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Abstract. Feature learning is a hot trend in the machine learning com-
munity now. Using a random forest in feature learning is a relatively
unexplored area compared to its application in classification and regres-
sion. This paper aims to show the characteristics of the features learned
by a random forest and its connections with other methods.

1 Introduction

1.1 Problem and Motivation

Feature learning has been a hot trend in the machine learning community. It
is mainly due to the success of deep learning in traditional machine learning
tasks [1] and real world application such as MAVIS (Microsoft Audio Video
Indexing Service) [2]. Deep learning itself is the attempt to construct multiple
layers of feature representation in such a way that higher level abstractions can
be represented.

A feature contributes enormously to the success of machine learning task
because it is the input of machine learning algorithms and the only thing they
see. Features used to be hand engineered by domain experts to reflect their
knowledge of the critical aspects about a particular problem. However, as the
problem becomes more complicated, we hope that the machine can take the role
of the domain experts and be able to extract most relevant features from the
raw data.

1.2 Random Forest as Feature Learning Technique

In this paper, we are going to explore feature learning using random forests [3].
A random forest is an ensemble method that gives good results in classification
and regression. However the random forest itself is a much richer structure than
can be merely used in these two settings. Criminisi gives a nice overview of us-
ing random forest in density estimation, manifold learning, and semi-supervised
learning [4].

This paper focuses on the feature learning aspect of the random forest. By
analysing the reconstruction of the original data using the learned future, we
hope to gain some insight on how it works. Finally, we will discuss briefly its
connection with sparse coding [5] and self-taught learning [6].
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2 Literature Review

Deep Learning and Representation Learning. Deep learning is the attempt
of learning multiple layers of representation, where the higher level representation
is the composition of its lower level counterparts [7].

The first breakthrough of deep learning is the success of deep belief nets [8]
in the MNIST [9] digit recognition problem. The state-of-the-art result was long
held by the Support Vector Machine (SVM). A more recent breakthrough is
achieved in the ImageNet dataset, which achieves 15.3% error rate, lower than
the state-of-the-art 26.1% [1]. MAVIS (Microsoft Audio Video Indexing Service)
speech system, released in 2012, is based on deep learning [2] as well.

Traditional deep learning has been focusing on various type of neural network
such as deep belief net [8], autoencoder [10, 11], Restricted Boltzmann Machine
[12], and sparse coding [5, 13]. However, as observed in [7], the ensemble of trees
such as boosted trees and random forests can be viewed as a three-level deep
architecture. What interests us is not that the ensemble serves as a classifier,
but that the outputs from all the trees in the ensemble form a distributed rep-
resentation [14, 15] of the training data. As the exact form of the representation
will be spelled out explicitly in the later part of this article, it suffices now to
note that the representation provides a very rich description of the input data in
the sense that the number of output patterns it can discriminate is exponential
to the number of its parameters [16].

Despite all the good properties mentioned above, only two papers are dedi-
cated to this effort [17, 18]. It is the intention of this article to further investigate
the properties of this representation and its application in classification.

Ensemble of Decision Trees. Leo Breiman published his seminal book “Clas-
sification and Regression Trees (CART)” [19] in 1993, in which he described
the fundamental principles in using decision trees for both classification and re-
gression and paved the way for future research. In the same year, JR Quinlan
published one of the most popular tree constructing algorithms “C4.5” in his
book “C4.5: Programs for machine learning” [20].

Ensemble methods are ways to combine various weak learners in order to get
better result. The idea of combining the strengths of many decision trees is not
new. Amit and Geman introduced the use of random generated node tests in
constructing many decision trees for handwritten digit recognition in their papers
[21, 22] published in 1994 and 1997. The term “Random Decision Forest” was
introduced by Ho in his paper [23], in which he used the random partition of the
feature space to build the trees.

However, the random forest1 only began to gain serious attention after Leo
Breiman published his seminal paper [3] in 2001. He laid the theoretical frame-
work for random forest and introduced a new way of constructing the decision
trees by combing his earlier work in “bagging” [24] and Ho’s method.

Random forests and their variants enjoy much success in the fields of machine
learning, computer vision and medical imaging [25–29]. In this paper, however,

1 Random forest is the trademark of Leo Breiman.
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we are going to explore the potential of using the random forest as a feature
learning algorithm.

3 Methodology

3.1 The Basic of Decision Trees

Decision tree can be regarded as the partitions of the feature space. Each node
in the decision tree ask a question about the features. The feature space is then
split into regions which have distinct answers to the question. Fig. 1 illustrates
the splitting process.

Fig. 1. The decision tree gives rise to the partition of the feature space

3.2 Interpretation of the Partitions

In the common setting of machine learning task, the input data is of the form

[xi]
n
i=1, where xi = (x

(1)
i , x

(2)
i , ..., x

(m)
i ) ∈ R

m is a vector of real number. xi is

reffered as the data point, and its components,(x
(1)
i , x

(2)
i , ..., x

(m)
i , are referred as

features. Each node in a decision tree asks a question about the feature, and
each distinct answer splits the feature space into corresponding subspaces. Thus
each partition in the feature space, and hence each terminal node corresponds
to a different configuration and combination of the features. If we consider a
feature of a data point as a property that characterizes the data point, then any
combination of features can also be regarded as a feature, albeit, a high level
feature. Certainly, this high level feature cannot be represented as a real number.
However, we can abstract away the detail which is the exact configuration of low
level features that correspond to the high level feature, and simply assign each
high level feature a terminal node or a distinct symbol. In other words, the
decision tree is able to transform the representation of the data point from its

standard form (x
(1)
i , x

(2)
i , ..., x

(m)
i ) to a symbol, say, d (see Fig.2).
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Fig. 2. This diagram shows how a data point is transformed into a symbol

The induced representation of x by F , F(x) is defined as:

n∑

i=1

m∑

j=1

aijT
(j)
i

where aij = 1 if Ti assign the node T
(j)
i and aij = 0 otherwise. Note that

the summation is purely formal, after all the nodes of decision trees cannot be
added, at least not in the usual way. It might just as well be written as a normal
vector (aij). It will be clear in a later section why we choose this notation over
a conventional one.

To show that the notation is useful, we use it to introduce an important
concept introduced by Breiman: proximity [3]. First we have to define a “norm”2

|| for a formal summation of the form w =
∑n

i=1

∑m
j=1 aijT

(j)
i as |w| = |aij |

n .
Given a random forestF = {Ti}ni=1 and two data points x and y, the proximity

of these two points with respect to F is the number of identical symbols between
the data points divided by n.

Now suppose

F(x) =

n∑

i=1

m∑

j=1

aijT
(j)
i ,F(y) =

n∑

i=1

m∑

j=1

bijT
(j)
i

then

|F(x)−F(y)| =
∑n

i=1

∑m
j=1(aij − bij)T

(j)
i

n

=
number of different symbols

n

= 1− number of identical symbols

n
= 1− proximity of x and y

The derivation above shows the natural connection between the “norm” that
we defined and the concept of proximity.

2 Not a norm in the strict mathematical sense.
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3.3 Reconstruction of Image

In this section, we are going to show how to reconstruct a binary image from
the features induced by the random forest. Suppose an image is represented by
a vector of its pixel intensities, i. Given a random forest F , the image can be

represented as
∑n

i=1

∑m
j=1 aijT

(j)
i as shown above. In this case, T

(j)
i tells us,

partially, which pixel is on and which pixel is off. Thus T
(j)
i can be regarded as a

vector which captures a certain property of the original image. Now the formal
sum above can actually be calculated, and the value will be the reconstructed
image.

3.4 Tree Building Algorithm

In this paper, we follow closely the algorithm known as Extremely Randomized
Forest [30]. First of all, a feature,xi, and a threshold,θ, are chosen randomly.
Then the feature space is split into two parts, i.e. xi ≤ θ and xi ≥ θ. A score
for this particular split is then calculated. If the score is greater than a pre-
determined value, repeat the process on the subspaces. although there are many
ways to calculate the score of a particular split, the one we are using here is the
information gain.

4 Results

The result in this section shows the general properties of the learned represen-
tation using the MNIST dataset [9].

Fig. 3 shows the first 15 digits from the dataset.

Fig. 3. First 15 digits from the train dataset

A random forest consisting of 30 trees is trained using randomly generated
data. To be precise, the data used here consists of 50,000 vectors of dimension
784 × 1, drawn from random uniform distribution. There is no relationship at
all with the MNIST dataset. However, it is possible to use this random forest to
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transform the MNIST dataset into a new representation. The left diagram in Fig.
4 shows the reconstruction of the first 15 digits using the new representation.

For comparison, another random forest is trained using 50,000 digits from the
dataset. However, unlike the case of using the random forest in classification, a
random label is given for each digit. As shown by the comparison in Fig. 4, the
reconstructed digits are more visually recognizable.

Fig. 4. The left diagram shows the reconstruction using the MNIST dataset,
and the right reconstruction using random data

To show the individual contribution of the trees inside the random forest, here
is the progressive reconstruction of the digit “5”. The diagram is to be read from
left to right and from top down. The first image shows the reconstruction using
only the first tree; the second image uses the first and second; and the final one
uses all of the trees.

Fig. 5. Progressive reconstruction using random forest trained with random data
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Fig. 6. Progressive reconstruction using random forest trained with original
dataset

5 Discussion

In [31], the authors show empirically that the power of sparse coding , as a feature
learning technique, is not the learned basis functions but rather the non-linear
coding scheme. It corresponds to the facts showed in the paper that the data used
to train the random forest is not that important. Instead of justifying our claim
using classification accuracy, we choose to reconstruct the images using learned
representations. The visual similarity between original images and reconstructed
images gives us better intuition.

As shown in Fig. 2, each data point falls to a terminal node through a series of
split nodes. Each split node dictates the pixel value of a particular point. Thus
a terminal node represents a certain configuration of the pixels. The typical
configuration is shown in the top leftmost image in Figs. 5 and 6. It could be
just a few points arranged in a particular order, but as they layer up on each
other, the digit take its shape gradually (see Figs. 5 and 6).

Take note that the random forest F can be trained on one set of data X ,
and yet it can be used in constructing the representation of the data point from
another set of data Y . X and Y can have no relation at all, with the exception
that their data points must have the same dimensions. In fact, X can be totally
random data. As shown in the comparison in Fig. 4, the random forest trained
on random data can nevertheless represent the basic shapes of the digits as well
as the random forest trained on the digits dataset. The notable difference here
is that the pixel density is lower for the digits reconstructed using the random
forest trained on random data. The idea of training a learner, using different
data from the one on which it eventually applies, is explored in the paper [6],
in which the authors coined the term self-taught learning as an alternative to
the other learning paradigms such as supervised learning, unsupervised learning,
transfer learning, and reinforcement learning.

Motivated by this observation, we propose another interpretation of the formal

summation3
∑

aijT
(j)
i . Given that data point x is in the form of (x(i))ni=1 and

the T
(j)
i specifies the values of a certain subset of the features, say (x(ki))mi=1,

3 Abbreviated form of
∑n

i=1

∑m
j=1 aijT

(j)
i .
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then T
(j)
i can be represented as (vi)

n
i=1 where vi = x(kj) if i = kj else vi = 0. We

can now say
∑

aijT
(j)
i approximates the data point x, that is x ≈ ∑

aijT
(j)
i .

Observe that most of the aij that is zero for each data point is assigned with
a single terminal node, and in general there are 2d terminal nodes for a binary
tree with depth d. Suppose n trees in a forest have the same depth, then the

ratio of non-zero coefficients in the sum
∑

aijT
(j)
i is

(n× 1)

(n× 2d)
=

1

2d
→ 0 as d → ∞

In other words, the representation induced by the random forest is very sparse.
On the other hand, sparse coding [5] is the method of representing a data point
x in the form of

∑
aiTi that minimizes

1. the difference |x−∑
aiTi|

2. the sum of coefficients |∑ ai|
The second constraint encourages the coefficients to have as many zeros as pos-
sible, thus the term sparse. Notice the similarity between sparse coding and the
method outlined in this paper although the method here achieves sparsity, but
not by direct optimization.

The possibility of using a different dataset in the training phase is a plus point
for this method. Hence, we can use a combination of a large number of seemingly
unrelated datasets to train the learner and then apply the learner to yet another
dataset of interest. The more data that we can feed into a learner, the better its
performance. The method in this paper can exploit existing patterns as it can
learn from unrelated datasets.

In conclusion, the method outlined here shows basic learning capacity and
shares a lot of interesting connections with other methods too. The future work
will be focused on the elaboration of the connections as well as the application
of the learned feature(s) in the classification task.
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