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List of Symbols

a (m - 1)/(m + 1)
b 1/(m + 1)
c Cohesion
C0 Uniaxial compressive strength
m (1 + sin /)/(1 - sin /)
S0 Inherent shear strength (cohesion)
T Uniaxial tensile strength
T0 Theoretical MC uniaxial tensile strength
/ Angle of internal friction
l = tan / Coefficient of internal friction
r Normal stress on plane
s Shear stress on plane
r1, r2, r3 Principal stresses, with no regard to order
rI, rII, rIII Major, intermediate, minor principal stresses
rm (rI + rIII)/2
sm (rI - rIII)/2
rI

* C0 - mT
rIII

* -T

1 Description

The Mohr–Coulomb (MC) failure criterion is a set of linear
equations in principal stress space describing the conditions
for which an isotropic material will fail, with any effect
from the intermediate principal stress rII being neglected.
MC can be written as a function of (1) major rI and minor
rIII principal stresses, or (2) normal stress r and shear stress
s on the failure plane (Jaeger and Cook 1979). When all
principal stresses are compressive, experiments demonstrate
that the criterion applies reasonably well to rock, where the
uniaxial compressive strength C0 is much greater than the
uniaxial tensile strength T, e.g. C0/T [ 10; some modifica-
tion is needed when tensile stresses act, because the (the-
oretical) uniaxial tensile strength T0 predicted from MC is
not measured in experiments. The MC criterion can be
considered as a contribution from Mohr and Coulomb
(Nadai 1950). Mohr’s condition is based on the assumption
that failure depends only on rI and rIII, and the shape of the
failure envelope, the loci of r, s acting on a failure plane,
can be linear or nonlinear (Mohr 1900). Coulomb’s condi-
tion is based on a linear failure envelope to determine the
critical combination of r, s that will cause failure on some
plane (Coulomb 1776). A linear failure criterion with an
intermediate stress effect was described by Paul (1968) and
implemented by Meyer and Labuz (2012).

2 Background

Coulomb, in his investigations of retaining walls (Heyman
1972), proposed the relationship

jsj ¼ S0 þ r tan / ð1Þ

where S0 is the inherent shear strength, also known as
cohesion c, and / is the angle of internal friction, with the
coefficient of internal friction l = tan /. The criterion
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contains two material constants, S0 and /, as opposed to one
material constant for the Tresca criterion (Nadai 1950). The
representation of Eq. (1) in the Mohr diagram is a straight
line inclined to the r-axis by the angle / (Fig. 1). By
constructing a Mohr circle tangent to the line (a stress state
associated with failure) and using trigonometric relations,
the alternative form of Eq. (1) in terms of principal stresses
is obtained:

ðrI � rIIIÞ ¼ ðrI þ rIIIÞ sin /þ 2S0 cos / ð2Þ

One form of Mohr’s failure criterion is

sm ¼ f ðrmÞ ð3Þ

where sm = (rI - rIII)/2, rm = (rI + rIII)/2. Knowing the
relationship given by Eq. (3), the Mohr envelope can be
constructed on the r, s plane (Fig. 1), and failure occurs if
the stress state at failure, the circle of diameter (rI - rIII), is
tangent to the failure envelope, s = g(r). Thus, from Eq. (2),
Coulomb’s criterion is equivalent to the assumption of a
linear Mohr envelope.

Coulomb’s and Mohr’s criteria are notable in that an
effect of rm, the mean stress in the rI, rIII plane, is con-
sidered, which is important for materials such as rock and
soil; i.e., experiments on geomaterials demonstrate that sm

at failure increases with rm. However, the additional claim
that the point of tangency of the critical stress circle with
the failure envelope, as constructed on the Mohr diagram,
represents the normal and shear stresses (r, s)f on the failure
plane with normal inclined to rI at an angle af is not always
observed in experiments. Nonetheless, Mohr’s criterion
allows for a curved shape of the failure envelope, and this
nonlinear behavior is exhibited by many rock types (Jaeger
and Cook 1979).

3 Formulation

With no order implied by the principal stresses r1, r2, r3,
the MC criterion can be written as

� r1 � r2

2
¼ a

r1 þ r2

2
þ b; � r2 � r3

2
¼ a

r2 þ r3

2
þ b; � r3 � r1

2
¼ a

r3 þ r1

2
þ b

ð4Þ

where a ¼ m�1
mþ1 ; m ¼ C0

T0
¼ 1þsin /

1�sin / ; b ¼ 1
mþ1 ; C0 ¼ m

mþ1 ; T0 ¼
C0
2 1� sin /ð Þ; and 0� a\1: T0 is the theoretical MC uni-
axial tensile strength (Fig. 2a) that is not observed in
experiments; rather, a much lower strength T is measured
(rI = 0, rIII = -T), with the failure plane being normal to
rIII. C0 is the theoretical MC uniaxial compressive strength
(Fig. 2a) that is usually close to the measured value (so
another symbol is not introduced).

The shape of the failure surface in principal stress space
is dependent on the form of the failure criterion: linear
functions map as planes and nonlinear functions as curvi-
linear surfaces. As shown in Fig. 2b, the six equations in (4)
are represented by six planes that intersect one another
along six edges, defining a hexagonal pyramid. Also pre-
sented in Fig. 2b is the failure surface on the equipressure
(r1 + r2 + r3 = constant) or p-plane perpendicular to the
hydrostatic axis, where MC can be described as an irregular
hexagon with sides of equal length (Shield 1955). Isotropy
requires threefold symmetry because an interchange of r1,
r2, r3 should not influence the failure surface for an iso-
tropic material. Note that, the failure surface need only be
given in any one of the 60� regions (Fig. 2b).

Consider the transformation from principal stress space
(r1, r2, r3) to the Mohr diagram (r, s). Although the radial
distance from the hydrostatic axis to the stress point is
proportional to the deviatoric stress, a point in principal
stress space does not directly indicate the value of shear
stress on a plane. However, each point on the failure surface
in principal stress space corresponds to a Mohr circle tan-
gent to the failure envelope (Fig. 2a). For the particular case
where r2 is the intermediate principal stress in the order
r1 C r2 C r3, the failure surface is given by the side ACD
of the hexagonal pyramid (Fig. 2b). The principal stresses
at point D represent the stress state for a triaxial compres-
sion test (r1, r2 = r3)D, and point D is given by circle D in
the Mohr diagram. Similarly, for point C with principal
stresses (r3, r1 = r2)C associated with a triaxial extension
test, Mohr circle C depicts the stress state. Points D and
C can be viewed as the extremes of the intermediate stress
variation, and the normal and shear stresses corresponding
to failure are given by points Df and Cf. Points lying on the

Fig. 1 Mohr diagram and failure envelopes
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line CD (Fig. 2b) will be represented by circles between
C and D (Fig. 2a).

For negative (tensile) values of the minor principal
stress, experiments show that the failure plane is perpen-
dicular to rIII = -T. Indeed, the tensile failure mode is
completely different from the shear failure mode that occurs
with compressive normal stresses, although failure under
uniaxial compression is also different, usually observed as
axial splitting (Vardoulakis et al. 1998). To account for
tensile failure, Paul (1961) introduced the concept of ten-
sion cut-offs and a modified MC failure criterion requiring
three material constants: Eq. (3) is valid when

rI [ ðC0 � mTÞ ¼ r�I ð5Þ

but MC is modified as

rIII ¼ �T when rI\r�I ð6Þ

The representation of tension cut-offs on the Mohr dia-
gram is shown in Fig. 3a. Note that, the stress state depicted
by the broken circle, defined by rI = rI

* = (C0 - mT),

rIII
* = -T, is not part of the failure envelope. Rather, all

Mohr circles with rI \rI
* are tangent to the envelope at the

point rIII
* = -T. In principal stress space, the modified MC

criterion with tension cut-offs involves the MC pyramid
intercepted by a second pyramid with three planes perpen-
dicular to the principal stress axes (Fig. 3b).

4 Experimental Data

Typically, laboratory results are evaluated using the MC
failure criterion, as axisymmetric loading imposes a repre-
sentation where the intermediate stress rII is equal to the
minor rIII or major rI principal stress. Few tests indepen-
dently control rII because of experimental challenges,
although conventional triaxial compression (r1 [r2 = r3)
and extension (r1 = r2 [ r3) tests offer simple approaches
to evaluate an influence of the intermediate stress. However,
a true triaxial apparatus is needed to investigate stress states
between the axisymmetric conditions represented by points
C and D in Fig. 2b (Meyer and Labuz 2012).

Fig. 2 Mohr–Coulomb failure
criterion: a linear envelope in the
Mohr diagram; b pyramidal
surface in principal stress space
and cross-section in the
equipressure plane
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Various researchers (Mogi 1971, 1974; Takahashi and
Koide 1989; Chang and Haimson 2000; Al-Ajmi and
Zimmerman 2005) have performed true triaxial testing, and
the intermediate stress effect appears to depend on rock type,
although anisotropy and experimental conditions may also
influence the results. In fact, anisotropy can cause a reserve
intermediate-stress effect, where the friction angle appears
larger in compression than extension (Dehler and Labuz
2007). In addition, boundary conditions can play a sub-
stantial role in experiments with rock, where a uniform state
of stress is a basic assumption of element testing that is often
violated (Labuz and Bridell 1993; Paul and Gangal 1967).

Several references can be found dealing with the appli-
cation of the MC failure criterion (Vutukuri et al. 1974;
Andreev 1995; Paterson and Wong 2005). In a treatise on
rock properties (Landolt-Börnstein 1982), a chapter by
Rummel (pp. 141–238) gives an overview of failure
parameters for various types of rock, and Mogi (2007)
summarized results on a number of rocks. Generally, it is

claimed that MC well describes the stress state at failure
over a limited range of mean stress. Statistical treatment of
various failure criteria applied to experiments on intact rock
can be found in the literature (Colmenares and Zoback
2002; Hoek et al. 2002; Pincus 2000; Al-Ajmi and
Zimmerman 2005; Pariseau 2007; Benz and Schwab 2008;
Das and Basudhar 2009).

5 Advantages and Limitations

The advantages of the MC failure criterion are its mathe-
matical simplicity, clear physical meaning of the material
parameters, and general level of acceptance. A limitation
surrounds the numerical implementation of a failure crite-
rion containing corners in the p-plane (Fig. 2b), as opposed
to a smooth function, e.g., Drucker-Prager (1952) failure
criterion. Deformation analysis requires a flow rule, a
relationship between strain increments and stress, such that
the flow rule determines the orientation of the strain-
increment vector with respect to the yield condition, e.g.,
normal for an associative flow rule. Thus, the orientation of
the strain-increment vectors is unique along the sides of the
MC pyramid. However, along the edges of the pyramid
(corners in the p-plane), there is some freedom in the ori-
entation (Drescher 1991).

6 Recommendations

Among the various failure criteria available, both linear and
nonlinear equations dependent on the major rI and minor rIII

principal stresses are attractive because the geometric rep-
resentation of laboratory data can be either in the principal
stress plane or the Mohr diagram, which is often convenient.
Triaxial compression and extension testing is suggested as a
standard procedure to evaluate an intermediate-stress effect,
although true triaxial testing is needed to describe the failure
surface between the axisymmetric stress states. Nonetheless,
as a first order approximation to the behaviour of rock, the
Mohr–Coulomb failure criterion is recommended when the
three principal stresses are compressive and when consid-
ering a limited range of mean stress.
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