
Chapter 97
Metamodelling Architecture
for Modelling Domains with Different
Mathematical Structure

Vitaliy Mezhuyev

Abstract The new metamodelling approach for domain specific modelling is
proposed in the paper. The additional level of the metamodelling architecture is
introduced, which gives the possibility of metamodels development in the different
mathematical semantics. This allows to take into account the mathematical
structure of modelled domains, and to use the mathematical operations for
development of new effective methods for solving domain specific tasks. The
applicability of the approach for development of metamodels for modelling dif-
ferent domains is shown.

Keywords Domain specific modelling � Metamodel � Metamodelling architec-
ture � Mathematical structure � Formal system

97.1 Introduction

The methodology of Domain Specific Modelling (DSM) becomes more and more
popular today, allowing to overcome the known issues of the ‘‘universal’’ mod-
elling approach [1]. The sense of DSM is development of Domain Specific Lan-
guages (DSLs), applicable for modelling properties of particular domains. A DSL
is built inside a so called metamodel, defining the concrete syntax of the language.
The abstract syntax of a DSL is defined in the frame of the meta-metamodel as e.g.
MOF [2], GOPPRR [3], MGA [4] etc.

V. Mezhuyev (&)
Faculty of Computer Systems and Software Engineering, University Malaysia Pahang,
Gambang, Malaysia
e-mail: mejuev@ukr.net

� Springer International Publishing Switzerland 2015
H.A. Sulaiman et al. (eds.), Advanced Computer and Communication
Engineering Technology, Lecture Notes in Electrical Engineering 315,
DOI 10.1007/978-3-319-07674-4_97

1049

Emphasizing the power of the existing DSM approaches, they have a number of
issues, caused by the lack of generalisation and formalisation:

• the metamodel based DSLs are mostly descriptive, i.e. not expressive for the
definition of methods for solving domain specific tasks;

• the applicability of a DSL by the generation of software data and code is
limited;

• while the DSM approach is intended for using by domain experts, the oblig-
atory involvement of IT specialists for development of code generators is
needed;

• for code generation an additional external language should be used, which is
not linked with specifics of a modelled domain;

• the meta-metamodel, used for metamodels development, does not reflect the
mathematical structure of a considered domain and is hardcoded inside a DSM
tool.

Let’s consider the principles of the proposed approach to the metamodels
development, allowing to overcome the specified above issues:

• the formal definition of the object of modelling—the domain, as the set of
entities, linked by the forming mathematical structure and the domain specific
relationships;

• the definition of the meta-metamodel and the metamodel as the formal systems,
allowing to fix correspondingly the structural and domain specific properties;

• the mathematical structure of a domain is defined at the meta-metamodel level
and next is used as the carrier of domain specific properties;

• the additional level of the metamodelling architecture is introduced, which
allows to develop the meta-metamodels, having different mathematical
semantics.

While the existing metamodelling approaches use the predefined mathematical
formalisms (mostly, graphs) for structuring domain properties, here the develop-
ment of meta-metamodels in the different mathematical semantics is possible.
Additional level of the metamodelling architecture allows to express properties of
domains in terms of set theory and to reflect different mathematical structures
(algebraic, topological, differential, geometrical etc.). Corresponding mathemati-
cal operations are integrated in the metamodel and used for solving domain spe-
cific tasks. Generation of software data and code becomes the partial case of the
proposed metamodelling approach.

The paper is organized as follows. First the new metamodelling architecture is
discussed in comparison with existing approaches. Section 97.3 of the paper shows
applicability of the proposed approach for producing the graph based metamodels
for modelling software systems. Section 97.4 expands the practical applications
for requirements engineering, business process modelling and solving tasks of
multidimensional physical domains. The conclusion, plan of future research and
references list finalize the paper.

1050 V. Mezhuyev

97.2 Metamodelling Architectures

The methodology MOF (Meta Object Facility) [2] was used by the OMG (Object
Management Group) consortium for development of the Unified Modelling Lan-
guage (UML). MOF has the four levels of the metamodelling architecture. The top
level is the meta-metamodel (M3), defining the language for development of the
metamodels (having the level M2). The level M2 (here, UML) used for devel-
opment of the domain models of the level M1 (the UML-models). The last is the
level of data (M0), describing the concrete instances of M1. The MOF architecture
is based on the object-oriented methodology of software systems design.

The meta-metamodel GOPPRR (Graph-Object-Property-Port-Role-Relation-
ship) allows to produce metamodels inside the graph based notations, by means of
connection of objects by relationships, definition of domain properties (attributes)
and roles [3]. Each of the GOPPRR concepts a metatype is called. As MOF, the
metamodelling architecture of the GOPPRR in four levels can be shown (see the
Fig. 97.1).

The proposed approach also has the multiple-level metamodelling architecture,
but it semantics differs from the existing methodologies. All of the metamodels are
considered to be formal systems; they contain an alphabet of types, a grammar and
operations. We introduce the additional level of the metamodelling architecture—
the meta-meta-metamodel (M4), as a formal system, that is built on the basis of set
theory. M4 includes the meta-metatype ‘‘element of a set’’, set operations and
grammar rules, which (taken together) allow us to specify a set structure. This
approach allows us to consider a domain as a set of heterogeneous entities, having
domain specific properties and linked by different kinds of mathematical structures.

Formally, we define a domain as a set of entities D, linked by structural S and
domain specific P relationships:

D ¼ fd1; d2. . .dNg; S;P � D � D ð97:1Þ

where N is a power of D. Each element of D can have attributes, which we
consider as unary relationships on D. 0-ary relationships are used to identify
elements of D. Binary and other relationships are used to fix mathematical
structure of D.

All of the levels of the proposed metamodelling architecture contain not only
descriptive elements, such as in MOF or GOPPRR, but also procedural part,
implemented with software functions.

Following our proposal, the architecture for development of the graph based
metamodel on the Fig. 97.2 is shown. Here a node and an edge of a graph serve as
the mathematical metatypes for development of domain specific metamodels types
(an attribute is the inherent part of a node and of an edge). The node and the edge
are produced from the meta-meta-metamodel as the having algebraic structure
subsets of the composing domain entities. Note, while GOPPRR [3] and MGA [4]
also use the graphs for structuring domain specific properties, this is a partial case

97 Metamodelling Architecture for Modelling Domains … 1051

of the proposed approach, where development and using the different mathematical
structures is possible.

The implementation of mathematical operations of the metamodels at all levels
of the proposed architecture, forms the Application Program Interface (API) of the
corresponding software tool. The API of M4 contains the methods for manipu-
lation with the elements of a set of composing domain entities. The API of M3 is
the operations with subsets (e.g., with a node and an edge of a graph, and in the
general case with any model objects of the considered domain). For M2, the API
contains the metamodel processing routines (here, the metatypes of the level M3
become domain-specific types, i.e., to the mathematical subsets the semantics of
the domain is assigned). M1 contains instances of the types and definitions of
domain-specific methods, implemented with the APIs of all the previous levels.
M0 is data values and processes in the computer memory (instances of the
methods, defined at the level M1).

97.3 Development of Graph-Based Metamodels

Let us consider the mathematical method for producing the graph-based meta-
metamodel in the context of proposed approach. Its alphabet includes the meta-
types node N and edge E of the graph Gr = (N, E); the grammar GGr is the set of
rules, defining the possibility {true, false} of the connection of nodes ni, nj by the
edge ek = (ni, nj), n e N, e e E

GGr ¼ ni; nj

� �
jgk � true; falsef g; ni; nj �N; i; j ¼ 1::M; k ¼ 1::K

� �
ð97:2Þ

where M is a power of N. The number of rules K depends on the properties of the
graph Gr (is it directed, are loops possible, etc.).

At the level of metamodel development, to the nodes and the edges of the meta-
metamodel the semantics of domain is assigned. For example, the node N can be
the metatype for definition of the types of software tasks and synchronization

M0 (Data)

M1 (Model)

M2 (Metamodel)

M3 (Meta-metamodel) GOPPRR

Object

Device

TV-Set Electrical
socket

Property

Power:

100W

Relationship

Connector

Cable

Integer

Fig. 97.1 The GOPPRR metamodelling architecture

1052 V. Mezhuyev

objects, and the edge E can be the metatype for definition of the types of channels
(communication protocols) between tasks and synchronization objects. This
metamodel will include the alphabet, containing typical for parallel programming
synchronisation objects (critical section, mutex, semaphore, resource, FIFO etc.)
and software tasks (driver, application etc.); the grammar rules, specifying the
valid interactions of software tasks via synchronisation objects, and operations,
used for definition of code generation functions.

Table 97.1 shows an example of the definition of the metamodel for modelling
the parallel concurrent software system inside the graph based meta-metamodel.

In this example, a Node and an Edge are the mathematical metatypes of graph
based meta-metamodel M3. Domain specific types are the nodes Task, Sync and
the edges PutData, GetData, which compose the alphabet of M2 metamodel and
are used to create instances at the M1 level. M2 also defines the grammar rules for
combining instances of the types by using predicates PutData(Task, Sync) and
GetData(Sync, Task). These grammar rules correspond to the edges of the graph-
based meta-metamodel and are used for development of code generation methods
(implemented by walking the graph based model M1). The M1 model of software
system includes instances of Task1, Task2 … TaskT and synchronization objects
Sync1, Sync2 … SyncS, linked by the channels of interaction PutData, GetData
(where T, S—are the number of tasks and the number of synchronization objects in
the model respectively).

For the interesting reader, to show the applicability of described graph based
metamodel, we can refer to the metamodel of interacting entities [5], which was
used for development of a real-time operation system [6] and for modelling dis-
tributed parallel real-time software [7].

M0 (Data)

M1 (Model)

M2 (Metamodel)
Interaction Entities

M3 (Meta-
metamodel)

Graph theory

M4 (Meta-meta-
metamodel)
Set theory

Element of a set

Node

Entity

Device

TV-Set
Electrical

socket

Edge

Interaction

Connector

Cable

Fig. 97.2 The levels of the proposed metamodelling architecture

97 Metamodelling Architecture for Modelling Domains … 1053

The definition of the metamodel alphabet as the set of attributed types and the
domain model as the instances of the types, having the concrete values of attri-
butes, make possible the formal checking a model in its state space. Due to
including mathematical methods in the metamodel the checking properties of
behaviour of a real-time system (e.g. absence of deadlocks) was applied. The
graph based methods (e.g. Dijkstra’s algorithm) for development of the code
generation functions (e.g. routing table of a real time operation system) were used.

97.4 Other Applications of the Metamodelling Approach

Except development of graph-based metamodel for software systems design, the
applicability of the proposed approach was proven for the next domains:

• requirements engineering (RE), where conceptual metamodelling for systems
specification was used. The set of the typical for the RE concepts formed the
alphabet of the metamodel, which symbols were the types for instantiation—
definition of the concrete statements describing a system properties and
behaviour. The methods of the graph based meta-metamodel were used to

Table 97.1 Levels of metamodelling architecture for a software system modelling

Level Alphabet Grammar Operations/
Methods

M4 Math
structures

Elements d of the set D The rules of grammar,
based on the relations
d 2 D, fdg � D

Create /delete
element d,
subset {d}

M3 Node n e Node and edge
e e Edge of graph
G = (Node, Edge),
Node, Edge , D

Connection of nodes by
edges ek (ni, nj), ni, nj e

Node, ek e Edge, i, j = 1..
|Node|, i 6¼ j, k = 1..|Edge|

Add edge
G0 = G + e
Delete edge
G0 = G - e
Add node
G0 = G + n
Delete node
G0 = G - n

M2 Domain
specific
properties

Edge PutData, GetData;
Node Task, Sync;

PutData (Task, Sync);
GetData (Sync, Task)

Add /delete a
type of task
Task /sync
object Sync,
create
communication
channel
PutData,
GetData

M1 Task Task1, Task2;
Sync Sync1;
PutData (Task1, Sync1);
GetData (Sync1, Task1);

1054 V. Mezhuyev

check correspondence of the graph of architectural decomposition to the graph
of initial requirements, generate the document of systems specifications, made
the control of versions etc. The conceptual metamodel was further expanded by
the Finite State Machine formalism [5]. This allows us to build the domain
specific models of processes on the base of the ontology of a domain. To each
concept of ontology the state transition attribute was added. The process
grammar was the set of rules, defining the state transitions of conceptual model
of a system description. e.g. only after capturing requirements user can move to
the specification stage, next to the phase of architectural modelling etc. Such
the approach allows us to manage users activity to achieve the goal of a process
in a given time (up to deadline);

• development of the metamodel, based on the vector algebra and the logic of
syllogisms. Here vectors were used as the metatypes for producing the logical
types of the metamodel alphabet. In the practical implementation [8], the
alphabet of the metamodel on the base of the types of categorical syllogisms
was developed. Due to using vector algebra for the definition of the metamodel,
the operations on syllogisms as operations on vectors in linear vector space
were implemented. This allows us to develop the algorithm for automatic
geometrical theorem proving. The approach was used for development of the
logic for optical computers, where at physical level vectors were implemented
as laser beams;

• development of the metamodel for multidimensional physical domains [9]. The
alphabet of the meta-metamodel was defined as the set of the basic (corre-
sponding to the dimensions of the physical space) geometrical objects, i.e.
point, line, surface and 3D region. For metamodels development we set dis-
tributions of physical properties among the defined with the meta-metamodel
geometrical structures. Due to considering objects as the sets of geometrical
points in the physical space, the grammar of the metamodel in the terms of
Boolean operations on geometrical subsets was defined. This grammar limits
the possible compositions of the geometrical objects in the 3D space. The
mathematical methods of the metamodel correspond to the solutions of mul-
tidimensional tasks of the integral and deferential calculus. As the interesting
application of the metamodelling approach for physical domains the design of
metamaterials (artificial composites with specific optical properties) can be
mentioned [10].

97.5 Plan of Future Research

The plan of research is further exploring the properties of the metamodels,
allowing to fix different mathematical structures:

• the formal definition of the metamodels, the mathematical structure of its types,
grammars and operations at all levels of the metamodelling architecture;

97 Metamodelling Architecture for Modelling Domains … 1055

• learning the linguistic properties of the metamodels, incl. the possibility of
reduction of the grammars into the normal Chomsky form;

• definition of the method for metamodels composition, allowing to combine the
declarative and imperative constructs (alphabet, grammar and operations);

• exploring the textual and the visual forms of expression of metamodels and
development of the method for its combination;

• expansion of the approach on the other types of mathematical structures
(metric, geometrical, differential, topological, etc.).

97.6 Conclusion

The new approach for metamodels development is proposed. The metamodelling
architecture is decomposed into the layers, allowing to fix the structural and the
domain specific properties. This allows to take into account the mathematical
structure of considered domains. The additional set-based level of the metamod-
elling architecture is introduced, which allows to define the meta-metamodels in
the different mathematical semantics.

References

1. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven development using
UML 2.0: promises and pitfalls. IEEE Comp. 39(2):59–66 (2006)

2. ISO/IEC 19502:2005, Information technology. Meta object facility.—ANSI, p. 292 (2007)
3. Kelly, S., Juha-Pekka, T.: Domain-Specific Modeling: Enabling Full Code Generation,

p. 427. Wiley-IEEE Computer Society Pr. (2008)
4. Nordstrom, DD.: Metamodeling—Rapid Design and Evolution of Domain-Specific Modeling

Environments/Dissertation for the Degree of Doctor of Philosophy in Electrical Engineering,
p. 170. Nashville, Tennessee (1999)

5. Mezhuyev, V., Sputh, B., Verhulst, E.: Interacting entities modelling methodology for robust
systems design. In: Second International Conference on Advances in System Testing and
Validation Lifecycle, pp. 75–80. CPS Publishing (2010)

6. Boute, R.T., Miguel, J., Faria, S., Sputh, B.H.C.: Vitaliy Mezhuyev Formal Development of a
Network-Centric RTOS/Eric Verhulst, pp. 227. Springer, Berlin (2011)

7. Mezhuyev, V.: domain specific modelling distributed parallel real time applications. Syst.
Inf. Process. 5(86), 98–103 (2010)

8. Mezhuyev, V.: Vector logic: Theoretical Principles and Practical Implementations,
pp. 91–97. The papers of Zaporizzia National University, Zaporizzia, ZNU (2006)

9. Mezhuyev, V., Lytvyn, O.: Metamodel for visual modelling multidimensional domains and
its practical applications. Control Syst. Mach. 4, 31–43 (2010)

10. Mezhuyev, V., Pérez-Rodríguez, F.: Visual Environment for Metamaterials Modelling. Some
Current Topics in Condensed Matter Physics, pp. 1–13. Universidad Autónoma del Estado de
Morelos (2010)

1056 V. Mezhuyev

	97 Metamodelling Architecture for Modelling Domains with Different Mathematical Structure
	Abstract
	97.1…Introduction
	97.2…Metamodelling Architectures
	97.3…Development of Graph-Based Metamodels
	97.4…Other Applications of the Metamodelling Approach
	97.5…Plan of Future Research
	97.6…Conclusion
	References

