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Abstract. We introduce a generalization of Multivariate Robust Soft Learning
Vector Quantization. The approach is a probabilistic classifier and can deal with
vectorial class labelings for the training data and the prototypes. It employs t-
norms, known from fuzzy learning and fuzzy set theory, in the class label assign-
ments, leading to a more flexible model with respect to domain requirements. We
present experiments to demonstrate the extended algorithm in practice.

1 Motivation

Uncertainty is a general effect of most datasets and should not be neglected during
learning. In this article we focus on classification problems where the uncertainty oc-
curs in the data as well as in the label information. Both aspects have been addressed
before in the field of probabilistic learning or using fuzzy sets [1,2]. However, often the
obtained models are quite complex or lack sufficient flexibility to integrate additional
expert knowledge. Recently, a multivariate formulation of Robust Soft Learning Vector
Quantization (MRSLVQ) was proposed in [1] and independently recovered in [3], pro-
viding an interpretable prototype based model. Another alternative can be found in [4]
for a so called fuzzification of Soft Nearest Prototype Classification for fuzzy labeled
data and prototypes.

Prototypes are compact representations of a larger set of points, like the mean of a
set of points, and partition the data space e. g. into disjunct regions. They can easily be
inspected by experts and summarize large complex data sets.

All these models share many positive aspects of prototype based learning [5], such
as metric adaptation [6], kernelization [5] or the processing of dissimilarity data [7].
Here we will focus on the MRSLVQ, although the presented concepts can be trans-
ferred to other approaches straight forward. The original formulation of MRSLVQ uses
a multiplicative assignment rule for the class label assignments or fuzzy label member-
ship which we will be replaced by the more generic concept of t−norms in this work.
t−norms occur in the field of fuzzy logic to model boolean set operations for decision
rules. It is assumed that the conjunction ∧ is interpreted by a triangular norm (t−norm
for short) and the disjunction ∨ is interpreted by a triangular co-norm (t−co-norm).
In the considered classification task we like to express that the label of its closest pro-
totype is consistent with the label of a data point which can be modeled by a logical
conjunction and which is approximated by a corresponding t−norm.

In the following, first we will give a brief overview of MRSLVQ and review different
t-norms. Subsequently we extend MRSLVQ by t-norms and show the effectiveness of
the approach for two datasets with unsafe label information.
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2 Multivariate Robust Soft LVQ

The Robust Soft LVQ algorithm (RSLVQ) was introduced in [8] as a probabilistic proto-
type classifier. It is assumed that the probability density p(v) of the data points v ∈ R

d,
with d being the data dimensionality, can be described by a Gaussian mixture model.
Every component of the mixture is assumed to generate data which belongs to only one
of the NC classes. The classification itself is based on a winner takes all scheme. The
probability density of all the data points is given by

p(v|W ) =

NC∑

k=1

NP∑

j:yj=k

p(v|j)P (j) (1)

where W = {(wj , yj)}NP

j=1 is the set of NP labeled prototype vectors wj ∈ R
d and

their assigned crisp class labels yj . P (j) stands for the probability that data points are
generated by component j of the mixture and is commonly set to an identical value
for all the prototypes. The conditional density p(v|j), which describes the probability
that component j is generating a particular data point v, is a function of the prototype
wj itself. The density p(v|j) can be chosen to have the normalized exponential form

p(v|j) = K(j) · ef(v,wj ,σ
2
j ) where K(j) is the normalization constant and the hyper

parameter σ2
j the width of component j.

The aim of RSLVQ is to place the prototypes such that a given data set is classified
as accurately as possible. Therefore the likelihood ratio

L =

NV∏

i=1

L(vi, ci) , with L(vi, ci) =
p(vi, ci|W )

p(vi|W )
(2)

where NV is the number of data points, has to be maximized. The ratio is built up of the
particular probability density p(vi, ci|W ), that data point vi is generated by a mixture
component of the correct class ci

p(vi, ci|W ) =
∑

j:yj=ci

p(vi|j)P (j) (3)

with the total probability density p(vi|W )

p(vi|W ) =
∑

j

p(vi|j)P (j). (4)

The cost function is given as

ERSLV Q =

NV∑

i=1

log

(
p(vi, ci|W )

p(vi|W )

)
. (5)

with learning rules as presented in [8].
While Robust Soft Learning Vector Quantization is very effective, it is only applica-

ble for crisp labeled training data. An extension of this approach based on a vectorial
adaption scheme for handling fuzzy labeled training data was presented in [9] leading
to the following modifications:
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2.1 Cost Function

The assumption of fuzzy labeled data points requires an adaption of the original RSLVQ
algorithm. The originally crisp class label ci for training data point vi becomes a NC-
dimensional vector ci of assignment probabilities with

∑NC

k=1 c
k
i = 1 and cki ≥ 0. For

RSLVQ, each prototype wj describes exactly one class. Now we relax this condition
and allow the prototypes to be (partial) representatives for different classes. Analo-
gously to the notation for the data points, the class memberships of the prototypes are
now expressed in vector notation yielding yj with

∑NC

k=1 y
k
j = 1 and ykj ≥ 0. The

classification of untrained data is still based on a winner takes all scheme. Taking the
fuzzy class assignments of the data points into account, the particular probability den-
sity p(vi, ci|W ) with crisp data labels ci specified in equation (3) changes to

p(vi, ci|W ) =

NC∑

k=1

cki

NP∑

j=1

ykj · p(vi|j)P (j) (6)

where p(vi, ci|W ) now is the particular probability density that data point vi is gen-
erated by the mixture components referred to by ci. Thereby, due to the factor cki only
a fraction of the sum of the respective probability densities is taken into account. The
factor ykj ensures that only those prototypes are accounted for, which actually are rep-
resentatives for the respective class.

The total probability density p(vi|W ) (4)

p(vi|W ) =
∑

j

p(vi|j)P (j)

is the probability that data point vi is generated by any prototype. It is the sum over all
prototypes independent of matching class assignments and, therefore, does not change.

The cost function of the Multivariate RSLVQ (MRSLVQ) can now be defined as

EMRSLV Q =

NV∑

i=1

log

(
p(vi, ci|W )

p(vi|W )

)
. (7)

2.2 Derivation of Learning Rules

In order to optimize the classification, the cost function (7) has to be minimized, which
can be done by a stochastic gradient descent.

Considering an universal parameter Θ with Θ �= vi a general update rule can be
derived:

∂ log p(vi,ci|W )
p(vi|W )

∂Θj
= (Pci

(j|vi)− P (j|vi))

(
1

K(j)

∂K(j)

∂Θj
+

∂f(vi,wj , σ
2
j ))

∂Θj

)
.

(8)
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The terms Pci
(j|vi) and P (j|vi) in (8), which are assignment probabilities, yield:

Pci
(j|vi) =

∑
k c

k
i y

k
j P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi, ci|W )
(9)

P (j|vi) =
P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi|W )
(10)

Pci
(j|vi) is the assignment probability of vi to component j taking the partial class as-

signments of the data points and the prototypes into account. P (j|vi) is the assignment
probability of vi to component j independent of the class membership.

Assuming the special case of a Gaussian mixture model with P (j) = 1/NP∀j,
the similarity function is set to f(vi,wj , σ

2
j ) =

d(vi,wj)

2σ2
j

. Thereby, d(vi,wj) is the

distance between data point vi and prototype wj , and K(j) a normalization constant
which can be set to K(j) = (2πσ2

j )
(−N/2).

The original RSLVQ algorithm uses the squared Euclidean distance as dissimilarity
measure. In the following the update rules for the prototypes wj and a hyper parameter
σ2
j employing a general distance are derived. Afterwards the update rules based on

specific distance measures are given.
To obtain the update rules for specific, cost function relevant parameters, Θj has to

be substituted.

Updating the prototypes w
Replacing Θj in (8) by the prototype wj yields

∂ log p(vi,ci|W )
p(vi|W )

∂wj
= (Pci

(j|vi)− P (j|vi))

(
1

2σ2
j

∂d(vi,wj)

∂wj

)
. (11)

Updating the prototype labels y
Analogously, the update rule for the fuzzy prototype labels yj is obtained as

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

(
cj

Pci
(j|vi)

− 1

p(vi|W )

)
(P (j)p(v|j)) . (12)

3 T-Norms

T-norms are a generalization of the triangular inequality of metrics and were introduced
by Menger [10]. They can also be used as generalizations of the Boolean logic conjunc-
tive ’AND’ operator to multi-valued logic. Applied in fuzzy logic t-norms represent the
union of fuzzy sets. Its dual operation t-co-norm analogously refers to the ’OR’ op-
erator and can be used to represent the intersection of fuzzy sets. T-norms are widely
used in fuzzy set theory with multiple applications [11,12,13]. Recently, t−norms have
also been analyzed in alternative frameworks [14,15], motivating their use in general
classification methods as shown here.
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3.1 Definition of General t-norms

A t-norm is a dual function � : [0, 1]× [0, 1] → [0, 1] to generalize the triangle inequal-
ity of ordinary metric spaces and has the following properties:

1. Commutativity �(a, b) = �(b, a)

2. Monotonicity �(a, b) ≤ �(c, d), if a ≤ c and b ≤ d

3. Associativity �(a,�(b, c)) = �(�(a, b), c)

4. Identity �(a, 1) = a

According to this definition, the values of t-norms are only specified on the corner
points of a unit square and along the edges. In the middle area the values are restricted
to the range [0, 1]. Therefore, there exist a variety of different t-norms. In the following
a short listing of common t-norms (some of them parametrized) is given. Selected plots
based on the unit square are provided in Fig. 1:

Minimum/Zadeh t-norm �min(a, b) = min(a, b)

Product/Probabilistic t-norm �prod(a, b) = a · b
Łukasiewicz t-norm �luka(a, b) = max(a+ b− 1, 0)

Drastic t-norm �drastic(a, b) =

⎧
⎨

⎩

a if b = 1
b if a = 1
0 otherwise

Hamacher t-norm �ham(a, b) = ab
γ+(1−γ)(a+b−ab) with γ > 0

Weber t-norm �weber(a, b) = max(a+b−1+γab
1+γ , 0) with γ > −1

Yager t-norm �yager(a, b) = max(1− ((1− a)γ + (1− b)γ)
1
γ , 0)

with γ > 0

Aczel-Alsina t-norm �acz(a, b) = exp(−((− log(a))γ + (− log(b))γ)
1
γ )

with 0 < γ < ∞
In accordance to the analysis provided in [15] we focus on the Product t-norm, the

Hamacher t-norm, and the Aczel-Alsina t-norm. These three t-norms permit easy differ-
entiation, avoiding further approximation steps as necessary in case of t-norms involv-
ing max operators [16]. Further, the Product t-norm was used implicitly in the original
version of MRSLVQ as will be clarified in the next section.

Note that these three t-norms are related to each other:

– for γ = 1 the Hamacher and the Aczel-Alsina t-norms are equivalent to the non-
parametrized Product or Probabilistic t-norm

�prod(a, b) ≡ �ham(a, b) ≡ �acz(a, b)

– for γ → +∞ (Hamacher t-norm) respectively γ → 0 (Aczel-Alsina t-norm) the
Drastic t-norm is approximated
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Fig. 1. Plots of various t-norms based on the unit square. For the parametrized Hamacher t-norm
and the Aczel-Alsina t-norm three different values for the parameter γ are given.

4 Integrating t-norms in MRSLVQ

The large number of different (parametric) t-norms is due to different domain spe-
cific interpretations of the (dis-)similarity of multivariate vectors compared by a t-
norm. Here we consider the (dis-)similarity between multivariate label vectors. In the
MRSLVQ the authors made implicit use of the Probabilistic respectively Product t-
norm in (6) by taking the fuzzy labels of the prototypes into the inner sum. Replacing
the probabilistic t-norm in (6) we get:

p(vi, ci|W ) =

NC∑

k=1

NP∑

j=1

�(cki , y
k
j , τ) · p(vi|j)P (j) (13)

with �(cki , y
k
j , τ) being a t-norm as defined before with a potential parameter τ . Due to

the generalization to any t-norm the update of the prototype positions and the prototype
labels has to be changed. Accordingly we replace in the equation of the assignment
probabilities (9) the product of the fuzzy label assignments by a t-norm:
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Pci(j|vi) =

∑
k �(cki , y

k
j , τ)P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi, ci|W )
(14)

This substitution also has to be considered in the prototype update of Eq. (11).
For the update of the fuzzy prototype labels yj the gradient of the t-norm with respect

to the prototype label
∂�(cki ,y

k
j ,τ)

∂yj
has to be taken into account yielding the general form

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

⎛

⎜⎝
∂�(cki ,y

k
j ,τ)

∂yj

Pci
(j|vi)

− 1

p(vi|W )

⎞

⎟⎠ (P (j)p(v|j)) (15)

By replacing �(cki , y
k
j , τ) by a specific t-norm the particular update rule is obtained.

For example the Product t-norm yields

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

(
cj

Pci(j|vi)
− 1

p(vi|W )

)
(P (j)p(v|j)) . (16)

which is equivalent with update rule (12) as expected.
It would also be possible to update parameters of the t-norm by providing the corre-

sponding gradients similar as for the metric adaptation or the σ learning, see e. g. [17].
For simplicity we will specify t-norm parameters using a grid search on an independent
test set. In the following we focus on the before chosen parametrized t-norms Hamacher
t-norm and Aczel-Alsina t-norm and provide experiments for different datasets taken
from the life science domain. We compare with the approach using the standard Proba-
bilistic t-norm, which is identical with the original MRSLVQ.

5 Experiments

We now apply the priorly derived approach to two datasets with multivariate labels.
We chose the Hamacher t-norm and the Aczel-Alsina t-norm due to their easy differen-
tiability. We show the effectiveness for a classification task and compare the results to
the standard MRSLVQ approach based on the implicitly implemented Probabilistic or
Product t-norm. Potential parameters of the t-norms have been optimized using a grid
search on an independent test set. Using the optimized parameters the model perfor-
mance was evaluated on the remaining data in a 10-fold cross-validation.

5.1 Overlapping Gaussian Distributions

The first data set is a simulated one consisting of two overlapping Gaussian distribu-
tions. 1000 samples are drawn randomly mixed from the two distributions. The mixing
coefficients are used as fuzzy labels. Applying the Aczel-Alsina t-norm, the grid search
for the optimal parameter γ reveals improvements for γ ≥ 0.2 compared to the stan-
dard MRSLVQ (see Fig. 2a). These improvements are measured in terms of training
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accuracy on randomly selected training data. The performance test was conducted on
separate test data with γ = 0.5 reaching a test accuracy of 85.77% which is slightly
better than standard MRSLVQ (see Tab. 1). The Hamacher t-norm turned out to be a
less effective. First, the range for the grid search for the optimal parameter γ has to
be enlarged to show any effect (0.001 ≤ γ ≤ 10000), and second, the classification
accuracy of standard MRSLVQ cannot be reached (see Tab. 1).

5.2 Barley Grain Plant Data

The second dataset are images of serial transverse sections of barley grains at different
developmental stages. Developing barley grains consist of three genetically different
tissue types: the diploid maternal tissues, the filial triploid endosperm, and the diploid
embryo. Because of their functionality, cells of a fully differentiated tissue show dif-
ferences in cell shape and water content and accumulate different compounds. Based
on those characteristics, scientists experienced in histology are able to identify and to
label differentiated tissues within a given section of a developing grain (segmentation).
However, differentiating cells lack these characteristics. Because differentiation occurs
along gradients, especially borders between different tissue types of developing grains
often consist of differentiating cells, which cannot be identified as belonging to one or
the other tissue type. Thus, fuzzy processing is highly desirable. However, since (train-
ing) examples, manually labeled by a biological expert, are costly and rarely available,
one is interested in automatic classification based on a small training subset of the whole
data set. In our example, the training set consists of 4418 data points (vectors) whereas
the whole transverse section of the image contains 616 × 986 samples, which finally
have to be classified and visualized as an image for immediate interpretation by biol-
ogists. The data vectors are 22-dimensional, the number of classes is Nc = 11. Using
standard MRSLVQ based on the Product t-norm to classify the plant data yields a classi-
fication accuracy of 64.16% (see Tab. 1). Before testing our derived method the optimal
parameter values were obtained again by a grid search using a training dataset and com-
paring the training accuracy to the standard MRSLVQ training accuracy. The plot of the
accuracies obtained by the Aczel-Alsina t-norm is depicted in Fig. 2b. Interestingly, the
parameter value yielding a slightly better classification accuracy than MRSLVQ is ex-
actly that value, for which Azcel-Alsina t-norm and Product t-norm are equivalent. But
nevertheless, as observed before for the Gaussian dataset, applying Aczel-Alsina t-norm
with γ = 1.0 yields an improvement. For the current dataset this improvement amounts

Table 1. Average classification accuracy for the Gaussian dataset and the Barley grain plant
data. Note that the non-parametric Product or Probabilistic t-norm is equivalent to the standard
MRSLVQ model.

Gaussian distributions Barley grain plant data
class. acc. γ class. acc. γ

Probabilistic/Product t-norm 0.8517 ± 0.0388 − 0.6416 ± 0.0317 −
Hamacher t-norm 0.8257 ± 0.0530 0.01 0.6664 ± 0.0464 0.01
Aczel-Alsina t-norm 0.8577 ± 0.0429 0.5 0.7857 ± 0.0317 1.0



Probabilistic Prototype Classification Using t-norms 107

0.01 0.1 0.2 0.5 1 1.5 2 2.5 5 10 20 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

gamma value

tr
ai

ni
ng

 a
cc

ur
ac

y

 

 

Product t−norm (standard MRSLVQ)

Aczel−Alsina t−norm

(a) Gaussian dataset

0.01 0.1 0.2 0.5 1 1.5 2 2.5 5 10 20 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gamma value

tr
ai

ni
ng

 a
cc

ur
ac

y

 

 

Product t−norm (standard MRSLVQ)

Aczel−Alsina t−norm

(b) Barley grain plant data

Fig. 2. Grid search for the optimal parameter based on the training accuracy for MRSLVQ incor-
porating Aczel-Alsina t-norm. The red line indicates the training accuracy for the non-parametric
Product t-norm respectively standard MRSLVQ.

to 22.5% in the test accuracy (see Tab. 1). Again, the Hamacher t-norm is less effective.
Setting γ = 0.01 yields an improved classification accuracy of only 3.9% (see Tab. 1).

6 Conclusions

In this work we proposed an extension of Multivariate Robust Soft LVQ incorporating t-
norms in the learning dynamic. This is the first proposal of this type for prototype based
learning to the authors best knowledge. Unsafe label information is very common for
many real life data but not yet sufficiently addressed by appropriate learning methods
and our method is a proposal to improve the current situation. The data can reflect
the fuzziness in the labeling e.g. by similar scores for different class indices. This is a
very similar setting to classical fuzzy-theory and a motivation for the use of t-norms
to judge the similarity of label vectors. We considered different t-norms for MRSLVQ
and observed that the used t-norms might lead to (slight) improvements in the model
accuracy. Especially we found that the implicitly and unwittingly used Product t-norm
may not be the best choice. The Aczel-Alsina t-norm performed best in our experiments
but a wider study is necessary to get a sufficient support for generic statements. In future
work we will address in more detail the theoretical links of the used label norm with
respect to a large margin classifier and its generalization capabilities.
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