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Abstract. Next-generation sequencing techniques produce an enormous
amount of sequence data. Analyzing these sequences requires an efficient
method that can handle large amounts of data. Self-organizing maps
(SOMs), which use the frequencies of N-tuples, can categorize sets of
DNA sequences with unsupervised learning. In this study, SOM using
correlation coefficients among nucleotides was proposed, and its perfor-
mance was examined in the experiments through mapping experiments
of the genome sequences of several species and classification experiments
using Pareto learning SOMs.

1 Introduction

Next-generation sequencing [1] produces large amounts of sequence data that are
applied to many areas of genome science. Meta-genome and comparative genome
analyses are examples of such applications. Meta-genome analysis uses mixtures
of genomes from a group of species for analysis of the composition of species or
expressed sequences. Comparative genome analysis uses the sequenced genome
data of a group of species to analyze evolutionary relationships or species di-
versity. Both applications require a global comparison of DNA sequences among
species.

Self organizing maps(SOMs)[2] are often used for the global comparison of
DNA sequences. SOMs are neural networks that use the architecture of feed-
forward networks and train the network with an unsupervised learning method.
A set of input vectors is given to the network, and SOM extracts the features of
the input vectors on two-dimensional maps according to vector similarity.

The frequencies of N-tuples, which denote the occurrence of each N-tuple
for a fixed N, are effective for global comparison, and we proposed an analysis
of DNA sequences with an SOM by using the vectors of N-tuple frequencies as
input vectors [3]. For large-scale data, the use of these frequencies as feature SOM
vectors is effective, and it is also applied to the analysis of IP-packet traffic For
large scale data, it is effective to use the frequencies as feature vector of SOM,
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and it is also applied to the analysis of the traffic of IP-packets [4]. In a previous
study [3], the relationships among the genomes of species were visualized on the
basis of frequencies of N-tuples. Further research proceeded using this method.

Herein, we propose another preprocessing method on the basis of correlation
coefficients (CCs) of the occurrences of each nucleotide in a DNA sequence.
All combinations between 2 nucleotides A-A, A-C, A-G, A-T, C-A, ..., T-G, T-
T, CCs of the occurrences in the sequences are calculated by shifting 1 of the
sequences in 1 to N. For 1 to N shifts, the number of CCs is 42 × N . CCs are
arranged in vectors and used as input vectors for SOM, which determines the
global features of the DNA sequences.

Furthermore, we apply Pareto learning SOMs (P-SOMs) [5] to visualize and
classify DNA sequences. P-SOMs use a multi-modal vector composed of multiple
vectors, including the category vector that denotes the class of the vector for
supervised learning. The category vector operates cooperatively with the original
input vectors to improve visualization and classification. P-SOMs were examined
in the benchmark data set iris [5] and applied to the authentication method for
behavior biometrics [6] and IP-packet traffic analysis [4].

2 Pareto Learning Self Organizing Map (P-SOM)

2.1 Pareto Learning SOM for Multi Modal Vector

2.2 P-SOM for Multi-modal Vectors

A multi-modal vector ({x1}, {x2}, . . . , {xn}) is a vector composed of mul-
tiple vectors and attributes. For example, keystroke timing and key typing
intensity are the features used for authentication with key typing features.
In multi-modal vectors, each vector and attribute is described in a differ-
ent unit and scale, and the availability for the classification may be differ-
ent. Conventional SOMs can learn multi-modal vectors by using a simply
concatenated vector (x1,x2, . . . ,xn)or a concatenated vector with weight values
(w1x1, w2x2, . . . , wnxn) as the input vector. When weight values are excluded,
the map is dominated by largely scaled vectors and easily affected by unreliable
vectors. A map using weight values depends heavily on these values, making the
selection of optimal weight values difficult.

P-SOM makes direct use of a multi-modal vector x = ({x1}, {x2}, . . . , {xn})
as an input vector based on Pareto optimality. For each vector, xi, the objective
function is defined as fi(x, U

jk) = |xi − mij
i | for unit U jk on the map, where

mij = ({mjk
1 }, {mjk

2 }, . . . , {mjk
n }) is the vector associated with U jk. The Pareto

winner set P (x) for an input vector x is the set of the units U jk that are
Pareto optimal according to the object functions fi(x, U

jk). Thus, P-SOM is
a multi-winner SOM and all units in P (x) and their neighbors are updated
simultaneously.
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The algorithm of P-SOM is as follows.
P-SOM Algorithm

1. Initialization of the map
Initialize the vector mij which are assigned to unit U ij on the map using the
1st and 2nd principal components as base vectors of 2-dimensional map.

2. Batch learning phase
(1) Clear all learning buffer of units U ij .
(2) For each vector xi, search for the pareto optimal set of the units P =
{Uab

p }. Uab
p is an element of pareto optimal set P, if for all units Ukl ∈ P−Uab

p ,

existing h such that eabh ≤ eklh where

eklh =
∣
∣xi

h −mkl
h

∣
∣ (1)

(3) Add xi to the learning buffer of all units Uab
p ∈ P .

3. Batch update phase
For each unit U ij update the associated vector mij using the weighted av-
erage of the vectors recorded in the buffer of U ij and its neighboring units
as follows.
(1)For all vectors x recorded in the buffer of U ij and its neighboring units
in distance d ≤ Sn, calculate weighted sum S of the updates and the sum of
weight values W.

S = S+ ηfn(d)(x−mi′j′) (2)

W = W + fn(d) (3)

where U i′j′s are neighbors of U ij including U ij itself, η is learning rate,
fn(d) is the neighborhood function which becomes 1 for d=0 and decrease
with increment of d.
(2) Set the vector mij = mij + S/W .

Repeat 2. and 3. with decreasing the size of neighbors Sn for pre-defined itera-
tions.

Fig.1 shows the differences in the SOM and P-SOM algorithms.
In the update phase, the units in the overlapped neighbors are updated more

strongly, and this phase plays an important role in the integration of multi-
modal vectors. P-SOM is scale free because all vectors in x are handled evenly
independently to the scales of xi

P-SOM can integrate any kind of vector. Thus, the category vector ci can be
introduced as an independent vector for each input vector to P-SOM.

x́i = (xi, ci) (4)

cij =

{

1 xi ∈ Cj

0 otherwise
(5)

The category vector is also used to search the Pareto winner set, and it attracts
the input vectors in the same category that correspond closely on the map with
the original input vector x. The category of the given test vector xt is determined

as argmax{
∑

Uij∈P (xt)

cijk } where P (xt) is the Pareto optimal set of units for xt .
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Fig. 1. Differences between the self-organizing map (SOM) and Pareto learning SOM
(P-SOM) algorithms

3 Analysis of DNA Sequences Using SOM

This section explains the preprocessing methods for effective extraction of DNA
sequencw features.

3.1 Frequency of DNA Sequences

The frequency of N-tuples in DNA sequences is defined as the number of N-
tuples in the sequence. Fig. 2 shows an example of the frequency for N = 2. Long

Fig. 2. Frequency of the 2-tuple of a DNA sequence

sequences are divided into segments of constant length to enlarge the number
of learning vectors. SOMs, which uses the frequency of DNA sequences as the
input vector, can reportedly visualize the relationship of the genomes of different
species for N = 4 and N = 5 [4]. However, the dimension of the frequency vector
becomes 4N . Thus, for large N values, the size of the input vector becomes very
large.

3.2 Correlation Coefficient(CC)s of the Nucleotides in DNA
Sequences

A DNA sequence is the sequence of the characters ’A’,’G’,’T’, and ’C’, thus, it
is meaningless to calculate the CC directly for the sequence. A DNA sequence
is converted to 4 binary sequences that represent the occurrences of every nu-
cleotides ’A’, ’G’, ’T’, and ’C’. For all combinations of the occurrence sequences,
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ρn1,n2(i), which is CC between the first occurrence sequence of nucleotides n1
and the sequence that shifts N nucleotides from the second occurrence sequence
of nucleotides n2 are calculated for i=1 to N. Fig.3 shows the example of the
calculation of CCs. These CCs are concatenated in a vector, and used as the input

Fig. 3. Correlation Coefficients of DNA sequence

vector for the SOM. Calculating CCs requires the scanning of the sequences 16
times, and has huge computational costs for long sequences. Using the following
equation, all CCs of between 2 sequences of nucleotides, S1 = s11s

1
2 · · · s1L and

S2 = s21s
2
2 · · · s2L, can be calculated with 1 pass scan.

C1 =

{

1 s1k = n1
0 s1i �= n1

(6)

C2 =

{
1 s2i = n2
0 s2i �= n2

(7)

σn1,n2 =

L∑

i=1

(C1 −mn1)(C2 −mn2) (8)

σn1,n1 =

L∑

i=1

(C1 −mn1)
2 (9)

σn1,n2 =

L∑

i=1

(C2 −mn2)
2 (10)

ρn1,n2 =
σn1,n2

σn1,n1σn1.n2
(11)

where mn1 and mn2 are the averages of the occurrence sequences for nucleotides
n1 and n2 respectively.

Compared with the dimensions of the frequency vector, the dimension of the
vector is small. It is 16×N for the concatenated vector of 1 to N shifts.

3.3 Experimental Results

The purpose of applying SOM for the analysis of DNA sequences is visualization.
This subsection gives the experimental results of visualization of the relations
between DNA sequences based on frequencies and CCs. We used two sets od
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DNA sequences. The first set comprised the DNA sequences of 6 species regis-
tered to the pathway of amino acid metabolism in the Kyoto Encyclopedia of
Genes and Genomes database. These species are colored as shown in Table 1.

Table 1. Species used in the experiments

Genome name Description Color

hsa homo sapience red
cfa dog blue
mmu mouse green
dme fruit fly yellow
eco E-Coli magenta
osa rice cyan

Table 2. Pathways used in the experiments

Pathway name Color

amino acid metabolism red
cell growth and death blue

metabolism of complex carbohydrates green
metabolism of complex lipids yellow

nucleotide metabolism magenta
transration cyan
transcription white

The second set comprised the DNA sequences of 6 pathways of homo sapience.
Gene sequences registered to multiple pathways were removed from the set. In
this paper, The pathways are colored as shown in Table 2.

In both sets, the sequences which are longer than 1000 were segmented to the
sequences with a length of 1000. The total number of the segments was 7148 for
the species set, and 1135 for the pathway set.

The parameters of SOM was given as follows.

– map size: 128× 64
– learning rate: from 0.8 to 0.1
– update method: batch update
– neighborhood function: gausian function
– iteration of learning: 50

Fig.4 shows the map of frequencies of 4-tuples. he length of the vector is 44 =
256. Each color dot on the map represents the fragment of the sequence colored

Fig. 4. Map of the frequencies of 4-tuples in the DNA sequences of 6 species
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as shown in Table.1. Sequences of dme, eco and osa were clustered separately.
Sequences of hsa, cfa and mmu were loosely clustered because they are mammals.
Fig.5 shows the map of CC of 1 to 4 shifts. The length of the vector is 16×4 = 64.
The topologies of these maps are similar, and the clarity of the clusters is almost

Fig. 5. Map of CC of 1 to 4 shifts in the DNA sequences of 6 species

the same. When the number of shifts and length of tuples is decreased, as shown
in Fig.6 to Fig.9, CCs show better clustering results than those of frequencies.

Fig. 6. Map of the frequencies of 3-tuples
L=64

Fig. 7. Map of the frequencies of 2-tuples
L=16

Considering the length of the vector(L), CCs represented the features of DNA
sequences more effectively than the frequencies of N-tuples did.

Fig.10 and Fig.11 show the maps of the frequencies of 4-tuples and CCs of 1
to 4 shifts using the pathway set respectively.

When the pathway set was used, the sequences were not clustered clearly.
However, each color showed the shading in the specific area on the map, which
was considered loosely clustered.

As an additional experiment, Fig.12 shows the maps of CCs using the input
data of 7 different virus genomes. Some virus genomes are fragmented in some
regions, however they are clustered as the species set.
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Fig. 8. Map of the CCs of 1 and 2 shifts
L=32

Fig. 9. Map of the CC of 1 shift L=16

Fig. 10. Map of the frequencies of 4-tuples
of the pathway set

Fig. 11. Map of the CCs of 1 to 4 shifts of
the pathway set

4 Analysis of DNA Sequences Using Pareto Learning
SOM(P-SOM)

We analyzed the DNA sequences using P-SOM. P-SOM can learn input vectors
both in unsupervised learning mode without using category vectors for learn-
ing and in supervised learning mode with using category vectors. In supervised
learning mode, category vectors cooperate with the original input vectors to
organize the map. A vector of 16 CCs for each shift is used as an element of
multi-modal input vectors to the P-SOM.

Fig.13 and Fig.14 show the maps of the CCs of 1 to 4 shifts using the species
set and the pathway set as input vectors. The maps are torus maps. In Fig.13,
the species are clustered, as seen in the results of the conventional SOM, and
the mammals are clustered more strongly than those in the conventional SOM
because of the supervised learning feature of the P-SOM. In Fig.14, the pathways
are also more clearly clustered than those of the conventional SOM.

For the classification experiment, a randomly selected 70 % of the sequences
were used for learning, and 30 % of the sequences were used for the test. CCs
and frequencies of N-tuples were used as input vectors, and the experiments us-
ing conventional SOM were conducted for comparison. Table 3 shows the results
for the species set. In this table, CC-N denotes the CC of 1 to N shifts, and F-N
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Fig. 12. Map of CC of 1 to 4 shifts of 7 virus genome

Fig. 13. Map of the CCs of 1 to 4 shifts by
using the species set as the input vectors for
P-SOM

Fig. 14.Map of the CC of 1 to 4 shifts using
the pathway set as the input vectors for P-
SOM

Table 3. Rates of successful classification of the species set

Input vector CC-2 CC-4 CC-2 CC-4 F-4 F-4

Length 32 64 32 64 256 256

Method P-SOM P-SOM SOM SOM P-SOM SOM

Learned sequences 0.832 0.831 0.920 0.916 0.980 0.915
Test Sequences 0.609 0.643 0.593 0.599 0.624 0.629

denotes the frequency of N-tuples. For the learned sequences, the P-SOM using
frequency as the input vector performed best, and for the test sequences, the P-
SOMusing CCs performed best. Table 4 shows the rates of successful classification
for each species. As expected, the rates for mammals are poor because they were
loosely clustered on the map. The sequences from cfa(dog) may be miss classified
to hsa and mmu. The accuracy seems to be low as the classifier, because the
coding regions of mammals include common genes. For the virus genome set,
the accuracies for learned sequences and test sequences were 0.980 and 0.864
respectively.

Table 5 shows the classification results for the pathway set. For both of the
learned sequences and the test sequences, P-SOMs using CCs of 1 to 4 shifts
performed best. For the learned sequences, almost all sequences were successfully
classified, however for the test sequences, less than one-fourth of the sequences
were classified, because the map was very complicated. It is considered to be
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Table 4. Rates of successful classification
for each species

name Learned sequences Test sequences

hsa 0.803 0.521
cfa 0.564 0.121
mmu 0.809 0.618
dme 0.967 0.962
eco 0.994 0.990
osa 0.910 0.876

Table 5. Rates of successful classification
of pathway set

Input vector CC-4 CC-4 F-4 F-4

Length 64 64 256 256

Method P-SOM SOM P-SOM SOM

Learned sequences 0.999 0.985 0.836 0.938
Test Sequences 0.240 0.208 0.214 0.195

difficult to classify the genes from different pathway sets of single organism using
the features of frequencies of N-tuples or CC of sequences.

5 Conclusion

We proposed a preprocessing method for DNA sequences by using correlation co-
efficients of the occurrence of the nucleotides. Using this method, the clustering
results of the sequences were nearly compatible with those obtained using the
frequencies of the N-tuples despite the difference in the length of input vectors.
The correlation coefficients are considered a more effective method for prepro-
cessing DNA sequences.

Pareto learning SOM method is applied to the classification of DNA sequences
by using correlation coefficients and frequencies as input vectors. Pareto learn-
ing SOM using CC as the input vector shows good performance for classification
compared with that obtained with conventional SOMs, and frequencies. Corre-
lation coefficients are effective as indexes for classifiertion.

In the future studys, we must apply this method to additional types sequence
data, such as coding region and non-coding region, and to large data sets such
as whole genomea. For such experiments, we must improve the computational
costs of P-SOMs, which are 5 times more than those of conventional SOMs.
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