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Abstract. Prototype-based models such as learning vector quantization
(LVQ) enjoy a wide popularity because they combine excellent classifi-
cation and generalization ability with an intuitive learning paradigm:
models are represented by few characteristic prototypes, the latter of-
ten being located at class typical positions in the data space. In this
article we investigate inhowfar these expectations are actually met by
modern LVQ schemes such as robust soft LVQ and generalized LVQ.
We show that the mathematical models do not explicitly optimize the
objective to find representative prototypes. We demonstrate this fact in
a few benchmarks. Further, we investigate the behavior of the models
if this objective is explicitly formalized in the mathematical costs. This
way, a smooth transition of the two partially contradictory objectives,
discriminative power versus model representativity, can be obtained.

1 Introduction

Since its invention by Kohonen [9], learning vector quantization (LVQ) enjoys a
great popularity by practitioners for a number of reasons: the learning rule as
well as the classification model are very intuitive and fast; the resulting classifier
is interpretable since it represents the model in terms of typical prototypes which
can be treated in the same way as data; unlike popular alternatives such as SVM
the model can easily deal with an arbitrary number of classes; the representation
of data in terms of prototypes lends itself to simple incremental learning strate-
gies by referring to the prototypes as statistics for the already learned data. Due
to these properties, LVQ has been successfully applied in diverse areas ranging
from telecommunications and robotics to the biomedical domain [9,8].

Despite this success, LVQ has long been thought of as a mere heuristic [2]
and some mathematical guarantees concerning its convergence properties or its
generalization ability have been investigated more than ten years after its in-
vention only [3,1,13]. Today, LVQ is usually no longer used in its basic form,
rather variants which can be derived from mathematical cost functions are used
such as generalized LVQ (GLVQ) [12], robust soft LVQ (RSLVQ) [16], or soft
nearest prototype classification [15]. Further, one of the success stories of LVQ is
linked to its combination with more powerful, possibly adaptive metrics instead
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of the standard Euclidean one, including, for example, an adaptive quadratic
form [7,13], a general kernel [11,6], a functional metric [17], or extensions to
discrete data structures [4].

Depending on the application domain, the objective of LVQ to find a highly
discriminative classifier is accompanied by additional demands such as sparsity
of the models or model interpretability. Modern LVQ techniques such as RSLVQ
or GLVQ are explicitly derived from cost functions, such that it is possible to
link the objectives of a practitioner to the mathematical objective as modeled
in these cost functions. In this contribution, we argue that, while often used as
an interpretable model, the objective of arriving at representative prototypes is
usually not included in this mathematical objective. We propose an extension of
LVQ schemes which explicitly takes this objective into account and which allows
a weighting of the two partially contradictory objectives of discriminative power
and representativity. We demonstrate the behavior of the resulting models in
benchmark data sets where, depending on the setting, models with very different
characteristics can be obtained this way.

2 LVQ Schemes

A LVQ classifier is given by a set of prototypes wi ∈ R
n, i = 1, . . . , k together

with their labeling c(wi) ∈ {1, . . . , C}, assuming C classes. Classification of a
point x ∈ R

n takes place by a winner takes all scheme: x is mapped to the
label c(x) = c(wi) of the prototype wi which is closest to x as measured in
some distance measure, a probability in case of a RSLVQ classifier, respectively.
For simplicity, we restrict to the Euclidean metric, even though general metrics
could be used.

Given a training data set xj ∈ R
n, j = 1, . . . ,m, together with labels yj ∈

{1, . . . , C}, LVQ aims at finding prototypes such that the resulting classifier
achieves a good classification accuracy, i.e. yj = c(xj) for as many j as possible.
Classical LVQ schemes such as LVQ 1 or LVQ 2.1 rely on Hebbian learning
heuristics, but they do not relate to a valid underlying cost function in the case of
a continuous data distribution [2]. A few alternative models have been proposed
which are derived from explicit cost functions and which lead to learning rules
resembling the update rules of classical LVQ schemes [12,16].

Generalized LVQ (GLVQ) [12] addresses the following cost function

E =
∑

j

Φ

(
d+(xj)− d−(xj)

d+(xj) + d−(xj)

)
(1)

where d+(xj) refers to the squared Euclidean distance of xj to the closest pro-
totype labeled with yj , and d−(xj) refers to the squared Euclidean distance of
xj to the closest prototype labeled with a label different from yj . Φ refers to a
monotonic function such as the identity or the sigmoidal function. Optimization
typically takes place using a gradient technique. As argued in [13], the numerator
of the summands can be linked to the so-called hypothesis margin of the classi-
fier, such that a large margin and hence good generalization ability is aimed for
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while training. The denominator prevents divergence and numerical instabilities
by normalizing the costs.

Robust soft LVQ (RSLVQ) [16] yields similar update rules based on the fol-
lowing probabilistic model

E =
∑

j

log
p(xj , yj |W )

p(xj |W )
=

∑

j

log p(yj |xj ,W ) (2)

where p(xj |W ) =
∑

i p(wi)p(xj |wi) constitutes a mixture of Gaussians with
prior probability p(wi) (often taken uniformly over all prototypes) and prob-
ability p(xj |wi) of the point xj being generated from prototype wi, usually
taken as an isotropic Gaussian centered in wi, or a slightly extended ver-
sion described by a diagonal covariance matrix. The probability p(xj , yj |W ) =∑

i δ
c(wi)
yj p(wi)p(xj |wi) (δ - Kronecker delta) restricts to the mixture compo-

nents with the correct labeling.This likelihood ratio is optimized using a gradient
technique.

When inspecting these cost functions, the question occurs to what extend
these LVQ schemes mirror the following objectives:

– Discriminative Power: the primary objective of LVQ schemes is to provide
a classifier with small classification error on the underlying data distribution.
Thus, its objective is to minimize the training error and, more importantly,
classification error for new data points.

– Representativity: the resulting prototypes should represent the data in an
accurate way such that it is possible to interpret the model by inspecting
the learned prototypes.

Inhowfar are these objectives accounted for by the GLVQ or RSLVQ costs? In-
terestingly, RSLVQ aims at a direct optimization of the Bayesian error. Hence,
its primary goal is the discriminative power of the model. RSLVQ has no in-
centive to find representative prototypes unless this fact directly contributes to
a good discriminative model. This behavior has been observed in practice [14]:
prototypes usually do not lie at class typical positions; they can be located out-
side the convex hull of the data, for example, provided a better classification
accuracy. This behavior has also theoretically been investigated for the limit of
small bandwidth in [1]: in the limit of small bandwidth, learning from mistakes
takes place, i.e. prototype locations are adapted only if misclassifications are
present. We will show one such example for original RSLVQ in the experiments.

What about the GLVQ costs? The numerator of GLVQ is negative if and
only if the classification of the considered data point is correct. In addition, it
resembles the hypothesis margin of the classifier. Due to this fact, one can expect
a high correlation of the classification error and the cost function, making GLVQ
suitable as a discriminative model. Nevertheless, since this correlation is not an
exact equivalence, minima of this cost function do not necessarily correspond to
good classifications in all situations: for highly imbalanced data, for example, the
GLVQ costs prefer trivial solutions with all data being assigned to the majority
class. This observation is also demonstrated by the fact that the classification



126 B. Hammer et al.

accuracy of GLVQ can be inferior as compared to RSLVQ, the latter focussing
on discrimination only, see e.g. [14] and our results in the experiments section.

Interestingly, the GLVQ costs have a mild tendency to find representative
prototypes due to this form: The term d+(x) in the numerator aims at a small
class-wise quantization error of the data. Further, solutions with small denomi-
nator are preferred, i.e. there is an emphasis to place all prototypes within the
data set. We will see in experiments, that this compromise of representativity
and discriminative behavior can yield to classification results inferior to RSLVQ
for the sake of more representative models, but still an increase of model repre-
sentativity is possible by adding a corresponding term to the costs.

3 Extending LVQ Schemes by Generative Modes

We are interested in a model-consistent extension of the RSLVQ and GLVQ
costs which explicitly take the goal of representativity into account. Generally,
we refer to the cost function of RSLVQ (2) or GLVQ (1) as Ediscr(W ). The idea
is to substitute these costs by the form

E = (1− α) · Ediscr(W ) + α · Erepr(W ) (3)

where Erepr(W ) emphasizes the objective to find representative prototypes wj .
The parameter α ∈ [0, 1] weights the influence of both parts for the optimization.

First, we have a look at how to choose Erepr(W ) for RSLVQ schemes. The
idea is to add a term which maximizes the likelihood of the observed data be-
ing generated by the underlying model. Similar to RSLVQ, we can consider a

class-wise Gaussian mixture model p(xj , yj |W ) =
∑

i δ
c(wi)
yj p(wi)p(xj |wi) with

prior probability p(wi) and Gaussian p(xj |wi). The costs aim at a generative
model, i.e. we address the class-wise data log likelihood log

∏
j δ

c
yj
p(xj |c,W ) =

∑
j δ

c
yj
log

∑
i δ

c(wi)
yj pc(wi)p(xj |wi) with prior pc(wi) = p(wi)/p(c) summing to

one for every class c. Adding this generative term for all class-wise distributions,
we arrive at the form

Erepr(W ) =
∑

c

∑

j

δcyj
log

∑

i

δc(wi)
yj

pc(wi)p(xj |wi) (4)

We often assume equal prior for all classes c and prototypes wi for simplicity.
We choose Gaussians of the form

p(xj |wi) =
1√

(2π)n|Σi|
exp

(
−1

2
(xj −wi)

T Σ−1
i (xj −wi)

)
(5)

where Σi is taken as diagonal matrix with entries (σ2
i1, . . . , σ

2
in). Optimization

takes place by means of a gradient ascent of these costs. The derivative of
Ediscr(W ) can be found in [16]. See [14] for update rules in case of an adap-
tive covariance matrix. For Erepr(W ) prototypes wi are adapted according to

∂Erepr(W )

∂wi
=

∑

j

δc(wi)
yj

pyj(wi) · p(xj |wi)
∑

l δ
c(wl)
yj pyj (wl) · p(xj |wl)

·Σ−1
i · (xj −wi), (6)
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while the variances σjk are simultaneously updated referred to

∂Erepr(W )

∂σin
=

∑

j

δc(wi)
yj

p(wi)p(xj|wi)

p(xj , yj |W )

(
[xj −wi]

2
n

σ3
in

− 1

σin

)
. (7)

In the limit of small bandwidth, this amounts to a class wise vector quantization
scheme.

In a similar way, we enhance the GLVQ cost function by a term emphasizing
the representativity of the prototypes in model consistent way. Here we choose
the class-wise quantization error

Erepr(W ) =
∑

j

d+(xj), (8)

Taking the derivative overlays the update rules with a vector quantization step.
As we will see in experiments, depending on the data set, these two objec-

tives can be contradictory, such that the choice of α can severely influence the
outcome. Thereby, the scaling of the two objectives is not clear a priori: while a
probabilistic modeling such as RSLVQ places the two objectives into the inter-
val (−∞, 0] corresponding to a log likelihood, the discriminative part of GLVQ
lies in Ediscr(W ) ∈ (−1, 1), but Erepr(W ) ∈ [0,∞) for GLVQ. Hence, without
normalizing these terms, the scaling of the parameter α has different meanings
in both settings. We will report results for the whole range α ∈ [0, 1] with step
size 0.05 in case of RSLVQ, 0.001 for GLVQ, respectively.

4 Experiments

We test the behavior of the models for different values α in three benchmarks:

– Gauss: two two-dimensional Gaussian clusters with different covariance ma-
trices and some degree of overlap are generated.

– Tecator: the data set consists of 215 spectra with 100 spectral bands ranging
from 850 nm to 1050 nm [10]. The task is to predict the fat content of the
probes.

To avoid local optima as much as possible, initial training takes place to dis-
tribute the prototypes in the data space, as proposed in [9]. In our experiments we
simply start with an initial training phase where α = 1 and we anneal the value
α afterwards to the desired weighting parameter. For RSLVQ, diagonal entries
of the covariance matrix are adapted individually for every mixture component.
In all cases, we use one prototype/mixture component per class. Training takes
place until convergence. To validate representativity we determine the following
ratio for both models:

R =
1

C

∑

ck

∑

j: c(xj)=ck

d+ (xj)∑
i: c(xi)=ck

d
(
xi,µck

) , (9)

which is the class-wise quantization error according to the class mean µck .
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Gauss: Due to the data generation, prototypes lying in the two class centers
define a decision boundary which is close to the optimum decision boundary, al-
beit not being identical due to the non-isotropic Gaussians. This fact is mirrored
in the dependency of the classification accuracy in respect to the parameter α
as depicted in Fig. 1: the accuracy is widely constant for varying parameter α
for both, RSLVQ and GLVQ schemes.
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Fig. 1. Classification accuracy for RSLVQ and GLVQ for the Gauss data set varying
parameter α

Interestingly, the classification accuracy for RSLVQ is higher than GLVQ
which can be attributed to the fact that only the first model explicitly aims at
an optimization of the Bayes error and an implicitly fitting of Gaussians, while
the GLVQ costs are only correlated to a class discrimination.
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Fig. 2. Class-wise quantization error for the Gauss data set vs. accuracy for varying
parameter α
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Fig. 3. Prototype location for the Gauss data set for extremal α ∈ {0, 1}. squares =̂
α = 1; diamonds =̂ α = 0; filled circle =̂ class mean.

For both approaches the prototype locations for extremal values α ∈ {0, 1} are
depicted in Fig. 3. The prototypes which are obtained with RSLVQ do not change
its position, as mirrored in the class-wise quantization error with increasing value
α, see Fig. 2. These are at the class centers and obviously do not enormously differ
from the respective class means. Unlike GLVQ, where for α = 1 the prototypes
do not coincide with the class means to better follow the optimum decision
boundary for the given case. Contrary to RSLVQ, covariances are not used by
standard GLVQ.

Tecator: For the tecator data set, there seems a clear difference between a
good generative or good discriminative model as found by LVQ schemes. When
varying the parameter α, the classification accuracy decreases (Fig. 4), while the
representativity increases, see Fig. 5.

Interestingly, the prototypes lie at atypical positions for the purely discrimi-
native models in this case, making their interpretability problematic: as depicted
in Fig. 6, the spectral curves display a very characteristic shape which has no re-
semblance to spectra as observed in the data. These forms facilitate the class dis-
crimination while interpretability is questionable. This setting also demonstrates
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Fig. 4. Classification accuracy for RSLVQ and GLVQ for the Tecator data set varying
parameter α

the partially problematic choice of an appropriate parameter α in particular for
the GLVQ model. In this case, due to the inherent scaling, already small values
of α have a dramatic effect on the classification accuracy of the result.
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Fig. 5. Class-wise quantization error for RSLVQ and GLVQ for the Tecator data set
vs. Classification accuracy for varying parameter α

5 Discussions

We have discussed the correlation of popular LVQ cost functions to the two
aims, to obtain a small classification error and to obtain a representative model
where prototypes are interpretable. By means of examples, we have seen that
LVQ usually models the former objective, but the latter is only implicitly taken
into account. An explicit integration of this objective enables enhanced models
where the discriminative power versus the representativity of the prototypes can
be controlled by the user, leading to better interpretable models in case the two
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Fig. 6. Prototype locations for the Tecator data set and different choices of the pa-
rameter α. Interestingly, for the discriminative case α = 0, atypical shapes with little
resemblance of the class averages are obtained, while α = 1 boosts class averages.

objectives are contradictory for the given data. We have shown the effect of such
a control on the form of the prototypes in a few benchmarks.

So far, the two objectives are combined in one cost function and an appropriate
balance parameter α has to be set. To make both algorithms comparable accord-
ing to the used distance a localized relevance GLVQ approach [5] is mandatory.
In this contribution our focus is on pointing out that both LVQ variants can be
extended to make their results more interpretable. As an alternative, one can
consider formulations which emphasize the primary aim of correct classification
as a hard constraint, but integrate representativity as a soft constraint. This
way, one can aim for the most representative solutions among a set of possible
solutions which are invariant with respect to the classification error. Such an
approach would result in formalizations of the form

min
∑

j

d+(xj)

such that d+(xj) ≤ d−(xj) + ε ∀j
for GLVQ, incorporating slack variables if no feasible solution exists, or

max
∑

c

∑

j

δcyj
log

∑

i

δc(wi)
yj

pc(wi)p(xj |wi)

such that p(yj |xj ,W ) ≥ p(c|xj ,W ) + ε ∀j ∀c �= yj

for RSLVQ, again incorporating slack variables if necessary. The investigation of
these alternatives will be the subject of future work.
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M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 309–321. Springer,
Heidelberg (2012)

5. Hammer, B., Schleif, F.-M., Villmann, T.: On the generalization ability of
prototype-based classifiers with local relevance determination (2005)

6. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general sim-
ilarity measure. Neural Processing Letters 21(1), 21–44 (2005)

7. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Networks 15(8-9), 1059–1068 (2002)

8. Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory ar-
chitecture for online learning of objects. Neural Networks 21(1), 65–77 (2008)

9. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)
10. D. of Statistics at Carnegie Mellon University,

http://lib.stat.cmu.edu/datasets/

11. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm.
In: ICPR (4), pp. 621–624 (2004)

12. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky,
M.C.M.D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Ad-
vances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cam-
bridge (1996)

13. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning
vector quantization. Neural Computation 21, 3532–3561 (2009)

14. Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector
quantization. Neural Computation 21, 2942–2969 (2009)

15. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE
Transactions on Neural Networks 14, 390–398 (2003)

16. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computa-
tion 15(7), 1589–1604 (2003)

17. Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Computa-
tion 23(5), 1343–1392 (2011)

http://lib.stat.cmu.edu/datasets/

	Generative versus Discriminative Prototype Based Classification

	1 Introduction
	2 LVQ Schemes
	3 Extending LVQ Schemes by Generative Modes
	4 Experiments
	5 Discussions
	References




