

T. Herawan et al. (eds.), Recent Advances on Soft Computing and Data Mining
SCDM 2014, Advances in Intelligent Systems and Computing 287,

623

DOI: 10.1007/978-3-319-07692-8_59, © Springer International Publishing Switzerland 2014

A Clustering Based Technique for Large Scale
Prioritization during Requirements Elicitation

Philip Achimugu, Ali Selamat, and Roliana Ibrahim

UTM-IRDA Digital Media Centre, K-Economy Research Alliance &
Faculty of Computing, Universiti Teknologi Malaysia,

Johor Baharu, 81310, Johor, Malaysia
check4philo@gmail.com, {aselamat,roliana}@utm.my

Abstract. We consider the prioritization problem in cases where the number of
requirements to prioritize is large using a clustering technique. Clustering is a
method used to find classes of data elements with respect to their attributes. K-
Means, one of the most popular clustering algorithms, was adopted in this
research. To utilize k-means algorithm for solving requirements prioritization
problems, weights of attributes of requirement sets from relevant project
stakeholders are required as input parameters. This paper showed that, the
output of running k-means algorithm on requirement sets varies depending on
the weights provided by relevant stakeholders. The proposed approach was
validated using a requirement dataset known as RALIC. The results suggested
that, a synthetic method with scrambled centroids is effective for prioritizing
requirements using k-means clustering.

Keywords: Software, requirements, weights, prioritization, clustering.

1 Introduction

During software development process, there are more prospective requirements
specified for implementation with limited time and resources. Therefore, a
meticulously selected set of requirements must be considered for implementation with
respect to available resources [1]. The process of selecting preferential requirements
for implementation is referred to as requirements prioritization. This process aims at
determining an ordered relation on specified sets of requirements [2].

There are so many advantages of prioritizing requirements before implementation.
First, prioritization aids the implementation of a software system with preferential
requirements of stakeholders [3]. Also, the challenges associated with software
development such as limited resources, inadequate budget, insufficient skilled
programmers among others makes requirements prioritization really important. It can
help in planning software releases since not all the elicited requirements can be
implemented in a single release due to the challenges associated with software
development [4]. Consequently, determining which, among pool of requirements to
be implemented first and the order of implementation is a critical success factor in
software development.

624 P. Achimugu, A. Selamat, and R. Ibrahim

To prioritize requirements, stakeholders will have to compare them in order to
determine their relative value through preference weights [5]. These comparisons
grow with increase in the number of requirements [6]. State-of-the-art prioritization
techniques such as AHP and CBRanks seem to demonstrate high capabilities [7].
These techniques have performed well in terms of ease of use and accuracy but, still
lacking in scalability and rank reversals respectively. Rank reversals refer to the
ability to update or reflect rank status anytime an attribute is added or deleted from a
set. In this paper, an enhanced approach for software requirements prioritization is
proposed based on the limitations of existing approaches.

2 Related Work

Different prioritization techniques have been proposed in the literature. According to
the research documented in [8], existing prioritization techniques are classified under
two main categories, which include: techniques that are applied to small number of
requirements (small-scale) and techniques that applied to larger number of
requirements (medium-scale or large-scale). Examples of small-scale techniques
include round-the-group prioritization, multi-voting system, pair-wise analysis,
weighted criteria analysis, and the quality function deployment approach. However,
techniques for prioritizing larger number of requirements include: MoSCoW, binary
priority list, planning game, case based rank and the wiegers's matrix approaches.

A further classification of existing prioritization techniques was provided by [9].
They similarly divided existing techniques into two main categories: (1) techniques
which enable values or weights to be assigned by project stakeholders against each
requirement to determine their relative importance and (2) methods that include
negotiation approaches in which requirements priorities result from an agreement
among subjective evaluation by different stakeholders. Examples of techniques that
apply to the first category are analytical hierarchy process (AHP), cumulative voting,
numerical assignment, planning game and wieger's method. An example of the second
category would be the win-win approach and the multi criteria preference analysis
requirement negotiation (MPARN).

The most cherished and reliable prioritization technique as reported in the
literature is the AHP technique; although it also suffers scalability problems with
increase in the number of requirements. An in-depth analysis and descriptions of
existing prioritization techniques with their limitations can be found in [10].
Nonetheless, obvious limitations that cut across existing techniques ranges from rank
reversals to scalability, inaccurate rank results, increased computational complexities
and unavailability of efficient support tools among others. However, this research
seeks to address most of these limitations with the aid of clustering algorithms.

3 The Proposed Approach

Clustering is an optimization problem where the aim is to partition a given set of data
objects into a certain number of clusters in order to determine the relative closeness
between those objects [11]. In this paper, we concentrated on the development of a
large-scale prioritization approach using k-means, where the numbers of requirement

 A Clustering Based Technique for Large Scale Prioritization 625

sets (R), constructed clusters (k), and attributes (A) are relatively huge. K-means
utilizes a two-phased iterative algorithm to reduce the sum of point-to-centroid
distances, summed over all k clusters described as follows: The first phase implores
the "batch" updates to re-assign points to their nearest cluster centroid, which initiates
the re-calculation of cluster centroids. The second phase uses the "online" updates to
re-assign points so as to reduce the sum of distances which causes the re-computation
of cluster centroids after each reassignment. In this research, the former was adopted
because; the clusters are updated based on minimum distance rule. That is, for each
entity i in the data table, its distances to all centroids are calculated and the entity is
assigned to the nearest centroid. This process continues until all the clusters remain
unchanged. Before loading the datasets for the algorithm to run, there is need to
pre-process or standardized them.

K-Means is an unsupervised clustering method that is applicable to a dataset
represented by set of N to Ith entity with set of M to Vth feature. Therefore, the entity-
to-feature matrix Y will be given by (yiv), where yiv is the feature value v∈V at entity
i∈I. This process generate a partition S= {S1, S2,…, SK} of I in K non-overlapping
classes Sk, referred to as clusters. Each of these cluster have specific centroids
denoted as ck = (ckv) with an M-dimensional vector in the feature space (k=1, 2,…K).
Centroids form set C = {c1, c2,…, cK}.The criterion, minimized by this method, is the
within-cluster summary distance to the centroids. A partition clustering can be
characterized by (1) the number of clusters, (2) the cluster centroids, and (3) the
cluster contents. Thus, we used criteria based on comparing either of these
characteristics in the generated data with those in the resulting clustering while; the
centroids are calculated by finding the average of the entries within clusters.

During requirements prioritization, the project stakeholders converge to assign
weights to requirements. Before weights assignment takes place, the elicited
requirements are described to the relevant stakeholders in order to understand each
requirement and the implication of weighting one requirement over the other. Therefore,
the main aim of this research is to propose a technique of prioritizing requirements
based on the preference weights provided by the stakeholders. The metric distance
function was utilized in approximating the distances between each requirement weight.
These requirements can thus be considered as points in a K dimensional Euclidean
space. The aim of the clustering in this research work is to minimize the intra-cluster
diversity (distortion) when ranking or prioritizing large requirements.

The case presented in this paper has to do with the calculation of relative
importance of requirement sets across relevant stakeholders based on the preferential
weights of attributes contained in each set. These weights are partitioned into clusters
with the help of centroids to determine the final clusters of requirement sets based on
the Euclidean space of each attribute weight. The cluster centroids are responsible for
attracting requirements to their respective clusters based on a defined criterion.
Prioritization can therefore be achieved by finding the average weights across
attributes in all the clusters. For instance, if we have requirement sets
as { }NirrrR k ,,1,...,, 21 == of dimensional attributes A, defined by ()Kaaa ,,, 21

over 5 stakeholders. Prioritization will mean computing all the relative weights
of attributes provided by stakeholders based on a weighting scale over each
requirement set. These requirement sets are partitioned into various clusters given

626 P. Achimugu, A. Selamat, and R. Ibrahim

as { }MkkkK ,,, 21 = . Each cluster will contain the relative weights of all the

stakeholders for a particular requirement set. The algorithm is described below:

1. Initialize mi, i = 1,…, n, for example, to k random xt
2. Repeat
3. For all xt in X

i. ki
t 1 if || xt - mi || = minj || x

t - mj ||
ii. ki

t 0 otherwise
4. For all mi, i = 1,…,n

i. mi sum over t (ki
t xt) / sum over t (ki

t)
5. Until mi converge

Algorithm 1. Computation of relative weights

The vector m contains attribute weights with mean under each cluster, while X stands
for the centroids and k represent the estimated cluster labels. The algorithm executes
as follows:

1. It will select a pattern in which to initialize mi to form clusters, and do it.
2. For each attribute in a requirement set, the algorithm captures the weights

provided by the stakeholders for that set and assigns it to a new cluster
(represented by mi).

3. For each mi, a new centroid is calculated by finding the average of the weights
and the cluster is re-calculated to reflect the mean relative weights of the set.

4. Steps 2-3 are repeated until mi converges.

Therefore, each cluster ki (i=1,…, n) has requirements classified by the centroid. Rank
reversals can be addressed by calculating a new centroid and mean each time an
attribute is added or deleted from the list. The mean of a given requirement set is:

() ikr

i
nRZ

i
 ∈

= (1)

Assuming, the requirements are points of a Euclidean space, the normalizationσ of
weights in a cluster is defined as:

=

−
=

N

i

i

i

Z
n 1

1σ (2)

However, Equation (3) is used to compute the distance or disagreement measures
between requirement sets. This is achieved by computing the mean distance of
attributes in each requirement set with respect to their cluster centroids.

 ()
=

−=
K

k

j
k

i
k aad

1

)()((3)

Equation 4, which is the square root of the variance, is used to prioritize requirements.

 ()
=

−=
K

k

j
k

i
k aaP

1

)()((4)

We ran the straight K-Means algorithm for different weights, W of attributes A in a
range from START value (typically 1, in our experiments) to END value (typically,

 A Clustering Based Technique for Large Scale Prioritization 627

10) with respect to the number of stakeholders S (Algorithm 2). The average weights
of each cluster is obtained and normalized. Given a cluster K, the smallest W(S, A) is
subtracted from the largest and the square root of the difference is obtained to reflect
the overall relative weights of each requirement set (Equations 3 and 4).

K-Means Results Generation
1. For K=The number of clusters START: END
2. For diff_init=1: number of different K-means initializations
3. randomly select K entities as initial centroids and normalize
4. run Straight K-Means algorithm
5. calculate the WK, the value of W(S, A)
6. for each K , take the average W among different clusters
7. compute the disagreement values and find its square root
8. end diff_init
9. end K

Algorithm 2. Requirement prioritization process

A solution to a clustering problem can be depicted by a partitioning table and
cluster centroids. These two techniques are intertwined; that is, if one is given, the
optimal choice of the second one can be uniquely generated. However, this is
executed based on two optimal conditions:

a. Nearest neighbour condition: The attributes for a given set of cluster centroids
can be optimally classified by assigning it to a cluster with the closest centroid.

b. Centroid condition: The disagreement of the optimal cluster representative given
in a partition is minimized with the help of the centroid of the cluster members.

Clustering problems can be addressed by using either the centroid based (CB)
technique or partition based (PB) technique. However, in this research, the CB
technique was adopted. In centroid-based technique, the centroid X for a given set of
requirement is determined by summing all the attributes in the cluster, divided by
their numbers. Each cluster is visited at least once to avoid erroneous results. The
weights in each cluster is computed in a greedy way is to ensure efficient processing
of clusters with large numbers of attributes and to minimize inter-cluster
discrepancies. Each cluster in the solutions is assigned a number and cluster size,
indicating the number of attributes that belongs to it.

The proposed technique for requirements prioritization was enhanced by applying
a few steps of the k-means algorithm for each new solution. This operation first
generates a rough estimate of the solution which is then refined by the k-means
algorithm. This modification allows faster convergence of the solution.

4 Experimental Setup

The experiments described in this research investigated the possibility of computing
preference weights of requirements across all stakeholders in a real-world software
project using k-means algorithm. As mentioned previously, the metrics evaluated in
this experiment are (1) the number of generated clusters, (2) the cluster centroids, and

628 P. Achimugu, A. Selamat, and R. Ibrahim

(3) the cluster contents. The RALIC datasets was used for validating the proposed
approach. The PointP, RateP and RankP aspect of the requirement datasets were used,
which consist of about 262 weighted attributes spread across 10 requirement sets from
76 stakeholders. RALIC stands for replacement access, library and ID card [12]. It
was a large-scale software project initiated to replace the existing access control
system at University College London. The datasets are available at:
http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html. Attributes were ranked based
on 5-point scale; ranging from 5 (highest) to 1 (lowest). As a way of pre-processing
the datasets, attributes with missing weights were given a rating of zero [13].

For the experiment, a Gaussian Generator was developed, which computes the
mean and standard deviation of given requirement sets. It uses the Box-Muller
transform to generate relative values of each cluster based on the inputted
stakeholder’s weights. The experiment was initiated by specifying a minimum and
maximum number of clusters, and a minimum and maximum size for attributes. It
then generates a random number of attributes with random mean and variance
between the inputted parameters. Finally, it combines all the attributes into one and
computes the overall score of attributes across the number of clusters k. The
algorithms defined earlier attempt to use these combined weights of attributes in each
cluster to rank each requirement set. For the k-means algorithm to run, we filled in the
variables/observations table which has to do with the three aspect of RALIC dataset
that was utilized (PointP, RateP and RankP), followed by the specification of
clustering criterion (Determinant W) as well as the number of classes. The initial
partition was randomly executed and ran 50 times. The iteration completed 500 cycles
and the convergence rate was at 0.00001.

5 Experimental Results

The results displayed in Table 1 shows the summary statistics of 50 experimental
runs. In 10 requirement sets, the total number of attributes was 262 and the size of
each cluster varied from 1 to 50 while, the mean and standard deviation of each
cluster spanned from 1-30 and 15-30, respectively.

Table 1. Summary statistics

Variables Obs. Obs. with
missing

data

Obs. with
missing

data

Min Max Mean Std.
deviation

Rate P 262 0 262 0.000 262 5.123 15.864
Point P 262 0 262 2.083 262 28.793 24.676
Rank P 262 0 262 0.000 262 1.289 16.047

*Obs. = Objects

Also, Figure 1 shows the results of running the clustering algorithm on the data set
when trying to find 10 clusters. It displays the generated 10 clusters which represent
10 sets of requirements with various numbers of weighted attributes and the within-
class variance. Figure 2 shows the statistics summary of the experimental iteration.
The error function value was within 3.5.

 A Clustering Based Technique for Large Scale Prioritization 629

Fig. 1. Evolution of variances within classes

Fig. 2. Statistics for each iteration

Analysis of multiple runs of this experiment showed exciting results as well. Using
500 trials, it was discovered that, the algorithm guessed or classified requirement sets
correctly. This is reflected in table 2, where the centroids for each variable were
computed based on the stakeholder’s weights. The sum of weights and variance for each
requirement set was also calculated. The former aided in the prioritization of requirement
sets, while the latter shows the variances existing between each requirement set.

Table 2. Class centroids

Class Rate P Point P Rank P Sum of
weights

Within-class
variance

1 4.604 17.347 0.276 53.00 7.302
2 4.230 7.6520 0.277 61.00 8.283
3 4.258 52.831 0.346 31.00 37.89
4 3.714 85.639 0.270 14.00 172.8
5 4.370 24.396 0.368 27.00 2.393
6 4.172 39.844 0.302 29.00 12.69
7 1.276 19.435 0.290 12.00 3.607
8 4.167 30.188 0.302 30.00 1.992
9 4.410 27.635 0.437 8.000 1.190

10 262.0 262.00 262.0 1.000 0.000

630 P. Achimugu, A. Selamat, and R. Ibrahim

Table 3. Contribution (Analysis of variance)

Observation DF(Model) Mean
squares
(model)

DF
(Error)

Mean square
error

F Pr > F

Rate P 1 733.847 264 249.847 2.937 0.088
Point P 1 82946.75 264 297.017 279.266 <0.0001
Rank P 1 774.132 264 255.557 3.029 0.083

Further analysis was performed using a two-way analysis of variance (ANOVA).

On the overall dataset, we found significant correlations between the ranked
requirements. The results of ANOVA shown in Table 3 produced significant effect on
the Rate P and Rank P with minimized disagreement rates (p-value = 0.088 and 0.083
respectively). Also, the results of the ranked requirements are shown on the profile
plot depicted in Figure 3. Our experiments generated 10 Gaussian clusters datasets as
presented in Figure 1 and Table 2 respectively. Table 2 reflect the visual
representations of the results, where the computed centroids were used in determining
the relative ranks of generated clusters. The cluster shape, spread and spatial sizes are
labelled according to variables specified during the experiment. Therefore, from
Figure 3, it can be observed that Requirement set 4 was most ranked, followed by 3,
6, 9, 7, 1 in that order.

Fig. 3. Results by classes

6 Discussion

The aim of this research was to develop an enhanced prioritization technique based on
the limitations of existing ones. It was eventually discovered that, existing techniques
actually suffer from scalability problems, rank reversals, large disparity or
disagreement rates between ranked weights as well as unreliable results. These were
addressed at one point or the other during the course of undertaking this research. The
method utilized in this research consisted of clustering algorithm with specific focus
on k-means algorithm. Various algorithms and models were formulated in order to
enhance the viability of the proposed technique. The evaluation of the proposed

 A Clustering Based Technique for Large Scale Prioritization 631

approach was executed with relevant datasets. The performance of the proposed
technique was evaluated using ANOVA. The results showed high correlation between
the mean weights which finally yielded the prioritized results. On the overall, the
proposed technique performed better with respect to the evaluation criteria described
in Section 4. It was also able to classify ranked requirements with the calculation of
maximum, minimum and mean scores. This will help software engineers determined
the most valued and least valued requirements which will aid in the planning for
software releases in order to avoid breach of contracts, trusts or agreements. Based on
the presented results, it will be appropriate to consider this research as an
improvement in the field of computational intelligence.

7 Conclusion and Future Work

In conclusion, prioritizing requirements is an important aspect of software
development process. In this paper, a clustering based technique has been proposed
for prioritizing large number of requirements. This technique can help software
engineers make qualitative decisions which include: (1) Requirement elicitation (2)
setting criteria that constitute each requirement (3) envisioning the expected result or
output (4) determining the weights of each criterion and (5) prioritizing the
requirements. Most importantly, the ability to ensure objective selection or grading
process will help in the quest to develop acceptable and robust software products. In
our approach, the basic elements consist of criteria which define a specific
requirement, ranked with weights which are combinations of numeric values.
However, the benchmark of rank accuracy between the proposed and existing
techniques is worth exploration. Also, in the future, we hope to develop a parallel
hybridization of clustering and evolutionary algorithms to solve requirement
prioritization problem.

Acknowledgement. This work is supported by the Research Management Centre
(RMC) at the Universiti Teknologi Malaysia under Research University Grant
(Q.J130000.2510.03H02), the Ministry of Science, Technology & Innovations
Malaysia under Science Fund (R.J130000.7909.4S062) and the Ministry of Higher
Education (MOHE) Under Exploratory Research Grant Scheme (R.J130000.
7828.4L051).

References

1. Perini, A., Susi, A., Avesani, P.: A machine learning approach to software requirements
prioritization. IEEE Transactions on Software Engineering 39(4), 445–461 (2013)

2. Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a genetic
algorithm. Information and Software Technology 55(1), 173–187 (2013)

3. Ahl, V.: An experimental comparison of five prioritization methods. Master’s Thesis,
School of Engineering, Blekinge Institute of Technology, Ronneby, Sweden (2005)

632 P. Achimugu, A. Selamat, and R. Ibrahim

4. Berander, P., Andrews, A.: Requirements prioritization. In: Engineering and Managing
Software Requirements, pp. 69–94. Springer, Heidelberg (2005)

5. Kobayashi, A., Maekawa, M.: Need-based requirements change management. In:
Proceedings of the Eighth Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, ECBS 2001, pp. 171–178. IEEE (2001)

6. Kassel, N.W., Malloy, B.A.: An approach to automate requirements elicitation and
specification. In: International Conference on Software Engineering and Applications
(2003)

7. Perini, A., Ricca, F., Susi, A.: Tool-supported requirements prioritization: Comparing the
AHP and CBRank methods. Information and Software Technology 51(6), 1021–1032
(2009)

8. Racheva, Z., Daneva, M., Herrmann, A., Wieringa, R.J.: A conceptual model and process
for client-driven agile requirements prioritization. In: 2010 Fourth International
Conference on Research Challenges in Information Science (RCIS), pp. 287–298. IEEE
(2010)

9. Berander, P., Khan, K.A., Lehtola, L.: Towards a research framework on requirements
prioritization. SERPS 6, 18–19 (2006)

10. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.R.: A systematic literature review of
software requirements prioritization research. Information and Software Technology
(2014)

11. Kaur, J., Gupta, S., Kundra, S.: A kmeans clustering based approach for evaluation of
success of software reuse. In: Proceedings of International Conference on Intelligent
Computational Systems, ICICS 2011 (2011)

12. Lim, S.L., Finkelstein, A.: StakeRare: using social networks and collaborative filtering for
large-scale requirements elicitation. IEEE Transactions on Software Engineering 38(3),
707–735 (2012)

13. Lim, S.L., Harman, M., Susi, A.: Using Genetic Algorithms to Search for Key
Stakeholders in Large-Scale Software Projects. In: Aligning Enterprise, System, and
Software Architectures, pp. 118–134 (2013)

	A Clustering Based Technique for Large Scale Prioritization during Requirements Elicitation
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	4 Experimental Setup
	5 Experimental Results
	6 Discussion
	7 Conclusion and Future Work
	References

