
Chapter 2
First-Order ODEs

Modelling of various problems in engineering, physics, chemistry, biology and
economics allows formulating of differential equations, where a being searched
function is expressed via its time changes (velocities). One of the simplest example
is that given by a first-order ODE of the form

dy

dt
D F.y/; (2.1)

where F.t/ is a known function, and we are looking for y.t/. Here by t we denote
time. In general, any given differential equation has infinitely many solutions.
In order to choose from infinite solutions those corresponding to a studied real
process, one should attach initial conditions of the form y.t0/ D y0.

In general, there is no direct rule/recipe for construction of an ODE. Let y D y.t/

be a dependence between t and y of the investigated process. We are going to
monitor the difference y.t C �t/ � y.t/ caused by the disturbance �t . Then, if
we take

Py � dy

dt
D lim

�t!0

y.t C�t/ � y.t/
�t

;

we obtain a differential equation, i.e. dependence of the process velocity in the point
t governed by the function F.y/.

There are also cases where a function y.t/ appears under an integral and the
obtained equation is called the integral equation, which in simple cases can be
transformed to a differential equation.
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14 2 First-Order ODEs

2.1 General Introduction

A differential equation of the form

f

�
t; y;

dy

dt

�
D 0 (2.2)

is called the first-order ordinary differential equation, where t is the independent
variable (here referred to time, but in general it can be taken as a space variable x),
and y.t/ is the unknown function to be determined. Observe that Eq. (2.2) is not
solved with respect to its derivative dy=dt . In many cases, however, one deals with
the following differential equation

dy

dt
D f .t; y/; (2.3)

which is called the first-order ODE solved with respect to the derivative. Alternati-
vely, one may deal often with the following form of first-order ODE

P.t; y/dt CQ.t; y/dy D 0; (2.4)

where P , Q are given functions.
We say that y D �.t/ is a solution to either (2.2) or (2.3) in an interval J , if

f

�
t; �.t/;

d�.t/

dt

�
� 0; (2.5)

or

d�.t/

dt
D f .t; �.t//; (2.6)

for all t 2 J .
One may also find a solution to Eq. (2.2) in the implicit form '.t; �.t//, where

�.t/ D y is a solution to Eq. (2.2). Solution in the form of '.t; �.t// is also referred
to as the integral of Eq. (2.2).

A graph of solution y D �.t/ of Eq. (2.2) is called the integral curve of the
studied differential equation. Projection of the solution graph onto the plane .t; y/
is called the phase curve (or trajectory) of the investigated first-order ODE.

A problem related to finding a solution y D �.t/ satisfying the initial condition
y.t0/ D y0 is called the Cauchy problem.

If we take a point .t; y/ for t 2 J , then a tangent line passing through this point
creates with the axis t an angle ˛, then tan˛ D f .t; y/. A family of all tangent
lines defines a direction field for the studied differential equation. If we draw a short
line segment possessing the slope f .t; y/ through each of representative collection
of points .t; y/, then all line segments constitute a slope field for the investigated
ODE.
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A curve constituting of points with the same slope field is called the isocline.
In other words all integral curves passing through an isocline intersect the axis t
with the same angle.

Example 2.1. Prove that the function y D �.t/ given in the parametric form t D
xex , y D e�x satisfies the following differential equation

.1C ty/
dy

dt
C y2 D 0:

We have

.1C ty/
dy

dt
C y2 D .1C xexe�x/

dy

dx

dx

dt
C e�2x

D � .1C x/e�x � 1

.1C x/ex
C e�2x D 0;

which proves that �.t/ satisfies the studied equation. ut
Example 2.2. Construct a differential equation of a family of ellipses of the
following canonical form

x2

a2
C y2

b2
D 1;

where 0 < b < a.

Acting by d=dx on both sides of this algebraic equation yields

x

a2
C y

dy

dx

b2
D 0:

Solving both equations we get

p
a2 � x2 dy

dx
C b

a
x D 0:

ut
Example 2.3. Construct a differential equation of the force lines of a dipole
constituted by two electric charges .Cq;�q/ located on the distance 2a, where the
force lines satisfy the Coulomb algebraic equation of the form

x C a

r1
� x � a

r2
D C;

where: r21 D .x C a/2 C y2; r22 D .x � a/2 C y2.
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A differentiation of the algebraic equation yields

r1 � .x C a/dr1
dx

r21
� r2 � .x � a/dr2

dx

r22
D 0;

and also

dr1

dx
D x C aC y

dy

dx

r1
;

dr2

dx
D x � aC y

dy

dx

r2
:

Finally, after a few of transformations we get

�
x � a
r32

� x � a
r31

�
dy

dx
C
�
1

r32
� 1

r31

�
y D 0:

ut
Example 2.4. How many solutions of the equation .x � 1/

dy

dx
C y D 0 defines the

relation

y.x � 1/ D C;

for each fixed C 2 R. Find the solutions associated with the initial conditions
y.0/ D 0; y.0/ D �1, y.2/ D 1. Define intervals of solution existence as well
as the corresponding integral and phase curves.

First we verify that '.x/ D C
x�1 satisfies the given differential equation. We have

'1.x/ D C
x�1 with x 2 .C;C1/ and '2.x/ D C

x�1 with x 2 .1;C1/.
The initial condition y.0/ D 0 is satisfied by the solution y D 0. Its integral

curve corresponds to the axis of abscissa, whereas its phase corresponds to a
projection of the integral curve into the axis of ordinates, i.e. the point y D 0.

In the case of y.0/ D �1 we find that C D 1. It means that the integral curve of
this solution corresponds the hyperbola branch y.x � 1/ D 1 for x 2 .�1; 1/. The
phase curve of this solution is the ray y < 0.

Finally, in the case y.2/ D 1 we obtain C D 1. Integral curve of the solution
y D 1

1�x is the hyperbola y.x � 1/ D 1 branch, where x 2 .1;C1/ phase curve is
the ray y > 0. ut

2.2 Separable Equation

The first-order differential equation of the form

dy

dx
D f .x/g.y/ (2.7)

is called a separable differential equation.
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If g.C0/ D 0 in the point y D C0, then the function y D C0 is the solution to
Eq. (2.7). If g.y/ ¤ 0, then the following relation is obtained

Z
dy

g.y/
�
Z
f .x/dx D C: (2.8)

Theorem 2.1. Let the function f .x/ and g.x/ are continuously differentiable in
the vicinity of points x D x0, y D y0 respectively, where g.y0/ ¤ 0. Therefore,
there is a unique solution y D �.x/ of Eq. (2.7) with the attached initial condition
�.x0/ D y0 in the vicinity of the point x D x0, satisfying the relationship

�.x/Z
y0

dy

g.y/
D

xZ
x0

f .x/dx:

If we have the equation

dy

dx
D f .ax C by C c/; (2.9)

then introducing a new variable

z D ax C by C c; (2.10)

we get

d z

dx
D bf .z/C a; (2.11)

i.e. the problem is reduced to Eq. (2.7).
One may use the following physical interpretation of the differential equation

dy

dx
D f .y/: (2.12)

Let us attach to each point y a vector of the length jf .y/j, which direction is
defined by the axis 0y providing that f .y/ > 0. Therefore, a set of all vectors
defines a vector field. The points f .y/ D 0 are called singular points of the vector
field (or its equilibrium positions in the case when we deal with time). Having drawn
the vector field of the given Eq. (2.12) one may draw schematically the integral
curves.

Example 2.5. Find a solution of the following differential equation

x.1C y2/C y.1C x2/
dy

dx
D 0:
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We transform the studied equation to the form
Z

xdx

1C x2
C
Z

ydy

1C y2
D 2 lnC

and hence after integration we get

ln.1C x2/C ln.1C y2/ D lnC;

which means that

.1C x2/.1C y2/ D C:

ut
Example 2.6. Solve the following ODE

dy

dx
C y D 2x C 1:

In order to transform the given ODE into that of separable variables we introduce
the following new variable

y � 2x � 1 D z;

and hence

d z

dx
C z C 2 D 0:

Separating variables and integrating we get
Z

d z

z C 2
C
Z
dx D 0;

which means that

ln jz C 2j C x D lnC0; jz C 2j D C0e
�x; C0 > 0:

Observe that z D �2 satisfies the studied equation directly, and therefore, all its
solutions are given by the following formula

z D �2C Ce�x; C 2 R;
and finally we get

y D 2x � 1C Ce�x:

ut
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In what follows we proceed with a few examples of real-world applications.

Example 2.7. A particle of mass m is subjected to action of a constant force, and
it moves with the constant acceleration a. The viscous damping of the surrounding
medium is c. Find the particle velocity providing that v.0/ D 0.

The second Newton law gives

dv.t/

dt
D ma � cv.t/

m
;

or equivalently

dv

dt
D � c

m
v C a:

The trivial (time independent solution) is

v.t/ D m

c
a;

and hence all solutions are given by the formula

v.t/ D m

c
aC Ce� c

m t

The initial condition allows to find C D �m
c
a, and finally

v.t/ D m

c
a
�
1 � e� c

m t
�
;

which means also that

lim
t!1 v.t/ D m

c
a:

ut
Example 2.8. A meteorite of mass M starts to move from its rest position into the
Earth centre linearly from the height h (Fig. 2.1). Determine the meteorite velocity,
when it touches the Earth surface assuming the Earth radius R.

Fig. 2.1 Meteorite
movement towards Earth
centre
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We denote by y D y.t/ the meteorite distance from its movement beginning
point y.0/ D 0, and by h � y.t/ we denote the meteorite distance from the Earth
centre in time instant t . The meteorite is subjected to action of two forces: Ma and
Mg. Owing to the Newton principle we have

Ma

R2
D Mg

.h � y/2 ;

and hence

a D gR2

.h � y/2 :

Therefore,

a D dv

dt
D dv

dy
� dy
dt

D dv

dy
v;

and the following governing ODE is obtained

v
dv

dy
D gR2

.h � y/2 ;

or equivalently

1

2

d.v/2

dy
D gR2

.h � y/2 :

Integration of the obtained equation yields

v2 D 2gR2

h � y C C:

Taking into account y.0/ D 0, we get C D � 2gR2

h
, and finally

v2 D 2gR2y

h.h � y/ :

On the Earth surface y D h �R, and we get

v D
s
2gR

�
1 � R

h

�

Taking into account that h!1, the last formula yields

v D p
2gR:

ut
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Example 2.9. Two substances A and B undergo a chemical reaction yielding a
substance C. We assume amount of the C substance by y.t/ in the time instant t
after the reaction, and we denote by ˛ and ˇ the amount of substance A and B, in
the beginning of reaction, respectively. Find dy

dt
assuming that the reaction velocity

is proportional to the product of reacting masses.

The governing equation is

dy

dt
D p.˛ � y/.ˇ � y/; p > 0;

and p is the proportionality coefficient. Separation of the variables yields

dy

y � ˛ � dy

y � ˇ D �p.ˇ � ˛/dt:

After integration one gets

y � ˛
y � ˇ D Ce�p.ˇ�˛/t :

Taking into account the initial condition y.0/ D 0 we obtain the constant
C D ˛=ˇ, i.e.

y � ˛
y � ˇ D ˛

ˇ
e�p.ˇ�˛/t ;

or equivalently

y.t/ D ˛ˇ
1 � e�p.ˇ�˛/t

ˇ � ˛e�p.ˇ�˛/t :

Observe that for ˇ > ˛ we have

lim
t!1y.t/ D ˛;

whereas for ˇ < ˛ we obtain

lim
t!1y.t/ D lim˛ˇ

ep.ˇ�˛/t � 1
ˇep.ˇ�˛/t � ˛ D ˇ:

In the case when ˛ D ˇ the governing equation is

dy

dt
D p.˛ � y/2:
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Separation of the variables of this equation and the integration allows to find the
following dependence

1

˛ � y D pt C C:

Since y.0/ D 0, therefore C D 1=˛. In this case the reaction B governed by the
equation

y.t/ D ˛

�
1 � 1

1C ˛pt

�
;

which for t!1 yield

lim
t!1y.t/ D ˛:

2.3 Homogenous Equations

A function F.x; y/ is called homogenous of order k, if for all � > 0 the following
property holds [208]

F.�x; �y/ D �kF.x; y/ (2.13)

For instance the functions

x C y

x � y ;
x2 C xy

y � x ; x2 C y2 C 2xy (2.14)

are homogenous of order k D 0; 1; 2;, respectively.
A differential equation

dy

dx
D F.x; y/ (2.15)

is called homogenous, if the function F.x; y/ is of order zero.
Equation

F1.x; y/dx C F2.x; y/dy D 0 (2.16)

is called homogeneous, if the function F1, F2 are homogeneous of the same order.
In the case of a homogeneous equation the introduction of a new variable

y D zx allows to get en equation with separable variables. One may use also polar
coordinates .%; '/ and by substitution x D % cos', y D % sin' again an equation
with separable variables is obtained.
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It should be mentioned that the equation

dy

dx
D F

�
a1x C b1y C c1

a2x C b2y C c2

�
(2.17)

can also be transformed to a homogeneous equation through the following linear
transformation

x D x0 CX; y D y0 C Y; (2.18)

where .x0; y0/ is the point of intersection of straight lines a1x C b1y C c1 D 0 and
a2x C b2y C c2 D 0. If the lines do not intersect then a1=b1 D a2=b2, and in this
case Eq. (2.17) is transformed to that with separable variables using

a1x C b2y C c1 D X: (2.19)

The function G.x; y/ is called quasi-homogenous of order k, if for certain ˛ and
ˇ the following relation holds

G.�˛x; �ˇy/ D �kG.x; y/; (2.20)

for all k > 0.
Exponents ˛, ˇ are called weights. We say that x.y/ has weight ˛.ˇ/, and for

instance 7x2y5 has the weight 2˛ C 5ˇ.
Differential equation (2.15) is called quasi-homogeneous if the associated func-

tion F.x; y/ is quasi-homogeneous with weights ˛ and ˇ of order ˇ � ˛, i.e.
F.�˛x; �ˇy/ D �ˇ�˛F.x; y/.

A quasi-homogeneous differential equation can be reduced to a homogeneous
one. However, in many practical cases one may use the direct variables change

y D zx
ˇ
˛ allowing to get an equation with separable variables.

Example 2.10. Find a solution of the following ODE

dy

dx
D xy C y2e

� x
y

x2
:

We introduce the new variable y D zx, and obtain

x
d z

dx
C z D z C z2e� 1

z ;

or equivalently

e
1
z

z2
d z D dx

x
:
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Integration of the last equation yields

�e 1z D ln jxj � C;
or equivalently

e
x
y C ln jxj D C:

ut
Example 2.11. Solve the following equation

dy

dx
D 2

�
y C 1

x C y � 2
�2
:

We introduce the following variables

y C 1 D Y; x � 3 D X;

and we get

dY

dX
D 2

Y 2

.X C Y /2
:

Now we introduce the following new variable

Y D uX;

and the following ODE is obtained

X
du

dX
C u D 2u2

.1C u/2
;

or equivalently

ln juj C 2arctanu C ln jX j D lnC;

which means that

uX D C exp.�2arctanu/:

In the original variable the solution is

.y C 1/ exp

�
2arctan

y C 1

x � 3
�

D C:

ut
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Example 2.12. Prove that integral curves of the equation

Œ2x.x2�axyCy2/�y2
p
x2 C y2�dxCyŒ2.x2�axyCy2/Cx

p
x2 C y2�dy D 0

are closed curves surrounding the coordinates origin for jaj < 2.

Since the studied equation is homogenous, then we introduce polar coordinates
to get

%3Œ2.1 � a sin' cos'/ cos' � sin2 '�.cos'd% � % sin'd'/

C%3Œ2 sin'.1 � a sin' cos'/C cos2 '�.sin'd%C % cos'd'/ D 0

or equivalently

2.1 � a sin' cos'/d%C % sin'd' D 0:

Separating the variables we obtain

d%

%
C sin'

2 � a sin 2'
d' D 0;

and after integration we get

ln %C
'Z
0

sin udu

2 � a sin 2u
D ln %0; %0 D %.0/;

or equivalently

% D %0 exp

0
@

'Z
0

sin u

2 � a sin 2u
du

1
A :

If we prove that the function
'R
0

sin udu
2�a sin 2u is periodic regarding ' with the period

2� , then % D %.'/ for arbitrary %0 > 0 is the 2� periodic function and its integral
curve is closed. We have

'C2�Z
0

sin udu

2 � a sin 2u
D

2�Z
0

sin udu

2 � a sin 2u
C

'C2�Z
2�

sin udu

2 � a sin 2u

D
�Z
0

sin udu

2 � a sin 2u
�

2�Z
�

sin udu

2 � a sin 2u
C

'Z
0

sin.2� C u/du

2 � a sin 2.2� C u/
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D
�Z
0

sin du

2 � a sin 2u
�

�Z
0

sin udu

2 � a sin 2u
C

'Z
0

sin udu

2 � a sin 2u
D

'Z
0

sin udu

2 � a sin 2u

which proves that %.'/ D %.' C 2�/. ut
Example 2.13. Solve the following differential equation

dy

dx
D 4x6 � y4

2x4y
:

Let x.y/ assign the weight ˛.ˇ/. Then

F.x; y/ D 4�6˛x6 � �4ˇy4
2�4˛Cˇx4y

D �ˇ�˛ 4x6 � y4
2x4y

:

This equation is satisfied when

6˛ � 4˛ � ˇ D 4ˇ � 4˛ � ˇ D ˇ � ˛

which means that ˇ=˛ D 3=2. Therefore, it has been proved that the studied
equation is homogeneous. In order to separate its values, the following variable is
introduced y D zx

3
2 . We obtain

d z

dx
x
3
2 C 3

2
x
1
2 z D 4x6 � z4x6

2x4zx
3
2

;

and multiplying both sides by x� 1
2 we get

x
d z

dx
C 3

2
z D 4 � z4

2z

or equivalently

2zd z

.z2 C 4/.z2 � 1/ C dx

x
D 0; z ¤ ˙1:

Direct integration yields

ln
jz2 � 1j
z2 C 4

C 5 ln jxj D lnC: (�)

In order to verify the obtained result we use the following differentiation
formulas:

.ln jyj/0 D y0

y
; y D u

v
; u D z2 � 1; v D z2 C 4:
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Since

y0 D
�u

v

�0 D vu0 � uv0

v
D 2z.z2 C 4/ � 2z.z2 � 1/

.z2 C 4/
D 10z

.z2 C 4/2
;

hence

y0

y
D 10z

.z2 C 4/.z2 � 1/ :

Full differentiation of (�) yields

10zd z

.z2 C 4/.z2 � 1/ C 5

x
dx D 0:

Formula (�) yields

z2 � 1
z2 C 4

x5 D C:

Since z2 D y2=x3, therefore

y2 � x3
y2 C 4x3

x5 D C:

2.4 Linear Equations

Linear first-order ODE has the following form

dy

dx
C a.x/y D f .x/: (2.21)

There exist three different methods yielding a solution of Eq. (2.21)

(i) The Lagrange method. This method is based on a constant variation. We
consider first a homogeneous equation associated with (2.21) of the form

dy

dx
C a.x/y D 0; (2.22)

and its solution is

y D C exp

�
�
Z
a.x/dx

�
: (2.23)
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We are looking for solution to Eq. (2.21) by variation of the constant C D
C.x/, namely

y D C.x/ exp

�
�
Z
a.x/dx

�
: (2.24)

Substituting (2.24) to (2.21) we obtain

dC.x/

dx
D f .x/ exp

�Z
a.x/dx

�
; (2.25)

and hence

C.x/ D C C
Z �

f .x/ exp

�Z
a.x/dx

��
dx; (2.26)

where C is the arbitrary constant.
Finally, substitution of (2.26) into (2.24) yields

y D exp

�
�
Z
a.x/dx

� �
C C

Z �
f .x/ exp

�Z
a.x/dx

��	
: (2.27)

Any solution passing through the point .x0; y0/ can be written in the
following form

y D exp

2
4�

xZ
x0

a.z/d z

3
5
8<
:y0 C

xZ
x0

f .u/

2
4exp

0
@

uZ
x0

a.x/dx

1
A du

3
5
9=
; :

(2.28)
(ii) The Bernoulli method. We are looking for a solution of (2.21) in the following

form

y D u.x/v.x/: (2.29)

Substitution of (2.29) to (2.21) gives

du

dx
v C u

dv

dx
C a.x/uv D f .x/: (2.30)

If we take u.x/ as the solution of equation

du

dx
C a.x/u D 0; (2.31)

then

u.x/ D exp

�
�
Z
a.x/dx

�
: (2.32)
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Substituting (2.32) into (2.30) gives

exp

�
�
Z
a.x/dx

�
dv

dx
D f .x/; (2.33)

and therefore

v.x/ D C C
Z
f .x/ exp

�Z
a.x/dx

�
dx; (2.34)

where C is a constant.
(iii) The method of an integrating multiplier. We multiply both parts of Eq. (2.21)

by exp

R
a.x/dx

�
, and we get

d

dx

�
y exp

�Z
a.x/dx

��
D f .x/ exp

�Z
a.x/dx

�
(2.35)

or equivalently

y D exp

�
�
Z
a.x/dx

��
C C

Z
f .x/ exp

�Z
a.x/dx

�
dx

�
(2.36)

Equation of the form

A.y/C ŒB.y/x � C.y/� dy
dx

D 0 (2.37)

can be transformed to the form (2.21). We multiply both sides by 1
A
dx
dy

and we
get

dx

dy
C ˛.y/x D ˇ.y/ (2.38)

where

˛.y/ D B

A
; ˇ.y/ D C

A
: (2.39)

It should be emphasized that equations of the form

F 0.y/
dy

dx
C F.y/a.x/ D b.x/; (2.40)

where 0 denotes d
dy

can be transformed to the linear equation by introduction
of the relation u D f .y/.
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A particular role in theory of first-order differential equations play the Bernoulli and
Riccati equations. The equation

dy

dx
C a.x/y D b.x/yn; n ¤ 0; 1 (2.41)

is called the Bernoulli equation. It is transformed to the following form

y�n dy
dx

C a.x/y1�n D b.x/; y ¤ 0; (2.42)

and it is reduced to a linear equation via the variable change u D y1�n. This
approach will be illustrated through examples. One may also apply here the
Bernoulli method.

The equation

dy

dx
C a.x/y C b.x/y2 D C.x/ (2.43)

is called a Riccati equation. In general it cannot be solved in quadratures. However,
if one of its particular solutions is known, say y1.x/ then the transformation y D
y1 C u allows reduction of the problem to that of finding solution to the Bernoulli
equation.

Example 2.14. A current in the electrical network with the resistance R, induction
L and excitation voltage u.t/ D u0 sin!t is governed by the following equation

L
di

dt
CRi D u0 sin!t; i.0/ D 0:

Find i D i.t/.

We have

di

dt
C ˛i D ˇ sin!t;

where ˛ D R
L

, ˇ D u0
L

. We apply here the Bernoulli method, i.e. we assume

i.t/ D u.t/v.t/:

Substitution of i.t/ into the governing equation yields

du

dt
v C u

dv

dt
C ˛uv D ˇ sin!t: (�)

We consider a solution of the homogeneous equation

du

dt
C ˛u D 0
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of the form

u D exp.�˛t/:

We substitute it to (�) and we obtain dv
dt

D ˇe˛t sin!t , what means that

v.t/ D ˇ

�Z
e˛t sin!tdt C C

�
:

We successively compute

V.t/ D
Z
e˛t sin!tdt D �e˛t 1

!
cos!t C ˛

!

Z
e˛t cos!tdt

D � 1

!
e˛t cos!t C ˛

!2
e˛t sin!t � ˛2

!2

Z
e˛t sin!tdt

D � 1

!
e˛t cos!t C ˛

!2
e˛t sin!t � ˛2

!2
V .t/;

and therefore

V.t/ D e˛t .�! cos!t C ˛ sin!t/

!2 C ˛2
:

Finally, we find

v.t/ D ˇ

�
e˛t .�! cos!t C ˛ sin!t/

!2 C ˛2
C C

�
;

and

i.t/ D u.t/v.t/ D ˇ

��! cos!t C ˛ sin!t

!2 C ˛2
C Ce�˛t

�
:

Since i.0/ D 0, C D !
!2C˛2 , and therefore

i.t/ D ˇ

!2 C ˛2
.�! cos!t C ˛ sin!t C !e�˛t /:

Observe that

lim
t!1 i.t/ D u0

L.!2 C ˛2/
.�! cos!t C ˛ sin!t/ D u0p

.L!/2 CR2
sin.!t � '/;

where tan' D !
˛

denotes the initial current phase. ut
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Example 2.15. Show that equation

dy

dx
C ˛y D f .x/; ˛ > 0;

possesses only one bounded solution assuming that f .x/ is bounded for all x 2 R.
Find this solution, and show that if f .x C x0/ D f .x/, then y.x/ D y.x C x0/,
where x0 is a period.

First we find a solution to the homogeneous equation

dy

dx
C ˛y D 0:

After variables separation we get

dy

y
D �˛dx;

and hence

ln jyj C ˛x D lnC;

which means that

y D Ce�˛x

assuming that y ¤ 0.
We apply here the Lagrange’s method. Namely, we have

y.x/ D C.x/e�˛x;

and substitution of y.x/ into the governing equation gives

dC

dx
D e˛xf .x/:

It means that

C.x/ D C.x0/C
xZ

x0

e˛zf .z/d z:

The sought solution has the following form

y.x/ D C.x0/e
�˛x C

xZ
x0

e�˛.x�z/f .z/d z: (�)
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Assuming y.x0/ D y0 we obtain

y0 D C.x0/e
�˛x0 ;

or equivalently

C.x0/ D y0e
˛x0 :

Therefore, solution (�) takes the following form

y.x/ D e�˛.x�x0/y0 C
xZ

x0

e�˛.x�z/f .z/d z:

We multiply both sides of the last equation by e˛.x�x0/ to get

e˛.x�x0/y.x/ D y0 C
xZ

x0

e˛.z�x0/f .z/d z:

We consider the case x! � 1 (the case of x! C 1 can be studied in the similar
way). We have

lim
x!�1 e˛.x�x0/y.x/ D y0 C

�1Z
x0

e˛.z�x0/f .z/d z;

and hence

y0 D
x0Z

�1
e˛.z�x0/f .z/d z;

because for a bounded solution lim
x!�1 e˛.x�x0/y.x/ D 0: It means that

lim
x!�1y.x/ D Y.x/ D

xZ
�1

exp.�˛.x � z//f .z/d z (��)

is bounded, assuming that f .z/ is bounded.
In what follows we show that Y.x/ is the only bounded solution of the studied

equation. Let us assume that there exists one more bounded solution denoted by
Y�.x/. It means that the difference

�Y D Y.x/ � Y�.x/
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is bounded. We also have

dY

dx
C ˛Y Df .x/;

dY�
dx

C ˛Y� Df .x/;

which means that

d.�Y /

�Y
C ˛.�Y / D 0;

and hence

�Y.x/ D Ce˛x:

Owing to our introduced assumption�Y.x/ is bounded for all x 2 R, which means
that Ce˛x must be bounded. This is true only if C D 0, which yields Y.x/ D Y�.x/.

Let us now show that if f .x C x0/ D f .x/ than Y.x/ D Y.x C x0/. It follows
from (��) that

Y.x C x0/ D
xCx0Z

�1
e�˛.xCx0�z/f .z/d z D

xZ
�1

e�˛.x��/f .� C x0/d�

D
xZ

�1
e�˛.x��/f .�/d� D Y.x/:

ut
Example 2.16. Solve the following Bernoulli equation

x
dy

dx
C y D y2 ln x:

We use the Bernoulli method, and we look for a solution of the form

y D u.x/v.x/:

Substitution of y.x/ into the studied equation yields

xu
dv

dx
C xv

du

dx
C uv D u2v2 ln x (�)

We take

x
du

dx
C u D 0;
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and hence

u D 1

x
:

Substituting this result into (�) we get

x2
dv

dx
D v2 ln x;

and hence

1

v2
dv D 1

x2
ln xdx:

Integration of the last obtained equation gives

�1
v

D
Z

ln x

x2
dx D � ln x

x
� 1

x
� C;

which means that

v.x/ D x

1C Cx C ln x
;

and finally

y.x/ D u.x/v.x/ D 1

1C Cx C ln x
:

ut
Example 2.17. Solve the following Bernoulli equation

.1C x2/
dy

dx
� 2xy D 4

p
y.1C x2/arctanx:

Assuming

y.x/ D u.x/v.x/

we get

.1C x2/

�
du

dx
v C u

dv

dx

�
� 2xuv D 4

p
uv.1C x2/arctanx

or equivalently

.1C x2/
du

dx
v C .1C x2/

�
dv

dx
� 2x

1C x2
v

�
u D 4

p
uv.1C x2/arctanx:
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We take an arbitrary solution to the equation

dv

dx
� 2x

1C x2
v D 0;

i.e. for example the following one

v.x/ D 1C x2:

Therefore, we get

.1C x2/2
du

dx
D 4.1C x2/

p
uarctanx:

One of the solution is u D 0, and the other solutions are found through the
successive transformations

du

dx
D 4arctanx

1C x2

p
u;

du

2
p

u
D 2arctanx

1C x2
dx;

p
u D arctan2x C C:

Finally, the solutions are

y D 0;

y D .1C x2/.arctan2x C C/2:

ut
Example 2.18. Solve the following Riccati equation

dy

dx
C y2 D 2

x2
:

Let us look for a particular solution of the form

y1 D A

x
:

Substituting y1 into the studied equation yields

� A

x2
C A2

x2
D 2

x2
:
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The second-order algebraic equation yields two roots A1 D �1, A2 D 2. Let us
introduce a new variable z of the form

y D z � 1

x
;

and therefore

d z

dx
C 1

x2
C z2 � 2z

x
C 1

x2
D 2

x2
;

or equivalently

d z

dx
� 2

x
z D �z2:

We multiply both sides of the obtained equation by x2 to get

x
d

dx
.zx/ D 3zx � .zx/2:

We take

zx D u;

and integrate the following equation

x
du

dx
D u.3 � u/:

Separation of the variables yields

du

u.3 � u/
D dx

x
:

Since

1

u.3 � u/
D 1

3u
C 1

3.3 � u/
;

therefore

1

3

Z
du

u
C 1

3

Z
du

3 � u
D
Z
dx

x
;

and consequently

1

3
Œln juj � ln j3 � uj� D ln jxj C lnC1; C1 > 0:
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Finally, we find

ln
ˇ̌̌ u

3 � u

ˇ̌̌
D 3 ln jC1xj;

or

ln
ˇ̌
ˇ u

3 � u

ˇ̌
ˇ D ln j.C1x/3j:

We consider two cases:

(i)

u

3 � u
� 0:

In this case we have

u

3 � u
D Cx3;

which means that

zx

3 � zx
D Cx3;

and hence

z D 3Cx2

Cx3 C 1
:

We finally get

y D z � 1

x
D 2

x

and

y D 3Cx2

Cx3 C 1
� 1

x
D 2Cx3 � 1
x.1C Cx3/

:

(ii)

u

3 � u
< 0:

In this case we have

u

u � 3 D Cx3;
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which means that

zx D C.zx � 3/x3;

and hence

z D 3Cx2

Cx3 � 1 :

We finally obtain

y D 2

x

and

y D 2Cx3 C 1

x.Cx3 � 1/ ut

2.5 Exact Differential Equations

The differential equation

M.x; y/dx CN.x; y/dy D 0 (2.44)

is called an exact differential equation if its left-hand side is the full differential of a
certain function V.x; y/ such that

dV.x; y/ � @V

@x
dx C @V

@y
dy D M.x; y/dx CN.x; y/dy D 0: (2.45)

A necessary condition that Eq. (2.44) is exact one follows

@M.x; y/

@y
D @N.x; y/

@x
: (2.46)

If V.x; y/ is known than all solutions of (2.44) satisfy the condition

V.x; y/ D C; (2.47)

where C is an arbitrary constant.
We show how we can find the function V.x; y/. Since

@V

@x
D M.x; y/;

@V

@y
D N.x; y/; (2.48)
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then

V.x; y/ D
Z
M.x; y/dx D ψ.x; y/C ψ.y/: (2.49)

We differentiate (2.49) to get

@ψ.x; y/

@y
C @ψ.y/

@y
D N.x; y/: (2.50)

In some cases the general form given by (2.44) can be transformed to an exact
differential equation by introduction of a so-called integrating multiplier m.x; y/
[208]. In Eq. (2.46) we introduce m.x; y/, and we obtain the following exact
differential equation

@

@y
.mM/ D @

@x
.mN/; (2.51)

which means that m should satisfy the following equation

m

�
@M

@y
� @N

@x

�
D N

@m

@x
�M @m

@y
: (2.52)

The obtained general form (2.52) can be simplified in the following cases

(i) If m.x; y/ D m.x/ then

1

m

dm

dx
D

@M
@y

� @N
@x

N
: (2.53)

(ii) If m.x; y/ D m.y/ then

� 1

m

dm

dx
D

@M
@y

� @N
@x

M
: (2.54)

(iii) If m.x; y/ D m.r.x; y//, where r.x; y/ is a known function then

1

m

dm

dr
D

@M
@y

� @N
@x

N @r
@x

�M @r
@y

: (2.55)

Example 2.19. Solve the differential equation

.2xy C 3y2/dx C .x2 C 6xy � 3y2/dy D 0:

We have

M.x; y/ D 2xy C 3y2; N.x; y/ D x2 C 6xy � 3y2;
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and hence

@M

@y
D @N

@x
D 2x C 6y:

It means that the left-hand side of the differential equation is a full differential of
a certain function V.x; y/.

We have

@V

@x
D 2xy C 3y2;

@V

@y
D x2 C 6xy � 3y2:

First equation of the above yields

V.x; y/ D x2y C 3xy2 C ψ.y/:

We differentiate the last equation with respect to y and thus

@V

@y
D x2 C 6xy C @ψ.y/

@y
D x2 C 6xy � 3y2:

It means that

ψ.y/ D �y3 C C:

Hence

V.x; y/ D x2y C 3xy2 � y3 C C;

and a general solution to the studied ODE is defined implicitly by the equation

x2y C 3xy2 � y3 D C:

ut
Example 2.20. Solve the differential equation

2x
�
1C

p
x2 � y

�
dx �

p
x2 � ydy D 0:

Observe that

@

@y
Œ2x.1C

p
x2 � y/� D @

@x
.�
p
x2 � y/ D � xp

x2 � y ;

and hence we deal with the exact differential equation. We have

@V

@x
D 2x.1C

p
x2 � y/; @V

@y
D �

p
x2 � y; (�)
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and integration of the first equation yields

V.x; y/ D
Z
.2x C 2x

p
x2 � y/dx D x2 C 2

3
.x2 � y/ 32 C ψ.y/:

Substitution of V.x; y/ into the second equation of (�) gives

@

@y
Œx2 C 2

3
.x2 � y/ 32 C ψ.y/� D �

p
x2 � y;

or equivalently

�
p
x2 � y C dψ

dy
D �

p
x2 � y;

which means that

ψ.y/ D C:

Finally, we have

V.x; y/ D x2 C 2

3
.x2 � y/ 32 ;

and a general solution to the studied differential equation is

x2 C 2

3
.x2 � y/ 32 D C

or

y D x2 � Œ 3
2
.C � x2/� 23 :

ut
Example 2.21. A mirror reflects solar radiation in a way that a light ray coming
from a source 0 after the reflection is parallel to a given direction 0X , which is the
rotation axis. Figure 2.2 shows a scheme of the light ray 0A coming from the light
source 0, and the rectangular coordinates 0XY . Derive the mirror shape analytically.

Since A belongs to the mirror surface, the marked angles ' before and after
reflection are equal, and n.t/ denotes a normal (tangent) to the curve being
intersection of the mirror and surface 0XY .

Owing to the reflection principle (the angle of incidence is equal to the reflection
angle) 0A D 0B , and hence

tan' D AA0

B0C 0A0 D AA0p
.0A0/2 C .A0A/2 C 0A0 ;
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Fig. 2.2 The mirror shape y.x/ and light rays

or equivalently

dy

dx
D y

x C p
x2 C y2

:

We may rewrite the latter equation in the following way

xdx C ydy D
p
x2 C y2dx;

because

dy D y.x � p
x2 C y2/

.x C p
x2 C y2/.x � p

x2 C y2/
dx D x � p

x2 C y2

�y dx:

Applying the integrating multiplier

m.x; y/ D 1p
x2 C y2

;

we get

xdx C ydyp
x2 C y2

� dx D 0

or equivalently

d.x2 C y2/

2
p
x2 C y2

� dx D 0:
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It means that

p
x2 C y2 D x C C;

which allows to find the mirror surface as a paraboloid that intersects with the
surface 0XY yielding a parabola governed by the equation

y2 D 2Cx C C2:

ut
Example 2.22. Solve the differential equation

ydx � .x C x2 C y2/dy D 0

assuming the integrating multiplier m D m.r.x; y//, where r.x; y/ D x2 C y2.

We apply formula (2.55) directly, and we get

1

m

dm

dr
D 1C 1C 2x

�2.x C x2 C y2/x � 2y2 D 2.1C x/

�2.1C x/.x2 C y2/
D �1

r
:

Therefore, the following differential equation is obtained

dm

m
C dr

r
D 0;

which yields

m.x; y/ D 1

r.x; y/
D 1

x2 C y2
:

Now, we multiply by m the studied differential equation to get

ydx

x2 C y2
�
�

x

x2 C y2
C 1

�
dy D 0;

which is an exact differential equation, i.e.

@V

@x
D y

x2 C y2
;

@V

@y
D �

�
x

x2 C y2
C 1

�
:

Integration of the first equation in the above gives

V.x; y/ D
Z

y

x2 C y2
dx D arctan

x

y
C ψ.y/;
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and hence

@V

@y
D @

@y

�
arctan

x

y
C ψ.y/

�
D � x

x2 C y2
� 1:

It means that

� 1

1C x2

y2

x

y2
C dψ

dy
D � x

x2 C y2
� 1;

and finally

dψ

dy
D �1; ψ.y/ D �y C C1;

and

V.x; y/ D arctan
x

y
� y C C1:

We have the following solutions: one given explicitly y D 0, and other given
implicitly

arctan
x

y
� y D C:

2.6 Implicit Differential Equations Not Solved
with Respect to a Derivative

We consider here the differential equation (2.2), which cannot be solved with respect
to dy

dt
, i.e. we cannot reduce the problem to that of Eq. (2.3). It may happen, however,

that Eq. (2.2) can be solved with respect to either x or y. In what follows we describe
briefly the method of the parameter introduction yielding a solution in the latter case.
Let

y D f .x; y0/; y0 � dy

dx
D p; (2.56)

where p is the introduced parameter. The full differential of y D f .x; y0/ follows

pdx D @f

@x
dx C @.x; p/

@p
dp: (2.57)

It means that we have got the exact differential equation form (2.44), where

M.x; y/ D @f

@x
; N.x; y/ D @.x; p/

@p
: (2.58)
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In the previous section supplemented by many examples we have described
various methods yielding solutions to Eq. (2.56). Namely, we can take

x D ψ.p; c/; y D f .x; p/; (2.59)

where x D ψ.p; c/ is the implicit form of solution governed by Eq. (2.56).

Theorem 2.2. Suppose that the function f .x; y; y0/ in a neighbourhood of the
point .x0; y0; y0

0/, where y0
0 is one of the roots of the equation f .x0; y0; y0

0/ D 0,
is continuous regarding x and it is continuously differentiable with respect to y,
y0, and @f

@y0
.x0; y0; y

0
0/ ¤ 0. Then there exists a unique solution y D  0.x/ of

the Cauchy problem f .x; y; y0/ D 0, y.x0/ D y0 defined in a satisfactorily close
neighbourhood of the point x0, where  0.x0/ D y0

0.

Recall that the uniqueness of problem of Eq. (2.2) means that the point .x0; y0/
is a point of the solution uniqueness, i.e. there are no other integral curves of (2.2)
which pass through the point .x0; y0/ and have the same slope in this point.
Otherwise, the solution uniqueness is violated.

Theorem 2.2 yields sufficient conditions of a solution existence and uniqueness
for Eq. (2.2).

Assuming that the function f .x; y; y0/ is continuous with respect to x and
continuously differentiable with respect to y and y0, then a possible set of singular
points is defined via the following system of algebraic equations

f .x; y; y0/ D 0;

@f

@y0 .x; y; y
0/ D 0: (2.60)

It is required, while solving Eq. (2.2) to find singular solution, i.e. we remove
y0 from Eq. (2.60) and we get a so-called discriminant-type curve. Each branch of
this curve should be verified if it is a solution to Eq. (2.2). Assuming a positive
reply, our next step consists of checking if its points correspond to the solution non-
uniqueness.

The method of parameter introduction can be directly applied either to the
so-called Claurait equation

y D xy0 C ψ.y0/; (2.61)

or to the so-called Lagrange equation

y D x'.y0/C ψ.y0/: (2.62)

Example 2.23. Solve the following Claurait equation

p
.y0/2 C 1C xy0 � y D 0:
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We introduce p D y0 to get

y D xp C
p
1C p2:

Differentiation of the last equation with respect to x yields

dy

dx
D p C x

dp

dx
C p

dp

dxp
1C p2

;

and hence
 
x C pp

1C p2

!
dp

dx
D 0:

It means that either

x D � pp
1C p2

:

or

p D C:

A solution to the problem is as follows:

y D Cx C
p
1C C2

or equivalently

x D � pp
1C p2

;

y Dpx C
p
1C p2:

ut
Example 2.24. Solve the following Lagrange equation

y0 C y D x.y0/2:

It is easily solved with respect to y, i.e.

y D x.y0/2 � y0

or equivalently

y D xp2 � p;
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where p D y0. Differentiation of this algebraic equation yields

p � dy

dx
D p2 C 2px

dp

dx
� dp

dx
;

or equivalently

p.p � 1/dx
dp

D .1 � 2px/;

dx

dp
C 2x

p � 1 D 1

p.p � 1/ :

In other words, the problem has been reduced to a linear differential equation
with the following solution

x D p � lnp C C

.p � 1/2 :

ut
Example 2.25. Derive an equation governing a family of equipotential curves of
the electric field generated by a dipole. Recall that the equipotential curves are
orthogonal to force curves of the electric field (see Example 2.3).

As it has been shown previously in Example 2.3, we have

�
x � a
r32

� x C a

r31

�
dy

dx
�
�
1

r32
� 1

r31

�
D 0;

where

r21 D .x C a/2 C y2; r22 D .x � a/2 C y2: (�)

We may generalize the studied case in Example 2.3. Namely, we began with the
algebraic problem governed by the following equation

F.x; y; a/ D 0;

where

F.x; y; a/ D x C ap
.x C a/2 C y2

� x � ap
.x � a/2 C y2

� C:

For a given C , we have a family of one parameter curves. In what follows we
define another family of the isogonal curves, which interset the first family curves
with the same angle ', for ' D �=2 we say that both trajectories (curves) are
orthogonal.
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Fig. 2.3 Two curves 1 and 2
intersecting in point A

We differentiate the algebraic equation to get

dF

dx
� @F.x; y; a/

@x
C @F.x; y; a/

@y

dy

dx
D 0:

We may also exclude the parameter a using the equation F D 0. In our case we
have

@F

@x
D
�
1

r32
� 1

r31

�
y;

@F

@y
D x � a

r32
� x � a

r31
:

In Fig. 2.3 two curves belonging to both families are shown intersecting in the
point A D A.x; y/.

The angle between two curves at point A is ' (known), which is given by the
formula

� D ˛ C ' C � � ˇ:

Therefore, we get

tanˇ D tan.˛ C '/ D tan˛ C tan'

1 � tan˛tan'
:

We apply the following notation tan˛ D y0, tanˇ D y0�, tan' D m, and hence

y0� D y0 Cm

1 �my0 :

In a case of orthogonal trajectories we have ' D �=2, and therefore

tanˇ D tan˛ C tan�
2

1 � tan˛tan�
2
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D lim
'! �

2

1C tan˛
tan'

1
tan' � tan˛

D � 1

tan˛

or equivalently

y0� D � 1

y0 :

The so far consideration implies a simple recipe. In order to find a differential
equations of the family of isogonal trajectories to the trajectories (curves) governed
by equation F.x; y; a/ D 0, we need to substitute the term y0 D dy

dx
standing in

equation @F=@x C @F=@yy0 D 0, by the term y0�. In a case for ' D �
2

(orthogonal
trajectories) we substitute y0 by � 1

y0
D � dx

dy
.

In the studied case, using the so far described orthogonality property we obtain
the following differential equation

�
x � a
r32

� x C a

r31

� 
� 1
dy

dx

!
�
�
1

r32
� 1

r31

�
y D 0;

or equivalently

.x � a/r31 � .x C a/r32 C y.r31 � r32 /
dy

dx
D 0:

From (�) we get

r1dr1 D .x C a/dx C ydy;

r2dr2 D .x � a/dx C ydy;

therefore the problem is reduced to the following differential equation

r31 r2dr2 D r32 r1dr1;

which yields the following solution

1

r2
� 1

r1
D C;

and hence

1p
.x � a/2 C y2

� 1p
.x C a/2 C y2

D C:

ut
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