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Preface

This book contains all refereed contributions presented at the 10th Workshop on Self-
Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mit-
tweida, Mittweida (Germany, Saxony), on July 24, 2014. Starting with the first WSOM-
workshop 1997 in Helsinki this workshop series attract many researchers to present
newest results in the field of supervised and unsupervised vector quantization and re-
lated topics.

This 10th WSOM brought together more than 50 researchers, experts and practition-
ers in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains
Erzgebirge to discuss new developments in the field of self-organizing vector quanti-
zation systems. The book collects the accepted papers of the workshop after a care-
ful review process. Among the book chapters there are excellent examples of the use
of self-organizing maps (SOMs) in agriculture, computer science, data visualization,
health systems, economics, engineering, social sciences, text and image analysis, and
time series analysis. Other chapters present the latest theoretical work on SOMs as well
as Learning Vector Quantization (LVQ) methods.

Our deep appreciation is extended to Teuvo Kohonen, for serving as Honorary Gen-
eral Chair. We warmly thank the members of the Steering Committee and the Executive
Committee. Our sincere thanks go to Michael Biehl (University Groningen), Erzsébet
Merényi (Rice University Houston) and Fabrice Rossi (Université Paris 1, Pantheón-
Sorbonne) for their plenary talks. We are grateful to the members of the Program Com-
mittee and other reviewers for their excellent and timely work, and above all to the
authors whose contributions made this book possible.

We deeply acknowledge the support of the workshop by the University of Ap-
plied Sciences Mittweida under the guidance of the rector Prof. Dr. Ludwig Hilmer.
Last but not least we cordially thank Dr. Ellen Weißmantel (University of Applied
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Sciences Mittweida) and Dr. Sven Hellbach (University of Applied Sciences Dresden)
as well as the Computational Intelligence Group Mittweida (K. Domaschke, M. Gay,
Dr. T. Geweniger, M. Kaden, M. Lange, D. Nebel, M. Riedel) for local organization.

Mittweida, 2nd July 2014 Thomas Villmann
Frank-Michael Schleif

Marika Kaden
Mandy Lange
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How Many Dissimilarity/Kernel Self Organizing

Map Variants Do We Need?

Fabrice Rossi

SAMM (EA 4543), Université Paris 1,
90, rue de Tolbiac, 75634 Paris Cedex 13, France

fabrice.rossi@univ-paris1.fr

Abstract. In numerous applicative contexts, data are too rich and too
complex to be represented by numerical vectors. A general approach to
extend machine learning and data mining techniques to such data is to
really on a dissimilarity or on a kernel that measures how different or
similar two objects are.

This approach has been used to define several variants of the Self
Organizing Map (SOM). This paper reviews those variants in using a
common set of notations in order to outline differences and similarities
between them. It discuss the advantages and drawbacks of the variants,
as well as the actual relevance of the dissimilarity/kernel SOM for prac-
tical applications.

Keywords: Self Organizing Map, Dissimilarity data, Pairwise data,
Kernel, Deterministic annealing.

1 Introduction

Complex data are frequently too rich and too elaborate to be represented in
a simple tabular form where each object is described via a fixed set of at-
tributes/variables with numerical and/or nominal values. This is especially the
case for relational data when objects of different categories are interconnected
by relations of different types. For instance online retailers have interconnected
customers and products databases, in which a customer can buy one or several
copies of a product, and can also leave some score and/or review of said products.

Adapting data mining and machine learning methods to complex data is pos-
sible, but time consuming and complex, both at the theoretical level (e.g., con-
sistency of the algorithms is generally proved only in the Euclidean case) and
on a practical point of view (new implementations are needed). Therefore, it is
tempting to build generic methods that use only properties that are shared by
all types of data.

Two such generic approaches have been used successfully: the dissimilarity
based approach and the kernel based approach [42]. Both are based on fairly
generic assumptions: the analyst is given a data set on which either a dissim-
ilarity or a kernel is defined. A dissimilarity measures how much two objects
differs, while a kernel can be seen as a form a similarity measure, at least in

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 3
Vector Quantization, Advances in Intelligent Systems and Computing 295,
DOI: 10.1007/978-3-319-07695-9_1, c© Springer International Publishing Switzerland 2014



4 F. Rossi

the correlation sense. Dozens of dissimilarities and kernels have been proposed
over the years, covering many types of complex data (see e.g. [15]). Then one
needs only to adapt a classical data mining or machine learning method to the
dissimilarity/kernel setting in order to obtain a fully generic approach. As a
dissimilarity can always be constructed from a kernel, dissimilarity algorithms
are probably the more generic ones. A typical example is the k nearest neighbor
method which is based only on dissimilarities.

We review in this paper variants of the Self Organizing Map (SOM) that have
been proposed following this line of research, that is SOM variants that operate
on dissimilarity/kernel data. We discuss whether those variants are really usable
and helpful in practice. The paper is organized as follows. Section 2 describes
our general setting: dissimilarity data, kernel data and the Self Organizing Map.
Section 3 is dedicated to the oldest dissimilarity variant of the SOM, the Median
SOM, while Section 4 focuses on the modern variant, the relational SOM. Section
5 presents a different approach to SOM extensions based on the deterministic
annealing principle. Section 6 describes kernel based variants of the SOM. An
unifying view is provided in Section 7 which shows that the differences between
the SOM variants are mainly explained by the optimization strategy rather than
by the data properties. Finally Section 8 gathers our personal remarks and in-
sights on the dissimilarity/kernel SOM variants.

2 General Setting

The data set under study comprises N data points x1, . . . , xN from an abstract
space X . We specifies below the two options, namely dissimilarity data and kernel
data. We also recall the classical SOM algorithms.

2.1 Dissimilarity Data

In the dissimilarity data setting (a.k.a. the pairwise data setting), it is assumed
that the data are described indirectly by a square N × N symmetric matrix
D that contains dissimilarities between the data points. The convention is that
Dij = d(xi, xj), a non negative real number, is high when xi and xj are different
and low when they are similar. Minimal assumptions on D are symmetry and
non negativity of each element. It is also natural to assume some basic ordering,
that is that Dii ≤ Dij for all i and j, but this is not use in SOM variants. Some
theoretical results also need Dii = 0 (e.g. [20]), but this again not a very strong
constraint. Notice that one can be given either the dissimilarity function d from
X 2 to R

+ or directly the matrix D.

2.2 Kernel Data

In the kernel data setting, one is given a kernel function k from X 2 to R which
satisfies the following properties:

1. k is symmetric: for all x and y in X , k(x, y) = k(y, x);
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2. k is non negative: for all m > 0, all (x1, . . . , xm) ∈ Xm and all (α1, . . . , αm) ∈
R

m,
∑m

i=1

∑m
j=1 αiαjk(xi, xj) ≥ 0.

The most important aspect of the kernel setting lays in the Moore-Aronszajn
theorem [3]. It states that a Reproducing Kernel Hilbert Space (RKHS) H can
be associated to X and k through a mapping function φ from X to H such
that 〈φ(x), φ(y)〉H = k(x, y) for all x and y in X . The mapping φ is called the
feature map. It enables one to leverage the Hilbert structure of H in order to
build machine learning algorithms on X indirectly.This can be done in general
without using φ but rather by relying on k only: this is known as the kernel trick
(see e.g. [42]).

Notice that the kernel can be used to define a dissimilarity on X by trans-
porting the Hilbert distance from H. Indeed, it is natural to define dk on X by

dk(x, y) = 〈φ(x) − φ(y), φ(x) − φ(y)〉H. (1)

Elementary algebraic manipulations show that

dk(x, y) = k(x, x) + k(y, y)− 2k(x, y), (2)

which is an example of the use of the kernel trick to avoid using explicitly φ.
The construction of dk shows that the dissimilarity setting is more general

than the kernel setting. It is always possible to use a kernel as the basis of a
dissimilarity: all the dissimilarity variants of the SOM can used on kernel data.
Therefore, we will focus mainly on dissimilarity algorithms, and then discuss
how they relate to their kernel counterparts.

Notice finally that as in the case of the dissimilarity setting, the kernel can be
given as a function from X to R or as a kernel matrix K = (Kij) = (k(xi, xj)).
In the latter case, K is symmetric and positive definite and is associated to a
dissimilarity matrix DK via equation (2).

2.3 SOM

To contrast its classical setting with the dissimilarity and kernel ones, and to
introduce our notations, we briefly recall the SOM principle and algorithm [28].
A SOM is a low dimensional clustered representation of a data set.

One needs first to specify a low dimensional prior structure, in general a
regular lattice ofK units/neurons positioned inR

2, the (rk)1≤k≤K . The structure
induces a time dependent neighborhood function hkl(t) which measures how
much the prototype/model associated to unit rk should be close to the one
associated to unit rl, at step t of the learning algorithm (from 0 for unrelated
models to 1 for maximally related ones). We will not discuss here the numerous
possible variants for this neighborhood function [28]: if the lattice is made of
points rk in R

2 a classical choice is

hkl(t) = exp

(
−‖rk − rl‖2

2σ2(t)

)
,
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where σ increases over time to reduce gradually the influences of the neighbors
during learning.

The SOM attaches to each unit/neuron rk in the prior structure a proto-
type/model in the data space mk. The objective of the SOM algorithm is to
adapt the values of the models in such a way that each data point is as close
as possible to its closest model in the data space (at standard goal in prototype
based clustering). In addition if the closest model for the data point x is mk,
then ml should also be close to x if rk and rl are close in the prior structure. In
other words proximities in the prior structure should reflect proximities in the
data space and vice versa. The unit/neuron associated to the closest model of
a data point is called the best matching unit (BMU) for this point. The set of
points for which rk is the BMU defines a cluster in the data space, denoted Ck.

This is essentially achieved via two major algorithms (and dozens of variants).
Let us assume that the data space is a classical normed vector space. Then
both algorithms initialize the prototypes (mk)1≤k≤K in an “appropriate way”
and proceed then iteratively. We will not discuss initialization strategies in this
paper.

In the stochastic/online SOM (SSOM), a data point x is selected randomly1

at each iteration t. Then c ∈ {1, . . . ,K} is determined as the index of the best
matching unit, that is

c = arg min
k∈{1,...,K}

‖x−mk(t)‖2, (3)

and all prototypes are updated via

mk(t+ 1) = mk(t) + ε(t)hkc(t)(x −mk(t)), (4)

where ε(t) is a learning rate.
In the batch SOM (BSOM), each iteration is made of two steps. In the first

step, the best matching unit for each data point xi is determined as:

ci(t) = arg min
k∈{1,...,K}

‖xi −mk(t)‖2. (5)

Then all prototypes are updated via a weighted average

mk(t+ 1) =

∑N
i=1 hkci(t)(t)xi∑N
i=1 hkci(t)(t)

. (6)

Obviously, neither algorithm can be applied as is on non vector data.

1 or data points are looped through.
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3 The Median SOM

3.1 General Principle

It is well known (and obvious) that the prototype update step of the Batch SOM
can be considered as solving an optimization problem, namely

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
s

N∑
i=1

hkci(t)(t)‖s− xi‖2. (7)

This turns the vector space operations involved in equation (6) into an optimiza-
tion problem that uses only the squared Euclidean norm between prototypes
and observations. In an arbitrary space X with a dissimilarity, ‖sk − xi‖2 can
be replaced by the dissimilarity between sk and xi which turns problem (7) into

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
s∈X

N∑
i=1

hkci(t)(t)d(s, xi), (8)

which is a typical generalized median problem.
However, the most general dissimilarity setting only assumes the availability

of dissimilarities between observations not between arbitrary points in X . In fact,
generating new points in X might be difficult for complex data such as texts.
Then the most general solution consists in looking for the optimal prototypes
into the data set rather than in X . The Median SOM [27,29,30] and its variants
[12,13] are based on this principle. The Median SOM consists in iterating two
steps. In the first step, the best matching unit for each data point xi is determined
as

ci(t) = arg min
k∈{1,...,K}

d(xi,mk(t)). (9)

Then all prototypes are updated by solving the generalized median problem

∀ k ∈ {1, . . . ,K}, mk(t+ 1) = argmin
xj

N∑
i=1

hkci(t)(t)Dij . (10)

Notice that each prototype is a data point which means that in equation (9)
d(xi,mk(t)) is in fact a Dik for some k.

A variant of the Median SOM was proposed in [1]: rather than solving problem
(10), it associates to each unit the generalized median of the corresponding cluster
(in other words, it does not take into account the neighborhood structure at this
point). Then the BMU of a data point is chosen randomly using the neighborhood
structure and the dissimilarities. This means that a data point can be moved
from its natural BMU to a nearby one. As far as we know, this variant has not
been studied in details.
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3.2 Limitations of the Median SOM

The Median SOM has numerous problems. As a batch SOM it is expected to
request more iterations to converge than a potential stochastic version (which
is not possible in the present context, unfortunately). In addition, it will also
exhibit sensitivity to its initial configuration.

There are also problems more specific to the Median SOM. Each iteration
of the algorithm has a rather high computational cost: a naive implementation
leads to a cost of O(N2K + NK2) per iteration, while a more careful one still
costs O(N2 + NK2) [10]. Numerous tricks can be used to reduce the actual
cost per iteration [7,8] but the N2 factor cannot be avoided without introducing
approximations.

Arguably the two main drawbacks of the Median SOM are of a more intrinsic
nature. Firstly, restricting the prototypes to be chosen in the data set has some
very adverse effects. A basic yet important problem comes from collisions in
prototypes [36]: two different units can have the same optimal solution according
to equation (10). This corresponds to massive folding of the two dimensional
representation associated to the SOM and thus to a sub-optimal data summary.
In addition, equation (9) needs a tie breaking rule which will in general increase
the cost of BMU determination (see [30] for an example of such a rule). The
solution proposed in [36] can be used to avoid those problems at a reasonable
computational cost.

A more subtle consequence of the restriction of prototypes to data points is
that no unit can remain empty, apart from collided prototypes. Indeed, the BMU
of a data point that is used as a prototype should be the unit of which it is the
prototype. This means that no interpolation effect can take place in the Median
SOM [43,44] a fact that limits strongly the usefulness of visual representations
such as the U-matrix [45,46]. For some specific data types such as strings, this
can be avoided by introducing ways of generating new data points by some form
of interpolations. This was studied in [43,44] together with a stochastic/online
algorithm.

A generic solution to lift the prototype restriction is provided by the relational
SOM described in Section 4.

3.3 Non Metric Dissimilarities

The second intrinsic problem of the Median SOM is its reliance on a prototype
based representation of a cluster in the dissimilarity context, while this is only
justified in the Euclidean context. Indeed let us consider that the N data points
(xi)1≤i≤N belong to a Euclidean space. Then for any positive weights βi, the
well known König-Huygens identity states:

N∑
i=1

βi

∥∥∥∥∥
∑N

j=1 βjxj∑N
j=1 βj

− xi

∥∥∥∥∥
2

=
1

2

1∑N
i=1 βi

N∑
i=1

N∑
j=1

βiβj‖xi − xj‖2. (11)
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This means that

min
m

N∑
i=1

βi ‖m− xi‖2 =
1

2

1∑N
i=1 βi

N∑
i=1

N∑
j=1

βiβj‖xi − xj‖2. (12)

Applied to the SOM, this means that solving2

(m(t), c(t)) = argmin
m,c

K∑
k=1

N∑
i=1

hkci(t)‖mk − xi‖2, (13)

where m(t) = (m1(t), . . . ,mK(t)) denotes the prototypes and c = (c1, . . . , cn)
denotes the BMU mapping, is equivalent to solving

c(t) = argmin
c

1

2

K∑
k=1

1∑N
i=1 hkci(t)

N∑
i=1

N∑
j=1

hkci(t)hkcj (t)‖xi − xj‖2. (14)

This second problem makes clear that the classical SOM is not only based on
quantization but is also optimizing the within pairwise distances in the clusters
defined by the BMU mapping. Here hkci is considered as a form of membership

value of xi to cluster k, which give the “size”
∑N

i=1 hkci to the cluster k. Then
the sum of pairwise distances in each cluster measures the compactness of the
cluster in terms of within variance. As the SOM minimizes the sum of those
quantities, it can be seen as a clustering algorithm3.

However, the König-Huygens identity does not apply to arbitrary dissimilar-
ities. In other words, the natural dissimilarity version of problem (14) that is

c(t) = argmin
c

1

2

K∑
k=1

1∑N
i=1 hkci(t)

N∑
i=1

N∑
j=1

hkci(t)hkcj (t)d(xi, xj), (15)

is not equivalent to the Median SOM problem given by

(m(t), c(t)) = arg min
m∈{x1,...,xN}K ,c

K∑
k=1

N∑
i=1

hkci(t)d(xi,mk). (16)

When the dissimilarity satisfies the triangular inequality this is not a major
problem. In by virtue of the triangular inequality, we have for all m

d(xi, xj) ≤ d(xi,m) + d(m,xj), (17)

and therefore for all m

N∑
i=1

N∑
j=1

hkci(t)hkcj (t)d(xi, xj) ≤ 2

(
N∑
i=1

hkci(t)

)
N∑
j=1

hkcj (t)d(xj ,m), (18)

2 The quantity optimized in equation (13) is the energy defined in [25].
3 This classical analysis mimics the one used to see the k-means algorithm both as a
clustering algorithm and as a quantization algorithm.
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which shows that

1

2
∑N

i=1 hkci(t)

N∑
i=1

N∑
j=1

hkci(t)hkcj (t)d(xi, xj) ≤ min
m

N∑
j=1

hkcj (t)d(xj ,m). (19)

Then the Median SOM is optimizing an upper bound of the cluster oriented qual-
ity criterion for dissimilarities. In practice, this means that a good quantization
will give compact clusters.

However, when the dissimilarity does not satisfy the triangular inequality, the
two criteria are not directly related any more. In fact, one prototype can be close
to a set of data points while those points remain far apart from each other. Then
doing of form of quantization by solving problem (16) is not the same thing as
doing a form of clustering by solving problem (15). By choosing the prototype
based solution, the Median SOM appears to be a quantization method rather
than a clustering one. If the goal is to display prototypes in an organized way,
then this choice make sense (but must be explicit). If the goal is to display
clusters in an organized way, this choice is intrinsically suboptimal. As pointed
out in Section 8, dissimilarity SOMs are not very adapted to prototype display,
which puts in question the interest of the Median SOM in particular and of the
quantization approach in general.

4 The Relational SOM

The quantification of the prototypes induced by restricting them to data points
has quite negative effects described in Section 3.2. The relational approach is a
way to address this problem. It is based on the simple following observation [23].
Let the (xi)1,...,N be N points in a Hilbert space equipped with the inner product

〈., .〉 and let y =
∑N

i=1 αixi for arbitrary real valued coefficients αT = (αi)1,...,N
with

∑N
i=1 αi = 1. Then

〈xi − y, xi − y〉 = (Dα)i −
1

2
αTDα, (20)

where D is the squared distance matrix given by Dij = 〈xi − xj , xi − xj〉. This
means that computing the (squared) distance between a linear combination of
some data points and any of those data points can be done using only the
coefficients of the combination and the (squared) distance matrix between those
points.

4.1 Principle

But as shown by equation (6), prototypes in the classical SOM are exactly linear
combinations of data points whose coefficients sum to one. It is therefore possible
to express the Batch SOM algorithm without using directly the values of the xi,
but rather by keeping the coefficients of the prototypes and using equation (20)
and the squared distance matrix to perform all calculations.
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Then one can simply apply the so called relational version of the algorithm
to an arbitrary dissimilarity matrix as if it were a squared euclidean one. This
is essentially what is done in [22,23] for the c-means (a fuzzy variant of the k-
means) and in [21] for the Batch SOM (and the Batch Neural Gas [11]). Using
the concept of pseudo-Euclidean spaces, it was shown in [20] that this general
approach can be given a rigorous derivation: it amounts to using the original
algorithm (SOM, k-means, etc.) on a pseudo-Euclidean embedding of the data
points.

In practice, the Batch relational SOM proceeds by iterating two steps that
are very similar to the classical batch SOM steps. The main difference is that
each prototype mk(t) (at iteration t) is given by a vector of RN , αk(t), which
represents the coefficients of the linear combination of the xi in the pseudo-
Euclidean embedding. Then the best matching unit computation from equation
(5) is replaced by

ci(t) = arg min
k∈{1,...,K}

(
(Dαk(t))i −

1

2
αk(t)

TDαk(t)

)
, (21)

while the prototype update becomes

αk(t+ 1)i =
hkci(t)∑N
l=1 hkcl(t)

. (22)

A stochastic/online variant of this algorithms was proposed in [34]. As for the
classical SOM, it consists in selecting randomly a data point xi, computing its
BMU ci (using equation (21)) and updating all prototypes as follows:

αk(t+ 1)j = αk(t)j + ε(t)hkci(t)(δij − αk(t)j), (23)

where δij equals 1 when i = j and 0 in other cases. Notice that is the αk are
initialized so as to sum to one, this is preserved by this update. As shown in
[34], the stochastic variant tends to be less sensitive to the initial values of the
prototypes. However [34] overlooks that both batch and online relational SOM
algorithms share the same computational cost per iteration4 which negates the
traditional computational gain provided by online versions.

4.2 Limitations of the Relational SOM

The Relational SOM solves several problems of the Median SOM. In particular,
it is not subject to the quantization effect induced by constraining the prototypes
to be data points. As a consequence, it exhibits in practice the same interpolation
effects as the classical SOM. The availability of a stochastic version provides also
a simple way to reduce the adverse effects of a bad initialization.

However, the relational SOM is very computationally intensive. Indeed, the
evaluation of all the αk(t)

TDαk(t) costs O(KN2) operations. Neither the dis-
similarity matrix nor the prototype coefficients are sparse and there is no way

4 The cost reported in [34] for the batch relational SOM is incorrect.



12 F. Rossi

to reduce this costs without introducing approximations. Notice that this cost
is per iteration in both the batch and the stochastic versions of the relational
SOM. This is K times larger than the Median SOM.

This large cost has motivated research on approximation techniques such as
[37]. The most principled approach consists in approximating the calculation of
the matrix product via the Nyström technique [50], as explored in [19].

5 Soft Topographic Mapping for Proximity Data

As pointed out in Section 3.3, if an algorithm relies on prototypes with a general
possibly non metric dissimilarity, it provides only quantization and not clustering.
When organized clusters are looked for, one can try to solve problem (15) directly,
that is without relying on prototypes.

5.1 A Deterministic Annealing Scheme

However problem (15) is combinatorial and highly non convex. In particular,
the absence of prototypes rules out standard alternating optimization schemes.
Following the analysis done in the case of the dissimilarity version of the k-means
in [6,26], Graepel et al. introduce in [17,18] a deterministic annealing approach
to address problem (15). The approach introduces a mean field approximation
which estimates by eik the effects in the criterion of problem (15) of assigning
the data point xi in cluster k. In addition, it computes soft assignments to the
cluster/unit, denoted γik for the membership of xi to cluster k (γik ∈ [0, 1] and∑K

k=1 γik = 1). The optimal mean field is given by

eik =

K∑
s=1

hks

N∑
j=1

bjs

(
d(xi, xj)−

1

2

N∑
l=1

blsd(xj , xl)

)
, (24)

where the bjs are given by

bjs =

∑K
k=1 γjkhks∑N

i=1

∑K
k=1 γikhks

. (25)

Soft assignments are updated according to

γik =
exp(−βeik)∑K
s=1 exp(−βeis)

, (26)

where β is an annealing parameter. It plays the role of an inverse temperature
and is therefore gradually increased at each step of the algorithm.

Inpractice, the so-called SoftTopographicMapping forProximityData (STMP)
is trained in an iterative batch like procedure. Given an annealing schedule (that is
a series of increasing values for β) and initial random values of the mean field, the
algorithm iterates evaluating equation (26), then equation (25) and finally equa-
tion (24) for a fixed value ofβ, until convergence.When this convergence is reached,
β is increased and the iterations restart from the current value of the mean field.
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Notice in equation (25) that the neighborhood function is fixed in this ap-
proach, whereas it is evolving with time in most SOM implementations.

5.2 Limitations of the STMP

It is well known that the quality of the results obtained by deterministic an-
nealing are highly dependent on the annealing scheme [35]. It is particularly
important to avoid missing transition phases. Graepel et al. have analyzed tran-
sition phases in the STMP in [18]. As in [35,26], the first critical temperature is
related to a dominant eigenvalue of the dissimilarity matrix. As this is in gen-
eral a dense matrix, the minimal cost of computing the critical temperature is
O(N2). In addition, each internal iteration of the algorithm is dominated by the
update of the mean field according to equation (24). The cost of a full update is
in O(N2K+NK2). The STMP is therefore computationally intensive. It should
be noted however that an approximation of the mean field update that reduces
the cost to O(N2K) is proposed in [18], leading to the same computational cost
as the relational SOM.

In addition, as will appear clearly in Section 7.2, the STMP is based on
prototypes, even they appear only indirectly. Therefore while it tries to optimize
the clustering criterion associated to the SOM, it resorts to a similar quantization
quality proxy as the relational SOM.

6 Kernel SOM

As recalled in Section 2.2, the kernel setting is easier to deal with than the dissim-
ilarity one. Indeed the embedding into a Hilbert space H enables to apply any
classical machine learning method to kernel data by leveraging the Euclidean
structure of H. The kernel trick allows one to implement those methods effi-
ciently.

6.1 The Kernel Trick for the SOM

In the case of the SOM, the kernel trick is based on the same fundamental
remark that enables the relational SOM (see Section 4.1): in the Batch SOM,
the prototypes are linear combinations of the data points. If the initial values
of the prototypes are linear combinations of the data points (and not random
points), this is also the case for the stochastic/online SOM.

Then assume given a kernel k on X , with its associated Hilbert space H
and mapping φ. Implementing the Batch SOM in H means working on the
mapped data set (φ(xi))1≤i≤N with prototypes mk(t) of the form mk(t) =∑N

i=1 αki(t)φ(xi). Then equation (5) becomes

ci(t) = arg min
k∈{1,...,K}

‖φ(xi)−mk(t)‖2H, (27)
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with

‖φ(xi)−mk(t)‖2H =k(xi, xi)− 2

N∑
j=1

αkj(t)k(xk, xj) (28)

+
N∑
j=1

N∑
l=1

αkj(t)αkl(t)k(xj , xl).

Equation (28) is a typical result of the kernel trick: computing the distance
between a data point and a linear combination of the data points can be done
using solely the kernel function (or matrix). To our knowledge, the first use of
the kernel trick in a SOM context was made in [17].

Notice that equation (6) can also been implemented without using explicitly
the mapping φ as one needs only the coefficients of the linear combination which
are given by

αki(t+ 1) =
hkci(t)∑N
l=1 hkcl(t)

, (29)

exactly as in equation (22). While the earliest kernel SOM (STMK) in [17] is
optimized using deterministic annealing (as the SMTP presented in Section 5),
the kernel trick enables the more traditional online SOM [31] and batch SOM
[5,32,49] derived from the previous equations.

It should be noted for the sake of completeness that another kernel SOM was
proposed in [2]. However, this variant assumes that X is a vector space and
therefore is not applicable to the present setting.

6.2 Limitations of the Kernel SOM

As it is built indirectly on a Hilbert space embedding, the kernel SOM does
not suffer from constrained prototypes. The stronger assumptions made on ker-
nels compared to dissimilarities guarantee the equivalence between finding good
prototypes and finding compact clusters. Kernel SOM has also both online and
batch versions.

Then the main limitation of the kernel SOM is its computational cost. In-
deed, as for the relational SOM, evaluating the distances in equation (28) has
a O(KN2) cost. The approximation schemes proposed for the relational SOM
[19,37] can be used for the kernel SOM at the cost of reduced performances in
terms of data representation.

7 Equivalences between SOM Variants

It might seem at first that all the variants presented in the previous sections
are quite different, both in terms of goals and algorithms. On the contrary, with
the exception of the Median SOM which is very specific in some aspects, the
variations between the different methods are explained by optimization strategies
rather than by hypothesis on the data.
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7.1 Relational and Kernel Methods are Equivalent

We have already pointed out that relational SOM and kernel SOM share the very
same principle of representing prototypes by a linear combination of the data
points. Both cases use the same coefficient update formulas whose structure
depends only on the type of the algorithm (batch or online).

The connections are even stronger in the sense that given a kernel, the re-
lational SOM algorithm obtained by using the dissimilarity associated to the
kernel is exactly identical to the kernel SOM algorithm. Indeed if K is the kernel
matrix, then the dissimilarity matrix is given by Dij = Kii +Kjj − 2Kij. Then

for all α ∈ R
N such that

∑N
i=1 αi = 1 and for all i ∈ {1, . . . , N}

(Dα)i −
1

2
αTDα =

N∑
j=1

Dijαj −
1

2

N∑
j=1

N∑
l=1

αjαlDjl

=

N∑
j=1

(Kii +Kjj − 2Kij)αj −
1

2

N∑
j=1

N∑
l=1

αjαl(Kjj +Kll − 2Kjl)

Using
∑N

i=1 αi = 1, the first term becomes

N∑
j=1

(Kii +Kjj − 2Kij)αj = Kii +

N∑
j=1

Kjjαj − 2

N∑
j=1

Kijαj .

The same condition on α shows that

N∑
j=1

N∑
l=1

αjαlKjj =

N∑
j=1

Kjjαj ,

and that
N∑
j=1

N∑
l=1

αjαlKll =

N∑
l=1

Kllαl.

Therefore

N∑
j=1

N∑
l=1

αjαl(Kjj +Kll − 2Kjl) = 2
N∑
j=1

Kjjαj − 2
N∑
j=1

N∑
l=1

αjαlKjl.

Combining those equations, we end up with

(Dα)i −
1

2
αTDα = Kii − 2

N∑
j=1

Kijαj +
N∑
j=1

N∑
l=1

αjαlKjl. (30)

The second part of this equation is exactly ‖φ(xi)−m‖2H whenm =
∑N

j=1 αjφ(xj)
as recalled in equation (28). Therefore, the best matching unit determination in
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the relational SOM according to equation (21) is exactly equivalent to the BMU
determination in the kernel SOM according to equation (27). This shows the
equivalence between the two algorithms (in both batch and online variants).

This equivalence shows that the batch relational SOM from [21] is a rediscov-
ery of the batch kernel SOM from [32], while the online relational SOM from [34]
is a rediscovery of the online kernel SOM from [31]. Results from [20] show that
those rediscoveries are in fact generalizations of kernel SOM variants as they
extend the Hilbert embedding to the more general pseudo-Euclidean embedding.
In practice, there is no reason to distinguish the kernel SOM from the relational
SOM.

7.2 STMP is a Prototype Based Approach

On the surface, the STMP described in Section 5 looks very different from re-
lational/kernel approaches as it tries to address the combinatorial optimization
problem (15) rather than the different problem (16) associated to the generalized
median. However, as analyzed in details in [20], the STMP differs from the rela-
tional approach only by the use of deterministic annealing, not by the absence
of prototypes.

A careful analysis of equations (24) and (22) clarifies this point. Indeed, let
us consider αs = (bjs)

T
1≤j≤N as the coefficient vector for a linear combination

of the data points xj embedded in the pseudo-Euclidean space associated to the
dissimilarity matrix D. Then

N∑
j=1

bjs

(
d(xi, xj)−

1

2

N∑
l=1

blsd(xj , xl)

)
= (Dαs)i −

1

2
αT
s Dαs.

The right hand part is the distance in the pseudo-Euclidean space between the
prototype associated to αs and xi. Then eik in equation (24) is a weighted average
of distances between xi and each of the αs, where the weights are given by the
neighborhood function. As pointed out in [20], this can be seen as a relational
extension of the assignment rule proposed by Heskes and Kappen in [25].

However, rather than using crisp assignments to a best matching unit with
the lowest value of eik, the STMP uses a soft maximum strategy implemented
by equation (26) to obtain assignment probabilities γik. Those are used in turn
to update the coefficients of the prototypes in equation (25).

In fact the three algorithms proposed in [17] are all based on the same de-
terministic annealing scheme, with an initial implementation in R

p (the STVQ)
and two generalization in the Hilbert space associated to a kernel (STMK) and
in the pseudo-Euclidean space associated to a dissimilarity (STMP). The discus-
sion of the previous section shows that the kernel and the dissimilarity variants
are strictly equivalent.

7.3 Summary

We summarizes in the following tables the variants of the SOM discussed in
this paper. Table 1 maps a data type and an optimization strategy to a SOM



How Many Dissimilarity/Kernel SOM Variants are Needed? 17

Table 1. Variants of the SOM

Data type
R

p data Kernel Dissimilarity

Optimization
strategy

Online online SOM online relational SOM [31,34]
Batch batch SOM batch relational SOM [21,32]
Batch NA NA Median SOM [27]
Deterministic
annealing

STVQ [17] STMK [17] STMP [17]

Table 2. Computational complexity of SOM variants for N data points, K units and
in R

p for the classical SOM

Algorithm Assignment cost Prototype update cost

Batch SOM O(NKp) O(NKp)
Online SOM O(Kp) O(Kp)
Median SOM O(NK) O(N2 +NK2)
Batch relational SOM O(N2K) O(NK)
Online relational SOM O(N2K) O(NK)
STVQ O(NKp +NK2) O(NKp +NK2)
STMK/STMP O(N2K +NK2) O(NK2)

variant. Relational variants include here the kernel presentation. Table 2 gives
the computational costs of one iteration of the SOM variants.

8 Discussion

Even if the kernel approaches are special cases of the relational ones, we have
numerous candidates for dissimilarity processing with the SOM.We discuss those
variants in this section.

8.1 Median SOM

In our opinion, there is almost no reason to use the Median SOM in practice,
except possibly the reduced computational burden compared to the relational
SOM (O(N2) compared to O(N2K)) for the dominating terms). Indeed, the
Median SOM suffers from constraining the prototypes to be data points and
gives in general lower performances than the relational/kernel SOM as compared
to a ground truth or based on the usability of the results (see for instance
[19,34,49]). The lack of interpolation capability is particularly damaging as it
prevents in general to display gaps between natural clusters with u-matrix like
visual representation [45,46].
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For large data sets, the factor K increase in the cost of one iteration of the
relational SOM compared to the median SOM could be seen as a strong argument
for the latter. In our opinion, approximation techniques [19,37] are probably a
better choice. This remains however to be tested as to our knowledge the effects of
the Nyström approximation have only been studied extensively for the relational
neural gas and the relational GTM [16,19,40].

8.2 Optimization Strategy

To our knowledge, no systematic study of the influence of the optimization strat-
egy has been conducted for SOM variants, even in the case of numerical data. In
this latter case, it is well known that the online/stochastic SOM is less sensitive
to initial conditions than the batch SOM. It is also generally faster to converge
and leads in general to a better overall topology preservation [14]. Similar results
are observed in the dissimilarity case in [34]. It should be noted however that
both analyses use only random initializations while it is well known (see e.g. [28])
that a PCA5 based initialization gives much better results than a random one
in the case of the batch SOM. It is also pointed in [28] that the neighborhood
annealing schedule as some strong effects on topology preservation in the batch
SOM. Therefore, in terms of the final quality of the SOM, it is not completely
obvious that an online solution will provide better results than a batch one.

In addition, the relational setting negates the computational advantage of the
online SOM versus the batch SOM. Indeed in the numerical case, one epoch
of the online SOM (a full presentation of all the data points) has roughly the
same cost as one iteration of the batch SOM. As the online SOM converges
generally with a very small number of epochs, its complete computational cost
is lower than the batch SOM. On the contrary, the cost of the relational SOM is
dominated by the calculation of αTDα in equation (21). In the batch relational
SOM this quantity can be computed one time per prototype and per iteration,
leading to a cost of O(N2K) per iteration (this is overlooked in [34] which reports
erroneously a complexity of O(N3K) per iteration). In the online version, it has
also to be computed for each data point (because of the prototype update that
takes place after each data point presentation). This means that one epoch of
the online relational SOM costs N times more than one iteration of the batch
relational SOM. We think therefore that a careful implementation of the batch
relational SOM should outperform the online version, provided the initialization
is conducted properly.

Comparisons of the online/batch variants with the deterministic annealing
variants is missing, as far as we know. The extensive simulations conducted in
[20] compare the relational neural gas to the dissimilarity deterministic anneal-
ing clustering of [6,26]. Their conclusion is the one expected from similar com-
parisons done on numerical data [35]: the sophisticated annealing strategy of
deterministic annealing techniques leads in general to better solutions provided

5 PCA initialization is easily adapted to the relational case, as it was for kernel data
[41].
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the critical temperatures are properly identified. This comes with a largely in-
creased cost, not really because of the cost per iterations but rather because the
algorithm comprises two loops: an inner loop for a given temperature and an
outer annealing loop. Therefore the total number of iterations is in general of an
order of magnitude higher than with classical batch algorithms (see also [38] for
similar results in the context of a graph specific variant of the SOM principle).
It should be also noted that in all deterministic variants proposed in [17], the
neighborhood function is not adapted during learning. The effects of this choice
on the usability of the final results remain to be studied.

To summarize, our opinion is that one should prefer a careful implementation
of the batch relational SOM, paired with a PCA like algorithm for initialization
and using the Nyström approximation for large data sets. Further experimental
work is needed to validate this choice.

8.3 Clustering versus Quantization

As explained in Section 3.3, an algorithm that resorts (directly or indirectly)
on prototypes for an arbitrary dissimilarity does in fact of form of quantization
rather than a form of clustering. To our knowledge, no attempt has been made
to minimize directly the prototype free criterion used in problem (15) and we
can only speculate on this point.

We should first note that in the case of classical clustering, it has been shown
in [9] that optimizing directly the criterion from problem (15) in its k-means
simplified form gives better results than using the relational version of the k-
means. While the computational burden of both approaches are comparable,
the direct optimization of the pairwise dissimilarities criterion is based on a
much more sophisticated algorithm which combines state-of-the-art hierarchical
clustering [33] with multi-level refinement from graph clustering [24].

Assuming such a complex technique could be used to train a SOM like al-
gorithm, one would obtain in the end a set of non empty clusters, organized
according to a lattice in 2 dimensions, something similar to what can be ob-
tained with the Median SOM. While the clusters would have a better quality,
no interpolation between them would be possible, as in the Median SOM.

8.4 How Useful Are the Results?

In our personal opinion, the main interest of the SOM is to provide rich and
yet readable visual representations of complex data [47,48]. Unfortunately, the
visualization possibilities are quite limited in the case of dissimilarity data.

The main limitation is that for arbitrary data in an abstract space X , one
cannot assume that an element of X can be easily represented visually. Then even
the Median SOM prototypes (which are data points) cannot be visualized. As the
prototypes (in all the variants) do not have meaningful coordinates, component
planes cannot be used.

In fact, the only aspects of the results that can be displayed as in the case of
numerical data are dissimilarities between prototypes (in U matrix like displays
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[45]) as well as numerical characteristics of the clusters (size, compactness, etc.).
But as pointed out in [46], among others, this type of visualization is interesting
mainly when the SOM uses a large number of units. While this is possible with
the relational SOM, it implies a high computational because of the dominat-
ing O(N2K) term. The case of deterministic annealing versions of the SOM is
even more problematic with the O(NK2) complexity term induced by the soft
memberships.

In some situations, specific data visualization techniques can be built upon the
SOM’s results. For instance by clustering graph nodes via a kernel/dissimilarity
SOM, one can draw a clustered graph representation, as was proposed in [5].
However, it has been shown in this case that specialized models derived from
the SOM [38] or simpler dual approaches based on graph clustering and graph
visualization [39] give in general better final results.

To summarize, our opinion is that the appeal of a generic dissimilarity SOM is
somewhat reduced by the limited visualization opportunity it offers, compared
to the traditional SOM. Further work is needed to explore whether classical
visualization techniques, e.g. brushing and linking [4] could be used to provide
more interesting displays based on the dissimilarity SOM.

9 Conclusion

We have reviewed in this paper the main variants of the SOM that are adapted
to dissimilarity data and to kernel data. Following [20], we have shown that the
variants differ more in terms of their optimisation strategy that in other aspects.
We have recalled in particular that kernel variants are strictly identical to their
relational counterpart. Taking into account computational aspects and known
experimental results, our opinion is that the best solution is the batch relational
SOM coupled with a structured initialization (PCA like) and with the Nyström
approximation for large data sets and thus that we need one dissimilarity/kernel
SOM variant only.

However, as discussed above, the practical usefulness of the dissimilarity SOM
is reduced compared to the numerical SOM as most of the rich visual representa-
tion associated to the SOM of not available for its dissimilarity version. Without
improvement in its visual outputs, it is not completely clear if the dissimilarity
SOM serves a real practical purpose beyond its elegant generality and simplicity.
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de dissimilarités par séparation et évaluation. Revue des Nouvelles Technologies de
l’Information, pp. 1–16 (June 2008), RNTI-C-2 Classification: points de vue croisés.
Rédacteurs invités : Mohamed Nadif et François-Xavier Jollois

9. Conan-Guez, B., Rossi, F.: Dissimilarity clustering by hierarchical multi-level re-
finement. In: Proceedings of the XXth European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning (ESANN 2012),
Bruges, Belgique, pp. 483–488 (March 2012)

10. Conan-Guez, B., Rossi, F., El Golli, A.: Fast algorithm and implementation of
dissimilarity self-organizing maps. Neural Networks 19(6-7), 855–863 (2006)

11. Cottrell, M., Hammer, B., Hasenfuß, A., Villmann, T.: Batch and median neural
gas. Neural Networks 19(6), 762–771 (2006)

12. El Golli, A., Conan-Guez, B., Rossi, F.: Self organizing map and symbolic data.
Journal of Symbolic Data Analysis 2(1) (November 2004)

13. El Golli, A., Conan-Guez, B., Rossi, F.: A self organizing map for dissimilarity data.
In: Banks, D., House, L., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification,
Clustering, and Data Mining Applications (Proceedings of IFCS 2004), Chicago,
Illinois, pp. 61–68. IFCS, Springer (2004)

14. Fort, J.C., Letremy, P., Cottrell, M.: Advantages and drawbacks of the batch koho-
nen algorithm. In: Proceedings of Xth European Symposium on Artificial Neural
Networks (ESANN 2002), vol. 2, pp. 223–230 (2002)
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Abstract. In this paper, an original dynamical system derived from
dynamic neural fields is studied in the context of the formation of topo-
graphic maps. This dynamical system overcomes limitations of the orig-
inal Self-Organizing Map (SOM) model of Kohonen. Both competition
and learning are driven by dynamical systems and performed continu-
ously in time. The equations governing competition are shown to be able
to reconsider dynamically their decision through a mechanism rendering
the current decision unstable, which allows to avoid the use of a global
reset signal.

Keywords: dynamic neural fields, self-organizing maps.

1 Introduction

Within the context of situated or embodied cognition[9], there is a growing
interest in finding complex, non-linear dynamical systems supporting various
functions such as perception, working memory or action. These dynamical sys-
tems would interact continuously with their environment being shaped by the
stimuli they receive and producing continuously motor programs to be executed.
In this paper, we focus on self-organizing maps. In self-organizing maps, there
is a notion of topology and of similarity: neurons that are close together will en-
code similar aspects of those stimuli that they receive as input. This situation is
observed for example in the visual cortex where, despite some non-linearity such
as the pinwheels, there is a continuous orientation selectivity along the cortical
tissue. In the context of the formation of topographically organized maps, there
is one usual assumption having strong consequences on the model. It is indeed
usually assumed that the network is reset when a new sample is presented to the
network. If we completely develop this assumption, we can identify two situa-
tions. In the first one, between two successive stimuli, one may assume that the
network receives no excitation and that this period is sufficient for the network to
go back to a resting state. In the second, more constrained, situation, the stream
of stimuli is continuous and there is no possibility to really separate one stimulus
from the others. In such a continuous stream of inputs, it is hard to figure out a
mechanism that would reset the network to put it in a more favorable state. In
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this article, we advocate that such a mechanism is not necessary by introducing
a dynamical neural network, relying on the dynamic neural field theory, able to
reconsider its decision whenever it is no more appropriate. Indeed, as we will
see, if the network creates a decision with a bump of activity not localized where
the input is locally maximal, this decision becomes unstable. A second property,
in line with the previous one, is that the prototypes of the self-organizing map
are continuously learned and there is no need to wait that the decision is settled
before triggering learning. Competition and learning are two processes occurring
at the same time although at different time scales. The article is organized as
follows: in section 2 we present the standard neural field equation of [2], explain
some limitations in the context of decision making and self-organization and in-
troduce a modified neural field equation. In section 3, we illustrate the behavior
of the neural field on artificial data and finally demonstrate its ability to drive a
learning process within the context of self-organizing maps. The python scripts
used to run the simulations of the paper are available online[5].

2 Methods

The Dynamic Neural Field equation (DNF), as introduced in [2,11], reads :

τ
dV

dt
(x, t) = −V (x, t) +

∫
y

w(x, y)f(V (y, t)) + I(x, t) (1)

where V (x, t) is the membrane potential at time t and position x, I(x, t) is the
input feeding position x at time t, τ is a time constant, w(x, y) is the weight of
the lateral connection between the units at position x and y and usually taken
as an on-center/off-surround difference of Gaussians and f a transfer function
mapping the membrane potential to the firing rates and usually taken as a Heav-
iside function or a sigmoid. Some properties of such a dynamical system have
been formally described and others have been observed experimentally. In par-
ticular, essentially depending on the shape and extent of the lateral connections,
one may observe competitive behaviors or working memory behaviors. While
competitive behaviors mainly rely on inhibitory influences within the field, the
memory property can be obtained with more local and excitatory weights. If
one is interested in the ability of a neural field to form a decision, this equation
has experimentally some drawbacks. In particular, if we suppose that the same
neural field should be able to form a decision both when the input is randomly
distributed (as we encounter initially with self-organizing maps, when the pro-
totypes are drawn randomly) and when the input is made of several localized
bumps of activities (e.g. when a self-organizing map actually gets organized, or
when representing alternative motor plans), it appears quite difficult to tune the
parameters. Intuitively, in order the neural field to form a localized decision in
case of a randomly distributed input, one must introduce some lateral excitation
within the field to recover a coherency in the shape of the decision absent from
the input. When the inputs are already localized bumps, this lateral excitation
is much less important relative to the lateral inhibition supporting the ability
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to decide. The lateral excitation can even have dramatic consequences in the
second situation since it introduces some inertia of the decision and may prevent
the neural field to reconsider the decision, in particular when the input changes.
We must note that a self-organizing neural field, based on the original Amari’s
equation, has been proposed in [4]. However, as stated by the authors, when a
new sample is presented to the network, “the activity of the field is reset to zero”.
This is a limitation we want to overcome and that motivates the new neural field
equation we propose. Indeed let us consider the dynamic neural field defined by
equations (2).

τ
dU

dt
(x, t) = −U(x, t) +

∫
y

g(x, y)I(y, t)−
∫
y

f(V (y, t))I(y, t) (2)

τ
dV

dt
(x, t) = −V (x, t) +

∫
y

w(x, y)f(V (y, t)) + U(x, t)

where f is a transfer function, w is the lateral weight function and g a Gaussian.
In the following, we consider the firing rates f(V (x, t)) as representing the deci-
sion of the neural field. If we stick to the framework of classical self-organizing
maps [7], we expect this decision to be a bell-shaped bump, encoding the neigh-
bourhood function. This equation is similar to the standard dynamic neural
field equation except that an intermediate layer with the membrane potentials
U(x, t) is introduced. This intermediate layer combines the feedforward input
I(x, t) with a feedback from the output layer V (x, t). The motivation behind
this intermediate layer is to modulate the input feeding the V layer in order to
boost the input when a decision emerges in the neural field that does not cor-
respond to the input region that is locally maximal. This transient boost, that
will be canceled if the decision switches, helps in destabilizing the decision. In
the next section, we begin by showing experimentally that such a neural field is
able to dynamically form a decision where the input is locally maximal. Then,
introducing adaptive prototypes for defining the input, we show experimentally
that such a neural field can actually self-organize in a way similar to Kohonen’s
self-organizing maps [7].

3 Results

3.1 Detecting Where the Input Is Locally Maximal

When self-organizing maps were introduced by [7], the author identified several
processes “1. Formation of an activity cluster in the array around the unit at
which activation is maximum. 2. Adaptive change in the input weights of those
units where activity was confined”. The neural field equation we propose aims
at being a neural system for the first process. The intuition is that a neural field
governed by equation 2 should converge to a localized bump of firing rates in
the V layer. This bump should be centered on the input region that is locally
maximal. For clarity, we rewrite the neural field equation (3) that we consider in
this section. The parameter β we introduce in the equation facilitates the tuning
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(a) Random input

(b) Structured input

Fig. 1. A one-dimensional neural field with 50 positions is excited with randomly dis-
tributed inputs (a) or with more structured inputs (b). In both situations, we plot
the input I(x, t) on the left, the U(x, t) membrane potential on the middle and the
output firing rates f(V (x, t)) on the right. The membrane potentials U(x, t) have been
saturated for the illustration to lie in [−3, 3] but they typically lie in a larger domain
(see Fig. 2). The dashed lines shown on f(V (x, t)) indicate the slices plotted on Fig. 2.
In all the conditions, the neural field is able to create a bump of activity localized
where the input is locally maximal (in the sense of the input convolved with the Gaus-
sian receptive field g(x, y)). The bump of activity becomes unstable when the input is
changed and the decision is no more appropriate.

of the neural field for the latter simulations. In addition, we discretize the space
in N positions and write sums rather than integrals.

f(x) =
1

1 + exp(−x)

τ
dU

dt
(x, t) = −U(x, t) + β(

∑
y

g(x, y)I(y, t)−
∑
y

f(V (y, t))I(y, t)) (3)

τ
dV

dt
(x, t) = −V (x, t) +

∑
y

w(x, y)f(V (y, t)) + U(x, t)

The lateral weights w(x, y) are defined as an excitatory Gaussian with an in-
hibitory offset. The afferent weights g are defined as a Gaussian chosen to match
approximately the size of the bump-like firing rates f(V ) the neural field is
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producing. Before embedding the neural field within a self-organizingprocess (with
prototypes associated with each location and used to compute the input distribu-
tion I), we first simulate the competitive process governed by Eq. (3) with ran-
domly distributed inputs. For clarity of the illustrations, we restrict ourselves to
one dimensional neural fields. On Fig. 1 we simulate a 1D neural field withN = 50

spatial positions, τ = 0.05, g(x, y) = exp(− d(x,y)2

2σ2
i

) with σi = 4.7, lateral connec-

tions w(x, y) = A+ exp(− d(x,y)2

2σ2
+

) − A− with A+ = 1.2, σ+ = 4.6, A− = 0.9A+,

β = 2.6. The parameters of the neural field have been obtained following the
method given in [6] with the cost function introduced in [1]. The neural field is
integrated synchronously (the activities at all the spatial positions at time t+Δt
are computed with the activities at time t) with Euler and Δt = 0.01. To avoid
boundary effects, the distance within the field d(x, y) is cyclic. We consider two
situations that will be relevant for the latter application of the neural field to self-
organizing maps. In the context of self-organizing maps, we typically observe in-
puts that are initially random (because the prototypes are randomly sampled) and
become more structured, bell-shaped, as learning goes on (because the prototypes
actually get organized). These are the scenarios we simulate on Fig. 1a,b. On these
figures, we plot the input I(x, t) function of time on the left, the membrane po-
tentials U(x, t) on the middle and the output firing rates f(V (x, t)) on the right
which we define as the decision of the neural field1. In both situations, the neural
field is able to create a bell-shaped decision centered where the input is locally
maximal. In case the input is changed (which we do every few iterations), and the
decision is no more localized appropriately, it becomes unstable and a new deci-
sion is created after a few steps. This is this property of dynamically reconsidering
its decision, what one might call automatic reset, when the input is both random
or more structured, that is hard to obtain with the original Amari equation.

In order to better appreciate the behavior of the neural field, we show on Fig. 2,
the membrane potentials U(x, t) and output firing rates f(V (x, t)) at the posi-
tions where the input is locally maximal and where the decision will emerge. The
transition around time 2.5s., both for random and structured inputs, is typical
from the rest of the simulation. Until that time, the positions around x = 6
won the competition. However, as the input gets changed, these locations are no
more the most excited in the input. The potentials U(x, t) then begins to grow
around the location x = 18. They grow until the current decision is destabi-
lized and suppressed in layer V (x, t). Following the suppression of the decision,
a new decision appears around x = 18 and the U(x, t) activities then come back
to a resting level. The U(x, t) layer really brings a boosting signal to favor the
correct decision. We repeatedly mention that the decision is created where the
input is locally maximal. We do not bring a clear definition of locally maximal
but observed experimentally that it corresponds to the position where the input
convoluted by the gaussian-like decision is maximal.

1 One must note that the randomly generated inputs have been shifted in space to
ensure that the field will create a bump at, successively, the positions x = 6, 18, 31, 43,
which makes the illustrations easier to understand.
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(a) Random input (b) Structured input

Fig. 2. Slices of the membrane potentials U(x, t) and firing rates f(V (x, t)) at the po-
sitions x = 6, 18, 31, 43 for the scenarios we consider on Fig. 1a,b. The spatial positions
for the slices are indicated by dashed lines over the plots of f(V (x, t)) on Fig. 1. When
a decision is not appropriately localized, the membrane potentials U(x, t) get increased
until the current decision is destabilized, allowing a new one to appear.

3.2 A Self-organizing Dynamic Neural Field

We now embed the neural field equation within a learning architecture similar
to Kohonen Self-Organizing Maps. Indeed, we consider the dynamical system
given by Eq. (4). A prototype p(x, t) ∈ R

2 is associated with each position
x ∈ [1..N ] in the neural field. At regular time intervals, a sample ζ, drawn from
an unknown distribution D ⊆ R

2, is presented to the field. The input I(x, t)
at each position is computed as a Gaussian, with standard deviation σ, of ζ
centered on p(x, t). Importantly, the prototypes are updated at every iteration
and not just when the field has converged. Also, it is important to note that,
even if the samples are presented at regular time intervals, there is no specific
signal sent to the network to indicate it that a new sample is presented; the
network will automatically update its decision in case it is no more appropriate.
We choose σ = 0.2, τp = 100 and the equations are integrated synchronously
with Euler and Δt = 0.01. The learning rate is set to α = 0.001. The other
parameters are the same as in the previous simulation.

I(x, t) = exp(−|p(x, t)− ζ|2
σ2

)

τp
dp

dt
(x, t) = f(V (x, t))(ζ − p(x, t))

τ
dU

dt
(x, t) = −U(x, t) + β(

∑
y

g(x, y)I(y, t)−
∑
y

f(V (y, t))I(y, t)) (4)

τ
dV

dt
(x, t) = −V (x, t) +

∑
y

w(x, y)f(V (y, t)) + U(x, t)
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(a) 0 sample (b) 100 samples (c) 400 samples

Fig. 3. Simulation of the self-organizing neural fields given by Eq. 4. The samples
presented to the network are drawn from a ring distribution shown in gray. The white
dots represent the prototypes and are interconnected following the 1D circular topology
of the neural field. The current input I (dashed line) and output firing rates f(V ) (solid
line) are shown below each plot of the prototypes. The figures show the state of the
neural field at initialization (a), after presenting 100 samples (b) and 400 samples (c).
The current sample is shown as the black dot. A new sample is presented every 2s..

For the simulation shown on Fig. 3, the samples presented to the network
are drawn from a ring distribution shown as the shaded area on the figure. This
distribution allows to check two important properties. In case the neural field is
not able to create a decision, the prototypes will remain unchanged as the output
firing rates f(V ) gate learning of the prototypes. In case the neural field is not
able to reconsider its decision, the prototypes will converge to the center of mass
of the distribution (0, 0). Indeed, the field would create a bump of activity and,
if we suppose the decision is stuck to that position, it will always be the same
prototypes that will learn whatever the input sample. These prototypes would
then move to the center of mass of the distribution until they become so far away
from the distribution that the associated input becomes weak enough to allow
an other position in the field to win the competition. Then the same process
would apply and, step by step, all the prototypes would converge to the center
of mass of the distribution. In the simulation, we observe that the prototypes
correctly self-organize.

As a second example, we now consider a continuous stream of inputs. The
point of this simulation is to demonstrate the ability of the neural field to self-
organize from a continuous stream of inputs without requiring an explicit reset
signal. Indeed, we present to the network a small patch of 100× 100 pixels on
which a rotating bar is drawn. The bar is rotating at a constant angular speed
ω = 10◦s−1. The bar is performing 30 full turns. Examples of input shown to the
neural field are displayed on Fig. 4a. The bar is always with the same contrast.
On the figure, the gray levels have been adjusted for representing four consecutive
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(a) Input stimulus

(b) Prototypes

Fig. 4. (a) Experimental setup: a bar rotating at a constant angular speed ω = 10◦s−1

is drawn on a patch of 100×100 pixels. Such a patch is the input feeding all the positions
of the neural field. (b) The N = 50 prototypes at one given time are displayed on a
row. We display the prototypes after each of the 30 full turns from bottom (initial
prototypes) to top (final prototypes).

stimuli. We use exactly the same neural field equations (4) than for the previous
simulation. The prototypes p(x, t) and input ζ are now patches of 100 × 100
pixels. All the parameters (time constants, learning rates, weights) are the same
except the variance of the input set to σ = 50. The prototypes are initialized
to the mean of 50 stimuli spanning the range 0◦ to 180◦ to which is added
a uniform random noise sampled from [−0.1, 0.1]. We come back to the issue
of initializing the prototypes in the discussion. As the neural field is evaluated
synchronously, the random noise to the initial prototypes helps in breaking the
symmetry which would lead to oscillating activities within the field. On Fig 4b
we show the prototypes at the 50 spatial spatial positions after each full turn
of the bar. The initial prototypes are shown on the bottom row and the final
prototypes on the top row. Initially all the prototypes are almost identical. As
learning goes on, the prototypes finally span uniformly the range of orientations
from 0◦ to 180◦.

Discussion

The dynamic neural field equation we proposed for self-organizing maps in sec-
tion 3.1 suffers from some limitations. One appears when the prototypes are
initialized far from the unknown distribution from which the samples are drawn.
This issue is linked to the fact that the neural field requires to be driven by
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some activities that should not be too small. Otherwise, no decision will emerge
in the field. Also, in case some of the prototypes would be able to come closer
to the samples, one region of the neural field would learn but not the others.
The learning region would learn a mean prototype and the others would remain
unchanged. A second limitation is a boundary effect when the neural field is
no more laterally connected with cyclic connections. If the connections are no
more cyclic, the positions on the border of the map are less excited and more
inhibited than the positions in the middle of the map. This brings a penalty for
those units on the border preventing them from adapting their prototypes. A
common mechanism might solve these two issues. A constant baseline added to
one of the layers might be sufficient for solving the first issue but not the second.
Indeed, the boundary effect appears because of a lack of excitation or excess
of inhibition on the units on the border of the map. The bonus must not be
uniform in space. An alternative relies in homeostatic plasticity[10], for example
by adjusting the baseline of the units depending on the difference between the
mean of recent firing rates and a target firing rate. Units that never win the
competition (because their prototypes are far from the samples or because these
are locations on the border of the map) would receive a transient self-excitation.
This transient excitation would push them to fire for everything. At some point
they would win the competition and come into play for adapting their proto-
types. Such an idea has already been explored in [8] where the authors used a
homeostatic learning rule to modulate the lateral connections of a neural field
allowing to recover activities at sites where the input has been impaired, and
in [3] where the firing threshold of the units is adjusted to bring it closer to a
target firing rate.

The main point for the simulations of the self-organizing dynamic neural field
is that it can learn continuously; there is no separate phase for evaluating the
field until convergence and for learning the prototypes. The second important
property is that the neural field is able to automatically reconsider its decision
and there is no need for indicating it that a new sample is presented for, for
example, resetting the activities. These properties allow the neural field to learn
from a continuous stream of stimuli. The dynamic neural field equation we pro-
pose can be modified to remove any dependency on space in the interactions. If
the gaussian g is replaced by a Kronecker, the weight function replaced by a self-
excitation and uniform inhibition from the other locations, the network is able to
perform a Winner-Takes-All. One can actually demonstrate that such a network
has a single fixed point corresponding to the output of a Winner-Takes-All if
the transfer function is taken to be a Heaviside step function. In that respect,
instead of a dynamic self-organizing map, we can obtain a dynamic k-means.
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Abstract. This paper presents a new neural algorithm, MS-SOM, as
an extension of SOM, that maintaining the topological representation of
stimulus also introduces a second level of organization of neurons. MS-
SOM units tend to focus the learning process in data space zones with
high values of a user-defined magnitude function. The model is based in
two mechanisms: a secondary local competition step taking into account
the magnitude of each unit, and the use of a learning factor, evaluated
locally, for each unit. Some results in several examples demonstrate the
better performance of MS-SOM compared to SOM.

Keywords: Self-Organizing Maps, Magnitude Sensitive Competitive learn-
ing, unsupervised learning, classification, surface modelling.

1 Introduction

Soft competitive learning comprises a set of methods where more than a single
neuron are adjusted with each sample pattern. These algorithms possess some
features that are advantageous over hard competitive learning methods: avoiding
unused (‘dead’) units, accelerating the learning phase, filling empty areas in the
dataset space or avoiding local minima. Self Organizing Maps (SOM) [1] is one of
these algorithms with the property of generating a topological representation of
the input data space in a grid of neurons with low dimension. This makes SOM
useful for visualizing low-dimensional views of high-dimensional data. SOM has
also been used for data classification (i.e. [2], [3]).

On the other hand, Magnitude Sensitive Competitive Learning (MSCL) [4]
is a hard competing algorithm which has the capability of distributing the unit
centroids following any user defined magnitude.

Comparing both algorithms, the main disadvantage of SOM against MSCL
is that SOM distributes unit prototypes following the data density. Magnifica-
tion control methods ([5], [6]) present alternatives to SOM that try to modify
the relation between data and weight vector density. However, in these kind of
methods, final unit distribution is always somehow related with data density.

In this paper we describe a new algorithm, Magnitude Sensitive Self Organiz-
ing Map (MS-SOM), an hybrid between MSCL and SOM, that synthesizes the
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advantages of both methods. It preserves the topological representation of the
input space and additionally, distributes units following a target magnitude.

The remainder of this chapter is organized as follows. Section 2 describes
the proposed MS-SOM algorithm. In section 3 the new algorithm is applied
to three examples: a toy example with Gaussian to show the algorithm be-
haviour, 3D surface modelling, and data classification. Last section presents the
conclusions.

2 Magnitude Sensitive Self Organizing Maps

2.1 The Algorithm

Database Description. Dataset used in this paper X consists of P patterns
x (t) = (x1, .., xD)(t) ∈ R

D.

Magnitude Definitions. the user-defined magnitude function, MF (), acts as
an extra information for the network, forcing neurons to represent with more de-
tail those zones of data space with higher magnitude values. We consider mainly
two situations depending on the data dependency of this function: if magnitude
is determined exclusively from input data, MF (X ), we define a magnitude vec-
tor, mx, where each component mx corresponds to sample x . Another situation
occurs when magnitude function also depends on neuron parameters, MF (i,X ),
then it is necessary to define for each neuron i an internal variable, mwi(t) to
store the value of the magnitude at that unit. These unit variables can be repre-
sented as a magnitude map, Mw(t), with the same dimensionality of the neural
map grid. Figures 1(a) and 2(c) show examples of magnitude map.

The examples studied in next sections show both situations: 3D-surface ex-
ample has a magnitude vector associated to input data, while Gaussian and
classification examples present magnitude maps associated with neurons.

1. Initialization: Initial codebook W is formed by N prototypes wi (i =
1 · · ·N) initialized linearly, along principal components of data, and forming a
low-dimensional grid (usually 2D). For the case when magnitude depends on
neurons, we need to initialize the magnitude map in t = 0. To carry out neural-
magnitude computations along the learning process, each neuron i uses an accu-
mulated magnitude, ρi, that has to be initialized too. At t = 0, neural-magnitude
variables are initialized following:

mwi(0) = MF (i,X ) (1)

ρi(0) = mwi(0) (2)

2. Selection of Samples: A sample data x (t) is selected at random from X .
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3. Global Unit Competition: The index ξ of unit with minimum distance
from its weights to the input data vector is selected as global winner in this first
step.

ξ = argmin
i∈W

(‖x (t)−wi(t)‖) (3)

At this point, we form the local winner set S, (S ⊂ W) with the Ngrid units
belonging to the neighbourhood in the grid, of unit ξ in the MS-SOM map as:

S = {s1, s2, ..., sNgrid
} (4)

For example, in a two dimensional grid with hexagonal representation, Ngrid

is 7, counting the winner unit and its six closest neighbour units around.

4. Local Unit Competition: Final winner unit j is selected among the units
belonging to S, as the one that minimizes the product of its magnitude value
with the distance of its weights to the input data vector, being γ the strength
of the magnitude during the competition. It follows:

j = argmin
s∈S

(mws(t)
γ · ‖x (t)−ws(t)‖) (5)

5. Winner and Magnitude Updating: Weights and magnitude are adjusted
iteratively for each training sample, following:

m(t) =

{
mx(t), if magnitude comes from data

mwj (t), if used internal magnitude of winner unit j
(6)

ρi(t+ 1) = ρi(t) +m(t) · hji(t) (7)

αi(t) =

(
m(t) · hji(t)

ρi(t+ 1)

)β

(8)

wi(t+ 1) = wi(t) + αi(t) (x (t)−wi(t)) (9)

mwi(t+ 1) =

{
mwi(t) + αi(t) (m(t)−mwi(t)) , if mx is used

MF (i,X ), otherwise
(10)

Equation (6) shows how magnitude for updating phase is obtained. Magnitude
can be provided by data, or it could correspond to the winner neuron. In the last
case, unit magnitude must be fed back to the rest of neurons for their updating
phase. In the above equations hji(t) is the neighbourhood kernel around the
winner unit j at time t. This kernel is a function depending on the distance of
map units j and i in the map grid, and mwi is the value of the magnitude at
unit i. Finally, αi(t) is the learning factor, and β is a scalar value between 0 and
1. Observe in eq. (10) that, if magnitude is presented as an extra input (mx),
the magnitude of the unit, mwi is updated as any other weight.
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6. Stopping Condition: Training is stopped when a termination condition is
reached. It may be the situation when all data samples has been presented to
the MS-SOM or defined by any function that measure the training stabilization.

2.2 Analysis of the Algorithm

Competition: Competition for the Best Matching Unit (BMU) includes a sec-
ond local competition step taking into account the magnitude, that forces units
to move towards space regions of higher value of magnitude. Neurons with high
values of magnitude become less competitive than those with low values, so these
data-space zones recruit more neurons in their representations.

Learning: Learning factor αi(t) for each unit depends on:

1. The value of the magnitude m(t) associated to each sample data. High mag-
nitude produces high changes in unit weights, while values near zero produces
practically no learning.

2. The distance from each unit to the winner unit. The importance of this
factor is modulated by the kernel function hji. High distance means lower
learning.

3. The accumulated magnitude at the unit. It is related to the firing history
of each unit. High accumulated magnitude means high learning up to the
moment, and therefore unit becomes practically static.

4. The value of β, the forgetting factor. Using the definition of learning factor
of (9), when β is equal to one, unit weights become the running weighted
mean of the value of the data samples belonging to its Voronoi region, and
adjacent regions (weighted according to its neighbourhood). To the contrary,
lower values of β means that recent patterns have higher importance in the
running weighted mean. In the limit case (β = 0), each unit would become
the last presented sample: wi(t+ 1) = x (t)

3 Application Examples

3.1 Modelling Gaussian Distributions

In this example we test the performance of a MS-SOM with four different types
of magnitude functions. It is compared with a SOM.

We use a synthetic data set consisting of P = 5000 samples in a 2D plane
(x (t) ∈ R

2) that was generated from a mixture of three Gaussian distributions
with means [0,0], [3,4] and [6,0], and covariance matrix [0.1 0; 0 0.1] for all of
them. The fraction of samples placed in each cluster is approximately P/3.

A SOM is trained using a Gaussian function for hji(t) with ratios within
[3,0.05] and a learning factor that decreases exponentially with time. Three
SOMs are initialized linearly in the data space using codebooks of 40, 80 and
160 units.
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Fig. 1. Gaussian example. (a) D-matrix and Magnitude map of MS-SOM avoiding data
mean (usingMF4 as magnitude function). (b) Trained SOM. (c) MS-SOM trained with
MF1 and (d) trained with MF4 .

MS-SOMs have the same number of units than SOM (also uses 40, 80 and
160), uses the same initial codebooks, hji(t) and a value of β = 1. We apply
them to four different magnitude functions:

1. Constant value: MF1(i,X ) = 1.
2. Distance to ordinate axis : MF2(i,X ) = abs(wi2).
3. Distance to point (0,0): MF3(i,X ) = ‖ wi ‖.
4. Distance to the mean of dataset: MF4(i,X ) = ‖ wi − xmean ‖.

Figure 1 shows some results for SOM and MS-SOM (with 80 units) of the
grid representation over the data space. Figure 1(a) shows the corresponding
D-matrix (mean distances from weights of neighbour units), and the magnitude
map for one MS-SOM. Figure 1(b) shows the typical result of a trained SOM
where units tend to allocate their centroids in areas with higher data density.

MS-SOM in Fig. 1(c) used a constant value for magnitude equal to one, there-
fore magnitude function have no effect on final training. As in the SOM case,
units are centered in zones with high density. However their distribution is not so
affected by the ’border effect’, of the SOM representation, because the learning
factor is different for each unit in MS-SOM and αi(t) depends on the winning
frequency of unit i.

Figure 1(d) shows a more expansive MS-SOM than using constant magnitude.
Magnitude of units becomes higher as their weights are farther from mean of
dataset, so units focus on these areas, even if they present low data density.
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Table 1. Table shows the mean values in 100 tests of the Weighted Mean Squared
Error (WMSE) calculated in three codebooks (sizes 40, 80 and 160) after applying
SOM and MS-SOM trained with four magnitude functions. WMSE is always lower in
MS-SOM independently of the magnitude function used.

Units Algorithm MF1 MF2 MF3 MF4

40 SOM 0.574 0.726 0.688 0.692
MSSOM 0.474 0.550 0.540 0.536

80 SOM 0.424 0.524 0.515 0.503
MSSOM 0.357 0.435 0.402 0.404

160 SOM 0.296 0.361 0.358 0.353
MSSOM 0.246 0.273 0.274 0.275

We use Weighted Mean Squared Error (WMSE) as a measure of quantization
quality. It is the weighted mean of the quantization squared error, where values
of m(t) (eq. (6)) are the weighting factor, and Vi the Voronoi set of i:

WMSE(X ,W) =

∑
i∈W

( ∑
x∈Vi

m(t) · ‖x (t)−wi(t)‖
)

∑
x∈X

m(t)
(11)

Table 1 show the Weighted Mean Squared Error (WMSE) calculated in three
codebooks (sizes 40, 80 and 160) after applying SOM and MS-SOM trained
with four magnitude functions indicated above. Results are different for the four
magnitude functions because weights in the magnitude input change depending
on the selected function.

In all the cases MS-SOM surpass SOM in all the situations, getting lower
weighted quantization error. It is significant that in the case of the constant one
magnitude function, MS-SOM is better than SOM, because the ’border effect’
is lower in MS-SOM.

3.2 Classification

The dataset in classification problems consists on P samples x (t) ∈ R
D separated

in K possible classes, C = {C1, C2, . . . , CK}. Each sample has a label vector that
indicates, with a binary codification, the class index of the sample (see eq.(12)).
It is provided to the neural network during training, so the neuron is able to
process class information for the magnitude calculation.

We will compare SOM and a MS-SOM that focus units in zones with high
magnitude, associated to high miss-classification error. The process is as follows:

1. Vector data in the sample dataset are joined with the class-label vector:

x(t) = (x1, . . . , xD, c1, . . . , cK) ∈ R
(D+K), . (12)



Magnitude Sensitive Self-Organizing Maps 41

being ck = 1 if x (t) ∈ Ck, or ck = 0 if it belongs to other class. Similarly, we
form an expanded weight vector for each unit i, where component ψik acts as a
mean-counter of k-class samples of class k captured by the unit:

wi(t) = (wi1, . . . , wiD, ψi1, . . . , ψiK) ∈ R
(D+K). (13)

2. Data samples are normalized for the first D components, the only compo-
nents considered during the first competition step based in distance. Components
(c1, . . . , cK) of vector x(t) and (ψi1, . . . , ψiK) of vector wi(t) are masked during
the global competition step, but they are updated as the other weights.

3. SOM and MS-SOM are trained using x(t) with data inputs selected ran-
domly. Magnitude function for MS-SOM depends on each unit and has the fol-
lowing value:

MF (i,X ) = K · 1−maxk(ψik)

(K − 1)
(14)

With this definition, mwi is 0 if unit i has captured only data samples of one
single class, and it is close to 1 in the situation of maximum confusion between
the classes (when maxk(ψik) = 1/K).

4. The final class assigned to each unit i is: class(i) = argmaxk(ψik)
In this classification comparative, we used three data sets: the Iris Dataset [7]

and two datasets downloaded from the Proben1 library [8]. First one consists
of 150 samples from three species of Iris (Setosa, Virginica and Versicolor). The
second dataset presents 6 types of glasses; defined in terms of their oxide content
(i.e. Na, Fe, K, etc). The Third dataset is based on patient data to decide whether
a Pima Indian individual is diabetes positive or not. Number of samples, inputs
and classes are specified for each problem in Table 2.

SOM and MS-SOM were trained with the same parameters, with Neigthbour
radios within [3,0.05] using a Gaussian neighbouring function and a decreasing
learning factor. Both neural networks received the same linear initialization, and
their map sizes vary depending on the problem, as they are displayed in column
Map of Table 2. MS-SOM uses a value of β = 1.

Table 2. Percentage of mean classification error (E) and Weighted Mean Square Error
(WMSE) for SOM and MS-SOM (MS) obtained after training both algorithms with
the three datasets. Additionally number of samples, number of inputs, classes, and map
size is displayed for each problem.

Problem Samples/Inputs Classes Map ESOM EMS WMSESOM WMSEMS

Iris 150 / 4 3 [ 5x3] 1.2 0.2 0.643 0.556
Glass 214 / 9 6 [ 6x4] 24.4 13.7 1.484 1.306
Diabetes 768 / 8 2 [10x8] 7.6 4.9 1.493 1.366
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Fig. 2. Classification regions for MS-SOM. Iris example: (a)map with colours depend-
ing on the classes for each unit (interpolating colours mean that a unit has samples
from different classes), (b) map with the final assigned class for each unit, and (c)
magnitude associated to each unit (clearer grey means higher magnitude). In this fig-
ure, the map size (10x6 units) was bigger than the one used in the comparative to
highlight the value of the magnitude in zones of high class confusion. Glass example:
(d)Results of training a (17x11) grid with SOM. (e) Corresponding results of MS-SOM,
that produces lower number of errors.

This table shows the percentage of mean classification errror (E) and the
mean Weighted MSE (WMSE) averaged in 20 trainings with each dataset. E is
the number of samples asigned to an erroneous class after each test, divided by
the total number of samples in the dataset (expresed as percentage). Columns
ESOM and EMS display classification errors for SOM and MS-SOM respectively.
Columns WMSESOM andWMSEMS are the equivalent for the Weighted Mean
Square Error.

It is clear that in the three problems, MS-SOM with units focused in the lim-
its between classes is able to distinguish more accurately the class to which each
sample belongs to (it has lower error). The reason is that MS-SOM assigns less
units in areas with no class-confusion (where classification error is null) while
many of the units tend to be assigned to the decision regions among classes.
On the other hand, WMSE reflects the quantization error, focussing in areas of
high magnitude. This measure is lower in MS-SOM algorithm, what means that
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Fig. 3. Surface modelling example.(a) Original image. (b) 3D depth image. (c) Curva-
ture map applying Canny. Zones with higher curvature are clearer. (d) Final surface
models after training a SOM and (e) a MS-SOM following curvature.

its centroid density is higher in the decision regions, giving as result a better
performance in the classification task.

Figure 2 shows a MS-SOM trained with the iris dataset: (a) Map with colours
depending on the classes for each unit (interpolating colours mean that a unit
has samples from different classes), (b) map with the final assigned class for each
unit, and (c) magnitude associated to each unit. In the magnitude map, limits
between the three classes are more clearly represented because MS-SOM tends
to distribute units in the decision regions between contiguous classes.

3.3 3D Surface Modelling

In 3D computer graphics, a depth map or a 3D depth image is an image that
contains information relating to the surface distances of scene objects from a
viewpoint, usually represented by a grey level.

In this example we compare the performance of SOM and MS-SOM in the
task of modelling a 3D surface, given a depth image downloaded from [9]. Depth
information facilitates the computation of the curvature at each region of the
image, which is closely related to the problem of discovering the edges in a
grayscale image. An edge, detectable by a canny filter, mostly corresponds to a
change in depth, and therefore it is a region with high curvature.

Top of figure 3 shows the original image, the depth gray-image (nearer is
clearer) and its associated curvature values obtained with Canny filter applied
to the depth image. This curvature is used as magnitude vector mx associated
to dataset X .
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Data samples consist in the three dimensional vectors formed by the pixel
coordinates and the pixel depth. We trained both SOM and MS-SOM with the
same number of units, and training parameters, including the linear codebook
initialization. Figure 3 (d and e) shows the surface modelled with SOM and
MS-SOM respectively. MS-SOM allocates more units than SOM in the zones
corresponding to the edges in the 3D depth map, therefore three-dimensional
borders are more clearly represented, and it is possible to distinguish the hu-
man figure and other details, while in the SOM representation they are mostly
confused with the background.

4 Conclusions

In this paper we have presented MS-SOM, a variant of SOM, which forces units
to focus in zones with high values of a user defined magnitude.

We provided three experiments, a simple Gaussian example, a surface mod-
elling application, and the use of MS-SOM in classification problems. MS-SOM
surpassed SOM in all of the experiments, so is an excellent alternative to SOM
in situations were it is desirable vector quantization oriented by a magnitude.

The topological representation of stimulus naturally emerges in the biological
model of lateral connectivity with excitation/inhibition in the form of Mexican
hat. SOM algorithm was developed as an smart simplification of this biological
model. MS-SOM introduces a second level of organization of neurons following
any magnitude function. This magnitude mechanism could be simplifying other
types of biological processes as, for example, a magnitude derived from a chem-
ical difussion map. This proposition is not supported by experimental biological
proofs, as we know, but we considered interesting to develop a new method
that, preserving the topological behaviour, added other levels of organization
with certain biological plausibility.
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Abstract. In a number of real-life applications, the user is interested
in analyzing non vectorial data, for which kernels are useful tools that
embed data into an (implicit) Euclidean space. However, when using
such approaches with prototype-based methods, the computational time
is related to the number of observations (because the prototypes are
expressed as convex combinations of the original data). Also, a side effect
of the method is that the interpretability of the prototypes is lost. In
the present paper, we propose to overcome these two issues by using a
bagging approach. The results are illustrated on simulated data sets and
compared to alternatives found in the literature.

1 Introduction

In a number of real-life applications, the user is interested in analyzing data that
are non described by numerical variables as is standard. For instance, in social
network analysis, the data are nodes of a graph which are described by their
relations to each others. Self-Organizing Maps (SOM) and other prototype based
algorithms have already been extended to the framework of non numerical data,
using various approaches. One of the most promising one is to rely on kernels to
map the original data into an (implicit) Euclidean space in which the standard
SOM can be used [1,2,3]. A closely related approach, called “relational SOM”
[4,5], extends this method to dissimilarity data which are pertaining to a pseudo-
Euclidean framework, as demonstrated in [4]. Further, in [6], we addressed the
issue of using several sources of (possibly non numeric) data by combining several
kernels. The combination of kernels is made optimal with a stochastic gradient
descent scheme that is included in the on-line version of the SOM algorithm.

However, while able to handle non Euclidean data, that can eventually come
from different sources, these approaches suffer from two drawbacks: as pointed
out in [7], when the data set is very large, the computational time of such ap-
proaches can be prohibitive. Indeed, prototypes are expressed as convex combi-
nations of the original data and are thus expressed with a number of coefficients
equal to the number of observations in the data set. Also, adding an extra gra-
dient descent step to optimize the kernel combination requires to increase the
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number of iterations of the algorithm, which yields to an augmented computa-
tional time. The second drawback is emphasized in [8]: as the prototypes are
expressed as a convex combination of the original data, they are no longer given
as explicit representative points in the data space and the interpretability of the
model is lost.

In the present paper, we propose to overcome these two issues by using a bag-
ging approach in which only a small subset of the original data set is used. The
results coming from several bags are combined to select the most representative
observations that are then utilized to define the prototypes in a final map. This
approach is both sparse (the resulting map is based on a small subset of obser-
vations only), fast and parallelizable, which makes it an interesting approach to
analyze large samples. The rest of the paper is organized as follow: Section 2
describes the method and its relations to previous approaches in the literature.
Section 3 provides the analysis of the results obtained on simulated data sets
and on a real-world data set which is a graph.

2 Method

2.1 A Brief Description of the Kernel SOM Approach

Let us suppose that we are given input data, (xi)i=1,...,n taking values in an
arbitrary space G. When G is not Euclidean, a solution to handle the data set
(xi)i with standard learning algorithms is to suppose that a kernel is known,
i.e., a function K : G × G → R which is symmetric (∀ z, z′ ∈ G, K(z, z′) =
K(z′, z)) and positive (∀N ∈ N, ∀ (zj)j=1,...,N ⊂ G and ∀ (αj)j=1,...,N ⊂ R,∑

j,j′ αjαj′K(zj , zj′) ≥ 0). When such conditions are fulfilled, the so-called
kernel defines a dot product in an underlying Hilbert space: more precisely,
there exists a Hilbert space (H, 〈., .〉H), called the feature space, and a function
φ : G → H, called the feature map, such that

∀x, x′ ∈ G, 〈φ(x), φ(x′)〉H = K(x, x′)

(see [9]). Hence using the kernel as a mean to measure similarities between data
yields to implicitly rely on the Euclidean structure of H. Many algorithms have
been kernelized, i.e., modified to handle (possibly non vectorial) data described
by a kernel. In particular, the general framework of kernel SOM is described
in [1,2,3]. In this framework, as in the standard SOM, the data are clustered
into a low dimensional grid made of U neurons, {1, . . . , U} and these neurons
are related to each other by a neighborhood relationship on the grid, h. Each
neuron is also represented by a prototype pu (for some u ∈ {1, . . . , U}) but
unlike standard numerical SOM, this prototype does not take value in G but in
the previously defined feature space H. Actually, each prototype is expressed as
a convex combination of the image of the input data by the feature map:

pu =

n∑
i=1

γuiφ(xi), with γui ≥ 0 and
∑
i

γui = 1.
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In the on-line version of the algorithm, two steps are iteratively performed:

– An affectation step in which an observation xi is picked at random and
affected to its closest prototype using the distance induced by K:

f(xi) = argmin
u

‖pu − φ(xi)‖2H,

where ‖pu − φ(xi)‖2H = K(xi, xi) − 2
∑

l γujK(xi, xj) +∑
jj′ γujγuj′K(xj , xj′ ).

– A representation step in which the prototypes are updated according
to their value at the previous step t and to the observation chosen in the
previous step. A gradient descent-like step is used for this update:

∀u = 1, . . . , U, γt+1
u = γt

u + μ(t)ht(f(xi), u)
(
δni − γt

u

)
where δni is the n-dimensional vector in which only entries indexed by i is
non zero and equal to 1, μ(t) ∼ 1/t is a vanishing coefficient and, usually,
the neighborhood relationship ht also vanishes with until being restricted to
the neuron itself.

Note that this algorithm has also been extended to the case where the obser-
vations are described by several kernels, each corresponding to one particular
type of data, in the multiple Kernel SOM algorithm [6]. In this algorithm, an
additional gradient descent step is added to the algorithm to tune the respective
contribution of each kernel in an optimal way.

2.2 Ensemble of SOMs

Despite their generalization properties to complex data, kernel SOM and related
methods are not well-suited for large data sets since the algorithms generally
require the storage of the entire Gram matrix and since the prototypes are
expressed as convex combinations of the input data and thus have a very high
dimension. Another important drawback of the prototype representation is that,
being expressed as a very large linear correlation of the mapped input data, they
are not easy to interpret. Indeed, for non vectorial data, such as e.g., nodes in a
graph whose similarities can be described by several types of kernels (see [10]),
there is no way to describe the prototypes in terms of an object in the input space
(here, the graph). As prototypes are commonly used to deciphter the clusters’
meaning, one of the main interesting feature of the SOM algorithm is lost in the
process, as pointed out in [8].

Several techniques have been proposed in the literature to overcome the di-
mensionality issues, which can be adapted to the kernel SOM framework: some
are related to sparse representations and some to bootstraping and bagging. In
[4], the large size of the data set is handled using “patch clustering”, which is
particularly suited for streaming data but can also be used to handle large di-
mensional data. The initial data set is randomly split into several patches, Pb

and the algorithm processes each patch iteratively. At step b, the b-th patch is
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clustered until convergence. Each of the resulting prototypes is approximated
by the closest P input data points. During the next step, the index set of the
P -approximations of all prototypes and the index set of the next patch Pb+1

are put together into the extended patch P�
b+1 and the clustering process is per-

formed on all the observations indexed by P�
b+1. This is iterated until all patches

are clustered. This approach leads to good clustering results, however it is not
parallelizable and the algorithm may be sensitive to the order in which patches
are processed. Another technique for handling large data sets is to use bootstrap
and bagging. In [11], bagging is applied to a batch version of the SOM algo-
rithm for numerical data in a semi-supervised context. The prototypes of the
map trained on the first bag are initialized to lie in the first principal component
and each trained map is used to initialize the subsequent map for the subsequent
bag. This procedure reduces the dimensionality and improves the classification
error, but it is not parallelizable. Alternatively, [12,13] propose by combining
SOM based on separate bootstrap samples with a fusion of their prototypes.
These approach, which can be used in parallel are however only valid if the pro-
totypes are expressed on the same representation space, which is not directly
generalizable when using kernel SOM in which prototypes are directly expressed
with the bootstrap sample.

2.3 Bagged Kernel SOM

Our proposal is to use a bagging approach that is both parallelizable and sparse.
Bagging uses a large number of small sub-samples, all randomly chosen, to select
the most relevant observations: B subsets, (Sb)b each of size nB  n, are built,
at random, within the original data set {x1, . . . , xn}. Using the on-line algorithm
described in [14], a map with U neurons is trained, which results in the prototypes
pbu =

∑
xi∈Sb

γb
uiφ(xi) where φ is the feature map associated with the kernel K.

The most representative observations are chosen as the first P largest weights
for each prototype: ∀u = 1, . . . , U ,

Ib
u :=

{
xi : γui is one of the first P largest weights among (γb

uj)xj∈Sb

}
,

and Ib = ∪uIb
u. Alternative methods to select the most interesting prototypes

are reported in [8]; the one we chose is referred in this paper as the K-convex
hull but it would be interesting to test other methods for selecting the most
interesting observations.

Then, the number of times each observation (xi)i=1,...,n is selected in one
sub-sample is computed: N (xi) := � {b : xi ∈ Ib} which is finally used as a
quality criterion to select the most important variables which are the first P ×U
observations with the largest values for N (xi):

S := {xi : N (xi) is one of the first PU largest numbers among (N (xj))j≥n} .

A final map is then trained with the selected observations in S which has pro-
totypes expressed as pu =

∑
xi∈S γuiφ(xi). The final classification for all obser-

vations (xi)i=1,...,n is deduced from these prototypes by applying the standard
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affectation rule: C(xi) := argminu=1,...,U ‖pu − φ(xi)‖2 where ‖pu − φ(xi)‖2H is
computed using K, as described in Section 2.1. The algorithm is described in
Algorithm 1.

Algorithm 1. Multiple online kernel SOM

1: Initialize for all i = 1, . . . , n, N (xi) ← 0
2: for b = 1 → B do
3: Sample randomly with replacement nB observations in (xi)i=1,...,n return Sb

4: Perform kernel SOM with Sb return prototypes (pbu)u ∼ (γb
ui)ui

5: for u = 1 → U do
6: Select the P largest (γb

ui)xi∈Sb return Ib
u (set of the observations corre-

sponding to the selected γb
ui)

7: end for
8: for i = 1 → n do
9: if xi ∈ ∪uIb

u then
10: N (xi) ← N (xi) + 1
11: end if
12: end for
13: end for
14: Select the PU observations xi corresponding to the largest N (xi) return S
15: Perform kernel SOM with S return prototypes (pu)u ∼ (γui)u=1,...,U,xi∈S and

classification (f(xi))xi∈S
16: Affect (xi)xi /∈S with

f(xi) := argmin
u

‖φ(xi)− pu‖2H
17: return final classification (f(xi))i=1,...,n and sparse prototypes (pu)u ∼

(γui)u=1,...,U,xi∈S

Note that, strictly speaking, only the sub-kernels KS̄,S := (K(xi, xj))i/∈S,j∈S
and KS = (K(xj , x

′
j))j,j′∈S are required to perform the final affectation step

because the closest prototype does not depend on the term K(xi, xi) and thus
the affectation step for (xi)i/∈S can be performed by computing:

−2KS̄,Sγ + 1|S̄|
[
Diag

(
γTKSγ

)]T
,

where γ = (γui)u=1,...,U,i∈S and 1|S̄| if the vector with all entries equal to 1 and

having length the number of elements in S̄ = {xi : xi /∈ S}.
The complexity of the approach is O(Un2

BB + U2P ), compared to the direct
approach which has a complexity equal to O(Un2). Hence, the computational
time is reduced as long as Bn2

B + U2P < n2 and is even more reduced if the
B sub-SOMs are performed in parallel. Usually, B is chosen to be large, nB is
small compared to n and P is only a few observations to obtain sparse repre-
sentations of the prototypes. However, the computational times are not directly
comparable since the bagged approach can be performed in parallel, unlike the
direct approach or the patch SOM.
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3 Applications

Bagged Kernel SOM on Simulated Data
First, a simple simulated dataset with 5000 observations is considered. The

observations are randomly generated in [0, 1]20 and are then mapped onto a 5×5
grid using the kernel SOM algorithm with a Gaussian kernel. Several algorithms
are compared with varying parameters:

– The patch SOM with different numbers of patches (250, 375, 500, 1 000)
and different values for P (2, 5, 10, 15, 20, 30 and 50). A last kernel SOM
was trained with the selected observations to make the results (based on P
selected observations) comparable with those of the patch SOM;

– The bagged SOM with different values for nB (5%, 7.5%, 10% and 20% of
the original data set size) and for B (500 and 1000) and the same values for
P as with the patch SOM;

– A full kernel SOM used on the whole data set and aimed at being the
reference method.

Figure 1 gives the quantization and topographic [15] errors of the resulting maps
versus the value of P . In this figure, two classical quality criteria for SOM results
are used: the quantization error (which assesses the quality of the clustering) and
the topographic error (which assesses the quality of the organization; see [15]). In
some cases, the results can be even better than the full kernel SOM. Considering
the bootstrap version, the performances are consistent with the full kernel SOM
(for about P ∼ 5−10, which corresponds to using only 250 observations at most,
instead of 5000, to represent the prototypes).

Fig. 1. Evolution of the quantization (left) and topographic (right) errors versus P .
Error bars indicates the first and last quantiles and dots the average values over all
simulations.
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The analysis of the other parameters of the algorithm (bag size nB and number
of bootstrap samples B) does not show any particular feature. This is explained
because the final clustering is obtained from the PU most representative obser-
vations and thus P has a much greater impact on the performances than, e.g.,
nB.

Application to ego-facebook c© Network
The bagging method is then applied to one of the ego-facebook c© networks de-
scribed in [16]1. The data used in this section are the ones extracted from the
network number 107: the largest connected component of the facebook c© network
was extracted, which contained 1 034 nodes. This section presents the compara-
ison of bagged SOM and standard SOM to map the nodes of the graph onto a
two-dimensional grid (having sizes 10 × 10). As explained in [3,17], using such
mappings can provide a simplified representation of the graph, which is useful for
the user to help him or her understand its macro-structure before focusing more
deeply on some chosen clusters. The kernel used to compute similarities between
nodes in the facebook c© network was the commute time kernel, [18]. If the graph
is denoted by G = (V,E,W ), with V = {x1, . . . , xn} the set of vertices, E the
set of edges which is a subset of V × V and W a weight matrix (a symmetric
matrix with positive entries and null diagonal), the commute time kernel is the

generalized inverse of the graph Laplacian, L, which is: Lij =

{
di if i = j
−Wij otherwise

where di =
∑

j Wij is the degree of node xi. As explained in [19], the Laplacian
is closely related to the graph structure and thus, it is not surprising that a
number of kernel has been derived from this matrix [10]. As shown in [18], the
commute kernel yields to a simple similarity interpretation because it computes
the average time needed for a random walk on the graph to reach a node from
another one.

Different approaches were compared: (i) the standard kernel SOM (on-line
version), using all available data; (ii) the bagged kernel SOM, as described in
Section 2, with B = 1000 bootstrap sample, nB = 200 in each sample and P = 3
observations selected per prototype and (iii) a standard kernel SOM trained
with an equivalent number of randomly chosen observations. The relevance of
the results was assessed using different quality measures. Some quality measures
were related to the quality of the map (quantification error and topographic
error) and some were related to a ground truth: some of the nodes have been
indeed labeled by users to belong to one “list” (as named by facebook c©). We
confronted these groups to the clusters obtained on the map calculating (i) the
average node purity (i.e., the mean over all clusters of the maximal proportion
of one list in a given cluster; only individuals belonging to one list were used
to compute this quality measure) and (ii) the normalized mutual information
[20] (also restricted to individuals belonging to one list only) and also to the
graph structure using the modularity [21], which is a standard quality measure
for node clustering.

1 available at http://snap.stanford.edu/data/egonets-Facebook.html

http://snap.stanford.edu/data/egonets-Facebook.html
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Table 1. Quality measures for different versions of kernel SOM (standard using all
data, bagged, standard using randomly selected data) on facebook c© data

Quantification Topographic Node Normalized Modularity
Error (×100) Error Purity Mutual Information

bagged K-SOM 7.66 4.35 89.65 70.10 0.47
full K-SOM 9.06 5.22 86.53 53.79 0.34

random K-SOM 8.08 6.09 87.26 60.79 0.40

The results are summarized in Table 1. Surprisingly, the maps trained with a
reduced number of samples (bagged K-SOM and random K-SOM) obtain better
quality measures than the map trained with all samples. Using a bootstraping
approach to select the relevant observations also significantly improves all quality
measures as compared to a random choice with the same number of observations.
The results obtain with the bagged SOM are displayed in Figures 2 and 3 (from,
respectively, the map and the network points of view). They show that the
nodes are mainly dispatched into three big clusters, which correspond each to
approximately only one “list”, as defined by the user. The results provided
with the K-SOM using all the data tend to provide smaller communities and to
scatter the biggest lists on the map. Using this approach, it is however hard to
conclude if interpretability has been increased (i.e., if the selected observations
used for training are representative of their cluster) as, in Figure 3, they do not
seem to have a particularly high degree or centrality.

Fig. 2. Simplified representation of the facebook c© network projected on the map re-
sulting from bagged K-SOM. The circle sizes are proportional to the number of nodes
classified in the cluster and the edge width are proportional to the number of edges be-
tween the nodes in the two clusters. Colors correspond to the proportion of user-defined
lists (black is used for “no list”).
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Fig. 3. The facebook c© network represented with a force-directed placement algorithm
[22]. Colors represent the clusters on the map and selected nodes used to train the map
are represented by squares (instead of circles)

4 Conclusion

This paper presents a parallelizable bagged approach which results in a reduced
computational time and a sparse representation of prototypes for kernel SOM.
The simulations show good performances and only a small loss of accuracy which
is compensated by a faster computational time. Obtained prototypes are also
easier to interpret, as based on a smaller number of observations.
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Abstract. Time-dependent natural phenomena and artificial processes
can often be quantitatively expressed as multivariate time series (MTS).
As in any other process of knowledge extraction from data, the analyst
can benefit from the exploration of the characteristics of MTS through
data visualization. This visualization often becomes difficult to interpret
when MTS are modelled using nonlinear techniques. Despite their flex-
ibility, nonlinear models can be rendered useless if such interpretability
is lacking. In this brief paper, we model MTS using Variational Bayesian
Generative Topographic Mapping Through Time (VB-GTM-TT), a vari-
ational Bayesian variant of a constrained hidden Markov model of the
manifold learning family defined for MTS visualization. We aim to in-
crease its interpretability by taking advantage of two results of the prob-
abilistic definition of the model: the explicit estimation of probabilities
of transition between states described in the visualization space and the
quantification of the nonlinear mapping distortion.

Keywords: Multivariate time series, Nonlinear dimensionality reduc-
tion, Mapping distortion, Magnification Factors, Visualization, Genera-
tive Topographic Mapping, Variational Bayesian methods.

1 Introduction

Most applied analysis of MTS involves, in one way or another, problems with
specific targets such as prediction, forecasting, or anomaly detection. A less
explored avenue of research is the exploratory analysis of MTS using machine
learning and computational intelligence methods [1].

Data exploration may be a key stage in knowledge extraction from MTS
using complex nonlinear methods, as it opens the door to their interpretability
[2]. As in any other process of knowledge extraction from data, the analyst
could benefit from the exploration of the characteristics of MTS consisting of
a high number of individual series through their visualization [3]. The direct

� This research was partially funded by MINECO research project TIN2012-31377.
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visualization of such high-dimensional data, though, can easily be beyond the
interpretation capabilities of human experts. Therefore, the exploration of MTS
can be assisted by dimensionality reduction (DR) methods. In particular, the
visualization of MTS using nonlinear DR (NLDR) methods [4] can provide the
expert with inductive reasoning tools as a means to hypothesis generation [3,5].
Visualization can thus facilitate interpretation, which is paramount given that
NLDR methods can be rendered useless in practice if interpretability is lacking.

In this brief paper, we merge two strands of previous research on data visu-
alization. The first one involves the visualization of MTS using Statistical Ma-
chine Learning (SML) NLDR methods [6]. The second tackles one of the main
interpretability bottlenecks of NLDR techniques: the difficulty of expressing the
nonlinear mapping distortion they introduce in the data visualization space in
an intuitive manner. Specifically, we attempt to increase the interpretability of
the Variational Bayesian Generative Topographic Mapping Through Time (VB-
GTM-TT), a variational Bayesian variant of a constrained hidden Markov model
(HMM) [7] of the manifold learning family, defined for MTS visualisation [8]. For
this, we use two results of the probabilistic definition of the model: the explicit
estimation of probabilities of transition between states described in the visual-
ization space and the quantification of the distortion introduced by the nonlinear
mapping of the MTS in the form of Magnification Factors (MF).

Note that this paper does not address the assessment of the quality of the
mapping as such. In fact, the proposed visualization strategies are meant to be
independent from it. Although VB-GTM-TT is used here for illustration (as a
method that, even if prone to limitations such as local minima, has been shown
to perform robustly in the presence of noise), the proposed approach could be
extended to alternative MTS DR models for which distortion and probability of
state transition (or some approximations to them) were quantifiable.

2 Methods

2.1 Variational Bayesian GTM Through Time

The Generative Topographic Mapping (GTM: [9]) is a NLDR latent variable
model of the manifold learning family. It can be seen as a mixture of distribu-
tions whose centres are constrained to lay on an intrinsically low-dimensional
space. Given that the generative model specifies a mapping from latent space to
observed data space, such latent space can be used for data visualization when
its dimensionality is 1 or 2. Unless regularization is included, the GTM is prone
to overfitting. Adaptive regularization for GTM was proposed in [10].

The GTM was redefined as a constrained HMM in [6]. The resulting GTM
Through Time (GTM-TT) can be considered as a GTM model in which the
latent states are linked by transition probabilities, in a similar fashion to HMM.
This model, even if useful for MTS clustering and visualization, did not imple-
ment any regularization process.
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Recently, the GTM was reformulated within a variational full Bayesian frame-
work in [11], which was extended to the analysis of MTS in [8]. The result was
the VB-GTM-TT: a model that integrates regularization explicitly and provides
adaptive optimization of most of the model parameters involved. Assuming a
sequence of N hidden states Z = {z1, z2, . . . , zn, . . . , zN} and the observed MTS
X = {x1,x2, . . . ,xn, . . . ,xN}, the complete-data likelihood for VB-GTM-TT is
given by:

p (Z,X|Θ) = p (z1)

N∏
n=2

p (zn|zn−1)

N∏
n=1

p (xn|zn) . (1)

The model parameters are Θ = (π,A,Y, β), where π = {πj} : πj = p (z1 = j)
are the initial state probabilities; A = {aij} : aij = p (zn = j|zn−1 = i) are the
transition state probabilities; and

{Y, β} : p (xn|zn = j) =

(
β

2π

)D/2

exp

(
−β

2
‖xn − yj‖2

)
are the emission probabilities, which are controlled by spherical Gaussian dis-
tributions with common inverse variance β and a matrix Y of K centroids
yj , 1 ≤ j ≤ K. They can be considered as hidden variables and integrated
out to describe the marginal likelihood as:

p (Z,X) =

∫
p (Θ) p (Z,X|Θ) dΘ,

whereΘ = (π,A,Y, β) . (2)

VB-GTM-TT assumes its parameters to be independent, so that p(Θ) =
p(π)p(A)p(Y)p(β), where the set of prior distributions p (Θ) are defined as:

p (π) = Dir ({π1, . . . , πK} |ν)

p (A) =

K∏
j=1

Dir ({aj1, . . . , ajK} |λ)

p (Y) =
[
(2π)

K |C|
]−D/2 D∏

d=1

exp

(
−1

2
yT
(d)C

−1y(d)

)
p (β) = Γ (β|dβ , sβ) .

Here, Dir (·) represents the Dirichlet distribution and Γ (·) is the Gamma
distribution. The vector ν, the matrix λ and the scalars dβ and sβ correspond
to the hyperparameters of the model which are fixed a priori. The prior over
the parameter Y defines the mapping from the hidden states to the data space
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as a Gaussian Process (GP), where y(d) is each of the row vectors (centroids) of
the matrix Y and C is a matrix where each element is defined by the covariance
function as:

Ci,j = c (ui,uj) = exp

(
−‖ui − uj‖2

2α2

)
, i, j = 1 . . .K. (3)

The α parameter controls the flexibility of the mapping from the latent space
to the data space. The vector uj , j = 1 . . .K corresponds to the state j in a
latent space of usually lower dimension than that of the data space (for MTS
visualization purposes). Thus, a topography over the states is defined by the
GP as in the standard GTM. The VB-GTM-TT is optimized using variational
approximation techniques. A more detailed description of the VB-GTM-TT and
its formulation is provided in [8,12].

2.2 Distortion Measures and Local Metrics

NLDR techniques usually attempt to minimize the unavoidable distortion they
introduce in the projection of the high-dimensional data from the observed space
onto lower-dimensional spaces. For a more faithful interpretation of models,
many distortion measures have been proposed and adapted to visualization tech-
niques for different methods. While reducing dimensionality, different levels of
local mapping distortion are generated, leading to a loss of information that we
aim to recover, to some extent, to improve the interpretability of the model.

An interesting approach, proposed in [13] for GTM (and extended to Self
Organizing Maps), is the calculation of the MFs. The concept of magnification
has been applied to manifold learning methods in order to quantify the distortion
due to the embedding of a manifold in a high-dimensional space. Importantly,
the distortion caused by the mapping can be explicitly computed in a continuous
way over the low-dimensional latent space of visual representation.

From the theory of differential geometry, we can describe the local geometry
of a q-dimensional differential manifold through the mapping ξ �→ ζj(ξ) between
the set of curvilinear coordinates system to the set of rectangular Cartesian
coordinates systems defined in the high dimensional space. The Jacobian of this
transformation can be written as:

J =

(
∂ζi

∂ξj

)
i,j

. (4)

Every point on the manifold has local geometrical properties which are given
by its metric tensor gi,j , which is defined by:

gi,j = δi,j
∂ζ

∂ξ

∂ζ

∂ξ
, (5)

where δ is the Kronecker delta. From (4) and (5), it follows that | J |=| g | 12 .
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2.3 Magnification Factors for VB-GTM-TT

As stated in [13], the MF can be explicitly computed for the batch-SOM and
GTM. In this paper, we provide the calculation of the MF for the VB-GTM-TT
model. For this, we first consider the jointly Gaussian random variables:[

y
y∗

]
∼ N

(
0,

[
C C(∗,·)

C(·,∗) C(∗,∗)

])
, (6)

where y∗ is a test point and C(·,·) is the covariance matrix defined according to
(3). Due to the properties of Gaussian distributions, we can explicitly write the
posterior probability as follows:

y∗|u∗,U,Y, θ ∼ N
(
C(∗,·)C−1Y,C(∗,∗) −C(∗,·)C−1C(·,∗)

)
. (7)

The Jacobian J of this mapping can be obtained computing the derivatives
of 〈(y∗|u∗,U,Y, θ)〉 with respect to u, using:

∂c(∗,j)
∂ul∗

=
1

α2
(ul

∗ − ul
j) exp

(
−‖u∗ − uj‖2

2α2

)
, l = 1 . . . q, j = 1 . . .K, (8)

being q the dimension of the latent space. As a result, the MF is calculated as:

μ∗ = det−
1
2

(
JJT

)
(9)

The MF does not only provide us with a quantification of the local mapping
distortion that separates areas of the visual map which have undergone much
compression or stretching from those which have not; it also tells us about data
sparsity: the model distorts the most in areas which are mostly empty of data
and the least in densely populated areas. For this reason, the MF has been used
as an indicator of the existence of data clusters and the boundaries between those
clusters [14]. For MTS, we would expect the time series to flow over time through
areas of low MF mostly when the MTS evolve slowly, whereas fast transitions
between MTS regimes might require crossing areas of higher distortion.

2.4 Cumulative State Transition Probabilities

Another metric that might help improving the interpretability of the mapping
is the likelihood for a state to be transited by any of the potential trajectories
through states. Again, this can explicitly be quantified, for each state j defined by
VB-GTM-TT, as the estimated cumulative state transition probability (CSTP)
defined as the sum of the probabilities of transition from all states to it:

CST Pj =

K∑
i=1

aij . (10)

We would expect the MTS trajectory to happen through areas of high CSTP ,
because these should be areas of highly likely transition. As such, the CSTP
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plays the opposite role to MF, because the areas of large manifold stretching
(high MF) should mostly be areas that the MTS is unlikely to cross (low CSTP ).

3 Experiments and Discussion

3.1 Materials and Experimental Setup

We illustrate the proposed MTS visualization using two different datasets. The
first is an artificial 3-variate time series, with 1, 000 time points. The second set
is the Shuttle-data from Space Shuttle mission STS-571: a time series consisting
of 1,000 points described by 6 features. This data set has previously been used
for cluster detection in [15].

3.2 MTS Visualization

The considered MTS are particularly suitable for the illustration of the proposed
visualization techniques due to the nature of their regimes and transitions pe-
riods. The artificial dataset (displayed in Fig.(1), top-row, left) is characterized
by two intervals with regular regimes, divided by a sudden transition at point
700. The VB-GTM-TT model was trained over a 8 × 8, 2 − D grid of hidden
states and each of the MTS points was mapped by VB-GTM-TT to a particu-
lar state in the grid. The result of this mapping assignment is shown in Fig.(1)
(top-row, right). Before point 700, the periodicity of the data is well-captured
by the roughly circular structure of populated states. The sudden transition to
a higher-amplitude periodic interval is also neatly visualized.

On the other hand, Shuttle Data presents four periods of little variability A-C-
D-E and one period of high (quasi-periodic) variability B, which are separated
by sudden transitions, as evidenced by their display in Fig.(2) (top row, left).
The VB-GTM-TT model was trained over a 13 × 13 grid of hidden states and
each of the MTS points was mapped by VB-GTM-TT to a particular state in
the grid, as shown in Fig.(2) (top row, right). There is a clear interpretation for
this state membership mapping, as the Shuttle-data trajectory is confined to a
limited number of its states (a common characteristic of VB-GTM-TT mappings,
in which over-complexity is penalized). Only a few of them are relatively big:
these are mostly stationary states with little MTS change in intervals C, D and
E. The quasi-periodic interval B evolves slowly through a cloud of states on the
top-left and center of the map.

The MFs were computed for artificial and Shuttle-data and represented in
Figs.1 and 2 (bottom, right) through color maps over the grid of hidden states.
For both datasets, it might seem at first sight that the MTS cross through areas
of high MF (high distortion), a behaviour that would refute the hypothesis that
the densely data populated areas correspond to low mapping distortion. In fact,

1 Which can be requested from www.cs.ucr.edu/∼eamonn.
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Fig. 1. Top row, left: Artificial dataset: a 3-variate time series, characterized by a
sudden transition at n = 700. Top row, right: State-membership map of VB-GTM-
TT, with a 8 × 8 grid of hidden states represented as squares, whose relative size is
proportional to the time data points assigned to them; the starting point of the MTS
is represented as a star and the ending point is represented as a circle. The sudden
transition point is signaled by an arrow. Bottom row, right: MF gray-shade color map,
represented in the VB-GTM-TT latent space visualization grid. The trajectory of the
MTS over the map is displayed as a white solid line.

this is not the case: the MTS mostly flows over time through channels of low
distortion surrounded by borders of high distortion. These borders seem to act as
barriers that compel the MTS to follow a given trajectory. In fact, these barriers
are only breached (with the MTS moving briskly towards higher MF) in sudden
transitions between regimes. These can clearly be seen for Shuttle-data if we plot
the value of MF over time, as in Fig.(2) (bottom row, left): MF narrow spikes
of varying magnitude (particularly strong in the transition from B to C) appear
in the transitions between time intervals. These spikes take values well over the
mean MF of the map. This result suggests that the evolution of the MF over
time could directly be used to detect sudden regime transitions in MTS.

The CSTP maps in Fig.3 are very consistent with their MF counterparts,
and complement them. Alternatively displayed as 3 − D maps over the grid of
hidden states, they provide an intuitive illustration of the previously described
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Fig. 2. Top left: Plot of Shuttle-data; the five intervals or regimes separated by sudden
transitions are identified as A, B, C, D and E. Top right: State-membership map
generated by VB-GTM-TT, with a 13×13 grid of hidden states represented as squares;
the relative size of these squares is proportional to the time data points assigned to
them; the starting point of the MTS is represented as a star, the ending point as a
circle. Bottom Left: The Magnification Factors as a function of time, including the
mean MF over all states (represented as a dashed line); narrow peaks of distortion are
detected precisely in the areas of sudden transitions. Bottom Right: MF gray-shade
color map, represented in the VB-GTM-TT latent space visualization grid; white areas
correspond to high distortion.

behaviour. Following a geographical representation visual metaphor, the MTS
can be seen to flow across cumulative state transition probability ridges, where
rapid transitions between regimes see the MTS moving through relatively lower-
valued depressions in those ridges. An opposite graphical metaphor could be
used for the MF distortion, with the MTS flowing through its valleys, that is,
across areas of the map characterized by low MF values.
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Fig. 3. A 3 − D representation for the CSTP plots. The values in the vertical axis
correspond to the CSTP values over the latent space. Left: artificial data; right: Shuttle-
data.

4 Conclusions

Data visualization can be of great assistance in knowledge extraction processes.
High dimensionality is always a barrier for visualization. In the case ofMTS, this is
compounded by their i.i.d. nature, because the search for patterns over time is often
relevant in their study. Dimensionality reduction canmake visualization operative
for high-dimensionalMTS. The use of NLDRmethods to this purpose poses a chal-
lenge of model interpretability due to the existence of locally-varying distortion.

In this study, we have proposed two methods to improve interpretability for
VB-GTM-TT, a manifold learning NLDR method. The model mapping dis-
tortion has been explicitly quantified in the latent space continuum and the
probabilistic nature of the method has allowed us to define a cumulative proba-
bility of state transition. The reported preliminary experiments have shown that
both metrics can provide interesting insights that enhance the low-dimensional
visualization of the MTS provided by the model.

This exploration approach is quite flexible and could be extended to other
dimensionality reduction models for MTS analysis, provided their local distortion
can be quantified. Examples of this may include Gaussian process latent variable
models (GP-LVM, [16]), Gaussian process dynamical models (GPDM, [18], [17])
or temporal Laplacian eigenmaps ([19]). It could also be extended to alternative
visual display methods, such as the recently proposed cartograms2 [20],[21] and
topographic maps [22]. Future research will also investigate the VB-GTM-TT
generalization capabilities and its use for prediction.
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Université catholique de Louvain, Avenue Hippocrate 55, B-1200 Bruxelles, Belgium
{diego.peluffo,john.lee,michel.verleysen}@uclouvain.be

Abstract. Dimensionality reduction methods aimed at preserving the data topol-
ogy have shown to be suitable for reaching high-quality embedded data. In partic-
ular, those based on divergences such as stochastic neighbour embedding (SNE).
The big advantage of SNE and its variants is that the neighbor preservation is
done by optimizing the similarities in both high- and low-dimensional space. This
work presents a brief review of SNE-based methods. Also, a comparative analysis
of the considered methods is provided, which is done on important aspects such
as algorithm implementation, relationship between methods, and performance.
The aim of this paper is to investigate recent alternatives to SNE as well as to
provide substantial results and discussion to compare them.

Keywords: Dimensionality reduction, divergences, similarity, stochastic neigh-
bor embedding.

1 Introduction

For pattern recognition and data mining tasks involving high dimensional data sets,
dimensionality reduction (DR) is a key tool. The aim of DR approaches is to extract
lower dimensional, relevant information from high-dimensional input data, so that the
performance of a pattern recognition system might be improved. As well, the data
visualization will become more intelligible. Among the classical DR approaches, we
may mention principal component analysis (PCA) and classical multidimensional scal-
ing (CMDS), which are respectively based on variance and distance preservation cri-
teria [1]. Nowadays, the focus of DR approaches relies on more developed criteria,
which are aimed at preserving the data topology. In particular, the data topology is in-
volved within the formulation through pairwise similarities between data points. There-
fore, these approaches can be readily understood from a graph-theory point of view
such that the data are represented by a non-directed and weighted graph, in which data
points represent the nodes, and a non-negative similarity (also affinity) matrix holds the
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pairwise edge weights. The pioneer methods incorporating similarities are Laplacian
eigenmaps [2] and locally linear embedding [3], which are spectral approaches. More
recently, given the fact that the rows of the normalized similarity matrix can be seen
as probability distributions, methods based on divergences have emerged. Due to the
probabilistic connotation, the most representative method is so named stochastic neigh-
bour embedding (SNE) [4]. SNE and its variants have shown to be suitable for getting
high-quality embedding data, since they preserve similarities in both low- and high-
dimensional space during the optimization process. As alternatives to SNE, enhanced
versions have been proposed. In [5, 6], a mixture of divergences is proposed. Addition-
ally, an improved gradient to speed up the procedure is also introduced in [6]. Another
approach, which consists of simplifying the SNE’s formulation, is introduced in [7].
Such simpler version is founded on the same principle as elastic network [8] and it is
solved by an approximate gradient following the direction of an underlying eigenvalue
problem [9].

In this work, we present a short review of recent alternatives to SNE. A compara-
tive analysis is done regarding some key aspects, namely: algorithm implementation,
performance, and links between methods. For comparison purposes, we also evaluate
a classic technique (CMDS), as well as a spectral approach (Laplacian eigenmaps –
LE). Experiments are carried out over third conventional databases: an artificial spheri-
cal shell, the COIL-20 image bank [10], and a subset of the MNIST image bank [11].
To quantify the performance of studied methods, an improved version of the average
agreement rate is used, as described in [6]. Experimentally, we show the relationship
between the divergence-based methods with the similarity preservation. The grounds
and reasonings provided here may encourage new researches on any of the issues pre-
sented in this work, as well as the conclusions and discussions may facilitate users to
select a method according to the compromise between complexity and performance.

The outline of this paper is as follows: Section 2 explains the studied methods and
discusses in detail algorithm implementation issues and the links between methods.
Experimental results and discussion are shown in Section 3. Finally, Section 4 draws
the final remarks and conclusions.

2 Alternatives to Stochastic Neighbor Embedding

The DR problem is to embeded a high dimensional data matrix Y = [yi]1≤i≤N into a
low-dimensional, latent data matrix X = [xi]1≤i≤N , such that the relevant information
is preserved. Denote yi ∈ RD and xi ∈ Rd (d < D) as the i-th data point from the high-
and low-dimensional space. To cope with this problem, stochastic neighbor embedding
(SNE) [4] minimizes the information divergence D between two distributions Pn =

[pnm]1≤m≤N and Qn = [qnm]1≤m≤N associated with the n-th point from observed and
latent data, respectively. Then, using the Kullback-Leibler directed divergence DKL, the
SNE objective function is in the form:

ESNE(X) =
N∑

n=1

DKL(Pn||Qn) =
N∑

n,m=1

pnm log
pnm

qnm
. (1)
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Defining δnm = ‖yn − ym‖2 and dnm = ‖xn − xm‖2, distributions Pn and Qn can be
chosen as generalized, normalized nonsymmetric affinities in the form

pnm =
exp
(
− 1

2δ
2
nm/σ

2
n

)

∑
n�m′

exp
(
− 1

2δ
2
nm′/σ

2
n

) , and qnm =
exp
(
− 1

2 d2
nm/π

2
n

)

∑
n�m′

exp
(
− 1

2 d2
nm′/π

2
n

) , (2)

with qnn = 0 and pnn = 0.

Symmetric SNE: A symmetric version of SNE (SSNE) can be achieved by selecting
full normalized affinities which can readily be obtained by slightly expressions in (2). In
this case, rather than a restricted sum, all entries must be summed on the denominator in
order to enforce that all normalized entries sum to 1. This can be done by guaranteeing
that 1�NQ1N = 1�NP1N = 1.

t-SNE: SNE-based methods suffer from reaching distorted and overlapped latent space,
when d is smaller than the intrinsic dimension [7]. To cope with this issue, another
variant raised, which is named t-SNE and consists of selecting the Qn as a t-distributed
sequence [5].

Jensen-Shanon embedding: In [12], it is proposed a mixture by adding a regularization
parameter β to balance precision and recall so: (1 − β) DKL(Pn||Qn) + βDKL(Qn||Pn).
Similarly, in [6], a novel approach is introduced which mixes the divergences as DβKL =

(1−β) DKL(Pn||Sn)+βDKL(Qn||Sn), where Sn is a distribution following the same mix-
ture rule so that Sn = (1− β)Pn + βQn. This divergence is used in the so-called Jensen-
Shannon embedding (JSE), which aims then to minimize EJSE =

∑N
n=1 DβKL(Qn||Sn) [6].

Elastic embedding Another alternative to SNE is introduced in [7], which is called
elastic embedding (EE). EE is aimed to optimize:

EEE(X |λ) =
N∑

n,m=1

w+
nmd2

nm + λ

N∑

n,m=1

w−nm exp(d2
nm) = E+

EE(X) + λE−EE(X). (3)

Briefly put, this method attempts to involve the two objectives that SNE fulfills but in
a simpler way. To this end, which is the key of this method, two graphs are used. Then,
we have two kind of weighting coefficients w+

nm and w−nm being the entries of attractive
W + and repulsive W − affinity matrices, respectively. Both of them are positive semi-
definite matrices. For simplicity, full graphs affinities are considered: w−nm = ‖yn −ym‖2
and w+

nm = exp(− 1
2δ

2
n/σ

2). From Eq. (3), the gradient of EEE can be written as:

G(X |λ) = 4X(L+ − λL̃−) = 4XL, (4)

where w̃−nm = w−nm exp(−d2
nm), wnm = w+

nm − λw̃−nm, and their corresponding Laplacians
L̃ = D̃ − W̃ and L = D −W . Likewise, L+ is the non-normalized Laplacian and thus
L+ = D+ −W +. In [7], to carry out the search for the suboptimal embedded solution
X , a gradient descent algorithm is used, which is powered via the spectral direction
(SD) proposed in [9].

Following are discussed in detail some implementation issues in Section 2.1 as well
as the links between methods in Section 2.2.
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2.1 Implementation and Algorithms

In this section, we discuss about two recent implementations, here called: spectral di-
rection and full gradient.

Implementation via spectral direction: Methods such as EE, SNE and SSNE can be
implemented in a fast fashion via a SD-based gradient descent search [7]. We denote
the n-th embedded data point at iteration r as xn[r] = xn[r−1]+α[r]�n[r]. SD is aimed
at determining the optimal direction �n[r] by incorporating a partial-Hessian strategy
within the gradient descent heuristic [9]. Then, by design, Hessian is heavily exploited
which is advantageous for subsequent developments since it can be be computed fast
and has the suitable property to be positive semi-definite. As an intuitive condition,
sought direction must hold that B[r]�n[r] = −gn, being gn the column n of G(X |λ)
and B[r] any positive semi-definite matrix. SD consists of calculating the gradient of
EEE(X |λ) following the direction of an underlying convex function which arises when
λ = 0. Such a function is in fact the attractive part E+

EE (X) = EEE(X |0), whose Hessian
is ∇2E+

EE (X) = 4L+ being evidently positive semi-definite. As a matter of fact, possible
alternatives for selecting B[r] span from null perplexity to k = N (full graph) which
match respectively with degree D+ and Laplacian L+ [9].

Moreover, the calculation of step α[r] is powered by a backtracking line search [13]
following the updating rule αl[r] = ραl−1[r] for a user-provided constant ρ. Gather-
ing the spectral directions in matrix P ∈ R

d×N , per each iteration, output embedded
data can be calculated as X∗ = X + αl[r]P under the convergence criterion given by
EEE(X + αl[r]P)|λ) > EEE(X |λ) + cαl[r] tr (PG(X |λ)), where c is a small positive
value. Steps for performing EE with backtracking line search are summarized in Algo-
rithm 1. Within this framework, SNE and its variants can be alternatively implemented.
To do so, the cost function of the method to be run should take place in E(X). The
gradient is the same for SNE-like methods, since the suboptimal solution is sough via a
spectral direction.

Also, the calculation of SD is speeded up by using Cholesky decomposition. Namely,
rather than calculating matrix directly with P = −G(X |λ)(B)−1 (which is O(N3D)
when using conventional Gaussian-Jordan elimination), two solve triangular systems in
the form R�R vec(P ) = − vec(G) are solved, where R is the upper triangular matrix
resulting from the Cholesky decomposition of B ⊗ Id. Latter calculation can be done
in O(N2d) with standard linear algebra routines. In addition, computation of R needs
to be done only once at first iteration and its complexity is O( 1

3 N).
Implementation via a full gradient and Hessian: In [6], the search is done by using

a full gradient calculated over the whole cost function (no approximations are done).
In this case, the search is done via xn[r] = xn[r − 1] + μn[r]∇E, where μn[r] is an
adaptive step size dependent on the Hessian. Given the nature of divergences, doing
so can increase the complexity. Even more when using a mixture of divergences (E =

EJSE), calculation of gradient and Hessian may be more expensive. Nonetheless, the
advantage of this implementation is that scaling is considered in both high and low
dimensional space. This provides a more modulated gradient and then a better tracking
of the local structure of data during the optimization process.
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Algorithm 1. SNE via SD
Input: Affinity matrices W + and W −, Niter, ε, λ, X , r = 1
Compute the graph Laplacian L+

Compute the objective function E(X) (3)
Set δ(X∗,X) ≥ ε
while δ(X∗,X) ≥ ε do

Calculate the gradient G(X |λ) using Eq. (4)
Calculate spectral direction matrix: P = −G(X |λ)(L+)−1

Backtracking line search for estimating X∗

Set c, ρ, and α0

Initialize l = 1
while E(X + αP|λ) > E(X |λ) + cαl tr (PG(X |λ)) do
αl = ραl−1

Calculate E(X + αlP|λ)
Increase l by 1

end while

Estimate X∗ as: X∗ = X + αlP
δ(X∗,X) = ‖X∗ −X‖F
Update X = X∗

end while
Output: Embedded data X

2.2 Links between Methods

Relation between SNE and EE: Eliminating independent terms from X , Equation (1)
can be expanded as

ESNE(X) =
N∑

n,m=1

pnm‖xn − xm‖2 +
N∑

n=1

log
∑

n�m

exp(‖xn − xm‖2). (5)

Hence we can appreciate that by omitting the log operator and adding a homotopy pa-
rameter λ, ESNE becomes the EE’s cost function. Furthermore, EE is a variant of the
elastic network applied to solve the traveling salesman problem as explained in [8].

Relation between SNE and LE: Laplacian Eigenmaps (LE) introduced in [2] is a popular
approach for DR. This approach is spectral and is aimed at minimizing local distances.
The LE’s cost function can be written as

∑N
n,m=1 wnm‖xn −xm‖, where W = [wnm]1≤n≤N

is the similarity matrix and || · || stands for Euclidean distance. Alternatively, we can
express LE’s formulation as

ELE(X) = tr(XLX�) s. t. XDX� = Id, XD1N = 0d, (6)

where D = Diag(W1N) is the degree matrix and L is the graph Laplacian matrix
given by L = D −W . LE’s constraints facilitates the solution leading to a generalized
eigenvalue problem. Along this line, the embedded data is then the d smallest vector
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eigenvectors of normalized Laplacian D−1/2LD−1/2. This formulation is also useful
to determine underline data clusters within input data [14]. Recalling Equation (5), it
is noticeable that, doing as in diffusion maps [15] which means using the normalized
affinities so that pnm = wnm, the right hand side of the Equation is the same as the LE
objective function.

Relation between EE and LE: This relationship is quite similar to that when comparing
SNE with EE. However, it is worth mentioning that by setting λ = 0, EE does not
reach the same embedding as LE, since the optimization is different. EE’s embedding
is determined through a search and that of LE comes from a spectral decomposition
under orthonormality assumptions.

3 Experiments and Results

Following the experiments to compare the DR methods are described. First, the consid-
ered data sets and the methods to be compared are mentioned. Also, the parameter set-
tings to carry out the DR procedure as well as the performance measure are described.
Finally, obtained results and discussion are drawn.

Data sets and methods: Experiments are carried out over three conventional data sets.
The first data set is an artificial spherical shell (N = 1500 data points and D = 3). The
second data set is the COIL-20 image bank [10], which contains 72 gray-level images
representing 20 different objects (N = 1440 data points –20 objects in 72 poses/angles–
with D = 1282). The third data set is a randomly selected subset of the MNIST image
bank [11], which is formed by 6000 gray-level images of each of the 10 digits (N =

1500 data points –150 instances for all 10 digits– and D = 242). Figure 1 depicts
examples of the considered data sets.

−0.5
0

0.5

−0.5

0

0.5

−0.5
0

0.5

(a) Spherical shell (b) COIL-20 (c) MNIST

Fig. 1. The three considered data sets. To carry out the DR procedure, images from COIL-20
and MNIST data sets are vectorized.
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legend besides the method’s name.
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Fig. 2. Results for Spherical shell. Results are shown regarding the quality measure
RNX(K). The curves and their AUC (a) for all considered methods are depicted, as well as the
embedding data (b)-(j).

Methods to be compared: We consider the SNE-like methods, namely: classical SNE,
SSNE, t-SNE, EE, t-SNE via spectral direction (t-SNE + SD), and JSE. Also, we eval-
uate a representative classical technique, which is a CMDS; and a spectral technique
being LE.

Performance measure and parameter settings: To quantify the performance of studied
methods, the scaled version of the average agreement rate RNX(K) introduced in [6]
is used, which is ranged within the interval [0, 1]. Since RNX(K) is calculated at each
perplexity value from 2 to N − 1, a numerical indicator of the overall performance can
be obtained by calculating its area under the curve (AUC). EE, t-SNE+SD and SSNE
are implemented via a spectral direction procedure. Meanwhile, SNE, t-SNE and JSE
are implemented via a full gradient scheme. Both SD and full gradient implementations
involve a backtracking line search.

To form the similarity matrices, given a perplexity parameter K, the relative band-
width parameter σn is estimated regarding its distribution Pn so that the entropy over
neighbors of such distribution is approximately log K. This is done by a binary search
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Fig. 3. Results and obtained embedding data for COIL-20

as explained in [7]. The homotopy parameter for EE is set λ = 100. Regularization
parameter β for JSE is set to be 1/2. For all methods, input data is embedded into a
2-dimensional space, then d = 2. The number of neighbors is established as K = 30.
The rest of free parameter are ε = 10−3, c = 0.1, ρ = 0.8, and α0 = 1.

Results and discussion: Overall results for Sphere, COIL and MNIST regarding AUC
RNX(K) are respectively shown in Figures 2, 3 and 4. As well, the resultant embedded
spaces reached by each method are depicted.

For all considered databases, SNE-like methods perform a better embedding preserv-
ing smaller neighbours (local structure) in comparison the other methods. We can notice
that SNE, SSNE and EE have a similar performance. In this case, SD makes that SNE
and EE behave as a symmetrized version due to the strong assumption done over the
gradient calculation. On the contrary, t-SNE + SD performs a better embedding since
t-distributed probabilities may improve the separation of underline clusters despite that
the gradient is biased to be that of the related, quadratic and symmetric form. Indeed,
t-SNE + SD accomplishes a similar RNX(K) shape and AUC in comparison with t-SNE.
JSE outperforms the remaining considered methods due to both the divergence type, and
the identical similarity definition in the high-dimensional and low-dimensional space.

As another important observation from this work, we notice that the spectral methods
(LE and CMDS), in general, attempt to preserve the global structure (larger neighbors).
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Fig. 4. Results and obtained embedding data for MNIST

Particularly, CMDS exhibiting a pronounced peak on large neighbors. Then, we can
claim that SNE based methods are better at preserving local structure, meanwhile those
based on spectral analysis preserve the global structure.

4 Conclusions

This work reviews recent dimensionality reduction methods based on divergences. In
particular, stochastic neighbor embedding and its improved variants. We provide a
short comparative analysis involving key aspects such as relations between methods,
algorithm implementation, and performance. Empirically, we demonstrate that methods
using normalized similarities as probabilities and optimizing divergences reach better
embedding by preserving the local structure of data. This is the case of SNE and its vari-
ants, in which the similarities are optimized in both high- and -low dimensional spaces.
Meanwhile, spectral methods like multidimensional scaling and Laplacian eigenmaps
are better at preserving global structure.

Discussion and results given here may facilitate users to choose a method seeking a
good trade-off between performance and complexity.
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Abstract. The general aim in classification learning by supervised training is to
achieve a high classification performance, frequently judged in terms of classifi-
cation accuracy. A powerful method is the generalized learning vector quantizer,
which realizes a gradient based optimization scheme based on a cost function
approximating the usual symmetric misclassification rate. In this paper we inves-
tigate a modification of this approach taking into account asymmetric misclas-
sification penalties to reflect structural knowledge of external experts about the
data, as it is frequently the case for instance in medicine. Further we also discuss
the weighting of importance for the considered classes in the classification prob-
lem. We show that both aspects can be seen as a kind of attention based learning
strategy.

1 Introduction

The standard classification learning task consists of decision learning based on a la-
beled data set, the training data are provided together with the class assignments for
predefined classes. If the data are available as data vectors, one powerful strategy for
those tasks is prototype based classification learning. Several approaches belong to this
kind of classifier models including k-nearest neighbor (k-NN), support vector machines
(SVMs) or learning vector quantization (LVQ). While in k-NN and LVQ the learning
scheme is heuristically motivated, SVM learning is based on a convex optimization task
with well defined convex cost function to be minimized. A modification of LVQ leads
to the generalized LVQ (GLVQ), which also optimizes an error function based on a
smooth approximation of the classification accuracy during classification learning. The
GLVQ model widely keeps the intuitive but heuristically motivated learning scheme and
interpretability of the resulting classification model while applying stochastic gradient
descent learning as optimization method. It turns out that GLVQ or variant thereof are
a powerful prototype based classifiers with performance comparable to other advanced
classifiers like SVMs.

Cost function based classifiers have the advantage of a precisely defined objective
compared to heuristic classification learning schemes. However, although the training
data maybe properly labeled, the information might be not sufficient to learn an accurate
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classification. Thus, additional information is required to improve classification. Oth-
erwise, auxiliary information could provide knowledge about importance about correct
class separation. For example, in medicine it is frequently more important to distinguish
between healthy and infected persons than precise differentiation of all subtypes of a
considered illness, i.e. it might be more important to differentiate between main classes
than to detect precisely all sub-classes.

In this paper we will deal with those problems involving auxiliary information or ad-
ditional requirements specified in advance. We show how these informations/
requirements can be fed into the GLVQ classifier model by means of an attention based
learning scheme. Attention based learning weights the influence of considered data vec-
tors according to their available auxiliary knowledge. Finally, this idea leads to a modi-
fication of the GLVQ cost function. In this paper, we particularly focus on weighting of
class importances and asymmetric error assessment.

The outline of the paper is as follows: First, we briefly describe standard GLVQ.
Then we give suggestions how to integrate auxiliary knowledge into this GLVQ model.
After presenting the framework we give beside an illustrative example, real-life medical
application, which are followed by concluding remarks.

2 Generalized Learning Vector Quantization and Its Modifications

We assume that the data points v ∈ V ⊂ R
n with their labels c(v) ∈ C = {1, 2, . . . , C}

are given. The cardinality of V is NV . The GLVQ is a prototype based classifier, i.e.
we suppose the set W of prototypes w ∈ W ⊂ R

n with their labels y(w) ∈ C forming
the set Y ⊆ C. The objective to be minimized by the GLVQ method

EGLVQ =
∑
v∈V

fΘ(μW (v)) (1)

as the cost function with the squashing function fΘ and the classifier function

μW (v) =
d+(v) − d−(v)
d+(v) + d−(v)

, (2)

where d+(v) = d(v,w+) is the distance or dissimilarity between the best matching
prototype w+ for the data point v of the same class and the data point itself [18].
Otherwise, d−(v) = d(v,w−) is the distance between v and the closest, wrong labeled
prototype w−, i.e. c(v) �= y(w−). Obviously, the classifier function μW (v) from (2) is
negative, iff the data point is correct classified, i.e. it is valid d+(v) ≤ d−(v). Because
of the normalization term d+(v) + d−(v) the range of μW (v) is [−1, 1]. The classifier
function becomes negative if v is correctly classified.

Furthermore, the parametrized squashing function fΘ has to be monotonically in-
creasing. In this paper, we use a common choice: the sigmoid squashing function

fΘ(x) =
1

1 + e−Θ·x . (3)
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Fig. 1. Left: Derivative of the sigmoid function; right: visualization of the active set Ξ̂ (green)
with the two classes � and + and their belonging prototypes ( • , • )

with parameter Θ ≥ 0 determining their slope and 0 < fΘ (μ) < 1 is always valid.
For large values Θ � 0 the cost function EGLVQ approximatly counts the number of
misclassifications [12].

If the dissimilarity function d(v,w) is supposed to be differentiable with respect to
the second argument, the minimization of the cost function (1) can be done by stochastic
gradient descent. The resulting prototype update is

w± ← w± − α
∂EGLVQ

∂w± (4)

with the learning rate 0 < α  1 and the derivatives

∂EGLVQ

∂w± = f ′
Θ(μW (v)) · ±d∓(v)

(d+(v) + d−(v))2
· ∂d

±(v)
∂w± . (5)

This gradient scales with with the derivative f ′
Θ(μW (v)) of the squashing function.

High values for Θ effect a significant change only for those data and prototypes, which
generate a small value absolute value |μW (v)|, see Fig. 1.

Thus only data points nearby the decision border contribute to the prototype update.
Therefore, the subset

Ξ̂ = {v ∈ V |f ′
Θ(μW (v)) > ε} (6)

of all training data points is denoted as active set, where ε > 0 is a a predefined threshold
value. The active set is also visualized in Fig.1.

The most common dissimilarity d is the squared Euclidean distance d2(v,w) =
(v−w)2. Other choices may be divergences, correlations or kernel distances [21,20,22].
Minkowski p-distances

dp(v,w) = p

√√√√ n∑
k=1

|vk − wk|p
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with 1 ≤ p ≤ ∞ became popular also for p �= 2 [2,13,14]. Weighting of the data
dimensions or correlations between them leads to distances like

dΩ(v,w) = (Ω(v −w))2 (7)

with the mapping matrix Ω [5,19]. Here, the matrix Λ = ΩTΩ can also be interpreted
as a classification correlation matrix, i.e. it describes correlations supporting the class
separation if the mapping matrix Ω is also adapted during classification learning.

3 Integration of Auxiliary Knowledge into the Cost Function of
the GLVQ

In this section we think about integration of auxiliary knowledge into GLVQ learning
while keeping the basic structure of the cost function. In particular, we consider the a
multiplicative function ϕ such that

Eϕ−GLVQ =
∑
v∈V

ϕ(ΦV , ΨW ,v, c(v),W, Y ) · fΘ(μW (v)) (8)

is the new cost function. The formal weighting function ϕ should reflect the auxiliary
information where ΦV and ΨW are free parameters regarding the knowledge about the
data space V and the prototypes W , respectively. The specific structure of the function
ϕ should reflect the goal of the classification and should also depend on the auxiliary
knowledge about the classes/data points. In the following we present two possibilities.

3.1 Class Priors

For many classification problems, the importance of the several classes may differ de-
pending on the focus. For example, in medicine, it might be much more critical if ill
people are classified to be healthy. Otherwise, a healthy but misclassified person may
be treated by pharmacy causing heavy side-effects. For the latter case, the false posi-
tive rate is an appropriate accuracy measure, whereas for the first case the true positive
rate should be high. Both values are contained in the confusion matrix. Optimization
of statistical measures based on the confusion matrix in GLVQ learning was recently
proposed in [11].

Here we present an alternative way introducing different class priors βk ≥ 0 for each
class k ∈ C defining the class prior function

β(c(v)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β1 , if c(v) = 1

β2 , if c(v) = 2
...

βc , if c(v) = C

(9)

for a given training data vector v depending on the class membership. Thus the class
priority function represents the auxiliary expert knowledge. In this way, the weighting
function ϕ from (8) simply becomes

ϕ(ΦV , ΨW ,v, c(v),W, Y ) = β(c(v)) (10)
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abbreviated as ϕβ . The respective prototype updates are obtained as

Δw± ∼ β(c(v))·f ′
Θ(μW (v)) · ±d∓(v)

(d+(v) + d−(v))2
· ∂d

±(v)
∂w± . (11)

realizing a kind of attention based learning [3].
Of course, the usual classification accuracy is not an appropriate assessment measure

of such a classifier. Instead, the weighted accuracy

waccβ(V ) =
C

NV ·
∑C

j=1 βj

∑
v∈V

β(c(v)) · δc(v),y(ws(v)) (12)

could serve alternatively, where δi,j is the Kronecker symbol and

s(v) = argmin
k

(d (v,w)) (13)

is the index of the best matching prototype regardless the class label also denoted as the
(overall) winner.

3.2 Asymmetric Misclassification Assessment

Misclassifications by a classifier can be interpreted as costs. However, different misclas-
sification may generate different costs. For example, we can think about (main) classes,
which are further divided into sub-classes: In this scenario might be more costly to fail
the main classes than violate the sub-classification. Those problems frequently arise in
medicine when for a disease several clinical subtypes may be distinguished.

Generally, the non-diagonal elements of the respective confusion matrix have differ-
ent impact on the overall performance of the classifier system. We collect these impact
weights in a real matrix Γ0 ∈ R

C×C with non-negative elements γ (j, i). The diagonal
elements γ (i, i) are set to zero. We emphasize at this point that we do not assume Γ0

to be symmetric and denote this matrix as an asymmetric misclassification assessment
matrix (AMAM).

Especially, on problems with several classes, individual ones are more important or
misclassifications between several classes are more critical, respectively. In the latter
case we observe an asymmetric error assessment. To consider such different weighting
of misclassifications, the ϕ-function from (8) can be constructed as

ϕ(ΦV , ΨW ,v, c(v),W, Y ) = γ(y(w−), c(v)) (14)

with the matrix elements γ(y(w−), i) collected in the matrix Γ0 ⊂ R
C×C with i ∈ C.

Thus, the matrix Γ0 regulates the penalizing for misclassifications of class i to class
y(w−), i.e. it reflects the relations between the classes. This knowledge has to be pro-
vided in advance, for example by an expert. In this way, an asymmetric confusion matrix
is generated by the trained classifier. Again, the standard accuracy is not useful to eval-
uate the GLVQ with AMAM. Hence, we modify the weighted accuracy from (12) to

werrΓ0 (V ) =
∑
v∈V

γ(y(ws(v)), c(v)) ·
(
1− δc(v),y(ws(v))

)
(15)

denoted as weighted error rate with respect to Γ0.
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We immediately observe that we could interpret the learning rule resulting from
(14) again as an attention based learning but now using the AMAM Γ0. Thus we can
combine this asymmetric assessment method with the above class attention based ap-
proach: For this purpose, we define the diagonal elements to be as γ (i, i) = β (i) using
the class weights β (i) from (9) yielding the overall expert knowledge matrix Γ , which
now serves in the attention based learning.

If only two classes C+ (positive) and C−(negative) are under observation, the asym-
metric model (14) becomes equivalent to a 2 × 2 contingency table with the confusion
matrix C Tab.1 as known from statistics. It has been shown in [10] that respective clas-

Table 1. Confusion matrix C of the two-class problem with classes C+ (positive) and
C−(negative): TP - true positives, FP - false positives, TN - true negatives, FN - false nega-
tives, N±- number of positive/negative data, N̂+ - number of predicted positive/negative data

labels true

C+ C−
predicted C+ TP FP N̂+

C− FN TN N̂−
N+ N− N

sification schemes based on classification evaluation quantities like precision and recall
or the widely applied Fγ-measure developed by C.J. VAN RIJSBERGEN [16] can be
easily plugged into prototype based classification according to GLVQ using the border
sensitive learning model.

4 Border Sensitive GLVQ as a Kind of Auxiliary Knowledge
Integration

A natural extension of the above introduced general border sensitive learning, which
could be motivated also by auxiliary information, is a localized border sensitivity. For
this purpose, the class-relation dependent sensitivity matrix Θ = (θi,j) is introduced.
Each matrix element θi,j = 1

si,j
≥ 0 specifies the sensitivity between the classes i and

j. High values si,j ≥ 0 correspond to small local active sets

Ξ̂i,j = {v ∈ V |f ′
θi,j (μW (v)) > ε} (16)

between these classes whereas low values signalize more insensitive behavior. Thereby,
we define the localized squashing function

fθi,j(x) =
1

1 + e−θi,j·x

in analogy to (3). The respectively modified cost function reads as

EΘ(W ) =
∑
v

fθy(w−),c(v)
(μW (v)) (17)

emphasizing the sensitivity between the correct data class c (v) and the class y(w−) of
the best matching prototype w− with incorrect class label.
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Fig. 2. Visualization of the results for the �-data. The three classes are: 1- blue ©, 2- red +, 3 -
green ∗. The prototype positions are marked by ♦. For the interpretation of the simulations, see
the text.

5 Numerical Experiments

In this chapter we report first numerical experiments. These, are of course not suffi-
cient to illustrate alls aspects of GLVQ based on statistical measures. However, they
give at least numerical evidence for the provided framework and should inspire future
considerations and applications.

5.1 Illustrative Example for Artificial Data

The first numerical experiments are based on an artificial but illustrative example: We
consider a three-class problem in R

2. Each of the three classes is an uniform distribution
in a rectangular shaped area. These areas form together a triangle with overlapping
regions in the corners, as one can see in Fig.2.

We denote this dataset as �-data.
In the first experiment we apply the GLVQ variant with class priors as introduced in

Sec.3.1. The class priors were set to be β = (1
2 ,

1
4 ,

1
4 ). For comparison, we trained a

standard GLVQ with 3 prototypes per class, which results the confusion matrix depicted
in Tab.2.

The resulting overall accuracy is 85.7%whereas the weighted accuracy (12) is 85.2%.
If we now give more importance to the first class as imposed by the vector β and apply
the weighted prototype update (11) according to the cost function Eϕ−GLVQ from (8)
with ϕβ . As we can conclude from Tab.2, the algorithm follows nicely the attention
based learning increasing the accuracy of the first class compared to the GLVQ-result.
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Table 2. Confusion matrix for the �-data obtained by the unweighted (left) and weighted (right)
GLVQ with the class prior vector β = ( 1

2
, 1
4
, 1
4
) and 3 prototypes for each class, the latter one

realizing an attention based learning with emphasis given to class ◦

real
◦ + ∗

predicted
◦ 84% 5% 6%
+ 7% 86% 7%
∗ 9% 9% 87%

β
real

◦ + ∗

predicted
◦ 92% 8% 18%
+ 6% 87% 12%
∗ 2% 5% 70%

Table 3. Confusion matrices for the �-data obtained by the asymmetric GLVQ according to the
AMAMs Γ1 and Γ2, respectively, using 3 prototypes for each class

Γ1
real

◦ + ∗

predicted
◦ 84% 6% 5%
+ 5% 88% 8%
∗ 11% 6% 87%

Γ2
real

◦ + ∗

predicted
◦ 73% 11% 0%
+ 2% 89% 16%
∗ 25% 0% 84%

Further, the prototypes of class ◦ are more spread occupying better the overlapping
regions whereas the respective prototypes of the other classes are pushed away, see
Fig.2. Yet, the overall accuracy is slightly decreased to 83% but the weighted accuracy
(12) ends up to 85.3%.

The second experiment is dedicated to the GLVQ with asymmetric misclassification
assessment as proposed in Sec. 3.2. In particular, we consider two asymmetric misclas-
sification assessment matrices (AMAMs)

Γ1 =

⎛⎝1 1 2
2 1 1
1 2 1

⎞⎠ and Γ2 =

⎛⎝1 1 3
3 1 1
1 3 1

⎞⎠
with the higher level of asymmetry forΓ2. The achieved confusion matrices are depicted
in Tab. 3. Again, we used 3 prototypes per class, which now try to reflect the asymmet-
ric assessment of misclassifications moving them more into the regarding corners of
the data triangle, see Fig. 2. As we can expect, the accuracy decreases with increasing
asymmetry - we achieved 86% and 85%, respectively. However, the emphasized mis-
classifications are reduced compared to the standard GLVQ solution from Tab.2 as it is
the aim of this kind of asymmetric attention based learning.

5.2 Real World Application – A Medical Diagnosis System

In this real world application we consider a medical data set of electro-physiological
data. Each data vector describes an electro-physiological impairment profile (EIP) of
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a patient suffering from Wilson’s disease (WD,[6,8]). Wilson’s Disease is an auto-
somal disorder of copper metabolism in the liver, which leads to a disturbed copper
metabolism in several extra-pyramidal motor brain regions [1]. The EIPs are
7-dimensional data vectors giving the electro-physiological response to a clinical test
system for sensoric and motor evoked potentials as described in [9] and [7], respec-
tively. The resulting dataset consist of overall 74 patient profiles and 48 records from
healthy volunteers (V). The detailed class distribution of the four classes is

class PS PP+MT NN V

number 34 22 18 48

using the above mentioned fusion of PP and MT.
One can distinguish between two phases during the course of WD: the non-neuro-

logical phase (NN) in the beginning and later on followed by the neurological phase
with manifested neurological symptoms. For the latter case one can further differentiate
between pseudo-sclerotic (PS) and preudo-parkinsonian (PP) cases according to fine-
motoric disturbances caused by the neurological impairments. Frequently, a merged
type (MT) between them is considered, which can be seen neurologically belonging to
PP. However, it is generally difficult to detect WD if it is in the non-neurological phase
without detailed and costly medical investigations accompanying the reasonable cheap
electro-physiological investigations. Otherwise, early detection is mandatory to prevent
fast degeneration by pharmaceutical treatment, i.e. although a clear distinction between
the classes is desired, most important is a confident diagnosis of the disease. Further,
the drug treatment depends on the phase (NN or N). This medical expert knowledge can
be roughly modeled by the AMAM

Γ =

⎛⎜⎜⎝
1 1 5 5
1 1 5 5
5 5 1 1
10 10 10 1

⎞⎟⎟⎠
to be utilized in GLVQ learning for classification.

We applied both asymmetric GLVQ using the above Γ -matrix and standard GLVQ.
For both simulations we used two prototypes per class. The data vectors were z-trans-
formed in advance as usually done in pattern recognition [4]. We report results obtained
by an eight-fold cross-validation procedure. They are displayed in Tab.4.

We observe a clear improvement of the class distinction according to the desired
diagnostic behavior. Particularly, the false-classification of NN-persons to the class V
is drastically reduced although false-classifications still remain.

Besides the confusion matrices, we also calculated the weighted error werrΓ (V )
from Sec. 3.2 for both results. For standard GLVQ we achieved an averaged error
werrΓ (V ) = 0.48 whereas the asymmetric approach yields werrΓ (V ) = 0.40, which
is underlying the obtained improvement of classification behavior. Thus, asymmetric
GLVQ is able to reflect medical expert knowledge seriously.
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Table 4. Confusion matrices for the WD-data obtained by standard GLVQ (left) and GLVQ with
AMAM Γ (right) using 2 prototypes per class

real real
PS PP+MT NN V PS PP+MT NN V

predicted

PS 59.4% 12.5% 0% 0% 56.3% 18.8% 0% 0%
PP+MT 25.0% 50.0% 0% 0% 28.1% 37.5% 6.3% 4.2%

NN 9.3% 6.3% 31.3% 0% 12.5% 31.2% 56.3% 12.5%
V 6.3% 31.2% 68.7% 100% 3.1% 12.5% 37.4% 83.3%

6 Summary and Future Work

In this contribution we discuss several approaches to integrate expert knowledge into
GLVQ. This leads to modified cost functions to be minimized. These cost functions
can be seen as weighted variants of the original GLVQ cost function, which can be
related to the attention-based learning paradigm. In particular, class priors as well as
asymmetric misclassification assessment were considered. Further, general statistical
evaluation measures as replacement for the usual cost function were discussed.

For an artificial illustrative data example the new approaches are successfully demon-
strated. A real world example from medical diagnosis systems emphasize the practical
application aspect, which, in fact, was inspiring this work in very early beginning. Fu-
ture work should comprise other application scenarios as well as theoretical aspects like
stability of learning, relevance learning and other.
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Abstract. Next-generation sequencing techniques produce an enormous
amount of sequence data. Analyzing these sequences requires an efficient
method that can handle large amounts of data. Self-organizing maps
(SOMs), which use the frequencies of N-tuples, can categorize sets of
DNA sequences with unsupervised learning. In this study, SOM using
correlation coefficients among nucleotides was proposed, and its perfor-
mance was examined in the experiments through mapping experiments
of the genome sequences of several species and classification experiments
using Pareto learning SOMs.

1 Introduction

Next-generation sequencing [1] produces large amounts of sequence data that are
applied to many areas of genome science. Meta-genome and comparative genome
analyses are examples of such applications. Meta-genome analysis uses mixtures
of genomes from a group of species for analysis of the composition of species or
expressed sequences. Comparative genome analysis uses the sequenced genome
data of a group of species to analyze evolutionary relationships or species di-
versity. Both applications require a global comparison of DNA sequences among
species.

Self organizing maps(SOMs)[2] are often used for the global comparison of
DNA sequences. SOMs are neural networks that use the architecture of feed-
forward networks and train the network with an unsupervised learning method.
A set of input vectors is given to the network, and SOM extracts the features of
the input vectors on two-dimensional maps according to vector similarity.

The frequencies of N-tuples, which denote the occurrence of each N-tuple
for a fixed N, are effective for global comparison, and we proposed an analysis
of DNA sequences with an SOM by using the vectors of N-tuple frequencies as
input vectors [3]. For large-scale data, the use of these frequencies as feature SOM
vectors is effective, and it is also applied to the analysis of IP-packet traffic For
large scale data, it is effective to use the frequencies as feature vector of SOM,

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 89
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DOI: 10.1007/978-3-319-07695-9_8, c© Springer International Publishing Switzerland 2014
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and it is also applied to the analysis of the traffic of IP-packets [4]. In a previous
study [3], the relationships among the genomes of species were visualized on the
basis of frequencies of N-tuples. Further research proceeded using this method.

Herein, we propose another preprocessing method on the basis of correlation
coefficients (CCs) of the occurrences of each nucleotide in a DNA sequence.
All combinations between 2 nucleotides A-A, A-C, A-G, A-T, C-A, ..., T-G, T-
T, CCs of the occurrences in the sequences are calculated by shifting 1 of the
sequences in 1 to N. For 1 to N shifts, the number of CCs is 42 × N . CCs are
arranged in vectors and used as input vectors for SOM, which determines the
global features of the DNA sequences.

Furthermore, we apply Pareto learning SOMs (P-SOMs) [5] to visualize and
classify DNA sequences. P-SOMs use a multi-modal vector composed of multiple
vectors, including the category vector that denotes the class of the vector for
supervised learning. The category vector operates cooperatively with the original
input vectors to improve visualization and classification. P-SOMs were examined
in the benchmark data set iris [5] and applied to the authentication method for
behavior biometrics [6] and IP-packet traffic analysis [4].

2 Pareto Learning Self Organizing Map (P-SOM)

2.1 Pareto Learning SOM for Multi Modal Vector

2.2 P-SOM for Multi-modal Vectors

A multi-modal vector ({x1}, {x2}, . . . , {xn}) is a vector composed of mul-
tiple vectors and attributes. For example, keystroke timing and key typing
intensity are the features used for authentication with key typing features.
In multi-modal vectors, each vector and attribute is described in a differ-
ent unit and scale, and the availability for the classification may be differ-
ent. Conventional SOMs can learn multi-modal vectors by using a simply
concatenated vector (x1,x2, . . . ,xn)or a concatenated vector with weight values
(w1x1, w2x2, . . . , wnxn) as the input vector. When weight values are excluded,
the map is dominated by largely scaled vectors and easily affected by unreliable
vectors. A map using weight values depends heavily on these values, making the
selection of optimal weight values difficult.

P-SOM makes direct use of a multi-modal vector x = ({x1}, {x2}, . . . , {xn})
as an input vector based on Pareto optimality. For each vector, xi, the objective
function is defined as fi(x, U

jk) = |xi − mij
i | for unit U jk on the map, where

mij = ({mjk
1 }, {mjk

2 }, . . . , {mjk
n }) is the vector associated with U jk. The Pareto

winner set P (x) for an input vector x is the set of the units U jk that are
Pareto optimal according to the object functions fi(x, U

jk). Thus, P-SOM is
a multi-winner SOM and all units in P (x) and their neighbors are updated
simultaneously.
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The algorithm of P-SOM is as follows.
P-SOM Algorithm

1. Initialization of the map
Initialize the vector mij which are assigned to unit U ij on the map using the
1st and 2nd principal components as base vectors of 2-dimensional map.

2. Batch learning phase
(1) Clear all learning buffer of units U ij .
(2) For each vector xi, search for the pareto optimal set of the units P =
{Uab

p }. Uab
p is an element of pareto optimal set P, if for all units Ukl ∈ P−Uab

p ,

existing h such that eabh ≤ eklh where

eklh =
∣∣xi

h −mkl
h

∣∣ (1)

(3) Add xi to the learning buffer of all units Uab
p ∈ P .

3. Batch update phase
For each unit U ij update the associated vector mij using the weighted av-
erage of the vectors recorded in the buffer of U ij and its neighboring units
as follows.
(1)For all vectors x recorded in the buffer of U ij and its neighboring units
in distance d ≤ Sn, calculate weighted sum S of the updates and the sum of
weight values W.

S = S+ ηfn(d)(x−mi′j′) (2)

W = W + fn(d) (3)

where U i′j′s are neighbors of U ij including U ij itself, η is learning rate,
fn(d) is the neighborhood function which becomes 1 for d=0 and decrease
with increment of d.
(2) Set the vector mij = mij + S/W .

Repeat 2. and 3. with decreasing the size of neighbors Sn for pre-defined itera-
tions.

Fig.1 shows the differences in the SOM and P-SOM algorithms.
In the update phase, the units in the overlapped neighbors are updated more

strongly, and this phase plays an important role in the integration of multi-
modal vectors. P-SOM is scale free because all vectors in x are handled evenly
independently to the scales of xi

P-SOM can integrate any kind of vector. Thus, the category vector ci can be
introduced as an independent vector for each input vector to P-SOM.

x́i = (xi, ci) (4)

cij =

{
1 xi ∈ Cj

0 otherwise
(5)

The category vector is also used to search the Pareto winner set, and it attracts
the input vectors in the same category that correspond closely on the map with
the original input vector x. The category of the given test vector xt is determined

as argmax{
∑

Uij∈P (xt)

cijk } where P (xt) is the Pareto optimal set of units for xt .
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Fig. 1. Differences between the self-organizing map (SOM) and Pareto learning SOM
(P-SOM) algorithms

3 Analysis of DNA Sequences Using SOM

This section explains the preprocessing methods for effective extraction of DNA
sequencw features.

3.1 Frequency of DNA Sequences

The frequency of N-tuples in DNA sequences is defined as the number of N-
tuples in the sequence. Fig. 2 shows an example of the frequency for N = 2. Long

Fig. 2. Frequency of the 2-tuple of a DNA sequence

sequences are divided into segments of constant length to enlarge the number
of learning vectors. SOMs, which uses the frequency of DNA sequences as the
input vector, can reportedly visualize the relationship of the genomes of different
species for N = 4 and N = 5 [4]. However, the dimension of the frequency vector
becomes 4N . Thus, for large N values, the size of the input vector becomes very
large.

3.2 Correlation Coefficient(CC)s of the Nucleotides in DNA
Sequences

A DNA sequence is the sequence of the characters ’A’,’G’,’T’, and ’C’, thus, it
is meaningless to calculate the CC directly for the sequence. A DNA sequence
is converted to 4 binary sequences that represent the occurrences of every nu-
cleotides ’A’, ’G’, ’T’, and ’C’. For all combinations of the occurrence sequences,
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ρn1,n2(i), which is CC between the first occurrence sequence of nucleotides n1
and the sequence that shifts N nucleotides from the second occurrence sequence
of nucleotides n2 are calculated for i=1 to N. Fig.3 shows the example of the
calculation of CCs. These CCs are concatenated in a vector, and used as the input

Fig. 3. Correlation Coefficients of DNA sequence

vector for the SOM. Calculating CCs requires the scanning of the sequences 16
times, and has huge computational costs for long sequences. Using the following
equation, all CCs of between 2 sequences of nucleotides, S1 = s11s

1
2 · · · s1L and

S2 = s21s
2
2 · · · s2L, can be calculated with 1 pass scan.

C1 =

{
1 s1k = n1
0 s1i �= n1

(6)

C2 =

{
1 s2i = n2
0 s2i �= n2

(7)

σn1,n2 =

L∑
i=1

(C1 −mn1)(C2 −mn2) (8)

σn1,n1 =

L∑
i=1

(C1 −mn1)
2 (9)

σn1,n2 =

L∑
i=1

(C2 −mn2)
2 (10)

ρn1,n2 =
σn1,n2

σn1,n1σn1.n2
(11)

where mn1 and mn2 are the averages of the occurrence sequences for nucleotides
n1 and n2 respectively.

Compared with the dimensions of the frequency vector, the dimension of the
vector is small. It is 16×N for the concatenated vector of 1 to N shifts.

3.3 Experimental Results

The purpose of applying SOM for the analysis of DNA sequences is visualization.
This subsection gives the experimental results of visualization of the relations
between DNA sequences based on frequencies and CCs. We used two sets od
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DNA sequences. The first set comprised the DNA sequences of 6 species regis-
tered to the pathway of amino acid metabolism in the Kyoto Encyclopedia of
Genes and Genomes database. These species are colored as shown in Table 1.

Table 1. Species used in the experiments

Genome name Description Color

hsa homo sapience red
cfa dog blue
mmu mouse green
dme fruit fly yellow
eco E-Coli magenta
osa rice cyan

Table 2. Pathways used in the experiments

Pathway name Color

amino acid metabolism red
cell growth and death blue

metabolism of complex carbohydrates green
metabolism of complex lipids yellow

nucleotide metabolism magenta
transration cyan
transcription white

The second set comprised the DNA sequences of 6 pathways of homo sapience.
Gene sequences registered to multiple pathways were removed from the set. In
this paper, The pathways are colored as shown in Table 2.

In both sets, the sequences which are longer than 1000 were segmented to the
sequences with a length of 1000. The total number of the segments was 7148 for
the species set, and 1135 for the pathway set.

The parameters of SOM was given as follows.

– map size: 128× 64
– learning rate: from 0.8 to 0.1
– update method: batch update
– neighborhood function: gausian function
– iteration of learning: 50

Fig.4 shows the map of frequencies of 4-tuples. he length of the vector is 44 =
256. Each color dot on the map represents the fragment of the sequence colored

Fig. 4. Map of the frequencies of 4-tuples in the DNA sequences of 6 species
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as shown in Table.1. Sequences of dme, eco and osa were clustered separately.
Sequences of hsa, cfa and mmu were loosely clustered because they are mammals.
Fig.5 shows the map of CC of 1 to 4 shifts. The length of the vector is 16×4 = 64.
The topologies of these maps are similar, and the clarity of the clusters is almost

Fig. 5. Map of CC of 1 to 4 shifts in the DNA sequences of 6 species

the same. When the number of shifts and length of tuples is decreased, as shown
in Fig.6 to Fig.9, CCs show better clustering results than those of frequencies.

Fig. 6. Map of the frequencies of 3-tuples
L=64

Fig. 7. Map of the frequencies of 2-tuples
L=16

Considering the length of the vector(L), CCs represented the features of DNA
sequences more effectively than the frequencies of N-tuples did.

Fig.10 and Fig.11 show the maps of the frequencies of 4-tuples and CCs of 1
to 4 shifts using the pathway set respectively.

When the pathway set was used, the sequences were not clustered clearly.
However, each color showed the shading in the specific area on the map, which
was considered loosely clustered.

As an additional experiment, Fig.12 shows the maps of CCs using the input
data of 7 different virus genomes. Some virus genomes are fragmented in some
regions, however they are clustered as the species set.
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Fig. 8. Map of the CCs of 1 and 2 shifts
L=32

Fig. 9. Map of the CC of 1 shift L=16

Fig. 10. Map of the frequencies of 4-tuples
of the pathway set

Fig. 11. Map of the CCs of 1 to 4 shifts of
the pathway set

4 Analysis of DNA Sequences Using Pareto Learning
SOM(P-SOM)

We analyzed the DNA sequences using P-SOM. P-SOM can learn input vectors
both in unsupervised learning mode without using category vectors for learn-
ing and in supervised learning mode with using category vectors. In supervised
learning mode, category vectors cooperate with the original input vectors to
organize the map. A vector of 16 CCs for each shift is used as an element of
multi-modal input vectors to the P-SOM.

Fig.13 and Fig.14 show the maps of the CCs of 1 to 4 shifts using the species
set and the pathway set as input vectors. The maps are torus maps. In Fig.13,
the species are clustered, as seen in the results of the conventional SOM, and
the mammals are clustered more strongly than those in the conventional SOM
because of the supervised learning feature of the P-SOM. In Fig.14, the pathways
are also more clearly clustered than those of the conventional SOM.

For the classification experiment, a randomly selected 70 % of the sequences
were used for learning, and 30 % of the sequences were used for the test. CCs
and frequencies of N-tuples were used as input vectors, and the experiments us-
ing conventional SOM were conducted for comparison. Table 3 shows the results
for the species set. In this table, CC-N denotes the CC of 1 to N shifts, and F-N
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Fig. 12. Map of CC of 1 to 4 shifts of 7 virus genome

Fig. 13. Map of the CCs of 1 to 4 shifts by
using the species set as the input vectors for
P-SOM

Fig. 14.Map of the CC of 1 to 4 shifts using
the pathway set as the input vectors for P-
SOM

Table 3. Rates of successful classification of the species set

Input vector CC-2 CC-4 CC-2 CC-4 F-4 F-4

Length 32 64 32 64 256 256

Method P-SOM P-SOM SOM SOM P-SOM SOM

Learned sequences 0.832 0.831 0.920 0.916 0.980 0.915
Test Sequences 0.609 0.643 0.593 0.599 0.624 0.629

denotes the frequency of N-tuples. For the learned sequences, the P-SOM using
frequency as the input vector performed best, and for the test sequences, the P-
SOMusing CCs performed best. Table 4 shows the rates of successful classification
for each species. As expected, the rates for mammals are poor because they were
loosely clustered on the map. The sequences from cfa(dog) may be miss classified
to hsa and mmu. The accuracy seems to be low as the classifier, because the
coding regions of mammals include common genes. For the virus genome set,
the accuracies for learned sequences and test sequences were 0.980 and 0.864
respectively.

Table 5 shows the classification results for the pathway set. For both of the
learned sequences and the test sequences, P-SOMs using CCs of 1 to 4 shifts
performed best. For the learned sequences, almost all sequences were successfully
classified, however for the test sequences, less than one-fourth of the sequences
were classified, because the map was very complicated. It is considered to be
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Table 4. Rates of successful classification
for each species

name Learned sequences Test sequences

hsa 0.803 0.521
cfa 0.564 0.121
mmu 0.809 0.618
dme 0.967 0.962
eco 0.994 0.990
osa 0.910 0.876

Table 5. Rates of successful classification
of pathway set

Input vector CC-4 CC-4 F-4 F-4

Length 64 64 256 256

Method P-SOM SOM P-SOM SOM

Learned sequences 0.999 0.985 0.836 0.938
Test Sequences 0.240 0.208 0.214 0.195

difficult to classify the genes from different pathway sets of single organism using
the features of frequencies of N-tuples or CC of sequences.

5 Conclusion

We proposed a preprocessing method for DNA sequences by using correlation co-
efficients of the occurrence of the nucleotides. Using this method, the clustering
results of the sequences were nearly compatible with those obtained using the
frequencies of the N-tuples despite the difference in the length of input vectors.
The correlation coefficients are considered a more effective method for prepro-
cessing DNA sequences.

Pareto learning SOM method is applied to the classification of DNA sequences
by using correlation coefficients and frequencies as input vectors. Pareto learn-
ing SOM using CC as the input vector shows good performance for classification
compared with that obtained with conventional SOMs, and frequencies. Corre-
lation coefficients are effective as indexes for classifiertion.

In the future studys, we must apply this method to additional types sequence
data, such as coding region and non-coding region, and to large data sets such
as whole genomea. For such experiments, we must improve the computational
costs of P-SOMs, which are 5 times more than those of conventional SOMs.
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Abstract. We introduce a generalization of Multivariate Robust Soft Learning
Vector Quantization. The approach is a probabilistic classifier and can deal with
vectorial class labelings for the training data and the prototypes. It employs t-
norms, known from fuzzy learning and fuzzy set theory, in the class label assign-
ments, leading to a more flexible model with respect to domain requirements. We
present experiments to demonstrate the extended algorithm in practice.

1 Motivation

Uncertainty is a general effect of most datasets and should not be neglected during
learning. In this article we focus on classification problems where the uncertainty oc-
curs in the data as well as in the label information. Both aspects have been addressed
before in the field of probabilistic learning or using fuzzy sets [1,2]. However, often the
obtained models are quite complex or lack sufficient flexibility to integrate additional
expert knowledge. Recently, a multivariate formulation of Robust Soft Learning Vector
Quantization (MRSLVQ) was proposed in [1] and independently recovered in [3], pro-
viding an interpretable prototype based model. Another alternative can be found in [4]
for a so called fuzzification of Soft Nearest Prototype Classification for fuzzy labeled
data and prototypes.

Prototypes are compact representations of a larger set of points, like the mean of a
set of points, and partition the data space e. g. into disjunct regions. They can easily be
inspected by experts and summarize large complex data sets.

All these models share many positive aspects of prototype based learning [5], such
as metric adaptation [6], kernelization [5] or the processing of dissimilarity data [7].
Here we will focus on the MRSLVQ, although the presented concepts can be trans-
ferred to other approaches straight forward. The original formulation of MRSLVQ uses
a multiplicative assignment rule for the class label assignments or fuzzy label member-
ship which we will be replaced by the more generic concept of t−norms in this work.
t−norms occur in the field of fuzzy logic to model boolean set operations for decision
rules. It is assumed that the conjunction ∧ is interpreted by a triangular norm (t−norm
for short) and the disjunction ∨ is interpreted by a triangular co-norm (t−co-norm).
In the considered classification task we like to express that the label of its closest pro-
totype is consistent with the label of a data point which can be modeled by a logical
conjunction and which is approximated by a corresponding t−norm.

In the following, first we will give a brief overview of MRSLVQ and review different
t-norms. Subsequently we extend MRSLVQ by t-norms and show the effectiveness of
the approach for two datasets with unsafe label information.

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 99
Vector Quantization, Advances in Intelligent Systems and Computing 295,
DOI: 10.1007/978-3-319-07695-9_9, c© Springer International Publishing Switzerland 2014
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2 Multivariate Robust Soft LVQ

The Robust Soft LVQ algorithm (RSLVQ) was introduced in [8] as a probabilistic proto-
type classifier. It is assumed that the probability density p(v) of the data points v ∈ R

d,
with d being the data dimensionality, can be described by a Gaussian mixture model.
Every component of the mixture is assumed to generate data which belongs to only one
of the NC classes. The classification itself is based on a winner takes all scheme. The
probability density of all the data points is given by

p(v|W ) =

NC∑
k=1

NP∑
j:yj=k

p(v|j)P (j) (1)

where W = {(wj , yj)}NP

j=1 is the set of NP labeled prototype vectors wj ∈ R
d and

their assigned crisp class labels yj . P (j) stands for the probability that data points are
generated by component j of the mixture and is commonly set to an identical value
for all the prototypes. The conditional density p(v|j), which describes the probability
that component j is generating a particular data point v, is a function of the prototype
wj itself. The density p(v|j) can be chosen to have the normalized exponential form

p(v|j) = K(j) · ef(v,wj ,σ
2
j ) where K(j) is the normalization constant and the hyper

parameter σ2
j the width of component j.

The aim of RSLVQ is to place the prototypes such that a given data set is classified
as accurately as possible. Therefore the likelihood ratio

L =

NV∏
i=1

L(vi, ci) , with L(vi, ci) =
p(vi, ci|W )

p(vi|W )
(2)

where NV is the number of data points, has to be maximized. The ratio is built up of the
particular probability density p(vi, ci|W ), that data point vi is generated by a mixture
component of the correct class ci

p(vi, ci|W ) =
∑

j:yj=ci

p(vi|j)P (j) (3)

with the total probability density p(vi|W )

p(vi|W ) =
∑
j

p(vi|j)P (j). (4)

The cost function is given as

ERSLV Q =

NV∑
i=1

log

(
p(vi, ci|W )

p(vi|W )

)
. (5)

with learning rules as presented in [8].
While Robust Soft Learning Vector Quantization is very effective, it is only applica-

ble for crisp labeled training data. An extension of this approach based on a vectorial
adaption scheme for handling fuzzy labeled training data was presented in [9] leading
to the following modifications:
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2.1 Cost Function

The assumption of fuzzy labeled data points requires an adaption of the original RSLVQ
algorithm. The originally crisp class label ci for training data point vi becomes a NC-
dimensional vector ci of assignment probabilities with

∑NC

k=1 c
k
i = 1 and cki ≥ 0. For

RSLVQ, each prototype wj describes exactly one class. Now we relax this condition
and allow the prototypes to be (partial) representatives for different classes. Analo-
gously to the notation for the data points, the class memberships of the prototypes are
now expressed in vector notation yielding yj with

∑NC

k=1 y
k
j = 1 and ykj ≥ 0. The

classification of untrained data is still based on a winner takes all scheme. Taking the
fuzzy class assignments of the data points into account, the particular probability den-
sity p(vi, ci|W ) with crisp data labels ci specified in equation (3) changes to

p(vi, ci|W ) =

NC∑
k=1

cki

NP∑
j=1

ykj · p(vi|j)P (j) (6)

where p(vi, ci|W ) now is the particular probability density that data point vi is gen-
erated by the mixture components referred to by ci. Thereby, due to the factor cki only
a fraction of the sum of the respective probability densities is taken into account. The
factor ykj ensures that only those prototypes are accounted for, which actually are rep-
resentatives for the respective class.

The total probability density p(vi|W ) (4)

p(vi|W ) =
∑
j

p(vi|j)P (j)

is the probability that data point vi is generated by any prototype. It is the sum over all
prototypes independent of matching class assignments and, therefore, does not change.

The cost function of the Multivariate RSLVQ (MRSLVQ) can now be defined as

EMRSLV Q =

NV∑
i=1

log

(
p(vi, ci|W )

p(vi|W )

)
. (7)

2.2 Derivation of Learning Rules

In order to optimize the classification, the cost function (7) has to be minimized, which
can be done by a stochastic gradient descent.

Considering an universal parameter Θ with Θ �= vi a general update rule can be
derived:

∂ log p(vi,ci|W )
p(vi|W )

∂Θj
= (Pci

(j|vi)− P (j|vi))

(
1

K(j)

∂K(j)

∂Θj
+

∂f(vi,wj , σ
2
j ))

∂Θj

)
.

(8)
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The terms Pci
(j|vi) and P (j|vi) in (8), which are assignment probabilities, yield:

Pci
(j|vi) =

∑
k c

k
i y

k
j P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi, ci|W )
(9)

P (j|vi) =
P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi|W )
(10)

Pci
(j|vi) is the assignment probability of vi to component j taking the partial class as-

signments of the data points and the prototypes into account. P (j|vi) is the assignment
probability of vi to component j independent of the class membership.

Assuming the special case of a Gaussian mixture model with P (j) = 1/NP∀j,
the similarity function is set to f(vi,wj , σ

2
j ) =

d(vi,wj)

2σ2
j

. Thereby, d(vi,wj) is the

distance between data point vi and prototype wj , and K(j) a normalization constant
which can be set to K(j) = (2πσ2

j )
(−N/2).

The original RSLVQ algorithm uses the squared Euclidean distance as dissimilarity
measure. In the following the update rules for the prototypes wj and a hyper parameter
σ2
j employing a general distance are derived. Afterwards the update rules based on

specific distance measures are given.
To obtain the update rules for specific, cost function relevant parameters, Θj has to

be substituted.

Updating the prototypes w
Replacing Θj in (8) by the prototype wj yields

∂ log p(vi,ci|W )
p(vi|W )

∂wj
= (Pci

(j|vi)− P (j|vi))

(
1

2σ2
j

∂d(vi,wj)

∂wj

)
. (11)

Updating the prototype labels y
Analogously, the update rule for the fuzzy prototype labels yj is obtained as

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

(
cj

Pci
(j|vi)

− 1

p(vi|W )

)
(P (j)p(v|j)) . (12)

3 T-Norms

T-norms are a generalization of the triangular inequality of metrics and were introduced
by Menger [10]. They can also be used as generalizations of the Boolean logic conjunc-
tive ’AND’ operator to multi-valued logic. Applied in fuzzy logic t-norms represent the
union of fuzzy sets. Its dual operation t-co-norm analogously refers to the ’OR’ op-
erator and can be used to represent the intersection of fuzzy sets. T-norms are widely
used in fuzzy set theory with multiple applications [11,12,13]. Recently, t−norms have
also been analyzed in alternative frameworks [14,15], motivating their use in general
classification methods as shown here.
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3.1 Definition of General t-norms

A t-norm is a dual function � : [0, 1]× [0, 1] → [0, 1] to generalize the triangle inequal-
ity of ordinary metric spaces and has the following properties:

1. Commutativity �(a, b) = �(b, a)

2. Monotonicity �(a, b) ≤ �(c, d), if a ≤ c and b ≤ d

3. Associativity �(a,�(b, c)) = �(�(a, b), c)

4. Identity �(a, 1) = a

According to this definition, the values of t-norms are only specified on the corner
points of a unit square and along the edges. In the middle area the values are restricted
to the range [0, 1]. Therefore, there exist a variety of different t-norms. In the following
a short listing of common t-norms (some of them parametrized) is given. Selected plots
based on the unit square are provided in Fig. 1:

Minimum/Zadeh t-norm �min(a, b) = min(a, b)

Product/Probabilistic t-norm �prod(a, b) = a · b

Łukasiewicz t-norm �luka(a, b) = max(a+ b− 1, 0)

Drastic t-norm �drastic(a, b) =

⎧⎨⎩
a if b = 1
b if a = 1
0 otherwise

Hamacher t-norm �ham(a, b) = ab
γ+(1−γ)(a+b−ab) with γ > 0

Weber t-norm �weber(a, b) = max(a+b−1+γab
1+γ , 0) with γ > −1

Yager t-norm �yager(a, b) = max(1− ((1− a)γ + (1− b)γ)
1
γ , 0)

with γ > 0

Aczel-Alsina t-norm �acz(a, b) = exp(−((− log(a))γ + (− log(b))γ)
1
γ )

with 0 < γ < ∞

In accordance to the analysis provided in [15] we focus on the Product t-norm, the
Hamacher t-norm, and the Aczel-Alsina t-norm. These three t-norms permit easy differ-
entiation, avoiding further approximation steps as necessary in case of t-norms involv-
ing max operators [16]. Further, the Product t-norm was used implicitly in the original
version of MRSLVQ as will be clarified in the next section.

Note that these three t-norms are related to each other:

– for γ = 1 the Hamacher and the Aczel-Alsina t-norms are equivalent to the non-
parametrized Product or Probabilistic t-norm

�prod(a, b) ≡ �ham(a, b) ≡ �acz(a, b)

– for γ → +∞ (Hamacher t-norm) respectively γ → 0 (Aczel-Alsina t-norm) the
Drastic t-norm is approximated
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Fig. 1. Plots of various t-norms based on the unit square. For the parametrized Hamacher t-norm
and the Aczel-Alsina t-norm three different values for the parameter γ are given.

4 Integrating t-norms in MRSLVQ

The large number of different (parametric) t-norms is due to different domain spe-
cific interpretations of the (dis-)similarity of multivariate vectors compared by a t-
norm. Here we consider the (dis-)similarity between multivariate label vectors. In the
MRSLVQ the authors made implicit use of the Probabilistic respectively Product t-
norm in (6) by taking the fuzzy labels of the prototypes into the inner sum. Replacing
the probabilistic t-norm in (6) we get:

p(vi, ci|W ) =

NC∑
k=1

NP∑
j=1

�(cki , y
k
j , τ) · p(vi|j)P (j) (13)

with �(cki , y
k
j , τ) being a t-norm as defined before with a potential parameter τ . Due to

the generalization to any t-norm the update of the prototype positions and the prototype
labels has to be changed. Accordingly we replace in the equation of the assignment
probabilities (9) the product of the fuzzy label assignments by a t-norm:
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Pci(j|vi) =

∑
k �(cki , y

k
j , τ)P (j)K(j)ef(vi,wj ,σ

2
j ,λj)

p(vi, ci|W )
(14)

This substitution also has to be considered in the prototype update of Eq. (11).
For the update of the fuzzy prototype labels yj the gradient of the t-norm with respect

to the prototype label
∂
(cki ,y

k
j ,τ)

∂yj
has to be taken into account yielding the general form

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

⎛⎜⎝ ∂
(cki ,y
k
j ,τ)

∂yj

Pci
(j|vi)

− 1

p(vi|W )

⎞⎟⎠ (P (j)p(v|j)) (15)

By replacing �(cki , y
k
j , τ) by a specific t-norm the particular update rule is obtained.

For example the Product t-norm yields

∂ log p(vi,ci|W )
p(vi|W )

∂yj

=

(
cj

Pci(j|vi)
− 1

p(vi|W )

)
(P (j)p(v|j)) . (16)

which is equivalent with update rule (12) as expected.
It would also be possible to update parameters of the t-norm by providing the corre-

sponding gradients similar as for the metric adaptation or the σ learning, see e. g. [17].
For simplicity we will specify t-norm parameters using a grid search on an independent
test set. In the following we focus on the before chosen parametrized t-norms Hamacher
t-norm and Aczel-Alsina t-norm and provide experiments for different datasets taken
from the life science domain. We compare with the approach using the standard Proba-
bilistic t-norm, which is identical with the original MRSLVQ.

5 Experiments

We now apply the priorly derived approach to two datasets with multivariate labels.
We chose the Hamacher t-norm and the Aczel-Alsina t-norm due to their easy differen-
tiability. We show the effectiveness for a classification task and compare the results to
the standard MRSLVQ approach based on the implicitly implemented Probabilistic or
Product t-norm. Potential parameters of the t-norms have been optimized using a grid
search on an independent test set. Using the optimized parameters the model perfor-
mance was evaluated on the remaining data in a 10-fold cross-validation.

5.1 Overlapping Gaussian Distributions

The first data set is a simulated one consisting of two overlapping Gaussian distribu-
tions. 1000 samples are drawn randomly mixed from the two distributions. The mixing
coefficients are used as fuzzy labels. Applying the Aczel-Alsina t-norm, the grid search
for the optimal parameter γ reveals improvements for γ ≥ 0.2 compared to the stan-
dard MRSLVQ (see Fig. 2a). These improvements are measured in terms of training
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accuracy on randomly selected training data. The performance test was conducted on
separate test data with γ = 0.5 reaching a test accuracy of 85.77% which is slightly
better than standard MRSLVQ (see Tab. 1). The Hamacher t-norm turned out to be a
less effective. First, the range for the grid search for the optimal parameter γ has to
be enlarged to show any effect (0.001 ≤ γ ≤ 10000), and second, the classification
accuracy of standard MRSLVQ cannot be reached (see Tab. 1).

5.2 Barley Grain Plant Data

The second dataset are images of serial transverse sections of barley grains at different
developmental stages. Developing barley grains consist of three genetically different
tissue types: the diploid maternal tissues, the filial triploid endosperm, and the diploid
embryo. Because of their functionality, cells of a fully differentiated tissue show dif-
ferences in cell shape and water content and accumulate different compounds. Based
on those characteristics, scientists experienced in histology are able to identify and to
label differentiated tissues within a given section of a developing grain (segmentation).
However, differentiating cells lack these characteristics. Because differentiation occurs
along gradients, especially borders between different tissue types of developing grains
often consist of differentiating cells, which cannot be identified as belonging to one or
the other tissue type. Thus, fuzzy processing is highly desirable. However, since (train-
ing) examples, manually labeled by a biological expert, are costly and rarely available,
one is interested in automatic classification based on a small training subset of the whole
data set. In our example, the training set consists of 4418 data points (vectors) whereas
the whole transverse section of the image contains 616 × 986 samples, which finally
have to be classified and visualized as an image for immediate interpretation by biol-
ogists. The data vectors are 22-dimensional, the number of classes is Nc = 11. Using
standard MRSLVQ based on the Product t-norm to classify the plant data yields a classi-
fication accuracy of 64.16% (see Tab. 1). Before testing our derived method the optimal
parameter values were obtained again by a grid search using a training dataset and com-
paring the training accuracy to the standard MRSLVQ training accuracy. The plot of the
accuracies obtained by the Aczel-Alsina t-norm is depicted in Fig. 2b. Interestingly, the
parameter value yielding a slightly better classification accuracy than MRSLVQ is ex-
actly that value, for which Azcel-Alsina t-norm and Product t-norm are equivalent. But
nevertheless, as observed before for the Gaussian dataset, applying Aczel-Alsina t-norm
with γ = 1.0 yields an improvement. For the current dataset this improvement amounts

Table 1. Average classification accuracy for the Gaussian dataset and the Barley grain plant
data. Note that the non-parametric Product or Probabilistic t-norm is equivalent to the standard
MRSLVQ model.

Gaussian distributions Barley grain plant data
class. acc. γ class. acc. γ

Probabilistic/Product t-norm 0.8517 ± 0.0388 − 0.6416 ± 0.0317 −
Hamacher t-norm 0.8257 ± 0.0530 0.01 0.6664 ± 0.0464 0.01
Aczel-Alsina t-norm 0.8577 ± 0.0429 0.5 0.7857 ± 0.0317 1.0
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Fig. 2. Grid search for the optimal parameter based on the training accuracy for MRSLVQ incor-
porating Aczel-Alsina t-norm. The red line indicates the training accuracy for the non-parametric
Product t-norm respectively standard MRSLVQ.

to 22.5% in the test accuracy (see Tab. 1). Again, the Hamacher t-norm is less effective.
Setting γ = 0.01 yields an improved classification accuracy of only 3.9% (see Tab. 1).

6 Conclusions

In this work we proposed an extension of Multivariate Robust Soft LVQ incorporating t-
norms in the learning dynamic. This is the first proposal of this type for prototype based
learning to the authors best knowledge. Unsafe label information is very common for
many real life data but not yet sufficiently addressed by appropriate learning methods
and our method is a proposal to improve the current situation. The data can reflect
the fuzziness in the labeling e.g. by similar scores for different class indices. This is a
very similar setting to classical fuzzy-theory and a motivation for the use of t-norms
to judge the similarity of label vectors. We considered different t-norms for MRSLVQ
and observed that the used t-norms might lead to (slight) improvements in the model
accuracy. Especially we found that the implicitly and unwittingly used Product t-norm
may not be the best choice. The Aczel-Alsina t-norm performed best in our experiments
but a wider study is necessary to get a sufficient support for generic statements. In future
work we will address in more detail the theoretical links of the used label norm with
respect to a large margin classifier and its generalization capabilities.

Acknowledgment. Marie Curie Intra-European Fellowship (IEF): FP7-PEOPLE-
2012-IEF (FP7-327791-ProMoS) is greatly acknowledged. We would like to thank Pe-
tra Schneider for providing the code of the MRSLVQ implementation.

References

[1] Schneider, P., Geweniger, T., Schleif, F.M., Biehl, M., Villmann, T.: Multivariate class la-
beling in Robust Soft LVQ. In: Verleysen, M. (ed.) 19th European Symposium on Artificial
Neural Networks (ESANN 2011), pp. 17–22. d-side publishing (2011)



108 T. Geweniger, F.-M. Schleif, and T. Villmann

[2] Bhattacharya, S., Bhatnagar, V.: Fuzzy data mining: A literature survey and classification
framework. International Journal of Networking and Virtual Organisations 11(3-4), 382–
408 (2012)

[3] Bonilla, E.V., Robles-Kelly, A.: Discriminative probabilistic prototype learning. In: ICML.
icml.cc / Omnipress (2012)

[4] Geweniger, T., Villmann, T.: Extending FSNPC to handle data points with fuzzy class as-
signments. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Net-
works (ESANN 2010), Brussels, Belgium. d-side publications (2010)

[5] Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P.: Efficient kernelized prototype
based classification. Int. J. Neural Syst. 21(6), 443–457 (2011)

[6] Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantiza-
tion. Neural Computation 21(10), 2942–2969 (2009)

[7] Hammer, B., Schleif, F.-M., Zhu, X.: Relational extensions of learning vector quantization.
In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 481–
489. Springer, Heidelberg (2011)

[8] Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589–
1604 (2003)

[9] Schneider, P.: Advanced methods for prototype-based classification. PhD thesis, Rijksuni-
veriteit Groningen (2010)

[10] Menger, K.: Statistical metrics. Proceedings of the National Academy of Sciences 28(12),
535–537 (1942)

[11] Gosztolya, G., Dombi, J., Kocsor, A.: Applying the generalized dombi operator family to
the speech recognition task. CIT 17(3), 285–293 (2009)

[12] Senthil Kumar, A.V.: Diagnosis of heart disease using fuzzy resolution mechanism. Journal
of Artificial Intelligence 5(1), 47–55 (2012)

[13] Ciaramella, A., Tagliaferri, R., Pedrycz, W., di Nola, A.: Fuzzy relational neural network.
Int. J. Approx. Reasoning 41(2), 146–163 (2006)

[14] Quost, B., Masson, M.-H., Denaux, T.: Classifier fusion in the dempster-shafer framework
using optimized t-norm based combination rules. International Journal of Approximate Rea-
soning 52(3), 353–374 (2011)

[15] Farahbod, F., Eftekhari, M.: Comparison of different t-norm operators in classification prob-
lems. International Journal of Fuzzy Logic Systems 2(3), 33–39 (2012)

[16] Lange, M., Villmann, T.: Derivatives of lp-norms and their approximations. Machine Learn-
ing Reports 04/2013, pp. 43–59 (2013)

[17] Schneider, P., Biehl, M., Hammer, B.: Hyperparameter learning in probabilistic prototype-
based models. Neurocomputing 73(7-9), 1117–1124 (2010)



Rejection Strategies for Learning Vector
Quantization – A Comparison of Probabilistic

and Deterministic Approaches

Lydia Fischer1,2, David Nebel3, Thomas Villmann3,
Barbara Hammer2, and Heiko Wersing1

1 HONDA Research Institute Europe GmbH, Offenbach, Germany
2 Bielefeld University, Germany

3 University of Applied Sciences Mittweida, Germany

Abstract. In this contribution, we focus on reject options for prototype-
based classifiers, and we present a comparison of reject options based on
statistical models for prototype-based classification as compared to alter-
natives which are motivated by simple geometric principles. We compare
the behavior of generative models such as Gaussian mixture models and
discriminative ones to results from robust soft learning vector quantiza-
tion. It turns out that (i) reject options based on simple geometric show
a comparable quality as compared to reject options based on statistical
approaches. This behavior of the simple options offers a nice alterna-
tive towards making a probabilistic modeling and allowing a more fine-
grained control of the size of the remaining data in many settings. It is
shown that (ii) discriminative models provide a better classification ac-
curacy also when combined with reject strategies based on probabilistic
models as compared to generative ones.

Keywords: prototype-based reject option, classification.

1 Introduction

Learning vector quantization (LVQ) [15] constitutes a powerful and efficient
classification strategy particularly suited for multi-class classification or online
scenarios. It can be substantiated by strong mathematical guarantees for gener-
alization behavior as well as learning dynamics for modern cost function based
versions such as generalized LVQ (GLVQ) [21] or robust soft LVQ (RSLVQ) [23].
In application scenarios, however, perfect classification can rarely be achieved
due to inherent noise in the data, overlap of classes, missing sensors, etc. Essen-
tially, a reject option relaxes the constraint of a classifier to provide a class label
for a given input with a low confidence value, rather an explicit ‘don’t know’ is
accepted as a return in such cases.

Note that most classifiers actually do provide a continuous value rather than
a crisp output only such as the distance of a given data point to the decision
boundary. Together with an appropriate threshold, these numbers could be taken
as a reject option. However, the real-valued outputs provided by the classifiers
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can usually not be interpreted as a confidence measure because their scaling is
unclear and can vary locally. A variety of approaches is concerned with tech-
niques how to turn these values into a statistical confidence [20,27], or how to
define appropriate, possibly local thresholds for a reject option which respects
a different scaling of the values [9,25]. Interestingly, while a number of efficient
strategies have been realized for popular classification schemes like support vec-
tor machines or k-nearest neighbor classifiers [4,20,27,7,12,9,6], relatively little
approaches address prototype-based learning strategies such as LVQ [25,5,13].
Another idea is the distance-based two stage approach from [16] which sepa-
rately addresses outliers and ambiguous regions. An approach, which combines
a reject option with empirical risk minimization for a binary classifier, is pro-
posed in [11] which could be a direction of further research.

In this approach we investigate reject options for prototype-based learning
schemes such as LVQ. In particular, we investigate approaches which are in-
spired by the geometric nature of LVQ classifiers and we compare these reject
options to reject options based on confidence values. We consider the key ques-
tion: Are these geometric approaches comparable to reject strategies based on
confidence values of probabilistic models which can be optimal as shown in [4],
and if so under which conditions? Therefore, we systematically compare the be-
havior of the measures to rejection strategies for probabilistic models. We vary
(i) the rejection strategy, ranging from deterministic, geometric measures to re-
ject options based on confidence values, (ii) the data set, ranging from artificial
data to typical benchmarks, and (iii) the nature of the prototype-based model
for which the reject option is taken, considering purely discriminative models
in comparison to generative ones. Albeit both classifiers are derived as explicit
probabilistic models. Purely discriminative ones are tailored to the classification
task rather than the data, such that it is not clear whether reject strategies can
be based on their confidence values. Similarly, it is not clear whether efficient
deterministic strategies based on simple geometric quantities can reach the per-
formance of rejection strategies on confidence values, the latter is supposed to
require valid probabilistic models of the data. We will show that this is indeed
the case for real life settings: heuristic reject strategies based on geometric con-
siderations offer an alternative to measures based on a confidence value, thus
offering a way towards reject strategies for purely deterministic LVQ schemes.

2 Probabilistic Prototype-Based Classification

Assume a data set X with elements of the real vector space R
n. A prototype-

based classifier is characterized by a set of prototypes W = {wi ∈ R
n}ki=1, which

are equipped with labels c(wi) ∈ {1, . . . , C}, if a classification into C classes is
considered. Classification of a data point x ∈ R

n takes place by a winner takes
all (WTA) scheme: x is mapped to the label c(x) = c(wi) of the prototype
wi which is closest to x as measured in some distance measure. Often, the
standard squared euclidean distance ‖x−wi‖2 or a generalized quadratic form
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(x−wi)
TΛ(x−wi) with positive semi-definite matrix Λ is considered; gener-

alizations to more general dissimilarity measures such as divergences, functional
metrics, or general dissimilarities have also been proposed [26,10].

Due to its simple classification scheme and the representation of the model
in terms of few prototypes, prototype-based classification enjoys a wide popu-
larity. Additional there are diverse learning techniques available to induce an
appropriate model from a given data set. Popular learning techniques include
the classical family of LVQ as proposed by Kohonen [15], generalizations of LVQ
which establish the model by cost functions [21,23], or unsupervised learning
schemes equipped with posterior labeling like neural gas or extensions thereof
[17,2]. Here, we have a glimpse at two different strategies which play a role in
the subsequent experiments. We only consider probabilistic LVQ models, because
the results allow a direct use of a reject option on their confidence values.

RSLVQ: Robust soft learning vector quantization (RSLVQ) has been proposed
as a probabilistic model which, in the limit of small bandwidth, yields update
rules very similar to classical LVQ 2.1 [23]. The objective is given as

E =
∑
j

log p(yj |xj ,W ) =
∑
j

log
p(xj , yj |W )

p(xj |W )
(1)

where p(xj |W ) =
∑

i p(wi)p(xj |wi) constitutes a mixture of Gaussians with
prior probability p(wi) usually taken uniformly over all prototypes. The prob-
ability p(xj |wi) is usually taken as an isotropic Gaussian centered in wi with
fixed variance σ2, or a generalization thereof with a more general covariance
matrix. The probability p(xj , yj |W ) =

∑
i δ

c(wi)
c(xj)

p(wi)p(xj |wi) (δji being the
Kronecker delta) restricts to the mixture components with the correct labeling.
This likelihood ratio is optimized using a gradient technique. RSLVQ provides
an explicit confidence value p(y|x,W ) for every class y of a given data point x.

GMM: Albeit RSLVQ is derived from a probabilistic model, its cost function is
purely discriminative. This means model parameters do not necessarily yield to a
good generative model for the observed data x. As shown in [22], for example, this
is not the case in general. In practice, generative data models are often trained in
an unsupervised way, directly aiming at a representation of the data distribution
p(x), popular examples being Gaussian mixture models for density estimation.
Here we consider a class-wise Gaussian mixture model (GMM) which aims at a
representation of every class by optimizing the following data log-likelihood

E =
∑
j

log

(∑
i

δ
c(wi)
c(xj)

p(wi)p(xj |wi)

)
(2)

where p(xj |wi) is a Gaussian distribution centered in wi, and p(wi) is the class-
wise prior of the prototype with

∑
j δ

c(wj)

c(xj)
p(wj) = 1. The model parameters

can be optimized by means of a gradient technique or, alternatively, a classical
EM scheme for every class, since the objective decomposes according to the
class labels [3]. A GMM provides for each class y an explicit confidence measure
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p(y|x,W ) = p(y)p(x, c(x)|W )/
∑

z∈{1,...,C} p(z)p(x, z|W ) where, due to the
training procedure, a generative data model representing the distribution on x
is present. In this context p(y) is the prior of the class with

∑
y∈{1,...,C} p(y) = 1.

Since GMM and RSLVQ offer probabilistic models, the classification of a data
point x can be based on the most likely class argmaxyp(y|x,W ). In practice,
the resulting maximum y often corresponds to the class of the closest prototype
such that a close resemblance to a classical WTA scheme is obtained.

3 Reject Options

What are possible rejection measures of prototype-based models which correlate
to the confidence of a classification and, together with a rejection strategy such
as a simple threshold, lead to a reject option? In general, a rejection measure
constitutes a function r : Rn → R, r(x) indicating the certainty of the classi-
fication of a data point x, together with an ordering direction, which specifies
whether low or high values of r(x) correspond to a high certainty of the clas-
sification. We assume that a rejection measure is always scaled in such a way
that smaller values correspond to a lower certainty. We consider the following
rejection measures:

Conf: Chow proved for a Bayes classifier with known class densities that a
reject option on rConf(x) = maxy p(y|x) reaches the optimum error-reject trade-
off: for a certain error rate (error probability) it minimizes the reject rate (reject
probability)[4]. This means to reject a data point if rConf(x) < θ. This strategy
relies on the assumption that a good probabilistic model of the data is given,
otherwise guarantees as proved e. g. in [11] do not necessarily hold. Note that in
regions with low class densities this measure can return high confidence values
caused by normalization, thus it cannot exclude outliers. Our measure (Fig. 1)
is inspired by the one of Bayes but the values are calculated by the mentioned
models and not by a Bayes classifier.

Dist: This error measure is inspired by geometric considerations. It returns the
distance of x to the closest decision boundary. Assume w+ and w− correspond
to prototypes with a different labeling and neighbored receptive fields with the
belonging distances d+ and d− to x. Then, the distance of a data point x to
the decision boundary defined by these two prototypes is given as rDist(x) =

|d+−d−|
2‖w+−w−‖2 (Fig. 1). If only one prototype per class is present, the prototypes
w+ and w− are given by the two closest prototypes of the data point x. Provided
a class is represented by more prototypes than one, the underlying topology has
to be estimated using e.g. the Hebbian learning strategy as proposed in [18].

d+: This error measure is also geometrically inspired, treating points which
are outliers with low confidence. This is measured by the squared distance to
the closest prototype rd+(x) = −d+(x) (Fig. 1).

Note that these reject options differ in the following items:

– Motivation of r: There are essentially two different reasons to reject a data
point, which are referred to in the literature as a rejection because of an
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ambiguous classification, or a rejection because of the data point being an
outlier [25]. The reject measures as given above follow different principles.
Conf realizes a rejection because of ambiguity, since it requires that the
maximum class probability reaches the threshold θ. Due to the normalization
of probabilities, this results in a gap of the class probabilities. Dist explicitly
realizes an ambiguous reject option by referring to the class boundary, while
d+ realizes an outlier reject option.

– Scaling of r: For Conf, values are in the interval [0, 1] allowing a direct in-
terpretation as statistical confidence value. This fact offers a simple way to
set an appropriate threshold due to external requirements regarding the con-
fidence, for example. In contrast, the other measures take values in the real
numbers, but their scaling is not clear. Since the scaling can even vary locally
and it can depend nonlinearly on the confidence, a proper choice of a thresh-
old is unclear. We will investigate global threshold strategies in experiments,
yielding results comparable to reject options based on the confidence.

– Requirements as regards the model: The scaling of Conf as a confidence
measures requires that a probabilistic model of the data is available. We
investigate the effect of having a discriminative versus generative model in
experiments, only the latter actually providing a valid representation of the
input distribution in general.

These measures provide values indicating the confidence of a classification
such that they give rise to a direct threshold-based rejection strategy: given
θ ∈ R, points which fulfill r(x) < θ are rejected. Since measures such as Dist
and d+ aim at a rejection caused by different reasons. It can be worthwhile to
combine several measures [25]. This leads to a more complex rejection strategy
which depends on two thresholds. We refer to this measure as follows:

Comb: This measure combines the previous two reject options rComb(x) =
(rDist(x), rd+(x)) leading to a reject strategy based on a threshold vector θ =
(θ1, θ2): x is rejected if rDist(x) < θ1 or rd+(x) < θ2.
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Fig. 1. Level curves of the considered reject options for a GMM and a RSLVQ model
of an artificial 2D Gaussian data set. The black symbols are prototypes.
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4 Experiments

We test the behavior of the different rejection measures in experiments, focusing
on the following questions: What is the behavior of the measures regarding dif-
ferent characteristics of the model ranging from a discriminative to a generative
one? What is the behavior of simple deterministic heuristics in comparison to
rejection strategies based on confidence measures and do the latter require valid
probabilistic models? Since probabilistic models are needed for an evaluation
of Conf, we use the two probabilistic models RSLVQ and GMM. For all set-
tings, RSLVQ and GMM are trained using one prototype per class. For RSLVQ,
a global parameter σ2 is optimized via cross-validation. For GMM, correlations
are set to zero and local scalings of the dimensions are adapted by means of diag-
onal matrices attached to the prototypes which are optimized in an EM scheme.
Training takes place until convergence using random initialization and without
leave-one-out method. Convergence is assumed if the training error changes less
than 10−5 during two sequenced training steps. We use the following data sets:

– Gaussian clusters : This data set consists of two artificially generated Gaus-
sian clusters in two dimensions with overlap. These are overlaid with uniform
noise in the plane. Data are randomly divided into training and test set.

– Image Segmentation: The image segmentation data set consists of 2310
data points representing small patches from outdoor images with 7 different
classes with equal distribution such as brickface, sky, . . . [1]. Each data point
consists of 19 real-valued image descriptors. The data set is decomposed into
a training set of 210 data points and a test set of 2100 data points. Due to
zero variance, dimensions 3 to 5 are deleted, and data are normalized by a
z-transformation before training.

– Tecator data: The Tecator data set consists of 215 spectra with 100 spectral
bands ranging from 850 nm to 1050 nm [24]. The task is to predict the fat
content of the probes, which is turned into a two class classification problem
to predict a high/low fat content by means of binning the real values into
two classes of equal size. Data are randomly split into a training set with
144 samples and test set with 71 samples.

– Haberman: The Haberman survival data set contains 306 instances from
two classes indicating the survival for more than 5 years after breast cancer
surgery [1]. Data are represented by three attributes related to the age, the
year, and the number of positive axillary nodes detected. Data are randomly
split into training and test set of equal size.

For all data sets, two models are trained: a probabilistic generative model by
means of class-wise GMM, and a probabilistic discriminative model by means of
RSLVQ. For the resulting models, the effect of a reject option is compared for
different possible strategies as introduced above. We vary the reject threshold θ
in small steps from no reject (which corresponds to the original model) to full
reject (i.e. no data point is classified). For Comb, a threshold vector is varied
accordingly, and we report the result of the respective best combination. We
denote the set of data points which are not rejected using θ as Xθ. The results
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are depicted as graphs plotting the relative size |Xθ|/|X| versus the classification
accuracy on Xθ normalized by its size.

Figure 2 shows the results obtained for the different rejection strategies and
data sets. The resulting graphs [19] display a smooth transition from the accuracy
of the model without reject options to the limit value 1 (in the case of Gaussian
clusters it goes to 0) which results if |Xθ| approaches 0 (we leave out the value for
the empty set at |Xθ| = 0). The classification accuracy on Xθ does not change
with θ if the classification accuracy is already 100 % (as is the case for the Tecator
data set for RSLVQ), or if the errors are uniformly distributed over the range of
the rejection measure r which is the case for the Haberman data set, for example.
In the latter case, classes are imbalanced with the second class accounting for
roughly one third of the data only, and LVQ models tend to represent only class
one properly, such that class two accounts for errors equally distributed according
to r. Note that the graphs are subject of noise if the size |Xθ| approaches 0 which
can be attributed to the small sample size Xθ. Accordingly, the graphs are not
reliable for |Xθ|/|X| < 0.1, and the corresponding parts of the graphs should
be seen as an indicator only. We choose the values of θ equidistant between the
extremal values of each single measure.

Interestingly, the control of the number of points which are not rejected,
|Xθ|, depending on the threshold θ partially has gaps, as indicated in Fig. 2
by the straight parts of the curves and the ending of the curves at some size
of |Xθ| � 0. Such gaps can occur provided the size of Xθ changes abruptly
with the threshold, which seems to be the case in some settings where a further
increase of the thresholds leads to a rejection of all remaining data points. This is
the fact for Conf for Gaussian clusters, Image Segmentation and Tecator for the
GMM model, indicating that no points with confidence larger than a maximum
threshold value θ exist. Interestingly these gaps can be observed for Conf for
the generative models only, not the discriminative ones. Further, this behavior
is observed for d+ for the data sets Gaussian clusters and Image Segmentation
(both models) and Tecator (generative model). In contrast, the graphs of Dist
and Comb do not have large gaps.

We can draw a few general conclusions from the graphs displayed in Fig. 2: In
all cases, the discriminative model RSLVQ yields the same or better results as
compared to generative GMM models, albeit the latter have a higher degree of
freedom because of an adaptive diagonal matrix per prototype unlike RSLVQ,
which relies on a global bandwidth only. This also holds for the full range of cer-
tainty values taken for the reject strategies, regardless of whether deterministic
of probabilistic rejection measures are used. Thus, it seems advisable to focus on
the discriminative task, where confidence based measure or deterministic mea-
sures can be used. As expected, reject strategies based on the confidence yields
the best behavior in most cases, but it does not allow a smooth variation of the
size of Xθ for a large range in two of the settings. As mentioned in Section 3
Conf cannot exclude outliers. This is apparently not a problem for the used
data sets, highlighting the applicability of the optimality criterion of Chow [4].
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Fig. 2. Results of different rejection options when applied to generative or discrim-
inative models trained for different data sets. We report the relative size of Xθ as
compared to the accuracy of the classifier on this set [19].
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Dist seems to offer a reasonable strategy in all other settings, whereby the
behavior is universally good for generative as well as discriminative models, and
it relaxes the burden of computing an explicit confidence value. d+ gives better
results than Dist in only one case (Gaussian clusters, GMM), and worse results
than Dist in three cases (Gaussian cluster, RSLVQ; Image segmentation, both
models; Tecator, GMM). Thus, in general, focusing on the discriminative nature
seems advisable also as concerns the rejection strategy. As expected, Comb
shows results comparable to the best of the two geometric reject options Dist
and d+, but also requiring a more complex reject strategy by the combination
of both values.

5 Conclusions

We have compared direct geometric reject options and their combination with
Bayesian motivated reject options in a couple of benchmarks using models with
different characteristics. The resulting observations are that geometric measures
such as Dist behave equally good as probabilistic measures, while often allowing
a more fine-grained control of the size of the rejected data set. In addition, they
do not require explicit probabilistic models thus opening the way for an integra-
tion into powerful deterministic alternatives such as GLVQ [21]. The suitability
of the approach to these settings is the topic of ongoing work [8].

While allowing for simple measures which are applicable for a wider range of
models, the scaling of appropriate thresholds is not clear a priori and it depends
on the data set at hand. In the literature, a few proposals how to automatically
determine data-adapted values have been proposed [25], which can be transferred
to our setting. They can even be extended to online scenarios, and LVQ classifiers
offer intuitive life-long learning strategies [14].
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Abstract. This talk reviews important aspects of prototype based systems in the
context of supervised learning. Learning Vector Quantization (LVQ) serves as a
particularly intuitive framework, in which to discuss the basic ideas of distance
based classification. A key issue is that of chosing an appropriate distance or
similarity measure for the task at hand. Different classes of distance measures,
which can be incorporated into the LVQ framework, are introduced. The pow-
erful framework of relevance learning will be discussed, in which parameterized
distance measures are adapted together with the prototypes in the same training
process. Recent developments and theoretical insights are discussed and exam-
ple applications in the bio-medical domain are presented in order to illustrate the
concepts.
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Abstract. Prototype-based models such as learning vector quantization
(LVQ) enjoy a wide popularity because they combine excellent classifi-
cation and generalization ability with an intuitive learning paradigm:
models are represented by few characteristic prototypes, the latter of-
ten being located at class typical positions in the data space. In this
article we investigate inhowfar these expectations are actually met by
modern LVQ schemes such as robust soft LVQ and generalized LVQ.
We show that the mathematical models do not explicitly optimize the
objective to find representative prototypes. We demonstrate this fact in
a few benchmarks. Further, we investigate the behavior of the models
if this objective is explicitly formalized in the mathematical costs. This
way, a smooth transition of the two partially contradictory objectives,
discriminative power versus model representativity, can be obtained.

1 Introduction

Since its invention by Kohonen [9], learning vector quantization (LVQ) enjoys a
great popularity by practitioners for a number of reasons: the learning rule as
well as the classification model are very intuitive and fast; the resulting classifier
is interpretable since it represents the model in terms of typical prototypes which
can be treated in the same way as data; unlike popular alternatives such as SVM
the model can easily deal with an arbitrary number of classes; the representation
of data in terms of prototypes lends itself to simple incremental learning strate-
gies by referring to the prototypes as statistics for the already learned data. Due
to these properties, LVQ has been successfully applied in diverse areas ranging
from telecommunications and robotics to the biomedical domain [9,8].

Despite this success, LVQ has long been thought of as a mere heuristic [2]
and some mathematical guarantees concerning its convergence properties or its
generalization ability have been investigated more than ten years after its in-
vention only [3,1,13]. Today, LVQ is usually no longer used in its basic form,
rather variants which can be derived from mathematical cost functions are used
such as generalized LVQ (GLVQ) [12], robust soft LVQ (RSLVQ) [16], or soft
nearest prototype classification [15]. Further, one of the success stories of LVQ is
linked to its combination with more powerful, possibly adaptive metrics instead
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of the standard Euclidean one, including, for example, an adaptive quadratic
form [7,13], a general kernel [11,6], a functional metric [17], or extensions to
discrete data structures [4].

Depending on the application domain, the objective of LVQ to find a highly
discriminative classifier is accompanied by additional demands such as sparsity
of the models or model interpretability. Modern LVQ techniques such as RSLVQ
or GLVQ are explicitly derived from cost functions, such that it is possible to
link the objectives of a practitioner to the mathematical objective as modeled
in these cost functions. In this contribution, we argue that, while often used as
an interpretable model, the objective of arriving at representative prototypes is
usually not included in this mathematical objective. We propose an extension of
LVQ schemes which explicitly takes this objective into account and which allows
a weighting of the two partially contradictory objectives of discriminative power
and representativity. We demonstrate the behavior of the resulting models in
benchmark data sets where, depending on the setting, models with very different
characteristics can be obtained this way.

2 LVQ Schemes

A LVQ classifier is given by a set of prototypes wi ∈ R
n, i = 1, . . . , k together

with their labeling c(wi) ∈ {1, . . . , C}, assuming C classes. Classification of a
point x ∈ R

n takes place by a winner takes all scheme: x is mapped to the
label c(x) = c(wi) of the prototype wi which is closest to x as measured in
some distance measure, a probability in case of a RSLVQ classifier, respectively.
For simplicity, we restrict to the Euclidean metric, even though general metrics
could be used.

Given a training data set xj ∈ R
n, j = 1, . . . ,m, together with labels yj ∈

{1, . . . , C}, LVQ aims at finding prototypes such that the resulting classifier
achieves a good classification accuracy, i.e. yj = c(xj) for as many j as possible.
Classical LVQ schemes such as LVQ 1 or LVQ 2.1 rely on Hebbian learning
heuristics, but they do not relate to a valid underlying cost function in the case of
a continuous data distribution [2]. A few alternative models have been proposed
which are derived from explicit cost functions and which lead to learning rules
resembling the update rules of classical LVQ schemes [12,16].

Generalized LVQ (GLVQ) [12] addresses the following cost function

E =
∑
j

Φ

(
d+(xj)− d−(xj)

d+(xj) + d−(xj)

)
(1)

where d+(xj) refers to the squared Euclidean distance of xj to the closest pro-
totype labeled with yj , and d−(xj) refers to the squared Euclidean distance of
xj to the closest prototype labeled with a label different from yj . Φ refers to a
monotonic function such as the identity or the sigmoidal function. Optimization
typically takes place using a gradient technique. As argued in [13], the numerator
of the summands can be linked to the so-called hypothesis margin of the classi-
fier, such that a large margin and hence good generalization ability is aimed for
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while training. The denominator prevents divergence and numerical instabilities
by normalizing the costs.

Robust soft LVQ (RSLVQ) [16] yields similar update rules based on the fol-
lowing probabilistic model

E =
∑
j

log
p(xj , yj |W )

p(xj |W )
=
∑
j

log p(yj |xj ,W ) (2)

where p(xj |W ) =
∑

i p(wi)p(xj |wi) constitutes a mixture of Gaussians with
prior probability p(wi) (often taken uniformly over all prototypes) and prob-
ability p(xj |wi) of the point xj being generated from prototype wi, usually
taken as an isotropic Gaussian centered in wi, or a slightly extended ver-
sion described by a diagonal covariance matrix. The probability p(xj , yj |W ) =∑

i δ
c(wi)
yj p(wi)p(xj |wi) (δ - Kronecker delta) restricts to the mixture compo-

nents with the correct labeling.This likelihood ratio is optimized using a gradient
technique.

When inspecting these cost functions, the question occurs to what extend
these LVQ schemes mirror the following objectives:

– Discriminative Power: the primary objective of LVQ schemes is to provide
a classifier with small classification error on the underlying data distribution.
Thus, its objective is to minimize the training error and, more importantly,
classification error for new data points.

– Representativity: the resulting prototypes should represent the data in an
accurate way such that it is possible to interpret the model by inspecting
the learned prototypes.

Inhowfar are these objectives accounted for by the GLVQ or RSLVQ costs? In-
terestingly, RSLVQ aims at a direct optimization of the Bayesian error. Hence,
its primary goal is the discriminative power of the model. RSLVQ has no in-
centive to find representative prototypes unless this fact directly contributes to
a good discriminative model. This behavior has been observed in practice [14]:
prototypes usually do not lie at class typical positions; they can be located out-
side the convex hull of the data, for example, provided a better classification
accuracy. This behavior has also theoretically been investigated for the limit of
small bandwidth in [1]: in the limit of small bandwidth, learning from mistakes
takes place, i.e. prototype locations are adapted only if misclassifications are
present. We will show one such example for original RSLVQ in the experiments.

What about the GLVQ costs? The numerator of GLVQ is negative if and
only if the classification of the considered data point is correct. In addition, it
resembles the hypothesis margin of the classifier. Due to this fact, one can expect
a high correlation of the classification error and the cost function, making GLVQ
suitable as a discriminative model. Nevertheless, since this correlation is not an
exact equivalence, minima of this cost function do not necessarily correspond to
good classifications in all situations: for highly imbalanced data, for example, the
GLVQ costs prefer trivial solutions with all data being assigned to the majority
class. This observation is also demonstrated by the fact that the classification



126 B. Hammer et al.

accuracy of GLVQ can be inferior as compared to RSLVQ, the latter focussing
on discrimination only, see e.g. [14] and our results in the experiments section.

Interestingly, the GLVQ costs have a mild tendency to find representative
prototypes due to this form: The term d+(x) in the numerator aims at a small
class-wise quantization error of the data. Further, solutions with small denomi-
nator are preferred, i.e. there is an emphasis to place all prototypes within the
data set. We will see in experiments, that this compromise of representativity
and discriminative behavior can yield to classification results inferior to RSLVQ
for the sake of more representative models, but still an increase of model repre-
sentativity is possible by adding a corresponding term to the costs.

3 Extending LVQ Schemes by Generative Modes

We are interested in a model-consistent extension of the RSLVQ and GLVQ
costs which explicitly take the goal of representativity into account. Generally,
we refer to the cost function of RSLVQ (2) or GLVQ (1) as Ediscr(W ). The idea
is to substitute these costs by the form

E = (1− α) · Ediscr(W ) + α · Erepr(W ) (3)

where Erepr(W ) emphasizes the objective to find representative prototypes wj .
The parameter α ∈ [0, 1] weights the influence of both parts for the optimization.

First, we have a look at how to choose Erepr(W ) for RSLVQ schemes. The
idea is to add a term which maximizes the likelihood of the observed data be-
ing generated by the underlying model. Similar to RSLVQ, we can consider a

class-wise Gaussian mixture model p(xj , yj |W ) =
∑

i δ
c(wi)
yj p(wi)p(xj |wi) with

prior probability p(wi) and Gaussian p(xj |wi). The costs aim at a generative
model, i.e. we address the class-wise data log likelihood log

∏
j δ

c
yj
p(xj |c,W ) =∑

j δ
c
yj
log
∑

i δ
c(wi)
yj pc(wi)p(xj |wi) with prior pc(wi) = p(wi)/p(c) summing to

one for every class c. Adding this generative term for all class-wise distributions,
we arrive at the form

Erepr(W ) =
∑
c

∑
j

δcyj
log
∑
i

δc(wi)
yj

pc(wi)p(xj |wi) (4)

We often assume equal prior for all classes c and prototypes wi for simplicity.
We choose Gaussians of the form

p(xj |wi) =
1√

(2π)n|Σi|
exp

(
−1

2
(xj −wi)

T Σ−1
i (xj −wi)

)
(5)

where Σi is taken as diagonal matrix with entries (σ2
i1, . . . , σ

2
in). Optimization

takes place by means of a gradient ascent of these costs. The derivative of
Ediscr(W ) can be found in [16]. See [14] for update rules in case of an adap-
tive covariance matrix. For Erepr(W ) prototypes wi are adapted according to

∂Erepr(W )

∂wi
=
∑
j

δc(wi)
yj

pyj(wi) · p(xj |wi)∑
l δ

c(wl)
yj pyj (wl) · p(xj |wl)

·Σ−1
i · (xj −wi), (6)
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while the variances σjk are simultaneously updated referred to

∂Erepr(W )

∂σin
=
∑
j

δc(wi)
yj

p(wi)p(xj|wi)

p(xj , yj |W )

(
[xj −wi]

2
n

σ3
in

− 1

σin

)
. (7)

In the limit of small bandwidth, this amounts to a class wise vector quantization
scheme.

In a similar way, we enhance the GLVQ cost function by a term emphasizing
the representativity of the prototypes in model consistent way. Here we choose
the class-wise quantization error

Erepr(W ) =
∑
j

d+(xj), (8)

Taking the derivative overlays the update rules with a vector quantization step.
As we will see in experiments, depending on the data set, these two objec-

tives can be contradictory, such that the choice of α can severely influence the
outcome. Thereby, the scaling of the two objectives is not clear a priori: while a
probabilistic modeling such as RSLVQ places the two objectives into the inter-
val (−∞, 0] corresponding to a log likelihood, the discriminative part of GLVQ
lies in Ediscr(W ) ∈ (−1, 1), but Erepr(W ) ∈ [0,∞) for GLVQ. Hence, without
normalizing these terms, the scaling of the parameter α has different meanings
in both settings. We will report results for the whole range α ∈ [0, 1] with step
size 0.05 in case of RSLVQ, 0.001 for GLVQ, respectively.

4 Experiments

We test the behavior of the models for different values α in three benchmarks:

– Gauss: two two-dimensional Gaussian clusters with different covariance ma-
trices and some degree of overlap are generated.

– Tecator: the data set consists of 215 spectra with 100 spectral bands ranging
from 850 nm to 1050 nm [10]. The task is to predict the fat content of the
probes.

To avoid local optima as much as possible, initial training takes place to dis-
tribute the prototypes in the data space, as proposed in [9]. In our experiments we
simply start with an initial training phase where α = 1 and we anneal the value
α afterwards to the desired weighting parameter. For RSLVQ, diagonal entries
of the covariance matrix are adapted individually for every mixture component.
In all cases, we use one prototype/mixture component per class. Training takes
place until convergence. To validate representativity we determine the following
ratio for both models:

R =
1

C

∑
ck

∑
j: c(xj)=ck

d+ (xj)∑
i: c(xi)=ck

d
(
xi,μck

) , (9)

which is the class-wise quantization error according to the class mean μck .
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Gauss: Due to the data generation, prototypes lying in the two class centers
define a decision boundary which is close to the optimum decision boundary, al-
beit not being identical due to the non-isotropic Gaussians. This fact is mirrored
in the dependency of the classification accuracy in respect to the parameter α
as depicted in Fig. 1: the accuracy is widely constant for varying parameter α
for both, RSLVQ and GLVQ schemes.
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Fig. 1. Classification accuracy for RSLVQ and GLVQ for the Gauss data set varying
parameter α

Interestingly, the classification accuracy for RSLVQ is higher than GLVQ
which can be attributed to the fact that only the first model explicitly aims at
an optimization of the Bayes error and an implicitly fitting of Gaussians, while
the GLVQ costs are only correlated to a class discrimination.
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Fig. 2. Class-wise quantization error for the Gauss data set vs. accuracy for varying
parameter α
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Fig. 3. Prototype location for the Gauss data set for extremal α ∈ {0, 1}. squares =̂
α = 1; diamonds =̂ α = 0; filled circle =̂ class mean.

For both approaches the prototype locations for extremal values α ∈ {0, 1} are
depicted in Fig. 3. The prototypes which are obtained with RSLVQ do not change
its position, as mirrored in the class-wise quantization error with increasing value
α, see Fig. 2. These are at the class centers and obviously do not enormously differ
from the respective class means. Unlike GLVQ, where for α = 1 the prototypes
do not coincide with the class means to better follow the optimum decision
boundary for the given case. Contrary to RSLVQ, covariances are not used by
standard GLVQ.

Tecator: For the tecator data set, there seems a clear difference between a
good generative or good discriminative model as found by LVQ schemes. When
varying the parameter α, the classification accuracy decreases (Fig. 4), while the
representativity increases, see Fig. 5.

Interestingly, the prototypes lie at atypical positions for the purely discrimi-
native models in this case, making their interpretability problematic: as depicted
in Fig. 6, the spectral curves display a very characteristic shape which has no re-
semblance to spectra as observed in the data. These forms facilitate the class dis-
crimination while interpretability is questionable. This setting also demonstrates
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Fig. 4. Classification accuracy for RSLVQ and GLVQ for the Tecator data set varying
parameter α

the partially problematic choice of an appropriate parameter α in particular for
the GLVQ model. In this case, due to the inherent scaling, already small values
of α have a dramatic effect on the classification accuracy of the result.
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Fig. 5. Class-wise quantization error for RSLVQ and GLVQ for the Tecator data set
vs. Classification accuracy for varying parameter α

5 Discussions

We have discussed the correlation of popular LVQ cost functions to the two
aims, to obtain a small classification error and to obtain a representative model
where prototypes are interpretable. By means of examples, we have seen that
LVQ usually models the former objective, but the latter is only implicitly taken
into account. An explicit integration of this objective enables enhanced models
where the discriminative power versus the representativity of the prototypes can
be controlled by the user, leading to better interpretable models in case the two
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Fig. 6. Prototype locations for the Tecator data set and different choices of the pa-
rameter α. Interestingly, for the discriminative case α = 0, atypical shapes with little
resemblance of the class averages are obtained, while α = 1 boosts class averages.

objectives are contradictory for the given data. We have shown the effect of such
a control on the form of the prototypes in a few benchmarks.

So far, the two objectives are combined in one cost function and an appropriate
balance parameter α has to be set. To make both algorithms comparable accord-
ing to the used distance a localized relevance GLVQ approach [5] is mandatory.
In this contribution our focus is on pointing out that both LVQ variants can be
extended to make their results more interpretable. As an alternative, one can
consider formulations which emphasize the primary aim of correct classification
as a hard constraint, but integrate representativity as a soft constraint. This
way, one can aim for the most representative solutions among a set of possible
solutions which are invariant with respect to the classification error. Such an
approach would result in formalizations of the form

min
∑
j

d+(xj)

such that d+(xj) ≤ d−(xj) + ε ∀j

for GLVQ, incorporating slack variables if no feasible solution exists, or

max
∑
c

∑
j

δcyj
log
∑
i

δc(wi)
yj

pc(wi)p(xj |wi)

such that p(yj |xj ,W ) ≥ p(c|xj ,W ) + ε ∀j ∀c �= yj

for RSLVQ, again incorporating slack variables if necessary. The investigation of
these alternatives will be the subject of future work.
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Abstract. This paper aims at an approach for labeling places within a
grid cell environment. For that we propose a method that is based on
non-negative matrix factorization (NMF) to extract environment spe-
cific features from a given occupancy grid map. NMF also computes a
description about where on the map these features need to be applied.
We use this description after certain pre-processing steps as an input
for generalized learning vector quantization (GLVQ) to achieve the clas-
sification or labeling of the grid cells. Our approach is evaluated on a
standard data set from University of Freiburg, showing very promising
results.

Keywords: NMF, GLVQ, semantic labeling, occupancy grid maps.

1 Introduction

One of the major goals in cognitive robotics is to develop algorithms and hence
robots that can be used intuitively. In particular, while thinking about a future
practical application the user wants to use the robot out of the box without the
need of a trained technician.

A possible scenario for such a situation would be that the robot is shown
around by a human operator - as we would do with a new colleague. For this
the robots needs to follow its operator. On the tour the operator should be able
to input (e.g. verbalize) in which kind of room the robot currently is located.
During the acquisition of the knowledge about room concepts the robot should
already be able to predict the current room after a while of training.

This knowledge allows the robot to fulfill tasks, like finding a resting or parking
position in an office instead in the hallway. Furthermore, the robot would be able
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to fulfill place specific tasks or show adequate behavior, like silence in an office
while welcoming arrivers in the hallway.

Achieving a semantic understanding of its environment of a mobile robot
platform is an on-going topic in many research teams. A popular approach with
training and testing datasets was presented by Mozos [1]. This algorithm mainly
used geometrical features and an AdaBoost classifier to differentiate between
three classes (room, corridor, doorway) within a metric map. The mildly noisy
output was smoothed afterwards using probabilistic relaxation labeling. A vari-
ation of Mozos’ solely laser-range-finder-based solution was published in [2, 3].
They used L2-regularized logistic regression on geometrical (area of polygonal
approximation of the laser scan) as well as statistical laser scan features (stan-
dard deviations of lengths of consecutive scans and of ranges). Another approach
using Support Vector Machines is proposed in [4].

The concept of teaching the mobile robot semantic labels at runtime, provided
by a human guide, was followed by [5]. During a tour in its new surroundings,
the robot obtains place labels where each spatial region is represented by one
or more Gaussians. The complete map is later classified by region growing. A
similar approach is described in [6].

Assuming laser range data is insufficient to fully understand our complex
environment, more sensor cues are introduced. [7] used Mozos’ laser range fea-
tures and combined them with visual features obtained by SIFT (Scale-invariant
feature transform) and CRFH (composed receptive field histogram). Each cue
produces a scoring value which are then combined by SVM-DAS (SVM-based
Discriminative Accumulation Scheme) to a final class label.

Due to new inexpensive RGB-D sensors, object recognition has gained much
attention among research communities. For instance,[8, 9] build 3-dimensional
maps via RGB-D-SLAM. Within the resulting maps, preconceived coarse (wall,
ceiling, ground) and individual (printer, monitor, etc.) labels are recognized.
Different kinds of rooms are inferred using an associative coupling of these lables.
Conversely, it is possible to find out the most likely position of an individual label.

The remainder of this paper is organized as follows. Section 2 summarizes
the proposed approach, as well as explains the details of non-negative matrix
factorization (Sec. 2.1), Generalized Learning Vector Quantization (Sec. 2.3),
and the data pre-processing (Sec. 2.2). The experimental results are discussed
in Sec. 3, while the paper concludes in Sec. 4.

2 Approach

Similar as described in [10], our approach takes an occupancy grid map as in-
put. From this occupancy grid map a set of basis primitives and corresponding
activities is computed using Non-negative Matrix Factorization (NMF). The ba-
sis primitives in a practical application would be stored and used to derive the
activity based description for the local maps as also already explained in [10].

Beyond this, in [10] Beyond this, in [10] we computed a representation of the
environment with help of NMF. Based on the activities, we derived a histogram-
like description, which describes the amount of environmental characteristics
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Fig. 1. Application of the NMF algorithm on the global occupancy grid map

(e.g. corners, walls) for a certain position. We could show that these histograms
are already sufficient for solving the localization - more precisely the place recog-
nition problem. With that in mind, in this work we go back to the original NMF
representation to perform the clustering/classification of our environment. For
that application it is important to be able to recognize a certain position in the
environment in a unique way.

For the proposed method, we continue with the activity maps and apply a
distance transform. This is necessary, since the activity maps only have distinct
peaks (compare Fig. 2) and a slight translation within the map results in large
dissimilarity. Using distance transform smoothens our representation and also
encode the distance metric within the grid map into our vector space.

Finally, we use Generalized Learning Vector Quantization for prediction of the
class labels for each grid cell. Combined with a segmentation approach (e. g. as
proposed in [6]) this information can be used to determine the class of building
structures, like rooms.

2.1 Non-negative Matrix Factorization

Like other approaches, non-negative matrix factorization (NMF) [11] is meant to
solve the source separation problem. Hence, a set of training data is decomposed
into basis primitives W and their respective activations H:

V ≈ W ·H (1)

Each training data sample is represented as a column vector V i within the
matrix V . Each column of the matrix W stands for one of the basis primitives.
In matrix H the element Hj

i determines how the basis primitive W j is activated
to reconstruct training sample V i.

Unlike PCA or ICA, NMF performs a decomposition, which only consists of
non-negative elements. This means that the basis primitives can only be accumu-
lated. There exists no primitive which is able to erase a ’wrong‘ superposition of
other primitives. This usually results in primitives that are more interpretable.
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Theoretically, the basis primitives are invariant to several transformations
such as rotation, translation, and scale. This is achieved by adding a trans-
formation matrix T to the decomposition formulation [12]. For each allowed
transformation the corresponding activity has to be trained individually. To
avoid trivial or redundant solutions a further sparsity constraint is necessary. Its
influence can be controlled using the parameter λ [13].

For generating the decomposition, optimization-based methods are used.
Hence, an energy function E has to be defined:

E(W ,H) =
1

2
‖V − T ·W ·H‖2 + λ

∑
i,j

Hj
i (2)

By minimizing this energy function (2), it is now possible to achieve a recon-
struction using the matrices W and H . This reconstruction is aimed to be as
close as possible to the training data V . The data has to be vectorized to be
held as a column vector in V . Hence a column in H is the vectorial form of a
activity map

Enabling only translational invariance reduces the problem to a convolution
over all translations. This is efficiently implemented by transforming the data
into the frequency domain based on FFT. In order to reduce the complexity,
rotation and scale are not taken into account for the presented approach.

The minimization of the energy function can be done by gradient descent.
The factors H and W are updated alternately with a variant of exponentiated
gradient descent or using NMFs multiplicative update rule until convergence
(see [10] for algorithmic details).

The NMF formulation as it is written in this section allows an arbitrary
transform of the basis primitives W with respect to their position on H and V
respectively. If transformation invariance is limited to translational invariance
all equations can be simplified to a convolution of W over H. For details on
the derivation and the exact implementation we would like to refer to [14]. How-
ever, intuitively it should be clear that if all possible shifts (translations) of W
are coded with different T is equivalent with the mentioned convolution. Using
convolution instead of iteration over all possible transformations immensely re-
duces computational effort. Furthermore, the well known trick of multiplying in
frequency space can be applied.

2.2 Data Representation

In [10] a number of histogram based descriptors are evaluated. For this paper, we
go back to a representation relying on the activities H computed by the NMF.
As it is depicted in Fig. 2, the column vectors Hp of the activity matrix H with
H = (Hp

k ) = (Hp)i can be regarded as a map of activities with the same width
and height w × h of the training map used in V . We define this map for basis
primitive W p as:

H̃(p) =
(
H̃(p)ij

)
with H̃(p)ij = Hp

k with k = j · w + i (3)
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H̃(p) D(p) D̃(p)

Fig. 2. Preprocessing before GLVQ. The activities H computed by the NMF for the
global map are thresholded and then distance transformed. After that, local patches
are cut out representing the description for the local map. Finally, the local maps are
vectorized.

These maps are then thresholded by θ to gain a binary activity map, we are
only interested in cells that are definitely occupied. Defining O as a set as follows,
also reduces data complexity, and computational costs:

O =
{
(i, j) ∈ Ω

∣∣∣ H̃(p)ij > θ
}
. (4)

with Ω = {1, . . . , w} × {1, . . . , h} being the set of grid cells in the map. Conse-
quently, the grid cells where the corresponding basis primitive is to be placed
belong to the set O.

Subsequently, the binary map O undergoes a Euclidian distance transform
[15]. This results in a map D where each grid cell contains the Euclidian distance
to the nearest grid position, where a basis primitive is activated:

D(p) =
(
Di

j

)
with Di

j = min
{
d
(
(i, j), q

)
| q ∈ O

}
(5)

For this, d(·, ·) stands for a metric defined over Ω. We simply use the Euclid-
ian distance here. The distance transform becomes necessary, since a minimal
translation of the peaky activities leads to maximal dissimilarity. Distance trans-
formation is applied to code the distance of each position to the occurrence of
each primitive.

For the practical application these two steps need to be computed on the
local maps during run time. To eliminate errors coming from the construction of
these local maps, we decided to cut out patches of size u × v from the distance
transformed activities D(p) of the global map.

D̃(p) =
(
Di

j

)
with i = k − u

2
, . . . , k +

u

2
, j = l − v

2
, . . . , l+

v

2
(6)

Otherwise, the experimental evaluation would also consider errors not caused by
the proposed method.

The next step would be to transform the distance transformed activities into
a vector space used by GLVQ. For this, each distance transformed activity is
traversed row-wise. The resulting vectors are then simply concatenated to a
single vector.
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Before the vectorization takes place the patches or local maps respectively
can be subsampled with step size s.

D̃
′
(p) =

(
Di

j

)
with i = k − u

2
, k − u

2
+ s, . . . , k +

u

2
, (7)

j = l − v

2
, l − v

2
+ s, . . . , l +

v

2

This results in a reduction of the number of input dimensions for the clas-
sifier. With the reduced number of dimensions it becomes possible to train the
classifier with fewer training samples. For the practical application this brings an
tremendous advantage since we aim to learn characteristics from the few sensor
reading of a single room.

2.3 Generalized Learning Vector Quantization

Since learning vector quantization (LVQ) was introduced by Kohonen [16], this
classification algorithm is frequently used by practitioners for several reasons: the
learning rule as well as the classification model are very fast; due to that learning
rule adjusting an existing model by new data could be done very efficiently; unlike
popular alternatives such as SVM the model can easily deal with an arbitrary
number of classes.

The basic LVQ scheme was introduced as a heuristic to minimize the clas-
sification error on a training set. In this contribution we use a very famous
enhancement, known as generalized LVQ (GLVQ) [17]. Based on a mathemat-
ical cost function, it enables also the usage of different dissimilarity measures,
e.g. adaptive quadratic forms, kernels or functional metrics. Extension of GLVQ
using other metrics instead of the standard Euclidean can be found in [18–22].

However, a LVQ classifier is given by a set of prototypes wi ∈ R
n, i = 1, . . . , k

equipped with label c(wi) ∈ {1, . . . , C}, assuming C classes. Classification of a
datum x ∈ R

n takes place by a winner takes all rule: x gets label c(x) = c(wi) of
the prototypewi which is closest to xmeasured in some distance measure. Given
a training data set xj ∈ R

n, j = 1, . . . ,m, together with labels yj ∈ {1, . . . , C},
the objective of a LVQ classifier is to place the prototypes wi within the data
space in such a way that the prototypes represent their corresponding classes as
best as possible. Therefor, GLVQ addresses the following cost function

E =
∑
j

Φ (μ (xj)) with μ (xj) =
d+(xj)− d−(xj)

d+(xj) + d−(xj)
, (8)

where d+(xj) denotes the distance of xj to the closest prototype w+ with the
same label c (w+) = yj , and d−(xj) refers to the best matching prototype w−

with a class label c (w−) different to yj . Φ refers to a monotonic function such
as the identity or the sigmoidal function. Its argument becomes negative if a
datum is classified correctly. If a sigmoidal transfer function is used, e.g.

Φ (z) =
1

1 + e−αz
, α > 0,
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(a) (b)

Fig. 3. Data set used for evaluation. The occupancy grid map of a building at the Uni-
versity of Freiburg. Three different classes are labeled: rooms (cyan), hallway (yellow)
and passages (red). The map is split in the middle for training (a) and test (b) set.

E approximately counts the number of misclassifications. As exemplary men-
tioned in [23] increasing α further improves the classifier since the prototypes
become border sensitive. However, minimizing this cost function leads to the
maximization of the classification accuracy. Therefore, a stochastic gradient de-
scent scheme is used. Given a sample xi out of the training set we have to
determine the derivatives according to the local error

∂SE

∂w+
= ξ+ · ∂d+

∂w+
and

∂SE

∂w− = ξ− · ∂d−

∂w− (9)

with ξ+ = ±f ′ · 2·d∓(xi)

(d+(xi)+d−(xi))
2 . For the squared Euclidean metric we sim-

ply have the derivative ∂d±(xi)
∂w± = −2 (xi −w±) realizing a vector shift of the

prototypes.

3 Experiments

For the experimental evaluation we use an online available data set1, which has
already been used in [24]. Hence, our results can directly be compared to the
other methods. The data set consists of already computed 700x289 grid map,
for which three classes of building structures have been labeled: room, hallway
and passage. Furthermore, the set is already split up into training and test set,
as it is shown in Fig. 3.

For computational reasons we subsample the given grid map by taking into
account only each 4th pixel in horizontal and vertical direction. Hence, the classes
room, hallway and passage consist of 2745, 1029, 99 in the training set and 3084,
937, 32 for the test set, respectively. As it can be seen, the data set offers a
challenging problem since the classes are highly unbalanced - in particular the
passage class.

Preparation: To gain first insides on the structure of the data, we started with
an unsupervised clustering of the vector space described in Sec. 2.2. For this
purpose, a k-means clustering was chosen, due to its simplicity and availability.

1 http://webpages.lincoln.ac.uk/omozos/place data sets.html
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(a) (b)

(c)

Fig. 4. Results of an unsupervised k-Means Clustering with different sets of parame-
ters for patch size and subsampling of patches (resulting in a number of GLVQ input
dimensions): (a) 10× 10, 2 (360) (b) 20× 20, 4 (360) (c) 50× 50, 5 (1210)

Figure 4 shows the results for different patch sizes with different subsampling
as described in Sec. 2.2 transferred back to the grid map for better visualiza-
tion. A closer look reveals the distance transform, as the classes look a little like
contour lines around structuring elements of the map, like walls. Depending on
the patch size, the clusters vary in size from a coarse to fine coverage. Further-
more, the cluster also depends on which structuring element is close by. This
can be explained by the different basis primitives which describe environment
structures.

None of the test runs shows clear benefits above the other. Hence, we decided
to use a 50×50 patch with a subsampling of 5 grid cells for further experiments.

Label Prediction: To understand how the supervised GLVQ works on our
data, we used both test and training set for training for the preliminary tests
depicted in Fig. 5 (a) and (b). Figure 5 (a) reveals that due to unbalanced
classes the algorithm has problems with the passage class even on the training
set. Hence, we decided to dilate the class regions. The improvement can be seen
in 5 (b).

After the preliminary tests GLVQ was trained with the left part of the map,
while the evaluation was performed on the right part (Fig. 5 (c)), gaining the
following confusion matrices, confirming that passages are difficult to classify:

Prediction (training) Prediction (test)
in % room hallway passage room hallway passage

Actual
class

room 99.82 0 0.18 92.99 2.15 4.86
hallway 0 99.66 0.34 0.50 92.59 6.91
passage 2.75 3.44 93.81 28.57 27.92 43.51
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(a) (b)

(c) (d)

Fig. 5. (a)-(c) Experimental results using the same coloring as in Fig. 3 with a local
map size of 50× 50 (a) an additional dilation of class passage (b) and a separation in
train and test set (left and right of the green line, respectively) (c). (d) Visulization of
μ (Eqn. 8) for each grid cell as an indicator for the confidence of the classification.

In Fig. 5 (d) we show the values for μ visualized for each grid cell. Values
close to zero (yellow) mean that the representation of the grid cell is close to
the class border. Colors from yellow over green to blue show the confidence of a
correct classification, while reddish colors show a misclassification.

For all three classes we reach accuracies of 99.05% for training and 88.64%
for the test set with. Mozos [1] reached on the same data set an accuracies of
89.5% for the first step of their cascade. Shi [2] left out the doors and reached an
overall accuracy of 99.78% An evaluation on a different data set in [4] reaches
86% classification accuracy.

4 Conclusion

Obviously, using only laser range data is not sufficient to derive a reliable conclu-
sion for the classes of the different rooms. However, we understand our approach
as an additional cue for a more complex system or as a system to determine a
fast decision or something like a “first guess” for subsequent algorithms. Even
though, we could show that our system produces results that compete with the
results of other, even visual methods.

In addition to the promising prediction results, our approach offers the pos-
sibility for online adaptation. With that we can refine our training knowledge
with each additional observed location. The proposed pre-processing step before
GLVQ allows to subsample the data and hence reduces the number of input di-
mensions for GLVQ. With the reduced number of dimension it becomes possible
to decrease the amount of training data. This, as well, supports the possibility
to learn from the data of a single room.
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Despite the already good results, it would be interesting to try different types
of LVQ instead of the used GLVQ. Our results confirm that it seems to be a
difficult problem to classify passages. Hence, we aim to try Generalized Matrix
LVQ (GMLVQ) or the Kernel version of LVQ. Furthermore, it would be inter-
esting to include the knowledge about the relation between different dimension
of the LVQ input space. Some dimensions depend on the same basis primitive
or share the same spatial location within the grid map.
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Abstract. We develop an application of SOM for the task of anomaly
detection and visualization. To remove the effect of exogenous indepen-
dent variables, we use a correction model which is more accurate than
the usual one, since we apply different linear models in each cluster of
context. We do not assume any particular probability distribution of the
data and the detection method is based on the distance of new data to
the Kohonen map learned with corrected healthy data. We apply the
proposed method to the detection of aircraft engine anomalies.

Keywords: Health Monitoring, aircraft, SOM, clustering, anomaly de-
tection, confidence intervals.

1 Introduction, Health Monitoring and Related Works

In this paper, we develop SOM-based methods for the task of anomaly detection
and visualization of aircraft engine anomalies.

The paper is organized as follows : Section 1 is an introduction to the subject,
giving a small review of related articles. In Section 2, the different components
of the system proposed are being described in detail. Section 3 presents the data
that we used in this application, the experiments that we carried out and their
results. Section 4 presents a short conclusion.

1.1 Health Monitoring

Health monitoring consists in a set of algorithms which monitor in real time the
operational parameters of the system. The goal is to detect early signs of failure,
to schedule maintenance and to identify the causes of anomalies.
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Here we consider a domain where Health Monitoring is especially important:
aircraft engine safety and reliability. Snecma, the french aircraft engine construc-
tor, has developed well-established methodologies and innovative tools: to ensure
the operational reliability of engines and the availability of aircraft, all flights
are monitored. In this way, the availability of engines is improved: operational
events, such as D&C (Delay and Cancellation) or IFSD (In-flight Shut Down)
are avoided and maintenance operations planning and costs are optimized.

1.2 Related Work

This paper follows other related works. For example, [9] have proposed the Con-
tinuous Empirical Score (CES), an algorithm for Health Monitoring for a test
cell environment based on three components: a clustering algorithm based on
EM, a scoring component and a decision procedure.

In [8,3,7], a similar methodology is applied to detect change-points in Aircraft
Communication, Addressing and Reporting System (ACARS) data, which are
basically messages transmitted from the aircraft to the ground containing on-
flight measurements of various quantities relative to the engine and the aircraft.

In [4], a novel star architecture for Kohonen maps is proposed. The idea here
is that the center of the star will capture the normal state of an engine with
some rays regrouping normal behaviors which have drifted away from the center
state and other rays capturing possible engine defects.

In this paper, we propose a new anomaly detection method, using statistical
methods such as projections on Kohonen maps and computation of confidence
intervals. It is adapted to large sets of data samples, which are not necessarily
issued from a single engine.

Note that typically, methods for Health Monitoring use an extensive amount
of expert knowledge, whereas the proposed method is fully automatic and has
not been designed for a specific dataset.

Finally, let us note that the reader can find a broad survey of methods for
anomaly detection and their applications in [2] and [10,11].

2 Overview of the Methodology

Flight data consist of a series of measures acquired by sensors positioned on
the engine or the body of the aircraft. Data may be issued from a single or
multiple engines. We distinguish between exogenous or environmental measures
related to the environment and endogenous or operational variables related to
the engine itself. The reader can find the list of variables in Table 1. For the
anomaly detection task, we are interested in operational measures. However,
environmental influence on the operational measures needs to be removed to get
reliable detection.

The entire procedure consists of two main phases.

1. The first phase is the training or learning phase where we learn based on
healthy data.
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Table 1. Description of the variables of the cruise phase data

Name Description

Operational variables

EXH Exhaustion gas temperature

N2 Core speed

Temp1 Temperature at the entrance of the fan

Pres Static pressure before combustion

Temp2 Temperature before combustion

FF Fuel flow

Environmental variables

ALT Altitude

Temp3 Ambient temperature

SP Aircraft speed

N1 Fan speed

Other variables

ENG Engine index

AGE Engine age

– We cluster data into clusters of environmental conditions using only
environmental variables.

– We correct operational measures variables from the influence of the envi-
ronment using a linear model, and we get the residuals (corrected values).

– Next, a SOM is being learned based on the residuals.
– We calibrate the anomaly detection component by computing the confi-

dence intervals of the distances of the corrected data to the SOM.

2. The learning phase is followed by the test phase, where novel data are taken
into account.

– Each novel data sample is being clustered in one of the environment
clusters established in the training phase.

– It is then being corrected of the environment influence using the linear
model estimated earlier.

– The test sample is projected to the Kohonen map constructed in the
training phase and finally, the calibrated anomaly detection component
determines if the sample is normal or not.

Clustering of the Environmental Contexts. An important point is the
choice of the clustering method. Note that clustering is carried out on the en-
vironmental variables. The most popular clustering method is the Hierarchical
Ascending Classification [5] algorithm, which allows us to choose the number of
clusters based on the explained variance at different heights of the constructed
tree.

However in this work our goal is to develop a more general methodology
that could process even high-dimensional data and it is well-known that HAC
is not adapted to this kind of data. Consequently, we are particularly interested
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Fig. 1. An example of an anomaly of the FF variable of the cruise flight data (a)
Superposition of the healthy data (solid black lines) and the data with anomalies
(dashed red line) (b) Superposition of the corrected data obtained from the healthy
data and corrected data obtained from corrupted data. The anomaly is visible only on
corrected data.

in methods based on subspaces such as HDDC [1], since they can provide us
with a parsimonious representation of high-dimensional data. Thus, we will use
HDDC for the environment clustering, despite its less good performance for
low-dimensional data.

Corrupting Data. In order to test the capacity of the proposed system to
detect anomalies, we need data with anomalies. However, it is very difficult to
get them due to the extraordinary reliability of the aircraft engines and we cannot
fabricate them because deliberately damaging the engine or the test cell is clearly
not an option. Therefore, we create artificial anomalies by corrupting some of
the data based on expert specifications that have been established following
well-known possible malfunctions of aircraft engines.

Corrupting the data with anomalies is carried out according to a signature
describing the defect (malfunction). A signature is a vector s ∈ R

p. Following
s, a corruption term is added to the nominal value of the signal for a randomly
chosen set of successive data samples.

Figure 1a gives an example of the corruption of the FF variable for one of the
engines. Figure 1b shows the corrupted variable of the corrected data, that is,
after having removed the influence of the environmental variables.

2.1 Clustering the Corrected Data Using a SOM

In order to build an anomaly detection component, we need a clustering method
to define homogeneous subsets of corrected data. We choose to use the SOM
algorithm [6] for its well-known properties of clustering organized with respect
to each variable of the data as well as its visualization ability.
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The output of the algorithm is a set of prototype vectors that define an ”or-
ganized” map, that is, a map that respects the topology of the data in the input
space. We can then color the map according to the distribution of the data for
each variable. In this way, we can visually detect regions in the map where low
or high values of a given variable are located. A smooth coloring shows that it
is well organized. In the next section, we show how to use these properties for
the anomaly detection task.

2.2 Anomaly Detection

In this subsection, we present two anomaly detection methods that are based
on confidence intervals. These intervals provide us with a ”normality” interval
of healthy data, which we can then use in the test phase to determine if a novel
data sample is healthy or not.

We have already seen that the SOM algorithm associates each data sample
with the nearest prototype vector, given a selected distance measure. Usually,
the Euclidean distance is selected. Let L be the number of the units of the map,
{ml, l = 1, . . . , L} the prototypes. For each data sample, we calculate xi, its
distance to the map, namely the distance to its nearest prototype vector:

d(xi) = min
l

‖xi −ml‖2 (1)

where i = 1, . . . , n. Note that this way of calculating distance will give us a far
more useful measure than if we had just utilized the distance to the global mean,
i.e. d(xi) = ‖xi − x̄‖2.

The confidence intervals that we use here are calculated using distances of
training data to the map. The main idea is that the distance of a data sample
to its prototype vector has to be ”small”. So, a ”large” distance could possibly
indicate an anomaly. We propose a global and a local variant of this method.

Global Detection. During the training phase, we calculate the distances d(xi),
∀i, according to Equation (1). We can thus construct a confidence interval by
taking the 99-th percentile of the distances, P99({d(xi), ∀i}), as the upper limit.
The lower limit is equal to 0 since a distance is strictly positive. We define thus
the confidence interval I

I = [0, P99({d(xi), ∀i})] (2)

For a novel data sample x, we establish the following decision rule:{
The novel data sample is healthy, if d(x) ∈ I
The novel data sample is an anomaly, if d(x) /∈ I. (3)

The choice of the 99-th percentile is a compromise taking into account our
double-sided objective of a high anomaly detection rate with the smallest pos-
sible false alarm rate. Moreover, since the true anomaly rate is typically very
small in civil aircraft engines, the choice of such a high percentile, which also
serves as an upper bound of the normal functioning interval, is reasonable.
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Local Detection. In a similar manner, in the training phase, we can build a
confidence interval for every cluster l. In this way, we obtain L confidence inter-
vals Il, l = 1, . . . , L by taking the 99-th percentile of the per cluster distances
as the upper limit

Il = [0, P99 ({d(xi) : xi in SOM cluster l})] (4)

For a novel data sample x (in the test phase), we establish the following decision
rule:{

The novel data sample, affected to SOM cluster l, is healthy, if d(x) ∈ Il
The novel data sample, affected to SOM cluster l, is an anomaly if d(x) /∈ Il.

(5)

3 Application to Aircraft Flight Cruise Data

In this section, we present the data that we used for our experiments as well as
the processing that we carried out on them.

Data samples in this dataset are snapshots taken from the cruise phase of a
flight. Each data sample is a vector of endogenous and environmental variables,
as well as categorical variables. Data are issued from 16 distinct engines of the
same type. For each time instant, there are two snapshots, one for the engine on
the left and another one for the engine on the right. Thus, engines appear always
in pairs. Snapshots are issued from different flights. Typically, there is one pair
of snapshots per flight. The reader can find the list of variables in Table 1. The
dataset we used here contains 2472 data samples and 12 variables.

We have divided the dataset into a training set and a test set. For the training
set, we randomly picked n = 2000 data samples among the 2472 that we dispose
of in total. The test set is composed of the 472 remaining data samples. We have
verified that all engines are represented in both sets. We have sorted data based
on the engine ID (primary key of the sort) and for a given engine, based on the
timestamp of the snapshot. We normalize the data (center and scale) because
the scales of the variables were very different.

Selection of the Number of Clusters in Environment Clustering. Clus-
tering is carried out on environmental variables to define clusters of contexts. Due
to the large variability of the different contexts (extreme temperatures very high
or very cold and so on), we have to do a compromise between a good variance
explanation and a reasonable number of clusters (to keep a sufficient number
of data in each cluster). If we compare HDDC to the Hierarchical Ascending
Classification (HAC) algorithm in terms of explained variance, we observe that
the explained variance is about 50 % for five clusters for both algorithms. And
as mentioned before, we prefer to use HDDC [1] to present a methodology which
can be easily adapted to high-dimensional data. Let K = 5 be the number of
clusters.
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Correcting the Endogenous Data from Environmental Influence. We
correct the operational variables of environmental influence using the procedure
we described in section 2. After the partition into 5 clusters based on environ-
mental variables, we compute the residuals of the operational variables as follows:
if we set X(1) = N1, X(2) = Temp3, X(3) = SP, X(4) = ALT et X(5) = AGE,
we write

Yrkj = μ+ αr + βk + γ1kX
(1)
rkj + γ2kX

(2)
rkj + γ3kX

(3)
rkj+

γ4kX
(4)
rkj + γ5X

(5)
rkj + εrkj (6)

where Y is one of the d = 6 operational variables, r ∈ {1, . . . , 16} is the engine
index, k ∈ {1, . . . , 5} is the cluster number, j ∈ {1, . . . , nrk} is the observation
index. Moreover, μ is the intercept, αr is the effect of the engine and βk the
effect of the cluster.

Learning a SOM with Residuals. By analyzing the residuals, one can ob-
serve that the model succeeds in capturing the influence of the environment on
the endogenous measures, since the magnitude of the residuals is rather small
(between -0.5 and + 0.5). The residuals therefore capture behaviors of the engine
which are not due to environmental conditions. The residuals are expected to
be centered, i.e. to have a mean equal to 0. However, they are not necessarily
scaled, so we re-scale them.

Generally speaking, since residuals are not smooth, we carry out smoothing
using a moving average of width w = 7 (central element plus 3 elements on
the left plus 3 elements on the right). We note that by smoothing, we lose �w

2 �
data samples from the beginning and the end. Therefore, we end up with a
set of 1994 residual samples instead of the 2000 that we had initially. Next, we
construct a Self-Organizing Map (SOM) based on the residuals (Figure 2). We
have opted here for a map of 49 neurons (7 × 7) because we need a minimum
of observations per SOM cluster in order to calculate the normal functioning
intervals with precision.

The last step is the calibration of the detection component by determining
the global and local confidence intervals based on the distances of the data to
the map. For the global case, according to Equation 2, we have:

I = [0, 4.1707]

In a similar manner, we derive the upper limits of the local confidence intervals,
ranging from 1.48 to 6.03.

Test Phase. In the test phase, we assume that novel data samples are being
made available. We first corrupt these data following the technique proposed
in Section 2. Snecma experts provided us with signatures of 12 known defects
(anomalies), that we added to the data. For data confidentiality reasons, we are
obliged to anonymize the defects and we refer to them as ”Defect 1”, ”Defect 2”
etc.
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Fig. 2. SOM built from the corrected training residuals for each of the p = 6 endoge-
nous variables. Black cells contain high values of the variable while white ones contain
low values. Red dots refer to anomalies and green dots to healthy data for two different
types of defects bearing on the variables N2 and EXH. The proposed method clusters
them in different regions of the map. The size of each dot is proportional to the number
of points of the cluster.

We start by normalizing test data with the coefficients used to normalize
training data earlier. We then cluster data into environment clusters using the
model parameters we estimated on the training data earlier. Next, we correct
data from environmental influence using the model we built on the training data.
In this way, we obtain the test residuals, that we re-scale with the same scaling
coefficients used to re-scale training residuals.

We apply a smoothing transformation using a moving average, exactly like we
did for training residuals. We use the same window size, i.e. w = 7. Smoothing
causes some of the data to be lost, so we end up with 466 test residuals instead
of the 472 we had initially.

Finally, we project data onto the Kohonen map that we built in the training
phase and we compute the distances d(x) as in equation (1). We apply the
decision rule, either the global decision rule of (3) or the local one of (5).



Anomaly Detection 153

Table 2. Detection rate (tpr) and false alarm rate (pfa) for different types of defects
and for both anomaly detection methods (global and local) for test data

Global detection Local detection

Defect tpr pfa tpr pfa

Defect 1 100% 18,9% 100% 45,4%

Defect 2 100% 11,4% 100% 42,6%

Defect 3 100% 16,7% 100% 47,9%

Defect 4 100% 15,1% 100% 45,1%

Defect 5 96,7% 14,7% 100% 43,4%

Defect 6 100% 13,9% 100% 43,6%

Defect 7 96,7% 12,1% 96,7% 44,2%

Defect 8 100% 26,3% 100% 50%

Defect 9 100% 15,8% 100% 43,9%

Defect 10 100% 26,7% 100% 55,1%

Defect 11 100% 17,1% 100% 46,3%

Defect 12 100% 21% 100% 46,4%

In order to evaluate our system, we calculate the detection rate (tpr) and the
false alarms rate (pfa):

tpr =
number of detections

number of anomalies

pfa =
number of non-expected detections

number of detections

In Table 2, we can see detection results for all 12 defects and for both detection
methods (global and local). It is clear that both methods succeed in detecting the
defects, almost without a single miss. The global method has a lower false alarm
rate than the local one. This is because in our example, confidence intervals
cannot be calculated reliably in the local case since we have few data per SOM
cluster.

Figure 3 shows the distance d of each data sample (samples on the horizontal
axis) to their nearest prototype vector (Equation 1). The light blue band shows
the global confidence interval I that we calculated in the training phase. Red
crosses show the false alarms and green stars the correct detections.

Due to limited space in this contribution, the figures related to the local detec-
tion can be found in the following URL: https://drive.google.com/folderview?id=
0B0EJciu-PLatZzdqR25oVjNNaTg&usp=sharing
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Fig. 3. Distances of the test data to their nearest prototype vector and the global
confidence interval (in light blue). Red crosses show the false alarms and green stars
show successful detection.

4 Conclusion and Future Work

We have developed an integrated methodology for the analysis, detection and
visualization of anomalies of aircraft engines. We have developed a statistical
technique that builds intervals of ”normal” functioning of an engine based on
distances of healthy data from the map with the aim of detecting anomalies.
The system is first calibrated using healthy data. It is then fully operational and
can process data that was not seen during training.

The proposed method has shown satisfying performance in anomaly detection,
given that it is a general method which does not incorporate any expert knowl-
edge and that it is, thus, a general tool that can be used to detect anomalies in
any kind of data.

Another advantage of the proposed method is that the use of the dimension
allows to carry out multi-dimensional anomaly detection in a problem of dimen-
sion 1. Moreover, the representation of the operational variables given by the
use of the distance to the SOM is of a higher granularity than that of the dis-
tance from the global mean. Last but not least, the use of SOM allows us to give
interesting visualizations of healthy and abnormal data, as seen in Figure 2.
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An extension of our work would be to carry out anomaly detection for datas-
treams using this method. A naive solution would be to re-calibrate the com-
ponents of the system with each novel data sample, but it would be very time-
consuming. Instead, one can try to make each component of the system to op-
erate on datastreams.
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Abstract. In this work we propose an online approach to compute a
more precise assignment between parts of an upper human body model
to RGBD image data. For this, a Self-Organizing Map (SOM) will be
computed using a set of features where each feature is weighted by a
relevance factor (RFSOM). These factors are computed using the gener-
alized matrix learning vector quantization (GMLVQ) and allow to scale
the input dimensions according to their relevance. With this scaling it
is possible to distinguish between the different body parts of the upper
body model. This method leads to a more precise positioning of the SOM
in the 2.5D point cloud, a more stable behavior of the single neurons in
their specific body region, and hence, to a more reliable pose model for
further computation. The algorithm was evaluated on different data sets
and compared to a Self-Organizing Map trained with the spatial dimen-
sions only using the same data sets.

Keywords: Self-Organizing Maps, learning vector quantization, rele-
vance learning, human machine interaction.

1 Introduction

A suitable human robot interface is of great importance for the practical us-
ability of mobile assistance and service systems whenever such systems have to
directly interact with persons. This interaction is often based on the learning
and interpretation of the gestures and facial expressions of the dialog partner
in order to avoid collision and to infer her intention. Therefore, it is necessary
to track the motion of the human body or rather the movements of individual
parts.
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There exist similar works like the approach presented by Haker et.al. [1] and
the one presented by Shotton et al. [2]. Shotton et al. utilize a precomputed
classifier to assign image data to body regions for a final classification of body
poses. The Shotton et al. approach is not usable for us because of the costly
classifier computation. Our approach is an enhancement for the one presented
by Haker et al. They use a SOM to compute an online estimation of body poses
with a time-of-flight camera and without a precomputed classifier. We want to
show that we are able to decrease the number of misplaced neurons of the SOM
to ensure the accuracy of the subsequent body pose estimation without losing
the ability to operate online.

The remainder of this paper is organized as follows. In the Sec. 2 our proposed
method is outlined. Section 2.1 describes the algorithm used for the generation
and training of the Self-Organizing Map. In Sec. 2.2 an introduction to our RF-
SOM extension is given. Sec. 2.3 points out the used method for generating the
adaptive metrics, being divided into two parts. The first part gives a short intro-
duction to LVQ1 and the second one describes the used GMLVQ. In Sec. 3 the
evaluation of the presented approach with different test cases will be described
and Sec. 4 concludes this work.

2 Method

This work proposes an enhancement of the approach presented in [1] which uses
a standard SOM approach with a body shaped topological map to model human
upper body poses. We extend this approach by using an adaptive metric which is
learned from data using GMLVQ presented in [3]. We use a Microsoft Kinect for
the capture of the image data. The advantage of this camera is that in addition
to the depth data a synchronized RGB image is delivered at the same time.

2.1 Self-Organizing Feature Map

For the original approach a Self-Organizing Map (SOM) is trained on the 2.5D
point cloud data (Fig. 1(a)) of a depth camera to model the human upper body.
We assume that only the foreground contains data of a person (Fig. 1(c)). The
necessary separation of foreground and background in the captured scene is based
on the Otsu threshold algorithm [4] using the 2.5D point cloud data as input.
The segmentation is based on the spatial structure of the data. Furthermore,
it doesn’t matter how the background is designed in color or shape because of
the dynamic character of the Otsu algorithm. In addition, we use a Viola Jones
face detector [5] to find a face in the field of view of the camera to confirm
this hypothesis. In contrast to the foreground segmentation, the face detection
is computed on the RGB image data. Having successfully detected a face in the
scene, the face detector will be discontinued, until the person leaves the field of
view.

After the successful face detection and the extraction of the foreground, we
initialize the pre-shaped SOM in the center of gravity of the resulting foreground
point cloud [1]. Pre-shaped means that the SOM’s topology is created in the form
of a human upper body with horizontally outstretched arms.
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(a) 2.5D point Cloud (b) Unsegmented RGB
image.

(c) Segmented fore-
ground.

Fig. 1. Subfigure (a) shows a view of the 2.5D point cloud data recorded by a depth
camera. In the foreground a person is standing in front of a monitor while the back-
ground contains the walls and the ceiling of the room. Subfigure (b) shows a RGB image
from the camera. The corresponding foreground data after the foreground-background
segmentation is shown in (c).

In [1] the best-matching neuron (BMN) for a presented stimulus is determined
based on the Euclidean distance in the three spatial dimensions x, y and z. For
this, the best-matching neuron wS

B(t) for each data point x is computed and
adapted to wS

B(t+ 1) using the adaptation rate η(t):

wS
B(t+ 1) = wS

B(t) + η(t) · (x−wS
B(t)) (1)

Hence, the best-matching neuron is determined by the computation of the min-
imal Euclidean distance between the current data point x and all neuron wS

k of
the SOM.

min
∀k

||x−wS
k || (2)

The adaptation rate η(t) is set to ηwB (t) for the best matching neuron and is
defined as

ηwS
B
(t) = ηin ·

(
ηfi
ηin

)( t
tmax

)
(3)

with ηin as the initial and ηfi as the final adaptation rate, t is the number of
the current training step and tmax is the maximum number of training steps.
Only direct neighbours of the best-matching neuron in the topological map are
adapted. Hence, the adaptation rate for the neighborhood is set to ηn(t) and
defined as ηn(t) = ηwS

B
(t)/2 . A step t hereby contains the presentation of all

data points of a single frame, which will be repeated tmax times per frame.

2.2 RFSOM Extension

As an extension of the standard Self-Organizing feature Map, we compute differ-
ent textural features like Histograms of Oriented Gradients (HOG) [6], Local Bi-
nary Patterns (LBP) [7], Grayscale Co-ocurrence Matrix (GLCM ) [8], and also
standard color spaces, like RGB and HSV for each second voxel of the resulting
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(a) Colored SOM regions. (b) The computed Λ matrix.

Fig. 2. Subfigure (a) shows the colored regions of the SOM based on the SOM topology.
Using the textural features of each voxel in the foreground a global relevance matrix
(b) is computed. The right side of (b) shows the color scale from the minimal (top) to
the maximal (bottom) relevance value.

foreground point cloud. Hence, the input space increases fromR
3 toRn with n be-

ing much larger than 3. However, the main part of this extension is based on the
approach presented in [3]. This approach describes the computation of a global
relevance matrix Λ for a representation of the internal structure of some data.

We assume that with the use of textural features the regions ( body parts )
can be discriminated in a better way. However, our goal is to provide a num-
ber of additional texture features and let the approach select the relevant ones
from the data. Hence, in this work Λ is computed using the textural features
described above using GMLVQ as described in Sec. 2.3. For this, the matrix is
trained in a supervised manner using regional information automatically gained
from the SOM topology (Fig. 2(a)). Hence, a region label is assigned to each
stimulus directed from the related best-matching neuron. For this, six regions
were defined, based on the position of the neurons in the SOM topology: head,
body, left arm, right arm, left hand, and right hand.

After the computation of matrix Λ, the Euclidian metric of the SOM (Sec.
2.1) will be replaced by an adaptive metrics. In this work, GMLVQ provides
a Λ only for the textural information. From now on, each distance between a
stimulus and a neuron will be computed using the adaptive metric in the R

n

feature space, including the spatial dimensions. At the same time, the influence
of the spatial dimensions in the adaptation process will be reduced by setting a
general weight α for spatial and 1−α for textural dimensions to give the textural
features more influence. Hence, to combine spatial and textural information, we
define a metric as follows:

d(x,wS) = α · ds(x,wS) + (1 − α) · dt(x,wS) (4)

= α · ‖xs −wS
s ‖2 + (1 − α) · [xf −wS

f (t)]
TΛ[xf −wS

f (t)] (5)

which is used to determine of the best-matching neuron. Because of this, Eq. 1
will be modified to

wS
B(t+ 1) = wS

B(t) + η(t) · [x−wS
B(t)]

T Λ̃[x−wS
B(t)] (6)
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Fig. 3. The figure shows the colored mapping of the Voronoi regions into the image
space for the trained lvq codebook vectors. The colorization is done in the R3 but
also represents all higher feature dimensions. This leads to different colors in the same
region in the R3.

as the adaptive metric including matrix Λ̃ with

Λ̃ =

[
I 0
0 Λ

]
(7)

which contains matrix Λ as the weight matrix for the textural features (Fig.
2(b)). We introduce the name Relevance-Feature-Self-OrganizingMap (RFSOM)
for this idea.

2.3 Learning Adaptive Metrics

Learning the adaptive metric is usually done with the GMLVQ. In addition
a LVQ1 is used for the prototype initialisation and adaptation to accelerate
convergence of the GMLVQ. Finally, a GMLVQ without adaptation of the lvq
prototypes is used for the computation of the relevance metrics.

LVQ1 in a Nutshell: The target of the LVQ is to approximitate a number of
different prototypes in the data space to represent each part of data as good as
possible. The training data for the LVQ1 is given as (xi, cj) ∈ R

N × {1, ..., C}.
With N being the dimensionality of the data ( number of features ) and C the
number of existing classes ( body parts ). Each prototype is characterized by
the combination of its location in the feature space wL

i ∈ R
N and its class label

c(wL
i ) ∈ {1, ..., C}. For a data point xi of class cj the best-matching prototype is

then determined. This prototype is then adapted towards the data point if it is
from the same class, otherwise it will be adapted in the counter direction. Hence,
to evolve distinctive class borders a best-matching prototype from a different
class than the data point is pushed away from this part of the data space.
However, this sometimes leads to an incorrect representation of the data space.
To some extent, this is due to the fact that some dimensions provide only few
contributions to the classification process.
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(a) (b) (c)

Fig. 4. The three different color and pattern styles for the data sets are shown in (a),
(b) and (c)

GMLVQ: The GMLVQ algorithm adresses this problem with the introduction
of a matrix Λ of similarity measures in the prototype adaptation. The matrix Λ
then serves as a weight matrix for the features during training. Dimensions with
a large absolute value of λij can be interpreted as being more important for the
classification than dimensions with a small or zero one. On top of this, also the
negative correlation is important as a weight for a dimension.

To compute Λ, a set of prototypes for the different classes is necessary. In
contrast to the approach presented in [3] the initial adaptation of the prototypes
to the characteristics of the specific classes will be computed with a standard
LVQ1. In order to minimize known instabilities during the initialization of the
LVQ1, the prototypes of a class are generated in the region of the point cloud they
should represent. The necessary feature vectors for the prototype generation are
taken randomly from the respective region. After the LVQ1 has converged, the
matrix computation is processed without a further adaptation of the prototypes
which is part of the standard GMLVQ. Hence, the prototypes will be unaffected
during the matrix adaptation. We accept the possible error since our approach
still improves the results in contrast to the classical SOM.

The GMLVQ introduces a new kind of generalized distance in the form

dΛ(wL,x) = (x−wL)TΛ(x−wL) (8)

where the matrix Λ itself is a full N × N matrix. The content of each cell λij

can be regarded as the relevance of the combined appearance of feature i and j.
To ensure that Λ is positive semidefinite and symmetric we can substitute the
matrix with Λ = ΩTΩ.

The adaptation of the matrix elements Ωlm can be computed by

ΔΩlm = −ε · 2 · Φ′(μ(x)) ·
(
μ+(x) ·

(
(xm − wL

J,m)[Ω(x −wL
J )]l

)
−μ−(x) ·

(
(xm − wL

K,m)[Ω(x −wL
K)]l

)) (9)

where x is the presented data, wL
J the nearest class prototype, wL

K the nearest
non class prototype, l and m the feature index, and ε the learning rate [3].
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The computation of Λ is a time consuming problem. Hence, the adaptation is
carried out in parallel. During that time, the standard SOM is applied. As soon
as the GMLVQ computation is completed, the matrix Λ is fed to the RFSOM
which takes over. This means, we don’t compute a new Λ for each time frame.

3 Evaluation

The experiments should show a noticeable increase of correct positioned neurons
in the corresponding region for the RFSOM training in contrast to the standard
euclidian SOM with only the three spatial dimensions. Therefore, the number of
correctly positioned neurons for each region over a number of frames has been
counted for both algorithm. Correctly positioned means the neuron stays in its
corresponding region after the training of a single frame is completed.

Previous experiments have shown that the algorithm works with normal cloth-
ing. However, to get significant different classes for the body parts and to gain
insight in the meaning of Λ in the GMLVQ algorithm, special clothes were used
for the test data. Each of the clothing has a specific color and shape pattern
(Fig. 4).

We recorded a test set, which contains 10 frames with different arm move-
ments. Also, the movements carried out in the different sets are not the same.
In set one and two the arm movements of the test person are smooth and the
body pose of the first frame is close to the initial pose of the untrained SOM.
In contrast, the third set contains a movement with a big step between two arm
poses and an initial body pose which differs strongly from the initial pose of
the SOM. For this, the third set can be understood as a test example for what
happens when images are lost in the processing pipeline or as an example for a
not perfect initialisation situation of the SOM. To gain ground truth data of the
body regions in the test sets, all of them were previously labeled by hand.

To get a closer look on the effect of the various features, the features where
combined in different feature sets and separately evaluated. Each feature set
contains the three spatial dimensions x,y,z and also RGB and HSV. These fea-
tures were then combined with GLCM, HOG, LBP, HOG + LBP and GLCM
+ HOG + LBP. Furthermore, the grayscale levels for the image used for the
GLCM computation was changed between 9, 32, and 64 possible gray values
for the GLCM + HOG + LBP combination. This is due to the time-consuming
calculation of the GLCM if all 256 gray values are used and shows how the
minimized gray level affects the accuracy of the approach.

The final and most significant question was, how the GMLVQ algorithm it-
self and simple modifications of it affect the accuracy of the whole approach.
Therefore, each frame was processed with (i) the standard SOM training regime
(spatials dimension only), (ii) using RFSOM with initial LVQ1, (iii) RFSOM
without initial LVQ1 and (iv) RFSOM using the identity matrix as Λ matrix.

Results: As described in Sec. 3, the evaluation should show a noticeably in-
crease of the correct positioned neurons in their region for the RFSOM approach.
Therefore, a comparison between the SOM and the RFSOM for all feature set



164 M. Klingner et al.

Fig. 5. The patches in this figure are visualizations of the percentage wise difference
between the RFSOM and SOM for a region and feature set over a fixed number of
10 frames. Each feature set contains x,y,z and also RGB and HSV. This basic sets
were then combined with features from HOG, LBP and GLCM (e). The gray levels for
the GLCM where changed between 9, 32 and 64 values (d). Finally, each frame was
computed with the standard SOM training regime, using RFSOM with and without
initial LVQ1 (b) and RFSOM using the identity matrix as Λ matrix (a). The color
scaling is set to a minimum of -6%. For this, dark red means an increase of 6% what
is a really good result and dark blue a decrease by at least 6%. Hence, set number 4
seems constantly bad but with a wider color range the differences between the body
parts will be more clearly represented.

combinations was computed. In this comparison, the correct positioned neurons
for a region were counted over a number of frames. To get an average position
for each neuron in a frame, every frame was computed 10 times. Finally, for
each set the number of correct positioned neurons per region over all frames was
divided by the number of all neurons computed for this region over all frames.
The results of this comparison are shown in the accuracy plot in Fig. 5. Hence,
each patch of each subfigure in Fig. 5 is the visualization of the percentage wise
difference between the RFSOM and the SOM for a specific region and feature
set over a fixed number of 10 frames.

The rows of the plots summarize the results for the different feature sets.
In the horizontal direction from the left to the right the results for the body
parts are shown. The last column is an overall computation. Hence, each correct
positioned neuron of each region was counted and divided by the number of all
computed neurons for all regions over all frames. Finally, the difference between
the accuracy of the RFSOM and the SOM was computed and visuallized. A
temperature scale between -6% and 6% is shown on the bottom of the figure.
Referring to this, dark red means an increase of 6% what is a really good result
and dark blue a decrease by at least 6%.
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There is a number of different information which can be extracted from this
matrix, basically it can be said that the RFSOM approach is functional. The
feature sets that seem to be adequate for our problem show an increase of accu-
racy in comparison to the standard approach. This is a very good result for an
online approach without a precomputed classifier and probably ensures a higher
precision of the subsequent pose estimation.

The comparison between the RFSOM with the identity matrix as Λ and the
standard SOM shows that the results for the RFSOM in this case are worse. In
particular, using the identity matrix in set number 5 reduces the accuracy by 2%
in contrast to the standard SOM and in set number 8 by 0.4% (compare Fig. 5(a)).
This can be explained by the tremendous increase in the number of dimensions,
while not all dimensions contribute to the classification problem. This assumption
can be confirmed by the comparison to their counterpart (Fig. 5(d)) with a com-
puted matrix based on the extracted features. In this figure the results are better
than in the standard approach. Hence, the identity matrix is definitely not the cor-
rect choice as an alternative to a computed Λ.

On top of this, a comparison of set number 6 and 7 (in Fig. 5(b)) which
differs in the use of the LVQ1 revealed another information. Both of them are
computed with the same feature combination but set number 7 made use of the
LVQ1, whereas 6 did not. The difference for set 7 amounts approximately 2%.
For set 6 it is at least 0.4% better in comparison to the original approach. This
means that the integration in the processing pipeline ensures a better result for
the Λ computation.

A closer look to the overall computation in Fig. 5(b) shows that set number 2
and 7 are the best candidates for a further examination. Both of them increase
the accuracy of the neuron positioning by approximately 3%. In set number 2
an increase of the accuracy for the head and the left arm by 6% can be seen.
Even for the left hand, the right hand and the right arm, but just up to maximal
3%. The difference between the left side and the right side in set 2 is due to the
contrast diversity in the image. The lighting condition cause a higher contrast
in the right part of the image resulting in more distinct gradients

Furthermore, Fig. 5(d) shows the accuracy for the combination of all features
using different gray levels in the GLCM computation. It can be seen that a larger
number of gray levels decreases the overal accuracy in contrast to the original
approach despite the fact that the accuracy of some body parts are increasing.
Besides, taking the computational effort into account, using a larger number of
gray levels does not make sense.

Figure 5(e) visualizes the difference between some possible feature combina-
tions increasing in complexity from the top to the bottom. It can be seen that
LBP alone can not handle the problem and decreases the accuracy by up to
1.6%. It seems that the single HOG in 2 is much more capable to develop signif-
icant features. In contrast, the combination of both off them in 3 increases the
accuracy of the head and the torso but decreases the accuracy of all other body
parts. Hence, the overall computation of this set remains at the zero border and
thus the combination is also not useful.
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To conclude the set evaluation, we can say that set number 7 is the most
promising candidate. This set is included in Fig. 5(b), (c), (d) and (e) because
it is suitable for all of this test cases. It shows a homogeneous increasing of the
accuracy for all body parts except the left hand. Even though, the increase is
not as large as for set number 2 in Fig. 5(c) and (e) the homogeneous effect for
all body parts is here more from interest.

Since the GMLVQ is processed in parallel, we only need to measure for the
SOM and RFSOM thread which runs on a single core. For that we gain com-
putation times between 300 ms up to 3 seconds on an i7 Q840 with 1.87 Ghz
and 3GB of RAM. Hence, with some improvements our approach aims towards
real-time performance.

4 Conclusion

The RFSOM is a robust approach to get a more precise development of the used
Self-Organizinig Map under real-time condition. We reached promising results
due to the used feature combination and the quality of the image data. Hence,
the use of GLCM with 9 gray values, HOG and LBP in combination with the
GMLVQ algorithm seems to be the best choice for an increase of accuracy for
all body parts. The small number of gray values for the GLCM also ensures the
online capability of the approach. Further examinations will be done to get a
faster implementation and a further increase of the accuracy in the positioning
of the neurons. After reliably knowing the body pose for each frame it makes
sense to extract the trajectory of the person as described in [9].

References
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Abstract. Training and application of prototype based learning ap-
proaches such as Learning Vector Quantization, Radial Basis Function
networks, and Supervised Neural Gas require the use of distance metrics
to measure the similarities between feature vectors as well as class pro-
totypes. While the Euclidean distance is used in many cases, the highly
correlated features within the hyperspectral representation and the high
dimensionality itself favor the use of more sophisticated distance metrics.
In this paper we first investigate the role of different metrics for success-
ful classification of hyperspectral data sets from real-world classification
tasks. Second, it is shown that considerable performance gains can be
achieved by a classification system that combines a number of prototype
based models trained on differently parametrized divergence measures.
Data sets are tested using a number of different combination strategies.

Keywords: Divergence, Metrics, Hyperspectral, SNG, GLVQ, RBF.

1 Introduction

The optical characterization of organic and inorganic materials with hyperspec-
tral imaging is becoming a widespread application within plant breeding, smart
farming, material sorting, or quality control in food production. The generic be-
havior of the material to reflect, absorb, or transmit light is used to characterize
its identity and even molecular composition. A hyperspectral camera records a
narrowly sampled spectrum of reflected or transmitted light in a certain wave-
length range and produces a high-dimensional pattern of highly correlated spec-
tral channels per image pixel. Often, the direct relationship between this pattern
and the target value, for example a material category is unknown. In the simple
case exact spectral bands are known that correlate with the presence of certain
chemical compounds. If such direct knowledge is unavailable, machine learning
is used to learn a classification or regression task from available labeled reference
data.

Prototype based models like the Learning Vector Quantization [12], Super-
vised Neural Gas [11], or Radial Basis Function Networks [21] provide a set of
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tools to learn a classification task from high dimensional data. These methods
utilize a certain similarity measure to compare an input pattern to a number
of stored prototypes in order to predict the pattern’s category. Commonly the
Euclidean distance is used to calculate the similarity of the input and proto-
type pattern. Each feature is compared separately irrespective of its position
in the high dimensional feature vector. In contrast, spectral pattern are data
samples that describe a function or distribution of energy across a well ordered
wavelength range. Therefore this type of data is also called ’functional data’.

An approach to calculate the similarity of statistical distributions are di-
vergences which offer an alternative way to characterize dissimilarity between
spectral patterns. Additionally, more general divergences like the γ-divergence
include parameters that can be potentially tuned to adapt the dissimilarity mea-
sure to the learning task at hand. Divergence dissimilarity measures have been
successfully integrated into prototype based machine learning models but perfor-
mance gains have been minimal so far on models using just a single dissimilarity
measure [22,26,15,27].

This paper shows that considerable performance gains can be achieved by a
classification system that combines a number of prototype based models trained
on differently parametrised divergence measures. A number of hyperspectral data
sets from real-world classification tasks are tested using a number of different
combination strategies.

2 Related Work

The idea to include task-adaptive non-standard metrics and dissimilarity func-
tion into a pattern recognition system has been widely researched. In [24] the Ma-
halanobis distance replaces the standard Euclidean distance. The Mahalanobis
matrix is not calculated as the co-variance matrix but a distance metric learning
method is used to calculate a transformation which assures small distance be-
tween nearest neighboring points from the same class and separation of points
belonging to different classes by large margin. Likewise in [23], the label infor-
mation of the data is used to calculate a task-specific distance function based
on the Kullback-Leibler divergence. The distance is based on the conditional
distribution of label information in dependence to the input data which is es-
timated on a validation set. In [1] the behaviour of the Minkowski distance
to measure proximity especially in high-dimensional feature spaces was investi-
gated. The methods highlighted have in common that they treat the process to
find an adaptive metric separately from the actually learning of the classifica-
tion model. In contrast, parameterized metrics and dissimilarity functions can
be directly integrated into the learning process of models like GLVQ, SNG, or
RBF. One parameterization is the use of relevance weights or matrices in the
Euclidean distance [12,25,20]. Another possibility is the use of the generalized
metric, in the case of the Euclidean norm the Minkowski norm as well as the
use of divergences [26,15], for example the γ-divergence and its special case the
Cauchy-Schwarz divergence [22]. Parameters are either systematically explored
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or learned directly with other model parameters through minimizing the models
object/energy function. So far the utilization of a distance function tuned to a
single parameter setting has not shown significant performance improvements.
The approach explored in this paper is the combination of a number of models,
tuned to different γ parameters in order to create a classifier system whose global
performance is significantly better then the performance of each model tuned to
a single parameter.

In the field of multiple classifier fusion, several approaches have been proposed
to create classifier ensembles with superior classification performance as well as
to combine sets of existing classifiers to overcome the limitations of individual
classifiers [13,4,17,2,6,14,16].

As we study the impact of parameters such as model size and distance metric,
a large number of classifiers is trained for evaluation purposes by systematically
varying these factors. However, this approach creates an ensemble of classifiers
which may provide diverse as well as correlated decisions on the training and
testing data.

While correlation and diversity between classifiers can be simply measured, it
remains an open question which level of diversity and correlation provides the
best results in classifier fusion [7]. In common approaches such as Bagging and
Boosting, diversity is fostered by random sampling or by iteratively generating
complementary classifiers for falsely classified feature vectors. However, these
approaches also require a high level of correlation of the individual classifiers
because final decisions are obtained by majority voting.

The existing approaches for classifier fusion can be roughly divided into trained
and non-trained combiners [8]. Also early and late fusion can be easily discrimi-
nated. The topology of fusion methods is another important aspect to categorize
the different approaches.

While the application of non-standard distance metrics is motivated by pre-
vious work on classification of functional data, its impact on the generation of
classifier ensembles for the same problem is unknown. As trained combiners have
shown superior performance in a previous study with non-functional data [18],
we focus on ensemble learning with decision tree based learners. The advantages
of using tree based learners are sketched in the next section.

3 Methods

3.1 Training and Evaluation of RBF, GLVQ, and SNG Classifiers

Classification models were implemented as published in [12,11,3]. For the GLVQ
and SNG no non-linearity in the energy function was used. The distance function
between a data vector v and a prototype vector w (respectively the hidden
neurons in the RBF) was either the squared Euclidean distance defined as

d (v,w) =
∑
i

(vi − wi)
2
, (1)
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or the γ-divergence defined as

d (v,w, γ) = log

⎛⎜⎝
(∑

i v
γ+1
i

) 1
γ(γ+1)

(∑
i w

γ+1
i

) 1
γ+1

(
∑

i viw
γ
i )

1
γ

⎞⎟⎠ . (2)

The γ-divergence with γ = 2 is widely known as the Cauchy-Schwarz dis-
tance. The model training in all three classifier systems (RBF, SNG, GLVQ) is
essentially an energy minimization problem. In the standard learning scheme,
stochastic gradient descent with step-sizes manually set for different parameters
are used. In order to avoid a manually chosen step-size, we used the non-linear
conjugate gradient approach with automatic step size from the optimization tool-
box ’minFunc’ available for Matlab. For this we provided the energy function as
well as the first derivatives according to all model parameters. The parameter
γ was set varying from 1 to 10 in steps of one. Additionally, the generalized
Kullback-Leiber divergence [10] was used to investigate the behavior for con-
vergence of γ to zero. Prototype vectors and network weights were initialized
randomly. The RBF used a 1-of-N coding scheme at its output to represent
discrete class information. In the RBF, SNG, and GLVQ the prototypes were
pre-trained using a Neural Gas with the Euclidean distance or γ-divergence as
similarity function with an identical setup compared to the later classification
model. In the GLVQ and SNG model, separate pre-learning runs for prototypes
from identical classes were performed. The dataset was divided into training and
test data according to a 5-fold cross validation scheme with stratified random
sampling. After training, the predicted labels for the test data with the respec-
tive model were collected as well as scalar model outputs. In case of the RBF,
the scalar output was the output of the linear output layer. For the GLVQ and
SNG we used the distances to the closest prototype of the same class as well as
the smallest distance to a prototype of any other class as scalar output. We set
20, 30, or 40 as total number of prototypes/hidden neurons in all three models.
In the GLVQ and SNG an identical number of prototypes per class was used.
In addition to the Euclidean distance we also used weighted Euclidean distance
as an alternate distance metric where the weights are automatically adapted in
the training phase.

3.2 Fusion of RBF, LVQ, and SNG Results

The real-valued scalar outputs of the different classifiers make a feature vector
which is used as the input for learning a combining rule. In this study, we focus
on the application of decision tree based learners. Algorithms such as C4.5 or
its variant J4.8 use local optimization of a threshold value and selection of a
single input feature to maximize the separation into given target classes. As
the input features are the output values of classifiers itself this is similar to
the selection of operating points as known from receiver operating characteristic
(ROC) and precision recall (PR) analysis. Hence, any decision of the resulting
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trees can be easily interpreted as a sequence of operating point selections for the
different input classifiers. To overcome known limitation of decision tree learning,
ensembles of trees are used instead. Hence, for the combination of the different
classifiers these methods are used:

1. AdaBoost with decision trees [9],
2. Random Forests [5], and
3. CRAGORS (cascaded reduction and growing of result sets) [19].

The used implementations of AdaBoost, decision trees, and Random Forests are
part of the Spider toolbox and WEKA. For AdaBoost pruned decision trees
are used for better generalization performance. For Random Forest classifiers
unpruned trees are used. Boosting was set to 10 iterations and all Random
Forest classifiers consist of 10 trees as well. CRAGORS is included to address the
tradeoff between ensemble size and ensemble accuracy. This combining algorithm
is expected to provide less accurate results, but to select small subset of relevant
input classifiers which already provide a significant improvement in classification
accuracy. The dataset for testing combination performance has been generated
from the outputs of 5-fold cross-validation of the individual classifiers. For every
spectrum the outputs of all the different classifiers have been collected. 10-fold
cross-validation was used to obtain average accuracy values for the 3 combining
methods.

4 Datasets

The hyperspectral datasets have been selected from several industrial applica-
tions where hyperspectral imaging can be used for the detection of a desired
target material or defective objects for a subsequent material sorting. We delib-
erately chose classification tasks that showed mediocre classification accuracy on
single prototype based models. Five binary classification problems were chosen
for this publication:

1. Detection of aluminium within waste material,
2. Classification of mature vs. immature coffee beans,
3. Detection of putrid hazelnuts among healthy hazelnuts,
4. Detection of fungi infested hazelnuts among healthy hazelnuts, and
5. Anomality detection on the surface of fluffed pulp.

We limited our study to two-class problems for two major reasons. First, the de-
tection of a single important class is a typical scenario in industrial applications.
Hence, the above datasets have been collected separately. Especially the hazel-
nut datasets belong to different studies. Second, the current implementation of
CRAGORS which we wanted to test on hyperspectral datasets is so far limited
to two-class problems.

For the hyperspectral image acquisition, material samples of one class were
positioned with a standard optical PTFE (polytetrafluoroethylene) calibration
pad on a translation table. Hyperspectral images were recorded using a HySpex
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Table 1. Average accuracy of base classifiers (5-fold cross-validation)

RBF SNG GLVQ

Datasets L2 γ complete L2 γ complete L2 γ complete

D1 0.8150 0.8265 0.8265 0.7168 0.7325 0.7402 0.6853 0.7110 0.7110
D2 0.8560 0.8430 0.8560 0.6937 0.7027 0.7295 0.6820 0.6755 0.6820
D3 0.6680 0.6813 0.6813 0.5710 0.6005 0.6005 0.5370 0.5493 0.5530
D4 0.9618 0.9496 0.9618 0.7724 0.7894 0.7894 0.7626 0.7626 0.7626
D5 0.7452 0.7635 0.7635 0.6597 0.6963 0.6963 0.6312 0.6575 0.6575

SWIR-320m-e line camera (Norsk Elektro Optikk A/S). Spectra are from the
short-wave infra-red range (SWIR) of 970 nm to 2,500 nm at 6 nm resolution
yielding a 256 dimensional spectral vector per pixel. The camera line has a spatial
resolution of 320 px and can be recorded with a maximum frame rate of 100 fps.
Radiometric calibration was performed using the vendors software package and
the PTFE reflectance measure. Material was segmented from background via
Neural Gas clustering. From each material class, 2,000 labeled spectral samples
for each class were chosen randomly and combined to the datasets representing
the two-class problems listed above. Spectral vectors were normalized to unit
length.

5 Results and Discussion

As a baseline we measured the accuracy gain of using γ-divergence instead of the
Euclidean distance for the datasets D1 to D5. Tab. 1 lists the accuracies of GLVQ,
RBF, and SNG classifiers with respect to the used metric. The comparison shows
a minor improvement in the accuracy when using the γ-divergence only for
a few datasets. This is in accordance to previously reported results on using
alternative distance measures [22,26,15,27]. For SNG classifiers the γ-divergence
yields better results on all datasets. However, RBF classifiers outperform SNG
and GLVQ on all datasets. The column complete lists the best results obtained
from a slightly extended set of base classifiers including the Kullback-Leibler
divergence and Cauchy-Schwarz divergence measures.

As we set 20, 30, or 40 as total number of prototypes/hidden neurons in all
three models and also trained models for different values of γ, only the average
accuracy of the best performing classifier is shown. Tab. 2 lists the parameter
settings for these classifiers. We found, that the best results are obtained by
different settings of the number of prototypes/hidden neurons as well as different
similarity measures. Especially, γ differs significantly for the datasets for which
application of γ-diversity is beneficial.

Tab. 3 shows that considerable performance gains can be achieved by the
proposed classification system that combines a number of prototype based mod-
els trained on differently parametrized divergence measures. We combined the
results of different subsets of the GLVQ, RBF, and SNG classifiers. By consider-
ing only variants of Euclidean based classifiers a significant increase in accuracy
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Table 2. Parameter settings of the best classifiers, including Kullback Leibler diver-
gence (KLD)

RBF RBF

Datasets L2 γ complete

D1 40 neurons 20 neurons, γ = 5 same as γ
D2 30 neurons 40 neurons, γ = 1 same as L2

D3 20 neurons 40 neurons, γ = 5 same as γ
D4 40 neurons 30 neurons, γ = 2 same as L2

D5 40 neurons 40 neurons, γ = 2 same as γ

SNG

Datasets L2 γ complete

D1 30 neurons 30 neurons, γ = 1 40 neurons, KLD
D2 20 neurons 40 neurons, γ = 6,γ = 2 same as γ
D3 40 neurons 40 neurons, γ = 1 same as γ
D4 30 neurons 30 neurons, γ = 10 same as γ
D5 40 neurons 40 neurons, γ = 10 same as γ

GLVQ

Datasets L2 γ complete

D1 40 neurons 40 neurons, γ = 6 same as γ
D2 20 neurons 40 neurons, γ = 1 same as L2

D3 20 neurons, weighted Euclidean 20 neurons, γ = 2 same as γ
D4 40 neurons 40 neurons, γ = 8 same as γ and L2

D5 40 neurons 30 neurons, γ = 2 same as γ

is found. However, γ-divergence based classifier ensembles perform better on all
datasets. Especially, for datasets D3 and D5 a large difference between Euclidean
and γ based ensembles exists for all groups of combined classifiers (RBF, GLVQ,
SNG). Additional improvements are possible if Euclidean and γ-diversity based
classifiers are merged. Adding the Kullback-Leibler divergence based classifiers
does not further improve the results significantly. As before, only the results of
the best combination algorithm is shown in Tab. 3. For all tested datasets Ran-
dom Forest and Boosted Decision Trees are competitive and there is no clear
winner among these two methods. Additionally, the algorithm CRAGORS was
used to find a subset of classifiers which provide a trade-off between the number
of considered input classifiers and the gain in classification performance. The
column complete set lists the results of a combination without discriminating
beetween the pools of L2-based and γ-based classifiers.

The comparison of the accuracies of different combining methods is shown in
Tab. 4. The presentation is limited to the results of combining RBF network
classifiers trained with γ-divergence based distance measures. The number in
brackets reports the number of the used input features to indicate the trade-off
between accuracy gain and the number of required RBF classifiers. The differ-
ence between AdaBoost and Random Forests is not significant. Also, the chosen
limitation to 10 decision trees leaves room for additional improvements of the
accuracy.
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Table 3. Average accuracy of combined classifiers, 10-fold cross-validation

RBF Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.9737 0.9965 0.9982 0.9972
D2 0.9775 0.995 0.994 0.9960
D3 0.8010 0.8985 0.9155 0.9133
D4 0.9959 0.9984 0.9984 0.9992
D5 0.9205 0.9790 0.9825 0.9822

SNG Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.8465 0.9698 0.9660 0.9723
D2 0.8550 0.9517 0.9540 0.9550
D3 0.6190 0.7463 0.7412 0.7410
D4 0.9276 0.9951 0.9976 0.9976
D5 0.7798 0.9377 0.9383 0.9390

LVQ Ensemble pool

Datasets L2 γ L2 + γ complete set

D1 0.7773 0.9412 0.9417 0.9463
D2 0.82 0.8605 0.8865 0.9012
D3 0.5493 0.5877 0.5867 0.5962
D4 0.9024 0.9911 0.9919 0.9878
D5 0.7505 0.8830 0.8953 0.8920

It should be noted that the used comparison method also contributes to clas-
sifier diversity. 5-fold cross-validation was used to train base classifiers and to
collect realistic classifier outputs for unseen samples. Hence, all the classifiers
have been trained on different subsets representing 80 percent of all samples.
However, the Euclidean and γ-diversity based classifiers have been obtained un-
der the same conditions. Therefore, the observed difference in performance is
clearly related to the used metric. To study the different contributions to clas-
sifier diversity and performance in more detail, hold-out testing with indepen-
dently sampled data should be used.

In contrast to other combining methods such as boosting the proposed ap-
proach is built on top of a set of independently tuned classifiers. The main
advantage of a separation between tuning of the base classifiers and their com-
bination into an ensemble is that it can be easily adapted to existing classifi-
cation frameworks. Additionally, using a supervised classification algorithm for
the combination instead of a simple combining rule such as majority voting is
beneficial.

The results indicate that optimizing γ in the training of a single classifier may
not yield the significant gain in accuracy as reported for the ensembles. Because
we variied γ systematically over a small but meaningful range we expect such
an approach to achieve a result competetive to our baseline condition.
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Table 4. Average accuracy of different combined classifiers (RBF networks with γ-
distances only, baseline includes all distance measures), 10-fold cross-validation, num-
bers in brackets denote required RBF networks

RBF Fusion method

Datasets Baseline CRAGORS AdaBoost Random Forest

D1 0.8265 (1) 0.9355 (12) 0.9965 (48) 0.9953 (55)
D2 0.856 (1) 0.9435 (13) 0.9950 (53) 0.9925 (59)
D3 0.6813 (1) 0.7445 (20) 0.8985 (59) 0.8855 (59)
D4 0.9618 (1) 0.9846 (7) 0.9984 (25) 0.9984 (59)
D5 0.7635 (1) 0.8840 (18) 0.9790 (55) 0.9683 (57)

6 Summary

The results show that choosing another metric or modifying model size may
slightly improve classification accuracy. However, the tuning of parameters is
required. The question remains whether other classification algorithms, other
parameter setting than the tested ones, different model sizes, or a different topol-
ogy of neural networks may yield better results or not. The major contribution
of this paper with respect to γ-metrics and multiple classifier fusion is that it
was possible to demonstrate for all tested datasets, that systematically varying
the γ value of the distance metric is an extraordinarily effective way to create
a diverse ensemble of classifiers. Especially, the trade-off between diversity and
correlation seems to be near optimal for classification of hyperspectral data.
Hence, the major contribution from an engineering perspective is to provide an
easy-to-use framework for the analysis of hyperspectral data. By the fusion of
classifier results, great improvements in classification accuracy have been made
for several real-world applications. Moreover, for the first time the improvements
reached a level which meets application specific lower boundaries on the preci-
sion and the detection rate. However, a lot of future work has to be done to get
a deep theoretic understanding of the role of the γ-metric with respect to en-
semble diversity. We also limited our study to the analysis of hyperspectral data
as a representative of functional data. For practical applications, the selection of
classifier subsets or a parallel computation of classifier results may be required
to meet application specific time constraints.
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20. Mendenhall, M.J., Merényi, E.: Relevance-based feature extraction for hyperspec-
tral images. IEEE Transactions on Neural Networks 19(4), 658–672 (2008)

21. Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing
units. Neural Computation 1, 281–294 (1989)

22. Mwebaze, E., Schneider, P., Schleif, F.-M., Haase, S., Villmann, T., Biehl, M.:
Divergence based Learning Vector Quantization. In: Verleysen, M. (ed.) 18th Eu-
ropean Symposium on Artificial Neural Networks (ESANN 2010), pp. 247–252.
d-side publishing (2010)

23. Peltonen, J., Klami, A., Kaski, S.: Learning more accurate metrics for self-
organizing maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp.
999–1004. Springer, Heidelberg (2002)



Nonstandard Metrics 177
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The Sky Is Not the Limit�
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We live in the era of Big Data, or at least our awareness of Big Data’s presence
and impact has sharpened in the past ten years. Compared to data characteris-
tics decades ago, Big Data not only means a deluge of unfiltered bytes, but even
more importantly it represents a dramatic increase in data dimensionality (the
number of variables) and complexity (the relationships among the often inter-
dependent variables, intricacy of cluster structure). Along with the opportunities
for nuanced understanding of processes and for decision making, these data cre-
ated new demands for information extraction methods in terms of the detail that
is expected to be identified in analysis tasks such as clustering, classification, re-
gression, and parameter inference. Many traditionally favored techniques do not
meet these challenges if one’s aim is to fully exploit the rich information cap-
tured by sophisticated sensors and other automated data collection techniques,
to ensure discovery of surprising small anomalies, discriminate important, sub-
tle differences, and more. A flurry of technique developments has been spawned,
many augmenting existing algorithms with increasingly complex features.

Self-Organizing Maps [1] have shown their staying power in the face of these
changes and stood out with their simplicity and elegance in capturing detailed
knowledge of manifold structures. In our research we have not yet encountered
a limit in terms of data complexity. SOMs learn astonishingly well. They are
extremely good “listeners” to what the data has to say. An outstanding challenge
rather seems to be in equally sharp interpretation of what an SOM has learned.

I will present methods and tools we have developed for deciphering SOMs and
for using their knowledge in various ways [2–7]. They are aimed at “precision
mining” of large and high-dimensional, complex data, separating important from
unimportant details of data characteristics in the presence of noise and some
quantifiable degree of topology violation. Components of these tools build on
seminal works by several colleagues in the SOM community (e.g., [8–13]), further
developing or engineering the original ideas.

I will highlight applications and effectiveness through three types of Big
Data: remote sensing hyperspectral imagery for characterizing planetary surface

� This paper uses ALMA data ADS/JAO.ALMA#2011.0.00465.S. ALMA is a part-
nership of ESO (representing its member states), NSF (USA) and NINS (Japan),
together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the
Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO
and NAOJ. The National Radio Astronomy Observatory is a facility of the National
Science Foundation operated under cooperative agreement by Associated Universi-
ties, Inc.

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 181
Vector Quantization, Advances in Intelligent Systems and Computing 295,
DOI: 10.1007/978-3-319-07695-9_17, c© Springer International Publishing Switzerland 2014



182 E. Merényi

materials, functional Magnetic Resonance Images for brain mapping, and astro-
nomical imagery obtained with the world’s most advanced radiointerferometric
array, ALMA (the Atacama Large Millimeter / Submillimeter Array, in Chile)
for answering astrophysical questions ranging from star and planet formation to
the formation of the universe.

In this abstract I briefly describe the challenges associated with these repre-
sentative Big Data and I give a preview of some results we obtained with SOMs
and related knowledge extraction approaches.

Hyperspectral images (spectral signatures acquired in hundreds of narrow,
contiguous band passes on a regular spatial grid over a target area) have long
been utilized for remote geochemical analyses of terrestrial and planetary
surfaces. Typical hyperspectral imagery spans the visible to near- and thermal-
infrared wavelengths with 5-20 nm band width, sufficient to resolve the discrimi-
nating spectral features of (near-)surface compounds. For example, hyperspectral
imagery affords identification of individual plant species, soil constituents, the
paints of specific cars, and a large variety of roof and building materials, creating
a need to extract as many as a hundred different clusters from a single image.
These clusters can be extremely variable in size, shape, density, proximities and
other properties. Another demand arising from such sophisticated data is to dif-
ferentiate among clusters that have subtle differences, as the ability to do so can
enable important discoveries or increased customization in decision making.

For example, landslide risk models can be greatly improved by including (in
addition to the traditional factors of mountain slope and rain fall) the types and

Exposed layers 
in Grand Canyon 
Landslide risk 

Landslide risk study in  
Grand Canyon, Utah 

Fig. 1. Mapping clay distribution in soils for landslide risk assessment in Cataract
Canyon, Grand Canyon, Utah, U.S.A. Left: Classification map produced from a re-
mote sensing hyperspectral image. 15 of the 28 classes (each indicated by a differ-
ent color) are exposed soil layers, several of which are indicated by the white arrows.
Right: Photograph of some of the soil layers, in part of the imaged site. Figure adapted
from [14].
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Fig. 2. Left: Visible-Near-Infrared hyperspectral signatures of clay-bearing soil classes,
mapped in Fig. 1. Spectra are vertically offset for viewing convenience. The variations
in the spectral window most discriminating for clay species (0.5 – 0.7 and 2.0 – 2.3
microns) are very subtle. Blue and red curves are the means of training and test
samples for the classification experiment in [14], with standard deviations shown by
the vertical bars. Right: Sample emission spectra, from combined C18O, 13CO, CS
lines of ALMA receiver band 7, showing differences in composition, Doppler shift,
depth and temperature. 170 channels were stacked from the C18O, 13CO, CS lines.
Data credit: JVO, project 2011.0.00318.5.

amounts of clay minerals contained in the exposed soil layers of mountains. For
assessment of large areas remote sensing is used, which detects the clay minerals
highly diluted in the soil matrix, resulting in weakened signatures. To distinguish
and map the 15 or so layers of different soils around a landslide area in the Grand
Canyon (Fig. 1) hyperspectral signatures with such slight variations as in Fig. 2
must be discriminated precisely by a classifier and produce maps showing the
spatial distribution of the various soils, as in Fig. 1. An SOM was instrumental
in accomplishing the delicate task [14].

In stellar astronomy, where Ångström resolution is typical, the data complex-
ity can grow even higher. 21st century observatories such as ALMA achieve, for
the first time, data sets that begin to approach, and in some dimensions exceed,
the richness of data from terrestrial and planetary remote sensing. High spa-
tial and spectral resolution image cubes with thousands of frequency channels
are extending into new and wider wavelength domains, and at the same time
capturing several different physical quantities that characterize 3-dimensional
plasma structures. The “spectra” are no longer vectors of homogeneous variables.
Effects of spatial depth, Doppler shift, temperature and densities are influenc-
ing the signatures in addition to chemical composition. Fig. 2, right, gives an
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Fig. 3. Structure found in protostar HD 142527 from ALMA data. Left: SOM clus-
tering from hyperspectral ALMA data cube by the author. Right: From single
doppler line, by [16]. Figure reproduced with permission. Data credit: JVO, project
2011.0.00318.5.

illustrative sample of ALMA data, combined from three different emission lines.
The left image in Fig. 3 shows structural details of a protostar produced (to my
knowledge) by the first SOM clustering of a complex ALMA image cube [15], in
comparison to details extracted from a single doppler line by [16]. This protostar
has stirred great interest recently because of a planet formation process that has
been detected deep in its interior.

Functional Magnetic Resonance Imagery (fMRI) poses many similar chal-
lenges as hyperspectral data, with typically higher-dimensional data vectors and
potentially more clusters. The time courses — vectors of measurements of blood-
oxygen-level dependece (BOLD) signals at hundreds of time points recorded dur-
ing the observation of a subject at each of several hundred thousands of voxels in
the brain volume — can be clustered to find brain areas with similar activation
patterns. Correlation analysis of the characteristic time courses of the identified
clusters can further reveal temporal relationships of various sub-networks in the
brain. With SOM tools we can glean detailed maps of the entire brain with more
complete coverage than seen in many published results.

Fig. 4, left, shows a pair of representative brain slices with our recent SOM clus-
tering [17], for which all available voxels were used from the entire brain volume.
The clusters coincide well with several known functional areas throughout all slices
(not shown here). In comparison, clustering with statistical methods in [18] (cen-
ter) was applied only to two selected slices, and the clusters identified are highly
segmented, with very sparse coverage. The brain maps on the right, from [19]
were obtained by SOM clustering, and have good coverage of selected functional
areas. An important property in the face of Big Data, SOMs are not nearly as
limited by large data volumes as many other methods (for example, graph-based
clustering, where the number of vertices grows quadratically with the number of
data vectors). The ability of learning well from large volumes of data allows pre-
cise identification of a large variety of functional regions, which in turn enables
more nuanced investigation of such fundamental questions as — in our study —
the generation of the conscious movement in healthy and impaired brains.
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Fig. 4. Clusterings of fMRI images, based on the BOLD time courses. Left pair of
images: SOM clusters obtained with our tools, in two selected brain slices, showing
good coincidence with and coverage of known functional regions such as the thalamus
(dark blue), insula (mauve symmetrically placed spots on either side of the thalamus in
the left image), visual cortex (light blue, dark green and orange), and superior frontal
gyrus (light yellow, at top of the left image, at front left in the right image) [17]. Data
credit: The Methodist Research Institute, Houston, Texas. Center: Clusters generated
by statistical hypothesis testing, from [18]. Right: Clusters found in the motor cortex
(top) and visual cortex (bottom) by [19] using SOMs. Figures from [18] and [19]
reproduced with permission.

SOMs arguably provide a key to accurate learning of diverse types of highly
structured data. However, with this power come new puzzles. While sharpening
knowledge extractionmethods to match the richness of the data, wemust also rec-
ognize that interpretation of the increasing detail emerging from data like these
may be the next challenge in the Big Data picture. Sophisticated tools that allow
penetration of previously unidentified relationships in the data may return “dis-
tilled” results that look complicated, hard-to-digest, and not straighforward to in-
terpret or verify.

ALMA, for example, represents such advanced observational capability that
fully exploiting the information content will require — as much as anything else
— new capabilities to synthetize, visualize, and interpret the extracted knowl-
edge, the already summarized information! The cluster map on the left in Fig. 3,
for example, can only show part of the protostar structure detected by the SOM.
We yet have to devise a visualization to layer on and meaningfully convey the full
information. In closing, I will illustrate some cases of this interesting problem.

Acknowledgments. Special thanks to ALMA project scientist Al Wootten, for
sharing and helping with ALMA data. Collaboration with Drs. Robert Grossman
and Christof Karmonik at the Methodist Research Institute, Houston, Texas, on
the analysis of their fMRI data is gratefully acknowledged.
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Abstract. The motor maps in the cortex are topologically organized,
just like the sensory cortical maps, where nearby locations in the map
represent behaviors of similar kinds. However, there is not much research
on how such motor maps are formed. In this paper, as a first step in
this direction, we developed a target reaching gesture map using a self-
organizing map model of cortical development (the GCAL model, a sim-
plified yet enhanced version of the LISSOM model). The inputs were tar-
get reaching behavior of a two-joint arm on a 2D plane (2 DOF), encoded
as a time-lapse image where time was encoded as the pixel intensity.
For training, 20,000 random arm movements were generated where each
arm movement started at a random initial location and moved toward
one of 24 predefined target locations. The resulting gesture map showed
global topological order where nearby neurons represented gestures to-
ward nearby target locations, comparable to the motor map reported in
the experimental literature. Although our simulations were based on a
sensory cortical map development framework, the results suggest that
it could be easily adapted to transition into motor map development.
Our work is an important first step toward a fully motor-based motor
map development (e.g. using proprioceptive input), and we expect the
findings reported in this paper to help us better understand the general
nature of cortical map development, not just for the sensory but also for
the motor modality.

Keywords: Motor map development, Self-organizing maps, Cortical de-
velopment, Target reaching gesture.

1 Introduction

In the recent studies, Graziano et al. found that the motor cortex in the macaque
brain forms a topographical map of complex behaviors [1], where the final posture
of the movements form an organized map. As we can see in the Fig.1(a), the
monkey’s the hand target location of reaching behavior evoked from extended
electrical microstimulation on a certain location of the mortor cortex was always
the same, regardless of the initial hand position. Furthermore, the target location
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forms an organized map on the motor cortex, where ventral and anterior areas
corresponded to the target locations in the upper space of the body, whereas
dorsal and posterior areas in the motor cortex corresponded to target locations in
the lower space of the body as in Fig.1(b). Based on theses findings, our question
is how such motor maps are formed in the cortex through the development
period.

(a) Eight example posture illus-
trating the topographic map found
in the precentral cortex of monkey.

(b) Topography of hand and arm
postures in the precentral gyrus
based on 201 stimulation sites in
monkey.

Fig. 1. The topographic map found in precentral cortex of Monkey. (a) The enlarged
view at the bottom shows the sites of the electrical microstimulation. The movements
shown in the rectangles A - H were evoked by stimulating the sites A - H in the
enlarged circle at the bottom. The stimulation of the right side of the brain caused
mainly the left side of the body (left arm to move). (b) A shows the distribution
of hand positions along the vertical axis, which are upper, middle, and lower space.
After each stimulation, the evoked final target positions were used to categorize the
site. B shows the distribution of hand positions along the horizontal axis, which are
contralateral (right when using left hand), central, and ipsilateral (left when using left
hand) space. Adapted from [1].

In existing works, simulation studies were conducted to mimic the develop-
ment of visual and tactile maps in the cortex. The visual cortical neuron’s re-
ceptive fields (RFs) and their map were computationally developed using a self-
organizing map model of the cortex (the LISSOM model) by Miikkulainen et al.
[2]. Park et al. showed that both visual RFs and tactile RFs can be derived by
training the same self-organizing map model of the cortex with different types
of inputs (natural-scene images and texture images, respectively) [3].
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In this paper, we investigate the possibility that a motor map in the cortex
can be developed based on the same cortical learning process as the visual and
tactile maps in the cortex. A self-organizing map model of the cortex (the GCAL
model[4][5]: a simplified yet enhanced version of the LISSOM model[2]) was
trained with two-joint arm movements (2 DOF) on a 2D plane, which were
subsequently encoded as a time-lapse image (cf. Motion History Images [6])
where time was encoded as the pixel intensity. We investigated if the experiment
can give rise to a motor map organization similar to Fig. 1.

This paper is organized as follows. The related work is reviewed in Section 2.
Next, the GCAL model will be explained in Section 3. Section 4 will explains
the platforms and the procedure for the experiments. The results are presented
in Section 5. The discussion and conclusion are in Section 6 and 7, respectively.

2 Related Work

There is not much work on how motor map is formed in the cortex. Recently,
several related studies were conducted, where a simulation study for the motor
map clustering of monkey using a standard self-organized map (SOM) learning
with encoded movements, and a multi-modal reinforcement learning algorithm
to form a map according to behavioral similarity.

Aflalo and Graziano [7] showed a computational topographic map organiza-
tion with three constraints. The three constraints are the body parts that were
being moved for movements, the position reached in Cartesian space, and the
ethological (behavioral) category to which the movement belonged. Encoded
movements (body parts, hand coordinates, and behavioral category) were used
as inputs for training. The initial somatotopic body map from the literature was
used to initialize the model. A standard Self-Organized Map (SOM) learning
[8] was used for the motor map clustering. However, their map configuration
through the SOM learning is purely computational since their experiment with
the learning algorithm did not consider the neural connectivity or plasticity in
the cortex. Also, the initial somatotopic body map which already represent a
rough motor map of the adult brain significantly affected the final configuration
of the map.

Ring et al. introduced a new approach to address the problem of continual
learning [9][10], which was inspired by the recent research on the motor cortex
[1]. Their system modules, called mot , are self-organized in a two-dimensional
map according to behavioral similarity. However, their method was based on a
multi-modal reinforcement learning algorithm, and did not consider the neural
underpinnings. Their aim in the study was to improve learning performance
through their new approach, not to understand how the motor map in the cortex
is developed in the cortex.

While several related studies have been conducted, there is a lack of studies
for fine-grained, biologically plausible motor map development in the cortex.
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3 The GCAL Model

We trained the GCAL (Gain Control, Adaptation, Laterally connected) model
of cortical development to investigate motor map development in the cortex
with 2 DOF arm movements in 2D plane. The GCAL model is a simplified, but
more robust and more realistic version of the LISSOM model, which has been
developed recently by Bednar et al. [4][5]. The GCAL model was designed to
remove some of the artificial limitations and biologically unrealistic features of
the LISSOM model.

GCAL is a self-organizing map model of the visual cortex [4][5]. Even though
GCAL was originally developed to model the visual cortex, it is actually a more
general model of how the cortex organizes to represent correlations in the sensory
input. Therefore, sensory modalities other than vision should work with GCAL.
For example, earlier work with LISSOM, a precursor of GCAL, was used to
model somatosensory cortex development [3] [11].

In our GCAL experiments, we decreased the retina size to 2.0 to fit the in-
put image size (80×80 pixels) and enlarged the projection area (radius: 1.5) to
project all parts of the arm movements. The sizes of LGN ON and LGN OFF
maps in the thalamus (lateral geniculate nucleus) and their projection size were
the same as that of the retina. The radius of the projection area for LGN ON
(and LGN OFF) was calculated as r = v+l

2 , where r, v, and l indicate the ra-
dius of the projection area for LGN ON (or LGN OFF), the V1 area, and the
LGN ON (or LGN OFF) sheet size, respectively. This way, the arm movements
can be projected to the V1 level without cropping. Also, the other parameters
were adjusted according to the sheets and the projection sizes. Note that in the
following we will use the GCAL terminology of retina, LGN, and V1 to refer to
the sensory surface, thalamus, and cortex, respectively.

The following description of the GCAL model closely follows [4][5]. The basic
GCAL model is composed of four two-dimensional sheets (three levels) of neural
units, including the retinal photoreceptor (input) and the ON and OFF channel
of RGC/LGN (retinal ganglion cells and the lateral geniculate nucleus), the
pathway from the photoreceptors to V1 area. Fig. 2 shows the architecture of
GCAL we used.

The GCAL training consists of four steps overall as below.

1. At each iteration (input), the retina (sheet) is activated by the time-lapse
image of the 2-DOF arm movement.

2. LGN ON and LGN OFF sheets are activated according to the connection
weights between the retina and the LGN ON and LGN OFF sheets. Also,
the lateral connections from other neurons in the LGN ON and LGN OFF
sheets affect the activations. The activation level η for a unit at position j in
an RGC/LGN sheet L at time t+ δt is defined as:

ηj,L(t+ δt) = f

⎛⎝γL
∑
i∈Fj

ψi,P (t)ωi,j

⎞⎠ (1)
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Fig. 2. The GCAL architecture. In the model, the retina size was increased to 2.0
(side) to fit the input image size (80×80 pixels) and the projection area enlarged to 1.5
(radius) to project all parts of the arm movements. Note that in the text we will use the
GCAL terminology of retina, LGN, and V1 to refer to the sensory surface, thalamus,
and cortex in our gesture map model, respectively.

where the activation function f is a half-wave rectifying function. The terms
γL, ψi,P , and ωij are defined as follows:
– γL is an arbitrary multiplier for the overall strength of connections from

the retina sheet to the LGN sheet.
– ψi,P is the activation of unit i in the two-dimensional array of neurons

on the retina sheet from which LGN unit j receives input (its connection
field Fj).

– ωij is the connection weight from photoreceptor weight from the retina i
to LGN unit j.

3. V1 sheet is activated by three different types of connections: 1) the afferent
connection from the LGN ON and LGN OFF sheets (p = A), 2) the recurrent
lateral excitatory connection (p = E), and 3) the recurrent lateral inhibitory
connection from other neurons in V1 sheet (p = I). The V1 activation is set-
tled through the lateral interactions. The contribution, Xjp, to the activation
of unit j from each lateral projection type (p = E, I) is then updated for the
settling steps as:

Xjp(t+ δt) =
∑
i∈Fjp

ηi,V (t)ωij,p (2)

where ηi,V indicates the activation of unit i taken from the set of neurons in
V1 that connect to unit j. Fj is its connection field. The weight ωij,p is for
the connections from unit i in V1 to unit j in V1 for the projection p. The
afferent activity (p = A) remains constant during this setting of the lateral
activity.

4. V1 neuron’s activation level is calculated over time by a running average
(smoothed exponential average), and the threshold automatically adjusted
through a homeostatic mechanism.
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5. LGN to V1 and V1 lateral connections are adjusted using a normalized Heb-
bian learning rule.

ωij,p(t) =
ωij,p(t− 1) + αηjηi∑
k (ωkj,p(t− 1) + αηjηk)

(3)

where for unit j, α is the Hebbian learning rate for the afferent connection
field Fj .

4 Experiment

We trained the GCAL model in Fig.2 with target reaching behavior of the two-
joint arm on a 2D plane. We generated 20,000 movements in which each started
from a random location (posture) and moved towards one of the 24 predefined
target locations (postures). These input movements simulate the monkey’s arm
movement in Fig 1(a). Our main question was if the model can learn a target
reaching gesture map such that the map has the characteristics of the motor map
in Fig. 1(a) and Fig. 1(b). Details about the experiment platform, generating
movements, and experiment procedures are as follows.

4.1 Experiment Platform

We ran the experiments on a Desktop PC (CPU: Intel Core 2 Duo 3.16GHz,
Memory: 16GB) and Laptop (CPU: Intel Core i7 2 GHz, Memory: 8GB). Both
machines ran on Ubuntu 10.04 (32bit). The installed Topographica version was
0.9.7. The python version was 2.6.5, and the gcc/g++ version 4.4.3.

For training the GCAL model, we mainly used the Topographica neural map
simulator package, developed by Bednar et al. [2]. Topographica is a simulator
for topographic maps in any two-dimensional cortical or subcortical region, such
as visual, auditory, somatosensory, proprioceptive, and motor maps plus the
relevant parts of the external environment [2]. The simulator is mainly written
in Python, which makes it easily extendable and customizable according to the
users’ needs. The simulator is freely available including the full source code at
http://topographica.org.

4.2 Generating Movements

Two-joint arm movements were generated on a 2D plane and used as inputs for
the GCAL model training. Each of the 20,000 different arm movements started at
a random location (posture) and moved towards one of the 24 predefined target
locations (postures). These generated movements represent the arm movements
of the monkey described in Fig. 1(a) and Fig. 1(b).

The arm consisted of two joints J1 (θ1) and J2 (θ2) in which the length ratio
of the arm L1 : L2 is 1.6 : 1 (Fig. 3(a)). For each movement, first randomly
pick initial angles for θ1 and θ2 (between -180 ∼ 180 degrees) and the 24 target
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(a) Kinematics of the
arm

(b) Time-lapse en-
coded arm movement

Fig. 3. The kinematics and movement of the two-joint arm. (a) The arm consists of
two joint J1 (θ1) : J2 (θ2), and the arm L1 : L2 (with the length ratio 1.6 : 1). The
θ1 and θ2 are randomly picked initially and change toward the target. (b) The arm
movement is encoded as time-lapse image where time is encoded as the pixel intensity.
The darkest one is the target (most recent) posture.

locations as shown in Fig. 4. Then, J1 (θ1) and J2 (θ2) are changed toward
the target locations from the initial angles either by 5 or 10 degrees each step,
until they reach to the target posture. After each step of the angle update, the
posture of the arm was plotted on the same sheet but with different opacity. The
intensity was increased over time by 20% (Fig. 3(b)). Fig. 4 shows the examples
of the generated arm movements. The 24 predefined target locations consisted
of 16 distal locations (Fig. 4(a)) and 8 proximal locations (Fig. 4(b)). Note that
in generating these motion patterns, we did not consider the natural movement
statistics of the monkey’s arm, largely due to the lack of such data.

Fig. 4. Examples of movements with 24 target locations. Starting from a random pos-
ture, move toward to one of 24 target locations (postures). The movement over time
is expressed using different pixel intensity (darker = more recent). (a) Example move-
ments with 16 distal target locations. (b) Example movements with 8 proximal target
locations. These movements simulate the arm movements in the experimental litera-
ture (Fig.1(a)). Note: For the same target location, many different time-lapse images
were generated by varying the initial posture.
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4.3 Experiment Procedure

After generating 20,000 random reaching movements encoded as a time-lapse
image, we trained the GCAL model with these inputs. In each iteration, one
of the 20,000 inputs was randomly picked for training. The density of the two
LGN sheets and the single V1 sheet were 24× 24 and 48× 48, respectively. The
parameters of the model for training were based on the default parameters in the
Topographica package except some parameters such as retina sizes as described
in Section 3. Once the training is done, we analyzed the resulting map, with a
focus on the LGN to V1 afferent connection patterns.

5 Results

5.1 Local Topography Based on Target Location Similarity

The resulting gesture map is shown in Fig. 5. As we can see, the map is topologi-
cally ordered according to the target locations, where nearby locations (neurons)
of the map represent nearby target locations (end-effector locations of final pos-
tures). For example, we can see that the similar target locations are clustered
in the areas of top-left, top-right, bottom-left, bottom-right, center-left, center-
right, and so on. In Fig. 6(a), each arrow of the grids shows the orientation and
the distance of the target locations from the center. The vectors (arrows) with
similar lengths and orientations represent similar target distance and angle.

Fig. 5. The resulting gesture maps of LGN OFF to V1 projection. 17 × 17 RFs are
plotted from 48 × 48 cortex density to see the details of them. The enlarged views
show the zoomed in views of 3 × 3 RFs at each corner. Note: LGN OFF and LGN ON
patterns are exact inverses of each other and thus contain the same information. The
learned projections to V1 from these two sheets were similar as a result, so here we
only showed the LGN OFF to V1 projections which is easier to visually inspect.
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(a) Target vector map (b) Horizontal (top) and
vertical (bottom) components

Fig. 6. (a) Target vectors estimated from the resulting gesture map receptive fields
(Fig. 5). The direction and the length of each arrow show the target location’s direction
and the distance from the center. (b) The color maps of the horizontal and the vertical
components of the vectors in (a): bright=high (right, up), dark=low (left, down). The
color maps were convolved with a Gaussian filter of size 15×15 pixels and sigma 2.5 to
show more clearly the global order.

5.2 Global Topographic Order

The resulting gesture map show global topographic order. The color maps of the
horizontal and the vertical components of the vector field in Fig. 6(a) are shown
in Fig. 6(b). As we can see, the vectors (the target locations) show horizontal
order (Fig. 6(b), top) and vertical order (Fig. 6(b), bottom), which is comparable
to the findings reported in the experimental literature (Fig. 1). Some neighbor-
ing vectors show opposite directions in Fig. 6(a), but this is coherent with the
biological observations. As we can see in Fig. 1(b), some adjacent stimulation
sites in the precentral gyrus in the monkey show targets in the opposite direc-
tions such as upper vs. lower, or left vs. right arm postures. Look for + and �
located right next to each other in Fig. 1(b).

6 Discussion

The main contribution of this paper is the use of a general cortical development
model (GCAL) to show how fine-grained target reaching gesture maps can be
learned, based on realistic arm reaching behavior. An immediate limitation is
that the input itself was not a dynamic pattern of movement (i.e., it was just a
static time-lapse image). However, as shown by Miikkulainen et al. [2], addition
of multiple thalamus sheets with varying delay can address this kind of issue.
Miikkulainen et al. [2] used such a configuration to learn visual (motion) direction
sensitivity in V1. We intend to extend our model to include such a dynamic



196 J. Yoo, J. Choi, and Y. Choe

component in the input. Also, we are working on gesture map development
using proprioceptive input from a simulated joint with muscle spindle afferent,
departing from the visually oriented simulation framework used in this paper.

7 Conclusion

In this paper, we developed a target reaching gesture map using a biologically
motivated self-organizing map model of the cortex (GCAL model, a simplified
yet enhanced version of the LISSOM model) with two-joint arm movements as
inputs. The resulting gesture map showed a golbal topographic order based on
the target locations. The map is comparable to the motor map reported in the
experimental study [1] (Fig. 1(a) and Fig. 1(b)). Although our simulations were
based on a sensory cortical map development framework, the results suggest that
it could be easily adapted to transition in to motor map development. Our work
is an important first step toward a fully motor-based motor map development,
and we expect the findings reported in this paper to help us better understand
the general nature of cortical map development, not just for the sensory but also
for the motor modality.

Acknowledgments. All simulations were done using Topographica (GCAL),
available at http://topographica.org.
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Abstract. Concurrent Self Organizing Maps (CSOM s) deal with the
pattern classification problem in a parallel processing way, aiming to
minimize a suitable objective function. Similarly, Active Contour Mo-
dels (ACM s) (e.g., the Chan-Vese (CV ) model) deal with the image
segmentation problem as an optimization problem by minimizing a sui-
table energy functional. The effectiveness of ACM s is a real challenge
in many computer vision applications. In this paper, we propose a novel
regional ACM, which relies on a CSOM to approximate the foreground
and background image intensity distributions in a supervised way, and to
drive the active-contour evolution accordingly. We term our model Con-
current Self Organizing Map-based Chan-Vese (CSOM-CV ) model. Its
main idea is to concurrently integrate the global information extracted
by a CSOM from a few supervised pixels into the level-set framework
of the CV model to build an effective ACM. Experimental results show
the effectiveness of CSOM-CV in segmenting synthetic and real images,
when compared with the stand-alone CV and CSOM models.

Keywords: Image segmentation, Chan-Vese model, Concurrent Self Or-
ganizing Maps, global active contours, neural networks.

1 Introduction

Concurrent Self Organizing Maps (CSOM s) [1] combine several Self Organizing
Maps (SOM s) to deal with the pattern classification problem (hence, the image
segmentation problem as a particular case) in a parallel processing way, with the
aim of minimizing a suitable objective function, usually the quantization error
of the maps. In a CSOM, each SOM is constructed and trained individually on a
subset of samples coming only from its associated class. The aim of this training
is to increase the discriminative capability of the system. So, the training of the
CSOM is supervised for what concerns the assigment of the training samples to
the various SOM s, but each individual SOM is trained with the SOM specific
self-organizing learning rule.

Similarly, Active Contour Models (ACM s) deal with the image segmentation
problem as an(other) optimization problem, as they try to divide an image into
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several regions by minimizing an “energy” functional, whose argument is the
separating contour of the regions. Starting from an initial contour, the opti-
mization is performed iteratively, evolving the current contour with the aim of
gradually improving the approximation of the actual boundary of the regions
(hence the denomination “active contour” models, which is used also for mo-
dels that evolve the contour but are not based on the explicit minimization of a
functional [2]). A particularly useful subclass of ACM s are the so-called global
regional ACM s, which use statistical information about the regions (e.g., in-
tensity, texture, colour distribution, etc.) to determine when to terminate the
contour evolution [3,4]. Most of the existing global regional ACM s rely explicitly
on a particular probability model (e.g., Gaussian, Laplacian, etc.) for the image
intensity distribution, which results in restricting their scope in handling images
in a global way, and affects negatively their performance when processing noisy
images. On the other hand, SOM -based models have the advantage with respect
to other neural-network models (e.g., multilayer perceptrons [5]) of being able
to predict the underlying image intensity distributions relying on their topology
preservation property [6], which is typical of SOM s. Another positive feature is
that - likewise other neural network models - they can be also implemented in a
parallel processing way. However, the application of existing SOM -based models
in segmentation usually results in disconnected boundaries. Moreover, they are
often quite sensitive to the noise. Motivated by the issues above, in the paper
we propose a novel ACM, named Concurrent Self Organizing Map based Chan-
Vese (CSOM-CV ) model, which combines SOM s and global ACM s in order to
deal with the image segmentation problem reducing the disadvantages of both
approaches, while preserving the aforementioned advantages.

The paper is organized as follows. In Sections 2 and 3, we review briefly, resp.,
the general architecture of CSOM as a classification tool, and the formulation
of the CV model. Section 4 presents the formulation of the proposed CSOM-
CV model. Section 5 presents experimental results comparing the segmentation
accuracy of the proposed model and the ones of the stand-alone CV and CSOM
models, on the basis of a number of synthetic and real images. Finally, Section 6
provides some conclusions.

2 The CSOM Model

In this section, we review the Concurrent Self Organizing Map (CSOM ) model
[1] as a pattern classification tool, hence also an image segmentation technique.

The classification process of a CSOM starts by training a series of SOM s
(one for each class) in a parallel way, using for each SOM a subset of samples
coming from its associated class. During the training process, the neurons of each
SOM are topologically arranged in the corresponding map on the basis of their
prototypes (weights) and of the ones of the neurons within a certain geometric
distance from them, and are moved toward the current input using the classical
self-organization learning rule of a SOM, which is expressed by

wn(t+ 1) := wn(t) + η(t)hbn(t)[x(t) − wn(t)], (1)
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where t = 0, 1, 2, 3, . . . is a time index, wn(t) is the prototype of the neuron n
at time t, x(t) is the input at time t, η(t) is a learning rate, and hbn(t) is the
neighborhood kernel at time t of the neuron n around a specific neuron b, called
best-matching unit (BMU ). More precisely, in each SOM and at the time t, an
input vector x(t) ∈ R

D is presented to feed the network, then the neurons in the
map compete one with the other to be the winner neuron b, which is the chosen
as the one whose weight wb(t) is the closest to the input vector x(t) in terms of
a similarity measure, which is usually the Euclidean distance ‖ · ‖2. In this case,
‖x(t)−wb(t)‖2 := minn ‖x(t)−wn(t)‖2, where n varies in the set of neurons of
the map. Once the learning of all the SOM s has been accomplished, the class
label of a previously-unseen input test pattern is determined by the criterion
of the minimum quantization error. More precisely, the BMU neuron associated
with the input test pattern is determined for each SOM, and the winning SOM is
the one for which the prototype of the associated BMU neuron has the smallest
distance from the input test pattern, which is consequently assigned to the class
associated with that SOM. We conclude mentioning that, when it is used as a
supervised image segmentation technique, CSOM usually results in disconnected
boundaries, and is often sensitive to the noise.

3 The CV Model

In this section, we briefly review the formulation of the Chan-Vese (CV ) model
[3], which is a well-known representative state-of-the-art global regional ACM.
The importance of the CV model among ACM s is emphasized by the very large
number of citations of [3] (more than 3600 on Scopus at the present time).

In the so-called “level set” formulation of the CV model, the current active
contour C is represented as the zero level set of an auxiliary function φ : Ω → R,
where Ω is the image domain: C := {x ∈ Ω : φ(x) = 0} . In the following, we
denote by in(C) and out(C), resp., the approximations of the foreground and
the background that are associated with the contour C, i.e.:

in(C) := {x ∈ Ω : φ(x) > 0} , out(C) := {x ∈ Ω : φ(x) < 0} .

When dealing with contours evolving in time, the function φ(x) is replaced by a
function φ(x, t). Then, the time evolution of the level set function φ in the CV
model is described by the following Partial Differential Equation (PDE ) (in the
variables x and t, omitted from the next formula to shorten the notation):

∂φ

∂t
= δ (φ) [μ∇ (∇φ/‖∇φ‖2)− ν − λ+

(
I − c+

)2
+ λ− (I − c−

)2
], (2)

where I(x) denotes the image intensity at the pixel location x, μ ≥ 0 and ν ≥ 0
are regularization parameters, and λ+ ≥ 0, and λ− ≥ 0 are parameters that
control the influence of the last two terms. The first term in μ keeps the level
set function smooth, the second one in ν influences the propagation speed of the
contour, while the third and fourth terms can be interpreted, resp., as internal
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and external “forces” acting on the contour. Finally, δ (·) denotes the Dirac
generalized function, and c+ and c− are, resp., the mean intensity inside and
outside the contour, defined as follows:

c+ :=

∫
in(C)

I (x) dx

/∫
in(C)

dx , c− :=

∫
out(C)

I (x) dx

/∫
out(C)

dx . (3)

The CV model can also be derived, in a Maximum Likelihood setting, by making
the assumption that the foreground and background follow Gaussian intensity
distributions with the same variance [7]. Then, the model approximates globally
their distributions by the two scalars c+ and c−, resp., which are their mean in-
tensities. As a global regional ACM, the CV model drives the contour to match
regions that maximize the difference in their mean intensity. As a consequence,
the evolution process is controlled completely by how accurate the mean inten-
sities (3) are in representing the foreground/background distributions in each
evolving step, starting from the initial contour. Furthermore, the implementa-
tion of this model often requires to re-initialize the evolution curve to be a signed
distance function, which is a computationally expensive operation.

4 The CSOM-CV Model

In this section, we describe our Concurrent Self Organizing Map based Chan-
Vese Model (CSOM-CV ). Such model is composed of an off-line and on-line
sessions, which are described, resp., in Subsections 4.1 and 4.2.

4.1 Training Session

The CSOM-CV model we propose makes use of two SOM s, one associated with
the foreground, the other to the background. We make a distinction between the
two SOM s by using, resp., the superscripts + and − for the associated weights.
We assume that two sets of training samples belonging to the true foreground
Ω+ and the true background Ω− of a training image I(tr) are available. They
are defined as: L+ := {x+

1 , . . . , x
+
|L+| ∈ Ω+} and L− := {x−

1 , . . . , x−
|L−| ∈ Ω−},

where |L+| and |L−| are their cardinalities.
In the following, we describe first the learning procedure of the SOM trained

with the set of foreground training pixels L+. In the training session, after
choosing a suitable topology of the SOM associated with the foreground, the in-
tensity I(tr)(x+

t ) of a randomly-extracted pixel x+
t ∈ L+ of the foreground of the

training image is applied as input to the neural map at time t = 0, 1, . . . , t
(tr)
max−1,

where t
(tr)
max is the number of iterations in the training of the neural map. Then,

the neurons are self-organized in order to preserve - at the end of training -
the topological structure of the image intensity distribution of the foreground.
Each neuron n of the SOM is connected to the input by a weight vector w+

n

of the same dimension D as the input (which - in the case of gray-level images
considered in the paper - has dimension 1). After their random initialization,
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the weights w+
n of the neurons are updated by the self-organization learning rule

(1), which we re-write in the form specific for the case considered here:

w+
n (t+ 1) := w+

n (t) + η(t)hbn(t)[I
(tr)(x+

t )− w+
n (t)], (4)

In this case, the BMU neuron b is the one whose weight vector is the closest to
the input I(tr)(xt) at time t. Both the learning rate η(t) and the neighborhood
kernel hbn(t) are designed to be time-decreasing in order to stabilize the weights
w+

n (t) for t sufficiently large. In this way - due to the well-known properties [6]
of the self-organization learning rule (4) - when the training session is completed,
one can accurately model and approximate the input intensity distribution of
the foreground by associating the intensity of each input to the weight of the
corresponding BMU neuron. In particular, in the following we make the choice
η(t) := η0 exp (−t/(τη)) , where η0 > 0 is the initial learning rate and τη > 0 is a
time constant, whereas hbn(t) is selected as a Gaussian function centered on the
BMU neuron, i.e., it has the form hbn(t) := exp

(
−‖rb − rn‖22/(2r2(t))

)
, where

rb, rn ∈ R
2 are the location vectors in the output neural map of neurons b and

n, resp., and r(t) > 0 is a time-decreasing neighborhood radius (this choice of
the function hbn(t) guarantees that, for fixed t, when ‖rb−rn‖2 increases, hbn(t)
decreases to zero gradually to smooth out the effect of the BMU neuron on the
weights of the neurons far from the BMU neuron itself, and when t increases, the
influence of the BMU neuron becomes more and more localized). In particular,
in the following we choose r(t) := r0 exp (−t/τr) , where r0 > 0 is the initial
neighborhood radius of the map, and τr > 0 is another time constant.

Finally, the learning procedure of the other SOM differs only in the random
choice of the training pixel (which is now denoted by x−

t , and belongs to the set
L−), and in the weights of the network, which are denoted by w−

n .

4.2 Testing Session

Once the training of the two SOM s has been accomplished, the two trained
networks are applied on-line in the testing session, during the evolution of the
contour C, to approximate and describe globally the foreground and background
intensity distributions of a similar test image I(x). Indeed, during the contour
evolution, the two mean intensities mean(I(x)|x ∈ in(C)) and mean(I(x)|x ∈
out(C)) in the current approximations of the foreground and background are
presented as inputs to the two trained networks. We now define the quantities

w+
b (C) := argminn |wn −mean(I(x)|x ∈ in(C))| , (5)

w−
b (C) := argminn |wn −mean(I(x)|x ∈ out(C))| ,

where w+
b (C) is the prototype of the BMU neuron to the mean intensity inside

the current contour, while w−
b (C) is the prototype of the BMU neuron to the

mean intensity outside it. Then, we define the functional of the CSOM-CV model
as

ECSOM−CV (C) := λ+

∫
in(C)

e+(x,C)dx + λ−
∫
out(C)

e−(x,C)dx , (6)
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e+(x,C) :=
(
I(x)− w+

b (C)
)2

, e−(x,C) :=
(
I(x)− w−

b (C)
)2

,

where the parameters λ+, λ− ≥ 0 are, resp., the weights of the two image energy
terms

∫
in(C)

e+(x,C)dx and
∫
out(C)

e−(x,C)dx, inside and outside the contour.

Now, as in [3], we replace the curve C with the level set function φ, obtaining

ECSOM−CV (φ) = λ+

∫
φ>0

e+(x, φ)dx + λ−
∫
φ<0

e−(x, φ)dx ,

where we have made explicit the dependence of e+ and e− on φ. In terms of the
Heaviside step function H(·), the CSOM-CV functional can be also written as:

ECSOM−CV (φ) = λ+

∫
Ω

e+(x, φ)H(φ(x))dx + λ−
∫
Ω

e−(x, φ)(1 −H(φ(x)))dx .

Finally, applying the gradient-descent technique in an infinite-dimensional set-
ting likewise in [3], the contour evolution is described by the PDE

∂φ

∂t
= δ (φ)

[
−λ+e+ + λ−e−

]
, (7)

which shows how the learned neurons of the two SOM s are used to determine
the internal and external “forces” acting on the contour. Apart from this diffe-
rence, Eq. (7) has a similar form as Eq. (2), and can be solved iteratively using
the same smoothing and discretization techniques described in [3]. Moreover, in
a similar way to [8], we perform - at each iteration of a finite-difference approxi-
mation of (7) - the regularization of the current level set function by replacing it
with its convolution with a Gaussian filter of suitable width. Finally, the contour

evolution is performed for t
(evol)
max iterations (unless convergence is obtained be-

fore). We conclude mentioning that the CSOM-CV model can also be extended
to RGB images (this extension is not presented here, due to space limits).

5 Experimental Study

In this section, we demonstrate the effectiveness of the CSOM-CV model, com-
pared to the stand-alone CSOM and CV models, in handling synthetic and
real images. For a fair comparison, the CSOM-CV, CV and the CSOM mo-
dels used in this experiment are all implemented in Matlab R2012a on a PC
with the following configuration: 1.8 GHz Intel(R) Core(TM) i3-3217U, and 4.00
GB RAM. In each experiment, the CSOM-CV parameters are fixed as follows:
η0 = 0.9, σ = 1.5, and the weight parameters (i.e., λ+, λ−) are fixed to 1. Also,
r0 = max(M,N)/2, where M and N are the numbers of rows and columns of

the neural map, t
(tr)
max = 10000, t

(evol)
max = 1000, τη = t(tr)max , τr = t

(tr)
max/ ln(r0),

ρ = 1. The SOM s are composed of 3 × 3 neurons in most experiments (i.e.,
M = N = 3). In the CV model, λ+, λ− are also fixed to 1, μ is chosen such that
the final contour is smooth enough and ν = 0 (as made in [3, p. 268]). All the
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Fig. 1. The training images used in this paper together with the supervised foreground
pixels (red) and the supervised background pixels (blue) used in training sessions of
the CSOM-CV and the CSOM models. By its definition, no supervised pixels are used
by the CV model

gray-level images considered in this section are 8-bit images, so the range of the
values assumed by the intensity is 0-255.

To demonstrate the robustness of CSOM-CV to the presence of the noise, in
the experiment described in Fig. 2 we have used the noise-free images of Fig. 1(a)
and (b) in the training sessions of CSOM-CV and CSOM, then the so-learned
SOM s have been applied on-line by the two models to their noisy versions as
test images. As shown in Fig. 2, for this case CSOM-CV is less sensitive to
the noise than CV (which does not make use of supervised training examples)
and CSOM, since the regions of the foreground are detected more accurately by
CSOM-CV. Fig. 3 illustrates the effectiveness of CSOM-CV in handling other
images. The segmentation results of the CSOM-CV model shown in the first row
demonstrate its ability to segment objects with blurred edges and background,
while on the same images the CSOM and CV models incur, resp., in over-
and under- segmentation problems. Similarly, as shown, resp., in the second and
third rows, CSOM-CV outperforms CSOM and CV also in handling images
characterized by nonhomogeneous background intensity distribution, and in the
presence of a shadow. Simular results are obtained for the fourth image.

To demonstrate the computational efficiency of CSOM-CV when compared
to CSOM and CV, Table 1 shows, for the images shown in Fig. 2 and 3, the
CPU time (in seconds) required to perform the active-contour evolution by the
CSOM-CV and the CV models, and the CPU time (in seconds) of the CSOM
model (which is nearly the same as the training time of the CSOM-CV model, as
they share the same concurrent SOM ). For the CSOM-CV and CV models, the
number of iterations performed before convergence of the active-contour evolu-
tion is also reported in the table. As illustrated by Table 1, we can observe that,
during the active-contour evolution, the CSOM-CV model has shown to be much
faster than the CV model in all the listed cases, thus confirming its efficiency af-
ter training, especially when dealing with noisy versions of the same image (since
in this case the training phase is performed only one time). Indeed, during the
active-contour evolution, the CSOM-CV has required in general less iterations
than the CV model to practically reach convergence, which compensates its
larger computational time required by each iteration of the active-contour evolu-
tion. Moreover, as illustrated in Table 2, we have also used the Precision, Recall,
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Fig. 2. The robustness of the CSOM-CV model to two different kinds of noise: the first
column shows, from top to down, two noisy versions of the image shown in Fig. 1(a),
and two noisy versions of the image shown in Fig. 1(b), resp., with the addition of
Gaussian noise with standard deviation SD = 50 (first and third row) and salt and
pepper noise (second and fourth row). The initial contours used by the CSOM-CV
and CV models are also shown (first and third row); finally, the second, third, and
fourth columns show, resp., the corresponding binary segmentation obtained by the
CSOM-CV, CSOM, and CV models.

Fig. 3. The segmentation results obtained on real and synthetic gray-level images. The
first column shows the original images with the initial contours, while the second, third,
and fourth columns show, resp., the corresponding segmentation results obtained by
the CSOM-CV, CSOM, and CV models.



A Concurrent SOM-Based Chan-Vese Model for Image Segmentation 207

Table 1. The contour evolution time and number of iterations required by the CSOM-
CV and CV models to segment the foreground for the images shown in this paper.
The CPU time of CSOM and the percentage of labeled pixels (lp) are also included.

Image in Image size lp (%) CSOM-CV model CSOM model CV model
CPU t. (s) # Iter. CPU t. (s) CPU t. (s) # Iter.

Fig. 2 row 1 114 × 101 3.01 0.73 20 16.7 3.2 158
Fig. 2 row 2 114 × 101 3.01 0.62 18 14.7 3.64 219
Fig. 2 row 3 64× 61 5.3 0.078 10 4.9 0.04 4
Fig. 2 row 4 64× 61 5.3 0.07 10 5 0.98 30
Fig. 3 row 1 118× 93 3.02 0.04 10 6.12 2.12 137
Fig. 3 row 2 300 × 225 1.38 0.62 37 42.03 6.68 205
Fig. 3 row 3 135 × 125 2.38 0.15 17 10.1 4.18 266
Fig. 3 row 4 300 × 203 4.32 0.81 33 33.79 9.85 344

Table 2. The Precision, Recall, and F -measure metrics for the CSOM-CV, CSOM,
and CV models

Image in CSOM-CV model CSOM model CV model
P (%) R(%) F -meas.(%) P (%) R(%) F -meas.(%) P (%) R(%) F -meas.(%)

Fig. 2 row 1 99.7 99.8 99.8 93.5 94.7 94 97 88.3 92.5
Fig. 2 row 2 99.8 99.9 99.8 94.7 97.5 96.1 94.2 87.2 90.5
Fig. 2 row 3 48.2 93.9 63.7 16.4 72.6 26.8 12.7 96.4 22.5
Fig. 2 row 4 56.8 97.4 71.1 48.7 96.4 64.7 12.2 100 21.7
Fig. 3 row 1 100 94.3 97.1 99.6 92.1 95.7 92.8 82.9 87.6
Fig. 3 row 2 63.5 89.5 74.3 39.2 95.4 55.6 73 60 65.9
Fig. 3 row 3 95.7 99.8 97.7 46.5 100 63.5 94.9 61.4 74.6
Fig. 3 row 4 91.8 90.3 91 81.9 95.1 88 94.3 88.3 91.2

and F -measure metrics (where the “positive” pixels are the foreground pixels)
to evaluate quantitatively the segmentation results of all the models, confiming
the effectiveness of the CSOM-CV model when compared to the CSOM and
CV models (apart from the image in the fourth row of Fig. 3, on which CSOM-
CV and CV produced similar results), thus compensating the usually larger
total (training+testing) time required by the CSOM-CV model to segment the
same image, when compared to the other models. Concluding, the experimental
results demonstrate the ability of the CSOM-CV model to combine the positive
aspects of both the models from which it derives (e.g., the ability of the CSOM
model to represent the intensity distributions of the foreground/background due
to the labeled pixels, and the energy-functional formulation of the CV model).

6 Conclusions

In this paper we have proposed a novel SOM -based ACM model, the Concurrent
Self Organizing Map-based Chan-Vese (CSOM-CV ) model, which relies mainly
on a set of prototypes coming from two trained SOM s to guide the evolution
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of the active contour. The CSOM-CV model is a supervised and global region-
based ACM. It has been demonstrated to be efficient and robust to two different
kinds of noise. As compared to the CV model, our proposed solution consists
instead in modeling globally in a supervised way the intensity distributions of
the foreground/background (relying on a few supervised pixels) without using
parametric models, but relying on a set of prototypes resulting from the training
of a CSOM. So, the main reasons for which, as shown experimentally in Section
5, the proposed model affects positively the CV model in terms of speed-up in
the testing phase and robustness to noise are that - differently from the pro-
posed model - the CV model refers to Gaussian intensity distributions of the
foreground/background, and does not include supervised examples. Moreover, as
compared to CSOM and in general to SOM -like models used in image segmen-
tation, our solution consists in modeling the active contour using a variational
level set method and relying at the same time on a few prototypes coming from
the learned CSOM. In this way, the CSOM-CV model is able to produce a final
segmentation result characterized by a smooth contour while most SOM -like mo-
dels usually produce segmentations characterized by disconnected boundaries.
Of course, in order to be used in practice, the CSOM-CV model requires the
availability of labeled pixels; an extension to the unsupervised case, as well as
the effect of the initialization of the SOM neurons, are currently under study.
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Abstract. Sentiment analysis has become a widely used approach to
assess the emotional content of written documents such as customer
feedback. In positive psychology research, the typical one-dimensional
analysis framework has been extended to include five dimensions. This
five-dimensional model, PERMA, enables a fine-grained analysis of writ-
ten texts. We propose an approach in which this model, statistical anal-
ysis and the self-organizing map are used. We analyze corpora from
various genres. A hybrid methodology that uses the self-organizing maps
algorithm and human judgment is suggested for expanding the PERMA
lexicon. This vocabulary expansion can be useful for English but it is po-
tentially even more crucial in the case of other languages for which the
lexicon is not readily available. The challenges and solutions related to
the text mining of texts written in a morphologically complex language
such as Finnish are also considered.

Keywords: Text mining, natural language processing, self-organizing
map, independent component analysis, positive psychology, education,
life-philosophical lecturing.

1 Introduction

Computer-based quantitative methods are becoming more and more popular in
the study of complex phenomena in social sciences and humanities. This trend
has been strengthened by the fact that many modern analysis methods and
tools enable non-reductionistic approaches. Quantitative methods may be useful
in qualitative analysis if thousands or even larger number of variables are dealt
with simultaneously. This idea is reflected in the representation and analysis
of texts as large matrices or tensors. Moreover, computational methods enable
modeling and simulation that takes into account the systems nature of real
world phenomena [3]. Related research areas include systems intelligence [4] and
complexity science [1].
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1.1 Background Motivation

In this paper, we take first steps in approaching one highly complex phenomenon
related to psychology, education and philosophy, namely what kind of changes
begin to happen in the students that have attended a course built on life-
philosophical lecturing. By life-philosophical lecturing we refer to a particular
kind of oral pedagogical practice that uses the lecture situation for the benefit of
providing for the listeners an enhanced possibility of life-philosophical reflection
[17,18]. The dominant lecturing practices seek to function as a channel for prede-
termined knowledge, theories or learning. Then the goal is to make the listeners
to adopt the insights, scholarship or philosophy of the lecturer. In contrast, in
life-philosophical lecturing “the paramount aim is to facilitate, stimulate and
vitalize the participants own life-philosophical thinking in the first-person – his
or her use of the reflective mind” [17]. Life-philosophical lecturing is a form of
positive philosophical practice and seeks key inspiration from the breakthroughs
of the positive psychology movement [22,21]. Our aim is to be eventually able
to measure from texts written by students the changes such a lecturing practice
stimulates in them. This article describes our first experiments on the matter.

1.2 Sentiment Analysis and the PERMA Model

Sentiment analysis of written documents aims to determine the overall polarity of
each document of the attitude of the author(s) regarding some topic. Sentiment
analysis has become commonplace and it is widely applied, e.g., in business
intelligence and in analyzing social media contents [25,15,14,5]. The sentiment
of a document is typically calculated as a synthesis of the sentiments of the
words and phrases in the document. A straightforward approach is to manually
associate a positive or negative value for those words that indicate sentiment.
Turney automated this process by calculating the sentiment of a given phrase
by comparing its similarity to a positive reference word (“excellent”) with its
similarity to a negative reference word (“poor”) [25].

A typical approach in sentiment analysis is to estimate the polarity of the
documents. This one-dimensional measure can be replaced by analyzing multiple
factors simultaneously. A straightforward extension is to measure both valence
(positive vs. negative) and arousal (activation vs. deactivation). A more refined
category system of emotions could include level of interest, enjoyment, surprise,
contempt, anger, fear, distress and shame.

In the context of positive psychology research, Seligman has developed the
PERMA model that addresses different aspects of wellbeing [21]. The PERMA
model includes five components related to subjective well-being: Positive emotion
(P), Engagement (E), Relationships (R), Meaning (M) and Achievement (A)
[21]. Researchers have gathered a PERMA lexicon that is a collection of words
that are associated with each of the components in a positive or negative manner
[19].
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We propose a way to apply the PERMA model to the analysis of document
collections. Furthermore, we suggest a way for complementing the PERMA vo-
cabulary that can be useful especially for other languages than English. The
PERMA analysis of texts can be considered at three main levels:

1. PERMA profiling of document collections. This can provide an overall under-
standing of the nature of different corpora. We analyze the five-dimensional
profile of corpora in six different genres.

2. PERMA profiling of individual documents. The second level of analysis is
seen to be useful for the lecturer who is provided tools for familiarizing him-
self with certain aspects of hundreds of long essays written by the students.
A related idea has been presented in the context of MOOCs (massive online
open courses) [8] for mining student contributions.

3. Comparison of PERMA and non-PERMA words. This analysis can be con-
ducted, for example, in order to find new PERMA word candidates. In this
paper, we use the self-organizing map [11] for this purpose.

One way to look at sentiment analysis is to ask first, which are the sentiments
that need to be detected, and second, which features in the text reflect said
sentiments. While PERMA model provides a theory-driven proposal for a set of
such sentiments, as well as seed lists of features, challenges remain. For example,
many texts might not have many PERMA features at all. Moreover, translating
the PERMA vocabulary to another language leads to additional challenges, since
each language might have quite different ways to express for example positivity,
and literal translation of words may not be a sufficient method for capturing
these.

1.3 Why Unsupervised Methodology

When using learning methods, information regarding properties of interest (fea-
tures) or decisions of interest (e.g. class labels) need to be provided to the learn-
ing system. Feature selection is generally considered a weak form of importing
supervision to a learning system, whereas applying labeled data would consti-
tute a strong form of supervision. One could approach this as a classification
problem, by providing a number of manually classified samples to the system.

Instead, in this case we apply a theory-driven perspective for selecting the fea-
tures, namely the PERMA vocabulary, and then apply an unsupervised learning
method, namely the self-organizing map for exploring the outcome. By providing
prior knowledge in the feature selection stage the researcher is able to give the
learning system information regarding the properties of interest, without having
to determine exactly what the outcome should be regarding any specific case,
such as a document or a collection. The fact that PERMA vocabulary has been
collected already by researchers allows the ready use of unsupervised clustering
and visualization methods for any new corpora as well. This suits well in a text
mining scenario, where the interest is in finding new, surprising phenomena in
the direction of interest of the researcher.
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1.4 Preprocessing Morphologically Highly Complex Languages

From a morphological point of view, English is a rather simple language. This
means that methods that are based on lists of keywords (e.g. [24]) can rely on
the idea that there are only a small number of different surface forms of the same
basic form or stem. On the other hand, many other languages have more com-
plex morphology. For instance, in Finnish every noun has about 2,000 different
inflections and every verb more than 10,000. In addition to this, compounding
is very commonplace. Common multi-word phrases in English are often trans-
lated as compounds in Finnish. The outcome of the complex morphology is that
Finnish has billions of surface word forms which cannot be simply categorized
and listed. Fig. 1 shows the seven (out of 99) most common forms of ’merkitys’
(meaning) in our essay corpus. In order to deal with the problem of varying word
forms, we have relied on the methodology originally developed by Koskenniemi
[12]. We used an open-source implementation of the model [13] to process our
corpus. The Omorfi tool transformed each inflected word into its basic form. Due
to ambiguities and differences in subtle meanings, the process does not preserve
all information when language borders are crossed but details cannot be dealt
with here.

Word Translation Freq.

merkitystä meaning (as a partial object) 142
merkitys meaning 101
merkityksen of the meaning 65
merkityksellistä of the meaningful 41
merkityksiä meanings (as a partial object) 36
merkityksellisyyden of the meaningfulness 34
merkityksellisiä meaningful (plural, as a partial object) 32
... ... ..

Fig. 1. Examples of different forms for the word ’merkitys’ (meaning) in Finnish with
the frequency count in our essay corpus

2 PERMA Profiles of Different Genres

One can compute a PERMA profile for a document by counting the frequencies
of the PERMA words in each component. Our hypothesis was that the PERMA
profiles would be different for text corpora that represent different genres. We
chose the following kinds of corpora: news feeds from Reuters and Finnish news
agency STT, Wikipedia articles on topics that start with the letter A, everyday
conversations collected at UC Santa Barbara [2], proceedings of European par-
liament from 1996 [10], English translation of the fairy tales by Grimm brothers,
corporate e-mails messages sent in Enron. The Enron corpus was divided into
three parts to check whether the inter-corpus variation is smaller than intra-
corpus variation. The result of the PERMA profile analysis is shown in Fig. 2.
The results indicate that the PERMA vocabulary is able to identify differences
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SantaBarbara

Grimm

Europarl

Reuters

WikipediaA

ENRON2

STT

ENRON1

ENRON3

Fig. 2. On the right, relative PERMA profiles for different corpora. Enron e-mails show
high values on Positivity and Achievement but low on Meaning, whereas Europarl and
Wikipedia are low on Positivity but high on Meaning. On the left, the same PERMA
profile information is used to project the corpora on a SOM.

among the document collections in a meaningful and informative way. Firstly,
the profiles are markedly different for the various corpora. Secondly, the results
clearly make sense.

For instance, the news corpora are markedly negative in their content. On the
other hand, the Reuters news corpus also scores high on Relationships whereas
the Finnish STT scores very high on Achievement. The latter seems to be due
to the large proportion of sports news within the STT corpus.

The European parliament corpus obtains high scores on the Meaning dimen-
sion and low on Achievement, which may raise a question regarding whether the
parliament is concerned enough about achieving any concrete goals.

In a striking contrast are the Enron discussions, which show low Meaning
but high Achievement. The emphasis on achievement of concrete goals can be
considered natural in a competitive corporate context. However, one is left to
wonder whether the low proportion of meaningfulness might have been indicative
of upcoming problems, but this is left here as a question for future exploration.

The PERMA analysis over language borders requires further attention. It
is probable that phenomena like linguistic polysemy and cultural contextuality
influence the results in such as way that fine-tuning of the methodology is neces-
sary. For instance, the four most common positive PERMA words in Finnish in
the STT news articles were “voittaa” (to win), “voitto” (victory), “edustaa” (to
represent), and “onnistua” (to succeed). This example reminds that the nature
of the corpora needs to be carefully concerned.

3 Self-Organizing Map of Sentiment Words

In the second case study, we explored the possibility of extending the PERMA
vocabulary. This goal was motivated further by the observation that translating
the vocabulary to another language necessarily introduces errors due to am-
biguity, and is likely to result in an incomplete feature set for that particular
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language. Thus, research on automatic or semi-automatic means of complement-
ing the feature set is important.

The SOM-based process that we suggest is outlined as a diagram in Fig. 3.
The sentiment word list by Hu and Bing [7] was used as an external vocabulary.
In the experiment, we used the WikipediaA corpus for calculating the context
statistics. We formed word-word context matrices so that each element indicates
how many times a sentiment word has appeared in the WikipediaA corpus in
the vicinity of a context word. The context words were chosen to first exclude
the 100 most common words and then to include the next 2000 words in the
order of frequency.

The context window was chosen to be seven words to each direction. This
can be characterized as an intermediate choice. Very short context windows
emphasize syntactic aspects of the words and document-word matrices work
relatively best when the documents are different enough from each other. The
resulting matrix was analyzed using the self-organizing map algorithm, presented
next. The Self-Organizing Map (SOM) has been used to create word clusters
automatically from statistical features obtained from corpora [16,6]. The SOM
algorithm produces a topological ordering by mapping the input space to an
array of nodes. Each node of a SOM consists of a prototype vector mi of the
same dimension as the input vectors xi. The nodes are typically organized in the
form of a lattice. In an organized map, each input is associated with a prototype
in a specific location. The basic idea is that if two input are similar they tend
to be close to each other on the map. The SOM is rather similar to clustering
algorithms but does not produce explicit clusters. It rather creates a diagram
that aims to “mirror” the high-dimensional data (usually) in two dimensions as
faithfully as possible.

In this case, as the data consists of statistical information on the contextual
use of words, the end result is map where similar words are close to each other.
In the result, several cases may be discussed qualitatively. The positive achieve-
ment words (marked by “A+”) have been divided into two clusters in the upper
and lower left side of the map. Some nearby words such as “progressive” and
“renowned” could clearly be considered candidates for extending the A+ lexicon.

Fig. 3. The process of using the SOM in extending the coverage of a theory-based
vocabulary
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Fig. 4. A map of sentiment words based on context statistics obtained from the
WikipediaA corpus. The words that belong to the PERMA lexicon are marked with a
label that indicates the category (see Sec. 2 for an explanation).
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The number of Relationship (R) and Engagement (E) words in the Hu and Bing
word list [7] appeared to be low. The Meaning (M) words form a clear single
cluster with the exception of the word “patriotic”. These kinds of findings can
potentially be used to re-evaluate the PERMA lexicon.

4 Conclusions and Discussion

We have applied a five-dimensional PERMA framework and associated vocabu-
lary on performing sentiment analysis on text collections in two different ways.

In the first case, several text collections from different genres were analyzed
and their differences observed. We were able to show that the PERMA profiles
of the corpora fit with the intuitions related to the types of genres. In addition,
the PERMA analysis of the corpora seemed to raise interesting questions such
as did Enron fail because it did not concern itself with meaning, or does EU
parliament concern itself relatively too much on overall meaning and too little
on the achievement of concrete goals to be successful. Based on this it seems
that the PERMA framework is promising on the level of corpora and able to
highlight interesting differences in the respective discourses.

Our initial objective was to understand more closely the processes that the
students go through during life-philosophical lecturing. Due to the challenges
related to translating from one language to another, as well as the high number
of different word forms in Finnish we found that it would be advantageous to
attempt to complement the initial PERMA vocabulary by additional words. We
then explored the possibility of doing so using the Word Category Map method-
ology, where lexical relations of words were used for ordering both PERMA
vocabulary and a set of additional words on a two-dimensional display. The
ordering is able to identify new candidates for consideration to be added as
PERMA features. A fully automatic supervised learning approach could also be
used but, on the other hand, the map provides a valuable view on the relational
structure of the conceptual space.

Once the feature set is rich enough we expect to be able to extend the PERMA
analysis to the full analysis of the PERMA profiles of individual student essays.
Due to the complex nature of the philosophical and psychological contents and
cognitive and social processes, reductionistic research methods are not easily
applicable. It seems, however, that text mining and visualization methods can
support traditional qualitative analysis [9]. Development of such tools is useful
since manual analysis of student essays is usually limited to rather small numbers
of cases. In our case, a qualitative analysis of 304 essays would be a considerable
human effort but still manageable. The text mining approach, on the other hand,
scales up to thousands and even millions of documents.

Interesting quantitative results can be gained when large corpora are avail-
able, collected, e.g., from social media with additional profile information [20].
A lexicon-based approach can be expanded to include sentence-level analysis to
take into account context effects and to improve the precision of the analysis [23].
In this paper, we consider some of the problems and solutions related to crossing
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language borders. One direction is to study more carefully the philosophical and
practical aspects related to multilingual and multicultural studies in this area.

Our longer term goal is develop methodology for the text mining and quan-
titative analysis of texts in the framework of positive psychology. Substantial
developments in this field have taken place recently (cf. [20]), partly based on
earlier developments (cf., e.g., [24]). Our intention is to experiment with differ-
ent statistical machine learning and neural-network methods and to facilitate
approaches for analyzing corpora written in other languages than English.

Acknowledgments. The authors are highly grateful to Professor Martin Selig-
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Abstract. This paper presents SOMbrero, a new R package for self-
organizing maps. Along with the standard SOM algorithm for numeric
data, it implements self-organizing maps for contingency tables (“Ko-
rresp”) and for dissimilarity data (“relational SOM”), all relying on
stochastic (i.e., on-line) training. It offers many graphical outputs and
diagnostic tools, and comes with a user-friendly web graphical interface,
based on the shiny R package.

Keywords: Self-Organizing Maps, R, Dissimilarity, Korresp.

1 Introduction

Self-Organizing Maps (SOM), introduced by Teuvo Kohonen [1], are a popular
clustering and visualization algorithm. While originally intended for data con-
sisting exclusively of numeric vectors, this prototype-based learning algorithm
has been extended to handle other types of data.

One of the oldest attempts to generalize the SOM algorithm to non numeric
data is the so-called “Korresp” algorithm (and related methods [2]), that extends
standard correspondence analysis: this approach can be used to cluster rows and
columns of a contingency table (i.e., values of two categorical variables that are
jointly observed) on a topological map. More recently, several extensions of the
SOM algorithm to non numeric data have been proposed. The median principle
has been used to handle data described by dissimilarity matrices: [3] uses it by
replacing the standard computation of prototypes by an approximation in the
original data set. Since this approach is very restrictive, it has been improved in
[4,5,6] for data described by a kernel, in [7,8] for data described by a dissimilarity
matrix and in [9,8] for data described by several dissimilarity matrices or several
kernels. In these works, the prototypes are no longer numeric vectors of the input
space as in classical SOM, but convex combinations of the observations in a
Hilbert or a pseudo-Euclidean vector space. The dissimilarity versions are called
“relational SOM” and the kernel versions “kernel SOM”. It should be noted
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that relational SOM is a generalization of kernel SOM when the dissimilarity
that describes the data is not Euclidean [8].

Several implementations of the SOM algorithm exist in different mathemati-
cal/statistical softwares, most on them usable only for numeric data. The SOM
Toolbox1 is a Matlab library implementing many variants of SOM for numeric
data, with graphical outputs, user interfaces and implementations of other clus-
tering algorithms. It is partially based on the original implementation SOM PAK

[10]. SAS Entreprise Miner (current version 12.3) features an implementation of
SOM for numeric data. Also, the SAS programs by Patrick Letremy2 implement
standard SOM and several extensions, including SOM for contingency tables as
described in [2].

R is one of the most popular statistical software environments, and several R
packages implement variants of the SOM algorithm:

– class (current version 7.3-9, last updated in August 2013) offers a crude
implementation of the SOM algorithm for numeric data with batch training;

– som [11] (current version 0.3-5, last updated in April 2010) implements a two-
step batch algorithm for numeric data, with basic plotting of the resulting
map;

– popsom [12] (current version 2.3, last updated in October 2013) is built on
the som package, with additional diagnostic tools and visualizations;

– kohonen [13] (current version 2.0.14, last updated in December 2013) im-
plements the standard SOM for numeric data as well as “super-organized
maps”, in which the observed variables can be separated into distinct
“layers”, and two versions of supervised SOM, X-Y fused SOM and Bi-
Directional Kohonen maps, in which class information is available for all ob-
servations in addition to numeric coordinates. The training is done stochas-
tically and several plot options are available;

– yasomi [14] (current version 0.3, last updated in March 2011) implements
batch algorithms for standard SOM, relational SOM and kernel SOM (for
data consisting of pairwise evaluations of a positive semi-definite kernel func-
tion). It features data driven construction methods for the maps, and several
plotting options.

In the present article, we describe a new R package for SOM: SOMbrero. It
implements stochastic versions of the SOM algorithms for numeric data, dissim-
ilarity data, and for data described by contingency tables. To our knowledge,
SOMbrero is also the R package that proposes the largest number of diagnostic
tools (graphics, super-classes and quality measures) designed to help the user un-
derstand the outputs of the algorithm. The package uses the S3 object-oriented
standard. Its current version (version 0.4-1, last updated in November 2013) is
available on R-Forge at http://sombrero.r-forge.r-project.org/. It runs

1 Current version 2.1, last updated in December 2012, available at
http://research.ics.aalto.fi/software/somtoolbox/

2 Current version 9.1.3, last updated in December 2005, no longer maintained, avail-
able at http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme

http://sombrero.r-forge.r-project.org/
http://research.ics.aalto.fi/software/somtoolbox/
http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme
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on R 3.0 or higher, depends on packages including wordcloud, scatterplot3d,
igraph and e1071, and comes with a shiny web graphical user interface (ver-
sion 0.1) that can be tested at http://shiny.nathalievilla.org/sombrero/
or directly loading the package into R and running the command:

sombreroGUI()

The rest of this article is organized as follows : Section 2 presents the main
features of SOMbrero. Section 3 describes the web graphical user interface and
Section 4 gives short examples of applications to various types of data.

2 Main Features of SOMbrero

This section describes the main features of SOMbrero: the kind of data the
package is able to handle, the available plots and the other diagnostics tools.

Three Types of Self-Organizing Maps : The SOMbrero package currently supports
three types of stochastic training algorithms, each designed for a specific type
of data : “standard” SOM for numeric data, “Korresp” for contingency tables,
and “relational SOM” for dissimilarity data.

Numeric SOM. When the data are numeric vectors, SOMbrero uses the stan-
dard stochastic SOM algorithm [1], which iterates over two steps. In the af-
fectation step, a single observation is randomly drawn and affected to the one
prototype it is closest to (in terms of Euclidean distance, or some other chosen
distance, in the input space). The representation step then updates all proto-
types, moving the closest unit and its neighbors towards the drawn observa-
tion. The algorithm converges empirically towards a minimum of the extended
within-class variance. In the particular case of a finite data set, [15] showed that
the SOM algorithm trained with a fixed neighborhood radius is equivalent to a
gradient-descent minimizing a cost function equal to the extended within-class
variance. The stochastic version of the algorithm is preferred over the batch ver-
sion as it generally provides a better organization, whatever the initialization,
at a comparable computational cost [16].

Korresp. When the data consist of a contingency table for two categorical
variables, classical correspondence analysis performs a weighted principal com-
ponents analysis, using the χ2 distance simultaneously on the row profiles and
on the column profiles. The same principle is used in the Korresp algorithm [2],
which extends SOM to contingency tables.

Relational SOM. SOMbrero also implements a stochastic version of relational
SOM, described in [8], which is an extension of SOM to dissimilarity data. This
is useful when the data are not naturally described by a fixed set of numerical
attributes (e.g. categorical variables or relations between objects), but when a
measure of resemblance between observations (i.e., a similarity or a dissimilarity)
can nevertheless be constructed. In this approach, prototypes are expressed as
a symbolic convex combination of the observations that is justified by a pseudo-
Euclidean framework [7].

http://shiny.nathalievilla.org/sombrero/
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Graphical Outputs : The main advantage of SOM over other clustering algorithms
is that it combines clustering with a nonlinear projection since the clusters are
organized on a grid, while preserving the topology of the original data. SOMbrero
offers a wide range of plots aimed at giving a comprehensive overview of the
resulting clusters.

All available plots are obtained using a single function plot.somRes (or
plot.somSC if the visualization must be combined with a super-clustering as
described below) and just two arguments handle the type of the output plot in
a handy way: what and type. Argument what must be one of: obs for plotting
a graphic based on the original observations, prototypes for plotting a graphic
related to the prototypes, energy for plotting the evolution of the extended
within-class variance during training and add for combining the clustering with
one or several additional variables. Argument type sets which type of graphic
is to be plotted (colors, pie charts, bars, distances...). Table 1 summarizes all
available graphics for the three implemented SOM algorithms.

Table 1. Summary of plots available in SOMbrero 0.4-1

type
numeric korresp relational

obs proto add obs proto add obs proto add

color x x x x x
3d x x
lines x x x x x x

barplot x x x x x x
radar x x x x x x
boxplot x x x
poly.dist x x x
umatrix x x x

smooth.dist x x x
mds x x x

grid.dist x x x
hitmap x x x
names x x x x x
words x x
pie x x

graph x x

Plot types fall into two main categories: they either display the distances
between prototypes (only when what="prototypes"), or the actual values,
for each cluster, of the prototypes, observations or additional variables (for
what="prototypes", what="obs" or what="add", respectively).

The plots that display the values (values of the prototypes, or average values
of the observations or additional variables) are listed below:

– color shows the value of a single variable using a gradient of colors;
– 3d is similar to color but shows the values as a three-dimensional surface

plot;
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– lines shows the values of all variables together, with lines;
– barplot is similar to lines but uses vertical bars and is limited to 5 variables

at most;
– radar is similar to lines but uses radar plots;
– boxplot is similar to lines but uses boxplots and is limited to 5 variables at

most. This option is used when the user wants to visualize the distribution
of the variables and not only their means.

The plots that display distances between prototypes are listed below:

– poly.dist represents the distances between neighboring prototypes with
polygons plotted for each cell of the grid [17]. The smaller the distance be-
tween a polygon’s vertex and a cell border, the closer the pair of prototypes.
The polygons are filled with colors indicating the number of observations in
each cell;

– umatrix is the well known “u-matrix” [18] that plots the grid and fills the
cells with colors according to the mean distance between a prototype and
the neighboring prototypes;

– smooth.dist depicts the average distance between a prototype and its neigh-
bors using smooth color changes;

– mds plots a two-dimensional Multi Dimensional Scaling projection of the
prototypes;

– grid.dist plots all two-way grid distances (computed on the grid) against
the corresponding prototype distances (computed in the input space).

Other Plots Are also Available: type="hitmap" displays the distribution of
the observations on the map with rectangles; each cluster is represented by a
rectangle with an area proportional to the number of observations it contains,
[19]. Using type="names" or type="words" (the latter only available for ad-
ditional variables) displays a grid of word clouds, either of observation names
or of words related to the observations of each cluster. Finally, type="pie" or
type="graph" can be used to display pie charts (for an additional categorical
variable) or graphs (with nodes corresponding to the observations that have been
clustered on the map).

Diagnostic Tools : SOMbrero offers additional diagnostic tools: super-clustering
(the result of which can be plotted on most graphical outputs) and quality
measures. The SOM algorithm often results in a large number of classes, which
is not very handy for interpretation. Therefore, a common practice is to run
an ascending hierarchical clustering algorithm on the prototypes of the trained
map. SOMbrero implements this in function superClass. A dendrogram and a
scree-plot can be drawn using function plot.somSC, which can guide the user’s
choice.

Furthermore, apart from the energy plots, SOMbrero offers two measures of
quality for a trained SOM, through function quality [20]:

– the topographic error, which is the average frequency (over all observations)
with which the prototype that comes second closest to an observation is not
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in the direct neighborhood (on the grid) of the winner prototype. It is a real
number between 0 and 1, a value close to 0 indicating good quality.

– the quantization error, which is the distance (in the input space) of obser-
vations to their assigned prototype, averaged over all observations. It is a
positive real number, with a value close to 0 when projection quality is good.

3 Graphical User Interface

SOMbrero comes with a user-friendly graphical interface, which makes most
of its options available in a few clicks, without resorting to the command line.
The interface is programmed using the R package shiny [21]. It can be tested
using a simple web browser (some of the features may not work with Internet
Explorer or Chrome; Firefox must be preferred), and can be accessed on-line at
http://shiny.nathalievilla.org/sombrero or in R using the command

sombreroGUI()

It is shown in Figure 1.

Fig. 1. Screenshot of the SOMbrero web user interface

The interface consists of seven panels: the left hand side panel allows the user
to choose the type of SOM and gives general information and references. An
“Import Data” panel is used to import a data file in csv or text format, and to
set formatting options for the importation. If the data are properly imported, a
preview table is shown in this panel. The “Self-Organize” panel is used to select
the SOM options and train the algorithm. The “Plot Map” panel provides the
different graphical outputs implemented in SOMbrero. The “Superclasses” panel
is used to compute and to display super-classes. The “Combine with external
information” panel can be used to import additional data and to display them
on the map and thus to combine the results of SOM with external information.
Finally, the “Help” panel contains indications about how to use the interface.

http://shiny.nathalievilla.org/sombrero
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4 Examples

SOMbrero also provides five vignettes (documentation files accessible from
within the package) that detail the use of the package for different types of
data. Three datasets, provided with SOMbrero, are used to illustrate the nu-
meric case, the Korresp case and the relational case. The present section provides
a few examples of the analyses that can be performed using SOMbrero; we refer
the reader to the package’s vignettes for comprehensive illustrations.

Numeric SOM: the iris data set. The numeric SOM case is illustrated with
the Fisher’s famous iris dataset [22]. The following two command lines are used
to train the SOM and assess the quality of the map3:

iris.som <- trainSOM(iris[ ,1:4])

quality(iris.som)

# $ topographic $ quantization

# [1] 0.06 [1] 0.1933871

The results of the algorithm can be combined with the categorical variable
Species, plotted as pie-charts in Figure 2. This graphic shows a good orga-
nization and separation of the different species on the map.

plot(iris.som , what= "add", variable= iris$Species)

Fig. 2. Pie charts of Species for a SOM trained on the four numeric variables of the
iris dataset

Korresp: French Presidential Election Data. The second example illustrates the
Korresp algorithm using the presidentielles2002 data set4. The data con-
sist of a contingency table containing the number of votes for each region

3 The values of these quality measures may vary between maps because of the stochas-
tic nature of SOM training procedure.

4 Source: “Ministère de l’Intérieur, France”, http://www.interieur.gouv.fr/
content/download/1789/18734/file/Presidentielle-2002-departements.zip

http://www.interieur.gouv.fr/content/download/1789/18734/file/Presidentielle-2002-departements.zip
http://www.interieur.gouv.fr/content/download/1789/18734/file/Presidentielle-2002-departements.zip
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(département, in rows) and each candidate (columns) in the first round of the
2002 French presidential elections.

The names plot shows the codes of the départements and the names of the
candidates in their assigned cells, as in Figure 3. Departments with similar vote
results are plotted close together, along with the candidates most representative
of their voting profiles:

presi.som <- trainSOM(presidentielles2002 ,

type= "korresp")

plot(presi.som , what= "obs", type= "names")

The top left side of the map corresponds to the extreme right candidates, and
corresponding “départements”, that attracted much attention during these elec-
tions. More information about the interpretation of these results is given in the
package’s corresponding vignette.
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Fig. 3. Names plot for a Korresp analysis of French presidential elections

Relational SOM: Data Set “Les Misérables”. Data set lesmis5, is the co-
appearance network of the characters in Victor Hugo’s novel “Les Misérables”.
A dissimilarity matrix has been derived from this graph (using the shortest path
lengths), which can be used as input for relational SOM.

Figure 4 shows a projection of the original graph of characters onto the SOM
grid: each node in this figure represents a cluster and has an area proportional

5 Source: http://people.sc.fsu.edu/~jburkardt/datasets/sgb/jean.dat

http://people.sc.fsu.edu/~jburkardt/datasets/sgb/jean.dat
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to the number of characters classified inside. The edge widths are proportional
to the number of connections between the characters of the two clusters. Colors
highlight superclasses computed by hierarchical clustering on the SOM proto-
types. The SOM clustering, the super classes and the graph of Figure 4 are
obtained with just three command lines:

lesmis .som <-trainSOM(dissim.lesmis,type="relational")

lesmis .SC <- superClass(lesmis.som , k=6)

plot(lesmis.SC , what="add", type="graph", var=lesmis)

Fig. 4. Projection of the graph of characters’ links on a relational SOM grid

5 Conclusion

The SOMbrero R package implements on-line algorithms of SOM for three types
of data (numeric vectors, contingency tables and dissimilarity data), and provides
multiple diagnostic tools, graphical outputs, as well as a handy graphical user
interface. Further versions intend to include support for other types of data
(multiple categorical data, multiple dissimilarity SOM), and to add training
options, such as different grid topologies and weighting of the observations.
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Abstract. In this work we present a modified Nonnegative Matrix Fac-
torization (NMF) method for learning a mixture of local SOM models.
The proposed method approximates a data point with a linear combi-
nation of its k-nearest neighbor prototypes. This allows obtaining a low
quantization error and at the same time keeping the interpretability of
the prototypes. The results of the new method are compared with those
obtained using non-negative least squares, NMF and SOM, using four
benchmark data sets. Two metrics are used to assess the performance of
the different approaches. The proposed k-nn NMF method obtained the
lowest relative local quantization error, while keeping a global quantiza-
tion error similar to the best alternative methods.

Keywords: Self Organizing Map, Nonnegative Matrix Factorization, k-
Nearest Neighbors, Linear Mixture, Relative Quantization Error.

1 Introduction

The Self-Organizing Map (SOM) is a popular unsupervised neural network
method widely applied to data exploration and clustering [7,9]. Let X ∈ Rm×n

be a data matrix, where m is the dimension and n the number of samples; and let
W ∈ Rm×r be a dictionary matrix, where r represents the number of prototypes
and each column vector is defined as wi = [w1, ..., wm]Ti . The best matching unit
(BMU) for a given input x is defined as follows:

i∗ = arg min
i=1,...,r

= ‖x−wi‖2 . (1)

The SOM performs a vector quantization, representing the input data by
a finite set of prototypes (models). In addition, the prototypes are associated
with the nodes of an output grid (usually 2D), with the aim of preserving the
topographic relationships of the data. SOM gives visualization and topological
interpretability to the underlaying structure of the data [9]. The quantization
error (QE) of an input vector is the Euclidean norm of the difference of the input
vector and the BMU, ‖x−wi∗‖. As the sum of the squared QEs is directly

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 229
Vector Quantization, Advances in Intelligent Systems and Computing 295,
DOI: 10.1007/978-3-319-07695-9_22, c© Springer International Publishing Switzerland 2014
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minimized by the k-means algorithms, but not by SOM, the latter algorithm
usually gets higher QE than k-means. Some exceptions to this rule have been
studied by Kohonen [10]. SOM may obtain a lower QE than k-means only if the
number of training samples per model is small and if the effective dimensionality
of the data vectors is sufficiently high [10].

In [8], Kohonen extended the use of SOM, by approximating the input data
more accurately using an optimized linear mixture of prototypes, instead of using
a single BMU. Kohonen’s approach employs a mixture of any subsets of models
(prototypes), i.e., it does not consider the topological structure of the data. As a
consequence the topological interpretability of the fitting is lost. Kohonen’s linear
mixtures of SOM models is useful for certain application such as text analysis,
where the task is to find out whether a text comes from different sources. We
are interested here in local approximations of data points using their k-nearest
neighbor prototypes. A possible application is modeling and predicting complex
time series. In [17,18] the SOM is trained to minimize the prediction error and
local models are used to improve its performance.

In this work, we introduce a method to represent data samples by local linear
combinations of SOM prototypes based on Nonnegative Matrix Factorization
(NMF). NMF has been successfully applied to clustering and dimensionality
reduction tasks [19]. This technique finds a lower rank approximation of a non-
negative matrix X, such as

X ≈ WHT , (2)

where W is defined as the dictionary matrix and H is the coefficient matrix.
The dictionary and coefficient matrices are element-wise nonnegative. The non-
negative constraint forces the decomposition to be purely additive, part-based
and sparse, achieving a compact representation of the data. NMF is related to
clustering techniques such as K-means [3] for nonnegative data, and to dimen-
sionality reduction methods such as Principal Component Analysis (PCA) [21].
As we know, PCA finds global and dense decompositions that might be hard to
interpret. NMF enhances interpretability due to the nonnegativity constraint,
which is crucial in some real-world applications such as: image pixel values,
chemical compound concentration, web patterns, text analysis, just to name a
few.

A related work is the Sparse Coding Neural Gas (SCNG) [11,12], where over-
complete data representations are learned. In a first step, the original neural gas
algorithm is combined with Oja’s rule [16], in order to represent each training
sample by a single basis vector. Then this algorithm is generalized, by using
Orthogonal Matching Pursuit to represent each training sample by a linear com-
bination of basis elements. The SCNG algorithm was applied to natural images,
obtaining band-pass like basis elements localized in space and orientation.

In this work, we introduce a method which represents the data point by em-
ploying a subset of prototypes of the dictionary matrix, which are the k-nearest
neighbor prototypes in the data space. This approach keeps the quality of SOM
of preserving the structure of the data, and gives intuitive descriptions of the
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patterns by using nonnegative constraints. These properties allow us to interpret
the resulting representation of the data points.

The remainder of this paper is organized as follows: In section 2, a background
on NMF and the linear mixture of SOM models is presented. In section 3, the
proposed method is introduced. In section 4, the results using four benchmark
data sets are shown. Finally, in section 5 the conclusions are drawn.

2 Nonnegative Matrix Descomposition

In this section a brief background on nonnegative matrix decompositions is pro-
vided.

2.1 Linear Mixture of Models

In [8] Teuvo Kohonen introduced a method to describe an input pattern as a
mixture of SOM models (prototypes). This method uses the prototypes deter-
mined by SOM as a fixed dictionary matrix W ∈ Rm×r where r is the number of
prototypes and m is the dimension of the input pattern. A matrix of coefficients
H ∈ Rn×r , where n is the number of samples, is adjusted in order to find linear
mixtures of models that reduce the fitting error (3). Both W and H are nonneg-
ative matrices. In practice, a separate optimization procedure is performed for
each data sample. The objective function to minimize is:

E =
∑
x

‖x−Wh‖22 , (3)

where x ∈ Rm is a column vector corresponding to a given data sample, h =
[h1, h2, ..., hr]

T is a column vector of coefficients to be adjusted. A least square
optimization is done for each data point which corresponds to a quadratic op-
timization problem based on the Kuhn-Tucker theorem [3]. This may be solved
by using the Matlab1 function lsqnonneg.

2.2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization [19] provides a low rank approximation of a
nonnegative matrix of data X ∈ Rm×n, where each row represents a feature
and each column represents an observation or sample. Let r be an integer such
that r < min{m,n}. This method finds two nonnegative matrices: W ∈ Rm×r

which corresponds to a dictionary matrix and H ∈ Rn×r which is the coefficient
matrix. The NMF approach solves the following optimization problem:

min
W,H

fr(W,H) ≡ 1

2

∥∥X −WHT
∥∥2
F
, (4)

subject to W,H ≥ 0 , i.e., W and H are element-wise nonnegative, ‖·‖F denotes
Frobenius norm, and the index r in fr stands for the number of dictionary
elements used for obtaining a compact representation of the data matrix X .
1 Available on: http://www.mathworks.com/

http://www.mathworks.com/
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2.3 Sparse Nonnegative Matrix Factorization

In order to achieve sparsity in the solution of eq. (4) , the L1-norm regularization
[4,6] in the H coefficient matrix can be used:

min
W,H

1

2

⎡⎣∥∥X −WHT
∥∥2
F
+ β

n∑
j=1

‖H(:, j)‖21

⎤⎦ , (5)

where β is the parameter control of the trade-off between the accuracy of the
approximation and the sparseness of H . Note that for β = 0 the formulation is
equal to eq. (4), while a large value of β implies high sparseness.

3 K-Nearest Neighbor Nonnegative Matrix Factorization

Here we propose a method called k-nearest neighbor Non-negative Matrix Fac-
torization (k-nn NMF), where the k-nearest neighbor prototypes of each sample
are used to learn a mixture of local models. The set of prototypes is determined
previously by using conventional SOM. These prototypes are kept fixed and used
as the dictionary matrix W in the training procedure. The objective function is
as follows:

E =
∥∥X −WST

∥∥2
F
, (6)

where X ∈ Rm×n is the data matrix, W ∈ Rm×r is the fixed dictionary matrix
(or matrix of SOM prototypes), S = H ⊗ Γ , where ⊗ stands for the point-
wise multiplication; and H ∈ Rn×r is the coefficient matrix that weights the
prototypes in the linear combination. Γ is a mask matrix having 1′s only for the
k-nearest neighbor prototypes of each sample. Usually, an Alternate Nonnegative
Least Square [5] is used to solve the optimization problem in NMF to adjust both
W and H . But, in our case a multiplicative update rule was used [13], in order
to adjust the matrix H by solving:

min
H≥0

∥∥X −WST
∥∥2
F
,

while the dictionary matrixW and the mask matrix Γ are fixed. The update
rule for S = H ⊗ Γ is obtained as follows:

S ← S − ηH∇fH(W,S),

= S − S

∇+
· (∇+ −∇−)

= +S · ∇−
∇+

= S ⊗
(
WTX

)
�
(
WTWS

)
, (7)

where ∇+ = WTWS, ∇− = WTX and ηH = S
∇+

. The notation � stands for
the point-wise division. In our algorithm, a threshold of the error variance was
used as a stop criterion.

The algorithm is summarized as follows:
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Fig. 1. (a) A didactic example of the Simple Cluster data set with 16 SOM prototypes,
the selected data point is represented by a red dot at the top left cluster. (b) The
coefficient column vector h obtained for each method : lsqnonneg, NMF, Sparse NMF
and k-nn NMF, from top to bottom. (c) SOM topology (magnitudes of coefficients
are shown in gray scale) of the k-nearest neighbor used for reconstructing the selected
data point, the darker the node the higher its relevance in the linear combination. The
colored cells in the SOM map represent the k-nearest prototypes in the data space.

1. Execute the SOM algorithm to obtain a dictionary matrix W (set of proto-
types).

2. Initialize randomly the elements of the nonnegative coefficient matrix H in
the range [0, 1].

3. Compute the mask matrix Γ , by finding the k-nearest neighbor prototypes
for each data point x.

4. Solve minH≥0

∥∥X −WST
∥∥2
F

(a) Update the matrix S according to eq. (6),
(b) t ← t+ 1.
(c) If t > t

max
or the stop criterion is reached go to step 5, otherwise go

back to step 4.
5. End
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In Fig. 1 a didactic example is shown where the different methods are compared
in a data set having four clusters. In Fig. 1(a) a red dot in the top left cluster rep-
resents a selected data point. Fig. 1(b) shows the coefficient vectors obtained to
represent the data point using four different methods (lsqnonneg, NMF, Sparse
NMF and k-nn NMF). In Fig. 1(c) a SOM map is shown where the colored cells
represent the k-nearest prototypes to a selected point. The k-nn NMF gives a
local approximation of the data point using the k-nearest neighbor prototypes
to represent it. With k = 4 the nearest neighbor prototypes are 7, 11, 12 and 15.
Note that although the lsqnonneg and sparse NMF obtained sparse representa-
tions, they included prototypes that are far away in the map, and without using
the closest prototype (BMU).

4 Results

In order to compare the different methods previously mentioned (SOM, lsqnon-
neg, NMF, Sparse NMF and k-nn NMF), four benchmark clustering data sets
were used. The first data set is Simple Cluster which consists of four two-
dimensional Gaussian distributions with 1000 samples. The next three data sets
are taken from [20]: Engy Time which consists of 2 two-dimensional overlapped
Gaussian distributions with 4096 samples; Two Diamonds which consists of 2
two-dimensional diamond shape distributions with 800 samples; and L-sun which
consists of three distributions with different variances and inter cluster distances
with 400 samples.

For comparison purposes two metrics are used. The first one is associated
with the quantization error which allows measuring the quality of the L-2 norm
reconstruction. The metric uses the following expressions:

SCwithin =
∑
x

∥∥x−Whc(x)

∥∥2 , (8)

and
SCtotal =

∑
x

‖x− x̄‖2 , (9)

where W is the dictionary matrix, hc(x) is the coefficient column vector belonging
to the coefficient matrix H which better approximates the data point x, and x̄
is the mean of the data points. Thus, the relative quantization error [1] (RQE)
is defined as

RQE =
SCwithin

SCtotal
. (10)

In addition, another metric is defined in order to measure the quantization
error when using the k-nearest neighbor prototypes to approximate every data
point x. This allows measuring the quality of the local reconstruction. This
metric is defined as follows:

SCloc =
∑
x

1

|V(c(x))|

∥∥∥∥∥∥x−
∑

k∈V(c(x))

wkhc(x)

∥∥∥∥∥∥
2

, (11)
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Table 1. Mean (Standard Deviation) of the Relative Quantization Error and Relative
Local Quantization Error using 5 runs for: Simple Cluster, Engy Time, Two Diamonds
and Lsun data sets, with k = 4 nearest neighbor prototypes.

Data Set Metric SOM lsqnonneg NMF sNMF k-nn NMF

Simple Cluster
RQE

0.0076 4.4871e-4 4.4872e-4 0.0024 9.3523e-4
(5.6304e-6) (4.5444e-5) (4.5439e-5) (2.1923e-5) (1.3659e-4)

RQEloc

- 0.0252 0.0532 0.0240 2.3381e-4
- (9.7696e-4) (7.181e-4) (3.2107e-4) (3.4148e-5)

Engy Time
RQE

0.0092 5.8137e-4 5.8137e-4 0.0059 8.7729e-4
(3.0939e-7) (8.3724e-6) (8.3724e-6) (2.1399e-5) (2.4427e-5)

RQEloc

- 0.1216 0.1127 0.0971 2.1932e-4
- (0.0035) (3.5757e-4) (7.0013e-4) (6.1067e-6)

Two Diamonds
RQE

0.0085 1.8693e-4 1.8693e-4 0.0036 5.2390e-4

(4.0711e-5) (1.0951e-5) (1.0951e-5) (2.3328e-4) (4.5007e-5)

RQEloc

- 0.1096 0.0758 0.0561 1.3098e-4
- (0.0032) (0.0011) (0.0051) (1.1252e-5)

Lsun
RQE

0.0065 3.8397e-4 3.8397e-4 0.0026 5.4354e-4
(3.7278e-5) (3.5907e-5) (3.5908e-5) (2.4131e-5) (2.4881e-5)

RQEloc

- 0.321 0.394 0.0324 1.3588e-4
- (0.0037) (0.0011) (0.0043) (6.2202e-6)

where wk is the k-th nearest neighbor prototype of the data point x, and V is
the set of the k-nearest neighbor prototypes of the data point x. The relative
local quantization error for reconstruction is defined as follows:

RQEloc =
SCloc

SCtotal
. (12)

A low RQEloc value indicates that the reconstruction prioritizes the use of
neighboring prototypes. This allows incorporating the topological knowledge ob-
tained with the SOM procedure used to get W . The following methods are com-
pared: SOM, lsqnonneg, NMF, sparse NMF (sNMF), k-nn NMF. The number
of prototypes is set to N = 16, a maximum number of epochs tmax = 1000 and
a sparsity parameter β = 0.001 were used in all experiments.

Table 1 shows the RQE and RQEloc values (mean and standard deviation)
obtained with the four data sets for k = 4 nearest neighbor prototypes. In
all cases the original SOM has the highest RQE since this method uses only
the closest prototype to represent a data point. It has no meaning to compute
RQEloc for SOM because k = 1 always. The RQE value obtained by SOM can
be used as a reference value against which to compare all other figures. It can
be seen that all the different methods of mixture models are able to reduce the
RQE with respect to SOM. This means that linear mixture models are by far
more accurate than single prototype methods.

In all cases both lsqnonneg and NMF obtained the lowest RQE, followed
closely by our proposed method k-nn NMF. A multi-comparison statistical test
with a Bonferroni correction was performed for α = 0.005. This test reveals that
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Fig. 2. Relative Quantization Error RQE (a, c, e, g), and Relative Local Quantization
Error RQEloc (b, d, f, h) using k-nn NMF as a function of k. Each row from top to
bottom represents a different data set: Simple Cluster, Engy Time, Two Diamonds and
Lsun.
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for all four experiments both lsqnonneg and NMF mean RQE values are not
statistically different. In the case of sNMF a trade-off exists between accuracy
and sparseness, which yields a relatively high RQE with respect to lsqnonneg
and NMF. On the other hand, k-nn NMF obtained slightly higher RQE values
than those obtained by lsqnonneg and NMF, and the mean difference is statis-
tically significant. This result is expected because lsqnonneg and NMF use all
prototypes in the linear combination, but k-nn NMF restricts it to only the k-nn
prototypes. In Table 1, the results for k = 4 are shown, but it is easy to check
that when k grows larger the RQE value of k-nn NMF approaches the RQE
value of NMF.

As expected the lowest RQEloc values were obtained by k-nn NMF in all four
experiments, and these values are significantly different than those of all other
methods according to the multi-comparison statistical test with a 95% degree of
confidence. By design k-nn NMF optimizes the linear combination of the k-nn
prototypes to approximate data, while all the other methods are global.

In Fig. 2, the first column of subfigures show the RQE obtained by k-nn NMF
as a function of k for the four data sets. These subfigures illustrate how the
global fitting error is reduced when k increases. It can be seen that as k grows,
the k-nn NMF RQE values converge to those obtained by NMF (Table 1). In
Figure 2, the second column of subfigures show the RQEloc values obtained by
k-nn NMF as a function of k. These subfigures show the local fitting error as a
function of k.

5 Conclusions

In all the tests knn-NMF demonstrated a good performance in terms of using the
k-nearest neighbor prototypes for reconstructing the data, while achieving on-par
performance to lsqnonneg and NMF in terms of the global reconstruction of the
data. The k-nn NMF method allows a better topological interpretability because
only the nearest neighbors provide information for reconstructing the data. This
is in line with an ideal SOM map representation. The proposed method could be
easily combined with prototypes obtained by Neural Gas [14] or Growing Neural
Gas [2]. In addition, this method could be extended to supervised learning, where
we can select the appropriate elements of the dictionary matrix (e.g. Learning
Vector Quantization prototypes [15]) to represent particular data points, e.g.,
data points near the border between classes. Also, one might not always want to
get the lowest reconstruction error of the data, as this can lead to an over-fitting
of the model, losing the ability to generalize and failing to classify new points.
The proposed method may help to understand better the representation of the
data using the knowledge of its topological structure.

Acknowledgments. This research was supported by CONICYT-Chile under
grant Fondecyt 1140816.
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Abstract. A chemical spectral data set was analyzed with the PCA
method and the SSOM method. The results are in agreement albeit that
the PCA method is only valid when the number of spectral dimensional-
ities is small. This is not the case with the SSOM method. In the present
paper, the data of the AES depth profile, where Sn was plated on Cu,
and which has a high dimensionality, is also analyzed. These results show
the excellence of the SSOM method.

Keywords: PCA, Spherical SOM, cluster analysis.

1 Introduction

Multi-dimension data can be visualized in a low (usaually two) dimensional space
with an array of techniques such as Principal Component Analysis (PCA), Self-
Organizing Map (SOM), Multidimensional scaling (MDS), etc. In the present
paper, we use PCA and SOM to analyze and compare the characteristics of
TOF-SIMS spectrum data and high-dimensional Auger Electron Spectroscopy
(AES) data. The Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
is a surface-sensitive analytical method that relies on a pulsed beam of a pri-
mary ion (such as Ar+, Cs+, O2+, C60+, or microfocused Ga+, In+, Aun+,
Binx) with several kiloelectronvolts of energy to eject and ionize material from
the uppermost layers of the sample. The actual desorption or sputtering of the
material from the surface is the result of collision cascades or correlated atomic
motions in the solid, initiated by the primary ion imprinting on the sample sur-
face. A small fraction of the sputtered material is ionized during the emission
process. The resulting atomic and molecular secondary ions, which are charac-
teristic of the surface chemistry, are accelerated into a mass spectrometer, where
they become mass analyzed by measuring their time-of-flight from the sample
surface to the detector [1]. When organic matter is analyzed by TOF-SIMS,
many molecular species will be detected. In that case, it is both important and
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practical to classify the latter smoothly and quickly. To this end, a multivari-
able evaluation method is used to analyze the different molecular species. In the
present paper, in support of a multivariable evaluation, the Principal Component
Analysis (PCA) and the Self-Organizing Maps (SOM) [2–6] are evaluated and
clusters identified. The data of the PET film, which was obtained by TOF-SIMS
[1, 2], is visualized with both techniques and their clustering results compared. A
PET film consists of polyethylene terephthalate a thin, stiff, thermally stabilized
polyester material with many different applications. A clustering method that
also visualizes the multidimensional data set has been proposed [3–7]. There, the
phase distance of the labeled data was computed on the spherical surface and a
dendrogram created by calculating the distance between the labels. Then, based
on this dendrogram, the members of the same cluster were represented on the
spherical surface. Also position relations of the clusters can be visualized by the
U-matrix, the spherical surface with the different Glyph values and by coloring
the clusters. Besides, we can emphasize that the dendrogram can be constructed
by using the distance among the labels on the distorted spherical surface via
the group average method. At first this method is applied to the TOF-SIMS
spectrum analysis for comparison with PCA. Next this method is applied to the
AES depth profile data where Sn was plated on Cu. This time, the divisions of
the spectrum are quite large leading to a 151 dimensional data set. Therefore,
with the PCA method it is impossible to visualize the data only by using, e.g.,
the 1st to the 3rd principal components.

2 TOF-SIMS Spectrum Analysis with PCA and Spherical
SOM Method

2.1 TOF-SIMS Spectrum Analysis with PCA

There are 26 molecular species identified. Several typical spectra are shown in
Fig. 1

When some factors can be interpreted, a principal component analysis (PCA)
does not treat them independently, i.e., one by one, but considers them as a
whole. When there are p variables, then maximally p principal components can
be taken. The PCA is a technique to represent the data in a new coordinate
system (z) of which the axes are mutually uncorrelated. When considering less
than p axes, a subspace is obtained. The number of axes is chosen so as to
minimize the loss of information when representing the original data (x) in that
subspace. For example, as shown in Fig. 2, when two dimensional data are given,
a one dimensional straight line can be drawn so that the amount of information
loss is as small as possible, and the original two dimensional data can be denoted
by their values on the straight line. Thus, two dimensional data can be taken
as one dimensional data. In order to have the number of dimensions as small
as possible, a variance-covariance matrix is made based on the dispersion of
data. And the axis of the corresponding eigenvector is made into the principal
components (the 1st and 2nd ...) in order with a large eigenvalue of the matrix.
Then, the axes can be selected to minimize the loss of the amount of information.
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Fig. 1. The original data of TOF-SIMS

Fig. 2. Left panel: logic behind the principal component ; right panel: eigenvalues for
our case, ranked according to their magnitude
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2.2 Result of TOF-SIMS Spectrum Analysis with PCA

The value on the axis of the 1st principal component is calculated from the fol-
lowing expression 0.1910[C] 0.1302[CH3] 0.2489[C2H3] 0.1581[Si] 0.1792[C2H5]
0.2633[CF] with [ ] denoting the intensity of each variable of each sample. The

Fig. 3. The result by the 1st, and the 2nd principal component analyses. The N*i the
left panel represent data names(thus, not chemical component names).

coordinates of the 1st principal component is shown on the horizontal line in the
figure. It was found that the 1st principal component gives a high score for the
spectrum in that the molecules containing Si and CF were observed. The 2nd
principal component gives the spectrum which contains Si a high score and, con-
versely, demotes the spectrum that contains CF. The values of the 1st and 2nd
principal components are calculated based on the previous expression for every
sample, and the result displayed on two dimensions in Fig. 3. It is clear that
26 samples can be classified into six clusters. However, judging from the graph
that shows the magnitude of the eigenvalues, three principal components suffice.
Hence, three principal components are displayed in Fig.4. When considering the
3rd principal component, N16, N17 and N18 are separated into two groups. Then,
it can be found that the spectra are classified into seven groups. Incidentally,
the 3rd principal component gives a high score for the spectra that contains Si
and a reduced score for the spectra that contains C-H -. The number of axes in
PCA is determined by compromising between the number of components and
the incurred loss of information. In this experiment, the first 3 components had
quite large proportions compared to those of the other components. Therefore,
3 axes were selected for display.

2.3 Result of TOF-SIMS Spectrum Analysis with Self-Organizing
Map (SOM)

The originally 26 components of Fig.1 are represented by line spectra. We utilize
the spherical SOM for spectrum analyses because of its improved learning accu-
racy and clustering performance. We trained the SSOM with the tool described
in [2–4] considering the following conditions: The number of learning nodes is
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Fig. 4. Result when considering also the 3rd principal component

642 in SSOM. The number of learning iterations is 500 times the number of
input data. The neighborhood function is a Gaussian of which the radius is re-
duced linearly during learning. The normalized spectra and the original data are
shown in Fig.5. Analyzing the normalized data of Fig.5 with the spherical SOM
method leads to the results shown in Figs.6 and 7. The color-display for each
group is shown below.

Fig. 5. Top: original 23 data of Fig 1 displayed by broken line graph. The vertical scale
is intensity. Bottom: The same data but normalized.
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Fig. 6. (a) The learning result of the data in Fig.5 (bottom) (b) When a spherical
surface was distorted at Glyph value 1 and by the group average-method using the
distance of the label coordinates, the clustering result is shown in Fig.7

It can be seen that N1, N2, N3, N5, N6, N7 and N8 belong to the same group
for the spherical SOM (upper left). Next, it is found that N9, N10, N11, N12,
and N13 belong to the same group as well. N4 is isolated from the spherical
SOM as shown in the upper right. It can be seen that N14 and N15 belong to
the same group in the lower right. And so on. The spectra of G11, G12, G21,
and G22 only roughly correspond to each other.

Fig. 7. The clustering outcome is selected at a distance (nsd=0.15) for which the same
number of clusters is obtained as with PCA; nsd means the non-similar distance

The spectra of four groups from G11 to G22 in Fig.7 were compared in Fig.
8 The precision for the matching of the grouping by the spectra is as follows:
G21¿G11¿G22=G12.
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2.4 Comparison of PCA and Spherical SOM Results

The result of PCA is shown in Fig.4 When not considering the 3rd principal
component, N16, N17 and N18 are not separated. For the SOM, grouping means
that a dendrogram is obtained without being concerned with the issue how to
select the number of principal components. When considering the dendrogram
of Fig.7, for cluster distance 0.15, the clustering results agrees with that of PCA.
SOM gathers resembling data and can bundle them as the clusters. Then, the
clusters can be carried out by considering a difference among the groups. The
spherical SOM software which was used here emphasizes distance among the

Fig. 8. Comparison among the spectra of groups G11, G12, G21 and G22 in Fig.7

clusters and displays it as shown in Fig.6. The separation of each cluster can
be clearly seen. The user judges the distance among the clusters. Thus, a final
grouping can be completed.

2.5 Summary of Subsection 2

– The principal component analysis (PCA) and Self-Organizing Maps (SOM)
are valid tools for clustering the spectra of TOF-SIMS.

– As for the clustering of the spectra, almost identical results were obtained
with PCA and SOM.

– PCA differs in the information that is obtained for different numbers of
principal components considered but there is not such the difference with
the SOM. This becomes even more of an issue when the number of principal
components becomes equal to four or more.

– Seven groups which were obtained in PCA of Fig.4 agreed very well with the
cluster labels with nsd=0.15 of the dendrogram of Fig.7 which was obtained
in SSOM.

– The spherical SOM is excellent for displaying results without being influ-
enced by the purpose of the analysis. It can easily classify a spectrum.
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3 Clustering of Other Spectral Data with Spherical SOM

3.1 Data Preparation and Analysis Procedure

The spectra [6] in 410-440 eV of the energy range with 151 divisions were used for
the analysis. Each spectrum was normalized at the line with the maximum and
the minimum in the above energy range as shown in Fig.9. Then, the analyses
are detailed.

Fig. 9. Normalized spectra of 410 - 440 eV of energy ranges numbered from 1-50

Fig. 10. The dendrogram is arranged sequentially in 1-50 spectra only, except for the
48th spectrum (right panel, position marked by an arrow). The positions of SnO, SnO2,
and Sn-Metal as the standard material are shown by an arrow.

There is only here a portion for which the order is garbled. After SOM learn-
ing 1-50 spectra, the positions of SnO, SnO2 and Sn-Metal are located on the
spherical surface. SnO is in the G111 group. SnO2 agrees with the 11th spectrum.
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Sn-Metal agrees with the 41st spectrum. The normalized spectra of 1-50 and a
standard one of SnO, SnO2 and Sn-Metal are the spherical surface and further
described.

Fig. 11. From the upper left to the lower right, the each colored group from G111 to
G222 is sequetially arranged. SnO belongs to G111 and SnO2 is on the sample number
11. Also, Sn Metal belongs to G222 in the lower right and is shown for sample 41.

Fig. 12. The results of four groups from G11 to G22 in Fig.10 are shown

The rectangular figures are shown on the right of each group in Fig.12 ac-
cording to the number of spectra that comprise each group. The distance order
is G21¿G11¿G12=G22 according to the dendrogram of Fig.10. G22 seems that
the distance from G11separates considerably by the observation. The spectrum
number is as large as 20. Then, the distance per spectrum would become roughly
small.

3.2 Summery of Subsection 3

– The energy range was chosen as 410-440 eV. Given the other energy ranges,
the spectrum was the smoothest. The spectra were normalized to have 0-1.
Using the spectra of 1-50, the sequentially arranged dendrogram, however,
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could have been constructed. They are separated into eight groups from
G111 to G222. The spectra in each group resembled quite well.

– The standard spectrum of SnO is in G111 group. And that of SnO2 was in
G112 group and agreed with sample 11.

– The standard spectrum of Sn-Metal is in G222 group and agreed with sample
number 41.

– This data could not be analyzed with PCA in reasonable way since some of
the dominant terms would disappear.

4 Conclusion

TOF-SIMS spectra data have been clustered with PCA and SOM. When the 1st
to 3rd principal components were used in the PCA, the result agreed with that of
the SOM. The cluster analysis disagreed for more than 3 principal components.
But the SOM method can be applied to arbitrary number of dimensions. We
have shown this for the case of 151 dimensions. As shown in Fig. 12, the spectral
data was classified into four groups in an excellent way. The results were also
compared with the group average-method of Multi-variate analysis. As a result,
the SSOM method showed far better clustering results for the TOf-SIMS data.
The SSOM method also agrees with the result of PCA. Finally, for the AES
case, the SSOM method also yielded a nice clustering result as in Fig.12 also
with four groups.

Acknowledgement. The authors are very obliged to Prof. M. Van Hulle of
KU Leuven, Belgium, for kindly reading and correcting our manuscript.
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Abstract. The U-matrix has become a standard visualization of self-
organizing feature maps (SOM). Here we present the abstract U-matrix,
which formalizes the structures on a U-matrix such that distance cal-
culations between best-matching units w.r.t. the height structures of a
U-matrix are precisely defined (U-cell distance). This enables the assess-
ment of the topological correctness of the SOM and the implementation
of clustering algorithms that take the structures seen on the U-matrix
into account. A weighted Delaunay graph of the U-cell distances allows
the calculation of a dendrogram corresponding to the structures of the U-
matrix. The method is shown to detect and visualize meaningful cluster
structures on difficult artificial and real-life data.

1 Introduction

Self-organizing feature maps (SOM) [2] are often visualized by using the U-
matrix [3]. A trained SOM represents a topology pre-serving mapping of n high-
dimensional data points xi ∈ R

D onto a two dimensional grid of neurons. A
neuron n and the neurons in its Moore neighborhood N(n) on the output grid of
the SOM represent points in the data space. The sum of distances between n and
the neurons in N(n) in the high-dimensional space is shown on a U-matrix as a
height value (U-height) at neuron n. Large U-heights mean that there is a large
gap in the data space. Low U-heights mean that the points in {n∪N(n)} are close
to each other within the data space. On a 3D-display of U-matrix valleys, ridges
and basins can be seen (Figure: 1). If the best matching units (BMUs) of data
points are located in a valley surrounded by large walls (water-basin), then these
data points are within a distance-induced cluster structure in the data space.
Water-sheds, respectively water-basins, on a U-matrix allow for emergence in
SOM-based algorithms [3]. Emergent algorithms have the property that novel,
formerly unseen structures on a macroscopic level (e.g., valley ridges, clusters)
become visible on top of the only locally defined U-heights. The described usage
of a SOM and its U-matrix can be used to visualize the distance structures in the
high dimensional data space. If clustering of the data space is sought, additional
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250 J. Lötsch and A. Ultsch

Fig. 1. U-matrix of the pain data described below [1]

clustering methods need to be applied such as a second SOM layer [4] , Fuzzy
clustering [5] or spectral clustering [6]. An alternative to these is the usage of
visual observation to identify coherent valleys on the U-matrix, i.e. clusters in
the data. In this work, we present the abstract U-matrix (AU-matrix), which
formalizes the structures on a U-matrix such that distance calculations between
BMUs become meaningful. This enables assessing the topological correctness of
the SOM and the implementation of clustering algorithms that take structures
on the U-matrix into account.

2 Definitions

We assume that n high-dimensional data points x ∈ R
D are projected (topology

preserving) onto a two-dimensional grid of neurons trough a sufficiently trained
SOM. The output grid of neurons (units) is embedded in O ⊂ R

2 (output space).
The images (projections) of the points are the corresponding best-matching units
(BMU). We assume that the size of the grid is large enough to map sufficiently
distinct points of the data space to distinct BMU coordinates on the grid. For this
type of SOM, called emergent SOM (ESOM), the size of the output grid is such
that the Voronoi cells of a Voronoi tessellation [11] of the BMUs are sufficiently
large. If a Voronoi-cell Vi has a cell Vj as neighbor, then there is an edge in the
corresponding Delaunay graph D [7]. Let bi and bj be BMUs of data points xi

and xj , and bi and bj are connected by an edge in D. Define a U-cell as follows: a
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Fig. 2. The chain link data set and a dendrogram induced by the AU-cell distances,
from which two classes,colored as either red or blue, clearly emerge (top right)

U-cell has a floor shaped by the border lines of the Voronoi cell of the BMU. On
each borderline there is a vertical plane. If the borderline is between bi and bj , the
height of the U-cell on this borderline (AU-height) is the distance d(xi, xj) > 0
of the data points in the data space. The abstract U-matrix, (AU-matrix) is then
the set of all U-cells on a SOM grid. This gives a geometric structure on top of
the output space O which is analog to the U-matrix. Height values on the AU-
matrix are displayed on top of the Voronoi cell lines and have a clear meaning:
the distance in data space of the corresponding BMUs. The usual U-matrix can
be regarded as a quantized visualization of the AU-matrix (see below). A U-
matrix corresponds to its AU-matrix, if for all pairs of BMUs having an edge
in the Delaunay graph the sums of the U-heights on suitable paths between the
pairs of BMU correlate to the AU-heights. Let AUH denote the Delaunay graph
D induced by the BMUs and weighted by the AU-cell distances. If the edges
with weights above a threshold min(AUH) < t < max(AUH) are removed from
AUH the graph may be separated into different connected components. Using
all possible values of t results in an ordered set of critical threshold t0, t1, . . . , tc
such that for ti < t < ti+1 the clustering is the same. Following the method
proposed by Carlsson et al. [8], a dendrogram can be constructed that shows the
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threshold along with the number and the sizes of the resulting clusters. Using
the dendrogram the data can be clustered by providing either the number of
clusters or the threshold for the maximal AU-cell distance. This is called AU-
cell clustering. The adjustment of a suitable threshold respectively the number
of clusters is the same problem as in hierarchical clustering. A political map of a
U-matrix, resp. AU-matrix, is a top view of the AU-matrix where Voronoi cells
of BMU bi and bj have the same color if the corresponding data points of bi and
bj are assigned to the same cluster.

3 A First Example

Data sets from the Fundamental Clustering Problems Dataset (FCPS,) are used
to demonstrate the application of the AU matrix. For the three-dimensional
Chainlink data set of 1000 data points (Figure 2) an ESOM of grid size 80× 50
was trained using the Databionic ESOM software [9].

A top view of the U-matrix using physical-map analogy for color-coding of
the distances separates the two classes visually by a ridge between two valleys
(Figure 3). An overlay of the U-matrix with a top view of the AU-matrix, for
each BMU its Voronoi cell can be seen (Figure 3). The ridge on the U-matrix co-
incides with the Voronoi-cells borders having large AU-heights. The dendrogram
for AU-cell clustering clearly indicates a definition of two classes. These two clus-
ters are the two separate rings in the data. On the Chainlink data set, AU-cell
clustering provides complete accuracy (100%). On other data sets from FCPS,
the AU matrix method outperforms common cluster algorithms such as k-means
and Ward clustering by obtaining always the correct cluster membership of a
data point (100% accuracy), whereas the classical methods often provides lower
accuracies with more difficult data, up to occasional complete failure (Table 1).

Table 1. Comparative of performance (accuracy [%] of data point assignment to
the correct cluster) the AU based and other (Ward, k-means) clustering methods
for identifying the cluster structure of data sets with different degrees of difficulty
selected form the Fundamental Clustering Problems Dataset (FCPS http://www.uni-
marburg.de/fb12/datenbionik/data)

Data set Main problem Accuracy [%] of cluster member-ship assignment

AU clustering Ward k-means
Hepta Easy 100% 100 % 100 %
Lsun Standard 100 % 50 % 50 %
Tetra Small inter distances 100 % 90 % 100 %
Chainlink Linearly not separable 100 % 50 % 50 %
Atom Variance differences 100 % 50 % 50 %
Target Outlier 100 % 25 % 25 %
Golf ball Equidistant points 100 % 50 % 0 %
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Fig. 3. Top: U-matrix of the Chainlink data, where a visual separation emerges from
the ridge in the physical map. Bottom: Political map superimposed on the U- matrix.
The two classes are colored in either red or green and their clear visual separation
follows the edges of Voronoi cells.
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4 Application of the Abstract U-Matrix to Real-Life
Data

Pain and its genetic background is a complex problem in biology. Pain is a
trait defined as an unpleasant sensory and emotional experience associated with
actual or potential tissue damage, or described in terms of such damages. Its
sensory, affective, motor, vegetative and emotional components [10] are asso-
ciated with a complex pathophysiology [11] reflected in the large network of
molecular nociceptive pathways [12]. A genetic basis of pain and analgesia has
been well established. Today, more than 410 genes have been recognized to con-
tribute to the individual sensitivity of pain [13]. For example, red-haired women
displayed greater pain relief following administration of a kappa-opioid receptor
specific analgesic (pentazocine) than women without this phenotype [14]. An-
other example is the hereditary insensitivity to pain due to a loss-of-function
genetic mutation, which was found in a single family whose members work as
fakirs using the absence of pain professionally [15]. Such mutations are today
a valuable source of targets of new analgesic drugs. However, the utility of ge-
netic markers to predict pain sensitivity in the average population and to guide
personalized analgesic therapy has remained modest [16] due to the complexity
in both, the phenotype and the genotype of pain [17]. Initial approaches using
clustering of patients with similar sensitivities to particular pain stimuli have so
far not provided reproducible predictions of pain phenotypes and associations
of underlying pain-relevant genotypes. These approaches used mainly k-means
clustering [18]. However, as shown above, k-means clustering may provide poor
cluster associations depending on the distribution of the data.

A data set [1] was obtained following administration of defined pain stim-
uli to 214 (105 men) healthy volunteers (approval of the Ethics Committee of
the Medical Faculty of the Goethe University and informed written consent
from each participant obtained). The pain phenotype was assessed by means of
measuring pain thresholds to four different pain stimuli (heat, cold, blunt pres-
sure, electricity 0 − 20mA). After appropriate preprocessing (for details, see
[1]) the data were projected onto a ESOM of 50 × 82 = 4200 neurons and an
U-Matrix was generated (Figure 4). The dendrogram of the AU-cell distances
suggested eight clusters in the pain data resulting in a political map that can
be overlaid on the U-matrix (Figure 5). The cluster identification using the
U-matrix provided a suitable basis for the desired genotype-phenotype associa-
tion. That is, on the basis of a combined genotype, consisting of 10 variants in
four genes (plus gender), subjects with a high pain sensitivity phenotype were
predicted with an accuracy of 78% [1]. For comparison, among single genetic
markers and gender, only the latter provided a prediction better than guessing.
Similarly, for a pain phenotype called stoics with a selective high sensitivity to
heat, a genetic association with a genotype composed of seven variants in three
genes provided a mean cross-validated classification accuracy of 88±12%. These
examples clearly demonstrate the utility of AU-cell clustering for real-life pain
phenotype genotype associations, suggesting that this method indeed may be
essential to advance personalized therapy approaches.
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Fig. 4. U-matrix of the Pain data set

5 Discussion

In this contribution we shed insights onto what can be seen on a U-matrix and
how this can be used to identify structures and or clusters in high dimensional
data. The AU-matrix can be seen as theoretical model to explain a given U-
matrix. It can be used for the assessment of the topological correctness of the
underlying SOM and the implementation of clustering algorithms which take the
structures seen on the U-matrix into account. A dendrogram as known from hi-
erarchical clustering algorithms which closely correspond to the structures seen
on a U-matrix can be constructed. The political map of a U-matrix is a very flex-
ible tool to visualize the result of possible clusterings. It allows to easily identify
outliers and critical distance structures where the membership of data points to
the same or different clusters is debatable. Sometimes cluster structures on high
dimensional data are not defined by distance structures (alone) [19]. Local den-
sities of the data space must be taken into account. DBSCAN is an example of a
distance and density based clustering algorithm [20]. The CONNvis approach re-
cently proposed [21] integrates density information into a Delaunay graph on the
high dimensional data points. In our approaches density information is regarded
separately using the P- and/or U* matrix methods [22]. A corresponding tech-
nique for AU-matrices is subject to further research. So far, the here presented
method provides accurate clustering in model data sets and seems to provide the
necessary clustering of real-life data sets, with promising results to provide the
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Fig. 5. Political map of the Pain data set following clustering into eight classes
of subjects with similar pain sensitivity patterns and overlaid onto the U-matrix
(Figure 4)

necessary methods to identify, for example, sub-populations for individualized
treatments and drug discovery and development.
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Abstract. Gene expression data analysis is frequently performed using correla-
tion measures whereas unsupervised and supervised vector quantization methods
are usually designed for Euclidean distances. In this paper we summarize recent
approaches to apply correlation measures to those vector quantization algorithms
for analysis of microarray gene expression data. Additionally, we consider k-th
order partial correlations as a natural extension if pseudo-correlations should be
avoided. Further, we draw the focus to mutual information as powerful alterna-
tives to correlation measures. Related to this we provide the concept of k-th order
partial mutual information as counterpart to partial correlations. We apply these
methods to an exemplary but real classification problem in gene expression anal-
ysis for detection of diabetic patients.

1 Introduction

Gene expression analysis based on microarray data is a challenging task in biology
and medicine. It is one way of molecular biology and medicine to understand and to
investigate biological processes, diseases and evolutions. During the last years a rapidly
increasing amount of data is available although a careful data analysis is still difficult
due to the huge number of genes, which are parallely considered in a single experiment.
This number frequently is in the order of thousands whereas the number of experiments
is quit low compared to this, usually only a few hundred or less. Thus, microarrays
deliver high-dimensional data to be analyzed with only a few data samples for model
generation available. This problem is also known as ’curse of dimensionality’.

Prototype based methods for clustering and classification have been established as
powerful methods in high-dimensional data analysis as an alternative to classical multi-
variate statistics. Robust machine learning variants were inspired by neural computing.
Self-organizing maps (SOMs, [17]) and neural gas (NG, [24]) for unsupervised vec-
tor quantization and clustering as well as learning vector quantizers (LVQ, [18,27,34])
for supervised training (classification learning) belong to those algorithms. For exam-
ple, these vector quantization approaches were successfully applied for hyper-spectral
data analysis in remote sensing [25,46], non-invasive biochemical analysis of food
[15], mass-spectrometry [35,36,47] and fMRI-analysis [22] all to be known as high-
dimensional problems. One key observation in this context is that prototype based vec-
tor quantizer reduce the risk to get affected by the curse of dimensionality. In fact,

� Supported by the European Social Fund (ESF), Saxony.

T. Villmann et al. (eds.), Advances in Self-Organizing Maps and Learning 259
Vector Quantization, Advances in Intelligent Systems and Computing 295,
DOI: 10.1007/978-3-319-07695-9_25, c© Springer International Publishing Switzerland 2014



260 M. Lange, D. Nebel, and T. Villmann

prototypes are low-noise representations of data [1,13]. Therefore, they are particularly
suitable also for analysis of gene expression data.

Because of the huge data dimension of the raw gene expression data, usually, the
data are preprocessed in advance using dimensionality reduction techniques like prin-
cipal component analysis (PCA), cluster analysis and other [4,8,7,12]. Among them,
correlation analysis is a standard method frequently applied with subsequent selection
schemes based on correlation ranks [33]. Yet , frequently the remaining number of genes
to be considered is still high.

Most of the vector quantization algorithms have in common that the Euclidean dis-
tance is used for dissimilarity evaluation of the data and prototypes. For analysis of gene
expression data, this can lead to moderate problems: the Euclidean distance is sensi-
tive to normalization like centralization and variance normalization, which may cause
difficulties when merging several data sets from different investigations [6,3]. There-
fore, correlation measures are preferred for gene expression analysis [42,39,41,40,16].
However, correlation measures can be affected by pseudo-correlations. To reduce these
influences, partial correlations are appropriate. While these quantities are well-known,
their application in LVQ-approaches is not considered so far. In this paper we give a
respective framework.

A more general alternative to correlation measures are information theoretic quan-
tities like divergences and closely related mutual information [44], which take into ac-
count also higher-order correlations. We present in this paper several definitions of
mutual information according to the underlying divergence and entropy types. Further,
we provide the theoretical framework for partial mutual information of k-th order as
counterpart to the k-th order partial correlation to avoid pseudo-dependencies. We proof
the the suitability for those quantities for an exemplary gene expression data set to dis-
tinguish diabetic profiles from profile of healthy volunteers.

The paper is structured as follows: First we briefly review generalized learning vec-
tor quantization for classification. One particular aspect here is how to process if the
dissimilarity measure between data is not differentiable. Second we revisit k-th order
partial correlations and derive an analog quantity for mutual information. Thereafter we
present the exemplary application in gene expression analysis.

2 Learning Vector Quantization Based on Cost Functions

Classification by learning vector quantization (LVQ) is the supervised counterpart of
neural vector quantization by self-organizing maps (SOMs) and are heuristically mo-
tivated by KOHONEN [17]. A cost function based version, keeping the basic ideas as
well as the Hebbian enhancement learning paradigm from original LVQ, is known as
generalized LVQ (GLVQ) [34].

For classification learning each training data vector v ∈ V ⊂ R
n is equipped with

a class label xv ∈ C = {1, 2, 3, ..., C}. Now, the task is to distribute the set W =
{wk}k∈A ⊂ R

n of prototypes such that the classification accuracy is maximized. For
this purpose each prototype is also equipped with a class label yk such that C is covered
by all yk. After LVQ training a data point is assigned to the class ys of that prototype
ws ∈ W which has minimum distance, i.e.
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s (v) = argminkd(v,wk) . (1)

A gradient based GLVQ scheme proposed by SATO AND YAMADA uses the follow-
ing energy function:

E(W ) =
1

2

∑
v∈V

f(μW (v)) (2)

where the classifier function

μW (v, κ) =
d+(v) − d−(v)
d+(v) + d−(v)

+ κ (3)

approximates the non-differentiable classification error depending on W and the con-
stant κ frequently set to zero. The function f : R → R is monotonically increasing,
usually chosen as sigmoid. Further, d+(v) = d(v,w+) denotes the distance between
the data point v and the nearest prototypew+, which has the same label like xv = yw+ .
In the following we abbreviate d+(v) simply by d+. Analogously d− is defined as the
distance to the nearest prototype of all other classes.

In case of a differentiable distance measure d(v,w), or more general dissimilarity
measure, stochastic gradient descent learning can be applied. The respective stochastic
gradients of E(W ) are

∂sE

∂w+
=

∂sE

∂d+(v)
· ∂d

+(v)

∂w+

and
∂sE

∂w− =
∂sE

∂d−(v)
· ∂d

−(v)
∂w−

where ∂s

∂ denotes the stochastic gradient with

∂sE

∂d+(v)
=
(
2 · g−(v,W )− κ

)
· f ′(μW (v, κ))

and

,
∂sE

∂d−(v)
=
(
2 · g+(v,W ) − κ

)
· f ′(μW (v, κ))

Further, we introduce the positive quantities

g+(v,W ) =
κ

2
− d+(v)

d+(v) + d−(v)
(4)

g−(v,W ) =
κ

2
+

d−(v)
d+(v) + d−(v)

. (5)

Obviously, in case of the (squared) Euclidean distance we have to calculate ∂d±(v)
∂w± =

−2 (v −w), which still refers to Hebbian-like learning. If more general dissimilarity
measures d (v,w) are in use, the respective gradients have to be applied [11,14,45].
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Algorithm 1. gEM-algorithm of M-GLVQ

1. Initialize W old

2. E-Step: set γ(W |v) ← p(W old|v)
3. M-Step: for fixed γ(W |v) determine W new = argmaxW L, which improves L
4. If W new = W old then STOP, else set: W new ← W old and go to step 2.

If the dissimilarity measure d(v,w) is not differentiable or too complex for numer-
ically efficient derivative calculations, a recently proposed median variant of GLVQ
(M-GLVQ, [26]) can be applied: Introducing the formal probabilities

p+(W |v) = g+(v,W )

g+(v,W ) + g−(v,W )
(6)

p−(W |v) = g−(v,W )

g+(v,W ) + g−(v,W )
(7)

and the functions γ+(W |v) ≥ 0 and γ−(W |v) ≥ 0, which play the role of generating
models for the prototypes for correct and incorrect classification of a given data point v
with the additional constraint γ+(W |v) + γ−(W |v) = 1. For this purpose, we rewrite
the cost function (2) as

K(V,W ) =
∑
v∈V

log
(
g+(v,W ) + g−(v,W )

)
(8)

specifying the transfer function f to be the logarithm. This is done to meet the require-
ments for a generalized EM-learning (gEM). In particular, we can decompose (8) into

K(V,W ) =
∑
v∈V

[Lv(γ||g)−Kv(γ||p)] . (9)

with the Kullback-Leibler-divergence (KLD)

Ki(γ||p) = γ+(W|v) · log
(
p+(W |v)
γ+(W |v)

)
+ γ−(W |v) · log

(
p−(W |v)
γ−(W |v)

)
(10)

and Lv(γ||g) is a generalized KLD (see [5,44])

Li(γ||g) = γ+(W |v) · log
(
g+(v,W )

γ+(W |v)

)
+ γ−(W |v) · log

(
g−(v,W )

γ−(W |v)

)
(11)

with g = {g+(v,W ), g−(v,W )}, p = {p+(v,W ), p−(v,W )} and both, γ+(W |v)
and γ−(W |v), form together the formal probability density function γ(W |v). In fact,
(9) has the structure of a maximum likelihood problem with the first term
L =

∑
v∈V Lv(γ||g) being a lower bound.

At this point we emphasize that for this variant of the gEM-approach we do not
search for a set W ∗ in the M-step, which would maximize the cost function K(V,W ).
We only assume that the cost function is not decreasing for W new.

Obviously, the algorithm only requires the distances d(v,wk) between data and pro-
totypes. If we restrict the prototypes to be data points, which corresponds exactly to the
median principle, only the dissimilarities between the data are needed.
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3 Appropriate Dissimilarity Measures for Gene Analysis in
Microarrays

As mentioned above, GLVQ and SOMs were introduced originally using the Euclidean
distance to calculate the dissimilarities between data and prototype vectors. Yet, gene
expression analysis is frequently done applying correlations in microarrays [37]. Higher
order correlations are taken into account if entropy based methods are applied in more
sophisticated schemes like divergences and related mutual information measures [50].
In the following we review correlation measures and consider mutual information.

3.1 Correlations

Following the approach in [39], the linear Pearson correlation can be applied in gradient
based vector quantization. Pearson correlation implicitly undertakes the data a central-
ization and, therefore, is well suited for analysis of gene expression analysis [42,43],
where individually calibrated biomedical measuring devices are in common [31,42].
The Pearson correlation between a data vector v ∈ R

n and a prototype w ∈ R
n is

defined as

#P (v,w) =

∑n
k=1 (vk − μv) · (wk − μw)√∑n

k=1 (vk − μv)
2 ·
∑n

k=1 (wk − μw)
2

(12)

with μv and μw are the means of v and w, respectively.
Spearman’s rank correlation #S is a non-linear correlation measure. However, due

to its rank based computation scheme, it is not differentiable at hand. In a first step we
calculate the ranks in terms of sums of Heaviside functions

H (x) =

{
0 if x ≤ 0

1 else
(13)

and express in this way the #S (v,w) between vectors v and w by the Pearson corre-
lation #P (v,w). For that purpose we define an indicator matrix R (x) of a vector x as

R (x) =

⎛⎜⎝H (x1 − x1) · · · H (x1 − xn)
...

...
H (xn − x1) · · · H (xn − xn)

⎞⎟⎠ (14)

with row vectors Ri (x), which determine the rank function

rnk (x) =

n∑
i=1

Ri (x) . (15)

Using this indicator matrix, the Spearman rank correlation between a data vector v and
a prototype vector w can be expressed in terms of the Pearson correlation (12) by

#S (v,w) = #P (rnk (v) , rnk (w)) (16)

using the rank vectors (15).
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It turns out that soft variants of Spearman rank correlation as proposed in [2,38] can
be related to other variants of soft and fuzzy rank correlations, the latter ones based on
t-norms and t-conorms [2]. Moreover, rank-based approaches frequently benefit from
the robustness of this paradigm to achieve high performance.

3.2 Mutual Information

Correlation do not consider statistical independence. Therefore, we propose to consider
the mutual information in gene expression analysis based on microarray data to keep
higher order correlations in dissimilarity determination. For this reason we suppose
positive gene expression vectors v with expression levels vi ≥ 0 and normalization∑n

i=1 vi = 1. Then the mutual information is defined as

IS (v,w) = HS (v) +HS (w)−HS (v,w) (17)

with

HS (x) = −
n∑

i=1

xi ln (xi) (18)

being the Shannon-entropy and HS (v,w) is the joint Shannon-entropy [23]. IS (v,w)
is a symmetric quantity, which is closely related to the KLD [20]. Yet, there exist several
divergence types [5]. Their use in vector quantization is extensively investigated in [44].
These divergences are based on different entropy definitions. A robust alternative to the
Shannon-entropy is the Rényi-entropy

Hα
R (v) =

1

1− α
log

(
n∑

i=1

vαi

)
(19)

depending on the parameter α [32]. The respective mutual information writes as

IαR (v,w, α) = Hα
R (v) +Hα

R (w)−Hα
R (v,w) .

Easy computation of Hα
R (v) is achieved for α = 2, which is well studied for respective

Rényi-divergences in information theoretic learning (ITL) by J. PRINCIPE [30].
The estimation of the joint entropies HS (v,w) and Hα

R (v,w) contributing to the
mutual information is generally difficult. Successful estimators for mutual information
were proposed for both types by KRASKOV ET AL. and PÁL ET AL. in [19] [28].

3.3 Partial Correlation and Partial Mutual Information

Partial Correlations were developed to eliminate the influence of pseudo-correlations in
correlation analysis. For a given correlation measure #, the partial correlation of first
order is defined by the quotient

# (v,w|z) = # (v,w)− # (v, z) · # (w, z)√
1− #2 (v, z) ·

√
1− #2 (w, z)

(20)
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whereas the partial correlation of second order

# (v,w|z,x) = # (v,w|z) − # (v,x|z) · # (w,x|z)√
1− #2 (v,x|z) ·

√
1− #2 (w,x|z)

is recursively defined taking into account the partial correlations of first order. Partial
correlations higher order are defined correspondingly.

The counterpart for mutual information is partial mutual information (PMI). Given a
mutual information I , the PMI can be written in terms of the underlying entropy H as

I (v,w|z) = H (v, z) +H (w, z) −H (z)−H (v,w, z)

taking into account all mutual information between v and w, which is not contained in
z [10]. This concept can also be extended to higher order PMIs [21,49]: Let Sk be a set
of k vectors vk. Then the k-th order PMI is given by

I (v,w|Sk) = H (v, Sk) +H (w, Sk)−H (Sk)−H (v,w, Sk)

being also a recursive definition.
The numerical estimation for the k-th order PMI is by means not trivial, because the

calculation of the higher order joint entropies are required. As it is explained in [21], for
the Shannon-entropy based PMI the estimator provided by KRASKOV ET AL. in [19]
can be extended to the general k-th order case. A kernel-based estimator was proposed
in [49]. Unfortunately, an easy transfer of the methods for the usual joint entropies to
higher orders in case of Rényi-entropies is not known so far. The methods applied in
[28,29] seem to be not easily extendible to higher orders.

4 Experiments

For a numerical experiment we selected a data set studying the insulin effects on gene
expression in skeletal muscle and muscle biopsies. The data were obtained from 20 in-
sulin sensitive individuals before and after euglycemic hyperinsulinemic clamps as de-
scribed in [48]. Additionally, data records of 15 patients suffering from type-2-diabetes
were considered as offered in [9]. This result in 6 classes with overall 110 data samples.
The data were generated by an Affymetrix Human Genome U95A Array. The microar-
ray delivered 12626 genes to be considered.

We trained a M-GLVQ with one prototype per class. As similarities we used the
Pearson-correlation and the Shannon-entropy based mutual information as well as par-
tial Pearson correlation and partial mutual information of second order. The conditional
variables were S2 = {mb,ma} being the mean vectors mb and ma of the gene ex-
pression vectors for all individuals and patients before and after euglycemic hyper-
insulinemic clamps, respectively. For comparison we also performed M-GLVQ using
the Euclidean distance dE . The result depicted in Tab.1 are obtained by 5-fold cross-
validation.

We observe that, taking into account pseudo-correlations, significantly improvements
in classification accuracy are achieved compared to application of only standard corre-
lation or mutual information. Further, we detect a slight worsening in case of partial
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Table 1. Classification rates obtained for the several dissimilarity measures in use for M-GLVQ

dE (v,w) �P (v,w) �p (v,w|S2) IS (v,w) IS (v,w|S2)

train 0.91 0.91 0.99 0.89 0.91
test 0.78 0.75 0.97 0.75 0.83

mutual information in comparison to partial correlation. This may be dedicated to the
crucial estimation procedures for the joint entropies needed for calculation of the partial
mutual information.

5 Conclusion

In this contribution we provided the theoretical framework for application of partial
correlations and partial mutual information in learning vector quantization. These tech-
niques are of particular interest in gene-expression analysis, where usually correlations
play the role of the dissimilarity measure between data instead of the Euclidean dis-
tance. The utilization of these quantities eliminate the influence of pseudo-correlations
and generally should lead to better performances. As an example we investigated a real
world application studying the insulin effects on gene expression in skeletal muscle
and muscle biopsies in type-2-diabetes as well as healthy but sensitive individuals. The
proposed methods achieve a considerably improvement of the classification rate. From
machine learning point of view, the application of the recently developed M-GLVQ
was essential, because derivatives of PMI and partial correlations are numerically not
available.
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Abstract. This paper describes a composition of learning patterns based
on the visualization of a Spherical SOM for improving the performance of
image analysis using the Subspace classifier. We have applied the Sub-
space classifier to image analysis because it has fewer parameters and
higher performance. Then we have experienced that the selection of fea-
tures and learning patterns influence greatly the classification perfor-
mance through examinations. The Spherical SOM has no border in the
array of nodes and eliminates the Border effect problem. Comparing the
performance of the image analysis, we show that visualization of the
Spherical SOM allows the composition of learning patterns to improve
more performance and degree of its reliability than those without the
composition.

Keywords: Subspace Classifier, Spherical Self-Organizing Map, Learn-
ing Pattern, Fundus Image, Visualization.

1 Introduction

The Self-Organizing Map (SOM) by Kohonen [1] is a kind of neural network
algorithm that projects high dimensional data onto a low dimensional space.
Several Spherical SOMs based on a geodesic dome [2] or a Toroidal SOM have
been proposed as a remedy against the Border effect problem in the traditional
SOM algorithm. To show its potential effectiveness, Tokutaka et al.[3] have pro-
posed a highly accurate cluster analysis using the Spherical SOM.

We have already reported the cluster analysis using the Spherical SOM for
real medical fundus data [4]. It was very difficult for input data to determine the
class which should be classified in performance evaluation of the real medical
data. In such a case, there was a possibility to make a subjective interpretation
for the dendrogram.

As a popular classification method, whereas, the Support vector machine
(SVM) [5] is often adapted in recent research papers because of its high per-
formance. For example, a glaucoma diagnosis using a data mining technique has
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been proposed by Nishiyama et al.[6]. In the real medical data with considerably
overlapped distributions and noise, even if the high recognition technique such
as the SVM was employed, the application to optimal parameters and its per-
formance assessment would be difficult since its performance generally depends
on the choice of parameters, such as Kernel functions and optimal margin, and
data distributions.

Hence we aimed at the fact that the Subspace classifier [7] has the simplic-
ity of parameter selection as well as high classification performance. We have
proposed an image analysis using the Subspace classifier [8]. We have applied
the Subspace classifier to the fundus image analysis and then have experienced
that the selection of feature and learning patterns influence greatly the perfor-
mance through examinations. Therefore on the composing learning patterns or
training datasets, we focused on the potential effectiveness with the accurate
visualization of Spherical SOM. We propose a composition for learning pattern
effectively using the Spherical SOM, and show the effectiveness of the proposed
composition through experiments of three cases of composition.

Fig. 1. Overview of proposed method using the Subspace classifier and composition
with visualization by the Spherical SOM

2 Composition of Learning Patterns by Spherical SOM

2.1 Spherical SOM

The arrangement of nodes in the SOM is originally free, several arrangements
have been proposed. Ritter [9] suggested the use of tessellated platonic polyhe-
dra as the underlying lattices and also pointed out the advantage of Spherical
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SOM. In order for grid units to be uniformly distributed on the surface of sphere,
every grid unit needs the same number of immediate neighbors and the distances
between a unit and its immediate neighbors are the same. However, such uni-
formity cannot be achieved on the sphere except for the five platonic polyhedra;
tetrahedron, cube, octahedron, icosahedron and dodecahedron. These polyhedra
can be tessellated into different frequencies: the geodesic domes.

2.2 Subspace Classifier

Let N be the number of pattern space dimension which is the number of pattern
vector elements. Let ϕ = (ϕ1, ϕ2, . . . , ϕi, . . . , ϕr) be reference vectors for each
class which are normal and orthogonal. Let r be the number of reference vectors
and let x be an input vector. The similarity S or the squared length of the
orthogonal projection of the input vector x on each class subspace is defined as

S = xTϕx =

r∑
i=1

(
xTϕi

)2
(1)

There are several ways to construct the vector ϕi . Simply the vector ϕi for
each class can be constructed by using Karhunen-Loéve expansion. The reference
vectors are defined for each class or category and the similarities S are also
calculated for each category. The category with maximum similarity from their
ones should be determined as the answered category for unknown data. Here,
note that the number r is the dimension of the spanned space by φi, while the
number N is the total space’s dimension.

2.3 Overview of Proposed Method

The proposed method shown in Fig. 1 distinguishes two stages: the first stage
of image analysis using the Subspace classifier and mapping by Spherical SOM,
and the second stage of composition of learning patterns and its evaluation. In
the first stage the experiments on feature extraction are conducted from input
datasets and a suitable feature among several features is selected by the highest
accuracy. After determining the best feature for classification, the experiments
on classification performance are conducted by the Cross-validation, and then in
order to obtain the visualization information for composition learning patterns
the Spherical SOM applies to the suitable feature datasets.

In the next stage several kinds of learning patterns are reconstructed based
on the visualization information by the Spherical SOM and then are evaluated
by the Cross-validation. The operation of this stage is repeated until accuracy
and/or sensitivity is satisfied. Because the performance of the Subspace classifier
is originally high, the number of repetition required here is only several times.
The details concerning the composition of learning patterns will be described in
Section 4.
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3 Experimental Data and Analytical Method

3.1 Input Data

A series of experiments was conducted with fundus images produced by a clinical
doctor. The total number of images was 133: 91 normal subjects (labels o1 to
o91) and 42 abnormal ones (labels x1 to x42). Colored fundus photographs of
24 bit RGB bitmaps as shown in Figure 1a were acquired with a scanner.

The data used in our experiments was intensity values of these images. The
intensity plane of the 2-D image was partitioned into 24 channels as shown in
Figure 1b. The mean was computed in each of these 24 channels in the intensity
domain. The intensity plane partitioning was uniform along the angular direction
(equal step size of 15 degrees) and uniform along the radial direction (equal step
size of 10 dots). When the input data were prepared in this way, the minimum
dimensionality of input data was 24 and its maximum was 120.

The input data was divided into three groups of datasets with three different
dimensionalities. The first group is the ring region, and there are 5 rings. Each
ring contains 24 channels and is marked in the clockwise direction from inside
outward. The second group is called the zone region with 48 channels; the zone
group is made from two adjacent rings. There are 4 zones, and each zone is also
numbered in the direction from inside outward. The last group is called as the
all region, containing all five rings and thus, 120 channels.

Fig. 2. (a) Fundus image: excavation cup and optic nerve disc, and (b) Channel con-
figuration (the origin of the coordinate is taken as the center of the Cup)

3.2 Feature Extraction and Classification Performance

To prevent the performance degradation and unreliability on the classification,
specific essential features required for classification can be extracted from an
original dataset with various kinds of information. The required classifier de-
signed using the training data should reduce the average of misclassification
rates to a minimum.
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Firstly the experiments on feature extraction are conducted from the inten-
sity value data with element numbers of three kinds: 24-D, 48-D and 120-D.
The best ones among these features are then selected by the highest accuracy.
After determining the feature for the classification, the experiments on classifi-
cation performance are conducted by Cross-validation. The Cross-validation is
performed in order to determine the accuracy for the test datasets, which is a
measure of classification performance for unknown data.

The Cross-validation for evaluating classification performance applies to 10-
fold Cross-validation. The 10-fold Cross-validation is calculated by the following
ways. Firstly all data X is divided into ten groups x1,x2, . . . ,x10 randomly. One
group xi (i = 1, 2, . . . , 10) is included 10% of all the data and defined as testing
set. Another group except xi are included 90% of all data and defined as train-
ing set. Learning rules are obtained by training, and the performance evaluation
for testing set is conducted with the learning rules. This process is repeated 10
times and the evaluated values are averaged.

4 Results and Discussion

4.1 Feature Extraction

Eigenvalues of two classes and the corresponding cumulative proportions for the
48-dimensional input dataset are shown in Figure 3. The eigenvalues of each
class reduce rapidly with the increasing of dimensionality r and are very small
for r > 3. A cumulative proportion reaches a value of 0.99 when the dimension-
ality r is about 4.

The graph of top left in the Fig. 3 shows the results of classification for learn-
ing datasets of zones when spanned space dimensionality r varying from 1 to 48.
Table 1 summarizes the results of maximum recognition rate for the training sets
when the dimension r of spanned space was varied from 1 to maximum value.
The figure and the table show that classification accuracy for the training data
is up as the increase of dimensionality of spanned space in any regions. The fea-
ture data with 48 channels is suitable for classification from these experiments of
feature extraction. From above results, the Cross-validation test was performed
in the four zones.

4.2 Cross-Validation

The three graphs from top right to bottom right in Fig. 4 shows the results of the
Cross-validation for testing data of four zones. The result of the Cross-validation
presents that the variation of accuracy with respect to the dimensionality r is
small. Almost all zone data attains the maximum of accuracy when the dimen-
sionality r is a value of 2. Table 2 lists the maximum of accuracy for all zone
data.

By contrast the values of the specificity and sensitivity depend on values of
dimensionality considerably. It can be seen that a large dimensionality reduces
the value of sensitivity remarkably and it also reduces generalization ability. It
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Table 1. Accuracies [%] and number of channel in each region

Region number
Channels (name) 1 2 3 4 5

24 ( ring ) 87.2 87.2 88.7 87.2 89.5
48 ( zone ) 97.0 97.0 97.0 96.2 -
120 ( all ) 97.0

Fig. 3. Eigenvalues and Cumulative proportions

is possible that a lack of training data of abnormal subjects causes the singu-
lar matrix, or an over training may take place during learning process. Since
a detection of abnormal subjects rather than normal ones is important in real
clinical diagnosis, the number of spanned space dimension should be the value
of the range of 2 to 6.

Table 2. Accuracies of each zone (%)

Zone r Accuracy Specificity Sensitivity

1 2 70.7 66.7 72.5
2 2 71.4 69.1 72.5
3 2 74.4 73.8 77.7
4 6 71.4 52.4 80.2

4.3 Comparison with Other Methods

In order to evaluate the classification performance using the Subspace classifier,
these results were compared with the Cross-validation results by other methods.
The Learning vector quantization method LVQ was consequently selected as a
compared one. That is why LVQ has a high computational performance and a
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Fig. 4. Accuracies for training data of the zones and the Cross-validation for testing
data: (a) accuracy, (b) specificity, and (c) sensitivity

good handling of parameters through our experiments of fundus images. For the
classification, we used LVQ PAK program package Version 3.1 [10], from which
we used the program LVQ2. The main parameters used in the experiments were
the same parameters in reference [8].

We conducted the classification using the LVQ2 for testing datasets of the
third zone under conditions for the number of prototype NOC varying from 2
to 10. Maximum accuracy was 74.1%, and specificity and sensitivity were 88.1%
and 43.3%, respectively, at NOC=7. In the Subspace classifier, the best accuracy,
specificity and sensitivity were 74.4%, 77.2%, and 73.8%, respectively, at r = 2
from Table 2. Comparing the two methods, it can be seen that the performance
of Subspace classifier is superior in the accuracy and sensitivity; the value of
sensitivity was especially high.

4.4 Effects of Composition for Learning Patterns on Classification

Table 3 lists Cross-validation of each subset of testing patterns for dimensional-
ity r = 2 in the third zone. In subsets g4 and g8, the less sensitivity and accuracy
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can be seen from this table. We found that from the similarity of the Subspace
the extremely less sensitivity and accuracy were probably caused by four data:
numbers 35 and 36 of normal data, the numbers 40 and 41 of abnormal ones.
Therefore, in order to know how these data were arranged on the map, visual-
ization was made using the blossom [11] as a Spherical SOM tool.

Figure 5 shows the numbers 35 of normal data and 41 of abnormal data for
Glyph value 1.0 on the spherical map. The symbol * marked on the map is used
for emphasis. The Glyph value is used to express the degree of the modification
of the nodes of the blossom. From this map, it is shown that a normal data and
an abnormal one were placed on the same node and two data are consequently
inconsistent with each other.

Table 3. Cross-validation [ %] for subsets of testing data in the third zone

Subset g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 Av.

Accuracy 84.6 84.6 61.5 84.6 53.9 46.2 68.2 84.6 53.9 50.0 74.4

Specificity 88.9 100.0 77.8 88.9 66.7 33.3 77.8 77.8 77.8 40.0 73.8

Sensitivity 75.0 50.0 75.0 25.0 25.0 75.0 50.0 100.0 0.0 66.7 77.2

Fig. 5. Two normal data 35 and 41 for Gliph = 1 on the Spherical SOM

Although the image analysis using the Subspace classifier attains very high
performance in spite of the small numbers of parameter (only a dimension of
subspace), in order to improve further the accuracy of testing data such as data
of table 3, the result of Cross-validation was corresponded with the map of
Spherical SOM, and several combinations of learning pattern were composed.
As a combination for the composition, we prepared the compositions four cases
of learning patterns and evaluated their performance; the first composition was
exchange of a pair of data between two subsets of testing patterns, this composi-
tion was further divided into two cases; exchange of a pair of normal data (case
1), and exchange for abnormal ones (case 2). The second composition, the case



Composition of Learning Patterns Using Spherical SOM 279

3, was an alteration of class category within the same subset of testing patterns
and the third composition was the exclusion of conflicting pattern from testing
patterns.

Of the 4 cases shown in Tables 4 and 5, the three cases of the Cross-validation
for r = 2 to 5. In the case 1, two numbers 35 and 41 of normal data in the sub-
sets g3 and g4 were exchanged with the numbers 9 and 19 of normal ones in the
subsets g0 and g1, respectively. Similarly in the case 2, two numbers 34 and 40 of
abnormal data in the subsets g8 and g9 were also exchanged with the numbers
24 and 29 of abnormal ones in the subsets g5 and g7, respectively.

For the reliability of accuracy, the evaluation of performance improved by the
composition is not the highest accuracy, and the average values of the accuracy
for the range of dimensionality r = 2 and 5. From tables it was shown that
composition of the learning patterns using visualization of Spherical SOM was
effective in improving the performance of the analysis by the Subspace classifier;
the operation of exchange of the learning data improved the averaged classifica-
tion accuracy from 2.2 to 2.8% as compared with not performing the operation.
As seen from Tables 4 and 5, the operation of composition of the learning pattern
prevented the fall of accuracy in a wide range of dimensionality r and provided
the high reliability of the performance.

Table 4. Accuracies [%] for the compositions from the case 1 to 3

r Non composition Case 1 Case 2 Case 3

2 74.44 74.23 74.23 72.09
3 67.67 68.80 68.70 68.46
4 64.66 69.00 67.45 67.58
5 63.91 66.54 66.54 67.47

Av 67.67 69.64 69.23 68.90

Table 5. Averaged performances and their standard deviations [%] for each case

Case Accuracy Specificity Sensitivity
No. Av. Std. dev. Av. Std.dev. Av. Std.dev.

Non composition 67.76 4.80 70.33 5.23 61.91 4.73
1 69.64 3.26 72.53 3.70 61.91 3.37
2 69.23 3.45 71.98 4.06 61.91 3.37
3 68.90 2.17 71.35 2.80 61.91 1.43

5 Conclusion

We have proposed a composition of learning patterns based on the visualization
of Spherical SOM for improving classification performance in the image analysis
using the Subspace classifier. Without a composition of learning patterns from
visual information, the Cross-validation for testing datasets was attained 74.4 %
of maximum accuracy, 73.8% of specificity and 77.7% of sensitivity, respectively.
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Furthermore we examined the classification performance on the image analysis
using the proposed composition. With the proposed composition of learning
patterns, the classification accuracy was improved from 2.2 to 2.8%. The potency
with the accurate visualization of Spherical SOM allows the composition of the
learning patterns to improve more performance and its reliability than those
without the composition in the image analysis using the Subspace classifier.
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Abstract. In this paper, we propose novel adaptation rules for the self-
organizing map to solve the prize-collecting traveling salesman problem
(PC-TSP). The goal of the PC-TSP is to find a cost-efficient tour to col-
lect prizes by visiting a subset of a given set of locations. In contrast with
the classical traveling salesman problem, where all given locations must
be visited, locations in the PC-TSP may be skipped at the cost of some
additional penalty. Using the self-organizing map, locations for the final
solution may be selected during network adaptation, and locations where
visitation would be more expensive than their penalty can be avoided.
We have applied the proposed self-organizing map learning procedure
to autonomous data collection problems, where the proposed approach
provides results competitive with an existing combinatorial solver.

1 Introduction

The self-organizing map (SOM) is a two-layered artificial neural network that
can be considered as a non-linear transformation (map) of a high-dimensional
input space into a lower dimensional discrete output space. Its main feature is
that it preserves topological properties of the input space in the output space.
Although SOM was originally proposed as a data visualization technique, it has
also been applied to solve NP-hard routing problems. The first such attempt was
SOM for the Traveling Salesman Problem (TSP), which was proposed in 1988
by Angéniol and Fort.

The traveling salesman problem can be formulated as follows. Having a set
of locations (cities) in a plane and a distance function between them, the TSP
stands to find a shortest tour connecting all the given cities, such that each
city is visited exactly once and the tour returns to the origin city. This prob-
lem arises from many practical applications [2], and the TSP is a well-studied
problem in the operational research domain where efficient heuristics have been
proposed [12].

SOM for the TSP has the output layer organized in a one-dimensional array of
units representing a Peano curve that fills the input space. During unsupervised
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learning, the cities are presented to the input layer, and the network is adapted
by the means of moving neuron weights towards each presented city. Then, a
solution is found as a sequence of cities retrieved by traversing the output layer
where each winning neuron has an associated city in the input space.

Even though SOM has improved its performance in the TSP over the last
decades [14,7,8], combinatorial heuristics still provide better results in classical
graph-based instances of the TSP. On the other hand, SOM exhibits interesting
results in planning problems where the locations to be visited are not explicitly
prescribed [9] or where each location is represented by a set of possible points to
be visited (i.e., the traveling salesman problem with neighborhoods (TSPN) [10]).

In this paper, we follow the recent advancements of SOM and propose a new
adaptation rule to solve a variant of the TSP called the Prize Collecting Traveling
Salesman Problem (PC-TSP) [6]. This problem is an extension of the standard
TSP, where each city represents a prize that might be collected and where each
prize also has an associated penalty cost if it is not collected. Thus, in the case
where the penalty is significantly lower than the travel cost to the city, it is
more suitable to avoid visitation of the city by the tour. The problem is to find
a cost-efficient tour collecting the most important prizes (high penalty cities),
i.e., to find a tour with the minimal total cost that is computed as the sum of
the tour length (cost) in addition to the sum of penalties of all cities that are
not visited by the tour.

The herein proposed SOM-based approach for the PC-TSP is based on the
self-adjusting structure of the neural network proposed in [10] for solving the
TSPN that has been extended to select and adapt the network to the most
promising cities. To the best of our knowledge, the proposed method is the first
application of SOM to the PC-TSP. The approach extends the application do-
main of SOM to additional optimization problems in which SOM can provide
new ways of solving routing problems. The PC-TSP represents a class of prob-
lems where it is not sufficient to just alternate cities, but where it is also desirable
to learn the underlying problem domain to select the most important cities to
visit. Finding a solution to the PC-TSP consists of 1) a selection of the most
promising cities and those that should be avoided and 2) finding a tour visiting
the selected cities. SOM can be used to simultaneously address both of these
problems together.

The paper is organized as follow. The problem motivation and the problem
definition are presented in the next section. The proposed method is introduced
in Section 3. Results of the proposed approach evaluation and a comparison
with other methods are presented in Section 4 together with a discussion of
found insights. Section 5 is dedicated to concluding remarks.

2 Problem Statement

The addressed problem is motivated by autonomous data collection, where it is
requested to collect data from a number of sampling stations to create a model
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of a spatial phenomena as quickly as possible. Due to the spatial distribution
of the sampling stations, the information retrieved from one station can also be
included in measurements provided by other stations; thus, it is not necessary to
retrieve data from all stations to acquire the desired model of the phenomena.
The problem is formulated as a simplified variant of the PC-TSP [5], where each
city has an associated penalty representing an importance of the measurement
provided by the station [13].

In robotics, the TSP-based routing problems are alternatively called multi-
goal path planning problems because the cities in the TSP represent goals
towards which the robot navigates [13]. Therefore, to emphasize the robotic
motivation of the studied problem, the term goal (or goal location) is used in
the rest of this paper to denote the equivalent of cities in the TSP.

2.1 Problem Definition

Having n possible goal locations G = {g1, . . . , gn}, gi ∈ R
2, where each goal

has associated penalty ζ(gi) ≥ 0, and distance between two goals gi and gj
is c(gi, gj) ≥ 0, the problem is to find a tour T visiting a subset of the goals
GT ⊆ G such that the total cost of the tour C(T ) is minimal

C(T ) =
∑

(gsi ,gsi+1
)∈T

c(gsi , gsi+1) +
∑

g∈G\GT

ζ(g). (1)

The tour T is a sequence of the selected goals T = (gs1 , . . . , gsk−1
, gsk), where

gsj ∈ GT , sj ≥ 1, and sj ≤ n. The sequence represents a closed tour over the
selected goals gs1 = gsk , and all the selected goals, except the first (and last)
visited goal, are included in the tour at most once.

For simplicity, which is also in line with the considered motivational appli-
cation of autonomous data collection [13], the travel cost between two goals is
computed as the Euclidean distance c(gi, gj) = |(gi, gj)|; i.e., the problem is
considered in a planar environment without obstacles.

2.2 Performance Metric

The PC-TSP is NP-complete because it includes the TSP for very high penalties.
Several approximation algorithms have been proposed for variants of the prob-
lem [4]. Although these algorithms provide guaranteed approximation factors
relative to optimal, the approximation factors are relatively high (e.g., factor
of 2.5 for the approach [6] based on the Christofides’ algorithm) or somewhat
better for a more complex algorithm [3].

In this paper, we consider a solution quality metric using the ratio of the PC-
TSP solution to the related TSP (i.e., the shortest tour visiting all the goals and
thus with zero penalty term in (1)). A solution to the TSP is available out-of-the-
box using the Concorde solver [1], which provides an optimal solution for TSP
problems (up to several hundred goals) within a reasonable time. Moreover, this
ratio allows us to aggregate results for different problem instances and consider
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a new candidate point

the current goal
presented to the network

the current ring of nodes

(a)

the current goal
presented to the network

the current ring of nodes

new winner node

(b)

adapted ring of nodes

the current goal
presented to the network

(c)

Fig. 1. Visualization of winner selection: (a) the closest point of the ring’s segment to
the presented goal; (b) new neuron added to the ring at the position of the closest point;
(c) the current ring after adaptation of the winner and its neighbouring nodes. The
goals are represented by green discs, while the blue discs denote the neuron weights.

statistical evaluation of the algorithmic performance using several hundreds of
trials. The ratio is computed as

R =
C(T )

C(TTSP )
, (2)

where TTSP is the optimal solution of the underlying TSP.

3 Proposed SOM for the PC-TSP

The proposed adaptation schema for the PC-TSP is based on two relatively
straightforward properties that are not included in standard SOM-based ap-
proaches for the TSP. The first is a mechanism to adjust the number of neurons
according to the currently selected number of goals to be visited. Otherwise,
a poor solution will result because a low number of neurons will not provide
convergence guarantees, and too many neurons will result in an inefficient adap-
tation of the winner neighborhood. The second property is the selection of the
goals itself.

The first property is addressed by considering the self-adjusting adaptation
rules proposed in [10]. The selection of goals is addressed in winner selection,
where the neuron is considered to be a winner candidate only if its distance to
the goal currently presented to the network is smaller than the goal’s penalty.
These two ideas are the foundation of the proposed solution.

The learning procedure consists of a two-layered competitive neural network
similar to the one used for the TSP. The input layer represents a two-dimensional
input vector, and the second layer consists of the output units organized into
a uni-dimensional structure, where the neuron weights represent coordinates in
a plane. The output units are defined by a sequence of straight line segments
(called the ring) in R

2 that represents the tour connecting the selected goals.
The main idea of the self-adjusting neural network is based on winner selection

using the shortest distance of the presented goal to the network (i.e., the shortest
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distance of the goal to the ring). Having the current ring of neuron weights
as a sequence of the straight line segments, the winner candidate is found as
the closest point of the ring to the presented goal. If such a point corresponds
to a neuron already presented in the ring, and the neuron was not a winner
in the current learning epoch, the neuron is considered the winner candidate.
Otherwise, a new neuron is created, and its weights are set to the position of
the point. If such a winner candidate becomes the winner, the winner neuron is
added to the ring; otherwise it is deleted whenever a new winner candidate is
determined. The winner selection is schematically visualized in Fig. 1.

The winner selection provides a mechanism to create new neurons. The reduc-
tion of neurons is performed by the ring regeneration at the end of each learning
epoch. At this time, the current winner neurons are preserved, and all other neu-
rons are removed from the network. An additional neuron is inserted between
each preserved winner to support spreading neurons during the adaptation. The
weights of the neurons are set to the center of the segment connecting the two
winners. The learning procedure is summarized in the following eight steps:

1. Initialization: Create 2n neurons around the first goal for the input set of
n goals G. Set the neighbouring function variance σ ← 10 and the learning
rate μ ← 0.99. Set the current number of learning epoch i ← 1.

2. Randomizing: Create a random permutation of goals Π(G) ← permute(G).
3. Winner Selection: If i == 1

– Then: Select the closest point p of the current ring to the presented goal
g ∈ Π(G);

– Otherwise: Select the closest point p of the current ring to g ∈ Π(G)
such that |(p, g)| < ζ(g).

4. Adapt: If p is selected
– Determine the appropriate winner neuron ν� (select or create new one).
– Adapt the winner ν� and its neighbouring nodes νj within the distance

d (in the number of nodes) using the neighbouring function f(σ, d) =

μe(−d2/σ2) for d < 0.2m and f(σ, 0) = 0 otherwise, wherem is the current
number of neurons, i.e., move ν closer towards g about |(ν, g)|f(σ, d).

Remove g from the permutation, Π(G) ← Π(G) \ {g}, and If |Π(G)| > 0
go to Step 3.

5. Ring regeneration: Create a new ring using only the winner nodes of the
current learning epoch, and add a new neuron between each two consecutive
winner nodes νi and νj with the weights set to νi + (νi − νj)/2.

6. Update the number of the learning epoch and neighbouring function variance:
i ← i+ 1; σ ← (1− 0.0005i)σ.

7. Termination condition: If the maximal distance of the winner to its goal is
less than 10−3, stop the adaptation. Otherwise go to Step 2.

8. Final tour construction: Traverse the ring and use the associated goals to
the last winners to construct the final goal tour.
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Computational complexity of the learning procedure can be derived from
the number of comparisons needed to find the best matching neuron for each
presented goal to the network, which is the most time-consuming operation.
The number of goals is n, and the number of neurons can be bounded by 3n at
every moment of the adaptation, which gives 3n2 operations. The values of μ and
f(σ, d) are always less than 1, and thus the adaptation rule is stable [15]. Besides,
the neighbors of the winner are effectively moved only for a sufficiently high
value of f(σ, d), and since σ does not depend on n, the network is stabilized in a
constant number of learning epochs. Thus, the overall computational complexity
can be bounded by O(n2).

The required memory only depends on the representation of the goals and
neurons, which are basically coordinates in the plane accompanied by the penalty
and associated goal for the winners. Hence, the space can be bounded by O(n).

4 Results

The proposed SOM for the PC-TSP was first validated in simple use cases to
verify feasibility of the proposed principle of goal selection. Then, its performance
was evaluated in problem instances proposed in [13]. Results from these two
evaluation scenarios are presented in the following sections.

4.1 Simple Use Cases

The initial feasibility test was performed using 8 goals forming two concentric
squares with a side length 10 and 8. According to the value of the penalties,
the solution of the PC-TSP is a tour connecting all the goals (for penalties 10
and 2) and a single connected square of the outer (penalties 10 and 0) or inner
(penalties 0 and 10) goals. The found solutions are visualized in Fig. 2, where
the red discs denote goals with higher penalties (more important goals), and
goals with zero or small penalties are shown in blue. The solutions of these
simple problems correspond to optimal solutions and thus provide validation of
the proposed adaptation rules.

ζ = 2

ζ = 10ζ = 10

ζ = 2

ζ = 10

ζ = 2

ζ = 10

ζ = 2

ζ = 0

ζ = 0

ζ = 10

ζ = 10

ζ = 10

ζ = 10

ζ = 0

ζ = 0

ζ = 0

ζ = 0

ζ = 10ζ = 10

ζ = 0

ζ = 0

ζ = 10 ζ = 10

Fig. 2. Example of found solutions for concentric squared goals problems
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Table 1. Average ratios R of the solution cost to the optimal solution of the related
TSP for 50 problems in the 100 km × 100 km area and 2500 SOM trials

Problem f
SOM TSP PC-TSP SOM PC-TSP SOM PC-TSP+TSP

[10] [11],[1] Proposed Proposed + [1]

area 20×20 0.001 1.03/0.02 1.00/<0.01 1.04/0.02/(−) 1.00/<0.01/(+)

area 20×20 0.100 1.03/0.02 1.00/0.01 1.03/0.02/(−) 1.00/<0.01/(+)

area 20×20 1.000 1.03/0.02 1.02/0.02 1.02/0.02/(=) 0.99/0.01/(+)

area 20×20 2.000 1.03/0.02 1.02/0.03 1.01/0.02/(+) 0.98/0.02/(+)

area 20×20 5.000 1.03/0.02 1.03/0.05 0.97/0.05/(+) 0.95/0.05/(+)

area 20×20 7.000 1.03/0.02 1.00/0.04 1.00/0.07/(=) 0.99/0.07/(=)

area 20×20 10.000 1.03/0.02 0.84/0.08 0.79/0.06/(+) 0.79/0.06/(+)

Values in columns are: average / standard deviation / (statistical comparison).
(+) - the algorithm provides statistically better solutions than the PC-TSP [11,1].

4.2 Performance Evaluation

The performance evaluation is based on the solution to data collection problems
consisting of 100 randomly placed sensors within a 100 km × 100 km large area,
where each goal penalty is randomly drawn from the range 0 to 25. Similarly
to [13], the vehicle speed is assumed to be 5 km per hour. Thus, the goals are
effectively placed in a 20 × 20 large square, and the cost between goals is directly
computed as their Euclidean distance. In addition, more problem instances are
created from this setup by dividing the penalty by the value f , which allows
us to study the algorithm’s performance for different penalties. Notice, that for
very high penalties (e.g., f ≤0.1), the problems become close to the TSP.

The proposed SOM approach is compared with the combinatorial determinis-
tic approach considered in [13]. The prior combinatorial approach was based on
the heuristic determination of the goals to ignore [11] and a consecutive optimal
solution of the TSP for the remaining goals using the Concorde solver [1]. The
SOM approach is considered in two variants. First, it is used for simultaneous
selection of the goals together with the tour connecting them. The second variant
uses the goals determined by the first variant that are connected by the optimal
tour found by [1].

For each problem scenario, 50 random instances are created, and the algo-
rithm’s performance is measured as the average value of the ratio R of the found
solution of the PC-TSP to the optimal solution of the related TSP introduced
in (2). Due to stochastic nature of SOM, 50 trials are solved for each problem
instance, which gives 2500 solutions to compute the average ratio for a particular
problem scenario.

Based on the statistical data, a comparison of the SOM-based algorithms
with the reference algorithm was performed. This tests the null hypothesis that
the random variables R describing the quality of the provided solutions are
from the some distribution. For each scenario and particular factor, the ratio
R is considered to be a random variable over the 50 problem instances. For
SOM, the average C from all 50 trials is considered to be the solution quality of
the scenario. These random variables are considered to be drawn from normal
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Table 2. Average ratios R of the solution cost to the optimal solution of the related
TSP for 50 problems in the 200 km × 200 km area and 2500 SOM trials

Problem f
SOM TSP PC-TSP SOM PC-TSP SOM PC-TSP+TSP

[10] [11],[1] Proposed Proposed + [1]

area 40×40 0.001 1.03/0.02 1.00/<0.01 1.04/0.02/(−) 1.00/<0.01/(=)

area 40×40 0.100 1.03/0.02 1.00/<0.01 1.04/0.02/(−) 1.00/<0.01/(=)

area 40×40 1.000 1.03/0.02 0.98/0.02 1.00/0.03/(−) 0.95/0.02/(+)

area 40×40 2.000 1.03/0.02 0.98/0.02 0.97/0.03/(=) 0.95/0.02/(+)

area 40×40 5.000 1.03/0.02 0.91/0.06 0.78/0.05/(+) 0.78/0.05/(+)

area 40×40 7.000 1.03/0.02 0.68/0.12 0.58/0.03/(+) 0.58/0.03/(+)

area 40×40 10.000 1.03/0.02 0.42/0.06 0.43/0.03/(=) 0.43/0.03/(=)

average value / standard deviation / (statistical comparison)
(+) - the algorithm provides statistically better solutions than the PC-TSP [11,1].

distributions since the problems are random. The algorithms are considered to
provide statistically different results if the P-value of the T-test is below 0.05.
In this case, the algorithm with a lower average value of R is considered better
(denoted by the character ’+’). The computed averages, standard deviations,
and results of statistical comparison are presented in Table 1.

The results in Table 1 indicate that SOM solutions of the PC-TSP provide
paths with almost identical costs as the pure solution of the TSP. Even though
not all sensors are visited, the cost of the final path is (on average) similar to
the tour visiting all the goals. To further explore the benefit of the proposed
approach, an additional set of problems was created within a larger area with
dimensions 200 km × 200 km, which provides a better opportunity to avoid
distant goals with small penalties. Statistical indicators for these problems are
presented in Table 2, and an example of found solutions is depicted in Fig. 3.

(a) SOM TSP, C=316 (b) SOM PC-TSP, C=309 (c) SOM PC-TSP+TSP, C=297

Fig. 3. Found solutions by the SOM for the TSP and PC-TSP

Regarding the required computational time, the proposed SOM algorithm
provides solutions of the PC-TSP (with 100 goals) in less than ten millisec-
onds using a single core of the iCore7 processor running at 3.4 GHz. The real
computational requirements are depicted in Fig. 4. In some cases, finding the
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Fig. 4. Real computational time (in milliseconds) to solve the PC-TSP

optimal solution of the TSP by [1] is computationally demanding, which makes
standard deviations very high. On the other hand, the proposed SOM based
PC-TSP algorithm requires almost identical computational time per particular
problem scenario. The computational burden decreases for lower penalties, which
is caused by selection of only few goals to be visited.

Discussion – The presented results indicate the proposed SOM adaptation rules
provide a feasible solution to the PC-TSP that achieves performance competitive
with other approaches. Moreover, the results also indicate that for problems
where the selection of the goals is more important (i.e., problems with a higher
penalty factor f), the SOM approach performs better.

On the other hand, the benefit of solving the considered instances using the
PC-TSP is not always evident because the solution quality is sometimes similar
to the solution of the pure TSP. This is mainly caused by instances of the
problem with dense goals, as is indicated by the results for goals placed within a
larger area. Similar findings have been reported in [13]. All together, these results
indicate that solving the motivational data collection problem as an instance of
the PC-TSP provides substantial benefit when the penalties are small relative
to the size of the environment.

The addressed problem provides the groundwork for studying the principles
of SOM adaptation employed in routing problems. Here it is worth mentioning
that an explicit consideration of the final cost of the tour represented by the ring
in the selection of winners does not provide good results, and the convergence
of the network becomes much slower than for the proposed approach. This also
holds for different adaptation schemata (e.g., a fixed number of neurons), which
do not provide stable adaptation with competitive results.

5 Conclusion

Novel adaptation rules to address the prize-collecting traveling salesman problem
using a self-organizing map have been introduced in this paper. The main feature
of the proposed SOM for the PC-TSP is that it provides a simultaneous selection
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of the goals together with a sequence of their visit. The proposed method uses
SOM-based solution to the PC-TSP that provides competitive results to other
methods. As such, it extends the portfolio of routing problems where SOM can
be applied.

In the motivational autonomous data collection task, the PC-TSP provides
substantial reduction in solution cost when the penalties are small relative to the
size of the environment. Previous research indicates that considering a non-zero
communication radius to read the data from the sensor station from a longer dis-
tance can improve the solution more significantly. This extension would lead to
a combination of the PC-TSP with the traveling salesman problem with neigh-
borhoods (TSPN), where SOM has also been successfully applied. Therefore, we
plan to extend the proposed approach to address such combined problems. In
addition, our future work is also directed towards considering dynamic evalua-
tion of the penalty when it depends on both the current tour and the expected
goals to be visited.
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Foundation (GAČR) under research project No. 13-18316P. Support under
United States National Science Foundation Grant IIS-1317815 to Geoffrey
Hollinger is also gratefully acknowledged.
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Abstract. Self Organizing Maps (SOMs) have attracted the attention
of many computer vision scientists, particularly when dealing with image
segmentation as a contour extraction problem. The idea of utilizing the
prototypes (weights) of a SOM to model an evolving contour has pro-
duced a new class of Active Contour Models (ACM s), known as SOM -
based ACM s. Such models have been proposed in general with the aim
of exploiting the specific ability of SOMs to learn the edge-map infor-
mation via their topology preservation property, and overcoming some
drawbacks of other ACMs, such as trapping into local minima of the
image energy functional to be minimized in such models. In this survey
paper, the main principles of SOMs and their application in modelling
active contours are first highlighted. Then, we review existing SOM -
based ACMs with a focus on their advantages and disadvantages in
modelling the evolving contour via different kinds of SOMs. Finally,
some current research directions are identified.

Keywords: Image segmentation, Self Organizing Maps, active contours,
SOM -based ACMs, topology preservation, neural networks.

1 Introduction

Image segmentation is the problem of partitioning the domain Ω of an image
I(x), where x ∈ Ω is the pixel location within the image, into different subsets
Ωi, where each subset has a different characterization in terms of color, inten-
sity, texture, and/or other features used as similarity criteria. Segmentation is
a fundamental component of image processing, and plays a significant role in
computer vision, object recognition, and object tracking.

Active Contour Models (ACMs) usually deal with the segmentation problem
as an optimization problem, formulated in terms of a suitable “energy” functional,
constructed in such a way that its minimum is achieved in correspondence with
a contour that is a close approximation of the actual object boundary. Starting
from an initial contour, the optimization is performed iteratively, evolving the cur-
rent contour with the aim of approximating better and better the actual object
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boundary (hence the denomination “active contour”models, which is used also for
models that evolve the contour but are not based on the explicit minimization of
a functional [1]). In order to guide efficiently the evolution of the current contour,
ACMs allow to integrate various kinds of information inside the energy functional,
such as: local information (e.g., features based on spatial dependencies among pix-
els), global information (e.g., features which are not influenced by such spatial de-
pendencies), shape information1, prior information, and a-posteriori information
learned from examples. As a consequence, depending on the kind of information
used, one can divide ACMs into several categories: e.g., edge-basedACMs [4–7],
global region-based ACMs [8, 9], edge/region-basedACMs [10–12], local region-
basedACMs [13–15], and global/local region-basedACMs [16,17]. In particular,
edge-based ACMs make use of an edge-detector (in general, the gradient of the
image intensity) to stop the evolution of the active contour on the true boundaries
of the objects of interest. Instead, region-basedACMs use with the same purpose
statistical information about the regions to be segmented (e.g., intensity, texture,
color distribution, etc.). Depending on how the active contour is represented, one
can also distinguish between parametrized [18] and level set-based ACMs [8].

Although ACMs often provide an effective and efficient means to extract
smooth and well-defined contours, trapping into local minima of the energy
functional may still occur, because such a functional may be constructed on
the basis of simplified assumptions on properties of the images to be segmented
(e.g., the assumption of Gaussian intensity distributions for the sets Ωi in the
case of the Chan-Vese model [2, 8]). Motivated by this observation and by the
specific ability of SOMs to learn - via their topology preservation property [19]
- information about the edge map of the image (i.e., the set of points obtained
by an edge-detection algorithm), a new class of ACMs, named SOM -based
ACMs [20, 21], has been proposed with the aim of modelling and controlling
effectively the evolution of the active contour by a Self Organizing Map (SOM),
in general without relying on an explicit energy functional to be minimized. In
this paper, we review some concepts of ACMs with a focus on SOM -based
ACMs, illustrating both their strengths and limitations.

The paper is organized as follows. Section 2 provides a brief discussion on
parametrized and level set-based ACMs. In Section 3, we review the state of
the art of SOM -based ACMs. Section 4 provides some conclusions and discuss
current research directions in SOM -based ACMs.

2 Active Contour Models (ACMs)

In order to describe an active contour, there are mainly two classes of methods:
parametrized methods, in which the contour is represented by a parametric
curve, and variational level set methods, for which the contour is the zero level
set of a suitable function.
1 Due to the possible lack of a precise prior information on the shape of the objects to
be segmented, in this respect most ACMs make only the assumption that it is prefer-
able to have a smooth boundary [2]. This goal is achieved by incorporating a suitable
regularization term into their energy functional [3].
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2.1 Parametrized ACMs

In parametrized ACMs, the contour C is represented as

C := {x ∈ Ω : x = (x1(s), x2(s)), 0 ≤ s ≤ 1}, (1)

where x1(s) and x2(s) are functions of the scalar parameter s. A representative
parametrized ACM is the Snakes model, proposed by Kass et al. [3] (see also [18]
for successive developments). The main drawbacks of parametrized ACMs are
the frequent occurrence of local minima in the image energy functional to be
optimized (which is mainly due to the presence of a gradient energy term inside
such a functional), and the fact that topological changes of the objects (e.g.,
merging and splitting) cannot be handled during the evolution of the contour.

2.2 Level Set-Based ACMs

Level set-based ACMs (also called geometric ACMs) were first proposed by
Osher and Sethian [22]. The difference between parametric and level set-based
ACMs is that in the latter, the contour C is implemented via a variational level
set method, i.e., it is implicitly represented by a function φ(x), called level set
function, where x is pixel location in the image domain Ω. Then, C is defined
as the zero level set of the function φ(x) by the expression

C := {x ∈ Ω : φ(x) = 0} . (2)

A representative state-of-the-art level set-basedACM is the Chan-Vese model [8].
Level set-based ACMs have the advantage on parametrized ACMs of being able
to model arbitrarily complex shapes, and to handle implicitly topological changes
(e.g., presence/absence of internal connectedness) of the regions to be segmented.
However, likewise parametrized ACMs, this class of models is sensitive to local
minima. An effective solution to deal with this issue consists in using instead
SOMs to model and control the evolution of the active contour, resulting in
a new class of ACMs, called SOM -based ACMs, which are described in the
following section.

3 SOM -Based ACMs

Before discussing SOM -based ACMs, we shortly review the use of SOMs as a
tool in pattern recognition (hence, in image segmentation as a particular case).

3.1 Self Organizing Maps (SOMs)

The SOM [19], which was proposed by Kohonen, is an unsupervised neural
network whose neurons update concurrently their weights in a self-organizing
manner, in such a way that, during the learning process, its neurons evolve
adaptively into specific detectors of different input patterns. A basic SOM is



296 M.M. Abdelsamea, G. Gnecco, and M.M. Gaber

composed of an input layer, an output layer, and an intermediate connection
layer. The input layer contains a unit for each component of the input vector.
The output layer consists of neurons that are typically located either on a 1-D
or a 2-D grid, and are fully connected with the units in the input layer. The
intermediate connection layer is composed of weights (also called prototypes)
connecting the units in the input layer and the neurons in the output layer (in
practice, one has one weight vector associated with each output neuron, where
the dimension of the weight vector is equal to the dimension of the input). The
learning algorithm of the SOM can be summarized by the following steps:

1. initialize randomly the weights of the neurons in the output layer, and select
suitable learning rate and neighborhood size around a “winner” neuron;

2. for each training input vector, find the winner neuron using a suitable rule;
3. update the weights on the selected neighborhood of the winner neuron;
4. repeat Steps 2-3 above selecting another training input vector, until learning

is accomplished (i.e., a suitable stopping criterion is satisfied).

SOMs have been used extensively for image segmentation, but often not in
combination with ACMs [23, 24]. In order to improve the robustness of edge-
based ACMs to the blur and to ill-defined edge information, SOMs have been
also used in combination with ACMs, with the explicit aim of modelling the
active contour and controlling its evolution, adopting a learning scheme similar
to Kohonen’s learning algorithm [19], resulting in SOM -based ACMs [20, 21]
(which belong, in this case, to the class of edge-based ACMs). The evolution
of the active contour in a SOM -based ACM is guided by the feature space
constructed by the SOM when learning the weights associated with the neurons
of the map. Among other neural network models applied in combination with
ACMs, we mention multilayer perceptrons [25]. One reason to prefer SOMs to
other neural network models consists in the specific ability of SOMs to learn
the edge-map information via their topology preservation property. A review of
SOM -based ACMs is provided in the following subsections.

3.2 An Example of a SOM-Based ACM

The basic idea of existing SOM -based ACMs is to model and implement the
active contour using a SOM , relying in the training phase on the edge map of
the image to update the weights of the neurons of the SOM , and consequently
to control the evolution of the active contour. The points of the edge map act
as inputs to the network, which is trained in an unsupervised way (in the sense
that no supervised samples belonging to the foreground/background, resp., are
provided). As a result, during training the weights associated with the neurons
in the output map move toward points belonging to the nearest salient contour.
In the following, we illustrate the general ideas of using a SOM in modelling the
active contour, by describing a classical example of a SOM -based ACM , which
was proposed in [20] by Venkatesh and Rishikesh.
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Spatial Isomorphism Self Organizing Map (SISOM )-Based ACM [20].
The SISOM -based ACM is the first SOM -based ACM which appeared in the
literature. It was proposed with the aim of localizing the salient contours in an
image using a SOM to model the evolving contour. The SOM is composed of a
fixed number of neurons (and consequently a fixed number of “knots” or control
points for the evolving curve) and has a fixed structure. The model requires
a rough approximation of the true boundary as an initial contour. Its SOM
network is constructed and trained in an unsupervised way, based on the initial
contour and the edge-map information. The contour evolution is controlled by
the edge information extracted from the image by an edge detector. The main
steps of the SISOM -based ACM can be summarized as follows:

1. construct the edge map of the image to be segmented;
2. initialize the contour to enclose the object of interest in the image;
3. obtain the x1- and x2- coordinates of the edge points to be presented as

inputs to the network;
4. construct a SOM with a number of neurons equal to the number of the edge

points of the initial contour and two weights associated with each neuron;
the points on the initial contour are used to initialize the SOM weights;

5. repeat the following steps for a fixed number of iterations:
(a) select randomly an edge point and feed its coordinates to the network;
(b) determine the best-matching neuron;
(c) update the weights of the neurons in the network by the classical un-

supervised learning scheme of the SOM [19], which is composed of a
competitive phase and a cooperative one;

(d) compute a neighborhood parameter for the contour according to the
updated weights and a threshold.

Fig. 1 illustrates the evolution procedure of the SISOM -based ACM . On the
left-side of the figure, the neurons of the map are represented by gray circles,
while the black circle represents the winner neuron associated with the current
input to the map (in this case, the red circle on the right-hand side of the figure,
which is connected by the blue segments to all the neurons of the map). On the
right-hand side, instead, the positions of the white circles represent the initial
prototypes of the neurons, whereas the positions of the black circles represent
their final values, at the end of learning. The evolution of the contour is controlled
by the learning algorithm above, which guides the evolution of the protoypes
of the neurons of the SOM (hence, of the active contour) using the points of
the edge map as inputs to the SOM learning algorithm. As a result, the final
contour is represented by a series of prototypes of neurons located near the actual
boundary of the object to be segmented.

We conclude by mentoning that, in order to produce good segmentations, the
SISOM -based ACM requires the initial contour (which is used to initialize the
prototypes of the neurons) to be very close to the true boundary of the object
to be extracted, and the points of the initial contour have to be assigned to
the neurons of the SOM in a suitable order: if such assumptions are satisfied,
the contour extraction process performed by the model is robust to the noise.



298 M.M. Abdelsamea, G. Gnecco, and M.M. Gaber

Fig. 1. The architecture of the SISOM -based ACM proposed in [20]

Moreover, differently from other ACMs, the model does not require a particular
energy functional to be optimized.

3.3 Other SOM-Based ACMs

In this subsection, we describe other SOM -based ACMs, and highlight their
advantages and disadvantages.

Time Adaptive Self Organizing Map (TASOM )-Based ACM [21]. The
TASOM -based ACM was proposed by Shah-Hosseini and Safabakhsh as a de-
velopment of the SISOM -based ACM , with the aim of inserting neurons incre-
mentally into the SOM map or deleting them incrementally, thus determining
automatically the required number of control points of the extracted contour.
Moreover, each neuron is provided with its specific dynamic learning rate and
neighbourhood function. As a consequence, the TASOM -based ACM can over-
come one of the main limitations of the SISOM -based ACM , i.e., its sensitivity
to the contour initialization, in the sense that the initial guess of the contour in
the TASOM -based ACM can be far from the actual object boundary. Likewise
the SISOM -based ACM , topological changes of the objects (e.g., splitting and
merging) cannot be handled, since both models rely completely on the edge in-
formation (instead than on regional information) to drive the contour evolution.

Batch Self Organizing Map (BSOM )-Based ACM [1, 26]. This model is
a modification of the TASOM -based ACM , and was proposed by Venkatesh et
al. with the aim of dealing better with the leaking problem (i.e., the presence
of a final blurred contour), which often occurs when handling images with ill-
defined edges. Such a problem is due to the explicit usage by the TASOM -based
ACM of only edge information to model and control the evolution of the con-
tour. In the BSOM -based ACM , instead, the image intensity variation inside
a local region is used along with the edge information to control the movement
of the contour. In this way, the robustness of the model is increased in handling
images with blurred edges. At the same time, the BSOM -based ACM is less
sensitive to the initial guess of the contour, when compared to parametrized
ACMs like Snakes, and to the SOM -based ACMs described above. However,
likewise all such models, the BSOM -based ACM has not the ability to handle
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topological changes of the objects to be segmented. An extension of the BSOM -
based ACM was proposed in [27,28] and applied therein to the segmentation of
pupil images. Such a modified version of the basic BSOM -based ACM increases
the smoothness of the extracted contour, and prevents the extracted contour
from being extended over the true boundaries of the object.

Fast Time Adaptive Self Organizing Map (FTA-SOM )-Based ACM
[29]. This is another modification of the TASOM -basedACM , and was proposed
by Izadi and Safabakhsh with the aim of decreasing its computational comple-
xity. The FTA-SOM -based ACM is based on the observation that choosing
the learning rate parameters of the prototypes of the neurons of the SOM in
such a way that they are equal to a large fixed value when they are far from the
boundary, and to a small value when they are near the boundary, can lead to a
significant increase of the convergence speed of the active contour. Accordingly,
in each iteration, the FTA-SOM -based ACM finds the minimum distance of
each neuron from the boundary, then its sets the associated learning rate as a
fraction of that distance.

Coarse to Fine Boundary Location Self Organizing Map (CFBL-SOM )
-Based ACM [30]. The above SOM -based ACMs work in an unsupervised
way, as the user is required only to provide an initial contour to be evolved auto-
matically. In [30], Zeng et al. proposed the CFBL-SOM -based ACM as the first
supervised SOM -based ACM , i.e., a model in which the user is allowed to pro-
vide supervised points (supervised “seeds”) from the desired boundaries. Starting
from this coarse information, the SOM neurons are then employed to evolve the
contour to the desired boundaries in a “coarse-to-fine” approach. The CFBL-
SOM -based ACM follows such a strategy when controlling the evolution of
the contour. So, an advantage of the CFBL-SOM -based ACM over the SOM -
based ACMs described above is that it allows to integrate prior knowledge on the
desired boundaries of the objects to be segmented, which comes from the user in-
teraction with the SOM -based ACM segmentation framework. When compared
with such SOM -based ACMs, this property provides the CFBL-SOM -based
ACM with the ability of handling objects with more complex shapes, inhomo-
geneous intensity distributions, and weak boundaries.

Conscience, Archiving and Mean-Movement Mechanisms Self
Organizing Map (CAM -SOM )-Based ACM [31]. The CAM -SOM -based
ACM was proposed by Sadeghi et al. as an extension of the BSOM -ACM , by in-
troducing three mechanisms called Conscience, Archiving and Mean-Movement.
The main achievement of the CAM -SOM -based ACM is to allow more complex
boundaries (such as concave boundaries) to be captured, and to provide a reduc-
tion of the computational cost. By the Conscience mechanism, the neurons are
not allowed to “win” too much frequently, which makes the capture of complex
boundaries possible. The Archiving mechanism allows a significant reduction
in the computational cost. By such mechanism, neurons whose prototypes are
close to the boundary of the object to be segmented and whose values have
not changed significantly in the last iterations are archived and eliminated from
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subsequent computations. Finally, in order to ensure a continuous movement of
the active contour towards concave regions, the Mean-Movement mechanism is
used in each epoch to force the winner neuron to move towards the mean of a
set of feature points, instead of a single feature point. Together, the Conscience
and Mean-Movement mechanisms prevent the contour from stopping the contour
evolution at the entrance of object concavities.

Extracting Multiple Objects. The main limitation of various SOM -based
ACMs is their inability to detect multiple contours and to recognize multiple
objects. As mentioned above, a similar problem arises in parametric ACMs such
as Snakes. To deal with the multiple contour extraction problem, Venkatesh et
al. proposed in [26] to use a splitting criterion. However, if the initial contour is
outside the objects, contours inside an object still cannot be extracted. Sadeghi
et al. proposed in [31] a splitting criterion (to be checked at each epoch) such that
the main contour can be divided into several sub-contours whenever the criterion
is satisfied. The process is repeated until each of the sub-contours encloses one
single object. However, the merging process is still not handled implicitly by
the model, which reduces its scope, especially when handling images containing
multiple objects in the presence of noise or ill-defined edges. Moreover, Ma et al.
proposed in [32] to use a SOM to classify the edge elements in the image. This
model relies first on detecting the boundaries of the objects. Then, for each edge
pixel, a feature vector is extracted and normalized. Finally, a SOM is used as
a clustering tool to detect the object boundaries when the feature vectors are
supplied as inputs to the map. As a result, multiple contours can be recognized.
However, the model shares the same limitations of other models that use a SOM
as a clustering tool for image segmentation [23,33,34], resulting in disconnected
boundaries and sensitivity to the presence of the noise.

4 Conclusions and Current Research Directions

In this paper, a survey has been provided about the current state of the art of
SOM -based ACMs. SOM -based ACMs have been proposed with the aim of
exploiting the specific ability of SOMs to learn the edge-map information via
their topology preservation property, and reducing the occurrence of local mi-
nima, which is typical of parametrized ACMs such as Snakes. This is partly due
to the fact that SOM -based ACMs do not rely on an explicit gradient energy
term. Although SOM -based ACMs can effectively outperform other ACM mod-
els in handling complex images, existing SOM -based ACMs are still sensitive
to the contour initialization compared to level set-based ACMs, especially when
handling complex images with ill-defined edges. Moreover, SOM -based ACMs
have not usually the ability to handle topological changes of the objects.

Among current research directions, we mention: 1) the possibility of com-
bining the advantages of SOMs and the ones of level set-based ACMs; 2) the
development of more sophisticated supervised SOM -basedACMs based, e.g., on
the use of Concurrent Self Organizing Maps (CSOMs) [35]; 3) the possibility of
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constructing SOM -based ACMs relying on regional-based information (e.g., lo-
cal/global statistical information about the intensity, texture, color distribution,
etc.) instead of edge information, to guide the evolution of the active contour.
Such issues have been recently addressed in [36], where the advantages of the
SOM -based ACM proposed therein have been demonstrated experimentally
through a comparison with other (SOM -based and non-SOM -based) ACMs.
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Abstract. Recently, an important aspect of human visual word recog-
nition has been characterized. The letter position is encoded in our brain
using an explicit representation of order based on letter pairs: the open-
bigram coding [15]. We hypothesize that spelling has evolved in order to
minimize reading errors. Therefore, word recognition using bigrams —
instead of letters — should be more efficient. First, we study the influence
of the size of the neighborhood, which defines the number of bigrams per
word, on the performance of the matching between bigrams and word.
Our tests are conducted against one of the best recognition solutions
used today by the industry, which matches letters to words. Secondly,
we build a cortical map representation of the words in the bigram space
— which implies numerous experiments in order to achieve a satisfactory
projection. Third, we develop an ultra-fast version of the self-organizing
map in order to achieve learning in minutes instead of months.

Keywords: Handwriting recognition, word recognition, open-bigram
coding, orthographic representation, cortical representation.

1 Introduction

Visual handwritten word recognition is an active field, attracting hundreds of
researchers [1], starting as early as 1929. A huge amount of ideas have been
implemented and tested including algorithms (such as dynamic programming
[2]) or holistic approaches (such as considering only the global characteristics
of the word [3]), statistical methods (such as hidden Markov models (HMM)
[4]), contextual approaches (such as contextual character geometry [5]), and
artificial neural networks (such as multiple layer perceptron (MLP) [6] and error-
backpropagation training [7] or self-organizing maps [8]).

Since 2009, connectionist models such as multi-dimensional LSTM (Long
Short-Term Memory) recurrent neural networks [9-10], deep feed-forward neural
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networks [11] and various mixtures of these have won several international con-
nected handwriting competitions (such as the International Conference on Docu-
ment Analysis and Recognition) without any prior knowledge about the various
languages (French [17], Arabic [24]) to be learned. GPU-based deep learning
methods for feed-forward networks were the first artificial pattern recognizers to
achieve human-competitive performance [12] on the famous MNIST handwritten
digits problem [13].

Such results support the claim that we are currently experiencing a second
Neural Network ReNNaissance (the first one happened between 1985 and 1993).
In many applications, deep NNs are now outperforming all other methods, in-
cluding support vector machines (SVM).

Deep and recurrent neural networks refer explicitly to the brain architectures,
and mimic some of the principles that are known about the way that human brain
implement word reading. Dehaene et al. have proposed a biologically plausible
model of the cortical organization of reading [14] that assumes seven successive
steps of increasing complexity — from the retinal ganglion cells to a cortical
map of the orthographic word forms.

Cognitive psychology has done a tremendous amount of work relatively to
reading, one among the most important cognitive abilities. However, these dis-
coveries have not been considered by pattern recognition researchers, most cer-
tainly because of field boundaries between soft and hard science. One of the
most recent successes of experimental psychology was the demonstration that
human visual word recognition uses an explicit representation of letter position
order based on letter pairs: the open-bigram coding [15].

In its simplest form, an open-bigram (OB) coding assumes a limit of 2 inter-
vening letters (see Bigrams 2 in Fig. 1). For example, TABLE bigrams amount
to 9: TA, TB, TL, (not TE), AB, AL, AE, BL, BE, LE. The weighting of each
bigram is 1 if present (0 otherwise) in binary OB models. In graded OB models,
weights decrease with the distance between letter positions.

1.1 Why Bigrams Are Better

Various measures of distance can be used to ascertain the orthographic proximity
of two words.

1. For example, the orthographic distance (D1) between two words (X, the
number of shared letters):

D1 (word1, word2) = (2 X) / (word length1 + word length2)

Distance D1 is an increasing arithmetic function of X. This distance is a logical
choice when using a letters coding model.

2. Another possibility is the distance (D2):

D2 (word1, word2) = (X * (X+1)) /
(word length1 * (word length1 + 1) + word length2 * (word length2 + 1) )
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Distance D2 is an increasing geometric function of X. This distance is a logical
choice for OB coding since the number of bigrams in common between two words
is given by:

(X * (X+1)) / 2

A geometric increase in distance between words is interesting because it allows
to take into account the respective length of the words. For example, in the case
of two words of respective length 5 and 8 letters, sharing 3 letters, D1 = 6/13
and D2 = 12/102. In the case of two words of respective length 3 and 10 letters
sharing 3 letters, D1 remains unchanged (6/13), where D2 = 12/122.

Using D2, when the number of shared letters is equivalent, lower ratios
(word length1 / word length2) are privileged. In a representation that takes
into account the distance between neighbors, D2 privileges neighbor words with
the same length. To resume, the bigram representation (resp. to a ’letter’ repre-
sentation) allows for a greater continuity of the representation when the length
of the words is also taken into account.

The Levenshtein distance (Edit-distance) takes into account the position of
the letters in the word. Therefore, it is less biologically plausible.

1.2 How Many Bigrams per Word?

Using the RIMES data-set [16] (7400 words) and the letters extracted by A2iA
[17] (first proposal) we test the influence of the size of the bigram set over the
word recognition. It is important to note that the ’poor’ quality of the letter
extraction only allows a Word Recognition Rate of 28%.

When we use a nearest neighbor convergence with distance D1 (because we
know the whole vocabulary), a performance of 44% is achieved.

Fig2. shows that the performance using bigrams are better, depending on the
size of the bigram set. We vary this size from a bigram set with no intervening
letter (bigrams 0: TABLE = TA, AB, BL, LE) to the whole letters of the word
(TA, TB, TL, TE, AB, AL, AE, BL, BE, LE).

Fig. 1. A bigram representation of the word — in the case of the RIMES data-set —
allows a much better performance in recognition (improvement from 44% to 51%)

Because the bigram representation is an over-coding, missing or wrongly
labeled letters have less impact on the recognition procedure. Bigrams increase
the size of the representation (compared to a letter representation), which allows
to resist to failures. This seems to imply that existing words in the language
(French) have evolved in order for this bigram over-coding to be pertinent (at
least more than a pure letter representation is).
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2 Cortical Map Model

A Kohonen map (also known as a Self-Organized Map - SOM [20]) is a model
of the cortical map. We will use it to implement a biologically plausible repre-
sentation of the orthographic form of words.

2.1 Not Uniform Representation Despite Uniform Frequency

The following figure illustrates the performances of the SOM learning of 25
(French) words (uniform frequency distribution for all words). α and β (learning
coefficients for the winner and its four neighbors) are initially set to 0.6 and 0.15,
and decrease with the number of iterations (by 1/total nb of iterations to 0.1
and 0.05 resp.). Each node has four neighbors (North, South, East and West),
nodes on the border of the map have only three neighbors, nodes at the corners
have only two neighbors. The size of the map is 25 nodes (5 x 5). The number
of iterations is set to 50. Learning samples selection is random. Number of input
dimensions: 193 (binary OB). Non-null inputs average only a few dozens per
sample. Figure 2 displays the nodes associated to each word.

The words (Fig. 2) represented by the same node are similar, but nevertheless
quite different. In particular, the length of the words may be very different, and
it seems that the short words (e.g., “action”) are somewhat pulled by the long
ones. This comes from the fact that only a fraction of the inputs are non null
(e.g., 15 out of 193 in the case of “action”), and the impact of the (null) input
weights are important.

Fig. 2. SOM learning of 25 words using their bigram representations. Several nodes
have no matching correspondence with any words of the learning base, when at the same
time several nodes are the prototypes for several words (such as: “accidenté accidentée
action”).

2.2 Long Words Pull Shorter Ones

We introduce a difference among the non-null and null inputs by using different
values of α and β when the weight update relates to null inputs. They are fixed
during all the learning and set to 0.05 and 0.01 respectively. If these coefficients
were set to 0 then the weights associated to these null inputs could not be
updated, which ends-up with a bias (favoring long words) since these connections
are nevertheless updated from time to time by non-null inputs. As shown in
Fig. 3, the lengths of the various words belonging to the same node are closer.
However, as in the previous case (Fig.2), there are numerous non-used nodes,
and an exaggeration of the distance between nodes.
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Fig. 3. α and β associated to null inputs are fixed set to 0.05 and 0.01 respectively.
The lengths of the various words belonging to the same node are more similar (e.g.,
“aboit action agents”).

2.3 Equi-selection of the Winners

To alleviate the defect shown on the previous Fig. 3, we modify the learning
algorithm in order to impose that the each node wins as often as any other, only
once per iteration (Fig. 4).

Fig. 4. Forcing the learning on each node has improved the occupancy of the map. The
number of unused nodes is reduced by a factor of 2 (compared to Fig. 3). However, there
are still errors in the sense that a node may represent several words (e.g., “allemand
amenée annexe”).

2.4 Increasing Map Size to Add Flexibility

One possibility that would explain this overuse of several nodes — and non-use
of several others — may be related to the fact that the distribution of the words
(and their bigrams) is highly constrained by the size of the map (25 nodes for 25
words). A larger map helps to spread the words without losing the neighborhood
property (Fig. 5).

Fig. 5. A 36 nodes map (6 x 6) representing the 25 learning samples. The number
of learning iterations has increased to 100 (instead of 50), in order to allow the same
amount of modifications per weight. The larger map allows a better separation between
words that are not true neighbors. Only 2 nodes representing more than one word ask
for explanations: “Ainsi aisé” and “acheter annexe”.
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2.5 A Correct Cortical Map Representation

Continuing with the idea of extending the map in order to separate what is
different, it is of tremendous importance to clearly see the frontiers between the
words (in order to implement an efficient word recognition system: one node/one
word). Fig. 6 displays the word associated to each node (not just the winning
node associated to a given input). A given word may now be represented by
several nodes.

Fig. 6. A 10x10 map (100 nodes) representing the 25 samples of the learning base.
Due to space constraints, the map has been cut in two equal parts. In fact, there is
only one map of 10 columns. Again, due to the increase of the map size, the number of
iterations has been set to 200. As we can see, the frontiers between the various words
have a clear semantics. The respective occupancy size (measured using the number of
nodes associated to a given word) contains also some information. Similar words (e.g.,
“accidentée” (in bold) and accidenté”) occupy larger regions than “isolated” words
(such as “animal” or “Alors”).
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3 Ultra-fast Building of the SOM

We try to build a SOM (with 4 neighbors per neuron) using a D2 (bigram)
distance for the 50 000 words of the French (using the eManulex database [18]).
Computing requirements are huge, since a matrix of the D2 measures (50 000
x 50 000 — about 20 Go of RAM) must be computed and kept into memory
[19]. An on-the-fly computing does not solve the problem because each iteration
requires about 2.5 GFLOPS, and several thousands of iterations are required. It
would take about 6 months on a standard PC using a Python written software to
generate the SOM representing the 50 000 French words. Obviously, acceleration
procedures must be found.

Fig. 7. A cortical map coding 50 000 French words. The size of the map (if every word
was readable — font size “6”) is about three meters long. The complete map is acces-
sible at: http://www.touzet.org/Claude/Cognilego/FSOM44025-3.pdf ; an animated
version is accessible at: http://www.touzet.org/Claude/Cognilego/FSOM44025-3.avi .
Zones in white are regions without words. They constitute frontiers among regions of
similar words. Following our initial hypothesis that the orthographic form of words op-
timizes bigrammic recognition, it is tempting to make the hypothesis that these zones
are available for future creations of words which will be easily recognized — except that
we must be remembered that 50 000 is just a fraction of all already existing French
words (total number supposed to be around 200 000 words). Each experiment generates
a different map, but the textures of the maps look similar (black and white patterns).
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Therefore, we have proposed and developed various optimizations / simplifi-
cations such as to keep only the best 100 scores (D2) for each word (instead of
50 000 score values), and to compute the self-organizing map using a stochastic
crystal growing algorithm, instead of the classical but costly Kohonen algorithm:

1. A first word is selected and associated to the node at the

center of the map.

2. One of its neighbor nodes is randomly selected. The best

matching word is found: its distance to the already placed

neighbor words is minimum (the summation of all D2 distances).

Its weights are adjusted (alpha = 1.0, beta = 0.0).

3. Repeat from 2 until last word.

The final result is not the result of a global optimization process, but the
duration of the (self-) learning is reduced to 40 minutes for the 50 000 words.

Using this ultra-fast learning map, we build a bigram representation of the
50 000 words (Fig. 7 & 8). Note that we also changed the number of neigh-
bors, from 4 to 6 (hexagonal lattice), following the original formulation of the
SOM [20]. This allows for a more compact map, with less frontiers and discon-
tinuities. Also the hexagonal lattice appears to be more biologically plausible,
and more efficient. Our ultra-fast SOM shares a number of similarities with the
SOM of symbol strings [25], a much earlier work. However, among other differ-
ences, where the SOM of symbol strings involves successive training and growing
phases, our proposal integrates learning and growing in one step.

Fig. 8. Enhancement of the (fig. 7) cortical map. The neighborhood size is 6,
e.g., the word “sémantique” has 6 neighbors: “satanique, océaniques, mécaniques,
cinémathèque, sémantiques, quasiment”.
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4 Conclusion

Open bigrams (OB) allow an over-coding of the orthographic form of words that
facilitates recognition. OB coding favors same length words (i.e., neighbors of sim-
ilar lengths). Using OB description, a cortical map has been built in order to vi-
sualize (the most frequent) 50 000 French words. This visualization of the cortical
representation of (OB) words is highly pedagogic, allowing to really appreciate the
fact that neighbor words are somewhat different fromwhat we would naively think
(i.e., letter-based distance). In future work, we may consider weigthed metrics in
the bigramic space, taking into consideration their uncertainty. The incertainty of
a bigrammay simply be defined by a bayesian approach based on the counts of the
bigram and the letter frequency. The most informative bigrams(x,y) are the ones
with small probability that y follows x. Then, if our assumption is correct, lan-
guages may have evolved to separate words in the bigrammic space according to
distance based on the most informative bigrams. A weighted cosine metrics shall
still be fast enought to compute such soft bigrammig map.

A realistic developmental database that takes into account the order of pre-
sentation of the words to the children would certainly generates a different kind
of maps [19], less optimal (because neighbor words may be seen at different
ages and end up in very different locations on the map), but closer to biological
cortical map.

It is important to remember that the ultra-fast learning allows only for a lo-
cal optimization and does not take into account the sampling frequency of the
learning samples (each sample is represented on the map). Last, but not least,
this ultra-fast learning is very important since it allows to consider the imple-
mentation of the Theory of neuronal Cognition [21-23]. In this case, the difficulty
is no more in the learning duration, but in the availability of the learning data
for each of the 500 cortical maps.

Acknowledgements. Work supported by the French Research Agency ANR
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