Chapter 2 First-Order ODEs

Modelling of various problems in engineering, physics, chemistry, biology and economics allows formulating of differential equations, where a being searched function is expressed via its time changes (velocities). One of the simplest example is that given by a first-order ODE of the form

$$
\frac{dy}{dt} = F(y),\tag{2.1}
$$

where $F(t)$ is a known function, and we are looking for $y(t)$. Here by t we denote time. In general, any given differential equation has infinitely many solutions. In order to choose from infinite solutions those corresponding to a studied real process, one should attach initial conditions of the form $y(t_0) = y_0$.

In general, there is no direct rule/recipe for construction of an ODE. Let $y = y(t)$ be a dependence between t and y of the investigated process. We are going to monitor the difference $y(t + \Delta t) - y(t)$ caused by the disturbance Δt . Then, if we take

$$
\dot{y} \equiv \frac{dy}{dt} = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t},
$$

we obtain a differential equation, i.e. dependence of the process velocity in the point t governed by the function $F(y)$.

There are also cases where a function $y(t)$ appears under an integral and the obtained equation is called *the integral equation*, which in simple cases can be transformed to a differential equation.

2.1 General Introduction

A differential equation of the form

$$
f\left(t, y, \frac{dy}{dt}\right) = 0\tag{2.2}
$$

is called the first-order ordinary differential equation, where t is the independent variable (here referred to time, but in general it can be taken as a space variable x), and $y(t)$ is the unknown function to be determined. Observe that Eq. [\(2.2\)](#page-1-0) is not solved with respect to its derivative dy/dt . In many cases, however, one deals with the following differential equation

$$
\frac{dy}{dt} = f(t, y),\tag{2.3}
$$

which is called the first-order ODE solved with respect to the derivative. Alternatively, one may deal often with the following form of first-order ODE

$$
P(t, y)dt + Q(t, y)dy = 0,
$$
\n(2.4)

where P , Q are given functions.

We say that $y = \phi(t)$ is a solution to either [\(2.2\)](#page-1-0) or [\(2.3\)](#page-1-1) in an interval J, if

$$
f\left(t,\phi(t),\frac{d\phi(t)}{dt}\right) \equiv 0, \tag{2.5}
$$

or

$$
\frac{d\phi(t)}{dt} = f(t, \phi(t)),\tag{2.6}
$$

for all $t \in J$.

One may also find a solution to Eq. [\(2.2\)](#page-1-0) in the *implicit form* $\varphi(t, \phi(t))$, where $\phi(t) = y$ is a solution to Eq. [\(2.2\)](#page-1-0). Solution in the form of $\phi(t, \phi(t))$ is also referred to as *the integral of Eq.* (2.2) .

A graph of solution $y = \phi(t)$ of Eq. [\(2.2\)](#page-1-0) is called *the integral curve* of the studied differential equation. Projection of the solution graph onto the plane (t, y) is called *the phase curve* (or *trajectory*) of the investigated first-order ODE.

A problem related to finding a solution $y = \phi(t)$ satisfying the initial condition $y(t_0) = y_0$ is called the Cauchy problem.

If we take a point (t, y) for $t \in J$, then a tangent line passing through this point creates with the axis t an angle α , then tan $\alpha = f(t, y)$. A family of all tangent lines defines a *direction field* for the studied differential equation. If we draw a short line segment possessing the slope $f(t, y)$ through each of representative collection of points (t, y) , then all line segments constitute *a slope field* for the investigated ODE.

2.1 General Introduction 15

A curve constituting of points with the same slope field is called the *isocline*. In other words all integral curves passing through an isocline intersect the axis t with the same angle.

Example 2.1. Prove that the function $y = \phi(t)$ given in the parametric form $t =$ xe^{x} , $y = e^{-x}$ satisfies the following differential equation

$$
(1+ty)\frac{dy}{dt} + y^2 = 0.
$$

We have

$$
(1 + ty)\frac{dy}{dt} + y^2 = (1 + xe^x e^{-x})\frac{dy}{dx}\frac{dx}{dt} + e^{-2x}
$$

$$
= -(1 + x)e^{-x} \cdot \frac{1}{(1 + x)e^x} + e^{-2x} = 0,
$$

which proves that $\phi(t)$ satisfies the studied equation. \Box

Example 2.2. Construct a differential equation of a family of ellipses of the following canonical form

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
$$

where $0 < b < a$.

where:

Acting by d/dx on both sides of this algebraic equation yields

$$
\frac{x}{a^2} + \frac{y\frac{dy}{dx}}{b^2} = 0.
$$

Solving both equations we get

$$
\sqrt{a^2 - x^2} \frac{dy}{dx} + \frac{b}{a} x = 0.
$$

Example 2.3. Construct a differential equation of the force lines of a dipole constituted by two electric charges $(+q, -q)$ located on the distance 2a, where the force lines satisfy the Coulomb algebraic equation of the form

$$
\frac{x+a}{r_1} - \frac{x-a}{r_2} = C,
$$

$$
r_1^2 = (x+a)^2 + y^2, \quad r_2^2 = (x-a)^2 + y^2.
$$

16 2 First-Order ODEs

$$
\frac{r_1 - (x+a)\frac{dr_1}{dx}}{r_1^2} - \frac{r_2 - (x-a)\frac{dr_2}{dx}}{r_2^2} = 0,
$$

and also

$$
\frac{dr_1}{dx} = \frac{x+a+y\frac{dy}{dx}}{r_1}, \quad \frac{dr_2}{dx} = \frac{x-a+y\frac{dy}{dx}}{r_2}.
$$

Finally, after a few of transformations we get

$$
\left(\frac{x-a}{r_2^3} - \frac{x-a}{r_1^3}\right)\frac{dy}{dx} + \left(\frac{1}{r_2^3} - \frac{1}{r_1^3}\right)y = 0.
$$

 \Box

Example 2.4. How many solutions of the equation $(x - 1)\frac{dy}{dx} + y = 0$ defines the relation

$$
y(x-1)=C,
$$

for each fixed $C \in \mathbb{R}$. Find the solutions associated with the initial conditions $y(0) = 0$, $y(0) = -1$, $y(2) = 1$. Define intervals of solution existence as well as the corresponding integral and phase curves.

First we verify that $\varphi(x) = \frac{C}{x-1}$ satisfies the given differential equation. We have $\varphi_1(x) = \frac{C}{x-1}$ with $x \in (C, +\infty)$ and $\varphi_2(x) = \frac{C}{x-1}$ with $x \in (1, +\infty)$.

The initial condition $y(0) = 0$ is satisfied by the solution $y = 0$. Its integral curve corresponds to the axis of abscissa, whereas its phase corresponds to a projection of the integral curve into the axis of ordinates, i.e. the point $y = 0$.

In the case of $y(0) = -1$ we find that $C = 1$. It means that the integral curve of this solution corresponds the hyperbola branch $y(x - 1) = 1$ for $x \in (-\infty, 1)$. The phase curve of this solution is the ray $y < 0$.

Finally, in the case $y(2) = 1$ we obtain $C = 1$. Integral curve of the solution $y = \frac{1}{1-x}$ is the hyperbola $y(x - 1) = 1$ branch, where $x \in (1, +\infty)$ phase curve is the ray $y>0$.

2.2 Separable Equation

The first-order differential equation of the form

$$
\frac{dy}{dx} = f(x)g(y) \tag{2.7}
$$

is called a *separable differential equation*.

If $g(C_0) = 0$ in the point $y = C_0$, then the function $y = C_0$ is the solution to Eq. [\(2.7\)](#page-3-0). If $g(y) \neq 0$, then the following relation is obtained

$$
\int \frac{dy}{g(y)} - \int f(x)dx = C.
$$
 (2.8)

Theorem 2.1. Let the function $f(x)$ and $g(x)$ are continuously differentiable in *the vicinity of points* $x = x_0$, $y = y_0$ *respectively, where* $g(y_0) \neq 0$ *. Therefore, there is a unique solution* $y = \phi(x)$ *of Eq. [\(2.7\)](#page-3-0)* with the attached initial condition $\phi(x_0) = y_0$ *in the vicinity of the point* $x = x_0$ *, satisfying the relationship*

$$
\int_{y_0}^{\phi(x)} \frac{dy}{g(y)} = \int_{x_0}^x f(x) dx.
$$

If we have the equation

$$
\frac{dy}{dx} = f(ax + by + c),\tag{2.9}
$$

then introducing a new variable

$$
z = ax + by + c,\tag{2.10}
$$

we get

$$
\frac{dz}{dx} = bf(z) + a,\tag{2.11}
$$

i.e. the problem is reduced to Eq. [\(2.7\)](#page-3-0).

One may use the following physical interpretation of the differential equation

$$
\frac{dy}{dx} = f(y). \tag{2.12}
$$

Let us attach to each point y a vector of the length $|f(y)|$, which direction is defined by the axis 0y providing that $f(y) > 0$. Therefore, a set of all vectors defines a vector field. The points $f(y) = 0$ are called *singular points* of the vector field (or *its equilibrium positions* in the case when we deal with time). Having drawn the vector field of the given Eq. (2.12) one may draw schematically the integral curves.

Example 2.5. Find a solution of the following differential equation

$$
x(1 + y2) + y(1 + x2)\frac{dy}{dx} = 0.
$$

We transform the studied equation to the form

$$
\int \frac{xdx}{1+x^2} + \int \frac{y\,dy}{1+y^2} = 2\ln C
$$

and hence after integration we get

$$
\ln(1+x^2) + \ln(1+y^2) = \ln C,
$$

which means that

$$
(1+x^2)(1+y^2) = C.
$$

$$
\frac{dy}{dx} + y = 2x + 1.
$$

In order to transform the given ODE into that of separable variables we introduce the following new variable

$$
y - 2x - 1 = z
$$

and hence

$$
\frac{dz}{dx} + z + 2 = 0.
$$

Separating variables and integrating we get

$$
\int \frac{dz}{z+2} + \int dx = 0,
$$

which means that

$$
\ln|z+2|+x=\ln C_0, \quad |z+2|=C_0e^{-x}, \quad C_0>0.
$$

Observe that $z = -2$ satisfies the studied equation directly, and therefore, all its solutions are given by the following formula

$$
z = -2 + Ce^{-x}, \quad C \in \mathbb{R},
$$

and finally we get

$$
y = 2x - 1 + Ce^{-x}.
$$

 \Box

 \Box

2.2 Separable Equation 19

In what follows we proceed with a few examples of real-world applications.

Example 2.7. A particle of mass m is subjected to action of a constant force, and it moves with the constant acceleration a . The viscous damping of the surrounding medium is c. Find the particle velocity providing that $v(0) = 0$.

The second Newton law gives

$$
\frac{dv(t)}{dt} = \frac{ma - cv(t)}{m},
$$

or equivalently

$$
\frac{dv}{dt} = -\frac{c}{m}v + a.
$$

The trivial (time independent solution) is

$$
v(t) = \frac{m}{c}a,
$$

and hence all solutions are given by the formula

$$
v(t) = \frac{m}{c}a + Ce^{-\frac{c}{m}t}
$$

The initial condition allows to find $C = -\frac{m}{c}a$, and finally

$$
v(t) = \frac{m}{c}a\left(1 - e^{-\frac{c}{m}t}\right),\,
$$

which means also that

$$
\lim_{t \to \infty} v(t) = \frac{m}{c}a.
$$

 \Box

Example 2.8. A meteorite of mass M starts to move from its rest position into the Earth centre linearly from the height h (Fig. [2.1\)](#page-6-0). Determine the meteorite velocity, when it touches the Earth surface assuming the Earth radius R.

Fig. 2.1 Meteorite movement towards Earth centre

We denote by $y = y(t)$ the meteorite distance from its movement beginning point $y(0) = 0$, and by $h - y(t)$ we denote the meteorite distance from the Earth centre in time instant t . The meteorite is subjected to action of two forces: Ma and Mg . Owing to the Newton principle we have

$$
\frac{Ma}{R^2} = \frac{Mg}{(h-y)^2},
$$

and hence

$$
a = \frac{gR^2}{(h-y)^2}.
$$

Therefore,

$$
a = \frac{dv}{dt} = \frac{dv}{dy} \cdot \frac{dy}{dt} = \frac{dv}{dy}v,
$$

and the following governing ODE is obtained

$$
v\frac{dv}{dy} = \frac{gR^2}{(h-y)^2},
$$

or equivalently

$$
\frac{1}{2}\frac{d(v)^2}{dy} = \frac{gR^2}{(h-y)^2}.
$$

Integration of the obtained equation yields

$$
v^2 = \frac{2gR^2}{h-y} + C.
$$

Taking into account $y(0) = 0$, we get $C = -\frac{2gR^2}{h}$, and finally

$$
v^2 = \frac{2gR^2y}{h(h-y)}.
$$

On the Earth surface $y = h - R$, and we get

$$
v = \sqrt{2gR\left(1 - \frac{R}{h}\right)}
$$

Taking into account that $h \rightarrow \infty$, the last formula yields

$$
v = \sqrt{2gR}.
$$

 \Box

Example 2.9. Two substances A and B undergo a chemical reaction yielding a substance C. We assume amount of the C substance by $y(t)$ in the time instant t after the reaction, and we denote by α and β the amount of substance A and B, in the beginning of reaction, respectively. Find $\frac{dy}{dt}$ assuming that the reaction velocity is proportional to the product of reacting masses.

The governing equation is

$$
\frac{dy}{dt} = p(\alpha - y)(\beta - y), \ p > 0,
$$

and p is the proportionality coefficient. Separation of the variables yields

$$
\frac{dy}{y-\alpha} - \frac{dy}{y-\beta} = -p(\beta - \alpha)dt.
$$

After integration one gets

$$
\frac{y-\alpha}{y-\beta}=Ce^{-p(\beta-\alpha)t}.
$$

Taking into account the initial condition $y(0) = 0$ we obtain the constant $C = \alpha/\beta$, i.e.

$$
\frac{y-\alpha}{y-\beta}=\frac{\alpha}{\beta}e^{-p(\beta-\alpha)t},
$$

or equivalently

$$
y(t) = \alpha \beta \frac{1 - e^{-p(\beta - \alpha)t}}{\beta - \alpha e^{-p(\beta - \alpha)t}}.
$$

Observe that for $\beta > \alpha$ we have

$$
\lim_{t\to\infty}y(t)=\alpha,
$$

whereas for $\beta < \alpha$ we obtain

$$
\lim_{t \to \infty} y(t) = \lim \alpha \beta \frac{e^{p(\beta - \alpha)t} - 1}{\beta e^{p(\beta - \alpha)t} - \alpha} = \beta.
$$

In the case when $\alpha = \beta$ the governing equation is

$$
\frac{dy}{dt} = p(\alpha - y)^2.
$$

Separation of the variables of this equation and the integration allows to find the following dependence

$$
\frac{1}{\alpha - y} = pt + C.
$$

Since $y(0) = 0$, therefore $C = 1/\alpha$. In this case the reaction B governed by the equation

$$
y(t) = \alpha \left(1 - \frac{1}{1 + \alpha pt} \right),
$$

which for $t \rightarrow \infty$ yield

$$
\lim_{t\to\infty}y(t)=\alpha.
$$

2.3 Homogenous Equations

A function $F(x, y)$ is called homogenous of order k, if for all $\sigma > 0$ the following property holds [208]

$$
F(\sigma x, \sigma y) = \sigma^k F(x, y)
$$
 (2.13)

For instance the functions

$$
\frac{x+y}{x-y}, \quad \frac{x^2+xy}{y-x}, \quad x^2+y^2+2xy \tag{2.14}
$$

are homogenous of order $k = 0, 1, 2$, respectively.

A differential equation

$$
\frac{dy}{dx} = F(x, y) \tag{2.15}
$$

is called *homogenous*, if the function $F(x, y)$ is of order zero.

Equation

$$
F_1(x, y)dx + F_2(x, y)dy = 0
$$
\n(2.16)

is called homogeneous, if the function F_1 , F_2 are homogeneous of the same order.

In the case of a homogeneous equation the introduction of a new variable $y = zx$ allows to get en equation with separable variables. One may use also polar coordinates (ρ, φ) and by substitution $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ again an equation with separable variables is obtained.

It should be mentioned that the equation

$$
\frac{dy}{dx} = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)
$$
\n(2.17)

can also be transformed to a homogeneous equation through the following linear transformation

$$
x = x_0 + X, \ y = y_0 + Y,\tag{2.18}
$$

where (x_0, y_0) is the point of intersection of straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$. If the lines do not intersect then $a_1/b_1 = a_2/b_2$, and in this case Eq. (2.17) is transformed to that with separable variables using

$$
a_1x + b_2y + c_1 = X.
$$
 (2.19)

The function $G(x, y)$ is called quasi-homogenous of order k, if for certain α and β the following relation holds

$$
G(\sigma^{\alpha}x, \sigma^{\beta}y) = \sigma^{k}G(x, y), \qquad (2.20)
$$

for all $k>0$.

Exponents α , β are called *weights*. We say that $x(y)$ has weight $\alpha(\beta)$, and for instance $7x^2y^5$ has the weight $2\alpha + 5\beta$.

Differential equation (2.15) is called quasi-homogeneous if the associated function $F(x, y)$ is quasi-homogeneous with weights α and β of order $\beta - \alpha$, i.e. $F(\sigma^{\alpha}x, \sigma^{\beta}y) = \sigma^{\beta-\alpha}F(x, y).$

A quasi-homogeneous differential equation can be reduced to a homogeneous one. However, in many practical cases one may use the direct variables change $y = zx^{\frac{\beta}{\alpha}}$ allowing to get an equation with separable variables.

Example 2.10. Find a solution of the following ODE

$$
\frac{dy}{dx} = \frac{xy + y^2 e^{-\frac{x}{y}}}{x^2}.
$$

We introduce the new variable $y = zx$, and obtain

$$
x\frac{dz}{dx} + z = z + z^2 e^{-\frac{1}{z}},
$$

or equivalently

$$
\frac{e^{\frac{1}{z}}}{z^2}dz = \frac{dx}{x}.
$$

Integration of the last equation yields

$$
-e^{\frac{1}{z}}=\ln|x|-C,
$$

or equivalently

$$
e^{\frac{x}{y}} + \ln|x| = C.
$$

 \Box

Example 2.11. Solve the following equation

$$
\frac{dy}{dx} = 2\left(\frac{y+1}{x+y-2}\right)^2.
$$

We introduce the following variables

$$
y + 1 = Y, x - 3 = X,
$$

and we get

$$
\frac{dY}{dX} = 2\frac{Y^2}{(X+Y)^2}.
$$

Now we introduce the following new variable

 $Y = uX$,

and the following ODE is obtained

$$
X\frac{du}{dX} + u = \frac{2u^2}{(1+u)^2},
$$

or equivalently

$$
\ln|u| + 2\arctan u + \ln|X| = \ln C,
$$

which means that

$$
uX = C \exp(-2\arctan u).
$$

In the original variable the solution is

$$
(y+1)\exp\left(2\arctan\frac{y+1}{x-3}\right) = C.
$$

 \Box

Example 2.12. Prove that integral curves of the equation

$$
[2x(x^2 - axy + y^2) - y^2 \sqrt{x^2 + y^2}]dx + y[2(x^2 - axy + y^2) + x \sqrt{x^2 + y^2}]dy = 0
$$

are closed curves surrounding the coordinates origin for $|a| < 2$.

Since the studied equation is homogenous, then we introduce polar coordinates to get

$$
\rho^3 [2(1 - a \sin \varphi \cos \varphi) \cos \varphi - \sin^2 \varphi](\cos \varphi d\rho - \varrho \sin \varphi d\varphi)
$$

$$
+ \rho^3 [2 \sin \varphi (1 - a \sin \varphi \cos \varphi) + \cos^2 \varphi](\sin \varphi d\rho + \varrho \cos \varphi d\varphi) = 0
$$

or equivalently

$$
2(1 - a\sin\varphi\cos\varphi)d\varrho + \varrho\sin\varphi d\varphi = 0.
$$

Separating the variables we obtain

$$
\frac{d\varrho}{\varrho} + \frac{\sin\varphi}{2 - a\sin 2\varphi}d\varphi = 0,
$$

and after integration we get

$$
\ln \varrho + \int_{0}^{\varphi} \frac{\sin u du}{2 - a \sin 2u} = \ln \varrho_0, \quad \varrho_0 = \varrho(0),
$$

or equivalently

$$
\varrho = \varrho_0 \exp \left(\int\limits_0^\varrho \frac{\sin u}{2 - a \sin 2u} du \right).
$$

If we prove that the function \int_{0}^{φ} $\mathbf{0}$ $\frac{\sin u du}{2 - a \sin 2u}$ is periodic regarding φ with the period 2π , then $\varrho = \varrho(\varphi)$ for arbitrary $\varrho_0 > 0$ is the 2π periodic function and its integral curve is closed. We have

$$
\int_{0}^{\varphi+2\pi} \frac{\sin u du}{2 - a \sin 2u} = \int_{0}^{2\pi} \frac{\sin u du}{2 - a \sin 2u} + \int_{2\pi}^{\varphi+2\pi} \frac{\sin u du}{2 - a \sin 2u}
$$

$$
= \int_{0}^{\pi} \frac{\sin u du}{2 - a \sin 2u} - \int_{\pi}^{2\pi} \frac{\sin u du}{2 - a \sin 2u} + \int_{0}^{\varphi} \frac{\sin(2\pi + u) du}{2 - a \sin 2(2\pi + u)}
$$

$$
= \int_{0}^{\pi} \frac{\sin du}{2 - a \sin 2u} - \int_{0}^{\pi} \frac{\sin u du}{2 - a \sin 2u} + \int_{0}^{\varphi} \frac{\sin u du}{2 - a \sin 2u} = \int_{0}^{\varphi} \frac{\sin u du}{2 - a \sin 2u}
$$

which proves that $\rho(\varphi) = \rho(\varphi + 2\pi)$.

Example 2.13. Solve the following differential equation

$$
\frac{dy}{dx} = \frac{4x^6 - y^4}{2x^4y}.
$$

Let $x(y)$ assign the weight $\alpha(\beta)$. Then

$$
F(x, y) = \frac{4\sigma^{6\alpha} x^6 - \sigma^{4\beta} y^4}{2\sigma^{4\alpha + \beta} x^4 y} = \sigma^{\beta - \alpha} \frac{4x^6 - y^4}{2x^4 y}.
$$

This equation is satisfied when

$$
6\alpha - 4\alpha - \beta = 4\beta - 4\alpha - \beta = \beta - \alpha
$$

which means that $\beta/\alpha = 3/2$. Therefore, it has been proved that the studied equation is homogeneous. In order to separate its values, the following variable is introduced $y = zx^{\frac{3}{2}}$. We obtain

$$
\frac{dz}{dx}x^{\frac{3}{2}} + \frac{3}{2}x^{\frac{1}{2}}z = \frac{4x^6 - z^4x^6}{2x^4zx^{\frac{3}{2}}},
$$

and multiplying both sides by $x^{-\frac{1}{2}}$ we get

$$
x\frac{dz}{dx} + \frac{3}{2}z = \frac{4-z^4}{2z}
$$

or equivalently

$$
\frac{2zdz}{(z^2+4)(z^2-1)} + \frac{dx}{x} = 0, \quad z \neq \pm 1.
$$

Direct integration yields

$$
\ln \frac{|z^2 - 1|}{z^2 + 4} + 5 \ln |x| = \ln C. \tag{*}
$$

In order to verify the obtained result we use the following differentiation formulas:

$$
(\ln|y|)' = \frac{y'}{y}, \quad y = \frac{u}{v}, \quad u = z^2 - 1, \quad v = z^2 + 4.
$$

2.4 Linear Equations 27

Since

$$
y' = \left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v} = \frac{2z(z^2 + 4) - 2z(z^2 - 1)}{(z^2 + 4)} = \frac{10z}{(z^2 + 4)^2},
$$

hence

$$
\frac{y'}{y} = \frac{10z}{(z^2 + 4)(z^2 - 1)}.
$$

Full differentiation of $(*)$ yields

$$
\frac{10zdz}{(z^2+4)(z^2-1)} + \frac{5}{x}dx = 0.
$$

Formula $(*)$ yields

$$
\frac{z^2 - 1}{z^2 + 4} x^5 = C.
$$

Since $z^2 = y^2/x^3$, therefore

$$
\frac{y^2 - x^3}{y^2 + 4x^3} x^5 = C.
$$

2.4 Linear Equations

Linear first-order ODE has the following form

$$
\frac{dy}{dx} + a(x)y = f(x).
$$
 (2.21)

There exist three different methods yielding a solution of Eq. [\(2.21\)](#page-14-0)

(i) *The Lagrange method.* This method is based on a constant variation. We consider first a homogeneous equation associated with (2.21) of the form

$$
\frac{dy}{dx} + a(x)y = 0,\t(2.22)
$$

and its solution is

$$
y = C \exp\left[-\int a(x)dx\right].
$$
 (2.23)

We are looking for solution to Eq. [\(2.21\)](#page-14-0) by variation of the constant $C =$ $C(x)$, namely

$$
y = C(x) \exp\left[-\int a(x)dx\right].
$$
 (2.24)

Substituting (2.24) to (2.21) we obtain

$$
\frac{dC(x)}{dx} = f(x) \exp\left[\int a(x)dx\right],\tag{2.25}
$$

and hence

$$
C(x) = C + \int \left[f(x) \exp \left[\int a(x) dx \right] \right] dx, \tag{2.26}
$$

where C is the arbitrary constant.

Finally, substitution of (2.26) into (2.24) yields

$$
y = \exp\left[-\int a(x)dx\right] \left\{C + \int \left[f(x)\exp\left(\int a(x)dx\right)\right]\right\}.
$$
 (2.27)

Any solution passing through the point (x_0, y_0) can be written in the following form

$$
y = \exp\left[-\int\limits_{x_0}^x a(z)dz\right] \left\{y_0 + \int\limits_{x_0}^x f(u) \left[\exp\left(\int\limits_{x_0}^u a(x)dx\right)du\right]\right\}.
$$
\n(2.28)

(ii) *The Bernoulli method.* We are looking for a solution of [\(2.21\)](#page-14-0) in the following form

$$
y = u(x)v(x). \tag{2.29}
$$

Substitution of (2.29) to (2.21) gives

$$
\frac{du}{dx}v + u\frac{dv}{dx} + a(x)uv = f(x).
$$
 (2.30)

If we take $u(x)$ as the solution of equation

$$
\frac{du}{dx} + a(x)u = 0,\t(2.31)
$$

then

$$
u(x) = \exp\left[-\int a(x)dx\right].
$$
 (2.32)

Substituting (2.32) into (2.30) gives

$$
\exp\left[-\int a(x)dx\right]\frac{dv}{dx} = f(x),\tag{2.33}
$$

and therefore

$$
v(x) = C + \int f(x) \exp\left[\int a(x) dx\right] dx, \tag{2.34}
$$

where C is a constant.

(iii) *The method of an integrating multiplier.* We multiply both parts of Eq. [\(2.21\)](#page-14-0) by $\exp\left(\int a(x)dx\right)$, and we get

$$
\frac{d}{dx}\left[y\exp\left(\int a(x)dx\right)\right] = f(x)\exp\left(\int a(x)dx\right) \tag{2.35}
$$

or equivalently

$$
y = \exp\left(-\int a(x)dx\right)\left[C + \int f(x)\exp\left(\int a(x)dx\right)dx\right]
$$
 (2.36)

Equation of the form

$$
A(y) + [B(y)x - C(y)]\frac{dy}{dx} = 0
$$
\n(2.37)

can be transformed to the form [\(2.21\)](#page-14-0). We multiply both sides by $\frac{1}{A} \frac{dx}{dy}$ and we get

$$
\frac{dx}{dy} + \alpha(y)x = \beta(y) \tag{2.38}
$$

where

$$
\alpha(y) = \frac{B}{A}, \quad \beta(y) = \frac{C}{A}.
$$
\n(2.39)

It should be emphasized that equations of the form

$$
F'(y)\frac{dy}{dx} + F(y)a(x) = b(x),
$$
 (2.40)

where \prime denotes $\frac{d}{dy}$ can be transformed to the linear equation by introduction of the relation $u = f(y)$.

A particular role in theory of first-order differential equations play *the Bernoulli and Riccati equations*. The equation

$$
\frac{dy}{dx} + a(x)y = b(x)y^n, n \neq 0, 1
$$
\n(2.41)

is called *the Bernoulli equation*. It is transformed to the following form

$$
y^{-n}\frac{dy}{dx} + a(x)y^{1-n} = b(x), y \neq 0,
$$
 (2.42)

and it is reduced to a linear equation via the variable change $u = y^{1-n}$. This approach will be illustrated through examples. One may also apply here *the Bernoulli method*.

The equation

$$
\frac{dy}{dx} + a(x)y + b(x)y^{2} = C(x)
$$
\n(2.43)

is called a *Riccati equation*. In general it cannot be solved in quadratures. However, if one of its particular solutions is known, say $y_1(x)$ then the transformation $y =$ $y_1 + u$ allows reduction of the problem to that of finding solution to the Bernoulli equation.

Example 2.14. A current in the electrical network with the resistance R, induction L and excitation voltage $u(t) = u_0 \sin \omega t$ is governed by the following equation

$$
L\frac{di}{dt} + Ri = u_0 \sin \omega t, \quad i(0) = 0.
$$

Find $i = i(t)$.

We have

$$
\frac{di}{dt} + \alpha i = \beta \sin \omega t,
$$

where $\alpha = \frac{R}{L}, \beta = \frac{u_0}{L}$. We apply here *the Bernoulli method*, i.e. we assume

$$
i(t) = u(t)v(t).
$$

Substitution of $i(t)$ into the governing equation yields

$$
\frac{du}{dt}v + u\frac{dv}{dt} + \alpha uv = \beta \sin \omega t.
$$
 (*)

We consider a solution of the homogeneous equation

$$
\frac{du}{dt} + \alpha u = 0
$$

2.4 Linear Equations 31

of the form

$$
u=\exp(-\alpha t).
$$

We substitute it to (*) and we obtain $\frac{dv}{dt} = \beta e^{\alpha t} \sin \omega t$, what means that

$$
v(t) = \beta \left[\int e^{\alpha t} \sin \omega t \, dt + C \right].
$$

We successively compute

$$
V(t) = \int e^{\alpha t} \sin \omega t dt = -e^{\alpha t} \frac{1}{\omega} \cos \omega t + \frac{\alpha}{\omega} \int e^{\alpha t} \cos \omega t dt
$$

= $-\frac{1}{\omega} e^{\alpha t} \cos \omega t + \frac{\alpha}{\omega^2} e^{\alpha t} \sin \omega t - \frac{\alpha^2}{\omega^2} \int e^{\alpha t} \sin \omega t dt$
= $-\frac{1}{\omega} e^{\alpha t} \cos \omega t + \frac{\alpha}{\omega^2} e^{\alpha t} \sin \omega t - \frac{\alpha^2}{\omega^2} V(t),$

and therefore

$$
V(t) = \frac{e^{\alpha t}(-\omega \cos \omega t + \alpha \sin \omega t)}{\omega^2 + \alpha^2}.
$$

Finally, we find

$$
v(t) = \beta \left[\frac{e^{\alpha t} (-\omega \cos \omega t + \alpha \sin \omega t)}{\omega^2 + \alpha^2} + C \right],
$$

and

$$
i(t) = u(t)v(t) = \beta \left(\frac{-\omega \cos \omega t + \alpha \sin \omega t}{\omega^2 + \alpha^2} + Ce^{-\alpha t} \right).
$$

Since $i(0) = 0, C = \frac{\omega}{\omega^2 + \alpha^2}$, and therefore

$$
i(t) = \frac{\beta}{\omega^2 + \alpha^2} (-\omega \cos \omega t + \alpha \sin \omega t + \omega e^{-\alpha t}).
$$

Observe that

$$
\lim_{t \to \infty} i(t) = \frac{u_0}{L(\omega^2 + \alpha^2)} (-\omega \cos \omega t + \alpha \sin \omega t) = \frac{u_0}{\sqrt{(L\omega)^2 + R^2}} \sin(\omega t - \varphi),
$$

where $\tan\varphi = \frac{\omega}{\alpha}$ denotes the initial current phase.

Example 2.15. Show that equation

$$
\frac{dy}{dx} + \alpha y = f(x), \quad \alpha > 0,
$$

possesses only one bounded solution assuming that $f(x)$ is bounded for all $x \in \mathbb{R}$. Find this solution, and show that if $f(x + x_0) = f(x)$, then $y(x) = y(x + x_0)$, where x_0 is a period.

First we find a solution to the homogeneous equation

$$
\frac{dy}{dx} + \alpha y = 0.
$$

After variables separation we get

$$
\frac{dy}{y} = -\alpha dx,
$$

and hence

$$
\ln|y| + \alpha x = \ln C,
$$

which means that

$$
y = Ce^{-\alpha x}
$$

assuming that $y \neq 0$.

We apply here *the Lagrange's method*. Namely, we have

$$
y(x) = C(x)e^{-\alpha x},
$$

and substitution of $y(x)$ into the governing equation gives

$$
\frac{dC}{dx} = e^{\alpha x} f(x).
$$

It means that

$$
C(x) = C(x_0) + \int_{x_0}^{x} e^{\alpha z} f(z) dz.
$$

The sought solution has the following form

$$
y(x) = C(x_0)e^{-\alpha x} + \int_{x_0}^{x} e^{-\alpha(x-z)} f(z)dz.
$$
 (*)

Assuming $y(x_0) = y_0$ we obtain

$$
y_0=C(x_0)e^{-\alpha x_0},
$$

or equivalently

$$
C(x_0)=y_0e^{\alpha x_0}.
$$

Therefore, solution $(*)$ takes the following form

$$
y(x) = e^{-\alpha(x-x_0)} y_0 + \int_{x_0}^x e^{-\alpha(x-z)} f(z) dz.
$$

We multiply both sides of the last equation by $e^{\alpha(x-x_0)}$ to get

$$
e^{\alpha(x-x_0)}y(x) = y_0 + \int_{x_0}^x e^{\alpha(z-x_0)}f(z)dz.
$$

We consider the case $x \to -\infty$ (the case of $x \to +\infty$ can be studied in the similar way). We have

$$
\lim_{x \to -\infty} e^{\alpha(x-x_0)} y(x) = y_0 + \int_{x_0}^{-\infty} e^{\alpha(z-x_0)} f(z) dz,
$$

and hence

$$
y_0 = \int_{-\infty}^{x_0} e^{\alpha(z-x_0)} f(z) dz,
$$

because for a bounded solution $\lim_{x \to -\infty} e^{\alpha(x - x_0)} y(x) = 0$. It means that

$$
\lim_{x \to -\infty} y(x) = Y(x) = \int_{-\infty}^{x} \exp(-\alpha(x - z)) f(z) dz \qquad (*)
$$

is bounded, assuming that $f(z)$ is bounded.

In what follows we show that $Y(x)$ is the only bounded solution of the studied equation. Let us assume that there exists one more bounded solution denoted by $Y_*(x)$. It means that the difference

$$
\Delta Y = Y(x) - Y_*(x)
$$

is bounded. We also have

$$
\frac{dY}{dx} + \alpha Y = f(x),
$$

$$
\frac{dY_*}{dx} + \alpha Y_* = f(x),
$$

which means that

$$
\frac{d(\Delta Y)}{\Delta Y} + \alpha(\Delta Y) = 0,
$$

and hence

$$
\Delta Y(x) = Ce^{\alpha x}.
$$

Owing to our introduced assumption $\Delta Y(x)$ is bounded for all $x \in \mathbb{R}$, which means that $Ce^{\alpha x}$ must be bounded. This is true only if $C = 0$, which yields $Y(x) = Y_*(x)$.

Let us now show that if $f(x + x_0) = f(x)$ than $Y(x) = Y(x + x_0)$. It follows from $(**)$ that

$$
Y(x + x_0) = \int_{-\infty}^{x + x_0} e^{-\alpha(x + x_0 - z)} f(z) dz = \int_{-\infty}^{x} e^{-\alpha(x - \tau)} f(\tau + x_0) d\tau
$$

=
$$
\int_{-\infty}^{x} e^{-\alpha(x - \tau)} f(\tau) d\tau = Y(x).
$$

 \Box

Example 2.16. Solve the following Bernoulli equation

$$
x\frac{dy}{dx} + y = y^2 \ln x.
$$

We use the Bernoulli method, and we look for a solution of the form

$$
y = u(x)v(x).
$$

Substitution of $y(x)$ into the studied equation yields

$$
xu\frac{dv}{dx} + xv\frac{du}{dx} + uv = u^2v^2\ln x
$$
 (*)

We take

$$
x\frac{du}{dx} + u = 0,
$$

2.4 Linear Equations 35

and hence

$$
u=\frac{1}{x}.
$$

Substituting this result into $(*)$ we get

$$
x^2\frac{dv}{dx} = v^2 \ln x,
$$

and hence

$$
\frac{1}{v^2}dv = \frac{1}{x^2}\ln x dx.
$$

Integration of the last obtained equation gives

$$
-\frac{1}{v} = \int \frac{\ln x}{x^2} dx = -\frac{\ln x}{x} - \frac{1}{x} - C,
$$

which means that

$$
v(x) = \frac{x}{1 + Cx + \ln x},
$$

and finally

$$
y(x) = u(x)v(x) = \frac{1}{1 + Cx + \ln x}.
$$

Example 2.17. Solve the following Bernoulli equation

$$
(1+x^2)\frac{dy}{dx} - 2xy = 4\sqrt{y(1+x^2)}\arctan x.
$$

Assuming

$$
y(x) = u(x)v(x)
$$

we get

$$
(1+x^2)\left(\frac{du}{dx}v + u\frac{dv}{dx}\right) - 2xuv = 4\sqrt{uv(1+x^2)}\arctan x
$$

or equivalently

$$
(1+x^2)\frac{du}{dx}v + (1+x^2)\left(\frac{dv}{dx} - \frac{2x}{1+x^2}v\right)u = 4\sqrt{uv(1+x^2)}\arctan x.
$$

We take an arbitrary solution to the equation

$$
\frac{dv}{dx} - \frac{2x}{1+x^2}v = 0,
$$

i.e. for example the following one

$$
v(x) = 1 + x^2.
$$

Therefore, we get

$$
(1+x^2)^2 \frac{du}{dx} = 4(1+x^2) \sqrt{u} \arctan x.
$$

One of the solution is $u = 0$, and the other solutions are found through the successive transformations

$$
\frac{du}{dx} = \frac{4\arctan x}{1 + x^2} \sqrt{u},
$$

$$
\frac{du}{2\sqrt{u}} = \frac{2\arctan x}{1 + x^2} dx,
$$

$$
\sqrt{u} = \arctan^2 x + C.
$$

Finally, the solutions are

$$
y = 0,
$$

\n $y = (1 + x^2)(\arctan^2 x + C)^2.$

Example 2.18. Solve the following Riccati equation

$$
\frac{dy}{dx} + y^2 = \frac{2}{x^2}.
$$

Let us look for a particular solution of the form

$$
y_1 = \frac{A}{x}.
$$

Substituting y_1 into the studied equation yields

$$
-\frac{A}{x^2} + \frac{A^2}{x^2} = \frac{2}{x^2}.
$$

2.4 Linear Equations 37

The second-order algebraic equation yields two roots $A_1 = -1$, $A_2 = 2$. Let us introduce a new variable *z* of the form

$$
y = z - \frac{1}{x},
$$

and therefore

$$
\frac{dz}{dx} + \frac{1}{x^2} + z^2 - \frac{2z}{x} + \frac{1}{x^2} = \frac{2}{x^2},
$$

or equivalently

$$
\frac{dz}{dx} - \frac{2}{x}z = -z^2.
$$

We multiply both sides of the obtained equation by x^2 to get

$$
x\frac{d}{dx}(zx) = 3zx - (zx)^2.
$$

We take

 $zx = u$,

and integrate the following equation

$$
x\frac{du}{dx} = u(3-u).
$$

Separation of the variables yields

$$
\frac{du}{u(3-u)} = \frac{dx}{x}.
$$

Since

$$
\frac{1}{u(3-u)} = \frac{1}{3u} + \frac{1}{3(3-u)},
$$

therefore

$$
\frac{1}{3}\int \frac{du}{u} + \frac{1}{3}\int \frac{du}{3-u} = \int \frac{dx}{x},
$$

and consequently

$$
\frac{1}{3} [\ln |u| - \ln |3 - u|] = \ln |x| + \ln C_1, \qquad C_1 > 0.
$$

Finally, we find

$$
\ln\left|\frac{u}{3-u}\right| = 3\ln|C_1x|,
$$

or

$$
\ln\left|\frac{u}{3-u}\right| = \ln|(C_1x)^3|.
$$

We consider two cases:

(i)

$$
\frac{u}{3-u}\geq 0.
$$

In this case we have

$$
\frac{u}{3-u} = Cx^3,
$$

which means that

$$
\frac{zx}{3 - zx} = Cx^3,
$$

and hence

$$
z = \frac{3Cx^2}{Cx^3 + 1}.
$$

We finally get

$$
y = z - \frac{1}{x} = \frac{2}{x}
$$

and

$$
y = \frac{3Cx^2}{Cx^3 + 1} - \frac{1}{x} = \frac{2Cx^3 - 1}{x(1 + Cx^3)}.
$$

(ii)

$$
\frac{u}{3-u}<0.
$$

In this case we have

$$
\frac{u}{u-3} = Cx^3,
$$

2.5 Exact Differential Equations 39

which means that

$$
zx = C(zx - 3)x^3,
$$

and hence

$$
z = \frac{3Cx^2}{Cx^3 - 1}.
$$

We finally obtain

$$
y = \frac{2}{x}
$$

and

$$
y = \frac{2Cx^3 + 1}{x(Cx^3 - 1)}
$$

2.5 Exact Differential Equations

The differential equation

$$
M(x, y)dx + N(x, y)dy = 0
$$
\n^(2.44)

is called an *exact differential equation* if its left-hand side is the full differential of a certain function $V(x, y)$ such that

$$
dV(x, y) \equiv \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy = M(x, y) dx + N(x, y) dy = 0.
$$
 (2.45)

A necessary condition that Eq. [\(2.44\)](#page-26-0) is exact one follows

$$
\frac{\partial M(x, y)}{\partial y} = \frac{\partial N(x, y)}{\partial x}.
$$
 (2.46)

If $V(x, y)$ is known than all solutions of [\(2.44\)](#page-26-0) satisfy the condition

$$
V(x, y) = C,\t(2.47)
$$

where C is an arbitrary constant.

We show how we can find the function $V(x, y)$. Since

$$
\frac{\partial V}{\partial x} = M(x, y), \quad \frac{\partial V}{\partial y} = N(x, y), \tag{2.48}
$$

then

$$
V(x, y) = \int M(x, y)dx = \psi(x, y) + \psi(y).
$$
 (2.49)

We differentiate [\(2.49\)](#page-27-0) to get

$$
\frac{\partial \psi(x, y)}{\partial y} + \frac{\partial \psi(y)}{\partial y} = N(x, y). \tag{2.50}
$$

In some cases the general form given by (2.44) can be transformed to an exact differential equation by introduction of a so-called integrating multiplier $m(x, y)$ [208]. In Eq. [\(2.46\)](#page-26-1) we introduce $m(x, y)$, and we obtain the following exact differential equation

$$
\frac{\partial}{\partial y}(mM) = \frac{\partial}{\partial x}(mN),\tag{2.51}
$$

which means that m should satisfy the following equation

$$
m\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = N\frac{\partial m}{\partial x} - M\frac{\partial m}{\partial y}.
$$
 (2.52)

The obtained general form (2.52) can be simplified in the following cases

(i) If $m(x, y) = m(x)$ then

$$
\frac{1}{m}\frac{dm}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}.
$$
\n(2.53)

(ii) If $m(x, y) = m(y)$ then

$$
-\frac{1}{m}\frac{dm}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{M}.
$$
 (2.54)

(iii) If $m(x, y) = m(r(x, y))$, where $r(x, y)$ is a known function then

$$
\frac{1}{m}\frac{dm}{dr} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N\frac{\partial r}{\partial x} - M\frac{\partial r}{\partial y}}.\tag{2.55}
$$

Example 2.19. Solve the differential equation

$$
(2xy + 3y2)dx + (x2 + 6xy - 3y2)dy = 0.
$$

We have

$$
M(x, y) = 2xy + 3y^2, N(x, y) = x^2 + 6xy - 3y^2,
$$

2.5 Exact Differential Equations 41

and hence

$$
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 2x + 6y.
$$

It means that the left-hand side of the differential equation is a full differential of a certain function $V(x, y)$.

We have

$$
\frac{\partial V}{\partial x} = 2xy + 3y^2, \quad \frac{\partial V}{\partial y} = x^2 + 6xy - 3y^2.
$$

First equation of the above yields

$$
V(x, y) = x^2y + 3xy^2 + \psi(y).
$$

We differentiate the last equation with respect to y and thus

$$
\frac{\partial V}{\partial y} = x^2 + 6xy + \frac{\partial \psi(y)}{\partial y} = x^2 + 6xy - 3y^2.
$$

It means that

$$
\psi(y) = -y^3 + C.
$$

Hence

$$
V(x, y) = x^2y + 3xy^2 - y^3 + C,
$$

and a general solution to the studied ODE is defined implicitly by the equation

$$
x^2y + 3xy^2 - y^3 = C.
$$

 \Box

Example 2.20. Solve the differential equation

$$
2x\left(1+\sqrt{x^2-y}\right)dx-\sqrt{x^2-y}dy=0.
$$

Observe that

$$
\frac{\partial}{\partial y}[2x(1+\sqrt{x^2-y})] = \frac{\partial}{\partial x}(-\sqrt{x^2-y}) = -\frac{x}{\sqrt{x^2-y}},
$$

and hence we deal with the exact differential equation. We have

$$
\frac{\partial V}{\partial x} = 2x(1 + \sqrt{x^2 - y}), \quad \frac{\partial V}{\partial y} = -\sqrt{x^2 - y}, \quad (*)
$$

and integration of the first equation yields

$$
V(x, y) = \int (2x + 2x\sqrt{x^2 - y})dx = x^2 + \frac{2}{3}(x^2 - y)^{\frac{3}{2}} + \psi(y).
$$

Substitution of $V(x, y)$ into the second equation of $(*)$ gives

$$
\frac{\partial}{\partial y}[x^2 + \frac{2}{3}(x^2 - y)^{\frac{3}{2}} + \psi(y)] = -\sqrt{x^2 - y},
$$

or equivalently

$$
-\sqrt{x^2-y} + \frac{d\psi}{dy} = -\sqrt{x^2-y},
$$

which means that

$$
\psi(y)=C.
$$

Finally, we have

$$
V(x, y) = x^2 + \frac{2}{3}(x^2 - y)^{\frac{3}{2}},
$$

and a general solution to the studied differential equation is

$$
x^2 + \frac{2}{3}(x^2 - y)^{\frac{3}{2}} = C
$$

or

$$
y = x^2 - \left[\frac{3}{2}(C - x^2)\right]^{\frac{2}{3}}.
$$

 \Box

Example 2.21. A mirror reflects solar radiation in a way that a light ray coming from a source 0 after the reflection is parallel to a given direction $0X$, which is the rotation axis. Figure [2.2](#page-30-0) shows a scheme of the light ray 0A coming from the light source 0, and the rectangular coordinates $0XY$. Derive the mirror shape analytically.

Since A belongs to the mirror surface, the marked angles φ before and after reflection are equal, and $n(t)$ denotes a normal (tangent) to the curve being intersection of the mirror and surface 0XY .

Owing to the reflection principle (the angle of incidence is equal to the reflection angle) $0A = 0B$, and hence

$$
\tan\varphi = \frac{AA'}{B0 + 0A'} = \frac{AA'}{\sqrt{(0A')^2 + (A'A)^2} + 0A'},
$$

Fig. 2.2 The mirror shape $y(x)$ and light rays

or equivalently

$$
\frac{dy}{dx} = \frac{y}{x + \sqrt{x^2 + y^2}}.
$$

We may rewrite the latter equation in the following way

$$
xdx + ydy = \sqrt{x^2 + y^2}dx,
$$

because

$$
dy = \frac{y(x - \sqrt{x^2 + y^2})}{(x + \sqrt{x^2 + y^2})(x - \sqrt{x^2 + y^2})} dx = \frac{x - \sqrt{x^2 + y^2}}{-y} dx.
$$

Applying the integrating multiplier

$$
m(x, y) = \frac{1}{\sqrt{x^2 + y^2}},
$$

we get

$$
\frac{xdx + ydy}{\sqrt{x^2 + y^2}} - dx = 0
$$

or equivalently

$$
\frac{d(x^2 + y^2)}{2\sqrt{x^2 + y^2}} - dx = 0.
$$

It means that

$$
\sqrt{x^2 + y^2} = x + C,
$$

which allows to find the mirror surface as a paraboloid that intersects with the surface $0XY$ yielding a parabola governed by the equation

$$
y^2 = 2Cx + C^2.
$$

 \Box

Example 2.22. Solve the differential equation

$$
ydx - (x + x^2 + y^2)dy = 0
$$

assuming the integrating multiplier $m = m(r(x, y))$, where $r(x, y) = x^2 + y^2$.

We apply formula (2.55) directly, and we get

$$
\frac{1}{m}\frac{dm}{dr} = \frac{1+1+2x}{-2(x+x^2+y^2)x-2y^2} = \frac{2(1+x)}{-2(1+x)(x^2+y^2)} = -\frac{1}{r}.
$$

Therefore, the following differential equation is obtained

$$
\frac{dm}{m} + \frac{dr}{r} = 0,
$$

which yields

$$
m(x, y) = \frac{1}{r(x, y)} = \frac{1}{x^2 + y^2}.
$$

Now, we multiply by m the studied differential equation to get

$$
\frac{ydx}{x^2 + y^2} - \left(\frac{x}{x^2 + y^2} + 1\right)dy = 0,
$$

which is an exact differential equation, i.e.

$$
\frac{\partial V}{\partial x} = \frac{y}{x^2 + y^2}, \quad \frac{\partial V}{\partial y} = -\left(\frac{x}{x^2 + y^2} + 1\right).
$$

Integration of the first equation in the above gives

$$
V(x, y) = \int \frac{y}{x^2 + y^2} dx = \arctan \frac{x}{y} + \psi(y),
$$

and hence

$$
\frac{\partial V}{\partial y} = \frac{\partial}{\partial y} \left(\arctan \frac{x}{y} + \psi(y) \right) = -\frac{x}{x^2 + y^2} - 1.
$$

It means that

$$
-\frac{1}{1+\frac{x^2}{y^2}}\frac{x}{y^2} + \frac{d\psi}{dy} = -\frac{x}{x^2 + y^2} - 1,
$$

and finally

$$
\frac{d\psi}{dy} = -1, \quad \psi(y) = -y + C_1,
$$

and

$$
V(x, y) = \arctan\frac{x}{y} - y + C_1.
$$

We have the following solutions: one given explicitly $y = 0$, and other given implicitly

$$
\arctan\frac{x}{y} - y = C.
$$

2.6 Implicit Differential Equations Not Solved with Respect to a Derivative

We consider here the differential equation (2.2) , which cannot be solved with respect to $\frac{dy}{dt}$, i.e. we cannot reduce the problem to that of Eq. [\(2.3\)](#page-1-1). It may happen, however, that Eq. (2.2) can be solved with respect to either x or y. In what follows we describe briefly the method of the parameter introduction yielding a solution in the latter case. Let

$$
y = f(x, y'), \quad y' \equiv \frac{dy}{dx} = p,
$$
 (2.56)

where *p* is *the introduced parameter*. The full differential of $y = f(x, y')$ follows

$$
pdx = \frac{\partial f}{\partial x}dx + \frac{\partial(x, p)}{\partial p}dp.
$$
 (2.57)

It means that we have got the exact differential equation form (2.44) , where

$$
M(x, y) = \frac{\partial f}{\partial x}, \quad N(x, y) = \frac{\partial(x, p)}{\partial p}.
$$
 (2.58)

In the previous section supplemented by many examples we have described various methods yielding solutions to Eq. [\(2.56\)](#page-32-0). Namely, we can take

$$
x = \psi(p, c), \quad y = f(x, p),
$$
 (2.59)

where $x = \psi(p, c)$ is the implicit form of solution governed by Eq. [\(2.56\)](#page-32-0).

Theorem 2.2. Suppose that the function $f(x, y, y')$ in a neighbourhood of the *point* (x_0, y_0, y'_0) , where y'_0 is one of the roots of the equation $f(x_0, y_0, y'_0) = 0$, *is continuous regarding* x *and it is continuously differentiable with respect to* y*,* y' , and $\frac{\partial f}{\partial y'}(x_0, y_0, y'_0) \neq 0$. Then there exists a unique solution $y = \psi'(x)$ of the Cauchy problem $f(x, y, y') = 0$, $y(x_0) = y_0$ *defined in a satisfactorily close* neighbourhood of the point x_0 , where $\psi'(x_0) = y'_0$.

Recall that the uniqueness of problem of Eq. [\(2.2\)](#page-1-0) means that the point (x_0, y_0) is a point of the solution uniqueness, i.e. there are no other integral curves of (2.2) which pass through the point (x_0, y_0) and have the same slope in this point. Otherwise, the solution uniqueness is violated.

Theorem [2.2](#page-33-0) yields sufficient conditions of a solution existence and uniqueness for Eq. [\(2.2\)](#page-1-0).

Assuming that the function $f(x, y, y')$ is continuous with respect to x and continuously differentiable with respect to y and y' , then a possible set of singular points is defined via the following system of algebraic equations

$$
f(x, y, y') = 0,
$$

\n
$$
\frac{\partial f}{\partial y'}(x, y, y') = 0.
$$
\n(2.60)

It is required, while solving Eq. (2.2) to find singular solution, i.e. we remove y' from Eq. [\(2.60\)](#page-33-1) and we get a so-called discriminant-type curve. Each branch of this curve should be verified if it is a solution to Eq. (2.2) . Assuming a positive reply, our next step consists of checking if its points correspond to the solution nonuniqueness.

The method of parameter introduction can be directly applied either to the so-called Claurait equation

$$
y = xy' + \psi(y'),
$$
 (2.61)

or to the so-called Lagrange equation

$$
y = x\varphi(y') + \psi(y').
$$
 (2.62)

Example 2.23. Solve the following Claurait equation

$$
\sqrt{(y')^2 + 1} + xy' - y = 0.
$$

We introduce $p = y'$ to get

$$
y = xp + \sqrt{1 + p^2}.
$$

Differentiation of the last equation with respect to x yields

$$
\frac{dy}{dx} = p + x\frac{dp}{dx} + \frac{p\frac{dp}{dx}}{\sqrt{1 + p^2}},
$$

and hence

$$
\left(x + \frac{p}{\sqrt{1 + p^2}}\right) \frac{dp}{dx} = 0.
$$

It means that either

$$
x = -\frac{p}{\sqrt{1 + p^2}}.
$$

or

$$
p=C.
$$

A solution to the problem is as follows:

$$
y = Cx + \sqrt{1 + C^2}
$$

or equivalently

$$
x = -\frac{p}{\sqrt{1+p^2}},
$$

$$
y = px + \sqrt{1+p^2}.
$$

 \Box

Example 2.24. Solve the following Lagrange equation

$$
y' + y = x(y')^2.
$$

It is easily solved with respect to y , i.e.

$$
y = x(y')^2 - y'
$$

or equivalently

$$
y = xp^2 - p,
$$

where $p = y'$. Differentiation of this algebraic equation yields

$$
p \equiv \frac{dy}{dx} = p^2 + 2px\frac{dp}{dx} - \frac{dp}{dx},
$$

or equivalently

$$
p(p-1)\frac{dx}{dp} = (1-2px),
$$

$$
\frac{dx}{dp} + \frac{2x}{p-1} = \frac{1}{p(p-1)}.
$$

In other words, the problem has been reduced to a linear differential equation with the following solution

$$
x = \frac{p - \ln p + C}{(p - 1)^2}.
$$

Example 2.25. Derive an equation governing a family of equipotential curves of the electric field generated by a dipole. Recall that the equipotential curves are orthogonal to force curves of the electric field (see Example [2.3\)](#page-2-0).

As it has been shown previously in Example [2.3,](#page-2-0) we have

$$
\left(\frac{x-a}{r_2^3} - \frac{x+a}{r_1^3}\right)\frac{dy}{dx} - \left(\frac{1}{r_2^3} - \frac{1}{r_1^3}\right) = 0,
$$

where

$$
r_1^2 = (x+a)^2 + y^2, \quad r_2^2 = (x-a)^2 + y^2. \tag{*}
$$

We may generalize the studied case in Example [2.3.](#page-2-0) Namely, we began with the algebraic problem governed by the following equation

$$
F(x, y, a) = 0,
$$

where

$$
F(x, y, a) = \frac{x + a}{\sqrt{(x + a)^2 + y^2}} - \frac{x - a}{\sqrt{(x - a)^2 + y^2}} - C.
$$

For a given C , we have a family of one parameter curves. In what follows we define another family of the *isogonal curves*, which interset the first family curves with the same angle φ , for $\varphi = \pi/2$ we say that both trajectories (curves) are orthogonal.

We differentiate the algebraic equation to get

$$
\frac{dF}{dx} \equiv \frac{\partial F(x, y, a)}{\partial x} + \frac{\partial F(x, y, a)}{\partial y} \frac{dy}{dx} = 0.
$$

We may also exclude the parameter a using the equation $F = 0$. In our case we have

$$
\frac{\partial F}{\partial x} = \left(\frac{1}{r_2^3} - \frac{1}{r_1^3}\right) y, \quad \frac{\partial F}{\partial y} = \frac{x - a}{r_2^3} - \frac{x - a}{r_1^3}.
$$

In Fig. [2.3](#page-36-0) two curves belonging to both families are shown intersecting in the point $A = A(x, y)$.

The angle between two curves at point A is φ (known), which is given by the formula

$$
\pi=\alpha+\varphi+\pi-\beta.
$$

Therefore, we get

$$
\tan\beta = \tan(\alpha + \varphi) = \frac{\tan\alpha + \tan\varphi}{1 - \tan\alpha \tan\varphi}.
$$

We apply the following notation $\tan \alpha = y'$, $\tan \beta = y'_*, \tan \varphi = m$, and hence

$$
y'_{*} = \frac{y' + m}{1 - my'}.
$$

In a case of orthogonal trajectories we have $\varphi = \pi/2$, and therefore

$$
\tan\beta = \frac{\tan\alpha + \tan\frac{\pi}{2}}{1 - \tan\alpha \tan\frac{\pi}{2}}
$$

"×

$$
= \lim_{\varphi \to \frac{\pi}{2}} \frac{1 + \frac{\tan \alpha}{\tan \varphi}}{\frac{1}{\tan \varphi} - \tan \alpha} = -\frac{1}{\tan \alpha}
$$

or equivalently

$$
y'_{*} = -\frac{1}{y'}.
$$

The so far consideration implies a simple recipe. In order to find a differential equations of the family of *isogonal trajectories* to the trajectories (curves) governed by equation $F(x, y, a) = 0$, we need to substitute the term $y' = \frac{dy}{dx}$ standing in equation $\partial F/\partial x + \partial F/\partial y y' = 0$, by the term y'_* . In a case for $\varphi = \frac{\pi}{2}$ (orthogonal trajectories) we substitute y' by $-\frac{1}{y'} = -\frac{dx}{dy}$.

In the studied case, using the so far described orthogonality property we obtain the following differential equation

$$
\left(\frac{x-a}{r_2^3} - \frac{x+a}{r_1^3}\right)\left(-\frac{1}{\frac{dy}{dx}}\right) - \left(\frac{1}{r_2^3} - \frac{1}{r_1^3}\right)y = 0,
$$

or equivalently

$$
(x-a)r_1^3 - (x+a)r_2^3 + y(r_1^3 - r_2^3)\frac{dy}{dx} = 0.
$$

From $(*)$ we get

$$
r_1 dr_1 = (x + a) dx + y dy,
$$

$$
r_2 dr_2 = (x - a) dx + y dy,
$$

therefore the problem is reduced to the following differential equation

$$
r_1^3r_2dr_2 = r_2^3r_1dr_1,
$$

which yields the following solution

$$
\frac{1}{r_2} - \frac{1}{r_1} = C,
$$

and hence

$$
\frac{1}{\sqrt{(x-a)^2 + y^2}} - \frac{1}{\sqrt{(x+a)^2 + y^2}} = C.
$$

 \Box