Chapter 5
Higher-Order ODEs Polynomial Form

5.1 Introduction

If a function f(z,x,%,...,x™) is defined and is continuous in a subset of
R"*2(n > 1), then the equation

ft,x, %,...,.x")y=0 (5.1

is said to be ordinary differential equation of nth-order.
Fortunately, it happens very often that (5.1) can be transformed to the form

x™ = fi(t,x, %, ..., x"7Y), (5.2)

The Cauchy problem for Eq. (5.2) is that of finding a solution x () satisfying the
series of the following initial conditions

x(t) = X0, X(to) = Xo.....x" V(o) = x"7". (5.3)

Theorem 5.1 (Peano). If the function f| is continuous in certain open subset, then

for an arbitrary point (ty, xo, Xo, - . .,x(()n_l)) belonging to this subset there is a
solution to Eq. (5.2) defined in a neighbourhood of ty, which satisfies (5.3).

Theorem 5.2 (Cauchy-Picard). If the function f satisfies both the conditions
of Theorem 5.1 and the Lipschitz conditions with regard to the variables
X, x,...,x@=D then for arbitrary initial conditions (5.3) there is only one solution
(uniqueness) to Eq. (5.2).
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Recall that the Lipschitz constant L for the first-order case can be found from the
inequality

S, x1) = f(t,x2)

X1 — X2

<L. (5.4)

_|9f
= ‘g(x)

In words the Lipschitz constant can be defined by an upper bound of . In the

nth-order case, when f = f(¢, xy,..., X,), the Lipschitz constant L can be defined
by the inequality
0 a
Max l , / <L. (5.5)
0x1 0x,
f _

To show a uniqueness of a solution let us recall the example of the equation -
1+ x? given in the book [191]. In this case f(z,x;) = 1+x7 and f (7, x2) = l—l—x2
Hence | f (¢, x1) — f(t,x2)| = |x, —xz} = |x; — x2| |x1 +xz| < 2|x; — x| in the
rectangle || < 1,|x| < 1. Theorem 5.2 states that there exists only one solution
passing through (0,0). In fact, this solution has the following analytical form: x (¢) =
tg(?). Let D be a domain composed of points, where any point corresponds to only
one solution of the Cauchy problem. The function

x=¢@C.....Cy) (5.6)

is said to be a general solution to Eq.(5.2), if the following assumptions are
satisfied:
(i) the function ¢ has the nth-order derivative with respect to ¢;
(ii) for any point defined by the series (5.3) the following equations
xo=¢(,Cy,...,C),
Xo = g&(l, Cy,...,C),

XD = gl U(r Ci,....Cp), (5.7)
have the unique solutions with regard to the constants C}, ..., C?;
(iii) the function ¢(z,C?, ..., C,? is the solution to (5.2) for arbltrary constants
CP,...,C?, which are the solutions to (5.7).

If a general solution is given in the implicit way
do(t,x,Cy,...Cy) =0, (5.8)

then Eq. (5.8) defines a general solution to Eq. (5.2).
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Any arbitrary solution (5.6) for the specified values of constants Cy,...,C, is
said to be the particular solution of Eq.(5.2). The following steps are required in
order to find a particular solution knowing a general one:

(1) the algebraic set of Eq. (5.7) should be derived from either (5.6) or (5.8), which
yields the constants Cy, ..., Cy;

(ii) the found specified values C?, ..., C? are substituted to (5.6) or (5.8), which
are now solutions to a Cauchy problem.

Note that sometimes a general solution can be represented in a parametric form

t=t(p,Ci,....,Cp),

x:x(pﬂcl7"'?cil)a (5.9)
where p is a parameter. In the most general case governed by Eq. (5.1), the following
theorem satisfies an existence and uniqueness of a Cauchy problem.

Theorem 5.3. Assume that the function defined by (5.1) is continuous and posses-

ses the continuous derivatives with regard to x, X, . . ., x™_ Hence, for an arbitrary
. : (n)
point (ty, Xo, Xo, ..., X, ) such that
. af .
f(to, x0, X0, - . ., x(()")) =0, m(l(), X05 X0y -+ -5 x(()")) #0, (5.10)

there is exactly only one solution to Eq. (5.1) defined in the neighbourhood of ty and
satisfying the initial conditions (5.3).

A general solution constitutes of a family of integral curves in the plane (z, x)
with n parameters Cy, ..., C,.

5.2 Linear Homogeneous Differential Equations

Consider the following homogeneous nth-order differential equation

Ly(y) =y" + pi@)y" ™V + -+ pu()y =0, (5.11)
where L, is called the nth-order linear differential operator (here y(") = % .

Recall that in general, a linear differential operator (a function) has the following
properties:

(i) L(Cy) = CL(y),
() L(y1+y2) = L(y1) + L()2),
(i) L(Cyy1 + -+ Cpym) = CiL(y1) +--- + Cp L(yp), for any y; and C;.



224 5 Higher-Order ODEs Polynomial Form

Theorem 54. If yi, ..., y, are the solutions to homogeneous equation (5.11), then
y = Ciyy + -+ + Cuy, is also a solution to L,(y) = 0 for arbitrary constant
numbers Cy, ..., C,.

Remark 5.1. The set of functions {y(¢), ..., y,(t)} is said to be a fundamental set
of solutions of L,(y) = 0.

Remark 5.2. The function y(¢t) = C1yi(¢) + --- + C,y,(¢) is called the comple-
mentary function of L,(y) =0

Definition 5.1 (Linearly Independent Functions). Let u;(¢),...,u,(t) are the
functions defined in the interval ¢ < ¢t < b. If there are numbers «;, . . ., &, not all
of them equal to zero, and the following equation is satisfied

Z=aoqu + -+ i, =0, a<t<hb, (5.12)

then we say that the functions u;(?),...,u,(¢t) are linearly dependent in the
considered interval.

The vector z is called a linear combination of the members of the set

{uy,...,uy}, whereas the set {ay,...,a,} is called a set of coefficients of the
linear combination.
Recall that:
(i) the set of all linear combinations of members of {yi,..., y,} is called the

linear span (or simply span) of {y1, ..., Ym};
(i1) alinear space U is a set that satisfies the following properties:

(a) ifu,v e U thenu+v € U;
(b) ifue Uandc € R,then Cu e U;

(iii) the span defined in (i) forms a linear space.

Assuming that Eq. (5.12) is satisfied if and only if ¢; = -+ = o, = 0, then
the functions uy,...,u, are called linearly independent. A linearly independent
spanning set for a linear space U = {uy,...,u,} is called a basis for U.
A dimension of U is defined by the number of vectors in a basis of vector space U'.
A necessary condition for linear dependence of the functions uy,...,u, can be
obtained in the following way. Let the given functions uy, ..., u, to be are linearly
dependent. It means that they satisfy (5.12). Differentiating n — 1 times Eq. (5.12)
one gets

aluﬁk)—i—---—}—oznu,(f): , k=1,....,n—1. (5.13)

Of course, we have assumed that the functions {uy, ..., u, } have n—1 continuous
derivatives on some interval (they are C"~! smooth). It is known from algebra that
the system of Egs. (5.12) and (5.13) has non-trivial solution of &1, ..., «,, when the
following determinant function (called Wronskian) is equal to zero:
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ul ... un
W, e,
Wuy,...,up) =1 . =0, a<t<bh. (5.14)
u(ln—l) D
Theorem 5.5. [f the functions y1,...,y, are the solutions of L,(y) = 0ona <
t < b, then W(y(t), ..., yu(t)) is either zero for every t from [a,b] or is never zero

foranyt € [a,b].

Proof. We take n = 2 and follow the proof given in the book [191]. Here we
omit a generalization for any n. Consider the following linear operator with variable
coefficients

Ly(y) = y"+ pi@)y" + pa(t)y = 0.
The Wronskian

Y1 )2
/ /
172

Wy, y2) = = Y1y — »2)}.

On the other hand

W' = (y1y5 — y291) = y»1Y'5=y"1y2 = yi(=p1y5 — p2y2) — y2(=p1y] — p2y1)
= —pi(n1yy —»ny) = -—pmW,

and hence
1nW:—/p1dl+lnC.

Finally, one gets
W(y17 yz) = Ce_fpl(t)dt7

which for C = 0 is identically zero, or for C # 0 is never zero. O

Theorem 5.6. If yi,...,y, are solutions of the equation L,(y) = 0 and
Wi s Yu)li=y = O, then W(y1,...,ys) = 0fora <t < b,and yi,...,y,
are linearly dependent solutions in the interval t € [a, b].

Theorem 5.7. A necessary and sufficient condition for solutions zi,...,z, of
L, (z) = 0t0 be linearly independent in an arbitrary pointis W(z1, ..., 2n)|;=, 7# 0.
If W(ty) # O, then also W(t) # 0 fora <t < b, and if W(ty) = O, then also
W(t) = 0.



226 5 Higher-Order ODEs Polynomial Form

Theorem 5.8. If yy,...,y, are linearly independent solutions of the equation
L,(y) =0,theny = Cyy; + -+ + Cpy, is a general solution fora <t < b,
—00o <y <400, k=0,1,...,n—1.

In the case of a homogeneous linear nth-order equation L,(y) = 0, there are n
linearly independent solutions yy, ..., y, forming the fundamental set of solutions
(proof is omitted here). It is interesting to note that the Wronskian can be used to
define a differential equation, when a fundamental set is known.

Recall that a set of all solutions of the linear equation L(y) = 0 is called a null
space or kernel of the operator L.

Theorem 5.9. A homogeneous linear differential equation L,(y) = 0 has n
linearly independent solutions that form a basis for the set of all solutions. The
dimension of the kernel of an nth-order linear differential operator is n.

Example 5.1. Define a linear differential equation possessing the fundamental
solution: y;(z) = sint, y,(t) = €'.

We define the Wronskian
sint e’ y sint 1 'y
W(sint,e',y) = | cost e y'|e' | cost 1 'y
—sint ' y’| |—sint 1&y”
— o (sins 1y cost y' cost 1
N 1y” —sint y” Y1 sinr 1

= e'[sint(y” —y") — (y" cost + y'sint) + y(cost + sint)]
= e'[(sint —cost)y” —2sint + y' + (sint + cost)y] = 0,

and the being sought differential equation is defined immediately as
Ly(y) = (sint —cost)y” —2sinty’ + (sint + cost)y = 0.
In order to verify the obtained results we check:

L,(sint) = —(sint — cost)sint — 2sint cost + (sint + cost) sint = 0,

Lz(et) = eth(SiIl t)=0.

5.3 Differential Equations with Constant Coefficients

Since characteristic equation corresponding to an nth-order homogeneous differen-
tial equation cannot be solved using radicals already for n > 5, very often numerical
or approximate analytical methods are used. The most important observation is that
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the nth-order differential equation is reduced to the nth-order polynomial (algebraic)
equation. The solutions differ from each other qualitatively for distinct and repeated
(multiple) roots of a characteristic equation, which we are going to discuss.

Theorem 5.10. Given the nth-order linear differential equation L,(y) = y™ +
1y Vi p, 1y 4+ p,y = 0. Let the characteristic polynomial corresponding
to L,(y) = 0 possess:

(i) ndistinct real roots r;, i = 1,...,n. Then the n functions y;(t) = e"! form a
basis for the kernel of L,,(y) = 0. A general solution has the form

y(t) = Zciem;
i=1

(ii) Single root repeated n times. Then the n functions y(t) = e'', y,(t) =
te", ..., yu(t) = t""'e" form a basis for the kernel of L,(y) = 0. A general
solution can be written as

y(t) = (C) + ot + -+ Cut" e

iii) Single root repeated m times and there are n — m distinct roots
8 P
Tm+1sY'm+2s - - - » I'n. Then the n functions
yi(t) = e,

ya(t) =te',

yult) = 7-er,
Ymt1(1) = e+t
yult) = e
form the kernel of L,(y) = 0. A general solution has the form
y(t) = (C1+ Cy + -+ Cut™ He + Cpyre™ 1 4o 4 Cpe™.
Example 5.2. Consider the following third-order differential equation
Liy(y) =y" —8y" +19y' — 12y = 0.
Introducing y = e’ one obtains the characteristic polynomial r* — 872 4+ 19r —
12 = 0, with three distinct roots: r; = 1,r, = 3,r; = 4. The linearly independent

solutions are: y;(t) = e’, y,(t) = e, y3(t) = e*, and every solution is written as
y(t) = Cre' + Cre’ + Cze*. ]
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Example 5.3. Consider the fifth-order differential equation Ls(y) = y©®—12y® +
56y —126y” + 135y’ — 54 = 0.

The characteristic equation corresponding to Ls(y) has the following roots:
rr=1,r, =2and r; = ry = rs = 3 (multiplicity 3). The following set forms
abasis {e’, e, e¥, te¥, t2e3}. Every solution in the kernel has the form

y(t) = Cre' + Cre® + C3e¥ + Cyte® + Cst?e™.
In order to investigate their linear dependence one calculates

W(e’, eZl‘7 631‘7 [831, t263t)

2t 3t 3t 2,3t

1“e
te 3e3 e 4 3re¥ 2te3 4 3t2e3

el e
e

= |e! 4e? 9¢3 63 + 9te¥ 2e3 4+ 12t + 9t%e¥
e
e

e te

t8et 273 27e3 4 27ted 16e3 + 54t 4 2712
' 16e% 81e% 108e3 + 81t 108e + 21613 + 81t2e™

11 t t?

2 3 143t 2t + 3¢2

4 9 649 2412t + 912 | #0.
8 27 27+ 27t 16+ 541 + 27¢2

16 81 108 + 817 108 + 2167 + 81¢2

1
1
— ole2 M3 |1
1
1

Theorem 5.11. Given the nth-order linear differential equation L,(y) = y™ +
1y 4o p_1y 4 pny = 0. Let the characteristic equation corresponding
to L,(y) = 0 to have:

(i) A pair of complex roots r = a + bi, i* = —1. Then the functions
y1(t) = e cosbt and y,(t) = e* sinbt are linearly independent solution
of Ly(y) = 0.

(ii) A pair of complex conjugate roots repeated m times. Then the 2m functions

yi(t) = e cosht, yi(t) =te cosht ..., yu(t) =1t""1e cosbt,
Yma1(@)=e" sinbt, yui2(t)=te® sinbt ..., yuu(t) =t""e sinbt
are linearly independent solutions of L,(y) = 0. In addition, every function

y() = (C; + Cot + -+ + Cput™ Ne cosbt + (Cpy1 + Cpaot + -+ +
Comt™ Ve sin bt is a solution to the studied equation.

In order to get a better imagination of understanding of repeated roots of a
characteristic equation we review some properties of polynomials.
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(i) A polynomial w(¢) has a root r if w(t) = (t — r)wy(2).
(ii) A polynomial w(z) has a double root if w(¢) = (¢t — r)?>w1(¢). In this case w(t)
and w'(t) = 2(¢ — r)w;(t) have a common root r.
(iii) In general, a polynomial w(¢) has a root r of multiplicity k if w(¢)
= (t—r)*wi_1(¢). In this case, w(t), w'(¢), . .., w*~!(¢) have a common root r.

Now we focus our attention on a second polynomial corresponding to differential
operator L,(y) = y” —2ry’ +r2y. The corresponding quadratic equation is w(t) =
t2 —2rt + r?> = (¢t — r)%. According to Theorem 5.10 we have the solutions:
y1(t) = e, yo(t) = te™ . Itis true, because L,(y;) = e"'(r>2 —2r2 +r?) = 0,
and Lo(te™) = (te’™) —2r(te™) + r’te™ = (e" +rte’) —2r(e" + rte’) +
r2te™ = 2re" + r2te™ —2re™ —2r2te’ 4+ r?te” = 0. The above example leads
to more general observation. Namely, have got L,(e") = e"'w(r). Observe that
%Lz(e”) = %[e”w(r)] = te""'w(r) + w'(r)e"". But recall that r is the double
root of the characteristic equation w(r) = 0 and hence w(r) = w/(r) = 0, i.e.
2 Ly(e™) = 0. On the other hand £ L(e"") = Ly(Le™) = Ly(te™) = 0, which
shows that ze’’ is a solution of the differential operator L,. Finally, let us check a
linear dependence of both solutions. The Wronskian determinant gives

rt tert
ert erl + tert

W(ert’tert) — — let 7é 0’

which means that they are independent. This observation can be generalized by the
following theorem.

Theorem 5.12. If r( is a root of m-multiplicity of the characteristic equation
wr)=r"+ar"  vay" 4+t a,_ir +a, =0,

where 1 < m < n, then the functions e™,te™, ... r" e’ are the linearly
independent solutions of the characteristic equation w(r).

Proof. If ry is the root of w(r) of multiplicity m, then

dw d’w d*="w(rp)
w(ro) = E(’o) = W(Fo) == T_IO =0.

Consider now the differential operator

L) =y" +ay" "+ +ayy.

It is easy to check that L(e") = w(r)e"". Consider now L(t'e™) = L <aien) =

art
g—fiL(e”) = ,% (w(r)e') . We have

W +tw)e = 0;
W +2tw +w(l + t?))e™ = 0;

i=0: w(r)e™ = 0;
i=1:
i :
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Since fori = k — 1 we obtain w*~! = ... = w/ = w = w = 0, hence we
have also L(t'e"") = 0. It means that ¢’ "’ are solutions to L(y). In addition, they
are linearly independent, because the polynomials of different orders are linearly
independent. o

In the case of complex conjugate roots (Theorem 5.12) we recall some funda-
mental properties known from algebra. According to the Euler’s formula we have

e = cos B + i sinp,

where: Re(e’?) = cos B, Im(e’?) = sin B and e* > = e%(cos b + i sinb).
Now let the characteristic equation representing the differential equation
L(y) = 0 to have conjugate complex roots a & ib, and we obtain the following

solutions to the differential equation: e@t?®" = ¢ (cosht + isinbt) and
el@ it — o4l (cosht — isinbt). Observe that instead of taking this solution
one can take y; = e cosbht and y, = e* sinbt. Both of them are real-valued

independent solutions (check), and they span the same real-valued solutions as
the complex-valued solutions @+ This observation can be generalized by the
following theorem.

Theorem 5.13. If u and v are in the domain composed of real elements of a real-
valued function L, and we take y = u+iv, then L(y) = L(u)+iL(v). In addition,
if L(y) =0, then L(u) = L(v) =0.

Remark 5.3. Theorem 5.12 shows that the domain of L can be extended to include
complex-valued component.

Our considerations can be briefly outlined in the following way [191]. The so-
lutions to homogeneous linear nth-order ordinary differential equation (5.11) are
sought in forms of exponential functions

y =e", (5.15)

where r is constant. We have

ak
0 = &V _ kot k=1,.

= o= , L. (5.16)
Substituting the assumed solution (5.15) to (5.16) we get
L") =e"P,(r) =0, (5.17)

where the polynomial

Pn(r):rn+p1ril—l_|_,..+pn_1r—|-pn:() (518)
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is called the characteristic equation (or the characteristic polynomial). The roots
of the characteristic equation (5.18) are called the characteristic roots. If the roots
ri, ..., I, are real and different, then we have n independent solutions of the form

yi=¢e", .y, =e". (5.19)

The Wronsky determinant has the form

erlt er,,l
o . re’tt o rpe™t
w(e™, ... e") =
rln—lerlt rn—ler,,z
1 1 ... 1
I r ... Iy

— e(r1 Frotetry—1)t

n—1 .n—1 n—1
r A &

rl n
= etntt— rn =1 —r2) o (P =T )2 —11) . ...
oo (rn—l_rn—2) oo (7’2—}"1) 7é 0. (520)

Observe that w(t) — 0, if t — 400, when r, < 0,k = 1,...,n. A general
(or every) solution to (5.11) has the form

y =Cie" +--- 4 Cpe™. (5.21)

If . < 0,k = 1,...,n, then every solution y governed by (5.21) y — 0 for
t — +00.

Consider the case, when ry, ..., r, are different, but some of them are complex
conjugate. Let r; = a + i b. Since the coefficients of the differential equation (5.11)
are real, then also r, = 7| = a — ib exists. A general solution has the form y =
u(t) + iv(t), where u(¢) and v(t) are real-valued functions. However, if y(¢y) =

) ) k
u(to) + iv(to) = yo. y®P(to) = u®(ty) + ivP (1) = y(() Dk =1,....n—1,

where yo and y ) are real-valued, then v(10) = v/(19) = --- = v® D (zy) = 0, and
hence v(¢) = 0.
Given the initial conditions one finds the being sought constants Cy, . .., C, from

the algebraic equations

yo=Cie"" ... 4 Cye,

v = ke 4o ke, k=1,....n—1. (5.22)
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It can be shown that the solution (5.21), after substituting the constant C;i =
1,...,n from (5.22), is real-valued. Hence, since the solution is real-valued then
instead of complex-valued form of the solution we can use the real-valued form of
the solution. For our case ry = a +ib,r, = a —ib we get

Cie'' 4 Cre™" = Cie (cos bt + i sinbt) + Cre? (cos bt — i sinbt)
= (C; + Cy)e" cos bt + i(Cy — Cy)e® sinbt = Cpe® cos bt + Cygsin bt,

where: Cig = C1+C;, Cy = i(C;—C). Itis easy to check that Cy , = CjoE£Cy/i,
i.e. they are complex conjugate, but C;o,i = 1,2 are real-valued. In other words

y = Cloeat cos bt + Cz()eat sinbt + C3€r3t + -4 Cner"t. (5.23)

For real-value initial conditions yo, yj,..., y=2 the solution (5.23) is real-
valued and also Cjo and C, should be real-valued. Since "' = e“ (cosbht +
i sinbt) is the solution, then also y; = e* cosbt and y, = e sinbt are the
solutions generated by the roots ry = a +ib, r, = a — bt. Recall now the discussed
case of the root r; = --- = r, with mth-multiplicity. The kth-order derivative
of (5.11) yields

dkL ert dkert
dr(k ) _ L[ 7 } = L(tke™), (5.24)

and
L(tkert) — (tkerl‘)(ﬂ) + pl(tke”)"_l + o4 pn_l([ke”)/ + pn(tkert). (5.25)

Owing to the Leibniz formula applied to dot product of two functions we have

(uv)™ = ™ + (}I) WD 4 (;) v
(5.26)

n

n (n—=1),.7 n),, _ (k) ,,(n—k)
..+(n_1)u v +u U—Zu v s

k=0
where: u® = u, v(© = v. Applying Leibniz formula (5.26) to (5.25) we obtain
L(tkert) — tkert P, (V) + Cl(k)tk—lertpln(r)

+C 2 P (1) + -+ e PI(), (5.27)

where the numbers Cl(k) depend on k and [. Since r; = --- = r,, hence the
characteristic equation has the following property

Py(r1) = P)(r)) =---= P (r)) = 0. (5.28)
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It means that L(tke”) =0fork = 1,2,....,m —1and r = ry, where r,
is the root of mth multiplicity. In other words, m times repeated root generates m
solutions of the form e”'*, te’?, ... " le"! If rq,...,r are different roots of the
corresponding multiplicity m, ..., m; and there are no other roots (i.e. m; + --- +
m; = n), then every solution to homogeneous linear differential equation (5.11) has
the form

Yy = Pp—1()e" + Py ()€™ + -+ 4 Py (2)e"", (5.29)
where: Py, —1(?), Pu,—1(?),..., Py—1(¢) are the polynomials of ¢ of the
corresponding orders: m; — 1,m, — 1,...,m; — 1. It can be checked that a set
{en! rent, . .. tmTlent e te", ... t"™~le""} has members which are

linearly independent.

Recall now our considerations related to repeated complex roots. If among the
roots ri, ..., r; acomplex one appears, say r{ = a +ib, then also exists r, = a—ib
with the same multiplicity. The used real initial conditions yy, y(’), el yé"_l) allow
to find a set of constants to define a real solution.

Assume that » = a + ib and ¥ = a — ib are m times repeated roots. Every

solution includes the functions

6”, tert’ o tm—lerl,

e tel! (1,7t (5.30)

Since the™ = tke@ e’ = tXe% (cos bt + i sinbt) is the solution, then its real
and imaginary part are also solutions. The same consideration holds for 7. In the
case when a root is purely imaginary with mth multiplicity (¢ = 0), then every
solution is composed of the functions t* cosbt,tk sinbt,k =0,1,...,m.

Let us sum up our brief conclusions related to a repeated root. Any real-valued
root r with mth multiplicity generates m solutions, whereas a complex-valued root
r with mth multiplicity generates 2m solutions. Every solution corresponding to
m-times repeated root is represented by

m—1

y=Y Cite". (5.31)
k=0

Every solution corresponding to complex root with mth multiplicity has the form

m—1
y = Z (Aktke‘” cos bt + Brt¥e sin bt). (5.32)
k=0
Finally, every solution corresponding to repeated imaginary roots r = ib, ¥ = —ib
has the form
m—1
y =Y (Axt*cosbt + Byt*sinbt). (5.33)

~
I

0
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In both latter cases, Ay and By are defined by the initial conditions.

Example 5.4. Using formula (5.25) and (5.26) for k = 2 find a corresponding
number C lk when

L(y)=y"+ piy" + p2y' + p3y.

Formula (5.26) gives

(uv)/// — uv/// _"_ (?) u/v// _"_ (;) u//v/ + I/l///v,

(uv)// — uv// + (f) ulv/ + I/[//v/,
wv) =u'v + 'y,
whereas from (5.25) we get

L(tkert) — (tkert)// + pl(tkert)// + pz(tkerl)/ + p3(lk€”)
= (23 4+6tr°+6r)e" +pi (t2r2 +4tr+2)e" + po(t°r+2t)e" + pst2e”
= e"'[1*(r’ 4+ pir’ + par + p3) + 1(6r> + 4rpy + 2py) + 6r + 2pi].

Since
Pi(r) =1 + pir* + par + ps,
P'3(r) = 3r* + 2pir + po,
P"3(r) = 6r +2py,
therefore

L(t%e"") = 1?e"" P3(r) + CPi(r)e’" + €" Py'(r).

and we have C? = 2.
5.4 Linear Non-homogeneous Differential Equations
with Constant Coefficients

In the previous section we have considered linear homogeneous operator defined by
Eq. (5.11). Here we are going to consider non-homogeneous problems.
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Theorem 5.14. If the fundamental solutions y(t),...,y,(t) to Eq.(5.11) are
known, then a general solution to the following non-homogeneous equation

Li(y) =y + pi()y" D+ + pu()y = f(1) (5.34)
has the form
y=y,+Ciyi +Cyr+ -+ Cyyu, (5.35)

where Ci,Cs,...,C, are arbitrary numbers, and y, is an arbitrary particular
solution of (5.34).

There are two general methods to solve a non-homogeneous problem, i.e. the
method of undetermined coefficients and the method of variations of parameters.
The method of undetermined coefficients relies on observation that a being sought
solution is somehow similar to the right-hand side function f(¢).

Example 5.5. Find a general solution to the non-homogeneous differential equation
L(y)=y" =3y +2y =3t -2t + 4.

First we consider the corresponding homogeneous equation L(y) = y” — 3y’ +
2y = 0. The corresponding characteristic equation is 7> — 3r 42 = 0 with the roots
r1 = 1 and r, = 2, and hence the general solution of the homogeneous equation
y = Cie'+Cre? . Let us look for a particular solution of the form y, = at*+bt +c.
The simple calculus yields

L(y,) = 2at —3(2at + b) + 2(at* + bt +¢)
= 2at*> +t(2b — 6a) + 2¢ + 2a — 3b.
Equating the coefficients standing by the same powers of ¢ we obtain:

t9:2¢c+2a—3b =4,
th: 2b—6a=-2,

2 2a = 3.
The above linear algebraic equations give: a = 1.5, b = 3.5, ¢ = 5.75.
The general solution of the non-homogeneous problem is y = Cje’ + Cye? +
1.5t + 3.5t + 5.75. O

Example 5.6. Find a general solution of the non-homogeneous equation
L(y) = y" +2hy' +aly = qcoswt.

This equation governs oscillation of a one-degree-of-freedom mechanical system
with mass m and with a viscous positive damping, a linear stiffness and a harmonic
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excitation. The parameters have the following physical meaning: c—damping
(2h = c¢/m); k—stiffness (¢} = k/m); P)—amplitude of exciting force (¢ =
po/m) and w is frequency of excitation. The characteristic equation is

r? 4+ 2hr +af =0,

which gives the roots r1, = —h + /h? — ozé. If h > «, then we have two real

roots and oscillations do not appear. If 4 = oy we have so-called critical damping
¢er = 2+/km and the root is double. Here we consider the case (xg > h? which

corresponds to oscillations and r, = —h £ iA, where A = ,/a(z) — h2. Since

ehFiMt — e=ht(cos At + i sinAt) and according to our earlier discussion we

can take the following real-valued general solution corresponding to homogeneous
equation: y = C; e cos At + Cre™" sin At. As it has been mentioned, the form of
the particular solution to the non-homogeneous equation is similar to the right-hand
side excitation and is assumed to be: y, = A coswt + B sinwt. Since

y' = —Aw sinwt + Bw cos wt,
y" = —Aw? coswt — Bw? sin wt,
hence
L(y,) = —Aw?* cos ot—Bw? sin wt—2h Aw sin ot +2h Bw cos ot + ol A cos ot

+a§B sinwt = g coswt.
Equating the terms standing by sin w? and cos wt yields

A(aé —w?) 4+ 2hwB =q,
—2hwA + (aé —w?)B =0,

and therefore

q 2hw
AW ‘0065—602 __ qeg—o?)
W e —w? 2ho (0} — 0?)? + 4h2w?’
—2how o} — &?
ol —w’q
B Ws _ —2hw O‘ _ 2hwq
W e~ 2ho | (@@ —w?) + 4h2w?
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Finally, the general solution to homogeneous equation has the form

y = Cre " cos At + Cre ™ sin At + Acoswt + B sinwt. a

The obtained solution possesses clear physical interpretation. It is composed of
oscillation of autonomous damped system (this part vanishes, when t — +00) and
a particular solution generated by the harmonic excitation. A steady state oscillation
is represented by the solution

tl_lglo y(t) = Acoswt + Bsinwt = acos(wt + ¢).
Observe that
acos(wt + ¢) = acosgcoswt —asingsinwt = Acoswt + Bsinwt.
Equating terms standing by cos w? and sin wt we obtain
A=acosp, B =—asing,

and hence

a= VA>+ B2 = A ,
(05(2) — a)z)2 + 4h2w?
2hw

2_ 2"
ag w

B
Q= —arctanz = —arctan

This result indicates that the oscillations are harmonic with the amplitude a
and are delayed by the phase shift ¢ in comparison to excitation. The latter
example allows to solve more general problem, which possesses many applications
in engineering, and particularly in mechanics.

Consider now the following non-homogeneous problem

L,(y) = e“[P(t) cos bt + Q(t) sinbt], (5.36)
where a,b € R and P(t) and Q(t) are polynomials of orders p and ¢, respectively.

Let the characteristic equation corresponding to the homogeneous equation has
the form

Y (5.37)
By s we denote the largest values among p and g (for p = g wetakes = p = ¢q).
If a + ib is not a solution to the characteristic equation (5.38), then also a — i b is

not a solution. In this case the being sought particular solution has the form

yp = e“[R(t) cos bt + S(t)sinbt],
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where R(¢) and S(¢) are polynomials of an order not higher than s. If @ + ib is
repeated root of multiplicity k, then

y, = tXe“[R(t) cos bt + S(t)sinbt], (5.38)

where R(¢) and S(¢) are polynomials of an order not higher than s.
The steps of the method of undetermined coefficients can be even more detailed
presented by introducing the following theorem (see [191]).

Theorem 5.15. Apply the following steps to solve L,(y) = f(t) using the method
of undetermined coefficients:

(i) Factor the characteristic polynomial wy, (r) of L, into linear and irreducible
quadratic factors and form a basis By, for the kernel of L.

(ii) Separate f{(t) into groups of terms that are annihilated by a single annihilator.
Form w4(r), the characteristic polynomial for an annihilator of f(t) factored
into linear and irreducible quadratic factors. Recall that for a given function
f, an annihilator of f is a linear operator A such that A(f) = 0. For instance,
y" + 16y is an annihilator of sin ¢t and cos ¢t, because the characteristic
equation is (r* + 16) = (r + 4i)(r — 4i).

(iii) The characteristic polynomial of Ay is defined by w 4(r)wy (r). Form the basis
By, and find B consisting of the functions in B 4y that are not in By.

(iv) Form y,(t) as a linear combination of the functions in B and equate

coefficients of L(y,) = f(¢).

(v) Determine values for the coefficients and define a particular solution.
(vi) Find y(t) = yg(t) + y,(2).

Example 5.7. Solve the differential equation L(y) = y” —2y” + 9y’ — 18y =
e’ + 3sin2¢ using the method of undetermined coefficients.

(i) The characteristic polynomial wy (r) = r* —2r? +9r —18 = (r —2)(r> +9),
and hence {B; = e?,sin3t, cos 3t}.

(ii) The function f(t) = e’ + 3sin2¢ is annihilated by the characteristic
polynomial wy = (r — 1)(r?> + 4), and the basis for kernel of A is By =
{e',sin2t, cos 2t}.

(iii) The characteristic polynomial of A isw w; = (r —=2)(r>+9)(r —1)(r>+4),
and the kernel of A; is B4, = {e’,e?,sin2t,cos2t, sin 3t, cos 3¢}. We have
found also that B = B, = {e', sin 2t, cos 2t}.

(iv) The particular solution y, = ae' + bsin2t + ccos2t. The successive
differentiation gives

y', = ae' +2bcos2t — 2csin2t,
y", = ae' —4bsin2t —4ccos2t,

y’”p = ae' — 8bsin2t + 8¢ cos 2t,
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and

L(y,) = ae' —8bsin2t + 8¢ cos 2t — 2(ae’ — 4bsin2t + 4c cos 2t)
+9(ae’ + 2bcos2t —2csin2t) — 18(ae’ + bsin2t + ¢ cos2t)
= —10ae’ — 18(b + ¢) sin2t + 2(9b — ¢) cos 2t.

Equating the appropriate coefficients with those of f(¢) gives
e': —10a =1,

sin2t : —18(b 4+ ¢) = 3,
cos2t: 9b—c=0.

(v) The solution of the latter linear algebraic equation is: a = —10,b = —6—10,
c= —23—0, and hence the particular solution is
@) 10e’ o 2t 3 2t
= —10e' — — sin2t — — cos 2t.
Ir 60 20
(vi) Finally, the general solution is
y = Cie* 4 Cysin3t + Cycos 3t — 10e’ — 1 sin2¢ — icosZz‘

60 20 ’ -

Now we briefly describe the method of variation of parameters. Recall that
even in the method of undetermined coefficients we have found the kernel of a
homogeneous equation L, (y) = O first.

Theorem 5.16. A particular solution y,(t) of non-homogeneous equation
L, (y) = f(t) can be found by quadratures if it will be sought in the form

yp) = Ci()y1(t) + Ca()y2(t) + -+ + Co () yn (1), (5.39)

where {y1(t), y2(t), ..., yu(t)} is the basis of the kernel of L,, = 0.
Theorem 5.17. If the functions Ci(t), ..., C,(t) satisfy the system of equations

C'iyi+Chy,+---+Clyyy
C/ly/l + C/Zy/z + -+ C/,,y/n

C'1yf”_1) + Crzyén—l) 4t Cln)’y(zn_l), (5.40)

then the function y, defined by (5.39) satisfies the non-homogeneous equation

Ly(y) = f(0).
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Remark 5.4. The function y,(¢) possesses the form of a general integral of
L,(y) = 0, where now the constant are the functions depending on ¢.

Remark 5.5. Observe that C{, C;, ..., C, are uniquely defined, since the determi-
nant of the system (5.41) is the Wronskian determinant, and by definition it never
equals zero.

In order to get C(¢),...,C,(t) we integrate the functions C|(t),...,C,(t)
without the constant of integrations, because they appear already in the part of n
general solutions of the homogeneous equation.

Example 5.8. Find a general solution of the equation
Ly(y) =y"+y =1

The kernel of L,(y) = 0 is {sint, cost}. The general solution of L,(y) = ¢ is
y =yp+ Cicost + C;sint.
The functions y, () is sought in the form

yp(t) = Ci(t) cost + Cy(t) sint.
From (5.41) we obtain
C’icost + C',sint =0,
—C’|cost + C'ysint = 12,
and hence
C| = —t*sint, C; =t*cost.
Integration of C|, C; yields
Ci(t) = (t? —=2)cost —2tsint, Cy(t) = (t*> —2)sint + 2t cost
and

y =1>—2+ Cicost + C,sint.

5.5 Differential Equations with Variable Coefficients

We begin with a special class of higher order homogeneous differential equations,
which can be reduced to the differential equations with constant coefficients.
A solution to the differential equation

n n—1

y + pn—ltnil

J dy 5.41
J7n +oot pit——+ poy, (5.41)

di—1 dt

Lu(y) = pat”
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known as the Cauchy—Euler differential equation, can be sought in the form
y=t". (5.42)
Substituting (5.42) to (5.41) gives
L,(t") =w(r)t', (5.43)

and hence L,, = 0, when w(r) = 0. The analysis is similar to previous one, but now
instead of the function e’?, we have ¢".

(i) Assume that there are ry,r,...,r, distinct real roots (m < n), then
t", "2, ..., t" are real independent solutions, and
y@)=Cit" +C2 -+ Cput™ (5.44)

is a general solution (it defines an m-dimensional subspace of the kernel
of (5.41)).
(ii) Assume that ry is a root with kth multiplicity, then its subkernel follows

(", ™ Int, ..., t™(Inr)F1,
and a general solution
y(t) = C 11" + Cot™ Int + --- + Crt*(Int)F! (5.45)

defines a k-dimensional subspace.
(iii) Assume that r = a % bi, then ¢t cos(bInt) and 7 sin(b In¢) are real linearly
independent solutions. In addition, if a + bi has multiplicity k, then

t“cos(bInt),t*Int cos(bInt), ..., t*(Int)*' cos(bInt), (5.46)

tsin(bInt), % Int sin(bInt),...,t%(Int)* sin(bInt), '
are 2k real linearly independent solutions in the kernel of (5.41). Their linear
combinations span a 2k -dimensional subspace.

Now we show how to reduce the homogeneous and non-homogeneous
Cauchy-Euler equation to an equation with constant coefficients.

Theorem 5.18. Introducing a variable x = Int in the non-homogeneous Cauchy—
Euler equation

n n—1

d"y d
Ln — ntn_ + pu_ ll1_l
»=pr P TIIRR Ca L pr=s

y dy
4+ 4 prt—
P1 a1

+ poy = f(t), (5.47)
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leads to conversion to the differential equation with constant coefficients
Lly(e")] = g(x). (5.48)

where g(x) = f(e¥).
Example 5.9. Transform the Cauchy—Euler differential equation
3y/// 4t2y" + 3ty/ + y = 0

to a differential equation with constant coefficients.

Lett + e¥, and use the chain rule to get

dy _dyds _dylo o dy_dy
di dxdr dxt " tar Tax

d%y ddy_d dy1y_d L dyd
dr2 ~ dt T dt \dxt dt dxdz

_l(d2 dy) o d__dzy dy
e g

dx? dx dx? dx’

Ly _d (@) _d[1(dy
dr3 ~ dt \ de? dr |2 \dx? dx

_ 2 ﬁ_d_y L[4 (4 y i v
T3 \dx2 2| dt \dx? dt
_ 2 &_d_y e ﬂ_d_
T3 \dx? dx dx?3 dx

| (d3y  _d’y d By &Py _dy d
=—(y yzy) ie. Y34 L4

dx3 Tdx? Tdx drr T dx Tdxr Cdx

Our investigated equation becomes

dy _d’y | _dy
— —T7—4+5= =0.
dx3 dx? + dx Tt

The characteristic polynomial is
P =145+ 1= - —6r—1)
and possesses the characteristic roots

rn=1 rn=3— 410, r;=3+ +/10.
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Hence the solution is

y = Clerlx + CZerzx + C3€r3x — Clerl Int + Czerzlnl + C3€r3ln[. a

A key role in mechanics plays second-order differential equation, since a second
derivative corresponds to acceleration of a moving rigid body with one degree
of freedom. It can happen that one of its solutions is known (for example, from
theoretical considerations or from an experiment), and a question appears, how to
find a second linearly independent solution?

Consider Lo(y) = p2(t)y” + p1(t)y’ + po(t)y = 0, and assume y(¢) =
v(t)y1(¢), where y;(t) satisfies L,(y;) = 0. The assumed form of solution refers
to the so-called Bernoulli method, which is often applied to solve first-order non-
homogeneous differential equations. The successive differentiation gives

y =v'y + vy,
"=0"y + 20"y + vy, (5.49)

and hence

Ly(vy1) = pa(0)(v"y1 + 20"y +vy”) + pr(@) (V' y1 + vy'y) + po(t)vy
=v"(p2y1) +V'2p2y'y + pryv) +v(p2y”y + 1Y’y + poyi)
= poyiv” + 2p2y'y + pry)v’ = 0. (5.50)

Denoting v/ = w one can solve first-order linear differential equation with regard
to w' to give

w(t) = y2e [ n0/n0 gy, (5.51)

Hence
v(t) = /yl_2e_-[p‘(’)/m(”d’dt, (5.52)
and the second solution is

y2(1) = v(@)yi(t) = yi(0) / yr2(e)e I mO/R0d gy (5.53)
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