really a question 
of honesty. Do teachers who desire more technology in their mathematics class-
rooms answer questions concerning the availability of it honestly? Do students who 
desire less homework each evening tend to underreport or overreport the amount of 
time they are spending? Did curriculum experts actually know what was being 
taught in a nation’s classrooms and did they act honorably when accepting and 
rejecting items for TIMSS? Bracey ( 1998 ) pointed out that curriculum matching 
was not performed by the US delegation for the third TIMMS: “U.S. participants in 
TIMSS decided to accept uncritically all items at all grades—just to see how the 
students would cope” (p. 35). On the advanced mathematics part of the test, this led 
to US pre-calculus students receiving tests which had 18 % of the questions cover-
ing calculus topics. 

  Experimenter Expectancies . This threat is sometimes referred to as the Pygmalion, 
Rosenthal, or golem effect. In essence, the students will try a little harder or a little 
less depending on the expectations of their teacher or other authority fi gure. 

 Cultural differences play a large role in expected student outcomes (Bracey, 
 1998 ; Cogan & Schmidt,  2002 ; Holliday & Holliday,  2003 ), and increased expec-
tancies had varying effects on different groups of students (Wei,  2012 ). Some coun-
tries view TIMSS as an international competition and attempt to drum up patriotic 
fervor to win TIMSS. In contrast, some US seniors saw TIMSS as just another gov-
ernment-mandated test administered just before graduation (May) and which would 
not affect them in any way (Bracey,  1998 ). Clearly, such biases impact comparisons 
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across nations. The extent to which such cultural differences are “natural” to an 
assessment event, versus introduced for a specifi c assessment may differ by country, 
district, or school, making direct comparison of change in mathematics performance 
across administrations diffi cult to ascribe to curricular or instructional infl uences. 

  Resentful Demoralization . When a group knows they are not receiving a treatment, 
then they may change their behavior because they are demoralized by not being 
included in the treatment group. Demoralization could cause a change in the control 
group’s dependent scores which would tend to magnify the actual treatment effects 
for the group receiving treatment. Ndlovu and Mji ( 2012 ) wrote that by some mea-
sures South Africa had previously done poorly on TIMSS. Thus the test received a 
reputation of being diffi cult, which demoralized future TIMSS test takers.  

    External Validity 

 External validity concerns generalization of the research fi ndings beyond the situa-
tion in which the data was collected. Here,  generalizability  means the degree to which 
patterns in the data can be faithfully applied across populations, across contexts and 
situations, and especially for longitudinal data, over time. SCC identify four “threats” 
to external validity: Interaction of the causal relationship with units; Interaction of the 
causal relationship over treatment variations; Interaction of the causal relationship 
with outcomes; and Interaction of the causal relationship with settings. 

 For the reviewed studies, that do not employ experimental methods, these 
“threats” are typically the foci of scholarship. Kloosterman et al. ( 2015 ), for exam-
ple, utilize longitudinal NAEP data to determine potential causal relationships 
between different mathematics content strands extracted from examination of items, 
and student performance across demographic subgroups over time. Settings (states, 
regions), treatment variations (school characteristics and state policies), units 
(demographics), and outcomes (performance), and time are all assumed to be related 
in a web of causality. The importance of  longitudinality  of the data set allowed the 
authors to make claims about the ways in which causal implications among these 
variables change and mutually impact each other over time. So, for the most part, 
we do not treat these factors as threats to validity per se, but as important potential 
outcomes of the research. 

 The one threat to validity that has been shown to be particularly problematic is 
interaction of the causal relationship with outcomes. We treat this issue briefl y before 
moving on to general conclusions regarding the validity of our reviewed studies. 

  Interaction of the Causal Relationship with Outcomes . Claiming that a cause–effect 
relationship exists in an educational setting relies strongly on defi nitions. An educa-
tional treatment such as enhanced opportunities for tutoring may be seen as success-
ful or failing depending on defi nitions. One stakeholder may judge the success of 
the program by the decrease in the number of students failing the class, while 
another stakeholder may measure the program’s success by the number of students 
receiving an above average grade. 
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 Ndlovu and Mji ( 2012 ) considered their TIMSS results for South Africa as mis-
representing the tremendous strides that the country had recently made in their educa-
tion system. They considered successes in improving access and structure as equally 
or even more important than achievement scores. Similarly, the NAEP in the USA 
has gathered extensive data concerning the achievement of various ethnic groups. 
Examination of the data leads to claims and counterclaims that treatments have been 
successfully generalized (e.g., Hemphill & Vanneman,  2011 ; Howard,  2010 ).  

    Conclusions on Validity 

 The authors and researchers associated with all three studies were open to receiving 
criticisms concerning validity. In some cases they defended their decisions 
(e.g., Forgione,  1998 ) and in others (e.g., Beaton et al.,  2012 ) they were open to 
modifi cation of their claims or changed the assessment acknowledging the veracity 
of the critique. 

 Many issues that threaten validity do so for multiple types (e.g., external or inter-
nal) and subtypes. SCC posited that sampling bias was the most pervasive threat to 
validity. After critically examining these three long-term studies, we have come to 
the same conclusion. 

 Given the size and infl uence of these studies we expected to fi nd more research 
attempting to quantify the threats to validity. SCC suggested that the authors them-
selves conduct research to quantify the threats as part of the study rather than wait-
ing for others to do post hoc critiques (p. 41). For the most part, threats to validity 
for large-scale studies, like the rest of mathematics education research, is 
underreported.   

    Discussion: Usefulness 

 The perceived importance of large-scale studies leapt forward in 1983 with the pub-
lication of  A Nation at Risk  (e.g., Beaton & Robitaille,  2002 ; Gardner,  1983 ). More 
recently,  The Manufactured Crisis  (Berliner & Biddle,  1995 ) and Stedman’s ( 1996 ) 
rebuttal have ignited controversy regarding what help results from large-scale 
national and international studies can really provide to the educator and practitio-
ner; particularly problematic is the question of how useful any of the large-scale 
studies have been or even can be in improving student achievement. 

 Published results from all three of our reviewed datasets have given us great 
insight into the inequities of opportunity and achievement among students in the USA 
and approximately 60 other countries (Beaton et al.,  2012 ; Hemphill & Vanneman, 
 2011 ; Howard,  2010 ; Lee,  1996 ). Eliminating these inequities requires tremendous 
social change (e.g., Marks, Cresswell, & Ainley,  2006 ). It also requires us to further 
understand how to teach mathematics to reach differing groups of students; this 
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research theme was prevalent across all three data sets. In addition, all three studies 
posited that students need more mathematical knowledge and skill to compete in a 
world that is undergoing an ever-increasing rate of technological expansion. Hong 
( 2012 ), for example, argued that a nation’s future GDP was signifi cantly correlated 
with TIMSS scores. 

 However, none of the three studies gathered data to determine if anything being 
done in relation to educational reform is actually being carried forward from early 
childhood into adulthood. Girls are now taking more STEM classes, but we do not 
know if their learning, retaining, and feelings about their experiences are the same or 
different than boys’; furthermore, if they are different, then in what ways? (Willms 
& Jacobsen,  1990 ). Similar questions abound and could be asked about any group of 
students. The point is, few studies from large-scale assessments shed light onto ped-
agogical strategies, nuances of curricular organization or the interaction of the two 
in impacting student learning and abilities. 

 In terms of learning, one of the key purposes of mathematics education research 
should be to positively infl uence the development of mathematical  abilities . Part of 
the problem we have found critiquing the utility of these large-scale studies con-
cerns the fact that such studies measure elementary and secondary school mathe-
matics  achievement —yet we are not even sure what is meant by  achievement  when 
curricular reform, changing needs of business and higher education, and interna-
tional competition are thrown into the mix (e.g., Kupermintz & Snow,  1997 ). 

 When we examine the impact of large-scale studies on curriculum, we fi nd more 
substantive utility. Of the three studies, TIMSS was the clearest in expressing the 
goal of determining relationships between the intended, implemented, and attained 
curriculum. Several researchers have shown that comparing various nations’ 
intended curricula has led to questioning the status quo and subsequent adjustment 
and improvement (e.g., Macnab,  2000 ; Valverde,  2002 ). However, Cogan and 
Schmidt ( 2002 ) (see also Wiseman,  2010 ) posited that if a country scored poorly on 
TIMSS, then the national authority tended to focus on whether changes to the 
intended and/or implemented curriculum should be made that would fi x the score. 
Of course, the questions on the next TIMSS will generally be different and the 
national authority may fi nd itself chasing the past by making improvements to fi x 
scores on an assessment that is no longer useful for the current educational need. If 
Cogan and Schmidt are correct, then this is not a fault of the assessment per se, but 
of the user; nonetheless, chasing past test results does not seem to be useful. So how 
can large-scale test results be used fruitfully for curricular innovation? It seems 
fruitful to conduct careful cross validation of test items with curricular frameworks 
to establish the degree to which the assessments’ measure key features of the frame-
works, in the manner in which the framework designers intended (for a lovely 
example, see Kloosterman et al.,  2015 ). 

 According to Bracey ( 1998 ), in 1991 Tjeerd Plomp, an IEA offi cial, referring to 
TIMSS sighed, “We can only hope that the tests are equally unfair to everyone.” The 
usefulness of directly comparing the mathematical achievement of various coun-
tries, given that the tests are admittedly unfair for the reasons cited above, seems 
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dubious. TIMSS clearly stated that it is not the intent of the study to rank countries 
in numerical order, yet it publishes the results in a numbered list. 

 Indeed, the rank ordering of superordinate units in large-scale assessments 
obscures the fact that often raw score differences are negligible or nearly so from a 
practical standpoint (Berliner & Biddle,  1996 ). TIMSS suggests understanding the 
results as three bands of achievement. Supporting the position of TIMSS, Beaton 
( 1998 ) found that changing items only had a slight effect on nation’s positions—but 
some did change positions. Wang ( 2001 ) calls the bands misleading and meaning-
less because even minor changes in scores due to a slightly different mix of ques-
tions or the use of a different score from the fi ve statistically probable scores would 
change some rankings. If Wang was correct and the rankings were too broad, then 
knowing which countries should be used as exemplars is problematic. There is little 
disagreement, however, about the distinction between the top and bottom tiers. This 
is possibly useful to the bottom tier countries if they want to consider changing their 
systems since they would know the characteristics of a high-achieving system. 
However, it is unclear how such comparative information is of equal utility for 
high- achieving countries. 

 In summary, the reviewed assessment programs are, each of them, technological 
marvels of our age. The careful design of items, scales and sampling frames has 
enabled researchers to understand broadly the achievement characteristics of stu-
dents in the US and abroad, and they have enabled the fi eld to identify inequities in 
opportunity and achievement and work to fi nd effective remedies. The longitudinal 
studies have provided critical evidence regarding trends in student achievement and 
on the effectiveness (or not) of curricular change on student outcomes. TIMSS has 
intrigued scholars with subtle differences in instructional practices and curricular 
organization and emphases, to the extent that many natural and contrived experi-
ments in professional development and pedagogy have been instituted with much 
success (e.g., Hiebert & Stigler,  2000 ). 

 Large-scale studies will continue to be conducted, threats to validity of the kinds 
reviewed in this paper notwithstanding. We see their utility limited at the level of 
individual student variability, but at the level of curriculum and policy, they have 
clearly provided value to the fi eld of mathematics education. Their usefulness and 
validity will continue to be questioned—as they should be. Eventually, perhaps with 
the innovations being proposed for computer administration and scoring, a base of 
knowledge and technical expertise will emerge that makes large-scale studies of 
mathematics learning useful at the individual level.     
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      Methodological Issues in Mathematics 
Education Research When Exploring Issues 
Around Participation and Engagement 

             Tamjid     Mujtaba     ,     Michael     J.     Reiss    ,     Melissa     Rodd    , and     Shirley     Simon   

             Background 

 In common with many other countries, the government in England is committed to 
increasing the number of STEM (science, technology, engineering and mathematics) 
professionals as it sees this as crucial for England to be able to compete in an increas-
ingly competitive global economy (Department for Business, Innovation and Skills, 
 2009 ). While the number of students choosing to study mathematics after the age at 
which it is no longer compulsory (16 in England) has been rising in recent years, there 
is still a problem with the relatively low proportion of English students, compared 
with other countries, who continue with mathematics in post-compulsory education 
(Royal Society,  2011 ). There have been a number of pieces of research that have con-
cluded that this is at least in part due to the high levels of disaffection of many stu-
dents taking secondary mathematics courses (e.g. Brown, Brown, & Bibby,  2008 ; 
Nardi & Steward,  2003 ). A shortage in the number of students undertaking post-
compulsory mathematics has implications for the number who can go on to do careers 
that require mathematics, including specialist mathematics teacher training courses, which 
impacts the availability of good quality mathematics teaching for school students. 

 Existing research has demonstrated the importance of gender, as well as prior 
attainment, socio-economic status and ethnicity, on whether students continue with 
post-compulsory mathematics (e.g. Noyes,  2009 ). Feminist-inspired work has 
looked at why girls too often conclude that mathematics is not for them. In a qualita-
tive study of young people in schools and colleges Mendick ( 2006 ) drew on theori-
sations of masculinities by Connell ( 1995 ), amongst others, and concluded that to 
understand gender difference we need to start from social context, processes and 
actions and see gender difference as relational. More recently, the importance of 
mathematical relationships in education has been stressed by Black, Mendick, 
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and Solomon ( 2009 ) and others. For instance, the importance of pedagogy was 
investigated by Palmer ( 2009 ) who found that female teacher-education students 
became much more positive about mathematics after they undertook a course 
that adopted a feminist post-structural approach based on critical pedagogy and 
deconstructive theory. 

 A number of the factors that infl uence engagement with mathematics are to do 
with schooling, which is susceptible to a range of infl uences: changes in schools, 
changes in subject teachers, introduction of new learning plans. The family, though, 
is an important infl uence that is resistant to changes that take place in the school 
environment. Noyes ( 2003 ) qualitative study found that students’ family back-
grounds played a key role in how students identifi ed with mathematics. Those stu-
dents for whom the family habitus resonated with the culture of the school benefi ted 
more from school than did students for whom mathematics and the learning culture 
at home did not so resonate. This identifi cation is partly the result of such cultural 
forces and an individual’s relationship with their school, but it is the individual’s 
affective response, both conscious and unconscious, that ultimately attracts, or fails 
to attract, each person to the subject (cf. Boaler,  2009 ; Middleton & Jansen,  2011 ).  

    The Context of This Study 

 This chapter aims to identify the factors that relate to students’ intended choices 
with respect to mathematics in schools in England, using a mixed methods longitu-
dinal approach. The data are drawn from the Understanding Participation rates in 
post-16 Mathematics And Physics (UPMAP) project which was conducted from 
2008 to 2011. The quantitative element of the study, part of which we draw on here, 
surveyed students aged 12–13 (year 8) and 14–15 (year 10). Throughout we high-
light the methodological issues that surfaced in our study; indeed, we have struc-
tured the paper as a sort of narrative of the various stages of the analysis, recounting 
the different methodological decisions we made at each stage. 

 Whilst there is a considerable literature in mathematics education pertaining to 
extrinsic factors affecting choices and achievement, comparatively little has been 
reported on the relationship between intrinsic factors, such as personality, attitudes 
to mathematics and achievement in mathematics, and their relationships to subject 
choice, achievement and post-16 participation. Accordingly, we designed student 
questionnaires to include items derived from established psychological constructs. 
Given that the focus of the study was to fi nd factors that infl uence post-16 participa-
tion in mathematics and/or physics it was a deliberate part of the sampling to over- 
represent in our sample schools which were above average in either or both of 
mathematics and physics attainment and post-16 participation. In addition, given 
our research agenda, we targeted classes that contained students who were said by 
the teachers to be of above average or average attainment in mathematics and phys-
ics/science. This focus was intentional because, although all barriers to participation 
are important, we are particularly interested in factors that affect the choices of 
those students who have the opportunity, including fulfi lment of attainment criteria, 
to study mathematics (or physics) post-16. 
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 Student questionnaires were designed following a review of the literature (Reiss 
et al.,  2011 ) that considered factors that may infl uence post-compulsory participa-
tion rates. Alongside questions related to intentions to continue to study mathemat-
ics post-16, the survey included mathematics-specifi c items to determine attitudes 
to the subject, attitudes to lessons, self-concept, perceptions of teachers, support for 
learning, intrinsic and extrinsic motivation for learning, personality and mathemati-
cal understanding. A factor analysis using principal components affi rmed some of 
the constructs though also led to minor changes in others. Cronbach’s alphas were 
used to assess the internal consistency of all constructs, which were found to have 
fair to high reliability (.6–.9). All of the items within each construct were scored so 
that a high score represents strong agreement. 

 This chapter also draws on qualitative data to provide further insights into the 
statistical fi ndings and suggest new analyses. We use extracts from semi-structured 
interviews undertaken with three 15-year-old girls. Each interview was conducted 
by one of the authors and was around 30 min in length.  

    Introduction to Findings 

 For all of our surveys and for each year group (year 8 and year 10) we used factor 
analysis to determine the underlying dimensions of the constructs. For the mathemat-
ics surveys we found there were three mathematics-specifi c constructs related to 
motivation and values: intrinsic value, extrinsic social gain motivation and extrinsic 
material gain motivation (these constructs are explained below). In addition, there 
were seven mathematics-specifi c constructs which were related to perceptions of 
learning and students’ mathematics education: home support for achievement in 
mathematics; perceptions of mathematics teachers; emotional response to mathemat-
ics lessons; perceptions of mathematics lessons; mathematics self-concept; advice-
pressure to study mathematics and social support in mathematics learning. Items were 
on a six-point Likert scale with scores above three representing agreement/more 
favourable answers. Our year 8 survey also obtained data on four underlying person-
ality dimensions: competitiveness (a measure of how competitive in life students are), 
self-direction (whether students report they can change what is going to happen to 
them), emotional stability (whether students report they are generally happy or upset) 
and extroversion. The surveys can be downloaded from   www.ioe.ac.uk/UPMAP     and 
information about the specifi cs of instrument design is available in Reiss et al. ( 2011 ). 

 We used a six-point Likert item that asked students whether they were intending 
to continue with mathematics post-16; this item was used as the dependent variable 
within our multi-level analysis. For the sake of brevity, ‘intention to participate’ 
refers to expressed intentions to continue with a mathematics course at post- 
compulsory education (i.e. after the age of 16). A high score (4, 5 or 6) represents a 
stated intention to continue with mathematics post-16 with 6 being ‘strongly agree’; 
the other end of the scale (1, 2 or 3) represents disinclination to continue, with 1 
being ‘strongly disagree’. Table  1  indicates the overall mean response (4.36) for the 
year 8 students with statistically signifi cant differences between boys and girls 
( t  = 5.508,  p  < .001) in favour of boys with an effect size of .155 ( p  < .001).
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      Multi-level Findings: Intention to Participate in Mathematics 
Post- 16 Amongst Year 8 Students 

 To ascertain which factors were the most important in explaining intended mathemat-
ics participation, multi-level modelling (MLM) procedures were used to establish 
which combinations of factors were best able to explain the variation in year 8 stu-
dents’ intentions to study mathematics post-16. These fi ndings represent our initial 
key results which helped create new avenues of research and lines of enquiry. At this 
stage we felt that reliance on MLM procedures was appropriate for the sort of data we 
were analysing, given that MLM enabled us to recognise the nature of student 
responses by including students as one of the levels within our nested multi-level 
model. Students’ intentions to continue with mathematics post- 16 are likely to be 
infl uenced by factors operating at a number of levels and for the data we collected we 
were able to explore infl uences at the individual student level and at the school level. 
The variance in MLM procedures is therefore partitioned out between the student and 
school levels. The standard errors are smaller than those obtained using traditional 
regression techniques and so MLM procedures are less likely to have type 1 errors. 

 We began our analysis of data from year 8 students’ questionnaires by fi tting a 
variance components model for the outcome measure ‘intention to study mathemat-
ics post-16’; the intra-school correlation demonstrated that around 7 % of the varia-
tion in students’ intention to study mathematics post-16 is attributable to differences 
between secondary schools with the rest of the variation refl ecting differences 
between students. Given this low intra-school correlation, our analytical approach 
focused more on exploring student level factors; we began with more basic models 
that evolved as we explored the importance of various infl uences on intended par-
ticipation. The chi-square likelihood ratio test and the deviance statistic were used 
to establish whether the addition of new (statistically signifi cant) variables provided 
better model fi t than earlier models. 

    Our Initial Construct-Based Multi-level Analysis 

 The fi nal model presented in Table  2  went through a number of stages; we will refer 
to fi ndings from earlier models to create a more complete picture about what we 
tested and which student level variables were removed in the fi nal model. To maxi-
mise sample sizes, scores on constructs from the survey were divided into quartiles; 
this allowed us to maximise the number of students within the models as it enabled 
us to retain students for whom we had scores for some but not all items within a 
construct.

       Controlling for Only Background Characteristics 

 Student background characteristics were the fi rst variables we controlled for, primar-
ily because of the known infl uence of prior attainment, gender, ethnicity and socio-
economic status on actual participation. We did fi nd an independent infl uence of the 
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fi rst three background characteristics although they are not reported in the fi nal model 
in Table  2  because all of these lost signifi cance when we began to control for stu-
dents’ attitudes and perceptions of their mathematics education. However, and some-
what surprisingly, the analysis indicated that even at this initial stage there was no 
infl uence of free school meal status (a measure of social deprivation—about one in 
six school children are entitled to receive meals at school without paying for them 
because of low household income). In line with other existing research we found that 
girls were less likely than boys to express intentions to continue with mathematics 
post-16. Students of Asian heritage were more likely than those of other ethnicities to 
express intentions to continue with mathematics post-16. However, once we 
accounted for more of the survey measures no ethnicity effects were statistically sig-
nifi cant and so this measure was removed from the fi nal model. Gender effects also 
lost statistical signifi cance in later models but we retained gender as a control primar-
ily because, as our analysis will indicate, when these same students were in year 10, 

           Table 2    Estimates of fi xed effects on year 8 England students’ intentions to study mathematics 
post-16   

 Parameter  Estimate  Std error  df   t   Sig.  Effect size 

 Intercept  5.766  0.103  1,161.470  56.244  0.001 
 Gender  0.064  0.053  1,243.693  1.217  0.224  0.062 
 Maths self-concept (comparison group: top quartile) 

 (Bottom quartile)  −0.038  0.072  1,703.892  −0.527  0.598  −0.036 
 (Lower middle quartile)  −0.241  0.077  1,686.183  −3.146  0.002  −0.231 
 (Upper middle quartile)  −0.588  0.084  1,685.733  −7.010  0.001  −0.564 

 Emotional response to maths lessons (comparison group: top quartile) 
 (Bottom quartile)  −0.052  0.078  1,703.868  −0.665  0.506  −0.049 
 (Lower middle quartile)  −0.183  0.079  1,703.452  −2.317  0.021  −0.176 
 (Upper middle quartile)  −0.316  0.088  1,700.024  −3.591  0.001  −0.303 

 Advice-pressure to study maths (comparison group: top quartile) 
 (Bottom quartile)  −0.170  0.076  1,702.531  −2.225  0.026  −0.163 
 (Lower middle quartile)  −0.351  0.084  1,703.920  −4.151  0.001  −0.336 
 (Upper middle quartile)  −0.964  0.081  1,698.910  −11.913  0.001  −0.925 

 Intrinsic value of maths (comparison group: top quartile) 
 (Bottom quartile)  0.011  0.078  1,703.367  0.136  0.892  0.010 
 (Lower middle quartile)  −0.163  0.082  1,703.986  −1.989  0.047  −0.157 
 (Upper middle quartile)  −0.463  0.094  1,701.561  −4.946  0.001  −0.444 

 Extrinsic prospects (comparison group: top quartile) 
 (Bottom quartile)  −0.313  0.081  1,703.610  −3.880  0.001  −0.300 
 (Lower middle quartile)  −0.530  0.082  1,701.668  −6.501  0.001  −0.509 
 (Upper middle quartile)  −1.044  0.096  1,703.619  −10.875  0.001  −1.002 

  Random - effects parameters  
 Variance (Level 2)  0.008  0.007 
 Variance (Level 1)  1.087  0.037 
 Deviance (−2 × log 
restricted-likelihood) 

 5,093.092 
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gender differences were signifi cant even after accounting for a range of survey 
 measures. This fi nding, that as students progress through secondary school the gap in 
future mathematics aspirations widens between boys and girls, is important.  

    Controlling for Personality Traits 

 Within the UPMAP project we were interested in the association between intended 
participation and the psychological traits of students. The four core constructs for 
which we collected data were competitiveness (indicates that students have a ten-
dency to self-enhancement); emotional stability (measures a state of composure and 
calmness); extroversion (measures a tendency to gain gratifi cation through social 
interactions with others) and locus of control (which measures the extent to which 
students feel they have an infl uence over issues that impact them). Some of our 
earlier work found that girls with high intentions to study mathematics had statisti-
cally signifi cantly higher competitive personalities than (a) girls with low intentions 
and (b) boys, whether boys had high or low intentions to study mathematics (Mujtaba 
& Reiss, under revision),   with similar fi ndings when exploring such trends in post-
compulsory physics intentions (Mujtaba & Reiss,  2013c ). Within our multi- level 
analysis we expected to fi nd the association between competitiveness and intended 
mathematics participation (which we did initially); however, once we included 
mathematics-specifi c measures of motivation (see below), the infl uence of any gen-
eral underlying personality trait, including competitiveness, was not signifi cant.  

    Measures of Motivation and Support for Learning (Non-mathematics Specifi c) 

 We tested for the importance of our construct ‘general motivations and aspirations 
towards learning’ and ‘home support for achievement in general’ with mathematics 
aspirations. Initial fi ndings indicated that both were positively associated with math-
ematics aspirations. This is hardly surprising (cf. Eccles,  2009 ; Schunk, Pintrich, & 
Meece,  2010 ). However, once we included (in later models, see Table  2 ) mathemat-
ics-specifi c measures of motivation and support for learning, these more general 
measures lost statistical signifi cance. These fi ndings demonstrate that without the 
inclusion of mathematics-specifi c measures we might have concluded that a general 
emphasis on learning in the home and at school will boost mathematics aspirations.  

   Inclusion of Measures That Explore Student Perceptions of Their 
Mathematics Education 

 To substantiate the impact of students’ perceptions of their mathematics education 
(mathematics self-concept, perception of teachers, lessons and emotional response 
to lessons) on future mathematics aspirations, such measures were included in the 
model prior to the inclusion of constructs that tapped into students’ attitudes towards 
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mathematics-specifi c issues (e.g. extrinsic material gain motivation, intrinsic value, 
self-concept) and encouragement in mathematics learning and choice (e.g. advice-
pressure to study mathematics, social support in mathematics learning, home sup-
port for achievement in mathematics). There was a statistically signifi cant 
independent infl uence of ‘perceptions of mathematics teachers’ although this lost 
signifi cance in later models once we controlled for other measures of students’ 
mathematics education. The only constructs that measure perceptions of mathemat-
ics education that continued to have an infl uence in the fi nal model were ‘emotional 
response to mathematics lessons’ and ‘mathematics self-concept’.  

   Mathematics-Specifi c Measures of Motivation and Support for Learning 

 The constructs ‘social support in mathematics learning’ and ‘extrinsic social gain 
motivation’ (a measure which explores students’ desire to continue with mathemat-
ics for social gain) were associated with intended participation. We also found there 
was an association between ‘home support for achievement in mathematics’ (a con-
struct which measures support that students derived from the family in raising 
mathematics attainment). However, once we introduced ‘extrinsic material gain 
motivation’ (which identifi es students wanting to continue with mathematics for 
some tangible reward, such as future career prospects) and ‘advice-pressure to study 
mathematics’ (a construct which measures the encouragement students receive 
from a range of people about continuing with mathematics) the constructs ‘social 
support in mathematics learning’, ‘extrinsic social gain motivation’, and ‘home sup-
port for achievement in mathematics’ did not have an independent infl uence in dem-
onstrating their association with future mathematics aspirations; these measures 
were subsequently removed.  

   The Final Model 

 In the fi nal model the following fi ve constructs were found to be signifi cantly asso-
ciated with the post-16 mathematics intentions of year 8 students: ‘mathematics 
self-concept’, ‘emotional response to mathematics lessons’, ‘advice-pressure to 
study mathematics post-16   ’, the ‘intrinsic value’ students accord to mathematics 
and ‘extrinsic material gain motivation’. The largest effect size (ES) out of all of the 
measures we tested within our models (and whilst controlling for the infl uence of 
other measures) was for ‘extrinsic material gain motivation’ (ES = 1.002), followed 
by ‘advice-pressure to study mathematics’ (ES = .925), ‘mathematics self-concept’ 
(ES = .564), ‘intrinsic value of mathematics’ (ES = .444) and positive ‘emotional 
response to mathematics lessons’ (ES = .303). As expected, boys were more likely 
to express intentions to participate in mathematics than girls, though at year 8, once 
we controlled for other survey responses, the infl uence of gender lost signifi cance. 
However, we decided to retain gender in the fi nal model (Table  2 ) to help illuminate 
issues around gender with further analysis (as discussed below).  
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   Other Considerations 

 Our modelling explored the infl uence of a range of predictors and it was apparent 
that the non-inclusion of ‘extrinsic material gain motivation’ would have led to a 
conclusion that ‘other factors’ were important in explaining intended participation. 
Our initial modelling found that students’ perceptions of their ‘home support for 
achievement in mathematics’ was a better predictor than the construct ‘home support 
for achievement in general’, the latter being a measure of support from the family for 
all types of learning, which lost signifi cance once mathematics-specifi c measures 
were introduced. In addition, general measures of students’ motivation for learning 
(our constructs ‘general motivations’ and ‘aspirations towards learning’) or person-
ality-based measures of general motivation in life, such as ‘competitiveness’, were 
not signifi cant predictors of intended participation in post-16 mathematics once we 
used mathematics-specifi c measure of motivation in our model. We found ‘extrinsic 
material gain motivation’ to be more precisely related to intention to study mathe-
matics post-16 than any of our other measures of motivation in education (or life in 
general, as in the competitiveness measure). Without having mathematics- specifi c 
measures, we would not have been able to come to such conclusions and could eas-
ily have suggested that support for learning from the home and students’ own moti-
vation towards learning were not important in intended mathematics choice.  

   The Importance of Looking Beyond What the Immediate Findings Suggest 

 It is also worth emphasising the importance of the order in which variables are 
introduced in the steps of multi-level modelling (MLM). The results from the 
construct- based MLM analysis indicated that ‘perception of mathematics lessons’ 
and ‘perception of mathematics teachers’ lost statistically signifi cant association 
with year 8 students’ intentions to continue with mathematics post-16 once the con-
structs ‘extrinsic material gain motivation’ and ‘advice-pressure to study mathemat-
ics’ were introduced. 

 Does this mean that in school there should be less of a focus on the teacher–stu-
dent relationship and on how students perceive their mathematics lessons and more 
of an emphasis on creating an awareness about the material gain of a post-16 math-
ematics qualifi cation? We do not think that this would be an appropriate conclusion. 
For one thing, at least part of the infl uence of mathematics teachers and lessons may 
be absorbed by such constructs as ‘self-concept’ and ‘extrinsic material gain moti-
vation’. It is rare for any attitude to exist in isolation from another. Although the 
constructs that measure the infl uence of teachers and lessons were not as strong/
effective predictors of intended mathematics participation as other measures in our 
fi nal construct-based multi-level analysis, we wondered whether there might be 
individual items within these constructs that have a strong effect on intended partici-
pation in mathematics. We reasoned there was a possibility that the importance of 
specifi c items might have been lost, once these were combined with other items 
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within an overall construct. Such thinking was further infl uenced by the fact we did 
fi nd within our qualitative work, as discussed below, that perceptions of mathemat-
ics teachers and mathematics lessons were very important in the decision making of 
some students. This led us to go back to some of our original constructs and analyse 
at the item level to help bridge the fi ndings between the qualitative and quantitative 
work. In this next section we discuss some of the fi ndings from the qualitative work 
which helped us to re-think how we ought to approach our survey analysis and the 
conclusions we were drawing before we return to deconstructing our constructs via 
an item-level analysis.   

    The Emergence of the Importance of Teachers via 
Qualitative Work 

 The qualitative element of this chapter focuses on interviews with 15 year olds (year 
10 students). Although this section supports some of the key quantitative fi ndings 
reported in Table  2  it also brings new insights, namely the importance of teachers in 
student choice. There is now a considerable body of evidence to suggest that the 
quality of teaching is a major determinant of student engagement and feelings of 
success in all school subjects. However, subject choices are not made solely on the 
quality of teaching. A substantial amount of research on subject choice has estab-
lished that students are more likely to study subjects that they see as interesting and 
useful and ones in which they expect to do well in (Eccles,  1994 ; Mujtaba & Reiss, 
 2013a ,  2013b ), factors that may correlate with teaching quality but are not entirely 
contained within this. Students’ feelings of success at mathematics (mathematics 
self-concept) can also contribute to their perceptions of mathematics and to intended 
subject choice. 

 Our qualitative work indicated that for some students a close, supportive relation-
ship with mathematics teachers was important in future mathematics intention. The 
extracts below support the quantitative work by drawing out the role of self- concept, 
extrinsic material gain motivation and the intrinsic value of mathematics whilst also 
indicating that teachers’ encouragement to some extent may have underpinned 
mathematics self-concept and students’ intended choices. The analysis of three stu-
dent interviews exemplifi es the importance of teachers in students’ decision- making 
processes; the students were specifi cally chosen from the larger pool of interviewees 
to portray three very different ways that teachers can have an infl uence on students’ 
feelings about mathematics. In the fi rst case, the teacher serves a role in connecting 
the student with mathematics; the student had a very weak relationship with math-
ematics prior to this teacher’s long-term support and this encouragement eventually 
led to a choice to take an academic course in post-16 mathematics (A-Level math-
ematics). In the second case, the student already had a strong attachment to and 
self-concept in mathematics with an intention to continue with mathematics post-
16; the teacher served simply to encourage and reinforce the student’s mathematics 
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choice. In the fi nal example, the student had an attachment with mathematics which 
developed from the home; the teacher and class environment unfortunately served 
to break that mathematics attachment. All three students are female and were inter-
viewed approximately at the same time. 

   Alice in Yellow-Wood School 

 Alice attended a semi-rural low socioeconomic status school. Her parents were both 
employed, her mother as an accountant and father as a landscaper/builder. Alice was 
one of two non-identical twin girls and said she had learning diffi culties and low 
expectations until she reached secondary school:

  I have always struggled in previous years because I had a learning diffi culty when I was 
younger. I couldn’t read properly and I was always really slow at processing things in my 
mind and when I was a child my parents were told that I would never be able to learn. 

   Prior to year 9 Alice was not particularly fond of mathematics and struggled with 
it. However, her twin sister stated that mathematics was one of her easiest subjects 
and she intended to continue with it. In year 10, Alice’s relationship with mathemat-
ics became linked to her relationship with her mathematics teacher (Mrs. S) who 
was also the Head of Mathematics at Alice’s school. In a separate interview we 
undertook with Mrs. S, she acknowledged the importance of student performance in 
mathematics, more so than in other subjects. She also stated that though she felt she 
and her colleagues were under pressure to maximise student attainment in mathe-
matics, the department strove to develop a culture where having rounded students 
who learnt to value mathematics as an end in itself, rather than simply increasing 
attainment, was seen as the objective. Perhaps this explains why a number of stu-
dents within this school, a higher proportion than in other schools, said that they 
enjoyed mathematics and wanted to work hard at it, without necessarily intending 
to continue with it post-16. 

 Prior to year 10 Alice was a student of below-average attainment in mathematics 
who had not intended to continue with the subject. By the time of her year 10 inter-
view she was considering doing mathematics post-16, which coincided, thanks to 
Mrs. S, with an increased confi dence in her mathematical ability. The extracts below 
were chosen because they signify the importance of Mrs. S to Alice and mathemat-
ics, and how such encouragement translated into an increased self-concept and a 
more positive relationship Alice had with mathematics:

  Because having Miss S I’ve actually developed a load of skills in maths. I know a lot more 
than I thought I would know before and my grades have actually increased than what they 
were before. I went from down from a C grade to … [meaning an increase from a C grade 
to a B grade] and I’ve found it fun as well because my teacher isn’t boring and I’ve managed 
to get on with the homework and I am pushing myself in maths because I come to see Miss 
S if I’m struggling and that … It’s really organised and so you’re never sort of stuck with 
what you’re doing and she really goes through it really clearly so it’s sort of a step-by-step 
guide but not in a patronising way. Like, if you get stuck she will defi nitely come and help 
you—she doesn’t ignore you—she comes straight over. It’s just a lot she does really, it’s 
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really helpful. Previous teachers I had are quite good, but I’ve never really got on with the 
style that they worked with. Like, they have taught it well but I’ve never felt confi dent 
enough to go and see them if I was stuck on something. Whereas with Miss S you have that 
confi dence to say ‘I don’t get this, can I have the help, please’. 

   In many ways Alice’s interview demonstrated how she felt she had found some-
one who believed in her educational capabilities. Alice held onto that attachment to 
support her through her schooling:

  I feel I am doing and achieving the most when it comes to maths … it wasn’t the case 
before. But after these 2 years with Miss S I have improved. 

   The extract below indicates how her teacher’s encouragement helped her over-
come what had appeared to be an on-going problem with an aspect of mathematics 
(percentages); overcoming this problem clearly had a role in increasing her mathe-
matics self-concept. Alice was asked what her most memorable mathematics 
lesson was:

  I’ve never grasped doing percentages—no matter how hard I tried—but Miss S just 
explained it in the way she does and I fi nally got it and I think that’s just been probably the 
best time at maths because when you fi nally know something, after not knowing it for so 
long, it is so much better isn’t it? And it just made me feel really good. 

   Nearly all other interviewees either gave a bland answer to the same question 
(‘What is your most memorable mathematics lesson?’) such as ‘There’s nothing I 
fi nd particularly memorable for maths lessons’ (a male student from her school) or 
talking about something unrelated to mathematics or a lesson which was different 
from the normal mathematics lessons such as ‘In year 8 we went into the Tom Smith 
Hall and played all different maths games and Splat and everything like that’. 

 Given the encouragement Alice received, she chose to study mathematics at year 
12, though she subsequently dropped the subject after fi nding the lessons diffi cult. 
In her interview what came across was her intrinsic liking of mathematics and how 
that relationship with mathematics developed through a teacher. There was no evi-
dence from her interview that she was intending to choose mathematics because of 
the extrinsic material gain of the subject.  

   Sandy in Yellow-Wood School 

 Sandy was in the same school as Alice. Her mother was an administrator and her 
father a surveyor; both graduates. Sandy was also taught by Mrs. S, and also chose 
mathematics at year 12. Although the extracts below lend some support to the quan-
titative fi ndings in Table  2 , they also highlight how important individual relation-
ships with teachers and perceptions of teachers are in subject choice. 

 In her year 10 interview, Sandy talked about the importance of her mathematics 
teacher’s encouragement in her intention to continue with mathematics: ‘We had 
parents evening and my maths teacher said I could be perfectly capable studying 
maths, that I’ll be a good student, I was encouraged by that’. However, it was also 
evident that she was aware of the material gain of having a post-16 qualifi cation in 
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mathematics, a sentiment expressed by the great majority of students who contin-
ued with mathematics at year 12: ‘Maths and physics are quite hard to take, but I 
just want the best available options, keep the door open for later in life.’ Although 
Sandy did not especially express how important encouragement from her mathe-
matics teacher was, she did indicate how important it was to ‘like’ and ‘be liked’ by 
teachers when deciding what subjects to continue with. When discussing infl uences, 
she noted that hers included:

  Probably relationships with the teachers and how the school works because like if there’s a 
subject that you’ve been put off from the lower years you’re not going to want to continue 
with it … because sort of year 7 and 8 I was really good at art and I took it in year 9 but the 
teachers were just awful teachers, I didn’t like them at all they didn’t like me and so then I 
didn’t bother because there was no way that we were going to get on with at GCSE [the 
examinations sat by the great majority of school students in England at age 16 in year 11]. 

   This issue of personal relationships and their importance to choice is an issue we 
examined when we decided to explore whether certain individual items within the 
‘perceptions of teachers’ construct were more important in explaining future math-
ematics aspirations and gender differences in perceptions (Table  3 ). Supporting the 
key fi ndings of the quantitative multi-level analysis (see Table  1 ), Sandy was also 
very aware of the material gain of having a mathematics qualifi cation and indicated 
that she was probably going to continue with mathematics after compulsory educa-
tion (as she indeed did):

   Because I like maths and I like physics and I believe they will give me the great-
est gateway for work after I go to university and I’m just generally interested in 
them … I suppose because I’ve always been quite good at it [mathematics] and 
again it’s logical as well apart from when I thought I don’t like it anymore there 
were some proofs that weren’t very good but now I just generally enjoy it. 

      Elira in Cherry Blossom School 

 Just as teachers were important in encouraging students to continue with mathemat-
ics or build their self-concept and relationship with mathematics, teachers could 
also damage the relationship students had with mathematics. A prime example of 
this was Elira who attended a high-attaining Church of England school that had a 
high proportion of minority ethnic students. She was a second generation Muslim 
from Kosovo 1  who came to England at the age of three with refugee status. 
In Kosovo her mother was a doctor although it took quite a few years until she man-
aged to do further training and fi nd work as a gynaecologist in England. Her father 
graduated in physics or geology (Elira could not recall), though the only jobs open 
to him in England entailed unskilled work. By the time of Elira’s interview he had 
managed to create a business in buying and renting out homes in Albania and 
Bulgaria as well as owning restaurants in England. Her parents worked very hard to 

1   Her background is raised because she has raised it, which was distinct from other interviewees 
who largely did not indicate their cultural or religious heritage. 
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ensure that the family were able to rebuild their lives in England and instilled the 
same emphasis on hard work within Elira. Her mother was the deciding force behind 
Elira’s year 9 subject choices and the pervasiveness of that infl uence is apparent 
when she talked about her future subject choices:

  And it’s kind of—I want to have something in common with her, in a way … she thinks I’m 
her in a way, she thinks I’m more academic … my mum wants me to do sciences like phys-
ics, chemistry, coz she’s a doctor … so that is quite a big infl uence in my life and she kind 
of encourages me … but, at the same time, I personally like and enjoy my subjects like 
maths, physics, chemistry, biology, I enjoy them. 

   Her interview suggested that her relationship with most subjects was through 
relative performance. However, her interview also suggested that she was consider-
ing mathematics because of its material gain:

  And I was thinking of taking maths because it’s like a really important subject most jobs 
look for that … You need maths. It’s like there and it looks good on your CV if you got an 
A or something. 

   Furthermore, choice in mathematics was also tied in with Elira’s mathematics 
self-concept (not dissimilar to other students) and also her parents’ expectations:

  My personal achievement will be to get an A or an A*. If I get a B I would probably be upset 
but I will still continue it. I don’t think I’ll continue if I got a C, I would just think I was kind 
of not good at it … my parents don’t accept anything under an A; they’ll be like “What are 
you doing?”. And so they’re strict on education … they’re like “You get anything under-
neath an A you know you’re not gonna go out ….” 

   Elira’s ‘mathematics identity’ stemmed from her earlier life experiences when 
her parents tested her mathematics knowledge to help strengthen her mathematics 
competencies. Her interview also indicated that such testing left her feeling quite 
anxious about mathematics as a child and she recalled thinking ‘Oh God, don’t 
make me get it wrong’. Nevertheless, as a 15-year-old she was able to identify posi-
tively with mathematics. However, in year 10 Elira’s relationship with mathematics 
began to crumble. In the following extract she contrasts her mathematics lesson and 
teacher with that of physics:

  I like my teacher as well [in reference to physics], he’s quite—it makes it interesting—and 
then the class actually reacts well to the lesson, and in maths, for example, our class is usually 
noisy, no-one concentrating, it’s kind of hard to control them even though we’re supposed to 
be one of the top sets—second top—it’s still kind of—it kind of distracts the whole class. 

   Although Elira stated ‘I think I’m quite good at maths’, she also notes that:

  I was kind of not concentrating at all and everything; just talking and kind of being noisy 
… my mocks I got a D. It’s kind of hard to fi nd it fun in our class coz our class is really 
bad—even our Head of Year had to come and shout at us coz the grades we were getting 
weren’t acceptable for the standard we’re all supposed to be working on, and our ability. 
And it’s like no one cares about it and it kind of infl uences everybody else. 

 Interviewer: Why do you think nobody cares about it? 
 Elira: Because no one does the work—Sir tries to explain, everybody’s talking, no-one 

listens, it’s kind of hectic in the room. We’re always noisy. Even in exams we talk. And it’s 
kind of hard to control the class. Some people in the class are kind of rude to Mr. W as well. 
And they go ‘Oh, Sir, you’re being unfair, we don’t know this, we don’t know this’ but if 
they listened then obviously they would. 
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   In a later interview in year 11, Elira gave a detailed account of how in year 10 she 
felt the maths lessons were so awful that she was unable to learn anything. Disruptive 
students continued to make the working life of the teacher diffi cult and, according 
to Elira, the entire class got left behind in mathematics since the norm became dis-
cussing anything other than mathematics. Her anxiety with mathematics became 
more pronounced as she was encouraged by her parents to be good at it and to con-
tinue with it. However, as she felt she did not do well at GCSE she did not continue 
with mathematics at A-Level.   

    Deconstructing What Our Original Constructs Actually 
Measured: Perceptions of Mathematics Teachers, 
Mathematics and Mathematics Lessons 

   Students’ Perceptions of Their Mathematics Teachers 

 The MLM analysis (Table  2 ) indicated that the ‘perceptions of teachers’ construct 
did not have an independent statistically signifi cant infl uence in explaining year 8 
students’ intentions to continue with mathematics post-16 after controlling for a 
range of other student level factors. Such fi ndings are inconsistent with our qualita-
tive research where encouragement and support from teachers were important in 
enhancing or severing students’ relationship with mathematics. To see if fi ndings 
from the two separate strands of our project could be aligned, we decided quantita-
tively to deconstruct what we meant by ‘perception of teachers’ and therefore con-
ducted a series of item-level analyses. 

 Our perception of teachers construct explored two key dimensions: encourage-
ment in learning and personal relationships. Students (as a group) reported positive 
perceptions of their teachers as indicated by their scores on the individual items; the 
mean for the actual construct ‘perceptions of teachers’ was also fairly high (4.62). 
Preliminary work suggested that particular items within constructs might be of espe-
cial signifi cance. We decided to include an item which was a part of our original 
‘advice-pressure to study mathematics’ construct, namely ‘my teacher thinks that I 
should continue with maths post-16’, on the grounds that teacher advice seems likely 
to be of importance, and analyse this item along with the remaining items that created 
the construct ‘perception of teachers’. The means in Table  3  indicate that students 
were most positive about their teachers setting them homework (mean of 5.40); this 
was followed by their teachers really wanting them to understand maths (5.29) and 
teachers believing that all students can learn maths (mean of 5.27). These fi ndings 
somewhat mirror results we found with year 10 physics students (see Mujtaba & 
Reiss,  2013b ); two of these items were the top two most positive responses: teachers 
really wanting them to understand physics (mean of 4.93), teachers believing that all 
students can learn physics (mean of 4.90). Year 8 students were least positive about 
their mathematics teachers being interested in them as people (mean of 3.60) and lik-
ing all students (mean of 4.12); these fi ndings also mirror those we found with physics 
(see Mujtaba & Reiss,  2013b ) where we found means 3.33 and 3.80, respectively. 
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 Table  3  also shows how boys and girls responded to each item and whether gen-
der differences were statistically signifi cant. In total, eight of the 15 items showed 
statistically signifi cant differences between the responses of boys and girls, as well 
as some of the items having stronger associations with intended participation than 
others. However, the overall construct ‘perceptions of teachers’ indicated that there 
was no statistically signifi cant difference between girls and boys. This is rather wor-
rying given that we used the ‘perceptions of teachers’ construct to explore associa-
tions with year 8 students’ intended post-16 participation in mathematics and could 
have concluded that this construct was not important in explaining intended partici-
pation or gender differences in participation. There is a possibility that there are 
particular items within this overall construct that are individually better able to 
explain intended participation and that their effect(s) are masked by being immersed 
in an overall construct. 

 If we continued simply to use this construct to explore gender differences in 
students’ perceptions of their mathematics teachers without looking at individual- 
level items our fi ndings would have also missed issues that can help explain gender 
differences in perceptions of mathematics teachers. Of the eight statistically signifi -
cant items, the largest effect size in gender differences was for ‘my teacher is good 
at explaining maths’ (ES = .129); the remaining effect sizes were between .121 and 
.060. We found within the physics analysis that the item ‘my teacher thinks that I 
should continue with physics post-16’ had the strongest effect size in explaining 
gender differences at year 10 (ES = .337), although the effect size was almost three 
times as strong as that found for mathematics (ES = .117). 

 On average, boys responded more positively than girls about their mathematics 
teachers. Boys felt to a greater extent than girls that their mathematics teachers: 
encouraged them to continue with maths post-16 ( t  = 2.998,  p  < .001); had high 
expectations of what students can learn ( t  = 4.132,  p  < .01); wanted students to really 
understand maths ( t  = 3.239,  p  < .01); were good at explaining maths ( t  = 4.559, 
 p  < .001) and believed all students could learn maths ( t  = 2.434,  p  < .05). The only 
item for which girls were more positive than boys was ‘my maths teacher doesn’t 
only care about students who get good marks’ ( t  = 3.043,  p  < .01). 

 When we looked at personal relationships with mathematics teachers, girls were 
more likely to report that they liked their maths teacher ( t  = 2.441,  p  < .05) and that 
their teacher seemed to like all students ( t  = 2.027,  p  < .05).  

   Intention to Participate and Perceptions of Teachers 

 A correlation analysis between the items that explored year 8 students’ perceptions 
of their teachers and their intentions to participate in mathematics post-16 further 
revealed important fi ndings about items that were originally clustered together 
within an overall construct (see Table  3 ). The original construct ‘perceptions of 
teachers’ was only weakly correlated with intended participation (.277). The cor-
relations in Table  3  demonstrate that students’ perceptions of their teachers person-
ally encouraging them to continue with mathematics post-16 (which, as noted 
above, was originally analysed as part of the ‘advice-pressure to study mathematics’ 
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 construct) is the most strongly associated item with intended participation—more 
so than items that measure students’ perceptions around encouragement in doing 
mathematics homework. The four strongest correlations between students’ percep-
tions of their teachers and their intention to continue with mathematics post-16 were 
‘my teacher thinks I should continue to study maths after the age of sixteen’ (.425); 
‘my maths teacher is good at explaining maths’ (.227); ‘I like my maths teacher’ 
(.226) and ‘my maths teacher is interested in me as a person’ (.225). This fi nding 
refl ects what we found with physics. The correlation between year 10 intended par-
ticipation and ‘my teacher thinks I should continue to study physics after the age of 
sixteen’ was .493 and this correlation was also set apart from the rest of the items 
that explored perceptions of physics teachers (see Mujtaba & Reiss,  2013b ). The 
fi ndings within the year 8 mathematics survey item-based analysis demonstrate that 
there are a handful of important issues about teachers which are very important in 
their associations with intended participation and explaining gender differences in 
participation, that such fi ndings are not apparent when using an overall construct 
and that there are similarities in fi ndings with the item-based physics analysis.  

   Students’ Perceptions and Emotional Response to Their Mathematics Lessons 

 The means for the original constructs ‘perceptions of lessons’ and ‘emotional 
response to lessons’ used in the MLM analysis were positive: 4.11 and 4.00, respec-
tively. The MLM analysis indicated that ‘perceptions of lessons’ despite initially 
having a signifi cant association, lost statistical infl uence in explaining year 8 stu-
dents’ intended participation after controlling for a range of other constructs. In our 
analysis of individual items (see Table  4 ) we found that the items in these two con-
structs collectively explored relevance of mathematical concepts, intrinsic value of 
mathematics lessons, self-concept in mathematics as impacted by mathematics les-
sons, and emotional response to lessons.
   The overall means in Table  4  demonstrate that collectively the students responded 
positively to items asking them about their mathematics lessons, but with some areas 
of concern. Collectively, boys and girls were most positive about ‘when I am doing 
maths, I don’t get upset’ (5.18); ‘when I am doing maths, I am learning new skills’ 
(4.73) and seeing the relevance of maths lessons (4.55). They were least positive 
about looking forward to maths classes (3.41)—a fi nding which mirrors that for 
physics in our work reported elsewhere—and not being bored in maths lessons (3.41). 

 For the large majority of items in Table  4  there were statistically signifi cant dif-
ferences in responses between boys and girls, with boys responding more positively 
to questions around mathematics lessons. The effect sizes for gender differences in 
student perceptions of mathematics lessons were generally larger than those for 
perceptions of mathematics teachers (Table  2 ). Again, similar to the fi ndings in 
physics, we found that the largest statistically signifi cant gender difference was in 
response to the item, ‘thinking about your maths lessons, how do you feel you com-
pare with the others in your group?’ (ES = .321), followed by ‘I do well in maths 
tests’ (ES = .318). These were followed by ‘when I am doing maths, I always know 
what I am doing’ (ES = .238), ‘when I am doing maths, I do not get upset’ (ES = .196) 
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and ‘in my maths lessons, my teacher explains how a maths idea can be applied to 
a number of different situations’ (ES = .170). 

 Amongst the perceptions of teacher items, the item ‘my teacher is good at 
explaining maths’ had a larger effect size in explaining gender differences than the 
majority of other items (ES = .129). Taking this fi nding with the effect size of ‘my 
teacher explains how a maths idea can be applied to a number of different situa-
tions’ (ES = .165) demonstrates how important it is for teachers to explain mathe-
matics in a way that engages girls and aids their learning and understanding of 
mathematics. In order to emphasise our point we refer to the very similar patterns 
with the physics analysis. Amongst the perceptions of teacher items, ‘my teacher is 
good at explaining physics’ (ES = .237) had an effect size in line with an item clus-
tered within lessons: ‘my teacher explains how a physics idea can be applied to a 
number of different situations’ (ES = .265) (see Mujtaba & Reiss,  2013b ). 

 Boys were more likely to report that their teacher explained how maths ideas can 
be applied to a number of different situations ( t  = 5.784,  p  < .001); they saw the rel-
evance of maths lessons ( t  = 2.443,  p  < .05) and they found it easy to apply most 
maths concepts to everyday problems ( t  = 1.991,  p  < .05). These items were a part of 
the ‘perceptions of lessons’ construct. 

 Boys were also more positive about looking forward to their maths classes 
( t  = 3.463,  p  < .001) and enjoying their maths lessons ( t  = 3.996,  p  < .001); and gave 
more favourable answers about doing well in their maths tests ( t  = 11.439,  p  < .001); 
and doing better in their maths lessons than their peers ( t  = 11.225,  p  < .001). 

 Finally, boys were more positive about ‘when I am doing maths, I always know 
what I am doing’ ( t  = 8.520,  p  < .001); I am learning new skills ( t  = 3.883,  p  < .001); I 
am not bored ( t  = 2.803,  p  < .01); I don’t get upset ( t  = 7.075,  p  < .001) and I do not 
daydream ( t  = 5.557,  p  < .001).  

   Intention to Participate and Perceptions of Mathematics Lessons 

 The actual constructs ‘perceptions of lessons’ and ‘emotional response to lessons’ 
were moderately correlated with intended participation (.557 and .333, respectively, 
see Table  4 ). We would have expected the associations to be the other way around 
given that in the fi nal MLM model ‘emotional response to lessons’ had a statisti-
cally signifi cant independent infl uence in explaining intended post-16 mathematics 
participation. These associations alone suggest again that our original lessons con-
structs possibly needed further refi nement. Other than the associations with the 
original constructs, the three strongest item-level associations between intended 
post-16 participation and these cluster of mathematics lessons items were ‘I look 
forward to maths classes’ ( r  = .479); ‘I enjoy my maths lessons’ ( r  = .473) and ‘I can 
see the relevance of maths lessons’ ( r  = .440). It is interesting to note that these were 
the three strongest associations found with the year 10 physics analysis (Mujtaba & 
Reiss,  2013b ). The item that had the smallest association with intended participa-
tion was ‘I don’t fi nd it diffi cult to apply most maths concepts to everyday problems’ 
( r  = .082)—again mirroring our fi ndings with physics.  
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   Students’ Perceptions of Mathematics 

 Items explored fi ve areas concerning students’ perceptions of mathematics: useful-
ness of mathematics (a part of the extrinsic material gain and social gain motivation 
constructs); self-concept in mathematics; liking of mathematics; mathematics and 
social skills; and doing mathematics. Overall student means (see Table  1 ) indicate 
that students’ responses about mathematics were generally positive though there 
were some aspects of mathematics that they were not positive about or did not agree 
with. Students were most positive about or in agreement with ‘I think maths is a 
useful subject’ (mean 5.15) and least positive about ‘being good at maths makes you 
popular’ (mean 2.35)—this latter fi nding again mirrored that for physics. 

 Table  1  demonstrates that there were statistically signifi cant differences in 
responses between boys and girls for the great majority of items, with year 8 boys 
responding more positively to questions about their perceptions of mathematics. 
The fi ndings lend support to existing research that some (but certainly not all) girls 
typically feel disengaged from mathematics and this may be related to the way it is 
taught. This is possibly related to (some) girls not feeling there are a range of ways 
to learn mathematics. The largest signifi cant difference in responses between boys 
and girls was for the item ‘I am good at maths’ (ES = .404), followed by ‘I don’t 
need help in maths’ (ES = .310); both of these fi ndings mirror those found for phys-
ics with their respective effect sizes being .583 and .548 (Mujtaba & Reiss,  2013b ). 

 In addition, these are the largest effect sizes reported even when including items 
that explored perceptions of mathematics teachers and mathematics lessons (see 
Tables  3  and  4 ). The next four strongest effect sizes (ranging from .274 to .212) were 
still larger than the effect sizes found for any of the perception of teacher items: ‘I 
think maths will help me in the job I want to do in the future’ (ES = .227); ‘to be 
good at maths you need to be creative’ (ES = .274); ‘being good at maths makes you 
popular’ (ES = .215) and ‘maths is important in making new discoveries’ (ES = .212). 

 Boys were more positive that maths is a useful subject ( t  = 3.171,  p  < .001); is 
more likely to help them get into jobs they want to do in the future ( t  = 8.094, 
 p  < .001); teaches individuals to think logically ( t  = 5.034,  p  < .001); helps individu-
als to solve everyday problems ( t  = 2.416,  p  < .01); is important in making new dis-
coveries ( t  = 7.253,  p  < .001) and that people who are good at maths get well-paid 
jobs ( t  = 6.321,  p  < .001). 

 Boys were more likely to report that they are good at maths ( t  = 14.487,  p  < .001) 
and do not need help with maths ( t  = 11.006,  p  < .001). They were more positive 
about maths being an interesting subject ( t  = 5.897,  p  < .001); fi nding maths interest-
ing ( t  = 5.589,  p  < .001); everyone needing to know some maths ( t  = 3.248,  p  < .01); 
maths being a useful subject ( t  = 3.171,  p  < .001) and that it is interesting to fi nd out 
about the laws of maths that explain different phenomena ( t  = 5.071  p  < .001). 

 Boys were more likely to report that maths makes individuals popular ( t  = 7.132, 
 p  < .001) and improves social skills ( t  = 3.411,  p  < .01). Finally, boys were more 
likely to report that ‘to be good at maths individuals need to be creative’ ( t  = 9.336, 
 p  < .001); ‘to be good at maths you need to work hard’ ( t  = 6.553,  p  < .001) and ‘those 
who are good at maths are those who are clever’ ( t  = 5.840,  p  < .001).  
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   Correlations Between Perceptions of Mathematics and Intended 
Participation in Mathematics 

 A correlation analysis was conducted between the items that explored students’ 
perceptions of mathematics and their intention to participate in it post-16. Table  1  
demonstrates that for the sample as a whole the three strongest associations between 
intended participation and perceptions of mathematics were for the items: ‘I think 
maths will help me in the job I want to do in the future’ (a part of the ‘extrinsic mate-
rial gain motivation’ construct) (.506)—with the associated effect size for gender 
difference being .227; ‘I think maths is an interesting subject’ (.568)—with the 
associated effect size for gender difference being .166 and ‘I think maths is a useful 
subject’ (a part of the ‘extrinsic material gain motivation’ construct) (.515)—with 
the associated effect size for gender difference being .089. 

 In Mujtaba and Reiss ( 2013c ) we found that boys and girls who intended to 
continue with mathematics post-16 had similar levels of ‘extrinsic material gain 
motivation’, though they differed in other perceptions of their mathematics educa-
tion. The correlations between items measuring extrinsic material gain motivation 
and intended participation in mathematics are not surprising; despite two of the 
items from the ‘extrinsic material gain construct’ being the most strongly associ-
ated items with intended participation, the gender differences are not as strong as 
those found in other areas of students’ perceptions of their mathematics education. 
These fi ndings suggest that the differences between boys and girls are in their 
experiences of their mathematics education rather than girls not appreciating the 
value of mathematics as much as boys. Table  1  also shows the correlations and 
gender differences for the original constructs. As can be seen from some of the self-
concept items, some are more strongly associated with intended participation than 
others (for example ‘I am good at maths’ versus ‘I do not need help with maths’). 
We will discuss this further in the concluding section. The actual ‘self-concept’ 
construct was moderately correlated with intended mathematics participation 
(.444), along with some of the other original constructs: extrinsic social gain moti-
vation (.363), extrinsic material gain motivation (.572) and intrinsic value of math-
ematics (.516).   

    Multi-level Re-analysis to Explore the Importance 
of Students’ Perceptions on Intended Post-16 Mathematics 
Participation (Using Items from the Survey Rather 
than Constructs) 

 Finally, a further set of multi-level models were run in a series of stages which had 
particular conceptual relevance, this time driven by the analysis reported above 
which included fi ndings from the qualitative work. This fi nal set of analyses tested 
for items from the year 8 student survey and used survey data that the same students 
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fi lled out in year 10 (age 15). Table  5  shows the fi nal, best fi t model and highlights 
a number of key messages:

     1.    Our original construct ‘extrinsic material gain motivation’, found to be an impor-
tant construct associated with intended participation at year 8, continues to be 
important in explaining intended participation at year 10 (even whilst using an 
item-level analysis).   

    Table 5    Item-based analysis: estimates of fi xed effects on year 10 England students’ intentions to 
study mathematics post-16   

 Parameter  Estimate  Std error  df   t   Sig.  Effect size 

 Intercept  6.346  0.180  736.308  35.271  0.001 
 Gender  −0.162  0.082  683.859  −1.965  0.050  −0.154 
 ‘I think maths will help me in the job I want to do in the future’ (comparison group: Strongly agree) 

 (Strongly disagree)  −1.007  0.220  800.304  −4.570  0.001  −0.961 
 (Disagree)  −1.029  0.165  806.611  −6.220  0.001  −0.983 
 (Slightly disagree)  −0.650  0.178  806.738  −3.653  0.001  −0.621 
 (Slightly agree)  −0.655  0.125  806.730  −5.252  0.001  −0.625 
 (Agree)  −0.355  0.097  806.950  −3.641  0.001  −0.338 

 ‘My teacher thought that I should continue with maths after my GCSEs’ 
(comparison group: Strongly agree) 

 (Strongly disagree)  −0.874  0.261  806.536  −3.353  0.001  −0.835 
 (Disagree)  −0.340  0.216  806.647  −1.580  0.115  −0.325 
 (Slightly disagree)  −0.483  0.205  803.362  −2.353  0.019  −0.461 
 (Slightly agree)  −0.305  0.136  806.885  −2.250  0.025  −0.292 
 (Agree)  −0.109  0.108  805.839  −1.010  0.313  −0.104 

 ‘My friends thought that I should continue with maths after my GCSEs’ 
(comparison group: Strongly agree) 

 (Strongly disagree)  −0.714  0.212  805.560  −3.373  0.001  −0.682 
 (Disagree)  −0.910  0.195  806.288  −4.664  0.001  −0.869 
 (Slightly disagree)  −0.467  0.178  803.045  −2.630  0.009  −0.446 
 (Slightly agree)  −0.322  0.140  804.960  −2.300  0.022  −0.308 
 (Agree)  0.166  0.123  803.267  1.356  0.175  0.159 

 ‘I was advised by my family that maths would be a good subject to study after my GCSEs’ 
(comparison group: Strongly agree) 

 (Strongly disagree)  −1.337  0.228  800.843  −5.869  0.001  −1.276 
 (Disagree)  −1.126  0.213  806.288  −5.294  0.001  −1.075 
 (Slightly disagree)  −0.804  0.198  806.394  −4.066  0.001  −0.767 
 (Slightly agree)  −0.478  0.139  806.826  −3.435  0.001  −0.457 
 (Agree)  −0.287  0.100  805.704  −2.864  0.004  −0.274 

 ‘I look/looked forward to maths classes’ (comparison group: Strongly agree) 
 (Strongly disagree)  −0.093  0.185  802.169  −0.504  0.614  −0.089 
 (Disagree)  −0.404  0.173  806.842  −2.337  0.020  −0.386 
 (Slightly disagree)  −0.117  0.162  806.502  −0.721  0.471  −0.112 
 (Slightly agree)  −0.001  0.148  806.688  −0.008  0.993  −0.001 
 (Agree)  −0.103  0.146  804.504  −0.707  0.480  −0.098 

(continued)
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   2.    Students’ views of their lessons and teachers are also important in explaining 
intended participation. This was missed by our construct-level analysis.   

   3.    Gender becomes an important predictor for intended participation in year 10, 
whilst at year 8 for the same students the differences between boys and girls 
were not statistically signifi cant.   

   4.    Students’ perceptions and experiences in year 10 are more important in explain-
ing intended participation than in year 8.    

  The items that formed the original constructs which explored perceptions of 
mathematics (e.g. extrinsic material gain motivation and self-concept) were added 
towards the end of the model steps, primarily because it was predicted (given earlier 
multi-level fi ndings and the associations reported in Table  1 ) that items from such 
constructs would wipe away the signifi cant infl uence of teachers and lessons. We 
wanted to see what, if any, items were associated with year 10 students’ mathemat-
ics aspirations in both the preliminary and fi nal model. 

 Our original construct-based multi-level analysis indicated that underlying per-
sonality traits lost signifi cance once more fi ne-grained measures of mathematics- 
specifi c measures were introduced in the models. Given such fi ndings we did not 
include these (non-mathematics-specifi c) measures within this analysis. For the 
same reason, we omitted any non-mathematics-specifi c items that measured general 
attitudes/perceptions of learning, support and encouragement. 

Table 5 (continued)

 Parameter  Estimate  Std error  df   t   Sig.  Effect size 

 ‘When I am/was doing maths, I got upset’ (comparison group: Strongly disagree) 
 (Strongly agree)  −0.200  0.184  805.048  −1.089  0.276  −0.191 
 (Agree)  −0.450  0.203  806.505  −2.212  0.027  −0.429 
 (Slightly agree)  −0.135  0.162  804.089  −0.834  0.405  −0.129 
 (Slightly disagree)  0.052  0.154  801.152  0.336  0.737  0.050 
 (Disagree)  −0.051  0.092  806.745  −0.549  0.583  −0.048 

 ‘I am good at maths’ (comparison group: Strongly agree) 
 (Strongly disagree)  −0.001  0.262  805.774  −0.005  0.996  −0.001 
 (Disagree)  −0.634  0.242  802.824  −2.623  0.009  −0.605 
 (Slightly disagree)  −0.220  0.218  806.667  −1.013  0.311  −0.210 
 (Slightly agree)  −0.307  0.140  806.812  −2.186  0.029  −0.293 
 (Agree)  −0.256  0.116  804.896  −2.218  0.027  −0.245 

 ‘I need/needed help with maths’ (comparison group: Strongly disagree) 
 (Strongly agree)  −0.532  0.189  806.975  −2.812  0.005  −0.507 
 (Agree)  −0.431  0.160  806.852  −2.695  0.007  −0.411 
 (Slightly agree)  −0.346  0.146  803.227  −2.377  0.018  −0.330 
 (Slightly disagree)  −0.154  0.153  804.823  −1.002  0.317  −0.147 
 (Disagree)  −0.144  0.135  806.657  −1.070  0.285  −0.138 

  Random - effects parameters  
 Variance (Level 2)  0.028  0.018 
 Variance (Level 1)  1.097  0.056 
 Deviance (−2 × log 
restricted-likelihood) 

 2,560.182 
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 In this item-based multi-level analysis we tested students’ survey responses as year 
8 and as year 10 learners of mathematics as predictors of mathematics aspirations in 
year 10. We found that the students’ year 10 survey responses about their mathemat-
ics education and support they received were better predictors of year 10 aspirations 
than the earlier year 8 responses; therefore, in the fi nal model only the year 10 survey 
measures remain. The fi nal model in many ways supported, built on and shed further 
light on what we found earlier with the construct-based multi-level analysis when the 
students were in year 8. Table  4  shows that as year 8 learners of mathematics, the 
construct ‘advice-pressure to study mathematics’ (which was a summed score of a 
range of infl uences students received) was a strong predictor of year 8 students’ math-
ematics aspirations; some of the items which formed this construct also appear as 
important predictors of these students’ aspirations when they were in year 10 (Table  5 ). 

 With respect to the items which formed the ‘perception of teachers’ construct, 
prior to the inclusion of items from ‘self-concept’ or ‘extrinsic material gain motiva-
tion’, we found that the ‘my maths teacher is good at explaining maths’ and ‘my 
maths teacher is interested in me as a person’ both had signifi cant independent infl u-
ences. However, neither of these items were signifi cant predictors in the fi nal model 
once we controlled for the items that measured ‘advice-pressure to study mathemat-
ics’ and ‘extrinsic material gain motivation’. The item ‘my teacher thought that I 
should continue with maths after my GCSEs’ (which was originally a part of the 
‘advice-pressure to study mathematics’ construct) had a signifi cant independent 
infl uence in explaining year 10 students’ mathematics aspirations, which concurs 
with the fi ndings from the qualitative work. More generally, it is now clear that the 
infl uence of teachers is very important (also taking into account fi ndings from 
Table  3 ). Furthermore, our original construct of ‘perceptions of teachers’ was sub-
sequently found to be composed of a number of distinct sub-constructs. For exam-
ple, the associations between both students’ mathematics teacher being ‘interested 
in them as a person’ (.237) and students ‘liking their mathematics teacher’ (.238) 
with mathematics aspirations were much stronger than when compared to the items 
that tapped into homework (.057–.167). 

 Encouragement (most importantly by teachers and families) appears to be asso-
ciated with raised mathematics aspirations, as evidenced by both our construct- 
based and item-based analyses. These fi ndings have implications for policy and 
practice. In order to increase mathematics aspirations, teachers (given that schools 
generally have little infl uence on families) need not only to encourage students but 
to place an emphasis on the ‘extrinsic material gain’ of having a post-16 mathemat-
ics qualifi cation. In addition, the bivariate item-level analysis and the qualitative 
work revealed that personal relationships with teachers are important in encourag-
ing students’ future mathematics aspirations. Teachers could enhance students’ 
aspirations by actively creating more meaningful relationships with their students 
within their teaching (cf. Rodd, Reiss, & Mujtaba,  2014 ). 

 It was worth separating out and exploring the individual infl uence of each item 
that created the overall ‘advice-pressure to study mathematics’ construct. This was 
a construct developed and piloted (by ourselves) that proved to be of great value to 
the research. It was clear that the construct showed a large effect size in explaining 
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year 8 students’ intended participation (Table  2 ). We hope that this construct and the 
various items within it will prove useful for future studies, both qualitative and 
quantitative, in exploring mathematics aspirations and in enabling teachers and 
family members to boost post-compulsory mathematics participation. In the fi nal 
model of the item-based analysis there was an item which indicated that family 
infl uence to continue with mathematics post-16 was quite important, which was in 
line with the fi ndings within our qualitative work (e.g. Elira). Again, this effect was 
masked in the original analysis when all of the items formed one overall construct—
‘advice-pressure to study mathematics’. 

 Two of the items that were a part of the original mathematics self-concept con-
struct were found to have a strong independent infl uence on mathematics aspira-
tions: ‘I am good at maths’ and ‘I don’t need help with maths’. In fact, ‘I am good 
at maths’ had as strong a correlation with intended participation (.460) as the math-
ematics ‘self-concept’ construct (.455). Again, these fi ndings support the construct- 
based analysis which indicated the importance of self-concept. We fi nd it interesting 
that these two particular items were also uncovered as being important in a similar 
item-based multi-level modelling analysis when exploring factors that infl uence 
year 10 students’ physics aspirations (Mujtaba & Reiss,  2013b ).   

    Methodological Conclusions 

 Methodologically, this chapter reaches three principal conclusions. First, 
mathematics- specifi c measures are better predictors of intended participation in 
mathematics than more general measures. While hardly surprising, the use of 
mathematics- specifi c measures proved vital in helping this research discover more 
about the factors that shape future aspirations in mathematics. In particular, the 
mathematics-specifi c measure of extrinsic material gain motivation was more 
tightly related to future mathematics aspirations than any of the other measures used 
within our models that measure motivation. 

 Second, our work clearly demonstrates that research questions ought to guide 
and help conceptualise a measure whilst taking into account how students may 
respond differently to the various items within a construct. We conclude that, valu-
able as construct-based analyses are, researchers ought, at the very least, to comple-
ment such analyses by selected analysis at the level of items. 

 Third, while it is hardly unusual to combine quantitative and qualitative work 
within a single study, our work shows the benefi t of the two approaches when they 
truly interdigitate. In the analyses reported above we began with quantitative analy-
ses, then turned to qualitative work and then returned to a new set of quantitative 
analyses, drawing both on our fi rst sets of quantitative analyses and on our qualita-
tive work. The resulting conclusions are, we believe, more robust than had we relied 
on only quantitative or qualitative work—a conclusion reinforced by our observa-
tion that many of our fi nal mathematics-specifi c fi ndings are similar to those of our 
physics-specifi c investigation (Mujtaba & Reiss,  2013b ).     
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      Addressing Measurement Issues in Two 
Large- Scale Mathematics Classroom 
Observation Protocols 

             Jeffrey     C.     Shih     ,     Marsha     Ing    , and     James     E.     Tarr   

          The challenges as well as the need to engage in research that refl ects the reality of 
classroom teaching and learning are well documented (Confrey et al.,  2008 ). 
Documenting actual teaching practices requires reliable observational data of teach-
ers in their classrooms but such data are not easy to obtain for many reasons (Chval, 
Reys, Reys, Tarr, & Chávez,  2006 ; Hiebert & Grouws,  2007 ; Hill, Charalambous, 
& Kraft,  2012 ). First, external observers represent an intrusion into classrooms and 
can disrupt the regular classroom routine. Second, the measurement challenges of 
classroom data are also a concern (e.g., Ing & Webb,  2012 ). For example, identify-
ing and defi ning the features of classroom observations that are worth attending to 
and then properly training observers to focus on these particular behaviors are but a 
few of the challenges. Furthermore, observing teachers and coding information 
related to mathematics instruction are both time consuming and costly, thereby lim-
iting the type of measurement that can be done on a large scale. Trade-offs to captur-
ing what mathematics teachers actually do within their classrooms need to be 
considered (National Research Council,  2004 ). 

 Ideally, large-scale classroom observations generate data that accurately char-
acterizes the teaching and learning practices, but the process of collecting such 
data does not intrude upon teachers or require more observational time and 
resources than are necessary. Without accurate characterizations, inferences about 
mathematics education are unfounded. Thus, large-scale observational measures 
that identify variation in mathematical instructional quality across classrooms 
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have tremendous implications for large-scale studies of mathematics education. 
Generalizability theory is an approach to address these measurement issues in 
large-scale observational measures. This chapter fi rst describes two large-scale 
mathematics observational protocols, and presents fi ndings that address measure-
ment issues specifi c to each observational measure using generalizability theory. 
We conclude by raising additional technical and conceptual issues around large-
scale measures of mathematics classroom instruction. 

    Methods 

    Observational Protocols 

  Classroom Learning Environment  (CLE). The purpose of this protocol is to measure 
particular features of the CLE that are considered important across different types 
of textbook curricula. The protocol was initially designed as part of a larger study 
that examined student mathematical learning associated with secondary mathemat-
ics curriculum programs of two types: a subject-specifi c approach and an integrated 
content approach (Tarr et al.,  2008 ). In the CLE measure, there are ten items that 
collectively represent the classroom environment. These ten items cluster around 
three themes: Reasoning about Mathematics, Students’ Thinking in Instruction, and 
Focus on Sense-making. Using a rubric for each of the ten items, observers rendered 
ratings from 1 to 5, with a 1 indicating the absence of a feature, and a 5 indicating a 
strong presence of the feature during the observed lesson. The ten items load on a 
single factor, CLE. The average across the ten elements was created as a common 
measure across different curriculum types. 

 Project team members prepared for scoring by viewing videotapes of four math-
ematics lessons. To simulate an actual classroom visit, each video ran uninterrupted 
so that project team members could code in real time. When independent coding 
was completed, discussion commenced and focused on the consistency of coding. 
Discussion led to modest changes in the user’s guides to further enhance the reli-
ability of coding. There was a 70 % exact agreement in coding. When inconsisten-
cies were observed, rubrics in the user’s guides were read aloud and discussed to 
negotiate the optimal code for the given classroom element. Researchers’ initial 
codes differed by no more than plus/minus one from the negotiated code (on a 
5-point scale) in 94 % of all cases. After these training sessions, double coding of 
15 selected lessons during classroom visits during the data collection phase of the 
study were conducted. These lessons were selected based on the feasibility of the 
rater’s schedules. Exact agreement for this sample of lessons was 62 %, with more 
than 90 % of the codes differing by no more than 1 point on a 5-point scale. Raters 
discussed scoring with each other throughout the data collection phases. 

 The project team identifi ed one source of variation in the CLE observational 
protocol: lessons. The content of each lesson varies, which might infl uence what is 
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observed and how the CLE is characterized. The concern with this particular 
observational measure, then, is how many lessons need to be observed to obtain an 
acceptability level of reliability? 

  Mathematical Quality of Instruction  (MQI). The purpose of this protocol is to pro-
vide information on teachers’ enactment of mathematics instruction. The MQI 
instrument is based on a theory of instruction that focuses on resources and their use 
(Cohen, Raudenbush, & Ball,  2003 ), existing literature on effective instruction in 
mathematics (e.g., Borko et al.,  1992 ; Ma,  1999 ; Stigler & Hiebert,  1999 ), and on an 
analysis of nearly 250 videotapes of diverse teachers and teaching. The MQI is cur-
rently intended for use with videotaped lessons of classroom mathematics instruc-
tion (Hill, Kapitula, & Umland,  2011 ) and provides fi ne-grained information about 
instructional practice. It includes four major dimensions, of which three are dis-
cussed in this chapter. The fi rst dimension, richness of the mathematics (Richness), 
captures the depth of the mathematics offered to students, as refl ected by the links 
drawn between different representations, the explanations offered, the discussion of 
multiple solution approaches, the inductive generation of generalizations, and the 
richness in the mathematics language used to present the content. The second 
dimension, teacher errors and imprecision (Errors and Imprecision), captures 
teacher mathematical errors/oversights and linguistic/notational imprecision when 
presenting the content; it also pertains to the lack of clarity in teacher’s launching of 
tasks and presentation of the content. The third dimension, student participation in 
mathematical meaning-making and reasoning (SPMMR), as its name suggests, cap-
tures the extent to which students participate in and contribute to meaning-making 
and reasoning during instruction. This could be evident in provision of explanations, 
student posing of mathematically motivated questions, offering of mathematical 
claims and counterclaims, and engagement in cognitively demanding activities. 

 There are two sources of variation considered in the MQI observational protocol, 
raters and lessons. Raters refer to the people who are conducting the observations. 
It is assumed that raters have gone through training on the observational protocol 
and have achieved a particular level of profi ciency with scoring the observational 
protocol. Ten mathematics education graduate students and former teachers were 
recruited via emails to colleagues in mathematics education departments. Raters 
attended a 2-day intensive training on the instrument. At the end of training, raters 
took a certifi cation exam, in which they were asked to code 16 segments from vid-
eotaped lessons taught by four different teachers. Based on these results, one rater 
whose scores did not meet the certifi cation threshold was excluded from the analy-
sis presented below. 

 The second source of variation, lessons, refers to the number of lessons teachers 
are observed. Each time they are observed, they are teaching a different lesson. Each 
rater watched and scored 24 lessons (three lessons per each of eight teachers). 
Following the coding protocol, raters skimmed each lesson once. During the second 
watch each rater assigned scores for each MQI item for every 7.5-min segment of 
the lesson. The raters did so by using a 3-point scale (low, medium, high). The 24 
lessons were selected from videotapes of lessons from 24 middle-school mathematics 
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 teachers in one district. From these teachers, eight teachers with different levels of 
mathematical knowledge for teaching were sampled (see Hill, Kapitula, & Umland, 
 2011 , for more details on the larger study). From the six available videotaped lessons 
for each teacher, three lessons per teacher that were approximately equal in length 
were sampled (i.e., each of the sampled lessons contained between six and eight 
7.5-min segments). Because of the small sample employed, the results presented in 
this study are considered exploratory.  

    Analysis 

 Generalizability theory (Brennan,  2010 ; Shavelson & Webb,  1991 ) was used to 
investigate the dependability of the observational measures. Generalizability theory 
estimates the magnitude of multiple sources of error and provides a reliability (gen-
eralizability) coeffi cient for the proposed use of the observational measure. The 
advantage of using generalizability theory is the ability to interpret variance compo-
nents such as the effect due to differences from one occasion to another. 

 We used the information from each generalizability study to conduct a decision 
study to provide information about what would happen if different levels within 
each source of variation were modifi ed. For example, would the same conclusions 
about instructional practice be drawn if the teacher was observed on a single occa-
sion versus 20 occasions? Would the same conclusions about instructional practice 
be drawn if there were a single rater observing instruction versus 20 raters? Decision 
studies provide information about these different scenarios to guide future use of the 
observational protocol (Marcoulides,  1993 ,  1997 ; Marcoulides & Goldstein,  1990 ).   

    Results 

    Lessons (CLE) 

 To examine lessons as a source of error, three lessons taught by 68 teachers were 
coded by one project team member. Table  1  provides a summary of the generaliz-
ability analyses. Most of the variation is between teachers (64 %). Lessons are not 

   Table 1    Variance 
decomposition of CLE   

 Sources 
of variation 

 Estimated variance 
components 

 Percentage of 
total variance 

 Teacher (T)  0.63  64 
 Lessons (L)  0.00  0 
 Residual  0.35  36 
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a considerable source of variation, which suggests that the number of different les-
sons during which teachers are observed is not a measurement issue for this particu-
lar observational protocol. However, there is a large proportion of variance due to 
unexplained systematic and unsystematic sources (36 %) which suggests that there 
are other sources of error that should be investigated in future administrations.

   Due to the lack of variation due to lessons, increasing the number of lessons 
observed per teacher does not dramatically increase the generalizability coeffi cient 
(Fig.  1 ). With three lessons, there is an acceptable level of reliability (0.84). This 
protocol focuses on absolute decisions rather than relative decisions. In other words, 
this protocol is not concerned with how much higher one classroom is compared to 
another but is more concerned with whether classrooms meet a particular level.   

    Lessons and Raters (MQI) 

 To examine lessons and raters as sources of measurement error, we used 24 lessons 
taught by eight middle-grade teachers (three lessons each) that were coded by nine 
raters. The raters received an intensive 2-day training on MQI and passed a certifi -
cation test (for more on the coding and the rater certifi cation process, see Hill et al., 
 2012 ). The percent of variation for each source of error for each MQI dimension is 
presented in Table  2 .

   A decision study was conducted to determine the number of raters needed per 
lesson and the number of lessons required to achieve acceptable reliability estimates 
(Fig.  2 ). The generalizability coeffi cient for relative decisions was used, rather than 
the generalizability coeffi cient for absolute decisions on the grounds that districts 
often make relative rather than absolute decisions about teachers, such as rewarding 
the top 5 % of teachers with merit pay.  
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  Fig. 1    Absolute generalizability coeffi cient for different numbers of lessons for CLE       
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 As Fig.  2  shows, for all three MQI dimensions, observing more than three les-
sons yields diminishing returns in terms of the reliability coeffi cient; instead, add-
ing a second rater to each lesson increases the reliability coeffi cient markedly. 
Figure  2  also shows that the three-lesson/two-rater combination produces relative 
reliability coeffi cients higher than .70 for all three dimensions (Richness = .77, 
Errors and Imprecision = .71, SPMMR = .81). 

 There are differences when comparing lessons as a source of error for the MQI 
and CLE protocols. For example, lessons are a larger source of error for the MQI than 
for the CLE. This is due in part to the different purpose or intension of each protocol. 

  Fig. 2    Relative generalizability coeffi cient for different combinations of raters and lessons for MQI       

   Table 2    Percent of total 
variation for each source 
of variation of teachers’ 
performance in the three 
MQI dimensions   

 Source of variation  Richness 
 Errors and 
imprecision  SPMMR 

 Teachers (T)  42.52  31.88  32.78 
 Lessons:teachers (L:T)  10.52  8.81  7.22 
 Raters (R)  6.17  13.04  28.58 
 Teachers*raters (T*R)  7.83  6.45  0.00 
 Residual  32.97  39.82  31.43 
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For the MQI, the assumption is that differences between lessons can be measured. 
The CLE, on the other hand, does not assume this. Instead, the CLE is intended to 
measure more stable or global characteristics of instruction that do not change from 
lesson to lesson. The lack of variation due to lessons is something that is expected for 
the CLE but not for the MQI.   

    Discussion 

 The purpose of this chapter is to advocate for a closer examination of the measure-
ment qualities of the many available classroom observation tools. Although this 
chapter presents empirical results for only two mathematics observational proto-
cols, it raises questions about trade-offs between technical quality and practical con-
siderations and about the different purposes and intents of different observational 
measures. For example, Correnti and Martinez ( 2012 ) describe conceptual, method-
ological, and policy issues in large-scale measures of instruction. The authors iden-
tify six purposes of measures of instruction including “characterizing the nature and 
main feature of instructional practice for groups of teachers or schools” and “under-
standing and comparing instructional practices and classroom processes across 
localities, states and countries” (p. 52) that infl uence the particular conceptual, 
methodological, and policy issues for each measure of instruction. 

 The two observational protocols described in this chapter differ in terms of their 
assumptions about instruction. To measure instruction, the CLE focuses on class-
room learning environments that are considered important across different types of 
curriculum. The type of instruction that is being measured with the CLE is assumed 
to be relatively stable and not to vary from day to day. In contrast, the MQI does 
not focus on any particular type of curriculum but instead purports to measure 
teachers’ enactment of mathematics instruction. The MQI measures features of 
instruction that are not necessarily relatively stable from day to day and require 
attention to more dimensions of instruction. Thus, the assumptions about instruc-
tion differ for these measures, with the CLE measuring stable aspects and MQI 
measuring less stable aspects. 

 These protocols also differ in their purpose, which has implications for what 
sources of variation each protocol identifi es. The CLE, for example, does not 
include raters as a source of error because the raters involved in that study were 
intensively involved with the development of the observational measure and there 
was less concern about including a wider circle of raters to conduct the observa-
tions. The CLE was not intended for use across all classrooms in the USA but 
instead was used solely by the research team to measure curriculum implementation 
for schools participating in a larger study. The MQI, on the other hand, was designed 
for use in classrooms across the USA. Thus, there is a need to prepare raters with 
vastly different experiences to use the MQI. The MQI therefore includes raters as a 
source of variation because the raters are drawn from a much larger sample of raters 
and is not limited only to raters closely associated with the research team. 
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 With these two observational protocols serving different purposes and designed 
with different assumptions about teaching and learning, it follows that the develop-
ment and implementation of each observational tool also varies. This chapter is not 
meant to prescribe how all generalizability studies in mathematics education should 
be conducted. This chapter is also not meant to identify the best mathematics obser-
vational protocol. Rather this chapter is meant to raise issues in the mathematics 
education community that require attention when developing or implementing any 
sort of observational measure. We do not expect to see the same sources of variation 
being identifi ed and measured with each observational tool. Each observational 
tool represents choices and assumptions about which sources of variation are 
most important to capture. Given the increased attention to large-scale measures of 
mathematics instruction, this chapter provides a signifi cant starting point for a 
much- needed discussion among mathematics education researchers.     
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      Engineering [for] Effectiveness 
in Mathematics Education: Intervention 
at the Instructional Core in an Era 
of Common Core Standards 

                Jere     Confrey      and     Alan     Maloney   

            The Process of “Engineering [for] Effectiveness” 

 Improving schools has often been cast as a challenge of identifying effective 
programs, as captured by the general call for “What Works?” (  www.whatworks.
ed.gov    ). Many researchers, skeptical of this call, argue that the real question should 
not be “whether an intervention works,” but instead, “what works, when, for whom, 
and under what circumstances” (Bryk, Gomez, & Grunow,  2011 , p. 151). A shift to 
focus on specifi c outcomes that accrue under precise conditions and with specifi ed 
resources rests on the assumption that educational outcomes result from (and often 
require) adaptations to circumstances; therefore to seek simple broad scientifi c prin-
ciples or rules that apply across the board to a curriculum is of limited value. For 
example, Bryk, Gomez, and Grunow noted, “Treatises on modern causal inference 
place primacy on the word ‘cause’ while largely ignoring concerns about the appli-
cability of fi ndings to varied people, places and circumstances. In contrast,  improve-
ment research  must take this on as a central concern if its goal is useable knowledge 
to inform broad scale change” (Bryk et al.,  2011 , p. 150; italics added). 

 Shifting the question to “what works, when, for whom, and under what condi-
tions?” has profound implications for the meaning of effectiveness as a dependent 
variable. In establishing causal models, one determines, within the restrictions of 
a particular study’s conditions, if an effect, controlling for other factors, can be 

 Based on a paper originally presented to the National Academies Board on Science Education and 
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Programs for K-12 STEM Education: A Workshop” 
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 rigorously linked to an antecedent condition. Instead of the causal structure of the 
phenomenon of interest, this focuses the study on its internal validity—hence 
“cause” and “effect.” While studies typically can and do produce small but statisti-
cally  signifi cant effects, they often have nested within them more interesting con-
jectures about interactions and relationships among causes, effects, and co-relational 
phenomena. Those who demand causal design are often silent on the necessity of 
replication, which, strictly speaking, is required to realize the benefi ts of random-
ization; one study alone does not ensure generalizability. 1  Furthermore, in pursuit 
of causal models, researchers often rely on average effects, but doing so strips 
away more robust and potentially relevant differences that may apply to subsets 
of the whole. 

 Attempt to identify simple causal chains, and focus on strict control of study 
conditions, can lead those who attempt to implement research results astray. Too 
many policy makers and practitioners assume that an established treatment, as 
“cause,” can be simply or directly applied to a practice and guarantee an effect. 
Perhaps some lack awareness that a study’s internal validity does not assure its 
external validity. Consequently, most studies leave the practitioners themselves 
responsible to evaluate whether that study generalizes to their own settings. How 
they are supposed to do this responsibly is seldom addressed. 

 Regarding randomized fi eld trials as the sole source—or the trump card—of 
assertions of a program’s “effectiveness” poses a major dilemma. They are typically 
very costly, diffi cult, and time-consuming to conduct, leaving the public continually 
awaiting a suffi cient set of scientifi cally “proven” empirical results. Randomized 
fi eld trials seldom provide timely information in a quickly evolving context (espe-
cially for technology-enhanced programs)—by the time the results are available, the 
program typically is either outdated or has been signifi cantly revised. 

 In contrast, in this chapter we argue that by developing and deploying explicit 
means of  engineering  [ for ]  effectiveness , communities of practitioners and research-
ers can conduct ongoing local experiments at scale, which incorporate adequate 
design, as well as technologically enabled tools for real-time data collection and 
continuous analysis of patterns and trends. 

 Approaches similar to engineering [for] effectiveness have emerged under a vari-
ety of names. The study of complex and dynamic systems (Maroulis et al.,  2010 ) 
has been addressed variously through continuous improvement models (Deming, 
 2000 ; Juran,  1962 ), implementation research (Confrey, Castro-Filho, & Wilhelm, 
 2000 ; Confrey & Makar,  2005 ), improvement research (Bryk et al.,  2011 ), a science 
of improvement (Berwick,  2008 ), and Design‐Educational Engineering and 
Development (DEED) (Bryk,  2009 ; Bryk & Gomez,  2008 ). When examined through 
the lenses of these various models, it becomes evident that the improvement of 

1   One can, of course, throw fi ve heads in a row in a toss of fi ve coins; only by replicating this 
experiment multiple times can one be certain that a generalized result of 50–50 emerges. Hence 
one experiment can never establish any form of cause and effect, a fact too frequently overlooked 
in discussions of the benefi ts of randomized fi eld trials. 
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 educational outcomes requires reexamination of approaches to just what is meant by 
“effectiveness.” The following four ideas can be used to frame that reexamination:

    1.     Education must be viewed as a complex system ,  with interlocking parts . Study of 
a complex system requires one to locate a focus of attention without losing sight 
of the broader context. One must also attend to a variety of scales of events and 
time (Lemke,  2000 ). For instance, while summative and periodic results (large 
scale, longer time frames) may be useful as broad but crude policy levers that 
help in identifying trends and sources of inequities, formative results (smaller 
grain size, shorter time frames) are crucial to drive classroom processes forward. 
Measurement issues will vary according to these varying levels and orders of 
magnitude of phenomena (Lemke,  2000 ; Maroulis et al.,  2010 ).   

   2.     Bands and pockets of variability should be expected ,  examined for causes and 
correlates ,  and used as sources of insight ,  rather than adjusted for ,  suppressed , 
 or controlled . Discerning how to characterize variability and its signifi cance is 
key to knowing how to characterize a particular case or instance. “Most fi eld tri-
als formally assume that there is some fi xed treatment effect (aka a standardized 
effect size) to be estimated. If pressed, investigators acknowledge that the esti-
mate is actually an average effect over some typically nonrandomly selected 
sample of participants and contexts. Given the well-documented experiences 
that most educational interventions can be shown to work in some places but not 
in others, we would argue that  a more realistic starting assumption is that inter-
ventions will have variable effects and these variable effects may have predict-
able causes ” (Bryk et al.,  2011 , p. 24). Stephen J. Gould ( 1996 ) made a similar 
argument in  Full House , discussing the diagnosis of his mesothelioma. He 
pointed out that, as a patient, broad survival rates were of less use to him than the 
smaller bands of variability that more specifi cally characterized his situation and 
provided more insight into his chances of survival. Similarly, analytic frames 
must therefore take into account patterns of antecedent and coincident condi-
tions that mark potential variation in outcomes   . “Effectiveness” is not unifac-
eted, but only understandable in the context of these causal networks.   

   3.     Causal or covarying cycles with feedback and interaction are critical elements of 
educational systems ,  in which learning is a fundamental process . Furthermore, 
feedback loops mediate social cues and their behavioral outcomes, so one expects 
emergent phenomena (Maroulis et al.,  2010 ). There is a contrast between construc-
tions of simple cause-and-effect on the one hand, and causal cycles on the other. In 
the case of simple cause-and-effect, one assumes that a curriculum is implemented, 
and produces knowledge growth among students. In the case of causal cycles, the 
implementer is already aware of the types of outcomes measured, based on prior 
feedback, and implements and adapts the curriculum simultaneously, thereby rais-
ing the question “to what extent did the curriculum cause the effects, and to what 
extent did the outcome measures (through anticipation or feedback) cause the 
 curriculum adaptation, and thence the effects (a causal cycle)?”   

   4.     Education should be treated as an organizational system that seeks ,  and is 
expected ,  to improve continuously . As such, it is comprised of actors who must 
coordinate their expertise, set ambitious goals, formulate tractable problems 
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(Rittell & Webber,  1984 ), negotiate shared targets and measures of success (Bryk 
et al.,  2011 ), make design decisions within constraints (Conklin,  2005 ; Penuel, 
Confrey, Maloney, & Rupp,  2014 ; Tatar,  2007 ), and develop and carry out proto-
cols for inquiry. In such a “networked improvement community” (Bryk et al., 
 2011 ), one can position the causal cycles under investigation as “frames of 
action.” Continuous improvement depends on iterations of collecting relevant, 
valid, and timely data, using them to make inferences and draw conclusions, and 
take deliberate actions, which, in turn, provide a refi ned set of data upon which 
to approximate some meaningful set of outcomes.    

  In analyzing the following examples of studies of curricular effectiveness, we 
will refer to these components as (1) complex systems with interlocking parts, (2) 
expected bands of variability, (3) focus on feedback, causal cycles, interactions, and 
emergence, and (4) continuous organizational improvement. We seek to show how 
these four components can inform us in designing and engineering [for] effective-
ness and scale. 

 In this article, we focus our discussion of the redefi nition of effectiveness research 
in the context of curriculum design, implementation, and improvement. We point 
out complementarities with the call for a change in “protocols for inquiry,” in which 
Bryk et al. ( 2011 ) locate a “science of improvement” between models of traditional 
translational research and action research:

  In its idealized form, translational research envisions a university‐based actor drawing on 
some set of disciplinary theory (e.g., learning theory) to design an intervention. This activ-
ity is sometimes described as “pushing research into practice” (see for example    Coburn & 
Stein,  2010 , p. 10). After an initial pilot, the intervention is then typically fi eld-tested in a 
small number of sites in an effi cacy trial. If this proves promising, the intervention is then 
subject to a rigorous randomized control trial to estimate an overall effect size. Along the 
way, the intervention becomes more specifi ed and detailed. Practitioner advice may be 
sought during this process, but the ultimate goal is a standard product to be implemented by 
practitioners as designed. It is assumed that positive effects will accrue generally, regardless 
of local context, provided the intervention is implemented with fi delity. 

 In contrast, action research places the individual practitioner (or some small group of 
practitioners) at the center. The specifi cation of the research problem is highly contextual-
ized and the aim is localized learning for improvement. While both theory and evidence 
play a role, the structures guiding inquiry are less formalized. Common constructs, mea-
sures, inquiry protocols and methods for accumulating evidence typically receive even less 
emphasis. The strength of such inquiry is the salience of its results to those directly 
engaged. How this practitioner knowledge might be further tested, refi ned and generalized 
into a professional knowledge, however remains largely unaddressed (Hiebert, Gallimore, 
& Stigler,  2002 ). 

 A  science of improvement  offers a productive synthesis across this research-practice 
divide. It aims to meld the conceptual strength and methodological norms associated with 
translational research to the contextual specifi city, deep clinical insight and practical orien-
tation characteristic of action research. To the point, the ideas … are consistent with the 
basic principles of scientifi c inquiry as set out by the National Research Council (Shavelson 
& Towne,  2002 , p. 22). 

 Entire quote from Bryk et al. ( 2011 ), pp. 148–149 (italics added). 

   By defi ning a perspective of “engineering [for] effectiveness” we suggest that 
communities of practice, at a school, district, or state level, can build on what has 
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been learned from studies of curricular effectiveness. We review several studies 
associated with effectiveness research from mathematics education, and reinterpret 
their results and implications. Our focus will be the challenge of improving the 
 instructional core  (derived from Elmore,  2002 ; Cohen, Raudenbush, & Ball,  2003 ), 
by which we refer to  the daily classroom activities of implementing a curriculum , 
 carrying out instruction ,  and applying formative assessment practices .  

    Intervening at the Instructional Core 

 A model of the instructional core is shown below, in which the instructional core is 
situated between the Common Core State Standards (CCSS) and High Stakes tests. 
In general, standards (at the state level) and high stakes summative assessments are 
the “bookends” that constitute the accountability system. Policy levers of  No Child 
Left Behind  are designed to drive accountability through external pressure (sanc-
tions and incentives) and to shed light on discrepant subgroup performances or lack 
of annual yearly progress. However, the bookends neglected and/or avoided the 
instructional core in relation to professional development, pedagogy, and classroom 
assessment. The absence of common standards fragmented the attention to curricu-
lum (Reys, Reys, Lapan, Holliday, & Wasman,  2003 ). By squeezing the educational 
system by way of the bookends, the accountability system during the past decade 
and more produced some performance gains from the system. However, it failed to 
strengthen the instructional core with respect to capacity, unintentionally promoted 
a narrowing of the content taught, and, while calling for the use of “best practices” 
it failed to identify means to establish the credibility of practices identifi ed as “best.” 

 We chose the instructional core as a focus for this chapter because it can be read-
ily recognized as a complex system, and should be analyzed as such. Its identifi able 
interlocking parts act at different levels of the educational system, from the stan-
dards and the summative tests to classroom practices and formative feedback. While 
one could view the instructional core as a temporal sequence of (a) curricular selec-
tion, (b) some level of professional development, (c) followed by implementation 
and assessments (both formative and summative), each of these components also 
interacts with and can generate (organized and explicit, or de facto and inadvertent) 
feedback to the other components. For instance, frequent formative results provide 
regular feedback to classroom practices, while data from high-stakes tests provide 
intermittent or periodic feedback and a much cruder level of nonspecifi c but severe 
institutional pressure. Resulting practices can be customized for groups according 
to curricular requirements and feedback from measures of learning. We have left the 
structure of improvement communities intentionally vague. The generality of the 
model allows for diverse institutional structure, as well as informal relationships 
among actors. Networked improvement communities are not explicitly identifi ed in 
Fig.  1 , but could be confi gured such that communities of practice could include 
practitioners, researchers, and administrators, who can plan together, share experi-
ences, analyze data patterns, and discuss how to revise and adapt instructional 
approaches, curriculum, and schedules.  

Engineering [for] Effectiveness in Mathematics Education…



378

 The adoption of the CCSS, by most of the states, positions educational commu-
nities, writ large, to create policy approaches and to reconsider the importance of 
focusing on improving the instructional core without overly constraining innova-
tion, over-regulating curricular choice, or de-skilling teaching. By examining exem-
plars of research on the effectiveness of curricular programs, classroom instructional 
pedagogies, and formative assessment practices, and defi ning how these results can 
inform efforts to engineer [for] effectiveness, researchers could potentially jump- 
start a movement towards school improvement in STEM disciplines.  

    Curricular Effectiveness Studies 

 “Curriculum matters” (Schmidt et al.,  2001 ). It is the means by which students gain 
access to the knowledge and skills in a fi eld and also the primary way they are 
attracted to pursue and persist. Since the publication of the NRC report that one of 
us (Confrey) chaired,  On Evaluating Curricular Effectiveness  (NRC,  2004 ), 
many mathematics educators have worked diligently to strengthen and improve 
research on and evaluation of curricular effects. That NRC report’s framework 
called for designing evaluations to examine three components of curriculum: the 
program theory (through content analyses and comparison to standards), the pro-
gram implementation (through a study of the program’s implementation including 

  Fig. 1    Model of Classroom Educational System, illustrating position of the instructional core 
between the accountability “bookends” (Confrey & Maloney,  2012 )       
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professional development and on-site staging, resources, and support), and the 
 program outcomes (for alignment to standards and achievement of intended results). 
The report argued for the use of multiple methods in judging effectiveness, includ-
ing content analyses, comparative studies, and case studies. It also called for the use 
of multiple and more sensitive outcome measures, and made a case for increased 
independence of evaluators, precise identifi cation of comparison programs, and bet-
ter measures of implementation. We have selected three studies that have taken 
these recommendations seriously and have moved research to a higher and more 
nuanced level. We report on their approaches, their principal fi ndings, and identifi ed 
limitations, and discuss how these can be interpreted to provide a solid foundation 
to next generation efforts to “engineer [for] effectiveness,” that is, to iteratively 
design, monitor, analyze, and adjust components of the instructional core for more 
effective teaching and learning. 

    Case One: Single-Subject vs. Integrated Mathematics 
(COSMIC Study) 

 New studies of curricular implementation have advanced our understanding of cur-
ricular effectiveness. One such study is “Comparing Options in Secondary 
Mathematics: Investigating Curriculum,” (COSMIC) (Grouws et al.,  2010 ,  2013 ; 
Tarr, Grouws, Chávez, & Soria,  2013 ). The COSMIC project compared the effects 
of two curricula, one subject-specifi c and one integrated, on student learning in 
high school mathematics. Among the important contributions of this large quasi- 
experimental study was the development of multiple measures of curricular 
 implementation and new types of curricular-appropriate tests to study the effects 
of curricular content  organization on student learning in the fi rst 2 years of high 
school mathematics. 

 A goal of the COSMIC study was to improve understanding about the relation-
ships among curricular organization, curricular implementation factors, and gains in 
student learning. The study’s research questions were the following for year 1 
(Algebra 1 compared with Integrated Course 2) (Grouws et al.,  2013 ). The research 
questions for year 2 student learning (Geometry compared with Integrated Course 
2) were similar (Tarr et al.,  2013 ):

    1.     Is there a differential mathematics learning effect when secondary school stu-
dents study from an integrated textbook (Course 1) and when students study 
from a subject-specifi c textbook (Algebra 1)?   

   2.    What are the relationships among curriculum type, curriculum implementation, 
and student learning? In particular,

    (a)    What curriculum implementation factors are associated with high school 
students’ learning in fi rst-year mathematics courses?   

   (b)    What teacher characteristics and practices are associated with high school 
students’ learning in fi rst-year mathematics courses?        
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  Participating schools all offered both a traditional high school curriculum (alge-
bra 1, geometry, algebra 2) and an integrated curriculum (CORE-Plus), between 
which students chose freely (i.e., were not tracked by ability level).    2  In all, 11 schools 
in six districts across fi ve regions of the country participated. The schools’ student 
population demographics varied widely (e.g., the proportion of students eligible for 
free and reduced lunch (FRL) ranged from 17 to 53 % across the schools in the 2 
year-levels of the study). Three distinct measures of student achievement (dependent 
variables) were used. Student results on those measures were compared to an index 
of prior achievement based on state-mandated eighth grade tests, normed against 
NAEP to provide comparability of student preparation across classes and states. 
Dependent measure data were analyzed using hierarchical linear modeling (HLM). 

 “ Fair test ”  as essential measure for comparing curricula . The study generated a 
number of signifi cant advances in research on curricular effectiveness. Researchers 
incorporated expertise in mathematics content and in learning effectively to design 
and select the study’s outcome measures. They used multiple outcome measures: 
for each year level, two tests were designed specifi cally for the project (one of com-
mon content and another of reasoning and problem solving). The third test was a 
nationally normed standardized multiple-choice test, the Iowa Test of Educational 
Development [ITED]: Mathematics: Concepts and Problem Solving Form B, levels 
15 (year 1) and 16 (year 2). 

 Drawing heavily on the NRC report’s recommendations, the project began with 
content analyses of the printed curricula used in the schools. The project team then 
designed a “fair test” (NRC,  2004 ), “developed with the deliberate goal of not being 
biased towards either of the two curriculum programs studied” (Chávez, Papick, 
Ross, & Grouws,  2010 , p. 4). To create the fair test, items were developed collabora-
tively by a research mathematician and mathematics educator to include content 
common to both curricula (i.e., that all students could be expected to have had the 
opportunity to learn (OTL) in both curriculum types) (Chávez et al.,  2010 ). Items 
were constructed response instead of multiple choice, and often used realistic situa-
tions. Iteratively developed, the items were designed to permit adequate space and 
time for students to reveal potentially subtle differences in their understanding of 
underlying constructs, were piloted to ensure high face validity of the items, and 
were scored using a rubric construction method that assured careful internal and 
external review, and inter-rater reliability. An overall intent of the fair test was to 
allow inferences to be made about “student knowledge on constructs underlying the 

2   In the COSMIC year 1 study, the textbooks used were Core-Plus Mathematics Course 1 (Coxford 
et al.,  2003 ) [20 classes], the integrated curriculum, and 5 different single subject curricula, 
Glencoe Algebra 1 (Holliday et al.,  2005 ), [10]; McDougal Littell Algebra 1 (Larson, Boswell, 
Kanold, & Stiff,  2001 ) [6]; Holt Rinehart & Winston Algebra 1 Interactions (Kennedy McGowan, 
Schultz, Hollowell, & Jovell,  2001 ) [4]; and Prentice Hall Algebra 1 (Bellman, Bragg, Charles, 
Handlin, & Kennedy,  2004 ) [2 classes]. In the year 2 study, the textbooks were Core-Plus Course 
2 (Coxford et al.,  2003 ), and one of the following SS curricula Glencoe-McGraw Hill (Boyd, 
Cummins, Malloy, Carter, & Flores,  2005 ), Prentice Hall (Bass, Charles, Jonson, & Kennedy, 
 2004 ), Holt (Burger et al.,  2007 ), and McDougal Littell (Larson, Boswell, & Stiff,  2001 ). 
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content of the tasks on the test, rather than merely…about student ability only on the 
tasks themselves” (Chávez et al.,  2010 , p. 8). 

  Treatment integrity  ( multiple measures of implementation fi delity ). COSMIC 
researchers also intensifi ed the degree to which they addressed  treatment integrity  
(NRC,  2004 ) using multiple data sources to gauge teachers’ implementation of cur-
ricular materials. These included Table of Contents Records, Textbook-Use Diaries, 
an Initial Teacher Survey, a Mid-course Teacher Survey and observations using a 
Classroom Visit Protocol (McNaught, Tarr, & Sears,  2010 , p. 5)   . The research team 
was able to examine critical factors such as professional development, familiarity 
with standards, and teachers’ distribution of classroom time among lesson develop-
ment, non-instruction, practice, and closure. In a sub-study across two consecutive 
school years, the authors defi ned, studied, and compared three related indices of 
curricular implementation: OTL Index, “the percentage of textbook lessons taught 
without considering teachers’ use of supplemental or alternative curricular materi-
als” (the topics or lessons that students thus had an OTL); Extent of Textbook 
Implementation (ETI) Index, to provide a sense of how closely the textbook was 
related to the implemented curriculum (a weighted index to indicate the extent to 
which lessons were taught directly from textbook or with varying degrees of sup-
plementation, including lessons that were not taught at all); and Textbook Content 
Taught (TCT), representing the extent to which teachers,  when teaching textbook 
content , followed their textbook, supplemented their textbook lessons with addi-
tional materials, or used altogether alternative curricular materials (McNaught 
et al.,  2010 ; Tarr et al.,  2013 ). Differences in all these indices could then be folded 
into the analysis of factors contributing to student learning outcomes. 

 For example, for the entire study (3 years), for OTL 60.81 % (19.98 SD) of the 
content of the integrated textbooks was taught while 76.63 % (17.02 SD) of the con-
tent of the subject-specifi c textbooks was taught. The ETI index showed that across 
all teachers, “(35 %) of the textbook content was taught primarily from the textbook, 
…(21 %) of the content was taught with some supplementation, a small portion 
(12 %) was taught from alternative resources, and 32 % of the content was not taught 
at all.” (Overall ETI values were 50.37 (20.20) for integrated and 57.15 (18.94) for 
single subject (SS)). The TCT index showed that when integrated  content was taught, 
it was more frequently directly from textbook (59 %) as compared to when subject-
specifi c content was taught (46 %). Furthermore, 28 % of integrated lessons were 
taught with some supplementation, while 33 % of subject- specifi c lessons were so 
taught    (overall, 81.96 (14.50) for integrated, 74.93 (18.29) for (SS)) (McNaught 
et al.,  2010 , pp. 12–13). However, there was considerable variation in curriculum 
implementation between year-levels 1 and 2. Year 1 teachers’ implementation index 
values were much closer, and higher than the summary values for all teachers in the 
study, whereas year 2 teachers had wide variation in OTL and ETI, with values for 
teachers of year 2 integrated much lower that those for teachers of SS. This study 
provided a major opportunity to interpret student learning outcomes in relation to 
variation in implementation fi delity, and led to the conclusion that unless informa-
tion on textbook use is considered, interpreting fi ndings on student learning out-
comes related to a curricular treatment can easily lead to unfounded conclusions. 
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  Teacher ,  classroom ,  and student data :  explaining variation in student outcomes . 
The COSMIC project design required the accumulation of a wide variety of stu-
dent- and teacher/classroom-level factors as potential moderators of curricular 
effects (eventually analyzed using HLM). The project gathered extensive teacher-
level data (nearly 30 variables) from an initial and mid-year teacher survey, teach-
ers’ self- reports on curriculum implementation (the three indices developed from 
Table of Contents records), and classroom observations. The teacher data were sub-
jected to principal components analysis and eventually were reduced to seven key 
teacher- level factors that explained approximately 70 % of the variance in the origi-
nal data set. The factors clustered around two themes: curriculum implementation 
(the classroom learning environment, implementation fi delity, use of technology, 
and OTL) and teacher characteristics (their adherence to and practice of NCTM 
Standards- based instruction, their teaching and curriculum experience, and profes-
sional development) (Grouws et al.,  2013 ; Tarr et al.,  2013 ). Student achievement 
on the dependent measures was subsequently examined for their relationship to the 
student- and teacher (classroom)-level factors. 

 Overall, the extent and richness of student, teacher implementation, and class-
room observation data gathered through the curriculum evaluation model, COSMIC 
was able to develop a more textured understanding of curricular effectiveness than 
had been accomplished to date. 

 COSMIC reported on student outcomes by adjusting the scores for students’ 
prior achievement and then aggregating them by teacher (Tarr et al.,  2010 ). The 
outcomes were reported as residualized gain scores by  teacher , in recognition that 
the unit of analysis should not be the individual student (NRC,  2004 ). 

 For year 1 course comparisons, the following represent some of the noteworthy 
results: over all three measures of learning, (1) while several student-level variables 
were statistically signifi cant predictors of students performance, consistent with 
previous studies (prior achievement, gender, ethnicities, and special needs); (2) the 
organization of the curriculum was the single most important factor in the modeling 
of performance on the tests, with large effect sizes for the test of common objectives 
and the problem solving test, and somewhat smaller for the Iowa Test of Educational 
Development. Numerous other factors were statistically signifi cant predictors of 
performance on some, but not all the measures, and there were statistically signifi -
cant interactions of factors for performance on one or another of the tests. 

 For the study of the year 2 courses (Geometry and Core-Plus 2), similar results 
were seen. However, while many of the individual student level variables were sta-
tistically signifi cant predictors of performance on one or more of the measures, for 
year 2 course students, the CPA index was by far the strongest predictor, with effect 
sizes greater than 0.5 on all three measures. And    perhaps most notably, the curricu-
lum type had little effect on the outcomes on either the test of common objectives 
or the problem solving test for this year level, but the integrated curriculum had a 
signifi cant favorable effect on performance on the Iowa Test. 

 An examination of partial correlations found that when controlling for %FRL, the 
magnitude of the correlation between Curriculum Type and student outcomes 
became signifi cantly signifi cant in favor of the integrated curricula, for all three tests. 
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OTL independent of curriculum was also signifi cantly and positively correlated with 
higher performance on all three outcome measures. 

 The importance of OTL is substantially reduced with the partialing out of Class- 
level %FRL, suggesting that %FRL and OTL may be closely related. While it is 
possible that the relationship between OTL and %FRL may be attributable to a dif-
ferential (slower) pace of content coverage in classes with higher percentages of 
FRL students, the result—less opportunity to have learned the material—suggests 
there is a need for active intervention to address this resulting inequity of opportu-
nity (note: the study did not address school effects). Since teachers of integrated 
curricula covered signifi cantly less textbook content than teachers of subject- 
specifi c curricula, a difference in coverage (as a percent of the curriculum topics 
that were taught) may have moderated the effect of Curriculum Type. Further, this 
study indicates that by controlling for OTL and %FRL, one can more carefully 
measure the impact of curriculum on student learning. 

 The year 1 study showed students studying from the integrated curriculum out-
performing students studying from single subject curricula on all three measures, 
but the year 2 results were less clear-cut—while there was a signifi cant effect of the 
integrated curriculum on the standardized test, there was no signifi cant effect of cur-
riculum on the two project-developed tests. However, prior achievement was a very 
strong predictor of student learning on all three tests, for both year-level studies. 
The COSMIC study produced many other results, showing more subtle correlations 
of student- and teacher-level factors with the student outcomes, as well as more 
interesting pairwise interactions, than can be discussed here. 

  No simple answers . Policy makers, administrators, and even practitioners ask 
whether an integrated program generates (causes) better, worse, or the same learn-
ing (outcomes) as a single-subject    curriculum. Overall, the COSMIC study illus-
trates that it is unwise to expect curricular studies to yield such simple answers 
about curricular effectiveness. The authors note further that the study generalizes 
only to schools that offer both curricular options, and only if student choice (rather 
than tracking decisions) determines which students enroll in the two curricula. 
Unless these conditions are met, the study offers no defi nitive answer. 

 However, the COSMIC study yields far more contributions and insight than its 
statistical “curricular effects.” These insights refl ect the nature of complex systems. 
Consider what one could learn from this study that pertains to “engineering [for] 
effectiveness.” COSMIC researchers have provided a protocol for creating and 
using appropriate multiple outcome measures to compare two curricula, fi rst deter-
mining the extent to which they cover the same material, and, second, by selecting 
common topics by which to create a “fair test.” If a district instead wants to know 
how curricula affect performance on a measure that assesses common standards, 
such as the Common Core State Standards, the study describes how to recognize 
and select such a reliable and valid test. It also illustrates how the choice of outcome 
measure interacts with the curriculum’s effects. In systems with causal cycles, mea-
sures can also drive the system towards improvement, so such insights into analyz-
ing outcome measures can facilitate important discussions of high-priority goals. 
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 The COSMIC study also illustrates the value of disaggregated data for revealing 
and identifying relevant bands of variability that may warrant closer inspection. The 
study reinforces many other fi ndings that the higher the percentage of students eli-
gible for FRL, the lower the OTL. However, OTL was typically a signifi cant mod-
erating effect on student performance on one or more of the tests, while FRL did not 
have a statistically signifi cant effect. The study further suggests that the effects of 
the curriculum in favor of integrated math become more evident when FRL mea-
sured at the classroom level is partialed out. Arguably, these fi ndings suggest that 
using integrated mathematics curriculum could be a considerable educational ben-
efi t to students with low SES, but may nonetheless require teachers to receive sub-
stantial assistance to increase students’ “opportunity to learn.” At the class-level, 
experience (in teaching, and in teaching the specifi c curriculum) was a signifi cant 
moderating factor, with students taught by experienced teachers (3 or more years of 
experience) achieving more than students of inexperienced teachers. 

 Practitioners and policy makers ask whether an integrated program generates 
better, worse, or the same outcomes as a single-subject approach. The COSMIC 
study design refl ected the complex nature of curriculum organization and imple-
mentation, illustrating that it is unwise to expect curricular studies to yield simple 
general answers. It provides further insight into the inherent weakness of any simple 
statement that a curriculum is more or less “effective” than another. 

 The COSMIC study informs readers about the complexity of curricular imple-
mentation, as comprising the classroom learning environment (focus on sense- 
making, reasoning about mathematics, students’ thinking in instruction, and 
presentation fi delity), implementation fi delity (ETI, TCT, textbook satisfaction), 
technology and collaborative learning, and OTL. These results suggest that in addi-
tion to focusing on OTL, school leaders need to help teachers to understand the 
standards, focus on student reasoning and sense-making, and learn to achieve clo-
sure during instruction. In relation to Fig.  1 , this suggests that the factors involved 
in implementation rest within the circle and that their connections to the two book-
ends in the drawing provide guidance and feedback. 

 Overall, the COSMIC study results so far suggest that the use of integrated math-
ematics in year 1, at least, and possibly year 2, may offer considerable learning 
opportunities for students across the spectrum. Implementation of the integrated 
curriculum is not a simple matter. In a North Carolina study, based on an analysis of 
reports from content specialists’ monthly observations of teachers’ practice, we 
found that teachers using an integrated mathematics curriculum with low SES stu-
dents often lost a great deal of time in transitioning to problems in integrated math, 
tended to be reluctant to turn over authority to students, and missed opportunities to 
establish closure (Krupa & Confrey,  2010 ). In a case study of one teacher, instruc-
tional coaches engaged in specifi c and targeted activities with the classroom teacher, 
and the teacher was able to transform her instructional practices and in fact became 
a role model for new teachers at the school (Krupa & Confrey,  2012 ). In studying 
multiple cases of teachers in these schools, Thomas ( 2010 ) showed that providing 
adequate support to teachers  can  transform practice, but that this is very diffi cult to 
accomplish, due to weakness in teacher knowledge and to those teachers’ views of 
instruction. Disentangling these complex relationships may be easier to accomplish 
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in studies seeking improvement over time in the context of smaller studies. Our 
studies, funded as a Mathematics-Science Partnership through a state department of 
education, permitted us to form a networked community for improvement, among 
University researchers, faculty from the state School of Science and Mathematics, a 
semi-autonomous school organization committed to improving rural education, 
and—critically—in-service teachers and principals. Our efforts could have greatly 
benefi tted from richer and more continuous data sources informed by research tools 
such as those developed for COSMIC.  

    Case Two: Comparing Effects of Four Curricula 
on First- and Second-Grade Math Learning 

 A second major study on curricular effectiveness provides another example of the 
potential contributions of nuanced study that goes beyond simple claims of cause 
and effect. The study “Achievement Effects of Four Early Elementary School Math 
Curricula: Findings for First and Second Graders” (Agodini et al.,  2009 ,  2010 ), 
examined whether some early elementary school math curricula are more effective 
than others at improving student math achievement in disadvantaged schools (57 % 
of schools included in the study were school-wide title 1 eligible, compared to 44 % 
nationwide). The authors (R. Agodini, B. Harris, M. Thomas, R. Murphy, 
L. Gallagher, and A. Pendleton) studied the implementation of four contrasting 
curricula:  Investigations in Number ,  Data ,  and Space  (“ Investigations ”), featuring 
a student-centered approach encouraging metacognitive reasoning and drawing on 
constructivist learning theory (Wittenberg et al.,  2008 ),  Math Expressions , blending 
student-centered and teacher-directed approaches to mathematics (Fuson,  2009a , 
 2009b ),  Saxon Math  ( Saxon ), a scripted curriculum relying heavily on direct 
instruction in procedures and strategies with guided and distributed practice 
(Larson,  2008 ), and  Scott Foresman - Addison Wesley Mathematics  ( SFAW ), a basal 
curriculum that combines teacher-directed instruction with a variety of differenti-
ated materials and instructional strategies (Charles et al.,  2005a ,  2005b ).  Math 
Expressions  and  Investigations  are both “reform” curricula whose development had 
been either initially funded by the National Science Foundation or based on research 
with considerable NSF funding. A total of 473 districts were invited, but only 12 
agreed to participate in the study—a recruitment rate of 2.5 % (Agodini et al.,  2010 , 
p. 10). 3  In all, 109 fi rst-grade classes and 70 second-grade classes were randomly 
assigned to a curriculum within districts. 

3   The authors acknowledge that this low rate leaves an “open issue, which cannot be examined with 
the study’s data, is whether the potential differences between participating and nonparticipating 
sites are related to the study’s fi ndings” (p. 14). The conditions of the study, in particular the need 
for a district to assign different curricula to schools at random, could be viewed by many districts 
as unacceptably burdensome or arbitrary, and confl ict with their own judgment about the most use-
ful curriculum, or simply be at odds with district policy and/or fi scal constraints. 
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 The study addressed three broad questions (Agodini et al.,  2010 , pp. 4–5):

    1.    What are the relative effects of the study’s four mathematics curricula on fi rst- 
and second-graders’ mathematics achievement in disadvantaged schools?   

   2.    Are the relative curriculum effects infl uenced by school and classroom charac-
teristics, including teacher knowledge of math content and pedagogy?   

   3.    [Based on subsequent statistical analysis—] What accounts for curriculum dif-
ferentials that are statistically signifi cant?    

  Student mathematics achievement outcomes were based on fall and spring 
administrations (pre- and post-administrations) of the ECLS-K assessment (devel-
oped for the National Center for Education Statistics’ Early Childhood Longitudinal 
Study-Kindergarten Class of 1998–1999), a nationally normed adaptive test. 4  Other 
data were drawn from student demographic and school data, teacher surveys, study- 
administered assessments of math content and pedagogical content, and scales of 
instructional practices and approaches derived from classroom observations. 

 The study results were reported as pairwise comparisons of the curricula, for 
student outcomes (six pairwise comparisons) for each grade. After 1 year of schools’ 
participation, average fi rst-grade math achievement scores of  Math Expressions  and 
 Saxon Math  students were similar and higher than those of both Investigations and 
SFAW students. In fi rst-grade classrooms, average math achievement scores of  Math 
Expressions  students were 0.11 standard deviations higher than those of 
 Investigations  and  SFAW  students. These results were interpreted to mean that, for a 
fi rst grader at the 50th percentile in math achievement, the student’s percentile rank 
would be 4 points higher if the school had used  Math Expressions  instead of 
 Investigations  or  SFAW . In second-grade classrooms, average math achievement 
scores of  Math Expressions  and  Saxon Math  students were 0.12 and 0.17 standard 
deviations higher than those of  SFAW  students, respectively. For a second grader at 
the 50th percentile in math achievement, these results mean that the student’s per-
centile rank would be 5 or 7 points higher if the school used  Math Expressions  or 
 Saxon Math , respectively. 5  

4   The test is adaptive in that students are initially administered a short, fi rst-stage routing test that 
broadly measures each student’s achievement level. Based on the fi rst-stage scores, students are 
then assigned one of three second-stage tests: (1) easy, (2) middle-diffi culty, or (3) diffi cult. Scale 
calibration among the second-stage is accomplished through overlap of items on the second stage 
tests and item response theory (IRT) techniques, by which scores from different tests are placed on 
a single scale. 
5   Another way the authors interpreted these differences was to consider the average score gain by 
grade in the lowest quintile of SES on ECLS (16 points in fi rst grade) and to convert the .1 effect 
size into points using the reported standard deviation of 10.9, getting a difference of 1.09 scale 
points. Comparing 1.09 to an average gain of 16 scale points, they describe an effect size of .10 as 
having an effect of 7 % of the gain over fi rst grade. Thus the differences in student results reported 
between curricula account for between 7 and 14 % of the content as measured by the ECLS 
assessment. 
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 This study, in some ways similar to the COSMIC study, examined curricular 
implementation, and reported on such factors as the use of the curriculum, the 
amount, frequency, and stated reasons for supplementation, the availability of sup-
port, amount of professional development, distribution of uses of instructional time, 
and focus on particular content areas. Teachers reported varying coverage of math 
content areas across the curricula. They determined that variation in coverage (num-
ber of lessons on a topic) of 19 out of 20 content areas was signifi cantly different 
across all four curricula. However, in pairwise comparisons of the curricula, “there 
was no clear pattern [regarding] which curriculum [coverage] differences are sig-
nifi cant.” (p. 57): some pairwise differences in coverage were statistically signifi -
cant and others were not. 

 For    Table  1  below, we selected some implementation differences that could have 
affected student-learning outcomes. For instance, teachers received twice as much 
initial (voluntary attendance) professional development for  Expressions  than for 
other curricula (with >90 % of fi rst-grade teachers reporting attendance at initial 
training sessions for all the curricula, but 80–97 % of second-grade teachers attend-
ing, with Math Expressions having the highest attendance rate). Teachers of  Saxon 
Math  taught math an additional 20 % of the time each week, teachers of  Math 
Expressions  used more supplementation materials while  Investigations  teachers 
used less, and 16.2 % of  Saxon Math  teachers and 21.1 % of  SFAW  teachers had 
taught with those curricula previously, compared to less than 6 % for each of the 
other two curricula. It should be noted that Math Expressions and Investigations are 
based more intensively on student-centered instructional approaches and represent 
pedagogical approaches that require extensive teacher preparation. Not surpris-
ingly therefore, implementation reports show that higher percentages of fi rst- and 
second- grade  Investigations  and  Expressions  teachers report feeling only “some-
what” or “not at all” prepared to teach their curriculum, compared to teachers of 
 Saxon Math  or  SFAW .

   The study’s authors also conducted an analysis of the extent to which teachers 
adhered to their assigned curriculum. “Adherence” referred to the extent to which a 
teacher taught the curriculum using practices consistent with the curriculum devel-
opers’ model. (In the NRC report, the philosophy of a curriculum’s designers (“pro-
gram theory”) was distinguished from the application of the curriculum during 
implementation (“implementation fi delity”).) The study measured adherence via a 
teacher survey and a classroom observation instrument, as the extent to which 
essential features of the assigned curriculum were implemented. The results shown 
in Table  2  suggest that teachers were more likely to adhere to designers’ intentions 
in the  Saxon Math  program than in the  Expressions  program.

   In an exploratory look at what might account for the relative curricular effects, 
the researchers examined the instructional practices that occurred across different 
curricular types (in contrast to adherence) based on the observational data. They 
conducted a factor analysis, yielding four factors: (1) student-centered instruction, 
(2) teacher-directed instruction, (3) peer collaboration, and (4) classroom environ-
ment. The analysis across the curricular pairs indicated that student-centered instruc-
tion and peer collaboration were signifi cantly higher in  Investigations   classrooms 
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than in classrooms using the other three curricula. Teacher-directed instruction was 
signifi cantly higher in  Saxon Math  classrooms than in classrooms using the other 
three curricula. The classroom environment did not differ across curricula. 

 Additional analysis indicated that some of these implementation factors act as 
mediators of achievement outcomes. The study’s design, however, permitted exam-
ination of only one mediator at a time. This constraint meant that while differences 
in professional development for  Expressions  mediated the curricular effect, the 
authors could not relate this to the mediational effects of less prior experience with, 
and teachers’ reports of less preparedness to teach, the curriculum. Likewise,  Saxon 
Math  teachers were reported to have had 20 % more instructional time, which medi-
ated the  Saxon Math - SFAW  difference in curricular effect. The study design, how-
ever, does not permit assessment of  combined  effects of interactions between 
instructional time and likelihood of having taught a curriculum before. The authors 
interjected that a more rigorously designed study of mediation could disentangle the 
relationships among the mediators (p. 102). In any case, the examinations of imple-
mentation variables as mediators of curricular effects make it clear that one must 
always interrogate the results to understand the nuances in a causal study’s assump-
tions and claims. 

 Among the many accomplishments of the Agodini et al. ( 2010 ) study was the 
identifi cation of means to measure a considerable number of factors that comprise 
classroom practice. The study reports on a variety of factors that are worth examin-
ing, even if they were not demonstrated to be statistically signifi cant contributors to 
differentiated curricular effects. For instance, the study reports low levels of math-
ematical knowledge on the part of elementary teachers, and while this was not dif-
ferentially related to curricular effectiveness in the study, this is a persistent issue in 
elementary teaching that needs to be addressed. The study also makes a useful dis-
tinction between implementation factors that apply to  any  curriculum, and  adher-
ence , which pertains to the specifi c intentions of each curriculum’s design; the latter 
is a curriculum-specifi c measure of teachers’ fi delity of implementation of specifi c 
features/activities. 

 The Agodini study also exhibits limitations and threats to its validity: reliance on 
only a single student outcome measure (the ECLS-1 and -2), and the absence of a 
method to check the “fairness” of that outcome measure across the curricula. These 
are in contrast to the call in  On Curricular Effectiveness  for multiple measures and 

   Table 2    Adherence to a curricular program’s essential features, as percentage of features implemented   

 Investigations  Expressions  Saxon Math  SFAW 

 Survey 
(self-report) 

 First-grade teachers  66 (3)  60 (4)  76 (1)  70 (2) 
 Second-grade teachers  67 (3)  54 (4)  76 (1)  68 (2) 

 Observation of 
daily essential 
features 

 First-grade teachers  56 (2)  48 (4)  63 (1)  54 (3) 
 Second-grade teachers  53 (2–3)  47 (4)  65 (1)  53 (2–3) 

 Average  60.5 (3)  52.25 (4)  70 (1)  60.75 (2) 

  Numbers in parentheses indicate the relative ranks of the curricula for each row (pp. 65–67)  
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for outcome measures that demonstrate “curricular validity of measures” (also 
called “curricular sensitivity”) and “curricular alignment with systemic factors” 
(NRC,  2004 , p. 165). Such a notable weakness with regard to the outcome measures 
unfortunately leads to major problems with the interpretation of the study’s conclu-
sions. The size of the curricular effect, 7–14 gain points on the scaled score, could 
be the result of a few key assessment items. 

 The study benefi ts—as an experimental study—from randomized assignment of 
curricula to teachers (classrooms) within the district, but this feature of the study 
came at a high cost to its external validity. Few districts were willing to randomly 
assign curriculum to teachers, calling into question the generalizability of the 
study’s results. Secondly, conducting a study of curricular effectiveness during the 
fi rst year of a curriculum’s implementation, and providing only 1–2 days of profes-
sional development for primary teachers, must weaken confi dence in the validity of 
comparisons of curricular effectiveness. For instance, reports of high levels of sup-
plementation by  Expressions  teachers could be due to the teachers’ use of prior, 
more familiar materials. If this were the case, should one draw the conclusion that 
 Expressions  itself was “effective” under these conditions? 

 Furthermore, the authors also described teachers’ reports, for each curriculum, of 
the frequency of teaching particular content topics (whole numbers, place value, 
etc.). If an analysis of the test had been performed, and included in the study, one 
might have been able to discern patterns in the relationship between students’ OTL 
the different topics and the outcome measure scores. 

 The Agodini et al. study offers far more insight into curricular effectiveness than 
is captured by its conclusions of “cause and effect.” As with the COSMIC study, it 
makes progress on establishing implementation factors. Both studies identify simi-
lar factors, such as adherence vs. implementation fi delity, the use of student collabo-
ration, and the use of general instructional approaches (student-centered and 
teacher-directed vs. standards-based instruction). Both examine content variations, 
one by conducting content analyses and then measuring OTL as teachers imple-
mented, and the other by relying on teacher reports of number of lessons by content 
area and adherence to essential features of each curriculum. By designing different 
means of capturing the variations in these factors, these studies help us to progress 
in our understanding of the complexity of curricular use.  

    Case Three: The Relationship Among Teacher’s Capacity, 
Quality of Implementation, and the Ways of Using Curricula 

 A third study, “Selecting and Supporting the Use of Mathematics Curricula at 
Scale,” is a study of curricular impacts on implementation  quality  with respect to 
teachers’ capacity and ways of using the materials, rather than a study of  effective-
ness  (as based on student outcomes) (Stein & Kaufman,  2010 ). The study involved 
two districts using reform curricula, one using  Everyday Math  ( EM ) and the other 
using  Investigations , in order to begin to answer the question of “What curricular 
materials work best under which kinds of conditions?” (p. 665) 
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 The authors initially analyzed the two curricula with respect to the frequency of 
two kinds of high cognitive-demand tasks: “procedures with connections to con-
cepts, meaning and understanding” (PWC) tasks and “doing mathematics” (DM) 
tasks (Stein, Grover, & Henningsen,  1996 ). They characterized PWC tasks as “…
tend[ing] to be more constrained and to point toward a preferred—and conceptual—
pathway to follow toward a solution,” and identifi ed 79 % of the tasks in  Everyday 
Math  as PWC tasks. They characterized DM tasks, in contrast, as “…less structured 
and [not containing] an immediately obvious pathway toward a solution” (Stein & 
Kaufman,  2010 , p. 665), and identifi ed 84 % of the tasks in  Investigations  as DM 
tasks. Based on these differences, they conjectured that it would be less diffi cult for 
teachers to learn to teach with  EM  than with  Investigations . DM tasks are more dif-
fi cult to implement faithfully, because they support open-ended discourse, which is 
often diffi cult to manage and require more of the teacher’s own learning (Henningsen 
& Stein,  1997 ). In contrast, PWC tasks are more bounded and predictable, but are 
susceptible to “losing the connection to meaning” (Stein & Kaufman,  2010 ). Stein 
and Kaufman also documented that there is less professional development support 
embedded in the  EM  materials than in the  Investigations  materials, mirroring the 
conventional wisdom that teaching with the  EM  is less challenging than with 
Investigations curricula. 

 From these analyses, the study characterized  EM  as a low-demand, low-support 
curriculum, and  Investigations  as a high-demand, high-support curriculum. They 
then investigated how the implementation of these two contrasting reform curricula 
might differ, particularly with respect to the quality of implementation and its rela-
tionship to teacher characteristics. 

 Using classroom observations, interviews, and surveys, the researchers com-
pared implementation of the two reform curricula in two districts that were similar 
in terms of the (high) percentage of students eligible for FRL (86 and 88 %). They 
studied implementation of the curricula by six teachers (one per grade level) in each 
of four elementary schools in each district over a period of 2 years. Observations 
(with examples) were    conducted on three consecutive lessons in each of fall and 
spring, and coded for the extent to which teachers were able to (1) sustain high 
cognitive demand through the enactment of a lesson, (2) elicit and use student think-
ing, and (3) vest the “intellectual authority in mathematical reasoning,” rather than 
in the text or the teacher. Together, high values on these three dimensions character-
ized high quality implementation. 

 Using surveys, observations, and interviews, they examined two teacher charac-
teristics: teachers’  capacity  (defi ned as comprising years of experience, mathemati-
cal knowledge for teaching (MKT), participation in professional development, and 
educational levels) and their  use of curriculum  (teachers’ views of the curriculum’s 
usefulness, percentage of time teachers actually used the curriculum in lessons, and 
what teachers talked about with others in preparing for lessons—including non- 
mathematical details, materials needed for the lesson and articulation, and discus-
sion of big ideas.) 

 In answering their fi rst question, “How does teachers’ quality of implementation 
differ in comparisons between the two mathematics curricula ( Everyday Mathematics  
and  Investigations )?” (Stein & Kaufman,  2010 , p. 667), they found that teachers 
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from the district using  Investigations  were more likely to teach high quality lessons 
than teachers from the district using  Everyday Math  (it must be noted again, how-
ever, that this study did not investigate the relationship of instructional performances 
to student outcome performance, but rather the “less-studied link between curricula 
and instruction,” p. 668). Teachers implementing  Investigations  were more likely to 
maintain the cognitive demand (6.7 > 4.9, on a scale of 2–8), to utilize student think-
ing more (1.1 > .5, on a scale of 0–3), and to establish norms for the authority of 
mathematical reasoning (1.2 > .4, on a scale of 0–2). 

 Their second question across the two districts and curricula was, “To what extent 
are teachers’ capacity and their use of curricula correlated with the quality of their 
implementation, and do these correlations vary in comparisons between the two 
mathematics curricula?” (p. 667). The study found that most of the teacher capacity 
variables were not consistently and signifi cantly related to the quality of implemen-
tation. In the district using  EM , higher performance on MKT surveys was  negatively  
correlated with the use of student thinking and with establishing the authority of 
mathematical reasoning in the classroom. In the district using  Investigations , corre-
lations of implementation quality with teacher capacity were positive but not signifi -
cant. And while no clear relationship was found between either hours or type of 
professional development to implementation quality in the district using  EM , in the 
district using  Investigations , the amount of professional development was (posi-
tively) signifi cantly correlated with all three components of implementation quality. 

 The study shows that implementation quality cannot be inferred from content 
 topic  analysis alone but depends also on the kinds of tasks (how the tasks are struc-
tured) that are used to promote student learning of those topics. It also suggests that 
implementation quality appears to relate more strongly to the extent of professional 
development support both facilitated by the district and afforded within the materi-
als, than to other traditional capacity variables such as teachers’ education, experience, 
and their MKT. 

 Across the two districts and curricula, the discussion of big ideas during lesson 
planning was the only teacher’s-use-of-curriculum variable that was signifi cantly 
and positively correlated to implementation quality components (and then to only 
two of those: attention to student thinking and authority of mathematical reasoning). 
Further, the authors reported that this tendency was more evident in the district 
using  Investigations . In explaining this difference, they reported that teachers using 
 Everyday Math  indicated that frequent shifts in topics in the spiral curriculum 
tended to make identifi cation of big ideas more diffi cult, while in  Investigations , the 
“doing math” tasks led teachers to focus more on big ideas. These fi ndings were 
somewhat counterintuitive because it had been thought that  Investigations  was more 
diffi cult to implement because it has a much higher percentage of DM tasks than 
does  EM . The consideration of big ideas during instructional planning was strongly 
linked to high quality implementation of both curricula, and was also more engaged 
in by teachers implementing the curriculum that focused more extensively on DM 
tasks ( Investigations ). 

 Stein and Kaufman ( 2010 ) note that this work “provides evidence that one can-
not draw a direct relationship between curriculum and student learning” (p. 688). 
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They asked, “…what elements of teacher capacity interact with particular curricu-
lum features to infl uence what teachers do with curriculum. Thus, our focus is on 
 which program leads to better instruction under what conditions ” (p. 668, italics 
added). They suggest reorienting the concept of teacher capacity to incorporate the 
interaction of curriculum as tool with how teachers use the curriculum, and that 
study of how curriculum use over time interacts and promotes improved instruction 
would be a very fruitful path of research. In essence, by suggesting that “…curricula 
could be viewed not only as programs to be implemented, but as tools to change 
practice” (p. 688), they are suggesting that curricular effectiveness might eventually 
be considered not a static value or a product’s claim, but instead a  process of improve-
ment  of instruction through interaction between curriculum and how it is used.   

    Overall Conclusions from the Three Cases 

 Juxtaposing the three cases reviewed here provides an opportunity to synthesize 
advice for the conduct of future effectiveness studies. There has been a strong temp-
tation in the calls for, and the interpretation of, effectiveness studies, to try to iden-
tify  some thing that works—that is, to identify one or more curricula (or in fact, a 
single most effective curriculum for grade level or range) that can be adopted with 
the expectation of subsequent, direct major improvements in student learning out-
comes. Calls for randomized fi eld trials of curricular effectiveness have carried with 
them the assumption that such experimental designs will provide the best evidence 
that a curriculum is “effective.” We have asserted, and taken together, the studies 
discussed in this chapter have shown this approach to be poorly conceptualized, 
underestimating the collective and cumulative impacts of coverage/OTL, imple-
mentation fi delity, and quality of instruction, not to mention differences in curricu-
lar structure, pedagogy, and content rigor. 

 We initially examined the three studies from a perspective of causality, to under-
stand whether and how they might inform us about the results of implementing and 
comparing two or more curricula. Reviewing these cases, however, demonstrated 
how tentative causal conclusions are, and reminded us that all studies have fl aws 
and limitations. The quest for the perfect curricular effectiveness study—and a 
quest for a single most-effective curriculum—is highly unlikely to yield results that 
are robust or extensive enough to guide practice. Each study provides insight into 
some  specifi c conditions  under which certain factors played roles and certain out-
comes occurred, and that these depend on how constructs surrounding the imple-
mentation of the curricula were defi ned and measured. 

 The COSMIC study provides evidence of relative effectiveness of an integrated 
curriculum compared to subject-specifi c curriculum when students are provided a 
choice between those options. However, had multiple curricular alternatives been 
available, or had ability tracking been used to assign students to the two curricular 
options, the authors note, we do not know what the results of the study would have 
been. It could also be the case that if teachers of integrated curricula were able to 
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cover the same percentage of their text during a year as did teachers of a subject- 
specifi c curriculum, student performance in integrated math would be even stronger 
relative to that in the subject-specifi c curriculum. Practitioners choosing to apply 
this study to their own curriculum selection decisions must weigh these consider-
ations, and must contextualize the results to develop expectations relevant to their 
own settings. 

 Similarly, the Agodini et al. study reported that students taught using  Expressions  
outperformed students taught using the other curricula in both fi rst and second 
grades, with the exception of students using  Saxon Math  in second grade. It is pos-
sible however, that this effect may have resulted from the extra day of professional 
development time or additional supplementation reported to be used by teachers for 
 Expressions , or from increased instructional time, in the case of  Saxon Math . 
Alternatively, it is feasible that all outcomes of this study could be attributable in 
large part to the degree of fi t of the curricula with the single ECLS outcome measure 
used; if the study had used a different end-of-year assessment (or multiple measures 
as in the COSMIC study) the results might have been quite different. Another pos-
sible interpretation is that by examining the effectiveness of curricula for only the 
fi rst year of implementation, the study’s results were necessarily skewed in favor of 
 Saxon Math  and  SFAW , which had higher levels of prior use and scripting, and that 
the student outcomes would evolve considerably over a longer study period (allow-
ing more teacher experience with the assigned curricula), potentially re-ordering the 
student learning results. 

 All studies are open to multiple interpretations; most are subject to various pre-
dictable (or emergent) limits to generalizability. In the Stein and Kaufman study, for 
example, the stronger implementation quality of  Investigations  could have been 
attributed to its design of curricular tasks, affordances for focus on big ideas, and/or 
support for professional development. But perhaps the district that offered 
 Investigations  simply supported its implementation with higher quality, more exten-
sive professional development. 

 These studies demonstrate further the complexity of curriculum’s relationship to 
student learning. But some may ask whether the fact that these studies have some 
confl icting interpretations or that they do not provide generalizable  recommendations, 
means that such investigations are not useful, or even a waste of time and money. 
Are such studies of limited importance because we cannot know whether a study’s 
results will accrue in a setting that differs from the original—and may require a 
level of adaptation from the conditions for the study? 

 If the goal of curricular effectiveness studies were to decide unequivocally 
whether a single product—a curricular program and its related materials—can be 
simply dropped into classrooms and be expected to yield predictable learning gains, 
then these studies fail to establish curricular effectiveness. More to the point, how-
ever, these studies instead bolster the recognition that this assumption about curricu-
lar effectiveness and its generalizability is mistaken, a false apprehension. Their 
design is to provide more insight into the factors affecting effectiveness (and pos-
sibly leading to redefi ning the use of the term); their design and their execution 
make them highly valuable to that end. 
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 We argue that these studies, especially when taken together, demonstrate why 
simple causality is an insuffi cient model for judging effectiveness of a curriculum. 
The message to be taken from them is that the instructional core is a complex sys-
tem, that many things matter to the implementation of a curriculum and to the learn-
ing that students can accomplish with different curricula, and that what matters 
appears to depend in large degree on multiple factors, and different factors in differ-
ent situations. Context matters—the extent to which one serves disadvantaged stu-
dents, requires more resources, or requires teachers with stronger capacity or settings 
in which professional development is supportive and sustained. Resources matter. 
The quality of instruction, and the quality of curricular implementation, matter. 

 Most importantly, these studies contribute substantially to an understanding of 
the instructional core. By the very fact that the experts who conducted the studies 
have gained purchase on modeling the instructional core, they provide us insights 
into the complexity of instructional systems. They identify interlocking factors, loci 
of possible interventions, and a set of measures and tools that can help in the process 
of becoming smarter and wiser about  how curricular use in particular settings can 
improve instructional quality and student outcomes . 

 These studies, we believe, provide the following lessons:

    1.    Outcome measures matter—and with the availability of Common Core State 
Standards, we have the opportunity and the responsibility to create a variety of 
measures in a cost effective way across districts and states (this is one of the prem-
ises of the Common Core assessment initiatives). The COSMIC study in particular 
reinforces the notion that implementation or effectiveness studies require multiple 
outcome measures which should (a) include measures that act as “fair” tests 
(Chávez et al.,  2010 ) to ensure non-biased comparison of student performance on 
topics common to all curricula being examined, (b) include project- designed mea-
sures of reasoning and problem-solving, (c) be normed against relevant popula-
tions (e.g., college-intending students, ELS students) and used to make systemic 
decisions (such as statewide end-of-course exams or new assessments of Common 
Core State Standards), (d) assess the development of big ideas over time; learning 
progressions are one way to conceptualize coherent curricular experiences and 
their development over time, and (e) assess other dimensions of mathematics 
learning, such as the mathematical practices in the CCSS, student attitudes, or 
student intentions to pursue further study or certain STEM careers. The studies 
showed that the categories by which outcomes were disaggregated were critical, 
and were sensitive to interactions, such as by ethnicity and socioeconomic factors. 
At the least, therefore, relevant data gathered in relation to performance measures 
should include ethnic and racial diversity, gender, ELL, and FRL status, to support 
the investigation of relevant bands of variability in effects and outcomes.   

   2.    Monitoring what was actually taught, and  why  it was taught, is crucial to making 
appropriate attributions in examining effectiveness. Monitoring should include 
measures of curricular coverage (such as OTL and adherence), and of the type and 
degree of supplementation (and the reasons for choices regarding these variables). 
Different methods of monitoring curricular coverage and supplementation included 
table-of-contents reports, surveys of relative emphasis, and textbook use diaries.   
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   3.    A better understanding of the factors involved in the implementation of curricula 
will add a wealth of insight to explanatory frameworks of curricular effective-
ness. Some factors should directly refl ect the extent to which implementation 
captures a designer’s specifi c intent, while others should address qualities that 
apply across all curricula. These studies undertook many innovative methods of 
data collection: surveys, intermittent and extended classroom observations with 
various coding schemes, reports of instructional time usage, and interviews. In 
one case, these were coded in predetermined, theoretically relevant categories—
maintaining cognitive demand of tasks, eliciting student thinking, and vesting 
authority in mathematical reasoning. In the COSMIC and Agodini et al. studies, 
high numbers of variables were identifi ed a priori, and embedded in other instru-
ments (teacher surveys, for instance). Modeling the factors that can explain the 
majority of observed variation for different levels of analysis (student, class/
teacher, school level, for instance) requires statistical techniques (factor analysis, 
principal component analysis) to reduce the dimensionality of the vast amounts 
of resulting data, and to identify and sort critical variables into appropriate clus-
ters (classroom learning environment, implementation fi delity, peer collabora-
tion, technology use, student-centered instruction, and teacher-directed 
instruction). Selection of appropriate units of analysis, and hierarchical (multi- 
level) linear modeling were essential (COSMIC, Agodini et al.) for modeling the 
relationship and interactions of student- and teacher-level factors and their con-
tributions to the dependent measures of student learning. Research on identify-
ing, defi ning, and studying implementation factors (perhaps as latent variables) 
promises to continue to grow and add to our understanding of curricular effects.   

   4.    Issues of teacher capacity and professional development are critical in judging 
curricular effectiveness, but not necessarily in a predictably simple or straight-
forward way; their infl uence varies depending in part on whether they are viewed 
as a resource within a curriculum and its implementation, or as a factor that 
interacts with implementation. Teacher capacity, a term that subsumes teacher 
MKT, experience, education, and professional development, did emerge as infl u-
ential in two studies (COSMIC, 6  Agodini et al.). In the third study (Stein & 
Kaufman) however, its infl uence was mixed: while most teacher capacity factors 
did not correlate in a signifi cant positive way with implementation quality in one 
district/curriculum, but some of the component factors correlated  negatively  and 
signifi cantly in the other. In that study, the amount of professional development 
time, teachers’ access to assistance and support, and the ways in which teachers 
used materials in planning (i.e., the degree of their focus on big ideas) and com-
municated with each other about curricular use emerged as the factors most 
closely associated with implementation quality. On the other hand, professional 
development was not signifi cantly associated with student outcomes in the 

6   Though early results suggested that teacher experience was not signifi cantly correlated with stu-
dent outcomes (Tarr et al.,  2010 ), completed HLM analyses of year 1 data revealed that teaching 
experience was a signifi cant predictor of student outcomes on all three measures (Grouws et al., 
 2013 ; Tarr et al.,  2013 ). 
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COSMIC study; teachers reported that they perceived little to no impact of their 
professional development activities on their teaching practices, in part, because 
they perceived the activities merely confi rmed what they were already doing 
(Tarr et al.,  2013 ), and the study measured professional development in terms of 
quantity not quality. The studies incorporate three perspectives on professional 
development and teacher capacity—one in which these factors are viewed as a 
resource for curricular implementation, one in which they could be viewed as a 
factor that interacts with implementation, and one in which curricular implemen-
tation is seen as a tool for changing capacity and as a source of professional 
development. To clarify how professional development and teacher capacity can 
relate to curricular implementation and effectiveness will require additional 
investigation.   

   5.    How a study is situated in relation to educational structures and organizations may 
eventually be important at a meta-level of understanding curricular effects and the 
conclusions drawn. The location of each of the studies described here was driven 
by issues of experimental design—for instance, the availability of two curricular 
options without tracking (COSMIC), the dependence of a study on districts’ will-
ingness to randomly assign teachers to treatments (Agodini et al.), to support 
extended observations over 2 years, and to provide researchers with access to 
extensive teacher data. These    issues were reported as features of the studies’ 
designs, but over time such they may themselves emerge as organizational factors 
that are as important to curricular implementation as traditional organizational 
characteristics as governance, decision-making, funding, and data use.      

    Engineering [for] Effectiveness: Summary 
and Recommendations 

 These studies remind us how remarkably complicated are the interplay of curricula, 
instruction, classroom assessment practices, and professional development. They 
demonstrate that the instructional core is a complex system, exhibiting the fi rst- 
order traits of complex systems including interlocking parts, bands of variability, 
feedback, causal cycles, interactions and emergent phenomena, and the need for 
focus on continuous improvement. It is incumbent on policy makers, system lead-
ers, teachers, professional development and curriculum designers, and researchers, 
to treat the entire instructional core accordingly: as a complex system. We suggest 
therefore that rather than seek any grand causal effect from these or similar studies, 
one should use them to learn more about possible ways to model and improve the 
instructional core at the classroom, school, and district level throughout the USA. 

 We have come to believe that while curricular effectiveness has seemed an impor-
tant focus for study, we suggest that with the instructional core as the complex system 
of which curriculum is one part, the focus for improvement should be the functioning 
of the system itself. The proposal that follows from this is to focus on how to engi-
neer the  instructional core  for improved teaching and learning effectiveness—that is, 
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to iteratively design and improve our way to a greater understanding of the operation 
and strengthening of the instructional core. The studies recounted here have provided 
some critical elements of such an endeavor, including identifi cation of a number of 
critical constructs, and creating measures to gauge and monitor them. Other research-
ers have argued for the importance of multiple methodologies (NRC,  2004 ) including 
such approaches as design studies, which are useful in identifying mechanisms to 
describe and explain interactions at the classroom level. 

 Many of the instruments outlined in the studies can be applied using networked 
technological systems to gather data in real time. For instance, teachers could easily 
record measures of curricular monitoring and adherence on an on-going basis. 
Rather than impose lockstep pacing guides, based on external and untested models 
of sequencing and timing (and instead of focusing on punitive responses if a teacher 
or class falls off the pace), districts could require teachers to report and interpret how 
they implement a curriculum, and learn from it. Records of when and why teachers 
supplement curricular materials, become delayed, or experience diffi culty with one 
or more topics would generate more informative district-wide data about curricular 
use, and become a means to use ongoing practice to inform future implementation, 
especially from combining monitoring and supplementation data with disaggregated 
student and school data. In the near future, along with electronically delivered cur-
riculum, the bulk of such monitoring could even be done automatically. 

 The studies asked teachers to complete a number of surveys regarding their 
knowledge of standards, their beliefs about instructions, and their approaches to 
certain kinds of practices, as well as core information about teacher capacity and 
about their participation in professional development. Data from such surveys, gath-
ered periodically within technologically networked practitioner communities, could 
be factored into models of curricular implementation, professional development 
planning, and overall teacher community organization, with the goal of instructional 
improvement at the individual teacher or classroom level, and at higher levels of 
organization such as departments, schools, and districts. 

 Perhaps the most diffi cult data gathering tasks will be the collection of the kind 
of real-time observational data required for analysis of many of the implementation 
factors. While surveys and teachers’ own monitoring reports can shed light on these 
issues, the collection of observational data, and its analysis via established, reliable 
rubrics, will continue to be an essential, and costly, element. It will be challenging 
to gather and use observational data to help defi ne curricular, or, more broadly, 
 instructional  effectiveness (even with some of new technologies for classroom 
video recording becoming available). The use of video from such observations to 
guide professional development may turn out to be a major driver in our efforts to 
engineer for effectiveness going forward. 

 In this chapter, we concentrated on measures to permit comparison of curricular 
implementation and effectiveness, and emphasized the importance of ensuring cur-
ricular sensitivity and the alignment of outcome measures to systemic factors. But 
one can imagine that technological means of data gathering can enhance or trans-
form the kinds of outcomes recorded, measured, and reported. 

 Treating the instructional core as a complex system will support effi cient design 
and implementation of such new innovations in curricular implementation and 
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 prototype systems for gathering and analyzing relevant data. As these are created, 
with the aim of engineering the instructional core for improved effectiveness, it will 
be essential to consider the use scenarios of innovations—to ensure that the data gath-
ering fi ts into the work fl ow of engaging classroom activities (i.e., does not become 
onerous for teachers’ workloads,  and  in fact reinforces their instructional efforts), that 
the data neither artifi cially reduce nor diminish the complexity of the instructional 
core, and that the statistical analytic approaches are robust and appropriate. 

 The ongoing improvement of the complex instructional core requires a “capacity 
to inform improvement” (Bryk,  2009 ) that establishes regular fl ow of information, 
feedback, and consultation within and among different levels of the educational 
organization. This argues for the establishment, in schools and districts, of net-
worked improvement communities that include practitioners, researchers, technolo-
gists, and leaders who all participate throughout the work of achieving common 
goals, the design, testing, and implementation of the innovations, recognizing pat-
terns and identifying sources of variability (Bryk et al.,  2011 ). 

 All major complex systems (websites, health systems, communications, con-
sumer marketing, climate analysis, disaster relief) are moving to the use of data- 
intensive systems with related analytics. What is most compelling in the studies 
described here is that it is possible to infer from them how we should be developing 
and deploying technologically enabled systems of data collection that will permit us 
to (a) gather more complete types and quantities of data about what is happening in 
classrooms, (b) become aware when a system exhibits patterns or trends toward 
improvement, stagnation, or deterioration over time, and (c) learn how to drive 
those systems towards improvement. Learning to undertake this level of analysis 
would constitute second-order traits of these complex systems. 

 Several principles continually surface in considering the goal of improving the 
instructional core: (a) curriculum matters; (b) instructional materials matter, because 
these best express the enacted curriculum, and their importance grows as the scale 
of implementation increases to the district level; (c) coherence matters, because it is 
critical in any complex system that all the moving parts align and mutually support 
each other; (d) multiple processes combine to result in observed outcomes (Bryk 
et al.,  2011 ); (e) focusing solely on outcome data is not suffi cient to support instruc-
tional improvement; and (f) managing and monitoring the implementation of tools/
programs/curricula is a key function of school and district leadership. 

 This review leads us to the conclusion that it should be a high priority to 
design and implement technologically enabled systems that extend the capability of 
district and state data systems to gather data that can inform  improvement of 
the instructional core , focused on curricular selection, use and implementation. 7  

7   The components outlined here would not be a complete set to drive improvement in the instruc-
tional core. In an earlier version of this paper, we sought to discuss formative assessment and tie it 
to the construct of learning trajectories, diagnostic assessments and instructional practices, but it 
was too ambitious for a single paper. This second analysis will lead to an additional set of factors 
and data elements to this system, and we hope to complete that paper as a companion to this one 
in the near future. 
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Based on this review, we believe that districts could make signifi cant progress on 
such an agenda in the areas of outcome measures, curricular monitoring, curricular 
implementation factors, and professional development and capacity issues. To this 
end, we outline a set of proposed actions. 

    Steps in a Strategic Plan to Strengthen the Instructional Core 
in Relation to Curricular Use, Implementation, and Outcomes 

     1.    Form “networked improvement communities,” (Bryk et al.,  2011 ) to defi ne trac-
table problems on which to focus, establish common targets and develop precise, 
measurable goals for the instructional core, across multiple levels of the system 
(teachers and classrooms, researchers, schools, districts).   

   2.    Construct databases of assessment items linked directly to Common Core State 
Standards (using a set of relevant tags that distinguish among the features and 
measures), a variety of outcome measures to yield fair tests, and tests aligned to the 
CCSS. Focus on creating automated means of scoring that support the use of vari-
eties of item types (multiple choice, as well as constructed and extended response) 
and concentrate on how to get meaningful data to teachers and students.   

   3.    Develop and implement a means of analyzing, documenting, and notating the 
alignment of a curriculum to the CCSS, and of creating a standardized means of 
analyzing and representing content analysis of a curricular program.   

   4.    Build a data system to gather and monitor data on curricular use, supplementa-
tion, and reasons for supplementation, gathered in real time.   

   5.    Collect data on implementation factors such as those identifi ed in the above 
studies.   

   6.    Link the data system and various data categories and outcome measures to stu-
dent, classroom, school, and district demographic data.   

   7.    Link the data system to teacher demographic and survey data.   
   8.    Find/develop/implement ways to conduct valid classroom observations (by 

teachers, supervisors, principals, specialists) for professional development pur-
poses, and to triangulate these observations with teacher self-reports.     

 Finally, we argued that the value of the work rested in building models of the 
complex system known as the instructional core, and in engineering that instruc-
tional core for effectiveness by designing and implementing data systems using 
the constructs and measures developed by the studies. We suggest that treating the 
instructional core as a complex system, and taking a stance of engineering the 
instructional core for greater effectiveness of mathematical teaching, learning, and 
reasoning—studying what is happening in the classrooms in terms of patterns, 
trends, emergent behaviors, with deliberate sensitivity to variations in contexts—is 
a means to accelerate improvement in instruction and student learning. Ironically, 
by doing so, one could create a next generation of “best practices,” this time with a 
focus on a continuously improving community in which research and practice draw 
more directly and iteratively from each other.      
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 In this concluding chapter, we draw on some of the common features of large- 
scale studies in mathematics education to highlight the contributions and consider-
ations associated with this type of research. We focus our discussion in three areas, 
drawing on the work of the many researchers and research groups that have contrib-
uted to this volume. First, we consider some of the key benefi ts that large-scale 
studies present to mathematics education. Second, we examine potential pitfalls that 
face those who conduct large-scale studies in mathematics education. Finally, we 
look to the future and consider what role large-scale studies might play. 

    Benefi ts of Large-Scale Studies in Mathematics Education 

 Below, we specifi cally discuss three types of benefi ts of large-scale studies: their 
utility for understanding the status of situations and trends, the capacity they pro-
vide for testing hypotheses, and the sophisticated analytic methods often employed 
in such studies. However, we fi rst want to point out that when large-scale studies are 
designed and conducted with care, these benefi ts can mean greater power for fi nd-
ings to be generalized with respect to populations. Looking once more to the NSF 
and IES Common Guidelines (U.S. Department of Education & National Science 
Foundation,  2013 ), we see that the last three types of research they discuss are 
impact studies: effi cacy, effectiveness, and scale-up. Although these three types of 
impact studies differ with regard to the populations to which their fi ndings general-
ize, the large-scale study design can allow for greater attention to identifying varia-
tion in impacts by subgroup, setting, level of implementation, and other mediators. 

    Understanding the Status of Situations and Trends 

 To guide research and policy, it is often necessary to better understand the “big pic-
ture” of teaching and student learning across a large population. Large-scale studies 
allow researchers and policy makers to map the current status of teaching and student 
learning or to understand broad trends in teaching and learning. There is a long his-
tory of generating large data sets on teaching and learning through data acquisition 
studies such as NAEP (e.g., Braswell et al.,  2001 ;    National Center for Education 
Statistics,  2013 ) and international comparative work such as the IEA studies (e.g., 
Hiebert et al.,  2003 ; Husén,  1967 ; Mullis et al.,  1997 ; Robitaille & Garden,  1989 ). 
Such studies provide key opportunities to look broadly across time and geographic 
region to examine features of mathematics education and also how those features 
have or have not evolved. For example, with respect to student learning, in this vol-
ume Kloosterman et al. ( 2015 ) made use of NAEP data from between 2003 and 2011 
to analyze changes in student understanding of algebraic reasoning. Others have used 
large-scale data to examine student learning from a comparative lens, whether study-
ing trends in gender differences across the IEA studies (Hanna,  2000 ), considering 
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gaps in the mathematics achievement on NAEP of students from different ethnic and 
socio-economic backgrounds (Lubienski & Crockett,  2007 ) or looking at differential 
curricular effects on various ethnic groups (Hwang et al.,  2015 ). 

 In addition to student learning, researchers and policy makers have used data 
from large-scale studies to look at other features of the educational system. Over the 
past four decades, the National Science Foundation has supported a series of large- 
scale surveys of mathematics and science education that have addressed signifi cant 
questions about instruction, curriculum, and resources in mathematics and science 
classrooms around the USA (Banilower et al.,  2013 ). These studies have attempted 
to provide comprehensive and nationally representative data on mathematics and 
science education by surveying carefully chosen samples of thousands of teachers 
across the country. This type of large-scale data set has made it possible to, for 
example, assess the degree to which teaching in the USA aligns with recognized 
“best practices” (Weiss, Smith, & O’Kelley,  2009 ). Similarly, the TIMSS 1999 
Video Study (Hiebert et al.,  2003 ) documented differences in mathematics teaching 
across several countries, and the data from that study has informed further research 
and discussion on the nature of effective mathematics teaching (e.g., Givvin, Jacobs, 
Hollingsworth, & Hiebert,  2009 ). In this volume, Zhu ( 2015 ) has integrated data 
from several studies in the TIMSS series to better understand trends in the role, 
nature, and use of mathematics homework in various countries. In general, the 
wealth of data from large-scale studies makes space for insightful analyses of the 
status of and trends in mathematics education.  

    Testing Hypotheses 

 In addition to shedding light on the current status and trends in mathematics educa-
tion, large-scale studies often serve the role of testing hypotheses about theories or 
interventions for broad samples of students. Of course, smaller-scale studies also 
investigate and test hypotheses. However, large-scale studies are well positioned to 
build on earlier research fi ndings and the work of exploratory studies. They can test 
hypotheses generated from such studies or develop and assess formal interventions 
that are designed based on the fi ndings of smaller studies. For example, Vig, Star, 
Dupuis, Lein, and Jitendra ( 2015 ) used a large-scale approach to revisit concerns 
raised in previous research about student use of cross multiplication to solve propor-
tion problems. Although they expected to confi rm the fi ndings of existing studies, 
many of which were conducted in the 1980s and 1990s, that indicated that students 
often relied on cross multiplication, Vig et al. found that this tendency no longer 
seemed to hold for the students in their sample. 

 Large-scale studies can also be effective tools for examining interventions and 
programs to investigate questions of validity and effectiveness at scale. For exam-
ple, Lewis and Perry ( 2015 ) conducted a randomized, controlled trial of a lesson 
study intervention designed to improve teachers’ and students’ mathematical 
knowledge. Based on earlier work that analyzed the features of lesson study and 
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characterized the cyclic nature of teacher learning through lesson study, Lewis and 
Perry designed a larger test of scaling-up lesson study with support from centrally 
designed mathematical resource kits. They hypothesized that these resource kits 
would act as a substitute for the teacher’s manual that is a key resource for lesson 
study in Japan and that lesson study with these resource kits would develop beliefs 
and dispositions among the teachers that maximize the effectiveness of lesson study. 

 With a large pool of participants, it is generally more convenient to test hypoth-
eses about the effectiveness of programs across diverse populations. Several exam-
ples of this type of effectiveness research are included in this volume. For example, 
the LieCal project investigated the effectiveness of the reform-oriented Connected 
Mathematics Project (CMP) middle school mathematics curriculum as compared 
with more traditional middle school mathematics curricula (   Cai  2014 ; Cai et al., 
 2011 ; Hwang et al.,  2015 ; Moyer et al.,  2011 ). CMP was developed based on a 
problem-based pedagogy grounded in research and has been fi eld tested. The LieCal 
project used a quasi-experimental design with statistical controls to examine longi-
tudinally the relationship between students’ learning and their curricular experi-
ences. The project was fi rst conducted in 14 middle schools in an urban school 
district serving a diverse student population in the USA and later followed those 
students into high school. By taking a large-scale approach, the LieCal Project has 
been able to investigate the effect of the CMP curriculum as it has been formally 
implemented in schools, as well as to examine the factors that might contribute to 
improved student learning. 

 Working from a base of research showing the signifi cance of success in algebra 
for future mathematics course-taking and success, Heppen, Clements, and Walters 
( 2015 ) tested the hypothesis that online Algebra I courses could be an effective way 
to increase access to algebra for eighth graders in schools that do not offer algebra. 
This randomized experimental trial involved 68 largely rural schools across Maine 
and Vermont that did not ordinarily offer an Algebra I course to students in eighth 
grade. The fi ndings support the conclusion that online courses can be an effective 
way to increase access to Algebra I.  

    Employing Sophisticated Analytic Methods 

 Underlying the strength of large-scale studies to test hypotheses is their potential for 
analytic and statistical power. Large-scale studies can, and often must, take advan-
tage of advanced statistical techniques to look for causes and correlates of students’ 
learning of mathematics. For example, large-scale research in education frequently 
involves participants who are nested in hierarchically organized levels such as stu-
dents grouped into classes. In order to deal with such situations, multilevel model-
ing techniques are called upon to address the shortcomings of traditional linear 
regression models. Several of the studies reported in this volume make use of hier-
archical linear modeling (Raudenbush & Bryk,  2002 ) to conduct analyses of various 
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types of nested data, including students nested in classrooms (Hwang et al.,  2015 ), 
students nested in schools (Heppen et al.,  2015 ), and teachers nested in lesson study 
groups (Lewis & Perry,  2015 ). 

 The statistical power and sophistication of analysis afforded by large-scale stud-
ies can be diffi cult to match in smaller-scale research. Analyses can include atten-
tion to intermediate outcomes such as teacher beliefs (e.g., Lewis & Perry,  2015 ) 
and, when looking at the effectiveness of a program, can control for factors such as 
implementation or quality of instruction (e.g., Cai, Ni, & Hwang,  2015 ; Tarr & 
Soria,  2015 ). Thus, large-scale studies can help to reveal the complexities in casual 
links by attending to the mediating factors and issues that can infl uence the effects 
of a treatment in different naturalistic contexts. For example, in their retrospective 
study of an NSF-funded Local Systemic Change (LSC) initiative in the greater 
Philadelphia area, Kramer, Cai, and Merlino ( 2015 ) synthesized a school-level 
extension of the ideas of implementation fi delity and buy-in. They combined a host 
of measures to generate a “will-to-reform” factor that they investigated as a poten-
tial intermediate factor in studying the effects of the LSC model on student achieve-
ment. This allowed them to determine that the level of school-level buy-in to the 
LSC model was a critical differentiator between schools that had improved mathe-
matics achievement and schools where mathematics achievement declined. 

 Not unexpectedly, large-scale studies in mathematics education have tradition-
ally relied on quantitative methods of analysis. However, some researchers have 
begun to weave together both quantitative and qualitative approaches to provide 
even more sophisticated analyses. Mujtaba, Reiss, Rodd, and Simon ( 2015 ) describe 
a deft interleaving of quantitative techniques such as multilevel modeling with qual-
itative analyses of semi-structured interviews of individual students. In studying the 
factors which contribute to students’ decisions whether to participate in post- 
compulsory mathematics courses, these researchers used an iterative approach. 
After developing an initial set of fi ndings through multilevel modeling, Mujtaba 
et al. found that their qualitative interview data suggested that their initial constructs 
may not have captured the true infl uence of mathematics teachers and lessons. 
Guided by their qualitative fi ndings, they deconstructed their original constructs and 
conducted a second quantitative analysis using item-level rather than construct- 
level data. This back-and-forth between analytic methods allowed Mujtaba et al. to 
refi ne their results and ultimately paint a more complete picture of the factors which 
infl uence students’ decisions to continue with mathematics. 

 Finally, the large, rich sets of data that come from large-scale studies allow 
researchers a great deal of analytic fl exibility. For example, analyses carried out on 
these data can, as Kloosterman et al. ( 2015 ) have demonstrated, join assessment 
items that were originally conceived as disparate and falling into distinct categories 
into coherent clusters that measure specifi c mathematical skills. In their work with 
NAEP items, Kloosterman et al. have examined the algebra-related items used 
between 2003 and 2011 to produce clusters of items that appear to measure algebra 
skills that are more specifi c than the general NAEP algebra scales but also more 
general than what could be obtained from individual item analyses.   
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    Pitfalls of Large-Scale Studies in Mathematics Education 

 Although the potential benefi ts of large-scale studies are compelling, there are a 
number of diffi culties, both structural and operational, that these complex endeavors 
can fall prey to. We are therefore compelled to ask where and how large-scale stud-
ies are prone to failure. Many of these diffi culties are directly related to the need to 
coordinate and manage large numbers of people and large quantities of data across 
multiple political and geographic settings and over potentially long periods of time. 
Any project that requires the cooperation of large numbers of people or their gov-
ernments will be subject to pitfalls simply because they will come to the project 
with different expectations and priorities. Orletsky, Middleton, and Sloane ( 2015 ) 
aptly remind us of the parallel drawn by Albert Beaton while he was director of 
TIMSS between sausage making, the legislative process, and the design of interna-
tional test items (Bracey,  1997 ). The need to balance the priorities of multiple stake-
holders in a complex project can result in critical compromises to the design of the 
research. However, other challenges to conducting large-scale research are rooted in 
limitations of resources, time, and methodology. 

    Resources and Time 

 If a study is large scale, whether in terms of sample size, geographic coverage, or 
quantity of data, it goes without saying that it will require great effort that consumes 
a large amount of time, money, or both. For example, the observational data that 
Confrey and Maloney ( 2015 ) argue is necessary to collect and analyze for judg-
ments of instructional effectiveness is fundamentally resource intensive, and there 
are methodological trade-offs that must be considered when balancing the quality of 
the data collected and the required resources (Shih, Ing, & Tarr,  2015 ). The same is 
true for multiple, interlocking phases of analysis, such as the iterations of quantita-
tive and qualitative analysis carried out by Mujtaba et al. ( 2015 ). 

 Even when the resources and time are available to carry out a large-scale study, 
the time lag between the beginning of the study and the availability of the results can 
be considerable. Indeed, by the time the results are available, the object of study may 
have changed signifi cantly. This can be particularly challenging for longitudinal 
studies of curricular effectiveness. For example, the LieCal project described by Cai 
et al. ( 2015 ) and Hwang et al. ( 2015 ) compared the effects of reform and traditional 
middle school mathematics curricula. The project followed students using the 
Connected Mathematics Program (CMP) and several more traditional curricula 
through middle school and subsequently through high school. Since the collection of 
data for that longitudinal study, CMP has undergone two rounds of revisions. Thus, 
the implications of the LieCal project fi ndings must be interpreted in light of the fact 
that today’s CMP is not entirely the same as the original. This evolution of educa-
tional phenomena can be even more pronounced when studying educational inter-
ventions that use technology. The technological state of the art changes rapidly and 
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sometimes in evolutionary leaps (witness, for example, the rapidity of the adoption 
of tablet computers, both in daily life and in classrooms) that confound the ability of 
researchers to carry out well-planned, large-scale studies of technological tools in 
education whose results remain relevant after the research is complete. 

 Another issue related to time is that for large data sets that are generated over time, 
such as standardized assessments like NAEP, the items, coverage, and sampling can 
change over the years. This leads to potential complications in interpretation of the data 
that researchers must plan for. Zhu ( 2015 ) has provided a perspective in this volume on 
some of the challenges that are posed by assessments that change over time. Zhu has 
noted in detail many changes in the way TIMSS surveys have investigated homework 
practices over the years. In her analysis of longitudinal trends in the TIMSS data on 
homework, she compensated for variations in measurement scales over time. Moreover, 
she was able to use those changes in measurement design to provide a perspective on 
the shifting role and signifi cance of homework in the TIMSS countries over time.  

    Complexity of Authentic Research Settings 

 The complexity of conducting large-scale studies is also related to the “messiness” of 
the authentic research settings—usually classrooms. Tarr and Soria ( 2015 ) had to con-
tend with the fact that, in authentic settings (as opposed to laboratory settings), stu-
dents move from school to school, making missing data a real issue. Middleton et al. 
( 2015 ) ended up with only about one-third of their original sample due to high attrition 
of students in their study in urban schools. Even within classes, tremendous variation 
exists across students, their prior knowledge and understanding, and the kinds of 
teaching methods that optimize to different settings (see, for example, Heppen et al., 
 2015 ). Scale compounds such issues, but like Tarr and Soria, researchers can be clever 
in their approaches to handling such variation, fi rst through appropriate sampling and 
handling of covariates, and second, through use of appropriate statistical modeling.  

    Methodology 

 Finally, lest we too-readily ascribe power to the complex statistical methods that 
can be used in large-scale studies, it is important to remember that there are also 
methodological pitfalls that can interfere with the effectiveness of any statistical 
analysis. Orletsky et al. ( 2015 ) provide a thorough review of the various threats to 
validity, both internal and external, that must be guarded against. In addition, both 
Kloosterman et al. ( 2015 ) and Orletsky et al. comment on issues related to sampling 
in large-scale studies. Both chapters warn readers that, although large-scale studies 
can offer great statistical power, one must be careful when dealing with subgroups 
of the study sample (e.g., ethnic groups). To generalize fi ndings to subpopulations, 
it is necessary to consider the sampling procedure used in the larger study and 
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factor in the appropriate sampling weights. In the context of NAEP data, 
Kloosterman et al. warn that:

  When analysis is restricted to Hispanic and Black students within a given state, the standard 
errors for the populations are much larger than they are for national results for all students. 
When looking at differences in performance on individual items, statistical power decreases 
further because only those students who complete the item in question can be included in 
the analysis. This is not to say that analyses for subgroups are inappropriate, but larger dif-
ferences are needed to make claims involving statistical signifi cance.    (p. ???) 

   In addition, the instruments that researchers use to gather data must bear careful 
scrutiny. For example, Ebby and Sirinides ( 2015 ) describe a large-scale approach 
used to develop, analyze the characteristics of, and validate TASK, an instrument for 
measuring teachers’ capacity for learning trajectory-based formative assessment. 
However fl awed tools, particularly when used without attending to their constraints 
and assumptions, can destroy the usefulness of the data gathered with them. At the 
very least, it is necessary to identify the assumptions underlying a data- gathering 
instrument and the purposes for which it is intended. Shih et al. ( 2015 ) make this 
point in their analysis of two classroom observation protocols that have been used in 
large-scale projects. Although both protocols ostensibly measure features of class-
room instruction, an analysis showed that they rely on quite different assumptions 
about that instruction (one assuming relatively stable instruction from day to day and 
the other attending to more dimensions of instruction that may be less stable). Given 
the different purposes for which the protocols were designed, Shih et al. found that 
these two tools captured different sources of variation (although appropriately so for 
their respective studies). Thus, they warn that, as large-scale measures of mathemat-
ics instruction are used more frequently in large-scale studies in mathematics educa-
tion, careful attention must be paid to their methodological characteristics.   

    Looking to the Future 

 This monograph is the fi rst volume explicitly devoted to large-scale studies in math-
ematics education research. While we certainly value smaller-scale studies in math-
ematics education and believe in the unique roles that small-scale studies play in 
educational research, we believe that large-scale studies also have a distinctive role 
to play. In their survey of over 700 mathematics education articles published 
between 1995 and 2005, Hart et al. ( 2008 ) found that 50 % of the studies used quali-
tative methods only, 21 % used quantitative methods only, and 29 % mixed qualita-
tive and quantitative methods in various ways. Studies that use quantitative methods 
are not necessarily large-scale studies; nevertheless, large-scale studies usually do 
employ quantitative methods. Therefore, we suggest that the fi ndings of Hart and 
her colleagues show that there remains much room in mathematics education 
research for more large-scale studies. 

 Given the benefi ts and pitfalls that we have considered above, what can we take 
away from the work presented in this monograph? First, we should ask when it makes 
sense to design and conduct large-scale studies. The answer to this question hearkens 

J. Cai et al.



413

back to the basic training of any researcher—it depends on the kinds of research 
questions to be answered. The kind of research question we want to answer will dic-
tate whether we choose a large-scale approach. The IES and NSF Common Guidelines 
(U.S. Department of Education & National Science Foundation,  2013 ) describe six 
different types of research, ranging from foundational research and early-stage or 
exploratory research, to design and development research, to effi cacy, effectiveness 
and scale-up studies. Not every one of these types of research requires a large-scale 
study, although the distinctions are not precise. Certainly, research questions about 
the effectiveness of programs and interventions in a wide range of contexts and cir-
cumstances would seem to benefi t from a large-scale approach. We hope that, the 
fi ndings from the chapters in this volume and the choices made by their authors will 
provide guidance for readers when they think about the use of large-scale studies. 

 We are fully aware of the cost and resources required for designing and conducting 
large-scale studies. They may go far beyond the reach of dissertation studies. Indeed, 
it is quite challenging to carry out a large-scale study without a team. However, there 
is a wealth of existing large-scale data sets available and many researchers have taken 
advantage of them with fruitful results (e.g., Kloosterman,  2010 ). As noted above, 
both Kloosterman et al. ( 2015 ) and Zhu ( 2015 ) based their work in this volume on 
analyses of data from existing large data sets (NAEP and TIMSS, respectively). 

 Moreover, with support from the NSF, the American Educational Research 
Association (AERA) offers small grants and training programs for research involv-
ing large-scale data sets collected or supported by the National Center for Education 
Statistics (NCES), NSF, or other federal agencies. These include dissertation grants 
that support advanced doctoral students in undertaking doctoral dissertations using 
data from these large-scale data sets. AERA also provides research grants for  faculty 
members, postdoctoral researchers, and other doctoral-level scholars to undertake 
quantitative research using such large-scale data. 

 The benefi ts and pitfalls of large-scale studies exhibited in the research included 
in this monograph may help future researchers when they design and conduct large- 
scale studies. It is our hope that this monograph will increase awareness in the 
mathematics education research community of large-scale studies and encourage 
the community to engage in more such studies. This, in turn, may help the fi eld to 
move along the “pipeline” of different types of research specifi ed in the NSF and 
IES guidelines to generate solid evidence that supports the development and imple-
mentation of programs that will improve student learning.     
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