
Chapter 7
Theory and Criteria of Similarity

For many years, theory of similarity has been used either in aware or unaware
manner in many branches of science. It turns out that it is impossible to realize the
examining real phenomena and processes, or objects due to their complexity and
costs. For example, the examining water flow in rivers or behaviour of manned and
unmanned flying objects during the flight. In such cases, one usually builds a smaller
object (or larger) in such a way that one could carry out measurements in labs by
means of modern apparatus. The obtained results should be reliable, i.e. there should
exist the possibility of either direct or indirect transition to the real object. Theory
of similarity gives an answer to the essential question: what range and under what
conditions does a model represent a real object? In practice, a researcher fixes his
attention on the object he examines, i.e. on the similar object. Sometimes, it is
difficult for an individual to examine the proper object or the object is out of reach.

It may happen that engineer’s intuition allows building a device that could
not have been built on the basis of mathematical models due to the lack of
sufficient development in a particular scientific discipline. The primary object (real
or imagined) is called original and the object similar to the original is called model.

Let us notice that theory of similarity is based on dimensional analysis. The
theory determines relationships between physical parameters, which influence the
phenomenon under consideration. This approach is often used in nonlinear issues,
especially in fluid mechanics and aerodynamics, or hydrodynamics.

It should be emphasized that theory of similarity is mainly supported by
measurement analysis and defines dependencies between physical parameters
having influence on a being investigated phenomenon. Such approach has been
used often in nonlinear problems especially matched with fluid mechanics, aero-
mechanics or hydromechanics. Obtained results due to theory of similarity can
be transformed from laboratory devices to industry and allow for minimization of
measurement numbers and costs.
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Fig. 7.1 The original (mechanical system) and the model (electrical system)

Traditionally the following partition of similarity has been introduced.

(i) Geometrical—shapes and dimensions of two objects are similar, e.g. a ratio of
two characteristic dimensions;

(ii) Kinematical—distributions of physical fields lines are similar, e.g. velocity,
pressure or acceleration;

(iii) Dynamical—scale of similarity of different characteristic quantities is the
same. In the case of incompressible fluids, Reynolds number Re is such number
and in the case of compressible fluids one uses Mach, Strouhal or Prandtl
numbers. This description requires introducing concepts of force and torque,
or tension.

Let us remind that Reynolds number Re D �lv

�
where l is characteristic

dimension (e.g. diameter of a pipe), v is characteristic velocity of fluid and � is
kinematical viscosity, and � is density. For Re < 2;300 we have a laminar flow, for
2;300 < Re < 10;000 transition flow and for Re > 10;000 turbulent flow appears.

Similarity numbers allow for qualitative evaluation of the examined phenomena.
They are often used in applications. They follow: Abbe, Archimedes, Arrhenius,
Biot, Euler, Fourier, Rayleigh or Weber numbers. Note that relationships original-
model can concern both material systems and processes (e.g. flow), i.e. phenomena
in general.

As an example, we consider a vibration phenomenon described by a second-order
differential equation in the mechanical and electrical systems (Fig. 7.1).

The mechanical system equations of motion, based on Newton’s second law, can
be written in the form

B R' C c P' C k' D M0 cos !t; (7.1)

where .�/ � d
dt

, B is moment of inertia of a shield suspended on a weightless rod
of torsion rigidity k D .GI0/l�1, G is shear modulus, I0 is moment of inertia of
cross-section and l is length of the rod. M0 and ! are amplitude and frequency of
harmonic excitation respectively, ' is generalized coordinate (angle measured in
radian).
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The electrical system equation of motion is based on Kirchhoff’s law, i.e. we
equate the sum of voltage drops on all elements of the circuit to the voltage on
terminals. We obtain

L
di

dt
C Ri C 1

C

Z
idt D U0 cos !t; (7.2)

where L is self-induction coefficient, R—resistance, C —capacitance, i—current
intensity, U0 and ! are amplitude and frequency of external voltage (driving),
respectively.

Since i D dq

dt
, where q is electric charge, then by Eq. (7.2) one gets

L Rq C R Pq C 1

C
q D U0 cos !t: (7.3)

It is easy to see that Eqs. (7.1) and (7.3) are similar. We have the following
similar quantities: the rotation angle ' and the charge q; the angular velocity P' and
the current intensity i ; the moment of inertia B and the self-induction coefficient
L; the viscous damping coefficient c and the resistance R; torsion rigidity k and
reciprocal of the capacitance C �1; the amplitude of the torque M0 and the voltage
U0; frequency ! of torque and voltage.

We aim to determine the “period of damped vibrations in both systems”. On this
purpose, we transform the homogeneous equation, obtained from (7.1) and (7.3),
into the form

R' C 2h P' C ˛2' D 0; (7.4)

q00 C 2h0q0 C ˛02q D 0; (7.5)

where ˛2 D k
B

, 2h D c
B

; ˛02 D .LC /�1, 2h0 D R
L

, 0 D d
dt 0

,PD d
dt

.
In order to determine relationships between the original and the model, we make

use of dimensional analysis. Let us introduce the following values of the scales

k' D '

q
; kt D t

t 0 ; kh D h

h0 ; k˛ D ˛

˛0 ; (7.6)

where .0/ refers to the model. Making use of (7.6) in (7.4) we get

k'

k2
t

q00 C k'kh

kt

2h0q0 C k'k2
˛˛02q D 0: (7.7)

The equations of the original and the model are identical when there are the
following relationships between the scales

k'

k2
t

D k'kh

kt

D k'k2
˛: (7.8)
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The above relationships imply

kt kh D 1; k˛kt D 1;

k˛ D kh

(7.9)

which means

ht D h0t 0 and ˛t D ˛0t 0;

or

h

˛
D h0

˛0 : (7.10)

We have obtained the criterion of similarity (7.10). This means that some
dimensionless combinations of the signal parameters must equal to the analogous
combinations of the model parameters. By Eq. (7.10) we get as well

cp
kB

D R

r
C

L
(7.11)

The above equation implies that two of the three parameters R; C; L can be
chosen freely but the third one is obtained from (7.11).

When we have a model (the electrical system) we can measure the period
of damping vibrations T 0, and then determine the period of vibrations in the
mechanical system (the original) in the following way

T D kt T
0 (7.12)

where

kt D 1

k˛

D ˛0

˛
D

q
1

LCq
k
B

D
r

B

kLC
: (7.13)

There is another often applied method of obtaining similarity criteria, namely
the transforming equations of both the original and the model into the same
dimensionless form, and the imposing of identity conditions on the form of
the equations and their coefficients. The vibration phenomenon will be described
by the only one dimensionless differential equation of second order. We introduce
to the original and to the model, the following dimensionless values

'1 D '

'0

; t1 D t

T
; q1 D q

q0

; t 0
1 D t 0

T 0 ; (7.14)

where '0, q0, T 0 and T are values of the angle and the charge, and the time (period).



7 Theory and Criteria of Similarity 257

Inserting (7.14) into Eqs. (7.1) and (7.3) we get

B R'1

kT 2
C c

kT
P'1 C '1 D M0

k'0

� cos 2�t1; (7.15)

LC Rq1

T 02 C RC

T 0 Pq1 C q1 D U0C

q0

� cos 2�t1; (7.16)

since the cosine input values are assumed to be the same, namely !T D 2� ,
!0T 0 D 2� , !0t 0 D !t .

One can assume that !
!0

D t 0

t
D T 0

T
D 1, which implies t1 D t1

0.
Equations (7.15) and (7.16) possess the same independent variable t1. The quan-

tities '1 and q1 are dimensionless, so the original and the model can be represented
by the second-order differential equation

.T 2
1 p2 C T0p C 1/x D K cos 2�t1 (7.17)

where

p D d

dt1
;

x D '1 D q1;

T1 D B

kT 2
D LC

T 02 ;

T0 D c

kT
D RC

T 0 ;

K D M0

k'0

D U0C

q0

:

(7.18)

One can say that the obtained relationships are equivalent to (7.10), (7.11).
Now, let us come to the third way of determining similarity criteria between

the original and the model, using Eqs. (7.4) and (7.5). Each of the equation
terms (7.4) or (7.5) possesses the same dimension. The terms can be written in the
following way

h '

t2

i
D

�
h'

t

�
D Œ˛2'�; (7.19)

dividing the above equality by
�

'

t2

�
we get

Œ1� D Œht � D Œ˛2t2�: (7.20)
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This implies the products ht and ˛t are dimensionless combinations of dimen-
sional quantities for the mechanical system. Similarly, with regard to Eq. (7.5) we
get that the products h0t 0 and ˛0t 0 are dimensionless combinations of dimensional
quantities for the electric system.

Newton formulated the following law of similarity of two phenomena.

We say that two phenomena are similar to each other when the quantities occurring in the
equations which describe the phenomena form dimensionless combinations are of equal
values.

In regard to the analysed example, the similarity criteria are the following

ht D h0t 0 and ˛t D ˛0t 0 (7.21)

which lead to (7.10).
The example was based on the knowledge of equations describing the phenomena

in the original and the model.
Now, we will try to determine similarity criteria only through the analysis of

physical quantities characterizing the phenomenon (the equations describing the
phenomena are unknown), basing ourselves on dimensional analysis.

Every dimensional quantity can be presented in the following way

Q D qx
a1

1 x
a2

2 : : : xam
m ; (7.22)

where x1; : : : ; xm are dimensional units, q is dimensionless, and a1; : : : ; am are real
numbers. As an example, let us put 1 W D 1 N ms�1 or g D 9:81 ms�2.

Let n dimensional quantities Q1; : : : ; Qn be given in the description of the exa-
mined phenomenon, however only m measurement units are required to complete
the description, n > m. It turns out that the choice of these m measuring units is
free provided that the condition of dimension independence holds.

We say that the quantities Q1; : : : ; Qm are dimension-independent if the equality

Q
r1

1 Q
r2

2 : : : Qrn
n D �; � > 0; �; r1 : : : rm 2 R (7.23)

implies r1 D r2 D : : : D rm D 0 and � D 1.

Example 7.1. Show that the displacement s, the acceleration p and the force F are
dimension-independent.

According to (7.23) we have

sr1pr2F r3 D �;

and after taking into account the dimensions

mr1
�
ms�2

�r2
�
kgms�2

	r3 D mokgoso;
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or equivalently

mr1Cr2Cr3kgr3s�2r2�2r3D mokgoso:

Equating the exponents of the same bases we get

r1 C r2 C r3 D 0;

r3 D 0;

�2 .r2 C r3/ D 0;

hence

r1 D r2 D r3 D 0

which proves that s, p and F are dimension-independent.
One can do it in another way. On this purpose, one must determine the rank of

the exponents matrix of each dimensional quantity. For the considered case from the
example 7.1 we have

m kg s
s 1 0 0
p 1 0 �2
F 1 1 �2

Three quantities s, p and F are linearly independent because the determinant of
third order is nonzero, i.e.

ˇ̌
ˇ̌
ˇ̌
1 0 0

1 0 �2

1 1 �2

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 0 �2

1 �2

ˇ̌
ˇ̌ D 2

If there are m of the n dimension-independent quantities, then it is easy to
determine n � m non-dimensional combinations of these quantities referred to the
form

QmC1Q
r1;1

1 Q
r2;1

2 : : : Q
rm;1
m D �1;

QmC2Q
r1;2

1 Q
r2;2

2 : : : Q
rm;2
m D �2;

:::

QnQ
r1;n�m

1 Q
r2;n�m

2 : : : Q
rm;n�m
m D �n�m;

(7.24)
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or of analogous form referred to the model (prime mark):

Q0
mC1Q

0r1;1

1 Q
0r2;1

2 : : : Q
0rm;1
m D � 0

1;

Q0
mC2Q

0r1;2

1 Q
0r2;2

2 : : : Q
0rm;2
m D � 0

2;

:::

Q0
nQ

0r1;n�m

1 Q
0r2;n�m

2 : : : Q
0rm;n�m
m D � 0

n�m:

(7.25)

The similarity criteria in number n � m are obtained from the equations

�1 D � 0
1; : : : ; �n�m D � 0

n�m: (7.26)

Let us introduce the following scales of independent quantities

ki D Qi

Q0

i
; i D 1; : : : ; m (7.27)

and dependent quantities

kmC1 D QmC1

Q0
mC1

; (7.28)

After dividing both sides of Eqs. (7.24) and (7.25), and making use of (7.26)–
(7.28) we obtain

kmC1k
r1;1

1 k
r2;1

2 : : : k
rm;1
m D 1; (7.29)

hence

kmC1 D k
�r1;1

1 k
�r2;1

2 : : : k
�rm;1
m : (7.30)

Product of type (7.24) takes the form

˛ta D �1; htb D �2; (7.31)

where ˛ and h are dimension-dependent.
From the first equation (7.31) we have

s�1sa D s0; (7.32)

hence a D 1, and the first invariant takes the form

˛t D �1: (7.33)
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The second equation (7.31) leads to determining the second invariant of the form

ht D �2: (7.34)

Analogous considerations, carried out for the electrical system, lead to determi-
ning invariants of the form

˛0t 0 D � 0
1; and h0t 0 D � 0

2: (7.35)

Since we get the following similarity criteria

˛t D ˛0t 0; and ht D h0t 0; (7.36)

dividing both sides we get the invariant

˛

˛0
t

t 0 D �1

� 0
1

� 1;
h

h0
t

t 0 D �2

� 0
2

� 1; (7.37)

thus k˛kt D 1, khkt D 1. ut
At the end, we consider the procedure of transforming Duffing’s equation into

dimensionless form.

Example 7.2. Let us analyse an oscillator described by the second-order differential
equation

d 2 Nu
d Nt 2

C f .Nu/ D 0:

We Maclaurin-expand the nonlinear function

f .Nu/ D f .0/ C Nudf

d Nu .0/ C 1

2
Nu2 d 2f

d Nu2
.0/ C 1

3Š
Nu3 d 3f

d Nu3
.0/ C � � � :

Let us take

f .0/ D d 2f

d Nu2
.0/ D 0 and

df

d Nu .0/ > 0;

hence the resulting equation takes the form

d 2 Nu
d Nt 2

C Nudf

d Nu .0/ C 1

6
Nu3 d 3f

d Nu3
.0/ D 0:

After introduction of the following non-dimensional quantities u D Nul�1, t D
NtT �1 one gets
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l

T 2

d 2u

dt2
C ul

df

d Nu .0/ C 1

6
u3l3 d 3f

d Nu3
.0/ D 0;

which leads to the equation

d 2u

dt2
C uT 2 df

d Nu .0/ C 1

6
u3T 2l2 d 3f

d Nu3
.0/ D 0: (�)

Assume that
�
T 2 df

d Nu .0/

�
D 1;

what follows from the often applied combination ŒF T 2=ML� D 1, where L is the
length, T the time, M the mass and F the force. Note that Œf � D N kg�1, ŒNu� D m,�
T 2

� D s2, and hence

�
T 2 df

d Nu .0/

�
D s2.kgms�2/kg�1m�1 D 1:

Equation (�) takes the following dimensionless Duffing-type form

d 2u

dt2
C au C bu3 D 0;

where:

a D df �

du
.0/; b D 1

6

d 3f �

du3
.0/; f � D f T 2

l
:

Transformation of the dimensional equation into dimensionless one has a signi-
ficant meaning. It enables to generalize the results, i.e. transition from one scientific
discipline to another one, e.g. from mechanics to electrics. Moreover, transforming
equations into dimensionless form sometimes allow the number of parameters to
be reduced significantly. It has non-trivial meaning in analysis, especially during
numerical computations. ut
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