
Chapter 5
Higher-Order ODEs Polynomial Form

5.1 Introduction

If a function f .t; x; Px; : : : ; x.n// is defined and is continuous in a subset of
R

nC2.n � 1/, then the equation

f .t; x; Px; : : : ; x.n// D 0 (5.1)

is said to be ordinary differential equation of nth-order.
Fortunately, it happens very often that (5.1) can be transformed to the form

x.n/ D f1.t; x; Px; : : : ; x.n�1//: (5.2)

The Cauchy problem for Eq. (5.2) is that of finding a solution x.t/ satisfying the
series of the following initial conditions

x.t0/ D x0; Px.t0/ D Px0; : : : ; x.n�1/.t0/ D x
.n�1/
0 : (5.3)

Theorem 5.1 (Peano). If the function f1 is continuous in certain open subset, then
for an arbitrary point .t0; x0; Px0; : : : ; x

.n�1/
0 / belonging to this subset there is a

solution to Eq. (5.2) defined in a neighbourhood of t0, which satisfies (5.3).

Theorem 5.2 (Cauchy–Picard). If the function f1 satisfies both the conditions
of Theorem 5.1 and the Lipschitz conditions with regard to the variables
x; Px; : : : ; x.n�1/, then for arbitrary initial conditions (5.3) there is only one solution
(uniqueness) to Eq. (5.2).
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Recall that the Lipschitz constant L for the first-order case can be found from the
inequality

ˇ
ˇ
ˇ
ˇ

f .t; x1/ � f .t; x2/

x1 � x2

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

@f

@x
.x/

ˇ
ˇ
ˇ
ˇ

� L: (5.4)

In words the Lipschitz constant can be defined by an upper bound of @f

@x
. In the

nth-order case, when f D f .t; x1; : : : ; xn/, the Lipschitz constant L can be defined
by the inequality

Max

�ˇ
ˇ
ˇ
ˇ

@f

@x1

ˇ
ˇ
ˇ
ˇ
; : : : ;

ˇ
ˇ
ˇ
ˇ

@f

@xn

ˇ
ˇ
ˇ
ˇ

�

� L: (5.5)

To show a uniqueness of a solution let us recall the example of the equation @f

@x
D

1Cx2 given in the book [191]. In this case f .t; x1/ D 1Cx2
1 and f .t; x2/ D 1Cx2

2 .
Hence jf .t; x1/ � f .t; x2/j D ˇ

ˇx2
1 � x2

2

ˇ
ˇ D jx1 � x2j jx1 C x2j � 2 jx1 � x2j in the

rectangle jt j < 1; jxj < 1. Theorem 5.2 states that there exists only one solution
passing through (0,0). In fact, this solution has the following analytical form: x.t/ D
tg.t/. Let D be a domain composed of points, where any point corresponds to only
one solution of the Cauchy problem. The function

x D �.t; C1; : : : ; Cn/ (5.6)

is said to be a general solution to Eq. (5.2), if the following assumptions are
satisfied:

(i) the function � has the nth-order derivative with respect to t ;
(ii) for any point defined by the series (5.3) the following equations

x0 D �.t; C1; : : : ; Cn/;

Px0 D P�.t; C1; : : : ; Cn/;

:::

x
.n�1/
0 D �.n�1/.t; C1; : : : ; Cn/; (5.7)

have the unique solutions with regard to the constants C 0
1 ; : : : ; C 0

n ;
(iii) the function �.t; C 0

1 ; : : : ; C 0
n / is the solution to (5.2) for arbitrary constants

C 0
1 ; : : : ; C 0

n , which are the solutions to (5.7).

If a general solution is given in the implicit way

�0.t; x; C1; : : : Cn/ D 0; (5.8)

then Eq. (5.8) defines a general solution to Eq. (5.2).
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Any arbitrary solution (5.6) for the specified values of constants C1; : : : ; Cn is
said to be the particular solution of Eq. (5.2). The following steps are required in
order to find a particular solution knowing a general one:

(i) the algebraic set of Eq. (5.7) should be derived from either (5.6) or (5.8), which
yields the constants C1; : : : ; Cn;

(ii) the found specified values C 0
1 ; : : : ; C 0

n are substituted to (5.6) or (5.8), which
are now solutions to a Cauchy problem.

Note that sometimes a general solution can be represented in a parametric form

t D t .p; C1; : : : ; Cn/;

x D x.p; C1; : : : ; Cn/; (5.9)

where p is a parameter. In the most general case governed by Eq. (5.1), the following
theorem satisfies an existence and uniqueness of a Cauchy problem.

Theorem 5.3. Assume that the function defined by (5.1) is continuous and posses-
ses the continuous derivatives with regard to x; Px; : : : ; x.n/. Hence, for an arbitrary
point .t0; x0; Px0; : : : ; x

.n/
0 / such that

f .t0; x0; Px0; : : : ; x
.n/
0 / D 0;

@f

@x.n/
.t0; x0; Px0; : : : ; x

.n/
0 / ¤ 0; (5.10)

there is exactly only one solution to Eq. (5.1) defined in the neighbourhood of t0 and
satisfying the initial conditions (5.3).

A general solution constitutes of a family of integral curves in the plane .t; x/

with n parameters C1; : : : ; Cn.

5.2 Linear Homogeneous Differential Equations

Consider the following homogeneous nth-order differential equation

Ln.y/ � y.n/ C p1.t/y.n�1/ C � � � C pn.t/y D 0; (5.11)

where Ln is called the nth-order linear differential operator (here y.n/ D dny

dtn ).
Recall that in general, a linear differential operator (a function) has the following
properties:

(i) L.Cy/ D CL.y/,
(ii) L.y1 C y2/ D L.y1/ C L.y2/;

(iii) L.C1y1 C � � � C Cmym/ D C1L.y1/ C � � � C CmL.ym/, for any yi and Ci .
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Theorem 5.4. If y1; : : : ; yn are the solutions to homogeneous equation (5.11), then
y D C1y1 C � � � C Cnyn is also a solution to Ln.y/ D 0 for arbitrary constant
numbers C1; : : : ; Cn.

Remark 5.1. The set of functions fy1.t/; : : : ; yn.t/g is said to be a fundamental set
of solutions of Ln.y/ D 0.

Remark 5.2. The function y.t/ D C1y1.t/ C � � � C Cnyn.t/ is called the comple-
mentary function of Ln.y/ D 0

Definition 5.1 (Linearly Independent Functions). Let u1.t/; : : : ; um.t/ are the
functions defined in the interval a � t � b. If there are numbers ˛1; : : : ; ˛m, not all
of them equal to zero, and the following equation is satisfied

z D ˛1u1 C � � � C ˛mum � 0; a � t � b; (5.12)

then we say that the functions u1.t/; : : : ; um.t/ are linearly dependent in the
considered interval.

The vector z is called a linear combination of the members of the set
fu1; : : : ; umg, whereas the set f˛1; : : : ; ˛mg is called a set of coefficients of the
linear combination.

Recall that:

(i) the set of all linear combinations of members of fy1; : : : ; ymg is called the
linear span (or simply span) of fy1; : : : ; ymg;

(ii) a linear space U is a set that satisfies the following properties:

(a) if u; v 2 U then u C v 2 U ;
(b) if u 2 U and c 2 R, then C u 2 U ;

(iii) the span defined in (i) forms a linear space.

Assuming that Eq. (5.12) is satisfied if and only if ˛1 D � � � D ˛m � 0, then
the functions u1; : : : ; um are called linearly independent. A linearly independent
spanning set for a linear space U D fu1; : : : ; umg is called a basis for U .
A dimension of U is defined by the number of vectors in a basis of vector space U .
A necessary condition for linear dependence of the functions u1; : : : ; un can be
obtained in the following way. Let the given functions u1; : : : ; un to be are linearly
dependent. It means that they satisfy (5.12). Differentiating n � 1 times Eq. (5.12)
one gets

˛1u.k/
1 C � � � C ˛nu.k/

n D 0; k D 1; : : : ; n � 1: (5.13)

Of course, we have assumed that the functions fu1; : : : ; ung have n�1 continuous
derivatives on some interval (they are C n�1 smooth). It is known from algebra that
the system of Eqs. (5.12) and (5.13) has non-trivial solution of ˛1; : : : ; ˛n, when the
following determinant function (called Wronskian) is equal to zero:
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W.u1; : : : ; un/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

u1 � � � un

u0
1 � � � u0

n
:::

u.n�1/
1 � � � u.n�1/

n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0; a � t � b: (5.14)

Theorem 5.5. If the functions y1; : : : ; yn are the solutions of Ln.y/ D 0 on a �
t � b, then W.y1.t/; : : : ; yn.t// is either zero for every t from [a,b] or is never zero
for any t 2 Œa; b�.

Proof. We take n D 2 and follow the proof given in the book [191]. Here we
omit a generalization for any n. Consider the following linear operator with variable
coefficients

L2.y/ � y00 C p1.t/y0 C p2.t/y D 0:

The Wronskian

W.y1; y2/ D
ˇ
ˇ
ˇ
ˇ

y1 y2

y0
1 y0

2

ˇ
ˇ
ˇ
ˇ

D y1y0
2 � y2y0

1:

On the other hand

W 0 D .y1y0
2 � y2y0

1/0 D y1y00
2�y00

1y2 D y1.�p1y0
2 � p2y2/ � y2.�p1y0

1 � p2y1/

D �p1.y1y0
2 � y2y0

1/ D �p1W;

and hence

ln W D �
Z

p1dt C ln C :

Finally, one gets

W.y1; y2/ D C e� R

p1.t/dt ;

which for C D 0 is identically zero, or for C ¤ 0 is never zero. ut
Theorem 5.6. If y1; : : : ; yn are solutions of the equation Ln.y/ D 0 and
W.y1; : : : ; yn/jtDt0

D 0, then W.y1; : : : ; yn/ � 0 for a � t � b, and y1; : : : ; yn

are linearly dependent solutions in the interval t 2 Œa; b�:

Theorem 5.7. A necessary and sufficient condition for solutions z1; : : : ; zn of
Ln.z/ D 0 to be linearly independent in an arbitrary point is W.z1; : : : ; zn/jtDt0

¤ 0.
If W.t0/ ¤ 0, then also W.t/ ¤ 0 for a � t � b, and if W.t0/ D 0, then also
W.t/ D 0.
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Theorem 5.8. If y1; : : : ; yn are linearly independent solutions of the equation
Ln.y/ D 0, then y D C1y1 C � � � C Cnyn is a general solution for a � t � b,
�1 < yk < C1, k D 0; 1; : : : ; n � 1.

In the case of a homogeneous linear nth-order equation Ln.y/ D 0, there are n

linearly independent solutions y1; : : : ; yn forming the fundamental set of solutions
(proof is omitted here). It is interesting to note that the Wronskian can be used to
define a differential equation, when a fundamental set is known.

Recall that a set of all solutions of the linear equation L.y/ D 0 is called a null
space or kernel of the operator L.

Theorem 5.9. A homogeneous linear differential equation Ln.y/ D 0 has n

linearly independent solutions that form a basis for the set of all solutions. The
dimension of the kernel of an nth-order linear differential operator is n.

Example 5.1. Define a linear differential equation possessing the fundamental
solution: y1.t/ D sin t , y2.t/ D et .

We define the Wronskian

W.sin t; et ; y/ D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

sin t et y

cos t et y0
� sin t et y00

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

et

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

sin t 1 y

cos t 1 y0
� sin t 1&y00

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D et

�

sin t

ˇ
ˇ
ˇ
ˇ

1 y0
1 y00

ˇ
ˇ
ˇ
ˇ
� 1

ˇ
ˇ
ˇ
ˇ

cos t y0
� sin t y00

ˇ
ˇ
ˇ
ˇ
C y

ˇ
ˇ
ˇ
ˇ

cos t 1

� sin t 1

ˇ
ˇ
ˇ
ˇ

�

D et Œsin t .y00 � y0/ � .y00 cos t C y0 sin t / C y.cos t C sin t /�

D et Œ.sin t � cos t /y00 � 2 sin t C y0 C .sin t C cos t /y� D 0;

and the being sought differential equation is defined immediately as

L2.y/ D .sin t � cos t /y00 � 2 sin ty0 C .sin t C cos t /y D 0:

In order to verify the obtained results we check:

L2.sin t / D �.sin t � cos t / sin t � 2 sin t cos t C .sin t C cos t / sin t D 0;

L2.et / D et L2.sin t / D 0: ut

5.3 Differential Equations with Constant Coefficients

Since characteristic equation corresponding to an nth-order homogeneous differen-
tial equation cannot be solved using radicals already for n � 5, very often numerical
or approximate analytical methods are used. The most important observation is that



5.3 Differential Equations with Constant Coefficients 227

the nth-order differential equation is reduced to the nth-order polynomial (algebraic)
equation. The solutions differ from each other qualitatively for distinct and repeated
(multiple) roots of a characteristic equation, which we are going to discuss.

Theorem 5.10. Given the nth-order linear differential equation Ln.y/ D y.n/ C
p1y.n�1/C� � �Cpn�1y0Cpny D 0: Let the characteristic polynomial corresponding
to Ln.y/ D 0 possess:

(i) n distinct real roots ri , i D 1; : : : ; n. Then the n functions yi .t/ D eri t form a
basis for the kernel of Ln.y/ D 0. A general solution has the form

y.t/ D
nX

iD1

Ci e
ri t I

(ii) Single root repeated n times. Then the n functions y1.t/ D ert ; y2.t/ D
tert ; : : : ; yn.t/ D tn�1ert form a basis for the kernel of Ln.y/ D 0: A general
solution can be written as

y.t/ D .C1 C c2t C � � � C Cntn�1/ert I

(iii) Single root repeated m times and there are n � m distinct roots
rmC1; rmC2; : : : ; rn: Then the n functions

y1.t/ D ert ;

y2.t/ D tert ;
:::

ym.t/ D tm�1ert ;

ymC1.t/ D ermC1t ;
:::

yn.t/ D ernt

form the kernel of Ln.y/ D 0. A general solution has the form

y.t/ D .C1 C C2 C � � � C Cmtm�1/ert C CmC1ermC1t C � � � C Cnernt :

Example 5.2. Consider the following third-order differential equation

L3.y/ D y000 � 8y00 C 19y0 � 12y D 0:

Introducing y D ert one obtains the characteristic polynomial r3 � 8r2 C 19r �
12 D 0, with three distinct roots: r1 D 1; r2 D 3; r3 D 4. The linearly independent
solutions are: y1.t/ D et ; y2.t/ D e3t ; y3.t/ D e4t , and every solution is written as
y.t/ D C1et C C2e3t C C3e4t . ut
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Example 5.3. Consider the fifth-order differential equation L5.y/ D y.5/�12y.4/C
56y000 � 126y00 C 135y0 � 54 D 0:

The characteristic equation corresponding to L5.y/ has the following roots:
r1 D 1, r2 D 2 and r3 D r4 D r5 D 3 (multiplicity 3). The following set forms
a basis fet ; e2t ; e3t ; te3t ; t 2e3t g. Every solution in the kernel has the form

y.t/ D C1et C C2e2t C C3e3t C C4te3t C C5t2e3t :

In order to investigate their linear dependence one calculates

W.et ; e2t ; e3t ; te3t ; t 2e3t /

D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

et e2t e3t te3t t 2e3t

et 2e2t 3e3t e3t C 3te3t 2te3t C 3t2e3t

et 4e2t 9e3t 6e3t C 9te3t 2e3t C 12te3t C 9t2e3t

et 8e2t 27e3t 27e3t C 27te3t 16e3t C 54te3t C 27t2e3t

et 16e2t 81e3t 108e3t C 81te3t 108e3t C 216te3t C 81t2e3t

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D et e2t e3t e3t e3t

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 1 t t2

1 2 3 1 C 3t 2t C 3t2

1 4 9 6 C 9t 2 C 12t C 9t2

1 8 27 27 C 27t 16 C 54t C 27t2

1 16 81 108 C 81t 108 C 216t C 81t2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

¤ 0:

Theorem 5.11. Given the nth-order linear differential equation Ln.y/ D y.n/ C
p1y.n�1/ C � � � C pn�1y0 C pny D 0. Let the characteristic equation corresponding
to Ln.y/ D 0 to have:

(i) A pair of complex roots r D a ˙ bi; i2 D �1. Then the functions
y1.t/ D eat cos bt and y2.t/ D eat sin bt are linearly independent solution
of Ln.y/ D 0.

(ii) A pair of complex conjugate roots repeated m times. Then the 2m functions

y1.t/ D eat cos bt; y2.t/ D teat cos bt ; : : : ; ym.t/ D tm�1eat cos bt;

ymC1.t/Deat sin bt; ymC2.t/Dteat sin bt ; : : : ; y2m.t/ D tm�1eat sin bt

are linearly independent solutions of Ln.y/ D 0. In addition, every function
y.t/ D .C1 C C2t C � � � C Cmtm�1/eat cos bt C .CmC1 C CmC2t C � � � C
C2mtm�1/eat sin bt is a solution to the studied equation.

In order to get a better imagination of understanding of repeated roots of a
characteristic equation we review some properties of polynomials.
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(i) A polynomial w.t/ has a root r if w.t/ D .t � r/w0.t/.
(ii) A polynomial w.t/ has a double root if w.t/ D .t � r/2w1.t/. In this case w.t/

and w0.t/ D 2.t � r/w1.t/ have a common root r.
(iii) In general, a polynomial w.t/ has a root r of multiplicity k if w.t/

D .t �r/kwk�1.t/. In this case, w.t/; w0.t/; : : : ; wk�1.t/ have a common root r.

Now we focus our attention on a second polynomial corresponding to differential
operator L2.y/ D y00 �2ry0 Cr2y. The corresponding quadratic equation is w.t/ D
t 2 � 2rt C r2 D .t � r/2. According to Theorem 5.10 we have the solutions:
y1.t/ D ert ; y2.t/ D tert . It is true, because L2.y1/ D ert .r2 � 2r2 C r2/ D 0,
and L2.tert / D .tert /00 � 2r.tert /0 C r2tert D .ert C rtert /0 � 2r.ert C rtert / C
r2tert D 2rert C r2tert � 2rert � 2r2tert C r2tert D 0. The above example leads
to more general observation. Namely, have got L2.ert / D ert w.r/. Observe that
@
@r

L2.ert / D @
@r

Œert w.r/� D tert w.r/ C w0.r/ert : But recall that r is the double
root of the characteristic equation w.r/ D 0 and hence w.r/ D w0.r/ D 0, i.e.
@
@r

L2.ert / D 0: On the other hand @
@r

L2.ert / D L2. @
@r

ert / D L2.tert / D 0; which
shows that tert is a solution of the differential operator L2. Finally, let us check a
linear dependence of both solutions. The Wronskian determinant gives

w.ert ; tert / D
ˇ
ˇ
ˇ
ˇ

ert tert

ert ert C tert

ˇ
ˇ
ˇ
ˇ

D e2rt ¤ 0;

which means that they are independent. This observation can be generalized by the
following theorem.

Theorem 5.12. If r0 is a root of m-multiplicity of the characteristic equation

w.r/ D rn C a1rn�1 C a2rn�2 C � � � C an�1r C an D 0;

where 1 � m � n, then the functions er0t ; ter0t ; : : : ; rm�1er0t are the linearly
independent solutions of the characteristic equation w.r/.

Proof. If r0 is the root of w.r/ of multiplicity m, then

w.r0/ D dw

dr
.r0/ D d 2w

dr2
.r0/ D � � � D d k�1w.r0/

drk�1
D 0:

Consider now the differential operator

L.y/ � y.n/ C a1y.n�1/ C � � � C any:

It is easy to check that L.ert / D w.r/ert . Consider now L.t i ert / D L
�

@i ert

@ri

�

D
@i

@ri L.ert / D @i

@ri .w.r/ert / : We have

i D 0 W w.r/ert D 0I
i D 1 W .w0 C tw/ert D 0I
i D 2 W .w00 C 2tw0 C w.1 C t 2//ert D 0I

:::
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Since for i D k � 1 we obtain wk�1 D � � � D w00 D w0 D w D 0, hence we
have also L.t i er0t / D 0. It means that t i er0t are solutions to L.y/. In addition, they
are linearly independent, because the polynomials of different orders are linearly
independent. ut

In the case of complex conjugate roots (Theorem 5.12) we recall some funda-
mental properties known from algebra. According to the Euler’s formula we have

eiˇ D cos ˇ C i sin ˇ;

where: Re.eiˇ/ D cos ˇ, Im.eiˇ/ D sin ˇ and eaCib D ea.cos b C i sin b/:

Now let the characteristic equation representing the differential equation
L.y/ D 0 to have conjugate complex roots a ˙ ib, and we obtain the following
solutions to the differential equation: e.aCib/t D eat .cos bt C i sin bt/ and
e.a�ib/t D eat .cos bt � i sin bt/. Observe that instead of taking this solution
one can take y1 D eat cos bt and y2 D eat sin bt . Both of them are real-valued
independent solutions (check), and they span the same real-valued solutions as
the complex-valued solutions e.a˙ib/t . This observation can be generalized by the
following theorem.

Theorem 5.13. If u and v are in the domain composed of real elements of a real-
valued function L, and we take y D uC iv, then L.y/ D L.u/C iL.v/. In addition,
if L.y/ D 0, then L.u/ D L.v/ D 0.

Remark 5.3. Theorem 5.12 shows that the domain of L can be extended to include
complex-valued component.

Our considerations can be briefly outlined in the following way [191]. The so-
lutions to homogeneous linear nth-order ordinary differential equation (5.11) are
sought in forms of exponential functions

y D ert ; (5.15)

where r is constant. We have

y.k/ D @ky

@tk
D rkert ; k D 1; : : : ; n: (5.16)

Substituting the assumed solution (5.15) to (5.16) we get

L.ert / D ert Pn.r/ D 0; (5.17)

where the polynomial

Pn.r/ D rn C p1rn�1 C � � � C pn�1r C pn D 0 (5.18)
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is called the characteristic equation (or the characteristic polynomial). The roots
of the characteristic equation (5.18) are called the characteristic roots. If the roots
r1; : : : ; rn are real and different, then we have n independent solutions of the form

y1 D er1t ; : : : ; yn D ernt : (5.19)

The Wronsky determinant has the form

w.er1t ; : : : ; ernt / D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

er1t : : : ernt

r1er1t : : : rnernt

:::
:::

:::

rn�1
1 er1t : : : rn�1

n ernt

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D e.r1Cr2C���Crn�1/t

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 : : : 1

r1 r2 : : : rn

:::
:::

:::
:::

rn�1
1 rn�1

2 : : : rn�1
n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D e.r1Cr2C���Crn�1/t .rn � r1/.rn � r2/ : : : .rn � rn�1/.rn�2 � r1/ : : :

: : : .rn�1�rn�2/ : : : .r2�r1/ ¤ 0: (5.20)

Observe that w.t/ ! 0, if t ! C1, when rk < 0; k D 1; : : : ; n: A general
(or every) solution to (5.11) has the form

y D C1er1t C � � � C Cnernt : (5.21)

If rk < 0; k D 1; : : : ; n; then every solution y governed by (5.21) y ! 0 for
t ! C1.

Consider the case, when r1; : : : ; rn are different, but some of them are complex
conjugate. Let r1 D a C ib. Since the coefficients of the differential equation (5.11)
are real, then also r2 D Nr1 D a � ib exists. A general solution has the form y D
u.t/ C iv.t/, where u.t/ and v.t/ are real-valued functions. However, if y.t0/ D
u.t0/ C iv.t0/ D y0; y.k/.t0/ D u.k/.t0/ C iv.k/.t0/ D y

.k/
0 ; k D 1; : : : ; n � 1,

where y0 and y
.k/
0 are real-valued, then v.t0/ D v0.t0/ D � � � D v.n�1/.t0/ D 0, and

hence v.t/ � 0.
Given the initial conditions one finds the being sought constants C1; : : : ; Cn from

the algebraic equations

y0 D C1er1t0 C � � � C Cner1t0 ;

y
.k/
0 D C1rk

1 er1t0 C � � � C Cnrk
n ernt0 ; k D 1; : : : ; n � 1: (5.22)
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It can be shown that the solution (5.21), after substituting the constant Ci i D
1; : : : ; n from (5.22), is real-valued. Hence, since the solution is real-valued then
instead of complex-valued form of the solution we can use the real-valued form of
the solution. For our case r1 D a C ib, r2 D a � ib we get

C1er1t C C2er2t D C1eat .cos bt C i sin bt/ C C2eat .cos bt � i sin bt/

D .C1 C C2/eat cos bt C i.C1 � C2/eat sin bt D C10eat cos bt C C20 sin bt;

where: C10 D C1CC2; C20 D i.C1�C2/. It is easy to check that C1;2 D C10˙C20=i,
i.e. they are complex conjugate, but Ci0; i D 1; 2 are real-valued. In other words

y D C10eat cos bt C C20eat sin bt C C3er3t C � � � C Cnernt : (5.23)

For real-value initial conditions y0; y0
0; : : : ; y.n�2/ the solution (5.23) is real-

valued and also C10 and C20 should be real-valued. Since er1t D eat .cos bt C
i sin bt/ is the solution, then also y1 D eat cos bt and y2 D eat sin bt are the
solutions generated by the roots r1 D a C ib; r2 D a � bt . Recall now the discussed
case of the root r1 D � � � D rm with mth-multiplicity. The kth-order derivative
of (5.11) yields

d kL.ert /

drk
D L

�
d kert

drk

	

D L.tkert /; (5.24)

and

L.tkert / D .tkert /.n/ C p1.tkert /n�1 C � � � C pn�1.tkert /0 C pn.tkert /: (5.25)

Owing to the Leibniz formula applied to dot product of two functions we have

.uv/.n/ D uv.n/ C
�

n

1

�

u0v.n�1/ C
�

n

2

�

u00v.n�2/ C : : :

: : : C
�

n

n � 1

�

u.n�1/v0 C u.n/v D
nX

kD0

u.k/v.n�k/;

(5.26)

where: u.0/ D u, v.0/ D v: Applying Leibniz formula (5.26) to (5.25) we obtain

L.tkert / D t kert Pn.r/ C C
.k/
1 tk�1ert P 0

n.r/

CC
.k/
2 tk�2ert P 00

n.r/ C � � � C ert P .k/
n .r/; (5.27)

where the numbers C
.k/

l depend on k and l . Since r1 D � � � D rm, hence the
characteristic equation has the following property

Pn.r1/ D P 0
n.r1/ D � � � D P m�1

n .r1/ D 0: (5.28)



5.3 Differential Equations with Constant Coefficients 233

It means that L.tkert / D 0 for k D 1; 2; : : : ; m � 1 and r D r1, where r1

is the root of mth multiplicity. In other words, m times repeated root generates m

solutions of the form er1t ; ter1t ; : : : ; tm�1er1t : If r1; : : : ; rl are different roots of the
corresponding multiplicity m1; : : : ; ml and there are no other roots (i.e. m1 C � � � C
ml D n), then every solution to homogeneous linear differential equation (5.11) has
the form

y D Pm1�1.t/er1t C Pm2�1.t/er2t C � � � C Pml �1.t/erl t ; (5.29)

where: Pm1�1.t/; Pm2�1.t/; : : : ; Pml �1.t/ are the polynomials of t of the
corresponding orders: m1 � 1; m2 � 1; : : : ; ml � 1. It can be checked that a set
fer1t ; rer1t ; : : : ; tm1�1er1t ; : : : ; erl t ; terl t ; : : : ; tml �1erl t g has members which are
linearly independent.

Recall now our considerations related to repeated complex roots. If among the
roots r1; : : : ; rl a complex one appears, say r1 D aC ib, then also exists r2 D a� ib

with the same multiplicity. The used real initial conditions y0; y0
0; : : : ; y

.n�1/
0 allow

to find a set of constants to define a real solution.
Assume that r D a C ib and Nr D a � ib are m times repeated roots. Every

solution includes the functions

ert ; tert ; : : : ; tm�1ert ;

e Nrt ; te Nrt ; : : : ; tm�1e Nrt :
(5.30)

Since t kert D t keat eibt D t keat .cos bt C i sin bt/ is the solution, then its real
and imaginary part are also solutions. The same consideration holds for Nr . In the
case when a root is purely imaginary with mth multiplicity (a D 0), then every
solution is composed of the functions t k cos bt; tk sin bt; k D 0; 1; : : : ; m:

Let us sum up our brief conclusions related to a repeated root. Any real-valued
root r with mth multiplicity generates m solutions, whereas a complex-valued root
r with mth multiplicity generates 2m solutions. Every solution corresponding to
m-times repeated root is represented by

y D
m�1X

kD0

Cktkert : (5.31)

Every solution corresponding to complex root with mth multiplicity has the form

y D
m�1X

kD0




Aktkeat cos bt C Bktkeat sin bt
�

: (5.32)

Finally, every solution corresponding to repeated imaginary roots r D ib, Nr D �ib

has the form

y D
m�1X

kD0




Aktk cos bt C Bktk sin bt
�

: (5.33)
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In both latter cases, Ak and Bk are defined by the initial conditions.

Example 5.4. Using formula (5.25) and (5.26) for k D 2 find a corresponding
number C k

l when

L.y/ D y000 C p1y00 C p2y0 C p3y:

Formula (5.26) gives

.uv/000 D uv000 C
�

3

1

�

u0v00 C
�

3

2

�

u00v0 C u000v;

.uv/00 D uv00 C
�

2

1

�

u0v0 C u00v0;

.uv/0 D u0v C v0y;

whereas from (5.25) we get

L.tkert / D .tkert /00 C p1.tkert /00 C p2.tkert /0 C p3.tkert /

D .t2r3C6tr2C6r/ert Cp1.t2r2C4trC2/ert Cp2.t2rC2t/ert Cp3t2ert

D ert Œt 2.r3 C p1r2 C p2r C p3/ C t .6r2 C 4rp1 C 2p2/ C 6r C 2p1�:

Since

P3.r/ D r3 C p1r2 C p2r C p3;

P 0
3.r/ D 3r2 C 2p1r C p2;

P 00
3.r/ D 6r C 2p1;

therefore

L.t2ert / D t 2ert P3.r/ C C 2
1 P 0

3.r/ert C ert P 00
3 .r/;

and we have C 2
1 D 2.

5.4 Linear Non-homogeneous Differential Equations
with Constant Coefficients

In the previous section we have considered linear homogeneous operator defined by
Eq. (5.11). Here we are going to consider non-homogeneous problems.
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Theorem 5.14. If the fundamental solutions y1.t/; : : : ; yn.t/ to Eq. (5.11) are
known, then a general solution to the following non-homogeneous equation

Ln.y/ D y.n/ C p1.t/y.n�1/ C � � � C pn.t/y D f .t/ (5.34)

has the form

y D yp C C1y1 C C2y2 C � � � C Cnyn; (5.35)

where C1; C2; : : : ; Cn are arbitrary numbers, and yp is an arbitrary particular
solution of (5.34).

There are two general methods to solve a non-homogeneous problem, i.e. the
method of undetermined coefficients and the method of variations of parameters.
The method of undetermined coefficients relies on observation that a being sought
solution is somehow similar to the right-hand side function f .t/.

Example 5.5. Find a general solution to the non-homogeneous differential equation

L.y/ D y00 � 3y0 C 2y D 3t2 � 2t C 4:

First we consider the corresponding homogeneous equation L.y/ D y00 � 3y0 C
2y D 0. The corresponding characteristic equation is r2 �3r C2 D 0 with the roots
r1 D 1 and r2 D 2, and hence the general solution of the homogeneous equation
y D C1et CC2e2t . Let us look for a particular solution of the form yp D at2CbtCc:

The simple calculus yields

L.yp/ D 2at � 3.2at C b/ C 2.at2 C bt C c/

D 2at2 C t .2b � 6a/ C 2c C 2a � 3b:

Equating the coefficients standing by the same powers of t we obtain:

t 0 W 2c C 2a � 3b D 4;

t1 W 2b � 6a D �2;

t2 W 2a D 3:

The above linear algebraic equations give: a D 1:5; b D 3:5; c D 5:75.
The general solution of the non-homogeneous problem is y D C1et C C2e2t C
1:5t2 C 3:5t C 5:75. ut
Example 5.6. Find a general solution of the non-homogeneous equation

L.y/ D y00 C 2hy0 C ˛2
0y D q cos !t:

This equation governs oscillation of a one-degree-of-freedom mechanical system
with mass m and with a viscous positive damping, a linear stiffness and a harmonic
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excitation. The parameters have the following physical meaning: c—damping
.2h D c=m/I k—stiffness .˛2

0 D k=m/I P0—amplitude of exciting force .q D
p0=m/ and ! is frequency of excitation. The characteristic equation is

r2 C 2hr C ˛2
0 D 0;

which gives the roots r1;2 D �h ˙
q

h2 � ˛2
0 . If h > ˛0, then we have two real

roots and oscillations do not appear. If h D ˛0 we have so-called critical damping
ccr D 2

p
km and the root is double. Here we consider the case ˛2

0 > h2 which

corresponds to oscillations and r1;2 D �h ˙ i�, where � D
q

˛2
0 � h2. Since

e.�hCi�/t D e�ht .cos �t C i sin �t/ and according to our earlier discussion we
can take the following real-valued general solution corresponding to homogeneous
equation: y D C1e�ht cos �t CC2e�ht sin �t . As it has been mentioned, the form of
the particular solution to the non-homogeneous equation is similar to the right-hand
side excitation and is assumed to be: yp D A cos !t C B sin !t . Since

y0 D �A! sin !t C B! cos !t;

y00 D �A!2 cos !t � B!2 sin !t;

hence

L.yp/ D �A!2 cos !t�B!2 sin !t�2hA! sin !tC2hB! cos !t C ˛2
0A cos !t

C˛2
0B sin !t D q cos !t:

Equating the terms standing by sin !t and cos !t yields

A.˛2
0 � !2/ C 2h!B D q;

�2h!A C .˛2
0 � !2/B D 0;

and therefore

A D WA

W
D

ˇ
ˇ
ˇ
ˇ

q 2h!

0 ˛2
0 � !2

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

˛2
0 � !2 2h!

�2h! ˛2
0 � !2

ˇ
ˇ
ˇ
ˇ

D q.˛2
0 � !2/

.˛2
0 � !2/2 C 4h2!2

;

B D WB

W
D

ˇ
ˇ
ˇ
ˇ

˛2
0 � !2 q

�2h! 0

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

˛2
0 � !2 2h!

�2h! ˛2
0 � !2

ˇ
ˇ
ˇ
ˇ

D 2h!q

.˛2
0 � !2/

2 C 4h2!2
:
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Finally, the general solution to homogeneous equation has the form

y D C1e�ht cos �t C C2e�ht sin �t C A cos !t C B sin !t: ut
The obtained solution possesses clear physical interpretation. It is composed of

oscillation of autonomous damped system (this part vanishes, when t ! C1) and
a particular solution generated by the harmonic excitation. A steady state oscillation
is represented by the solution

lim
t!1 y.t/ D A cos !t C B sin !t D a cos.!t C '/:

Observe that

a cos.!t C '/ D a cos ' cos !t � a sin ' sin !t D A cos !t C B sin !t:

Equating terms standing by cos !t and sin !t we obtain

A D a cos '; B D �a sin ';

and hence

a D
p

A2 C B2 D q
q

.˛2
0 � !2/

2 C 4h2!2

;

' D �arctan
B

A
D �arctan

2h!

˛2
0 � !2

:

This result indicates that the oscillations are harmonic with the amplitude a

and are delayed by the phase shift � in comparison to excitation. The latter
example allows to solve more general problem, which possesses many applications
in engineering, and particularly in mechanics.

Consider now the following non-homogeneous problem

Ln.y/ D eat ŒP.t/ cos bt C Q.t/ sin bt�; (5.36)

where a; b 2 R and P.t/ and Q.t/ are polynomials of orders p and q, respectively.
Let the characteristic equation corresponding to the homogeneous equation has
the form

rn C p1rn�1 C � � � C pn D 0: (5.37)

By s we denote the largest values among p and q (for p D q we take s D p D q).
If a C ib is not a solution to the characteristic equation (5.38), then also a � ib is
not a solution. In this case the being sought particular solution has the form

yp D eat ŒR.t/ cos bt C S.t/ sin bt�;
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where R.t/ and S.t/ are polynomials of an order not higher than s. If a C ib is
repeated root of multiplicity k, then

yp D t keat ŒR.t/ cos bt C S.t/ sin bt�; (5.38)

where R.t/ and S.t/ are polynomials of an order not higher than s.
The steps of the method of undetermined coefficients can be even more detailed

presented by introducing the following theorem (see [191]).

Theorem 5.15. Apply the following steps to solve Ln.y/ D f .t/ using the method
of undetermined coefficients:

(i) Factor the characteristic polynomial wLn.r/ of Ln into linear and irreducible
quadratic factors and form a basis BL for the kernel of L.

(ii) Separate f(t) into groups of terms that are annihilated by a single annihilator.
Form wA.r/, the characteristic polynomial for an annihilator of f .t/ factored
into linear and irreducible quadratic factors. Recall that for a given function
f, an annihilator of f is a linear operator A such that A.f / D 0. For instance,
y00 C 16y is an annihilator of sin �t and cos �t , because the characteristic
equation is .r2 C 16/ D .r C 4i/.r � 4i/:

(iii) The characteristic polynomial of AL is defined by wA.r/wL.r/. Form the basis
BAL, and find B consisting of the functions in BAL that are not in BL.

(iv) Form yp.t/ as a linear combination of the functions in B and equate
coefficients of L.yp/ D f .t/.

(v) Determine values for the coefficients and define a particular solution.
(vi) Find y.t/ D yg.t/ C yp.t/:

Example 5.7. Solve the differential equation L.y/ D y000 � 2y00 C 9y0 � 18y D
et C 3 sin 2t using the method of undetermined coefficients.

(i) The characteristic polynomial wL.r/ D r3 � 2r2 C 9r � 18 D .r � 2/.r2 C 9/,
and hence fBL D e2t ; sin 3t; cos 3tg.

(ii) The function f .t/ D et C 3 sin 2t is annihilated by the characteristic
polynomial wA D .r � 1/.r2 C 4/, and the basis for kernel of A is BA D
fet ; sin 2t; cos 2tg.

(iii) The characteristic polynomial of AL is wAwL D .r �2/.r2 C9/.r �1/.r2 C4/,
and the kernel of AL is BAL D fet ; e2t ; sin 2t; cos 2t; sin 3t; cos 3tg. We have
found also that B D BA D fet ; sin 2t; cos 2tg:

(iv) The particular solution yp D aet C b sin 2t C c cos 2t . The successive
differentiation gives

y0
p D aet C 2b cos 2t � 2c sin 2t;

y00
p D aet � 4b sin 2t � 4c cos 2t;

y000
p D aet � 8b sin 2t C 8c cos 2t;
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and

L.yp/ D aet � 8b sin 2t C 8c cos 2t � 2.aet � 4b sin 2t C 4c cos 2t/

C9.aet C 2b cos 2t � 2c sin 2t/ � 18.aet C b sin 2t C c cos 2t/

D �10aet � 18.b C c/ sin 2t C 2.9b � c/ cos 2t:

Equating the appropriate coefficients with those of f .t/ gives

et W �10a D 1;

sin 2t W �18.b C c/ D 3;

cos 2t W 9b � c D 0:

(v) The solution of the latter linear algebraic equation is: a D �10; b D � 1
60

,
c D � 3

20
, and hence the particular solution is

yp.t/ D �10et � 1

60
sin 2t � 3

20
cos 2t:

(vi) Finally, the general solution is

y D C1e2t C C2 sin 3t C C3 cos 3t � 10et � 1

60
sin 2t � 3

20
cos 2t:

ut
Now we briefly describe the method of variation of parameters. Recall that

even in the method of undetermined coefficients we have found the kernel of a
homogeneous equation Ln.y/ D 0 first.

Theorem 5.16. A particular solution yp.t/ of non-homogeneous equation
Ln.y/ D f .t/ can be found by quadratures if it will be sought in the form

yp.t/ D C1.t/y1.t/ C C2.t/y2.t/ C � � � C Cn.t/yn.t/; (5.39)

where fy1.t/; y2.t/; : : : ; yn.t/g is the basis of the kernel of Ln D 0.

Theorem 5.17. If the functions C1.t/; : : : ; Cn.t/ satisfy the system of equations

C 0
1y1 C C 0

2y2 C � � � C C 0
nyn

C 0
1y0

1 C C 0
2y0

2 C � � � C C 0
ny0

n

:::

C 0
1y

.n�1/
1 C C 0

2y
.n�1/
2 C � � � C C 0

ny
.n�1/
n ; (5.40)

then the function yp defined by (5.39) satisfies the non-homogeneous equation
Ln.y/ D f .t/.
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Remark 5.4. The function yp.t/ possesses the form of a general integral of
Ln.y/ D 0, where now the constant are the functions depending on t .

Remark 5.5. Observe that C 0
1; C 0

2; : : : ; C 0
n are uniquely defined, since the determi-

nant of the system (5.41) is the Wronskian determinant, and by definition it never
equals zero.

In order to get C1.t/; : : : ; Cn.t/ we integrate the functions C 0
1.t/; : : : ; C 0

n.t/

without the constant of integrations, because they appear already in the part of n

general solutions of the homogeneous equation.

Example 5.8. Find a general solution of the equation

L2.y/ D y00 C y D t 2:

The kernel of L2.y/ D 0 is fsin t; cos tg: The general solution of L2.y/ D t 2 is
y D yp C C1 cos t C C2 sin t .

The functions yp.t/ is sought in the form

yp.t/ D C1.t/ cos t C C2.t/ sin t:

From (5.41) we obtain

C 0
1 cos t C C 0

2 sin t D 0;

�C 0
1 cos t C C 0

2 sin t D t 2;

and hence

C 0
1 D �t 2 sin t; C 0

2 D t 2 cos t:

Integration of C 0
1; C 0

2 yields

C1.t/ D .t2 � 2/ cos t � 2t sin t; C2.t/ D .t2 � 2/ sin t C 2t cos t

and

y D t 2 � 2 C C1 cos t C C2 sin t:

5.5 Differential Equations with Variable Coefficients

We begin with a special class of higher order homogeneous differential equations,
which can be reduced to the differential equations with constant coefficients.
A solution to the differential equation

Ln.y/ D pntn d ny

dtn
C pn�1tn�1 d n�1y

d tn�1
C � � � C p1t

dy

dt
C p0y; (5.41)
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known as the Cauchy–Euler differential equation, can be sought in the form

y D t r : (5.42)

Substituting (5.42) to (5.41) gives

Ln.t r / D w.r/t r ; (5.43)

and hence Ln D 0, when w.r/ D 0. The analysis is similar to previous one, but now
instead of the function ert , we have t r .

(i) Assume that there are r1; r2; : : : ; rm distinct real roots .m � n/, then
t r1 ; t r2 ; : : : ; t rm are real independent solutions, and

y.t/ D C1tr1 C C
r2

2 C � � � C Cmtrm (5.44)

is a general solution (it defines an m-dimensional subspace of the kernel
of (5.41)).

(ii) Assume that r0 is a root with kth multiplicity, then its subkernel follows

ft r0 ; t r0 ln t; : : : ; t r0 .ln t /k�1g;

and a general solution

y.t/ D C1tr0 C C2tr0 ln t C � � � C Cktr0.ln t /k�1 (5.45)

defines a k-dimensional subspace.
(iii) Assume that r D a ˙ bi , then t a cos.b ln t / and t a sin.b ln t / are real linearly

independent solutions. In addition, if a ˙ bi has multiplicity k, then

t a cos.b ln t /; ta ln t cos.b ln t /; : : : ; t a.ln t /k�1 cos.b ln t /;

ta sin.b ln t /; ta ln t sin.b ln t /; : : : ; t a.ln t /k�1 sin.b ln t /;
(5.46)

are 2k real linearly independent solutions in the kernel of (5.41). Their linear
combinations span a 2k-dimensional subspace.

Now we show how to reduce the homogeneous and non-homogeneous
Cauchy–Euler equation to an equation with constant coefficients.

Theorem 5.18. Introducing a variable x D ln t in the non-homogeneous Cauchy–
Euler equation

Ln.y/ D pntn d ny

dtn
C pn�1tn�1 d n�1y

d tn�1
C � � � C p1t

dy

dt
C p0y D f .t/; (5.47)
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leads to conversion to the differential equation with constant coefficients

LŒy.ex/� D g.x/; (5.48)

where g.x/ D f .ex/:

Example 5.9. Transform the Cauchy–Euler differential equation

t 3y000 � 4t2y00 C 3ty0 C y D 0

to a differential equation with constant coefficients.

Let t C ex , and use the chain rule to get

dy

dt
D dy

dx

dx

dt
D dy

dx

1

t
; i:e: t

dy

dt
D dy

dx
I

d 2y

dt2
D d

dt

�
dy

dt

�

D d

dt

�
dy

dx

1

t

�

D d

dt

�
dy

dx

�
1

t
C dy

dx

d

dt

�
1

t

�

D 1

t2

�
d 2y

dx2
� dy

dx

�

i:e: t 2 d 2y

dt2
D d 2y

dx2
� dy

dx
I

d 3y

dt3
D d

dt

�
d 2y

dt2

�

D d

dt

�
1

t2

�
d 2y

dx2
� dy

dx

�	

D �2

t3

�
d 2y

dx2
� dy

dx

�

C 1

t2

�
d

dt

�
d 2y

dx2

�

� d

dt

�
dy

dx

�	

D �2

t3

�
d 2y

dx2
� dy

dx

�

C 1

t3

�
d 3y

dx3
� d 2y

dx

�

D 1

t3

�
d 3y

dx3
� 3

d 2y

dx2
� 2

dy

dx

�

; i:e:
d 3y

d t3
D d 3y

dx3
� 3

d 2y

dx2
� 2

dy

dx
:

Our investigated equation becomes

d 3y

dx3
� 7

d 2y

dx2
C 5

dy

dx
C y D 0:

The characteristic polynomial is

r3 � 7r2 C 5r C 1 D .r � 1/.r2 � 6r � 1/

and possesses the characteristic roots

r2 D 1; r1 D 3 � p
10; r3 D 3 C p

10:
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Hence the solution is

y D C1er1x C C2er2x C C3er3x D C1er1 ln t C C2er2 ln t C C3er3 ln t : ut
A key role in mechanics plays second-order differential equation, since a second

derivative corresponds to acceleration of a moving rigid body with one degree
of freedom. It can happen that one of its solutions is known (for example, from
theoretical considerations or from an experiment), and a question appears, how to
find a second linearly independent solution?

Consider L2.y/ D p2.t/y00 C p1.t/y0 C p0.t/y D 0, and assume y.t/ D
v.t/y1.t/, where y1.t/ satisfies L2.y1/ D 0. The assumed form of solution refers
to the so-called Bernoulli method, which is often applied to solve first-order non-
homogeneous differential equations. The successive differentiation gives

y0 D v0y1 C vy0
1;

y00 D v00y1 C 2v0y0
1 C vy00

1; (5.49)

and hence

L2.vy1/ D p2.t/.v00y1 C 2v0y0
1 C vy00

1/ C p1.t/.v0y1 C vy0
1/ C p0.t/vy1

D v00.p2y1/ C v0.2p2y0
1 C p1y1/ C v.p2y00

1 C p1y0
1 C p0y1/

D p2y1v00 C .2p2y0
1 C p1y1/v0 D 0: (5.50)

Denoting v0 D w one can solve first-order linear differential equation with regard
to w0 to give

w.t/ D y�2
1 e� R

p1.t/=p2.t/dt: (5.51)

Hence

v.t/ D
Z

y�2
1 e� R

p1.t/=p2.t/dt dt; (5.52)

and the second solution is

y2.t/ D v.t/y1.t/ D y1.t/

Z

y�2
1 .t/e� R

p1.t/=p2.t/dt dt: (5.53)
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