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Abstract Bioremediation of heavy metals and radionuclides has shown immense
promise as an alternative approach for cleaning up, especially the biosphere
component of the environment. The ubiquitous nature of microbes has made
them the pioneers in any bioremediation approaches. Understanding the working
mechanism of these microorganisms either independently, or as a community in
relation to their interaction with heavy metal will enlighten and improve the use of
bioremediation for environmental cleanup. The discovery of plants that have metal
accumulation potential has opened fresh avenues for bioremediation. Plant-based
bioremediation is still at a nascent stage, but it has attracted considerable attention
in recent years. A concerted approach of using plants and microbes for bioreme-
diation is another strategy that might work efficiently as both can complement each
other through various interactions. Moreover, genetic engineering can be used to
improve the bioremediation capacity of both plants and microbes and further
improve their capacity in bioremediation of heavy metals and radionuclide.
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1 Introduction

The continuous growth of human population has resulted in the increasing demand
for basic life-supporting commodities worldwide. There has also been a con-
comitant increase in the industrialization process to meet the basic human
demands. Furthermore, this has led to the increase in energy demands that are
partly met by nuclear energy. Nuclear energy is an important alternative energy
source which accounts for 17 % of the overall electricity of the world. As a
consequence, mining for radioactive elements like uranium is crucial, which has
led to the large amounts of toxic chemicals being released into the environment
either deliberately or accidentally. These toxic contaminants include radionuclides
like uranium and heavy metals such as lead, cadmium arsenic, and mercury.
Heavy metals like copper, zinc, cobalt, and iron are essential micronutrients for
both plants and microorganisms, but if present at higher concentration, they can
impair various metabolic processes. Other metals like lead, cadmium, mercury,
and uranium have no known biological functions and are toxic even at lower
concentrations. Inorganic contaminants like heavy metals and radionuclide are not
degradable and tend to accumulate in the environment for a long time (Sarma
et al. 2004; Renshaw et al. 2005). Several technologies have been developed to
address the problem of heavy metal and radionuclide contamination as they pose
serious ecological and health hazards. To compensate the higher cost involved in
the newer technologies, alternative methods have been explored to address this
issue.

Natural habitats harbor abundant and diverse type of microorganisms which can
be explored for bioremediation processes. However, there is a need for the iden-
tification and characterization of the microbial strains that reveal high metal
accumulation capacity and specificity. Uranium-tolerant bacteria have been iso-
lated from various uranium-mining sites and deposits (Kumar et al. 2011, 2013a;
Sarma et al. 2012, 2013). Bacteria from uranium deposits have been characterized
for their metal tolerance and uranium binding (Kumar et al. 2011, 2013a; Sarma
et al. 2012, 2013). Understanding and exploring the microbe–metal interaction
have resulted in an upsurge in the research interest with their importance in various
high-throughput biotechnological applications such as biosensor, biofuel cells, and
most promisingly in microbe-mediated nanomaterial synthesis (Devi and Joshi
2012). Identification of the microbial ligands/cellular processes involved in metal
sequestration has lead to the development of engineered organisms with various
cell surface displays that facilitate their applications in industrial catalysis, bio-
sorption, bioremediation, biofuel, and biosensor technology (Mandal et al. 2006).
Metal nanocrystal synthesis through microbial process is another very promising
aspect with importance in metal bioremediation and synthesis of nanoparticles for
diverse applications.
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2 Metal-Tolerant Microbes

A plethora of microorganisms capable of efficiently degrading toxic compounds in
the environment have either been isolated or engineered. One of the prominent
bacteria which exhibits extreme radiation resistance is Deinococcus radiodurans.
It was first discovered in 1956 by Arthur W. Anderson while trying to sterilize
meat by irradiating it with gamma radiation (Anderson et al. 1956). For many
years, D. radiodurans has fascinated biologists by its extraordinary resistance to
ionizing radiation. This bacterium, as a polyploid, can withstand radiation expo-
sures of up to *17,000 gray (Gy) (Daly et al. 1995, 1996, 1997). D. radiodurans
also dominate the arid environments over other less resilient species by their
capacity to regrow after rehydration. Besides UV and IR, D. radiodurans is
resistant to lethal and mutagenic agents like mitomycin C (Sweet and Moseley
1976), an antibiotic known to cross-link DNA.

Genome sequence of the highly IR-resistant D. radiodurans reveals the same
number and types of DNA repair proteins as the IR-sensitive bacteria (Makarova et al.
2001, 2007). Following irradiation with lethal doses of IR, radiation-resistant
organisms suffer from similar levels of genomic damage as the sensitive ones. This
is due to the ability of the resistant strains to survive the formation of hundreds of
IR-induced double-strand breaks (DSBs) per genome (Argueso et al. 2008;
Gladyshev and Meselson 2008). Studies have shown that a highly IR-sensitive mutant
of D. radiodurans that contains a mutated DNA polymerase I gene (polA) was fully
restored by expression of the corresponding gene of the IR-sensitive Escherichia coli
(Gutman et al. 1994) The enzymes that mediate DNA repair in D. radiodurans are,
therefore, probably not unique. Surprisingly, the mechanisms of IR resistance in
Deinococcus spp. remain unclear along with their unique ability to resist desiccation
(Cox and Battista 2005) and UV radiation (Gutman et al. 1994; Minton 1994).

D. radiodurans has been studied for its ability to detoxify or immobilize
metallic pollutants. This was made possible by genetic engineering to obtain
radiation-resistant organisms that can simultaneously detoxify metals. The merA
gene encodes mercuric ion reductase that reduces highly toxic, thiol-reactive
mercuric ion, Hg(II), to much less toxic and volatile Hg(0) (Schottel 1978;
Summers 1986). The merA locus from E. coli was cloned into D. radiodurans to
confer both metal resistance and metal-remediating capabilities. In highly irradi-
ating environments, cells that expressed the merA protein were better protected
from the effects of Hg(II) than the wild-type counterparts. Cr(VI), a potent car-
cinogen, is another heavy metal commonly found in radioactive waste sites. In this
case as well, genetically engineered D. radiodurans capable of reducing Cr(VI) to
Cr(III) was preferentially used for rendering it non-mutagenic and non-carcino-
genic (Brim et al. 2006). In general, the ability of a microorganism to resist the
toxic effect of metals is frequently associated with its ability to transform those
metals into less toxic chemical states.

The limitations associated with D. radiodurans for in situ bioremediation of
nuclear waste sites are the requirements to genetically engineer the bacterium to
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acquire toxic metal resistance and bioremediating capabilities. The culturing of
this bacterium also requires a constant supply of carbon nutrient source and is
therefore prone to contamination. The highly radiation-resistant eukaryote coun-
terpart of D. radiodurans is found in the form of a microalga, Coccomyxa actin-
abiotis (Rivasseau et al. 2013). It can withstand ionizing radiation doses up to
20,000 Gy with half the population able to survive at 10,000 Gy. Metabolic
activity of the cell is marginally affected by radiation doses up to 10,000 Gy and a
complete recovery of cellular functioning within a few days. This unique micro-
alga also has the capacity to fix radionuclides such as 238U, 137Cs, 110Ag, 60Co,
54Mn, 65Zn, and 14C via metabolically inactive and active processes even in highly
radioactive environments. The main advantage of using photosynthetic organisms
is the minimal requirement for energy and culture media, which directly alleviates
the problem of bacterial contamination. This newly discovered organism therefore
offers great potential for the bioremediation of highly toxic radioactive wastes.
Detailed studies with respect to elucidating its metabolic activity and its capability
to remediate radionuclides are not only necessary but also inevitable.

Sulfate-reducing bacteria (SRB) are nonpathogenic anaerobic prokaryotes
known for their non-photosynthetic activity to generate ATP through electron-
transfer-coupled phosphorylation. During this process, SRB uses sulfate as the
terminal electron acceptor for respiration of hydrogen to produce sulfide. The
sulfide produced is highly reactive and toxic, and therefore, SRB are able to cause
severe corrosion of metals in a water system by producing enzymes which can
accelerate the reduction of sulfate compounds to hyrdrogen sulfide (Little 1998;
Beaton 2007). SRB are used in several in situ technologies like in acid mine
drainage (AMD). Extensive mining activity is responsible for changing the basic
property of water. When pyrite-containing rocks come into contact with surface
water or groundwater, under oxidizing conditions, these rocks produce sulfuric
acid and dissolved iron. This acidic water in turn dissolves other metals contained
in the rock, resulting in low pH, metal-bearing water known as AMD, or acid rock
drainage (ARD). Carbonate minerals may neutralize the acidity and bring the pH
to approximately 7.0 to give rise to neutral mine drainage. SRB are used in AMD
treatment with the purpose of producing sulfides (for metal sulfide precipitation)
and generating alkalinity at the same time.

Microbe-mediated sulfate reduction coupled with organic matter (represented
by CH2O) oxidation forms the chemical basis of SRB remediation

2CH2O aqð Þ þ SO4�2 þ Hþ ! H2S þ 2HCO3

It also involves the chemical reaction of metal (Me) precipitation:

H2S þ Meþ2 ! MeS þ 2Hþ

Precipitation of cadmium, copper, iron, lead, mercury, nickel, and zinc is
facilitated by the formation of respective metal sulfides. In addition, arsenic,
antimony, and molybdenum form more complex sulfide minerals (Figueroa 2005).
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Co-precipitation with other metal sulfides can also be achieved for metals such as
manganese, iron, nickel, copper, zinc, cadmium, mercury, and lead (Figueroa
2005). Other SRB species are known to reduce certain metals to a more insoluble
form, like reduction of uranium (VI) to uranium (IV) (Spear et al. 2000). Sulfate
reduction by SRB also consumes acidity, as a result of which there is an increase in
the pH. The above precipitation reactions for metal hydroxides are facilitated by
increasing the pH (Gadd 2004).

SRB are known to have a major negative economic impact on the petroleum
industry because of their involvement in biocorrosion of ferrous metals in anaer-
obic environments (Hamilton 2003). Hydrocarbons in petroleum (e.g., benzene,
toluene, ethylbenzene, xylenes, naphthalene, phenanthrene, and alkanes) may also
serve as electron donors in the normal metabolism of SRB resulting in sulfide
production. This biogenic sulfide production typically results in metal corrosion
and reservoir souring. In addition, it can also result in the acidulation and plugging
of petroleum reservoirs and biocorrosion of metal surfaces of pipelines and tanks
(Nemati et al. 2001). Due to the explosive nature of the sulfide, this may pose a
risk at high concentrations. The accumulation of SRB biomass thus causes a
reduction in the oil recovery (Muyzer and Stams 2008). The need to control or
inhibit the growth of SRB in petroleum industries is usually achieved by biocide
dosage (Korenblum et al. 2010). Though effective, the inherent problems associ-
ated with biocides are the occurrence of antimicrobial resistance (Stewart and
Costerton 2001; Fraise 2002), the residual concentration, toxicity, and persistence
of biocides in industrial effluents. Alternative strategies for SRB control are
therefore of great interest to the petroleum industry (Korenblum et al. 2013).

Remediation of radionuclide or radioactive wastes through microbial processes
is an emerging field of research. It has been suggested by current researches that
improper treatment approaches can lead to negative impacts on environment and
biodiversity, which may even increase distribution of radioactive materials (e.g.,
wind-aided transport of plutonium-contaminated soil) (Whicker et al. 2004).
Microbial consortium is a biological tool widely used for the remediation of
pollutants, consisting of several species of microorganisms in the form of bio-
flocculant. Biofilms produced by microbes, which exist predominantly in natural
environments (*99 %) (Costerton et al. 1995), have the capability to immobilize
metals. The different mechanisms adopted by biofilms to immobilize metals or
radionuclides are as follows: (1) biosorption to cell components or extracellular
polymeric substances (EPS), (2) bioaccumulation, (3) precipitation by reaction
with inorganic ligands such as phosphate, and (4) microbial reduction of soluble
metal to insoluble form (Gorby and Lovley 1992; Merroun et al. 2003; Renninger
et al. 2004). Microbial activity can influence the release of radionuclides by
altering bulk pore water chemistry (especially pH and redox reaction), by pro-
ducing organic complexing ligands or by direct accumulation onto or into cells
(West et al. 2002). Microbes can also cause corrosion and hence potentially affect
the longevity of the metal waste containers in a repository (Stroes-Gascoyne et al.
2007).
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3 Bioremediation: Plant–Microbe Interaction Perspective

The concept of using plants to clean up the environment has generated consid-
erable interest in the last few decades. With the discovery of some plant that has
high metal-accumulating capacity (hyperaccumulators) such as Thlaspi caerules-
cence and Alyssum murales, cleaning up of metal-contaminated sites using these
plants seems like a promising strategy. Metal accumulation in plant biomass
constitutes a subclass of phytoremediation called phytoextraction (Raskin and
Eansley 2000). Approximately 400 plants have been identified so far which have
potential for phytoextraction. Plants species such as Thlaspi sp and Alyssum spp.
from the family Brassicaceae, Viola calaminaria and Astragalus racemosus from
Violaceae and Leguminosae have been found to accumulate high concentration of
heavy metals and radionuclides (Negri and Hinchman 2000; Reeves and Baker
2000). Metal-accumulating phenotype in plants is a complex mechanism that
requires a concerted effort of tolerance, translocation, and sequestration of targeted
metal/s (Hall 2002; Eapen and D’Souza 2005). Understanding the working
mechanism of these areas will help enable or improve the metal-accumulating
property in hyperaccumulator or even non-accumulating plants. There have been
efforts to understand the mechanism of metal accumulation in potential candidates
like T. caerulescence and other members of Brassicaceae (Baker et al. 1994;
Kramer et al. 1996; Salt et al. 1999; Bert et al. 2000; Zhao et al. 2002; Milner and
Kochian 2008). However, naturally occurring hyperaccumulators lack certain
qualities such as large biomass, fast growth, and habitat incompatibility which
limit their use in phytoremediation (Eapen and D’Souza 2005; Kotrba et al. 2009).
The success of hyperaccumulation as a mean of cleaning up metal contaminated
soil relies on the ability of these plants to tolerate high concentrations and wider
metal resistant properties, possessing efficient transport mechanism for metal
uptake to accumulation in deep or wide spread roots and aerial portions of the
plant that can be easily harvested (Eapen and D’Souza 2005; Kotrba et al. 2009).

Another important aspect of phytoremediation is the relationship of plants with
microorganisms existing in the rhizosphere or within the plants itself (endophytes)
(Glick 2003, 2010; Kavamura and Esposito 2010; Ma et al. 2011). Plant–microbe
interactions are well-known relationships which have been studied thoroughly in
laboratory and field studies. Hence, there is no surprise that plants and microbes
existing in metal-contaminated site also use this relationship to thrive in stressful
environment (Tokala et al. 2002; Gray and Smith 2005). Microorganisms like
bacteria are specialists in dealing with metals as they have existed together long
before any other higher life forms. Hence, microbes are better adapted and possess
well-organized mechanism to deal with the presence or invasion of toxic metals.
The various strategies that bacteria utilize in order to negate the presence or
increase concentrations of metals include the efflux of metal by different trans-
porters (Nucifora et al. 1989; Solioz and Odermatt 1995), complexation inside the
cell (Silver 1996; Robinson 2008), bioprecipitation, and reduction to a less toxic
state (Bosecker 1997) (Fig. 1). Bacteria existing in metal-contaminated site can
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influence the physicochemical properties of their habitat including metal(s) in
more than one ways.

Bacterial communities have been known to solubilize or precipitate metals in
soil, which in turn affects the bioavailability of metals. The bacterial capacity to
change the availability of metal in soil can affect plants either by solubilizing the
metals so that plant can easily absorb the metals or by precipitating the metals,
affecting the survival of plants. Besides changing the bioavailability of metal(s),
bacteria can influence the efficiency of phytoextraction by nitrogen fixation and
secreting plant growth-promoting hormones such as IAA, siderophore, etc. (Glick
2010; Ma et al. 2011). Plants on the other hand secrete nutrients such as amino
acids, sugars, and other metabolites from the roots, which nourish different bac-
terial species in the rhizosphere.

4 Metagenomics of Metal-Contaminated Sites

The existence of plant–microbe interactions in metal-contaminated site is irrefut-
able, and various studies have been carried out to understand this relationship
(Sriprang et al. 2003; Kuiper et al. 2004; Wu et al. 2006). Moreover, the success of
phytoremediation does not depend on plant alone but also on its interaction with the
microorganisms in the rhizosphere (Whiting et al. 2001). Understanding the
microbial communities existing in metal-contaminated sites is a prerequisite for
understanding this relationship. Culturable bacteria have been studied in metal- and
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Bioprecipitation

Reducttion of U(VI) 
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Fig. 1 Diagrammatic representation of the mechanisms of metal/radionuclide–microbes inter-
action (adapted from Geissler 2007)
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radionuclide-contaminated site where diverse groups of bacteria have been isolated
and identified (Roane and Kellogg 1996; Selenska-Pobell et al. 2001a, b;
Shelobolina et al. 2004; Nedelkova et al. 2007; Islam and Sar 2011; Kumar et al.
2013a). However, culture-dependent methods do not give the true diversity and
types of microorganism as *99 % of bacteria cannot be cultured in laboratory
(Pace 1997; Torsvik and Øvreås 2002). With the improvement in metagenomic
studies, total bacterial communities existing in metal- and radionuclide-contami-
nated sites have been explored (Selenska-Pobell et al. 2001a, b; Satchanska et al.
2004; Islam and Sar 2011; Kumar et al. 2013a). This method allows a better
understanding on the existing relationship of these bacterial communities with the
plant species in that habitat. Comparative metagenomics have been carried out to
study the effects of heavy metals on the diversity of bacterial communities.
Bacterial communities’ structure in uranium deposits has also been studied using
both culture-dependent and culture-independent techniques to obtain baseline
knowledge on the bacterial communities prior to any mining activities (Kumar et al.
2013b). Similarly, bacterial communities have been explored in uranium-mining
sites using both culture-dependent and culture-independent methods. The rhizo-
sphere tends to harbor diverse group of microorganisms as compared to the bulk
soil. Hence, a comparative study of bacterial species between the rhizosphere and
the bulk soil provides an idea about different bacterial species that contribute to the
well-being of the plant(s). Bacterial species in the rhizosphere of hyperaccumula-
tors plants such as T. caerulescence, A. murales, etc., have been studied and
identified (Gremion et al. 2003). Besides the rhizosphere of hyperaccumulators,
bacterial communities in the rhizosphere of pioneer plants in metal-contaminated
sites have also been explored (Navarro-Noya et al. 2010). Metagenomics has also
been used to compare the effects of different metals on the diversity of bacterial
communities (Sobolev and Begonia 2008; Gołębiewski et al. 2013). Besides under-
standing the community structure, metagenomics has also been in use to understand
the different metabolism, evolution, and adaptation of microbial communities in
different habitats. Functional metabolic markers such as nirS, nirK, dsrAB, amoA,
pmoA, etc., have been used to understand the dominant metabolic activities in
radionuclide contamination sites (Hemme et al. 2010). Similarly, genes encoding for
metal resistance were found to be prevalent and disseminated among those micro-
organism in metal-contaminated sites (Coombs and Barkay 2004; Martinez et al.
2006; Nongkhlaw et al. 2012) An in-depth and comprehensive study on the microbial
communities and its function is very important before any bioremediation practice is
established, and metagenomics is an important approach to achieve that goal.

5 Transgenic Metal-Tolerant Plants

The inherent property of some plants to accumulate metal(s) in their biomass has
generated and opened new scope for heavy metal remediation. Plants with the
capacity to accumulate 50–500 times metal in their biomass as compared to their
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counterpart growing in the same habitat are termed as hyperaccumulators and
considered potent candidates for use in phytoremediation.

The success of hyperaccumulation as a means of cleaning up metal contami-
nated soil depends on various factors like metal tolerance capability, efficient
transport mechanism, high biomass in aerial portion of the plant etc. So far, such
ideal plants have not been discovered or do not exist. However, genetic engi-
neering can be used to optimize the existing potential of hyperaccumulators or
non-accumulators by introducing new traits from other sources.

With the increased knowledge in plant genetics procedures and metal-tol-
erant plants with established genetic makeup, B. juncea, Helianthus annuus,
and Nicotiana glaucum appear good candidates for genetic engineering for the
purpose of phytoextraction (Eapen and D’Souza 2005; Kotrba et al. 2009).
Understanding the mechanism that involves in metal accumulation is very
important before genetic manipulation. The ability of plants to accumulate
metal(s) in their biomass involves well-organized mechanism that includes
metal uptake from the soil, translocation to target compartments, and seques-
tration. Genetically engineered plants for phytoremediation usually involve the
introduction of metal-tolerating genes from other plants, but genes from human,
animal, fungi, and bacteria have also been used to improve metal accumulation
(Eapen and D’Souza 2005; Kotrba et al. 2009). Genes that encode metal
sequestration factors such as metallothioneins (Misra and Gedamu 1998; Evans
et al. 1992) and phytochelatins (Zhu et al. 1999a, b; Harada et al. 2001) from
other sources have been introduced in plants. Constitutive expression of genes
encoding metallothioneins from mouse, human, and Chinese hamster in Nico-
tiana tabaccum, Brassica oleracea, and Arabidopsis thaliana showed increased
Cd2+ tolerance but reduced metal accumulation in shoots. Similarly, genes from
bacteria and fungi have been cloned and expressed in plants cells for obtaining
metal-tolerant phenotype (Table 1). Expression of yeast CUP1 increased Cd2+

tolerance in B. oleracea, but there is no increased accumulation. However,
expression of yeast CUP1 increased Cu+ but not Cd2+ accumulation in leaves
of N. tabaccum. A more promising Cd2+ accumulation in transgenic line was
seen with recombinant HisCUP. Improved Hg2+ accumulation was also seen in
A. thaliana transgenic expressing bacterial Hg2+ binding protein, MerP. In
addition to the improvement of metal accumulation trait, plants also need to
combat the oxidative stress known to be induced by heavy metals. Hence
Glutathione synthesis genes from bacteria and fungi have been introduced and
overexpressed in plants with the aim of increasing metal tolerance and
sequestration (reviewed in Eapen and D’Souza 2005; Kotrba et al. 2009).
Maintenance of metal homeostasis carried out by various metal-transporting
proteins is another important aspect for metal tolerance and accumulation.
Similarly, metal transporters from bacteria and fungi have been cloned and
expressed in plants. Zinc/Lead/Cadmium metal-transporting PIB-ATPase (ZntA)
from E. coli has been successfully expressed in A. thaliana (reviewed in Eapen
and D’Souza 2005; Kotrba et al. 2009). Similarly, mercury-resistant genes such
as merA, merB, and merC have been successfully cloned in plant species
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resulting in increased tolerance and accumulation of mercury by the trans-
formed plant. Very few reports are available on the use of metal transporters
from bacterial origin for making metal-tolerant transgenic plants except for
those mentioned above.

Negri and Hinchman (2000) have reported the use of the plants for treatment of
3H, U, Pu, 137Cs, and 90Sr. Phytoextraction removes radionuclides from soil
without destroying the soil structure having limited impact on soil fertility for the
treatment of large areas of low-level contamination, and its success depends on the
bioavailability of radionuclides in soil, on the rate of uptake by plant roots and
transportation efficiency of the vascular system of plants (Slavik Dushenkov
2003).

6 Conclusion

Microbial bioremediation is the process by which microbes degrade or transform
hazardous organic compounds into non-toxic products. Since the plethora of
microorganisms teeming in nature are not capable of degrading all toxic com-
pounds, especially xenobiotics, the use of genetically modified organisms forms
an indispensable part of bioremediation approaches with the advancement in
genetic manipulation. Although genetically engineered microbes are quite
promising, their implementation for in situ bioremediation still requires addi-
tional routes for developing safe steps to environmental cleanup. One of the
major challenges is to optimize conditions and procedures for sustained and
effective bioremediation in the presence of toxic metals and organic compounds.
Conditions are created to enhance microbial activity for in situ biostimulation or
bioaugmentation which may disrupt the natural microbiota. Various issues are to
be dealt with to enhance the metabolic activity while maintaining the required
growth conditions such as pH, temperature, the levels of contaminants and
nutrients, etc. Due to the complex nature of interactions between microorganisms
and radionuclides, it is far from easy to understand the wide range of environ-
ments these organisms inhabit. To study the molecular mechanisms and identify
novel genes, proteins, and enzymes involved in the bioremediation of radio-
nuclides necessitates the study toward the structural and functional interactions
between proteins and other metabolites. Therefore, identification of potential
genes and proteins involved in the metabolism of radionuclides can be achieved
by advanced genomics and proteomics techniques. With the recent advances in
next-generation sequencing, genomics, and proteomics, it has become possible to
check for the expression of proteins and enzymes of interest with the potential
for radionuclide resistance. Genome-wide transcriptome analysis can further
provide detailed insight into better understanding of the metabolic pathways and
the physiology of the microorganisms.
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