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Abstract. Training and application of prototype based learning ap-
proaches such as Learning Vector Quantization, Radial Basis Function
networks, and Supervised Neural Gas require the use of distance metrics
to measure the similarities between feature vectors as well as class pro-
totypes. While the Euclidean distance is used in many cases, the highly
correlated features within the hyperspectral representation and the high
dimensionality itself favor the use of more sophisticated distance metrics.
In this paper we first investigate the role of different metrics for success-
ful classification of hyperspectral data sets from real-world classification
tasks. Second, it is shown that considerable performance gains can be
achieved by a classification system that combines a number of prototype
based models trained on differently parametrized divergence measures.
Data sets are tested using a number of different combination strategies.

Keywords: Divergence, Metrics, Hyperspectral, SNG, GLVQ, RBF.

1 Introduction

The optical characterization of organic and inorganic materials with hyperspec-
tral imaging is becoming a widespread application within plant breeding, smart
farming, material sorting, or quality control in food production. The generic be-
havior of the material to reflect, absorb, or transmit light is used to characterize
its identity and even molecular composition. A hyperspectral camera records a
narrowly sampled spectrum of reflected or transmitted light in a certain wave-
length range and produces a high-dimensional pattern of highly correlated spec-
tral channels per image pixel. Often, the direct relationship between this pattern
and the target value, for example a material category is unknown. In the simple
case exact spectral bands are known that correlate with the presence of certain
chemical compounds. If such direct knowledge is unavailable, machine learning
is used to learn a classification or regression task from available labeled reference
data.

Prototype based models like the Learning Vector Quantization [12], Super-
vised Neural Gas [11], or Radial Basis Function Networks [21] provide a set of
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tools to learn a classification task from high dimensional data. These methods
utilize a certain similarity measure to compare an input pattern to a number
of stored prototypes in order to predict the pattern’s category. Commonly the
Euclidean distance is used to calculate the similarity of the input and proto-
type pattern. Each feature is compared separately irrespective of its position
in the high dimensional feature vector. In contrast, spectral pattern are data
samples that describe a function or distribution of energy across a well ordered
wavelength range. Therefore this type of data is also called ’functional data’.

An approach to calculate the similarity of statistical distributions are di-
vergences which offer an alternative way to characterize dissimilarity between
spectral patterns. Additionally, more general divergences like the γ-divergence
include parameters that can be potentially tuned to adapt the dissimilarity mea-
sure to the learning task at hand. Divergence dissimilarity measures have been
successfully integrated into prototype based machine learning models but perfor-
mance gains have been minimal so far on models using just a single dissimilarity
measure [22,26,15,27].

This paper shows that considerable performance gains can be achieved by a
classification system that combines a number of prototype based models trained
on differently parametrised divergence measures. A number of hyperspectral data
sets from real-world classification tasks are tested using a number of different
combination strategies.

2 Related Work

The idea to include task-adaptive non-standard metrics and dissimilarity func-
tion into a pattern recognition system has been widely researched. In [24] the Ma-
halanobis distance replaces the standard Euclidean distance. The Mahalanobis
matrix is not calculated as the co-variance matrix but a distance metric learning
method is used to calculate a transformation which assures small distance be-
tween nearest neighboring points from the same class and separation of points
belonging to different classes by large margin. Likewise in [23], the label infor-
mation of the data is used to calculate a task-specific distance function based
on the Kullback-Leibler divergence. The distance is based on the conditional
distribution of label information in dependence to the input data which is es-
timated on a validation set. In [1] the behaviour of the Minkowski distance
to measure proximity especially in high-dimensional feature spaces was investi-
gated. The methods highlighted have in common that they treat the process to
find an adaptive metric separately from the actually learning of the classifica-
tion model. In contrast, parameterized metrics and dissimilarity functions can
be directly integrated into the learning process of models like GLVQ, SNG, or
RBF. One parameterization is the use of relevance weights or matrices in the
Euclidean distance [12,25,20]. Another possibility is the use of the generalized
metric, in the case of the Euclidean norm the Minkowski norm as well as the
use of divergences [26,15], for example the γ-divergence and its special case the
Cauchy-Schwarz divergence [22]. Parameters are either systematically explored
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or learned directly with other model parameters through minimizing the models
object/energy function. So far the utilization of a distance function tuned to a
single parameter setting has not shown significant performance improvements.
The approach explored in this paper is the combination of a number of models,
tuned to different γ parameters in order to create a classifier system whose global
performance is significantly better then the performance of each model tuned to
a single parameter.

In the field of multiple classifier fusion, several approaches have been proposed
to create classifier ensembles with superior classification performance as well as
to combine sets of existing classifiers to overcome the limitations of individual
classifiers [13,4,17,2,6,14,16].

As we study the impact of parameters such as model size and distance metric,
a large number of classifiers is trained for evaluation purposes by systematically
varying these factors. However, this approach creates an ensemble of classifiers
which may provide diverse as well as correlated decisions on the training and
testing data.

While correlation and diversity between classifiers can be simply measured, it
remains an open question which level of diversity and correlation provides the
best results in classifier fusion [7]. In common approaches such as Bagging and
Boosting, diversity is fostered by random sampling or by iteratively generating
complementary classifiers for falsely classified feature vectors. However, these
approaches also require a high level of correlation of the individual classifiers
because final decisions are obtained by majority voting.

The existing approaches for classifier fusion can be roughly divided into trained
and non-trained combiners [8]. Also early and late fusion can be easily discrimi-
nated. The topology of fusion methods is another important aspect to categorize
the different approaches.

While the application of non-standard distance metrics is motivated by pre-
vious work on classification of functional data, its impact on the generation of
classifier ensembles for the same problem is unknown. As trained combiners have
shown superior performance in a previous study with non-functional data [18],
we focus on ensemble learning with decision tree based learners. The advantages
of using tree based learners are sketched in the next section.

3 Methods

3.1 Training and Evaluation of RBF, GLVQ, and SNG Classifiers

Classification models were implemented as published in [12,11,3]. For the GLVQ
and SNG no non-linearity in the energy function was used. The distance function
between a data vector v and a prototype vector w (respectively the hidden
neurons in the RBF) was either the squared Euclidean distance defined as

d (v,w) =
∑

i

(vi − wi)
2
, (1)
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or the γ-divergence defined as

d (v,w, γ) = log
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The γ-divergence with γ = 2 is widely known as the Cauchy-Schwarz dis-
tance. The model training in all three classifier systems (RBF, SNG, GLVQ) is
essentially an energy minimization problem. In the standard learning scheme,
stochastic gradient descent with step-sizes manually set for different parameters
are used. In order to avoid a manually chosen step-size, we used the non-linear
conjugate gradient approach with automatic step size from the optimization tool-
box ’minFunc’ available for Matlab. For this we provided the energy function as
well as the first derivatives according to all model parameters. The parameter
γ was set varying from 1 to 10 in steps of one. Additionally, the generalized
Kullback-Leiber divergence [10] was used to investigate the behavior for con-
vergence of γ to zero. Prototype vectors and network weights were initialized
randomly. The RBF used a 1-of-N coding scheme at its output to represent
discrete class information. In the RBF, SNG, and GLVQ the prototypes were
pre-trained using a Neural Gas with the Euclidean distance or γ-divergence as
similarity function with an identical setup compared to the later classification
model. In the GLVQ and SNG model, separate pre-learning runs for prototypes
from identical classes were performed. The dataset was divided into training and
test data according to a 5-fold cross validation scheme with stratified random
sampling. After training, the predicted labels for the test data with the respec-
tive model were collected as well as scalar model outputs. In case of the RBF,
the scalar output was the output of the linear output layer. For the GLVQ and
SNG we used the distances to the closest prototype of the same class as well as
the smallest distance to a prototype of any other class as scalar output. We set
20, 30, or 40 as total number of prototypes/hidden neurons in all three models.
In the GLVQ and SNG an identical number of prototypes per class was used.
In addition to the Euclidean distance we also used weighted Euclidean distance
as an alternate distance metric where the weights are automatically adapted in
the training phase.

3.2 Fusion of RBF, LVQ, and SNG Results

The real-valued scalar outputs of the different classifiers make a feature vector
which is used as the input for learning a combining rule. In this study, we focus
on the application of decision tree based learners. Algorithms such as C4.5 or
its variant J4.8 use local optimization of a threshold value and selection of a
single input feature to maximize the separation into given target classes. As
the input features are the output values of classifiers itself this is similar to
the selection of operating points as known from receiver operating characteristic
(ROC) and precision recall (PR) analysis. Hence, any decision of the resulting
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trees can be easily interpreted as a sequence of operating point selections for the
different input classifiers. To overcome known limitation of decision tree learning,
ensembles of trees are used instead. Hence, for the combination of the different
classifiers these methods are used:

1. AdaBoost with decision trees [9],
2. Random Forests [5], and
3. CRAGORS (cascaded reduction and growing of result sets) [19].

The used implementations of AdaBoost, decision trees, and Random Forests are
part of the Spider toolbox and WEKA. For AdaBoost pruned decision trees
are used for better generalization performance. For Random Forest classifiers
unpruned trees are used. Boosting was set to 10 iterations and all Random
Forest classifiers consist of 10 trees as well. CRAGORS is included to address the
tradeoff between ensemble size and ensemble accuracy. This combining algorithm
is expected to provide less accurate results, but to select small subset of relevant
input classifiers which already provide a significant improvement in classification
accuracy. The dataset for testing combination performance has been generated
from the outputs of 5-fold cross-validation of the individual classifiers. For every
spectrum the outputs of all the different classifiers have been collected. 10-fold
cross-validation was used to obtain average accuracy values for the 3 combining
methods.

4 Datasets

The hyperspectral datasets have been selected from several industrial applica-
tions where hyperspectral imaging can be used for the detection of a desired
target material or defective objects for a subsequent material sorting. We delib-
erately chose classification tasks that showed mediocre classification accuracy on
single prototype based models. Five binary classification problems were chosen
for this publication:

1. Detection of aluminium within waste material,
2. Classification of mature vs. immature coffee beans,
3. Detection of putrid hazelnuts among healthy hazelnuts,
4. Detection of fungi infested hazelnuts among healthy hazelnuts, and
5. Anomality detection on the surface of fluffed pulp.

We limited our study to two-class problems for two major reasons. First, the de-
tection of a single important class is a typical scenario in industrial applications.
Hence, the above datasets have been collected separately. Especially the hazel-
nut datasets belong to different studies. Second, the current implementation of
CRAGORS which we wanted to test on hyperspectral datasets is so far limited
to two-class problems.

For the hyperspectral image acquisition, material samples of one class were
positioned with a standard optical PTFE (polytetrafluoroethylene) calibration
pad on a translation table. Hyperspectral images were recorded using a HySpex
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Table 1. Average accuracy of base classifiers (5-fold cross-validation)

RBF SNG GLVQ

Datasets L2 γ complete L2 γ complete L2 γ complete

D1 0.8150 0.8265 0.8265 0.7168 0.7325 0.7402 0.6853 0.7110 0.7110
D2 0.8560 0.8430 0.8560 0.6937 0.7027 0.7295 0.6820 0.6755 0.6820
D3 0.6680 0.6813 0.6813 0.5710 0.6005 0.6005 0.5370 0.5493 0.5530
D4 0.9618 0.9496 0.9618 0.7724 0.7894 0.7894 0.7626 0.7626 0.7626
D5 0.7452 0.7635 0.7635 0.6597 0.6963 0.6963 0.6312 0.6575 0.6575

SWIR-320m-e line camera (Norsk Elektro Optikk A/S). Spectra are from the
short-wave infra-red range (SWIR) of 970 nm to 2,500 nm at 6 nm resolution
yielding a 256 dimensional spectral vector per pixel. The camera line has a spatial
resolution of 320 px and can be recorded with a maximum frame rate of 100 fps.
Radiometric calibration was performed using the vendors software package and
the PTFE reflectance measure. Material was segmented from background via
Neural Gas clustering. From each material class, 2,000 labeled spectral samples
for each class were chosen randomly and combined to the datasets representing
the two-class problems listed above. Spectral vectors were normalized to unit
length.

5 Results and Discussion

As a baseline we measured the accuracy gain of using γ-divergence instead of the
Euclidean distance for the datasets D1 to D5. Tab. 1 lists the accuracies of GLVQ,
RBF, and SNG classifiers with respect to the used metric. The comparison shows
a minor improvement in the accuracy when using the γ-divergence only for
a few datasets. This is in accordance to previously reported results on using
alternative distance measures [22,26,15,27]. For SNG classifiers the γ-divergence
yields better results on all datasets. However, RBF classifiers outperform SNG
and GLVQ on all datasets. The column complete lists the best results obtained
from a slightly extended set of base classifiers including the Kullback-Leibler
divergence and Cauchy-Schwarz divergence measures.

As we set 20, 30, or 40 as total number of prototypes/hidden neurons in all
three models and also trained models for different values of γ, only the average
accuracy of the best performing classifier is shown. Tab. 2 lists the parameter
settings for these classifiers. We found, that the best results are obtained by
different settings of the number of prototypes/hidden neurons as well as different
similarity measures. Especially, γ differs significantly for the datasets for which
application of γ-diversity is beneficial.

Tab. 3 shows that considerable performance gains can be achieved by the
proposed classification system that combines a number of prototype based mod-
els trained on differently parametrized divergence measures. We combined the
results of different subsets of the GLVQ, RBF, and SNG classifiers. By consider-
ing only variants of Euclidean based classifiers a significant increase in accuracy



Nonstandard Metrics 173

Table 2. Parameter settings of the best classifiers, including Kullback Leibler diver-
gence (KLD)

RBF RBF

Datasets L2 γ complete

D1 40 neurons 20 neurons, γ = 5 same as γ
D2 30 neurons 40 neurons, γ = 1 same as L2

D3 20 neurons 40 neurons, γ = 5 same as γ
D4 40 neurons 30 neurons, γ = 2 same as L2

D5 40 neurons 40 neurons, γ = 2 same as γ

SNG

Datasets L2 γ complete

D1 30 neurons 30 neurons, γ = 1 40 neurons, KLD
D2 20 neurons 40 neurons, γ = 6,γ = 2 same as γ
D3 40 neurons 40 neurons, γ = 1 same as γ
D4 30 neurons 30 neurons, γ = 10 same as γ
D5 40 neurons 40 neurons, γ = 10 same as γ

GLVQ

Datasets L2 γ complete

D1 40 neurons 40 neurons, γ = 6 same as γ
D2 20 neurons 40 neurons, γ = 1 same as L2

D3 20 neurons, weighted Euclidean 20 neurons, γ = 2 same as γ
D4 40 neurons 40 neurons, γ = 8 same as γ and L2

D5 40 neurons 30 neurons, γ = 2 same as γ

is found. However, γ-divergence based classifier ensembles perform better on all
datasets. Especially, for datasets D3 and D5 a large difference between Euclidean
and γ based ensembles exists for all groups of combined classifiers (RBF, GLVQ,
SNG). Additional improvements are possible if Euclidean and γ-diversity based
classifiers are merged. Adding the Kullback-Leibler divergence based classifiers
does not further improve the results significantly. As before, only the results of
the best combination algorithm is shown in Tab. 3. For all tested datasets Ran-
dom Forest and Boosted Decision Trees are competitive and there is no clear
winner among these two methods. Additionally, the algorithm CRAGORS was
used to find a subset of classifiers which provide a trade-off between the number
of considered input classifiers and the gain in classification performance. The
column complete set lists the results of a combination without discriminating
beetween the pools of L2-based and γ-based classifiers.

The comparison of the accuracies of different combining methods is shown in
Tab. 4. The presentation is limited to the results of combining RBF network
classifiers trained with γ-divergence based distance measures. The number in
brackets reports the number of the used input features to indicate the trade-off
between accuracy gain and the number of required RBF classifiers. The differ-
ence between AdaBoost and Random Forests is not significant. Also, the chosen
limitation to 10 decision trees leaves room for additional improvements of the
accuracy.
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Table 3. Average accuracy of combined classifiers, 10-fold cross-validation

RBF Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.9737 0.9965 0.9982 0.9972
D2 0.9775 0.995 0.994 0.9960
D3 0.8010 0.8985 0.9155 0.9133
D4 0.9959 0.9984 0.9984 0.9992
D5 0.9205 0.9790 0.9825 0.9822

SNG Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.8465 0.9698 0.9660 0.9723
D2 0.8550 0.9517 0.9540 0.9550
D3 0.6190 0.7463 0.7412 0.7410
D4 0.9276 0.9951 0.9976 0.9976
D5 0.7798 0.9377 0.9383 0.9390

LVQ Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.7773 0.9412 0.9417 0.9463
D2 0.82 0.8605 0.8865 0.9012
D3 0.5493 0.5877 0.5867 0.5962
D4 0.9024 0.9911 0.9919 0.9878
D5 0.7505 0.8830 0.8953 0.8920

It should be noted that the used comparison method also contributes to clas-
sifier diversity. 5-fold cross-validation was used to train base classifiers and to
collect realistic classifier outputs for unseen samples. Hence, all the classifiers
have been trained on different subsets representing 80 percent of all samples.
However, the Euclidean and γ-diversity based classifiers have been obtained un-
der the same conditions. Therefore, the observed difference in performance is
clearly related to the used metric. To study the different contributions to clas-
sifier diversity and performance in more detail, hold-out testing with indepen-
dently sampled data should be used.

In contrast to other combining methods such as boosting the proposed ap-
proach is built on top of a set of independently tuned classifiers. The main
advantage of a separation between tuning of the base classifiers and their com-
bination into an ensemble is that it can be easily adapted to existing classifi-
cation frameworks. Additionally, using a supervised classification algorithm for
the combination instead of a simple combining rule such as majority voting is
beneficial.

The results indicate that optimizing γ in the training of a single classifier may
not yield the significant gain in accuracy as reported for the ensembles. Because
we variied γ systematically over a small but meaningful range we expect such
an approach to achieve a result competetive to our baseline condition.
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Table 4. Average accuracy of different combined classifiers (RBF networks with γ-
distances only, baseline includes all distance measures), 10-fold cross-validation, num-
bers in brackets denote required RBF networks

RBF Fusion method

Datasets Baseline CRAGORS AdaBoost Random Forest

D1 0.8265 (1) 0.9355 (12) 0.9965 (48) 0.9953 (55)
D2 0.856 (1) 0.9435 (13) 0.9950 (53) 0.9925 (59)
D3 0.6813 (1) 0.7445 (20) 0.8985 (59) 0.8855 (59)
D4 0.9618 (1) 0.9846 (7) 0.9984 (25) 0.9984 (59)
D5 0.7635 (1) 0.8840 (18) 0.9790 (55) 0.9683 (57)

6 Summary

The results show that choosing another metric or modifying model size may
slightly improve classification accuracy. However, the tuning of parameters is
required. The question remains whether other classification algorithms, other
parameter setting than the tested ones, different model sizes, or a different topol-
ogy of neural networks may yield better results or not. The major contribution
of this paper with respect to γ-metrics and multiple classifier fusion is that it
was possible to demonstrate for all tested datasets, that systematically varying
the γ value of the distance metric is an extraordinarily effective way to create
a diverse ensemble of classifiers. Especially, the trade-off between diversity and
correlation seems to be near optimal for classification of hyperspectral data.
Hence, the major contribution from an engineering perspective is to provide an
easy-to-use framework for the analysis of hyperspectral data. By the fusion of
classifier results, great improvements in classification accuracy have been made
for several real-world applications. Moreover, for the first time the improvements
reached a level which meets application specific lower boundaries on the preci-
sion and the detection rate. However, a lot of future work has to be done to get
a deep theoretic understanding of the role of the γ-metric with respect to en-
semble diversity. We also limited our study to the analysis of hyperspectral data
as a representative of functional data. For practical applications, the selection of
classifier subsets or a parallel computation of classifier results may be required
to meet application specific time constraints.
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