
Chapter 15
Chaos and Synchronization

15.1 Introduction

New point of view, introduced into known definitions in mathematic and empiric
sciences by developments in nonlinear dynamic, provides novel interpretations of
one of many philosophical trends based on determinism and indeterminism. Until
now those two concepts were treated as mutually exclusive; however examples of
chaotic motions appearing in a simple physical, chemical or biological systems in-
dicate possibility that relationship between them exists. Even though, theoretically,
the determination of motion trajectory is possible by the introduction of the highly
accurate initial conditions, obtaining sufficient accuracy is impossible in practice.
This issue has much wider range, and as every real state of system is described
with a certain inaccuracy, it should be described as probability distribution and
not as numbers. This is the reason why in determined system we expect typical
for stochastic systems dynamics (it will be described and illustrated for a simple
mapping and ordinary differential equations further). This type of deterministic
systems motion, contrary to random variable systems, is called deterministic chaos.

In traditional physics and mechanics discrete and continuous systems can be
distinguished. The former are described by ordinary differential equations, and
the latter are described by partial differential equations. Proponents of differential
equations argue that ordinary differential equations yield sufficient accuracy for the
partial equation approximation. At the same time proponents of partial differential
equations give a lot of counter-examples and show that it is possible to study the
partial differential equations without the need to build on ODEs.

In mechanics there is more compromise to the situation, as often in this approach
continuous systems are approximated by discrete systems, even if the method is
based on rigid finite elements and its variations. For example, the beam can be
approximated as system of point masses connected by mass-less springs, also with
regard to attenuation. This kind of approximation gives very good results that
are sufficient for the needs of applications. Also the reverse approaches are often

© Springer International Publishing Switzerland 2014
J. Awrejcewicz, Ordinary Differential Equations and Mechanical Systems,
DOI 10.1007/978-3-319-07659-1__15

527



528 15 Chaos and Synchronization

applied. As example can be given a system of many oscillators connected in series
with susceptible elements and performing planar movement. When there are large
number of masses, it can be treated as the continuous system and we can get a
full solution to the problem by finding a solution to partial differential equations
describing the vibrations of such modeled beam. This example shows the relativity
of concepts such as continuous and discrete systems and the ability to transition
from one to the other, which may be dictated by the needs of the researcher. And here
also, in the process of “continualization” that is in simulating continuous system
by increasing the number of masses and springs, ideal is not required, obtained for
example by increasing the number of masses tending to infinity as it is in impossible
in practice (see Chap. 12).

There appears deeper reflection on the basis of the above considerations.
Classical mathematical ideal was based on finding accurate solutions by any means.
Nature tells us, however, that this idealization is not only very expensive, but
sometimes even unattainable. That is why we should adapt nature’s guidelines
and try not to perform the computer simulation of infinite accuracy of the initial
conditions to find the “true” trajectory. Instead of this we should use tools in
advance adapted to assumed inaccuracies in the initial conditions. Moreover, such
an approach should not be seen as a painful abandonment of the pursuit of the ideal,
but as a new competitive face of mathematics in relation to the classical approach.
Absolute accuracy is an unattainable utopia for many aspects of nonlinear dynamics.

This is somehow the opposition to the classical position and can be clearly seen in
a new branch of mathematics, represented by asymptology. In this science achieving
ideals is deliberately dispensed. Absolute accuracy is also possible to achieve, but
only when the asymptotic series are coinciding. The main tools of asymptology are
based on the fact that these series do not have to be consistent. In short, this idea
can be interpreted as follows: convergent series describes the function y.t/ D y0
for t ! 1, and asymptotic series are described function for t D t0 for y ! y0.
Just a few dozen years ago, the idea of using the description of the phenomena using
divergent asymptotic series seemed ridiculous.

Here we quote one more argument against achieving ideal at any cost. Even if
we have a few (completely accurate) particular solutions of an analysed dynamical
system, we cannot take full advantage of them. It is not applicable for nonlinear
superposition principle system and we cannot find a general solution by adding the
special arrangements.

Firstly let us summarize the main idea, which will continue to scroll through
the pages of this chapter. Absolute accuracy is welcome, but not at any price.
Failure in obtaining absolute accuracy often becomes basis/ground for creation
of the new mathematics, physics or mechanics significantly extending the scope
of their traditional approaches. Secondly, we should not cling to the defini-
tions of determinism–indeterminism, stochasticity–regularity, big–small, precise–
inaccurate, discrete–continuous, etc., while remaining within their framework. It
turns out that there are legitimate transitions between them, leading to a deeper
understanding of the Nature.
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The second major goal in mind and aim of this chapter is an indication of the
existence of certain universal rules and laws of dynamical systems. In physics
and mechanics there are known systems of repeating similarities in structures on
different levels. If you succeed in finding those structures by the application of
mathematical methods such as renormalization, they will have universal charac-
teristic independent of the type the describing equations or their projections point.
Physical properties are self-similar and repeated in decreasing scale. For example,
M. Feigenbaum noted that the shape of the researched by him “fig tree” that was
obtained by the analysis of doubling of the period occurring in logistics mapping
x ! Ax.1 � x/.A 2 Œ0; 4�; x 2 Œ0; 1�/ is self-similar. Twig of this tree has
a shape similar to the shape of the whole tree, and an approximation (scaling
factor) increases with decreasing branches with a view to the “magic” number of
4,669 . . . This number is also appeared in the analysis of trigonometric mapping
x ! A sin x. It turned out that with the scaling factor (which is independent of
the equation), and knowing the rules for the construction of such a “tree” it can be
quickly reconstructed (and created). There are two reasons for it: law, rule or pattern
of conduct and the number (scaling factor).

Many years spent by the ancient Greeks on the analysis of geometric figures
and numbers were not vain [139]. For example, the main power of Pythagoreans
(sixth century BC) was their mathematical knowledge. They were striving to build
knowledge of numbers construction and relationships between them. Pythagoras
dared even to say that “all things are numbers”. It was a great aesthetic experience
for him to establish the link between the tones in the music, and numbers. Numbers
revealed themselves to Pythagoras not only in the field of listening experiences, but
also in aesthetic experiences like shapes and colors. Following the cards of this book
reader can certainly see that many of these insights are reflected in the development
of modern nonlinear dynamics, chaos theory and fractals.

According to Aristotle, the numbers were beautiful, and this beauty was manife-
sted through sound or visual form. Summarizing the activities of the Pythagoreans
Aristotle wrote that all things are, imitate or reproduce the numbers, and the
elements of numbers the elements of all things (for example trades of parity and
oddity are numbers elements). One is the base of everything and it is the cause of
the creation of two, and both of these numbers are the reason for the creation of all
other numbers. And further, the numbers create the points, points form lines, lines
form spaces, etc. For them non-elastic point was the link between the geometric and
arithmetic form of the world. Every natural number is finite in itself, and only a
series of numbers extends to infinity. Number ten was for them an ideal and

p
2

insulted the “holy” majesty of numbers (the existence of this number was kept
secret by the Pythagoreans for a long time). According to the Pythagorean school
whole material and spiritual worlds are under the rule of the natural numbers. Each
irrational number can be approximated with high accuracy to the rational number,
and what is more, Bernoulli representation consisting of the numbers 1 and 2 is a
precursor of chaos. Could it be that after so many years the secret of the Pythagorean
philosophy is still relevant? In present there again can be noticed a return of interest
for numbers and number sequences, but this time inspired by the development of
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modern nonlinear dynamics. Revived the role and significance of the numbers,
including rational and irrational numbers, and their relative position (i.e. on the
interval Œ1; 0�), strings Frobenius and Dedekind steps, approximations by rational
numbers through irrational numbers, zero-one approximation of real numbers, and
so-called Bernoulli shift. There is no need to convince anyone about the importance
of the number � and of the golden ratio. This time, however, start a discussion
took place form a completely different point. It started from considerations relating
to differential equations, which are mathematical models of some systems real
(physical) or from analysis of some projections, which can be obtained from the
differential equations. In both, equations and some projections, observed doubling
in the period of solutions with a change in the parameter effectively lead to chaotic
motion in accordance with scaling factor equal to 4.669. . . No one disputes the role
of irrational numbers and the existence of quasi-periodic solutions lying on the two-
or multi-dimensional torus, while the rational numbers associated are with a periodic
solutions. And here again appears the analogy to the earlier discussion. For some
(critical) parameters of the system torus disappears and appears periodic solution
what lead to placing of the rational numbers in role of the irrational numbers. It turns
out that in the interval [0,1], almost all real numbers have decimal representation,
which are random, and it means that a sequence of consecutive digits in the decimal
representation of the number repeats. Almost every number in that range will
have a different number of digits, and therefore randomly selected number will
also be random decimal representation. In the “language” of numbers, in practical
numerical calculations, periodic motion detection in decimal representation means
that starting from a given number, that is from the long decimal representation,
after some number of digits (equal to the period) again appears this number (to be
precise, with the same extension of the decimal representation). You can prove that
such feature occurs when the number is a rational number. In the neighbourhood of
any two given rational numbers, there is a whole “ocean” of infinitely many rational
and irrational numbers, which are mixed with each other. It can be shown that for a
certain types of mapping very close numbers (in terms of decimal expansions), after
multiple projections, are different from each other.

A careful reader will see that after all the real system time (independent variable)
“floats” on a continuous basis and goes through all mixed together rational and
irrational numbers, while numerical procedures based are on discrete models and
discrete dynamics. Fortunately, however, there are close links between the discrete
and continuous dynamics.

Kingdom of numbers extends even further. Fractional numbers play a key role
in the dynamics of the so-called fractals through so-called fractal dimensions
introduced by Hausdorff. Fractals, contrary to the intention of their creators,
were somehow geometric method of the study of irregular dynamics, also of the
deterministic chaos. There are some, though far analogies between fractal and
chaotic dynamics. Scenario of transition to chaos through bifurcations of doubling
period of newly emerging orbits leads in effect to the coexistence of infinitely many
periodic and unstable orbits and also creates a qualitatively new geometric structure
known as a strange attractor. Similar situation is in the case of simple geometric
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shapes such as triangles, lines and ellipses, and arranging them in a certain scale,
according to a certain pattern (low), what leads to a qualitatively new structure,
in which the decrease in its basic elements (circle, triangle, etc.) leads to the loss
of their shapes creating the new structure. This last one has a new property—self-
similarity. It shows the similarity between the different elements in respect to the
size. As mentioned above, this structure is characterized by a dimension that is a
fraction and not an integer. An example may be a snowflake, which has a very
complicated boundary line. This line is not a one-dimensional curve (dimension 1)
and is not filling the two-dimensional surface (dimension 2). Thus, the dimension is
searched in the range of 1 < w < 2.

Chaotic dynamics and synchronization are two opposing processes that can be
observed in physical, biological or chemical systems. The first one is expressed in a
tendency for the disorder, while the second one tends to the simplicity and regularity.
By changing the parameters and the initial conditions it is possible to move from
one process to another. While synchronization processes have been observed for
a long time, and were subjects for a scientific analysis since the seventeenth
century, starting from the works devoted to the analysis of synchronization of clocks
ticking, and later also test of the synchronization in sound tuning fork generators
or movement of the planets, however the phenomenon of chaos in deterministic
systems have been detected recently. They are related to the pioneering works
of Poincaré, Lorenz and Ueda. In this chapter, among others, we are going to
discuss these two extreme processes on the examples of one- and two-dimensional
mappings and on the dynamic systems. As a tool of analysis used are analytical and
numerical methods.

15.2 Modelling and Identification of Chaos

First, we will consider a so-called Poincaré maps. They are widely used for the
analysis of dynamic systems. They are based on the introduction of the plane (or
hyperplane), which crosses the returning phase flow without any contact with the
trajectory of this flow (Fig. 15.1).
� trajectory of the flow lies in three-dimensional space, and the points of

intersection with the plane belong to it, the Poincaré mapping represents a mapping
of the plane into itself. Undeniable advantage of this mapping is reduction of the
dimension of the design space by one (obtained points lie in a plane). In the case of
two-dimensional flow (that means lying on the plane) mapping points are arranged
along a line (so-called one-dimensional mapping).

In practice, we introduce the secant plane in a relatively simple way, as will
be discussed on the example of the non-autonomous system with one degree of
freedom described by the following differential equation
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Fig. 15.1 Poincaré map
schematic representation

d2x

dt2
C F

�
x;
dx

dt

�
D F0 cos!t: (15.1)

The period of the exciting force is T D 2 D �=! and the discrete value of time

tn D t0nT; n D 0; 1; 2; : : : (15.2)

we record the speed and movement

vn D dx

dt
.tn/ ;

xn D x .tn/ : (15.3)

If

x .t0/ D x0;

� .t0/ D �0;
(15.4)

then points

xn D x .tn; x0; �0/ ;

�n D � .tn; x0; �0/ ;
(15.5)

form Poincaré map.
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In this case, the Poincaré map is a two-dimensional one. For the autonomous
system .F0 D 0/ and assuming that the force F

�
x; dx

dt

�
causes the self-excitation of

the system, we will obtain one-dimensional map, for observation (or measurement)
value of x.tn/ will be made in moments of time tn for which v.tn/ D dx

dt
.tn/ D 0.

Periodic solution (periodic orbit) will be presented as a fixed point of this mapping.
If it will be stable in the sense of Lyapunov (to this stability theory devoted is a
vast literature [44, 187, 244]), then a sequence of points prior to it will be going to
this point. This is known as attractor. If a fixed point mapping is unstable, then the
sequence of points will be “running away” from this point. In this case singular point
x0 is unstable in the sense of Lyapunov and can be called repiler [106, 214, 224].

These simple considerations can be widely generalized. Let the solution to a
system of n ordinary differential equations in normal form to have the form x D
X.t; x0/, where x0 D X.t0; x0/. If the Cauchy problem has a single solution set by
said initial condition, the following compounds occur

.t2; X.t1; x0// D X.t1 C t2; x0/; (15.6)

what is easy to check, taking into account the fact that

X.t1 C t2; x0/ D x2;X.t1; x0/ D x1;X.t2; x1/ D x2: (15.7)

Family of mappings Xt.x/ D X.t; x/ that is defined by the solution x.t/ defines
a dynamical system in the space Rn what is noted as .Rn; Xt /. If t 2 Œ0;1/, then
dynamical system is continuous (and we are calling it the flow), and if t 2 N , the
dynamical system is discrete (and a cascade is meant).

Returning to the secant plane geometric interpretation, it appears that there is
some functional relationship between the coordinates of two successive points of
intersection of the trajectory with the plane of the form

xkC1 D F.xk/; (15.8)

what sometimes can be expressed in an analytical form. Difference equation (15.8)
describes the cascade.

Point x0 is called a fixed point of the cascade (15.8) if

F.x0/ D x0: (15.9)

For each point x n-fold application of the operation leads to a point F

x.n/ D F n.x/: (15.10)

Trajectory passing through any point x in the phase spaceRn will be called finite
or infinite set of iteration (15.8). We say that the point x is periodic with a period
k, if

F k.x/ D x; (15.11)
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Fig. 15.2 Stable (b) and unstable (a) fixed point of the map (15.8)

k is the smallest integer with this property. If you choose x0 close to the tested point
x, and if the distance kx .k/ � xk ! 0, when the n ! 1; then x0 is asymptotically
stable.

Based on Eq. (15.8) and Fig. 15.2 is easy to imagine the stability criteria for
mapping of the fixed point.

Based on the graphical construction of the mapping (15.8) shown in Fig. 15.2, it
can be concluded that the mapping fixed point is stable (unstable) if

ˇ̌̌
ˇdxkC1
dxk

ˇ̌̌
ˇ < 1.> 1/: (15.12)

Finally, also worth mentioning here are advantages of the Poincaré mapping. In
general, studying dynamics of systems governed by ordinary differential equations
we deal mainly with the analysis of equilibrium positions and of periodic solutions.
In the case of periodic solutions, the stability condition means that for a considered
fixed point (and consequently also periodic orbit) to be stable, the monodromy
matrices eigenvalues (multipliers) should lie in a unit circle of radius 1. Often this
method is used for the practical pre-determining of the stability of the orbit found
numerically, for example, using the “shooting” method or Urabe–Reiter method (see
Chap. 13).

Now, some basic concepts and definitions will be introduced, basing on the works
of Kudrewicz [142] and Samoilenko [207].

Definition 15.1. String formed of successive mapping points fF k.x/g for k D
0; 1; 2; : : : will be called the trajectory (orbit) of the point x.



15.2 Modelling and Identification of Chaos 535

Comment.
The set x1; F.x1/; F 2.x/; F 3.x/; : : : be the orbit of a point x. As an example,
consider the mapping F W wŒ0; 1� ! Œ0; 1� of the following form

F.x/ D x.1 � x/; (15.13)

then for x D 1
2

orbit is determined by the points 1
2
; 1
4
; 3
16
; : : : :

Definition 15.2. If there exist a sequence fkng of natural numbers and

lim
kn!1F kn .x/ D x�; (15.14)

then a point x� will be called �-border point of the fF k.x/g trajectory. The set
of all such points is called the set of �-border of the fF k.x/g trajectories, and we
denote it by �.x/.

Definition 15.3. Invariant set of cascade Z is a set satisfying the condition
X.Z/ D Z. Most of invariant sets are equilibrium points or periodic trajectories.

There is also need for comment of �-border sets that can be divided into
attractors and repliers.

Definition 15.4. The closed and bounded invariant set A is called attractor. If there
exists its neighbourhood O.A/ such that for any x 2 O.A/ the trajectory fF k.x/g
tends to A for k ! 1, the set of all x satisfying this condition is called the attracting
set of the attractor A.

The following comments hold:

1. Often, while defining the attractor, it is said that the set that fulfills conditions
in Definition 15.4 does not contain in itself a different set that satisfies these
conditions.

2. Chaotic attractors are those attractors that contain at least one chaotic trajectory.
Trajectory is called chaotic if at least one of the Lyapunov exponents associated
with it is positive.

3. Strange attractors are called attractors, which have a complex geometric struc-
ture.

4. Typically these two terms are used interchangeably. However, they can exist
independently (see Grebogi et al. [104] and Jacobson [128]).

5. Dynamical systems may possess several coexisting attractors. One of the main
tasks in this case is to define the initial conditions, for which the phase flow will
be attracted by the individual attractors. It turns out that the boundaries between
the different attractor pools can have very complicated shapes, for example they
may be fractals [165].

Definition 15.5. Fixed point x0 of the map (15.8) forR2 is called hyperbolic, if this
point derivative DF has eigenvalues different from 1. If this point is hyperbolic and
has two real eigenvalues, �i .i D 1; 2/ and at the same time j�1j < 1 and j�2j > 1,
then the point is a saddle. Manifolds
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W S .x0; F / D ˚
x W ��F nx �W S .x0; F /

�� ! 0; for n ! C1�
;

W n .x0; F / D fx W kF nx �W n .x0; F /k ! 0; for n ! �1g ;
(15.15)

are called the stable and unstable respectively, but they are invariant, that means

F
�
W S .x0; F /

� D W S .x0; F / ;

F .W n .x0; F // D W n .x0; F / :
(15.16)

If the given dynamical system described by system of ordinary differential
equations meets Lipschitz conditions and there exists a solution to the Cauchy
problem, the solution is unambiguous and accurately determined by the initial
conditions. It is analogous to the train travelling on tracks, movements of which
can be determined at any moment in time. And yet discovered strange chaotic
attractors of Lorenz, Ueda, Hénon and others, seem to deny those obvious facts.
Some uncertainty is intuitively understood particularly for the complex physical
systems, where a small change in phases can lead to large changes in the systems
dynamics in the intervals of the independent variable, i.e. time. We will explain this
with an example of the system considered by Landau. For this we will consider
two extreme cases of a dynamic system: chaos and synchronization. Without going
into detail, the synchronization will be understood as tendency of subsystems of
the complex dynamic system to perform “similar” dynamics, such as manifested
by subsystems periodic motions within the same periods, and consequently causing
the synchronization, that is the periodic movement with the same period for the
entire system. This phenomenon has already been observed by Huygens during
the analysis of the clocks ticking synchronization. Currently, the phenomenon
has broader understanding and refers to the mutual organization of the biological
systems, and in the mechanics this issue appears when considered are issues of the
rotor vibration synchronizations and in the stabilization [50,104,142,207]. Consider
first oscillating system fully synchronized, that is one that the vibration frequencies
!1; !2; : : : !k appearing in it satisfy the condition

l1!1 C l2!2 C � � � C lk!k D 0; (15.17)

where fl1; : : : lkg 2 C and C is the set of integers. We say then that the system
is in full resonance, and it reveals in the increases of the characteristic vibration
amplitude for each of the !i in the discrete set ! D f!1; : : : ; !kg. However, if each
subset will vibrate independently from the others that are with its own (independent
from the others) period then the system is not synchronized. In practice, the lack of
synchronization is associated with the existence of irrational numbers, for example
for k D 2, !1 D 1 and !2 D p

2 solution x D x.'1; '2/, where '1 D !1t and
'2 D !2t is in steady state on a two-dimensional manifold (torus), and the solution
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Fig. 15.3 Torus and two
incommensurate frequencies
!1 and !2

x D x.'1; '2/, where time is the parameter, is called the quasi-periodic solution.
An example of such a two-dimensional manifold is shown in Fig. 15.3.

The issue of quasi-periodic orbits requires a deep study and it is only briefly
addressed in this work. It contains more problems that are not completely solved.
This applies mainly to determining the stability of multi-dimensional attractors -
tori, tracking changes of the quasi-periodic orbits with the change of the parameters
and their bifurcation [65, 83, 131, 156, 228].

One may imagine that if phases '01 ; : : : ; '
0
k are additionally changing even in

minor range, the response of the system x.!1tC'01 ; : : : ; !ktC'0k/ can be subjected
to significant changes over time and as a result lead to the appearance of chaotic
motion.

Now we will point out another possible appearance of chaos in simple dynamical
systems. For autonomous oscillators with single degree of freedom and with limited
trajectory (performing recurrent motion) only positions of equilibrium or periodic
orbits may be attractors. However, the situation is drastically changed for three-
dimensional systems, specifically for systems with 11=2 degree of freedom or those
oscillators with an external forcing.

It appeared therefore that trajectories in the three-dimensional systems may be
present in a sub-phase space R3, but they can constantly wander between the
positions of unstable equilibrium states and unstable periodic orbits. Although
basing on the fact of existence of the limits for such subspace, we know that there
is a time after which such trajectory will be arbitrarily close to the start point lying
on the attractor, but it is impossible to obtain information when it will return there.

Flow of phase trajectories can be imagined on the example of a liquid that even in
very small volume consists of a large number of particles. If in such a volume there
is attractor which is a periodic orbit, then introducing a small drop of colored liquid
at any of origin point in the volume, you will find that after a while the color will
be determining the orbit. However, in the case when attractor is a chaotic strange
attractor, the trajectory lying on such attractor starts to wander along the entire
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Fig. 15.4 An example of an unstable trajectory wandering in the limited area R3

volume of the liquid and the liquid becomes colored. Colored and colorless particles
will be mixed. This process takes place in a relatively short time and therefore is
not the result of diffusion, but rather is related to the turbulent movement of liquid
molecules. This analogy is even deeper. The intensity of the color will indicate the
probability of finding a phase point in this area and it does not depend on the initial
position (the starting point).

Armed with the knowledge of the instability role, let us consider now evolution
(change over time) of an area initial conditions taken from the plane x, y, that is,
such that z D 0 and ı D ı.x; y/ which has been hatched in Fig. 15.4.

Area ı.t0/ is a very close neighbourhood of the unstable strange point. Two
distinct trajectories in this figure exponentially flee from each other and initially
tiny set of initial conditions ı.t0/ is transforms into a volume ı.t1/, and because the
trajectories are limited, they must “turn around” and as a result for z D 0 the two
points, which lie very close together (for t D t0) after time t D t2 are found far
apart. The question arises, how far apart, or in rather, how small should be distance
between them at the starting point so they could be found close to each other once
again.
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15.3 Lyapunov Exponents

Before answering this question, let us return to the old theory of characteristic
numbers introduced by Lyapunov that, when with opposite sign, define a so-called
Lyapunov exponents (details are given in Demidovich [77]). Earlier described was
and exponential divergence of trajectories and Lyapunov exponents are a measure
of such discrepancy.

According to (15.10) cascade (15.8) can be presented in the form of

x .k C 1/ D F .x .k// : (15.18)

With each point x in the phase space can be associated array DF k.x/ called
the mapping Jacobian F k , which is formed from the local linearization, which in
practice amounts to calculating the kth iteration derivative for point x. Starting from
the point x.0/ for the kth iteration, the matrix is expressed with the relationship

J .k/ D DF k .x .0// ; (15.19)

wherein DF k.x.0// can be obtained as the product of

DF k .DF .x .k � 1// � : : : �DF .x .0/// D DF k .x .0// : (15.20)

Having calculated J.k/ for small increments we get

x .k C 1/ � DF .x .k// x .0/ D DF k .x .0// x .0/ D J .k/ x .0/ : (15.21)

Coming back to the discussion related to Fig. 15.4, assume that in a neighbour-
hood of the unstable point we select two points x1 and x2, which after k iterations
(in accordance with the previous considerations) will evolve into the points x1.k/
and x2.k/, defined by the relationship

x1 .k/ � x2 .k/ � J .k/ .x1 .0/ � x2 .0// : (15.22)

We can take the whole flow generated by the initial conditions, which are located
for example in the sphere. In the general case, however, it will be n-dimensional
sphere K0 D K.0/, which after the k iterations it becomes ellipsoid K.k/ (such
ellipsoid when n D 3 is indicated in Fig. 15.4 as ı.t2/). If now, instead of a single
point x0 we take the sphere K0, and respectively, instead of x.k C 1/ we take
ellipsoid KkC1, then, according to (15.21) we obtain

KkC1 D DF .x .k//Kk: (15.23)

Ellipsoids KkC1 and K0 possess n principal axes and the system has n related
with them Lyapunov exponents. For the system to be chaotic it is enough if one of
the exponents (the largest) is positive. Lyapunov exponents is defined by the formula
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�j D lim
k!1

1

k
log

�
˛j;k

�
; (15.24)

where ˛j;k is the length of the j th axis of the ellipsoid Kk .
It turns out that for a very wide class of mappings F there exists the limit defined

by (15.24), which for almost all x.0/ does not depend on x.0/, which means that it
also is independent from the initial conditions. Then � is a measure of changes in
the initial conditions and if the error in the determination of the initial conditions is
�x.0/ then kth iteration will have the value

�xk � 10�k�x .0/ ; (15.25)

for sufficiently small �x.0/ and large enough k. Let now the maximum Lyapunov
exponent to have the value � D 0:1, which is not too high requirement for dynamical
systems and let k� D 102 and �x .0/ D 10�5. According to (15.25) for the k�
iteration calculate �x.k�/ D 105, and such accuracy of the calculations cannot be
accepted. On the other hand we want to obtain k� iterations error was �x.k�/ D
10�5. Thus, there appears the question problem, what the accuracy of the initial
conditions definition we should apply. Using the formula (15.25), we calculate that
�x.0/ is 10�15, and preserving so high accuracy of the calculations is extremely
difficult. Of course, uncertainty increases with the iterations increase.

So the problem comes down to setting infinite precision to the initial conditions.
According to the principle, each state of the real physical system can only be
determined with reasonable accuracy and is determined rather by a probability
distribution instead of a number. If the trajectory is considered stable, then the initial
error rapidly decreases with time, and if it is unstable, it is growing rapidly with the
increase of iterations resulting in the unpredictability of its behaviour, that is chaos
in the determined system.

Now, let us discuss for a while the possibility of recursion (return) of trajectories,
in such a way so it will lay on the attractor. We have already mentioned that the
trajectory remaining in limited surface must have the possibility of returning in
arbitrary close neighbourhood of the starting point. It turns out that it is a common
characteristic for the phase surface. We are talking about a singularity point called
the saddle. The precursor of chaotic motion is the cross-section of the stable and
unstable saddle point variety. This is possible for at least a three-dimensional
system.

15.4 Frequency Spectrum

In engineering calculations, both in the computer simulation and in the analysis of
the real object in the laboratory, one of the most popular methods of analysis is
a technique based on the analysis of the frequency spectrum. In what follows we
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apply the Fourier Fast Transformation (FFT). The transformation of the waveform
from the time domain to frequency domain can be described by the relation

W .!/ D lim
T!1

1

T

ˇ̌
ˇ̌̌
ˇ
TZ

�T
x .t/ e�i!tdt

ˇ̌
ˇ̌̌
ˇ : (15.26)

In the case of regular movements (periodic and quasi-periodic) frequency
spectrum consists of discrete components, while the continuous frequency spectrum
corresponds to the chaotic trajectory x.t/.

15.5 Function of Autocorrelation

The autocorrelation function is a competitive tool to the Lyapunov exponents. It is
widely described in the literature, particularly in respect to the differential equations.
It is determined by the relationship

A .t/ D lim
T!1

1

T

TZ
0

F Œx .t C 	/� F .x .	// d	; (15.27)

assuming that the analysed system is ergodic. If the A.t/ include periodic or quasi-
periodic components, then also in the researched system exists the periodic or
quasi-periodic orbit. If the two trajectories lying close to each, separate and over
time move independently, then A.t/ quickly approaches zero. This corresponds to a
situation where at least one of the Lyapunov exponents is positive.

It is worth to mention some of the characteristics of the autocorrelation func-
tion.

1. It is a real and even function with the point of maximum in t D 0, which can
assume both positive and negative value.

2. In the case stochastic process study with a mean meaning hx.t/i D 0, it has the
shape of the sharply outlined pulse.

3. For a stochastic process—white noise, the function A.t/ has the shape of a ı
function.

4. If (on average,) slope of the autocorrelation function is has approximately
exponential character, the dynamic state of the phenomenon is associated with
the beginning of the chaotic motion.

If for the mapping (15.18) we define the mean value hx.k/i dependent on
x.0/ as
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hxki D lim
k!1

1

k

KX
kD0

x .k/ ; (15.28)

then the autocorrelation function is given by

A .`/ D lim
K!1

1

K

KX
kD0

.x .k/ � hxki/ .x .k C `/ � hx .k/i/ ; (15.29)

where ` D 0; 1; 2; : : :.

15.6 Modelling of Nonlinear Discrete Systems

15.6.1 Introduction

In the vast majority of cases, the dynamics of physical systems is governed by partial
or by ordinary differential equations. The former is often replaced by a variety of
the methods reducing through the ordinary differential equations systems. The next
step leading to further problem reduction is replacing differential equations with
mappings. This method of proceeding is based on the use of the analytical methods.

Another, independent, method of research is based on the analysis of the simplest
mappings various types of dynamics, in this case the one-dimensional ones, and
in particular on trying to obtain deepest possible understanding of the chaotic
dynamics basing on those mappings.

If you have a wide range of knowledge about the dynamics of one-dimensional
representations, then the dynamics (even complex) systems described by differential
equations can sometimes be understood by one-dimensional mappings.

Analytical methods face a number of limitations in the analysis of nonlinear
dynamics, therefore, in most cases carried out are numerical analysis. In practice,
this means replacing the continuous dynamics (in the equation the independent
variable that is time, is a constant) by the discrete dynamics (in numerical methods
time variables have the discrete values). It turns out that there are deep connections
between the “continuous dynamic” and “discrete dynamics”. In the numerical
analysis used is the Poincaré mapping method. Links between points obtained on
the Poincaré surface are described by differential equations. With the introduction
of such a representation is not only reduced dimensionality of the dynamics, but also
in the analysis of chaotic dynamics the introduction of the Poincaré surface led to
the elimination of periodic movements of the points, what allows to focus attention
on the chaotic dynamics. A further extension of the method of discretization is states
discretization, for example, by assigning to the numbers only two values, zeros or
ones.
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Fig. 15.5 Mechanical system with one degree of freedom: a block lying on a belt moving at a
speed of v0 (a) and the coefficient friction characteristics (b)

It may happen that for the analysis of two-dimensional mappings, there is also
the possibility of their reduction to one-dimensional mappings. This occurs when
the mapping in one direction is highly tensile, and in the other one it is strongly
compressive. This will make the points along the one or two lines, and can be
considered a one-dimensional mapping of one line into the other.

Now we will consider examples of the dynamics of simple physical systems that
can be reduced to one-dimensional mappings analysis. In the nonlinear systems with
friction self-exciting vibration can appear [149]. Figure 15.5 shows such classic
case.

The body of mass m (block) is located on the tape with a coefficient of friction
depending on the velocity relative to the body and the tape with characteristics
shown in Fig. 15.5b. It turns out that the range of the relative speed 0 < w < 
 block
equilibrium position becomes unstable. There appear vibrations that are beginning
to grow reaching a limit cycle (periodic orbit). The equation of motion has the form

m Rx C kx D mg
�
�0 � ˛w C ˇw3

	
; (15.30)

where on the right side described analytically are friction forces. Now assume that
for x D 0 the crash occurs, when Px � a—the rapid change in velocity, and
furthermore we will assume that the dynamic is related to the sloping part coefficient
of friction [181]. Then the dynamics of the considered system can be approximated
by the equation

Rx C 2h Px C ˛2x D 0; (15.31)

PxC � Px� D �b; (15.32)

where PxC and Px� is the speed before and after the impact of the amplitude b.
Dynamics described by Eqs. (15.31) and (15.32) can be represented by mapping
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Fig. 15.6 Flat pendulum
excited by
M D M0 CM1 cos!t

Ny D qy C
(
0 for 0 � y < a

q
;

�b for y � a
q
;

(15.33)

where

Ny D PNx; y D Px � 0; q D e2h
p
˛2�h > 1: (15.34)

Position y� D b=.q� 1/ > a is an unstable fixed point of this mapping. For y <
y� chaotic vibrations appear in the a � b � y � a range of changes. The example
above was connected with the analytical method, while the following example refers
to the numerical methods.

Consider the motion of a pendulum of length l , mass m and moment of mass
inertia B (Fig. 15.6).

The equation of motion is:

B R' C c P' Cmgl sin' D M0 CM1 cos!t; (15.35)

where c is the viscous environment damping coefficient. Assuming mgl D B , this
equation can be reduced to the form

R' C h P' C sin' D M1 CM2 cos!t; (15.36)
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where

h D c

B
; M1 D M0

B
; M2 D M1

B
: (15.37)

We will approximate

P' D 'n � 'n�1
tn � tn�1

; (15.38)

R' D 'nC1 � 2'n C 'n�1
.tnC1 � tn/ .tn � tn�1/

: (15.39)

After taking into account (15.38) and (15.39) Eq. (15.36) takes the form (see
[221])

'nC1 � 2'n C 'n�1 C hT .'n � 'n�1/C T 2 sin'n D T 2 .M1 CM2/ ; (15.40)

where tn D 2�
!
n.

Assuming

R1 D T .M1 CM2/

h
; hT D 1 � b; R2 D T 2; (15.41)

from (15.40), we obtain

'nC1 � 2'n C 'n�1 C .1 � b/.' � 'n�1/CR2 sin'n D .1 � b/R1: (15.42)

Equation (15.42) can be represented as an equivalent

rnC1 D brn �R2 sin'n;
'nC1 D 'n CR1 �R2 sin'n C brn;

(15.43)

where:

rn D 'n � 'n�1 �R1: (15.44)

We are still dealing here with a two-dimensional representation, but for very high
damping such that hT D 1, we get one-dimensional representation of a circle into
a circle (which will be discussed later).

15.6.2 Bernoulli’s Map

Let us consider the mapping F carrying out a unit vector into itself, that is Œ0; 1/ !
Œ0; 1/, in the form
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xkC1 D F .xk/ ; (15.45)

F .xk/ D 2xk mod 1; (15.46)

for k D 0; 1; 2; : : :, while the modulo function limits the range of the obtained
results to the unit (take only the rest after dividing by 1). This mapping is called the
Bernoulli map and can also be written in the form of difference equation

x .k C 1/ D


2x .k/ for 0 � x .k/ < 0:5;

2x .k/ � 1 for 0:5 � x .k/ < 1:
(15.47)

This mapping has only one fixed point x0 D 0, which is unstable.
Let us consider how this mapping will behave for x.0/ D 1=11, the rational

number. We obtained the following sequence of numbers

x .0/ D 1

11
; x .1/ D 2

11
; x .2/ D 4

11
; x .3/ D 8

11
;

x .4/ D 5

11
; x .5/ D 10

11
; x .6/ D 9

11
; x .7/ D 7

11
;

x .8/ D 3

11
; x .9/ D 6

11
; x .10/ D 1

11
;

(15.48)

this represents a periodic orbit with a period equal 10. For x .0/ D 1
5

we get

x .0/ D 1

5
; x .1/ D 2

5
; x .2/ D 4

5
; x .3/ D 3

5
; x .4/ D 1

5
: (15.49)

So again we get a periodic orbit, but this time the period equals 4. It turns out
that for all rational numbers in the considered unit interval the iteration results are
in the form of periodic orbits. However, the situation is quite different if we choose
as a starting point irrational number. To each point of the set [0,1], we can assign an
infinite sequence fa0; a1; a2; : : :g, called the address, in such a way that

a0 D 0; x .0/ D 1

2
a1 C 1

22
a2 C 1

23
a3 C 1

24
a4 C � � � (15.50)

Numbers ai can take only the values 0 or 1. Therefore, the x.0/ can be written
as an infinite sequence of zeros and ones of the form

x .0/ D fa1; a2; a3; a4; : : :g : (15.51)

It turns out that with such a representation of a real number, we can see an
important property of the mapping (15.47). Let us consider it on the example of
x.0/ D 0:32. Reader is able to quickly perform calculations (for example using a
basic calculator) finding sequence of ai values, which are given below
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x .0/ � 0:32 D f0; 1; 0; 1; 0; 0; 0; 1; 1; 1; : : :g : (15.52)

After the first iteration we get the number of x.1/ D 0:64which has the following
address

x .1/ � 0:64 D f1; 0; 1; 0; 0; 0; 1; 1; 1; : : :g : (15.53)

A careful reader will see a pattern. Address (15.53) was obtained by shifting
by one digit to the left of the address (15.52). It turns out that this regularity is
the place for all the numbers from the interval [0,1]. The following iteration is
associated with a shift by one digit to the left of the previous one address. This shift
is called the Bernoulli shift. The second note concerns the finite and the infinite
characteristic: the finite rational number is represented here by infinite series. In
the interval [0,1], most of the numbers are irrational. These figures have random
decimal representations or in other words, almost all the numbers from the interval
[0,1] have random decimal representations.

Let us reflect on other analogies given by Schuster [213]. We assign the number
to zero the head, and the number one tails and consider a coin toss. Tossing a coin
repeatedly we receive following address f0;R;R; 0; : : :g, which corresponds to the
exactly one real number from the interval [0,1].

Now consider the following oddity. Take two numbers x.1/.0/ and x.2/.0/ that
have for example 1016 the same decimal digits, so in the calculations are identified
as the same. By subjecting these numbers to 1016 iterations (15.47) we come to the
seventeenth place in the numbers addresses, and so to the places where they differ.
Further iterations will already represent these different numbers. This raises a very
clear parallel to the observed phenomenon of the deterministic chaos, i.e. in each
subsequent realization of the same process, starting with a theoretically the same
initial conditions, the response is always different because of the inevitable, albeit
very small differences in their realizations.

The second property of the irrational numbers and of the Bemoulli shift is that
any finite subset of the infinite set represents the number of repeats it in this set
infinitely many times, and shift Bemoulli tries to move the subsequences to the left
an infinite number of times.

Bernoulli mapping has one more feature typical of chaos. It is associated with the
operation of stretching and folding. If the numbers subjected to iterations are in the
range Œ0; 1=2/, the projection extends corresponding sections (it is multiplies them
by 2). If starting from some iteration, they are in the range of numbers larger than
1=2, then in the following iterations their results are decreasing and the numbers are
returning into the [0,1] interval.

At the end let us mention one more characteristic trait of this mapping, which is
also typical of the chaos. We have shown that starting from the rational number
received periodic orbits. They are unstable. Since the interval [0,1] there are
infinitely many rational numbers, there is also an infinite number of unstable
periodic orbits in this range.
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15.6.3 Logistic Map

The logistic mapping received relatively detailed analysis

x .k C 1/ D px .k/ .1 � x .k// ; (15.54)

wherein the parameter p 2 Œ0; 4�. The main feature of this mapping is the section
stretching or compression, and then folding it in half. It turns out that for a fixed
value of the parameter p mapping will “wrap” the output section and place it in
the range Œ0; p=4�. To illustrate, let us consider the case of p D 1 and let us start
with numbers in the range [0,0.5]. Number zero becomes zero, and 0.5 change into
0.25, any other numbers are in the range [0, 0.25]. Considering the interval (0.5,1]
it can be noticed that the number 1 becomes zero. The number of 0.7 becomes 0.21,
0.9 changes into 0.09. Basing on these trivial examples, we can see that also the
numbers range (0.5,1) change range [0,0.25], with the numbers lying closer to the
1 are mapped into lying closer to zero. For parameter p greater than 4, almost all
sequences fx.k/g diverge to infinity. For the boundary value p D 4 the solution of
Eq. (15.54) can be expressed in an analytical form

x .k/ D 1

2

�
1 � cos

�
2karc cos .1 � 2x .0//	� : (15.55)

Let us conduct now analysis of the typical nonlinear dynamics. Let us find fixed
points of the mapping (15.54) and then examine their stability. Fixed points we find
from the equations

px� .1 � x�/ D x�: (15.56)

Obtained are the following two points:

x.1/� D 0; x.2/� D p � 1
p

: (15.57)

Each of these solutions is stable when
ˇ̌
ˇ̌�df .x/

dx

�
xDx�

ˇ̌
ˇ̌ < 1; (15.58)

where: f .x/ D px.1 � x/.
Simple calculation shows that

ˇ̌̌
ˇ
�
df .x/

dx

�
xDx.1/

�

ˇ̌̌
ˇ D p;ˇ̌

ˇ̌� df .x/
dx

�
xDx.2/

�

ˇ̌
ˇ̌ D 2 � p;

(15.59)
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Fig. 15.7 Web chart for logistics mapping and for p D 3:83 (a) and the periodic course (b)
corresponding to a closed curve in figure (a)

and the first solution is stable for jpj < 1; while the other one for j2 � pj < 1. Now,
let us consider a few numerical examples of the logistic mapping. Figure 15.7 is an
example of “web chart” for p D 3:83. As is clear from the preceding discussion,
this parameter value both fixed mapping points are unstable. In the x.k/; x.k C 1/

coordinate system drawn were the function f .x/ and the diagonal. They are used
for a simple determining of the next mapping points after the successive iterations.
As you can see from the figure, the initial condition x.0/ D 0:3 trajectory mapping
tends to periodic orbit.

If we consider the mapping described of the function x.kC 3/ D f 3.x.k//, and
on the vertical axis we take every third iteration point, that is x.k C 3/, then we
get web chart shown in Fig. 15.8. As can be seen from this figure, depending on the
initial conditions of the trajectories, they are attracted by one of the three points at
which the curve f .x/ is tangent to the diagonal of the pictures frame.

For every fifth iteration x.k C 5/ D f 5.x.k//, the chart of the curve f .x/ is
more complicated (Fig. 15.9). Trajectory relatively quickly reaches a stable periodic
orbit.

Now let us examine the behaviour of this mapping when changing parameter
p 2 Œ2; 4�. According to earlier solutions, a fixed mapping point equal to zero is
unstable in the considered range of parameter changes. The second fixed point is
stable when p 2 Œ2; 3�. For the point p D 3 doubling period bifurcation occurs.
Previously stable point now becomes unstable.

However, there is a new stable solution in the range for a period 4. When
changing the parameter again, its stability is lost, and there is an orbit with a period
of 23 D 8, and so on, until it reaches the orbits with period 2k . When k ! 1
parameter p reaches a limit equal to pg D 3:5699. It turns out that in the p 2 Œpg; 4�
a similar bifurcation cascade can be observed for a period orbits 3 and 4, that is 3k

and 4k , where k D 1; 2; 3; : : :. They are called periodicity windows that correspond
to the specific compartments of parameter p. That means that chaos is observed for
some nowhere dense subsets of parameter p that have positive value.
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Fig. 15.8 Web chart for logistic mapping and for p D 3:83 in the coordinate system x.k/ and
x.k C 3/ for different initial conditions: (a) x.0/ D 0:7; (b) x.0/ D 0:35; (c) x.0/ D 0:1

Fig. 15.9 Web chart for
logistic mapping and for
every fifth iteration
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Fig. 15.10 Bifurcation chart of the logistic mapping for different ranges of the changes in the
control parameter p: (a) p D Œ2; 4�; (b) p 2 Œ3:5; 3:8�; (c) p 2 Œ3:6; 3:7�; (d) p 2 Œ3:56; 3:66�

Figure 15.10 shows the so-called bifurcation chart and the following drawings
were created as a result of the enlargement of the previous one for a specific range of
parameter p. Bifurcation cascade doubling period, chaotic movements and windows
of periodicity are shown clearly.

Figure 15.11 shows the logistic mapping for p D 3:7 for investigations of the
chaotic mapping dynamics process. After about four million iterations, and as you
can see from the chart of chaotic attractor is a part of the segment [0,1] and is defined
by the projection of the parabola marked with a thick line onto the horizontal axis.
Further points obtained by iteration are arranged along this stretch in a completely
unpredictable (chaotic) way.

Autocorrelation functions A.l/ for p D 4 is determined by the formula (15.29).
According to (15.28) for almost all initial conditions we get

hxki D 1

2
; (15.60)

then

A .l/ D


1=8 for l D 0

0 for l ¤ 0
; (15.61)

for almost all initial conditions.
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Fig. 15.11 Chaotic logistic
map for p D 3:7

Fig. 15.12 � exponent
changes accompanying
changes in the parameter p in
the range

Since the analytical solution lo the logistic mapping is important for p D 4 we
compute the associated Lyapunov exponent

� D lim
k!1

1

k
log

ˇ̌̌
ˇx.k/x.0/

ˇ̌̌
ˇ D log 2: (15.62)

For this parameter, the exponent value �n D 0:693144 is calculated numerically
for 206 000 iterations, what yields to the error value ı D j� � �nj D 0:00000318.
Lyapunov exponents’ values for p 2 Œ2; 4� are shown in Fig. 15.12.

Analytical form of solutions for p D 4 (it is worth noting that for the value of
the parameter number 1=2 maps into 1, while in the following iteration 1 becomes
zero) allows for the transformation
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y D 2

�
arc sin

p
x; (15.63)

reducing logistic map to the Bernoulli map (15.47).

15.6.4 Map of a Circle into a Circle

This is another one-dimensional representation, which we will analyse. Mapping of
a circle into a circle is described by the equation

� .k C 1/ D F .� .k// � � .k/CR1 CR2 sin� .k/ mod 2�: (15.64)

This mapping depends on two parameters R1 and R2 and may represent the
nonlinear oscillator phase transition, wherein the parameter value for R1 describes
two frequencies ratio, and R2 is the nonlinear enhancement effects coefficient
[213, 221]. This simple representation shows many interesting features of the
nonlinear dynamics, namely the periodic, quasi-periodic and chaotic dynamics.

It is worth to point out some basic properties of (15.64) mapping [213]:

(a) The function F has the characteristic

F .� C 2�/ D � C 2� CR1 CR2 sin� D 2� C F .�/ : (15.65)

(b) For jR2j < 1 a F.�/ map exists and is differentiable (a diffeomorphism).
(c) For R2 D �1 reversed mapping F �1 becomes non-differentiable, while for

jR2j > 1 it is ambiguous.

Figure 15.13 presents the F.�/ map for R1 D 0:4 and different values of
R2, what confirms the previously mentioned property. For all iteration the value
characterizing the average displacement by an angle � is defined by the formula

w D 2�w� D lim
N!1

FN .�0/ � �0
N

: (15.66)

The average period shift is defined as Tw D 2�=w, where w is the angular
frequency of rotation (winding number) while, the rotation frequency as w� D 1=w.
These relations are similar to the concept of the frequency of a periodic circular
orbit that is not lying on the torus, and the frequency. It turns out [213, 221] that
for R2 < 1 the limit of the formula (15.66) always exists, but can be represented
either as rational or irrational number. If it is a rational number, then range of
the parameters R1, R2, for which w D p=q, p, q 2 N with respect to the
mapping (15.64) is called tongues.

Consider now in more detail the dynamics of trajectories lying on a two-
dimensional torus (Fig. 15.14).
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Fig. 15.13 The map (15.64) for R1 D 0:4 and different values of R2: (a) �0.5; (b) �1; (c) �5;
(d) �20

Fig. 15.14 Poincaré map—cross-section of the torus by plane �

Let, for example,

w D !1

!2
D p

q
D 3

5
: (15.67)

where !1 and !2 are frequencies marked in Fig. 15.14. Let us consider the journey
of the point starting from the plane � . This point will cross the plane again after the
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Fig. 15.15 Point motion within the plane � observed in T1 intervals. Between successive positions
performs point 5=3 turn, what means that in time 3T1 point will do five turns and then the movement
will be repeated

time T1 D 2�=!1. Figure 15.15 shows a picture of stroboscopic photos distant from
each other in the time by T1.

Let us consider the mapping

�nC1 D �n C w � 2�: (15.68)

For w D 3
5

we obtain successively

�1 D �0 C 3

5
2�;

�2 D �1 C 3

5
2� D �0 C 2 � 3

5
2�;

:::

�5 D �0 C 3 � 2�; (15.69)

which means that �5 D �0 mod 2� , and in the general case

�q D �0 C p � 2�: (15.70)

For N -turns we obtain the definition of the circular rotation defined by (15.66).
The plane � we get three fixed points, while in the mapping plane (15.68)

there are five fixed points (in the plane perpendicular to the � there are also five
fixed points). According to (15.69) in the plane .�n�1; �n/ we get five fixed points
��
1 ; �

�
2 ; : : : �

�
5 . If the point ��

i belongs to on the q-periodic orbit generated by the
mapping (15.64), then according to (15.70) we have

F
q
R1;R2

�
��
i

� D ��
i C 2�p � �i .mod 2�/ ; (15.71)

where i D 1; 2; : : : ; q, and FR1;R2 means that this function is dependent on the
parameters R1 and R2. It also means that starting from the point ��

i we are coming



556 15 Chaos and Synchronization

back to it through q iterations, or after moving by the angle 2�p. On this occasion, it
is good to come back to the interpretation related to Fig. 15.15. At the same mapping
point we will be back after q rotations (with a frequency !2) or after moving by the
angle of 2�p. According to (15.65), we have

F
�
��
i

� D ��
i CR1 CR2 sin��

i ; (15.72)

and we calculate

dF
�
��
i

�
d��

i

D 1CR2 cos��
i : (15.73)

Complete orbit consisting of points, ��
i , i D 1; 2; : : : ; q is stable if each of the

points ��
i is stable, that is:

q

…
iD1

j1CR2 cos��
i j < 1: (15.74)

We will consider now the simplest case where w D 1, so p D q D 1. According
to (15.72), we obtain

��
0 D ��

0 CR1 CR2 sin��
0

and

R1 D �R2 sin��
0 :

However, from the condition (15.74) we have

j1CR2 cos��
0 j < 1: (15.75)

For R2 < 1 the loss of the stability limits are reached when the

R2 cos��
0 D 0; (15.76)

that is for ��
0 D ˙.�=2/. Therefore, the width of the first tongue is

R1 D �R2 sin��
0 D ˙R2;

what is confirmed by the observation of the area in the vicinity of 0 and 2� in
Fig. 15.15.



15.6 Modelling of Nonlinear Discrete Systems 557

Fig. 15.16 The structure of a circle within a circle mapping for R2 D �1 (the so-called devil’s
stairs)

15.6.5 Devil’s Stairs, Farey Tree and Fibonacci Numbers

In [39, 40, 129] work a similar analysis was preformed for a previously considered
circle within a circle mapping for different values of the rotation number w D p=q

and for R2 < 1. It turned out that for each rational value of w and for each of
the R2 in considered interval the q-periodic orbit is stable over some a range of
parameter �R1.w; R2/. However, for jR2j D �1, it turned out that the sum of all
those intervals for all rational numbers is 2� , as shown in Fig. 15.16 and the graph
is called the devil’s stairs.

The other characteristics can be observed in the structure shown in Fig. 15.16:
(a) the length of the intervals corresponding to the values of p=q increases with the
decrease of q; (b) if we take two numbers w1 D p1=q1 and w2 D p2=q2, then there
is a rational number w D .p1 C p2/=.q1 C q2/ between them. For example when
taking w1 D 1

3
and w2 D 2

5
, we receive w D 3

8
and it is a value, which corresponds

to the length of the interval shown in Fig. 15.16 between w1 and w2, and at the same
time it is a rational number with the smallest denominator lying between w1 and
w2. This construction allows for the creation of so-called. Farey tree, as shown in
Fig. 15.17.

Physical interpretation of the results from Fig. 15.16 is as follows: there is such
a systems synchronization that changes in the parameter R1 (in a real system
frequencies !1 and !2) in a certain range do not lead to changes in the parameters
p and q, and thus to the change of the frequency (period) of the periodic orbit.
Now we will discuss the possibility of approximation of quasi-periodic dynamics
by periodic dynamics, which is connected with the possibility of approximation of
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Fig. 15.17 Farey Tree enabling arrangement of the numbers in the interval [0,1]

irrational numbers by a sequence of rational numbers [135]. In general, any real
number “a” may be represented by a continued fraction Œa0; a1; a2; : : :� of the form

a D a0 C 1

a1 C 1

a2C 1

a3C
1

a4C���

; (15.77)

where ai belong to the set of natural numbers.
For numbers that are rational continued fraction is finite, and for irrational num-

bers it is infinite. In practice, the appearance of a large value ai in relation (15.77)
results in a rapid convergence of a fraction of that number. Slowest convergence
fraction is characterized by the number w D .

p
5 � 1/=2, which is a number

corresponding to the golden division. It corresponds to the division of the section of
length L into two parts l and L � l such that w D l=L D .L � l/= l . This number
plays an important role in the chaotic dynamics and fractal theory, and its continued
fraction is an infinite set consisting only of the 1 with the exception for a0 D 1.

For 0 < w < 1 the number of “w” can be approximated with continued fraction

w Š rk

sk
D Œa1; a2; : : : ak� ; (15.78)

where rk and sk are natural numbers calculated from the formulas

rk D akrk�1 C rk�2; k D 2; 3; : : : (15.79)

sk D aksk�1 C sk�2; k D 2; 3; : : : (15.80)

where r1 D 1, r0 D 0, s0 D 1, s1 D a1.
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We will consider as an example number 1=
p
2, for which w Š 0:7071068 : : :.

Successively computing a1 D INT.1=w/ D INT.1:4142 : : :/ D 1 (here we take the
integer part of the obtained number). Then we calculate

a2 D INT


w

1 � wa1

�
D INT .2:414215365/ D 2; (15.81)

and a3 as

a3 D INT


1 � wa1

w .1C a1a2/ � a2
�

D INT .2:414211/ D 2; (15.82)

a4 D INT


w .1C a1a2/ � a2

1C a2a3 � w Œa1 .1C a2a3/C a3�

�
D INT .2:414213489/ D 2

(15.83)
and thus we can continue this process of calculations. Using the formulas (15.79)
and (15.80) we get r2 D 2, s2 D 3, r3 D 5, s3 D 7, : : :, r6 D 29, s6 D 41, r7 D 70,
s7 D 99. Ending calculation on the seventh word it is noticeable that 1=

p
2 can be

approximated by the value

w Š r7

s7
D 0:707070707; (15.84)

this gives an error about 0.000036. In general, the correct is inequality

ˇ̌
ˇ̌w � rk

sk

ˇ̌
ˇ̌ � 1

sksk�1
: (15.85)

For the golden ratio have ak D 1

sk D sk�1 C sk�2; k D 2; 3; 4; : : : (15.86)

where: r1 D 1, r0 D 0, s0 D 1, s1 D 1. Then we calculate the sequence

r2 D r1 D 1I r3 D r2 C r1 D 2I r4 D r3 C r2 D 3I r5 D 5I : : :
s2 D 2I s3 D s2 C s1 D 3I s4 D s3 C s2 D 5I s5 D 8 : : :

(15.87)

and the obtained results can be generalized as

rk D rk�1 C rk�2; (15.88)

sk D rkC1 D rk C rk�1: (15.89)

The next sequence of numbers approximating the terms w� is defined as
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wk D rk

sk
D rk

rkC1
D rk

rk C rk�1
D 1

1C rk�1

rk

; (15.90)

which are similar to the values

w� D lim
k!1 wk; (15.91)

with the strings (15.79) and (15.80) being the Fibonacci sequences. According
to (15.90) and (15.91) we get the equation

w� D 1

1C w�
; (15.92)

One of its elements is actually the
�p

5 � 1
�
=2.

15.6.6 Hénon Map

With such a map we have met already in the previous section in the analysis of the
pendulum flat motion that was treated with the time-varying torque.

Another two-dimensional representation, which we will devote more attention, is
the Hénon map [120], which can be regarded as an extension of the earlier discussed
logistic map. It is governed by the equation

xnC1 D r � ax2n C yn;

ynC1 D bxn; (15.93)

or

.x; y/ ! �
r � ax2 C y; bx

�
; (15.94)

where a, b and r serve as a bifurcation parameters. Mappings Jacobian (15.93) is

det

ˇ̌̌
ˇ�2axn 1b 0

ˇ̌̌
ˇ D �b; (15.95)

and therefore the system is dissipative for jbj < 1. It turns out that for 0 < b < 1,
r D 1 and a > 0, the mapping has two fixed points defined by the equation

x1;2 D
� .1 � b/˙

q
.1 � b/2 C 4a

2a
; y1;2 D �bx1;2: (15.96)
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If a > .1�b/2=4 both points are real numbers and one of them is always unstable,
while the other is unstable for a > 0:75.1 � b/2. This mapping is the basic for
considerations of many interesting elements in nonlinear dynamics.

1. Let r D 2:1, a D 1, b D �0:3. In Fig. 15.18 on the plane .x; y/ shown is a
Hénon strange chaotic attractor. Furthermore, in the following figures from “a”
to “d” are marked with crossed respectively periods 1, 2, 5 and 10 periodic orbits.
The method of searching for such orbits is based on the use of Newton’s method
or its variants [184,219]. If x� is a fixed point of the mapping F.x; p/ dependent
on the parameter p, then satisfied is equation:

x� D F .x�; p/ : (15.97)

Let the point x be placed near the point x�. Introduce the matrix N

N D DxF .x; p/; (15.98)

which elements are the partial derivatives with respect to x. Performing lineari-
zation around the point x we get

.x; p/CNdx D x C dx; (15.99)

where we have

dx D .N � I /�1.x � F.x; p//; (15.100)

and the I above is the identity matrix. The expression x � F.x; p/ D E express
an error of calculation, which for x D x� equals zero (this is the exact value). It
turns out that Newton’s method does not always make it possible to reduce the
error in the next step of the calculation. Modified Newton’s method allows you
to choose such increase dx that the convergence is maintained.

In the case of periodic orbits marked with crosses in Fig. 15.18 starting points
for the modified Newton’s method were selected at random. Two points were
found for the period one (a), four points with period two (b), three different orbits
with period five (c), and fifteen different orbits with period ten. In the last case,
as starting points for the modified Newton method 9031 random points were
chosen. It is worth noting that many of the found periodic orbits do not belong to
chaotic attractor.

2. The next example involves a bifurcation curve. On the vertical axis we put the
parameter b, while on the horizontal axis x. In fact, it is the mapping of the family
of attractors depending on the parameter b in the plane .b; x/, 0:1 � b � 0:3

(see Fig. 15.19). For r D 1:3 the chaotic dynamic of mapping is interrupted
windows of periodicity for some values of b (there are infinitely many of them),
however when reducing of the r and b � 0:26 bifurcation occurs, chaotic motion
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Fig. 15.18 Hénon strange chaotic attractor and periodic points of Hénon mapping (marked with
crosses) with the following periods: (a) 1, (b) 1, 2, (c) 1, 2, 5, (d) 1, 2, 5, 10

Fig. 15.19 Bifurcation curve of the Hénon map and the parameters (a) r D 1:3; (b) r D 1:25

disappears and periodic motion appears. Then, each of the “branches” doubles
and with further reduction of b formed are the so-called bubbles of chaotic
motion (Fig. 15.19b).
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Fig. 15.20 Pools of
attraction for the Hénon map
and for a D 1, r D 1,
b D 0:48

3. Basing on Hénon map we will discuss the concept of attractor attraction pools.
By the attractor attraction pool will be defined the set of all initial conditions
in phase space, which will be “attracted” by the attractor, that is after “start”
of each of these initial conditions trajectories over time will be on the attractor.
These pools of attraction for the Hénon mapping are shown in Fig. 15.20. For a
set of parameters, as shown, there are three different attractors. One of them is
1 (black area), stable periodic orbit with a period of eight (a gray area), and a
strange chaotic attractor, in the figure consisting of two parts, which “attracts”
the initial conditions from the white area.

4. Now we will discuss the puzzling similarities between the Hénon attractor and
the unstable variety of the fixed point lying within the attractor. Through a stable
variety of the mapping fixed point we understand a set of points leading up to this
point with the number of iterations tending to infinity defining the Hénon map.
However, the concept of unstable variety of the mapping fixed point we mean
a set of points which are attracted by the iterations with the opposite direction
(or repelled by applying the initial iterations). Figure 15.21a shows the Hénon
chaotic attractor, while Fig. 15.21b shows the set of points attracted by the reverse
iteration by an unstable fixed point with coordinates .0:855; 0:898/. It is striking
similarity here between the two sets. It is believed that these sets are identical,
but has not been proofed as accurate (see for example [219]).

5. Now we will turn our attention to the similarity between the Hénon attractor
attraction pool and attractor which is infinity (1) (this will be a set of points
that the iterations tending to infinity “escape” to infinity (Fig. 15.22a)), and a
stable fixed point attraction pool within the Hénon attractor (Fig. 15.22b). The
calculations were performed assuming the parameters: a D 1, b D �0:32, r D
2:10. You can see that approximately the pool of attraction of a stable point of
the Hénon attractor fits in the Hénon chaotic attractor attraction pool.

6. There is also the possibility of the chaotic trajectory contained in a limited area
in the phased space, however all other trajectories situated in the neighbourhood
“escape” to infinity, so they are not bounded. Such invariant set will be called
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Fig. 15.21 Hénon attractor for a D 1, r D 1:38 and b D 0:32 (a) and unstable variety of the
fixed point with coordinates .x; y/ D .0:855; 0:898/ (b)

Fig. 15.22 Attraction pool for infinity (1), marked with a black and the Hénon attractor
attraction pool (a) and attracting pool of stable fixed point lying within the Hénon map, which
is approximately (0.907, 0.966) (b). In both figures (a) and (b) marked is also Hénon attractor

Hénon mapping chaotic saddle. This invariant and compact set is unstable, so
almost all trajectories of the neighbourhood will be distancing themselves, and
in the considered case, they will “escape” to infinity.

Figure 15.23 shows an example of an unstable set that is invariant and compact,
on which lays the chaotic trajectory. Calculations were performed for a D 1,
b D 0:4 and r D 4.

7. From Fig. 15.23 we can conclude that for certain Hénon map parameters, there
are two attractors which are attracting sets of the initial conditions. The first one
is a pool of initial conditions attracted by Hénon chaotic attractor, and the second
is a pool of initial conditions that in time are “fleeing” to infinity, or are attracted
by infinity. There are also points belonging to the boundaries of the two pools,
and the initial conditions are not attracted by any of these attractors [184]. This
limited trajectory is shown in Fig. 15.24 for a D 1, b D �0:3, r D 2:12.
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Fig. 15.23 Unstable
invariant set containing a
chaotic trajectory for Hénon
map

Fig. 15.24 Border trajectory
(marked with crosses)
belonging to the boundaries
of the Hénon attractor
attraction pools (marked with
points) and attractor lying in
an “infinity”

8. In this example, basing on the Hénon map illustrated is a way leading to chaos
by doubling of the period. The calculation results are shown in Fig. 15.25a–c.

In the first one you can see the way that leads to chaotic motion by successive
doubling period of vibration. Basing on Fig. 15.25a, b can be calculated the
relations between lengths of the subsequent curves in between the points of
the bifurcation, which are: d2=d4 D 4:33, d4=d8 D 4:42, d8=d16 D 4:54

and apparently they tend to the Feigenbaum constant (approximately 4.67).
Figure 15.25c shows the graph of changes in Lyapunov exponent � in relation
to Fig. 15.23b, that is for the same range of changes in parameter r . Where it is
positive, there is chaos.
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Fig. 15.25 Bifurcation graph illustrating the period doubling cascade leading to chaos (a) of the
graph window (a) for 1:06 � r � 1:12 (b) and the Lyapunov exponent corresponding (b) to the
figure (c)

15.6.7 Ikeda Map

Ikeda map is described by the equation

z ! C c2z exp
h
i
�
c1 � c3

�
1C z2

��1�i
; z D x C iy; x; y 2 R; i2 D �1:

(15.101)
Figure 15.26 shows three successive iterations of an ellipse located in the upper
right-hand corners of the pictures for the following parameters:  D 0:5, c1 D 0:4,
c2 D 0:9, c3 D 6. Chaotic dynamic is more visible with each of the iterations.

Let us now consider the dynamics of Ikeda map (15.101) for the same parameters
as before, but now iterated ellipse is shifted to the left compared to the one in
the previous case (Fig. 15.27). As can be seen from this figure chaotic dynamics
is revealed here much earlier.

Figure 15.28 presented is only the first iteration of the ellipse, but in this case
it is lying along the y D 0:5 and for different values of the control parameter .
Increase of parameter  from 0.5 to 1.0 affects the deepening of the dynamics of
Ikeda chaotic mappings.
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Fig. 15.26 The first (a), second (b) and third (c) iteration of the ellipse shown in the upper right
corners of the drawing for mapping Ikeda

Fig. 15.27 The first (a) and second (b) iteration of the ellipse for the Ikeda map
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Fig. 15.28 The first iteration of the ellipse for different values of the parameter : (a) 0.6; (b) 0.7;
(c) 0.8; (d) 0.9; (e) 1

15.7 Modelling of Nonlinear Ordinary Differential Equations

15.7.1 Introduction

In order to determine time evolution of the natural processes we should have the
knowledge of the functional dependencies between the function that describes this
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Fig. 15.29 Ball movement in
the vessel along the potential
V.y/

process and its derivative (or derivatives) and in addition we have to know the initial
conditions. As it has been already mentioned, the relationship between an unknown
function and its derivative is called a differential equation. Nowadays it is very
difficult to imagine the development in many fields of science without knowledge
of the differential equations theory. There are many directions of development in
modern theory of differential equations and various methods of teaching depending
on the needs of the designated public. This section deals only with a few examples
of systems of differential equations describing the dynamics of simple physical
systems in terms of chaotic dynamics (see also the monograph [224]).

15.7.2 Non-autonomous Oscillator with Different Potentials

Imagine that ball (material point) is in the vessel with the cross-section indicated in
Fig. 15.29.

The equation of the ball motion is:

Ry C c Py C dV .y/

dy
D F cos!t: (15.102)

The potential of V.y/ may have two minima and one maximum, as is shown in
Fig. 15.29, or it may assume other shapes (Fig. 15.30).

If we describe the potential with equation

V .y/ D ˛y2

2
C ˇy4

4
; (15.103)

the case of Fig. 15.29 corresponds to the potential of ˛ < 0 and ˇ > 0, and for the
potential of Fig. 15.30a we have ˛ > 0 and ˇ > 0, and for the potential shown in
Fig. 15.30b we have ˛ > 0 and ˇ < 0.
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Fig. 15.30 Typical shapes of the potential V.y/

Consider first the case of the system with no force and no damping. Then the
dynamics of the system is described by the equations

Py D x;

Px D �˛y � ˇy3: (15.104)

Let us find a balance ball positions. In this case from Py D Px D 0 and
Eq. (15.104), we obtain

x D 0;

y
�
˛ C ˇy2

� D 0; (15.105)

which allows you to find three equilibrium positions .y0; x0/ D .0; 0/ and

.x0; y0/ D
�
˙
q�˛

ˇ
; 0
�

. Let us examine the stability of each of the found

balance positions. For this purpose, assume that ıx and ıy are small perturbations
respectively for x0 and y0, and we have

x D x0 C ıx;

y D y0 C ıy;
(15.106)

which together with (15.104) leads after the linearization (that is leaving only the
linear segments because of ıx and ıy/ of the equations

ı Py D Cıx;
ı Px D �˛ıy � 3ˇy20ıy: (15.107)



15.7 Modelling of Nonlinear Ordinary Differential Equations 571

We will look for solutions of (15.107) in the following form:

ıx D Xe�t ;

ıy D Ye�t ;
(15.108)

what after substituting into (15.107) yields the characteristic equation

ˇ̌̌
ˇ�1 �

� ˛ C 3ˇy20

ˇ̌̌
ˇ D 0; (15.109)

from which we determine the following roots

�1;2 D ˙
q

�˛ � 3ˇy20 : (15.110)

Next let us consider the case shown in Fig. 15.31. Then for (0,0) we have �1;2 D
˙ p�˛, and since ˛ < 0, the roots are real and of opposite signs. Location (0,0) is
a saddle. Two remaining equilibrium positions correspond to the eigenvalues

�1;2 D ˙i p�2˛; (15.111)

that are imaginary values. Those positions of equilibrium are variety points of
middle type. Location (0,0) is called hyperbolic, and the remaining equilibrium
positions are elliptic. Phase trajectories with three equilibria are shown in Fig. 15.31.

Particularly noteworthy are two phase trajectories the shape of loop locked into
eight. Trajectories coming out of the saddle-point 0 and returning to it is called the
homoclinic trajectory (orbit). Homoclinic orbits can be described analytically in the
form of the following two equations

yH .t/ D
s

�2˛
ˇ

sec h
�˙ p�˛ .t � t0/

�
;

xH .t/ D � ˛
s
2

ˇ
sec h

�˙ p�˛ .t � t0/
�

tanh
�˙ p�˛ .t � t0/

�
; (15.112)

where t is the time parameter.

15.7.3 Melnikov Function and Chaos

The basic idea of the Melnikov method [22, 106] is to use a solution of the
uninterrupted integrable system of two differential equations to solve the disturbed
system of equations. Let the dynamics of the system to be described by the
equations:
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Fig. 15.31 Three equilibria and the surrounding them phase trajectories

Px D f1 .x; y/C "g1 .x; y; t/ ;

Py D f2 .x; y/C "g2 .x; y; t/ (15.113)

Parameter " > 0 is a value " � 1 and is called the small perturbation parameter.
It emphasizes the “smallness” of time-dependent disorders gi .i D 1; 2/. In such a
system chaotic motion may appear, and a set of parameters for which it appears can
be determined with the method described below.

For " D 0 undisturbed system has two homoclinic orbits H0.t/ to the saddle
point (0,0). The core of homoclinic orbits is filled with one-parameter family of
periodic orbits H
.t/ with period T 
 dependent on parameter 
 2 .1; 0/—see
Fig. 15.31.

If in the system (15.113) forcing functions gi .i D 1; 2/ are periodic in time,
while the functions fi .i D 1; 2/ have homoclinic orbit (as in Fig. 15.31), then the
Melnikov function as follows

M .t0/ D "

Z 1

�1
˚�
f1
�
xH0.t�t0/; yH0.t�t0/

	
g2
�
xH0.t�t0/; yH0.t�t0/; t

	�

� f2
�
xH0.t�t0/; yH0.t�t0/

	
g1
�
xH0.t�t0/; yH0.t�t0/; t

	�
dt: (15.114)

If the function M.t0/ does not yield zero values, then the stable and unstable
manifolds do not intersect anywhere beyond the saddle point. If the equation
M.t0/ D 0 has a solution, then additional intersection occurs. Let us now return
to Eq. (15.102) and potential (15.103).

The equation of motion of the oscillator with such a choice of the potential takes
the form

Py D x;

Px D �˛y � ˇy3 � "cx C "F cos!t; (15.115)

where "c and "F highlight the “smallness” of the distinguished parameters.
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Fig. 15.32 Phase trajectory (a) and Poincaré map (b) for the Duffing oscillator governed by
Eq. (15.115)

Assuming

f1 D x; f2 D �˛y � ˇy3;
g1 D 0; g2 D �.F cos!t � cx/; (15.116)

and using (15.114), we obtain

M .t0/ D
4c

q
.�˛/3
3ˇ

C �F!

s
2

ˇ

sin!t0
cosh �!

2
p�˛

: (15.117)

The function M.t0) changes sign for the following relationship between the
parameters

F D
4c

q
.�˛/3

3�!
p
2ˇ

cosh


�!

2
p�˛

�
: (15.118)

Let us take into consideration the following parameters: c D 0:8, ˛ D �12,
ˇ D 100, ! D 3:3. The value of the last parameter is calculated from the for-
mula (15.118) obtaining F D 1:3295. Equations (15.115) for given parameters were
solved numerically and the numerical simulation results are shown in Fig. 15.32.

The phase trajectory “jumps” in a random way between two points corresponding
to a minimum of two wells of the potential V.y/. Figure 15.32b shows the strange
chaotic attractor on the plane in the form of an infinite set of points, while the
distance in time between two successive points is T D 2�=! (the Poincaré map).

In Fig. 15.33 as a control parameter taken was the amplitude of the exciting force
F (other parameters unchanged) and plotted the maximum value of the Lyapunov
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Fig. 15.33 Changes of
Lyapunov exponent as a
function of the parameter F

Fig. 15.34 Strange chaotic
attractor discovered by Ueda

exponent for 1 � F � 2. You can see that chaos appears for F D 1:33, and then
disappears in the vicinity of F Š 1:62.

Consider the case of the potential when ˛ D 0 and ˇ > 0. This case was analysed
by Ueda [233]. Presented strange chaotic attractor is often referred to as Japanese
attractor.

Vibrations of many simple physical systems can be simplified to the Duffing
equation. The equation of motion of the plane pendulum of inertia mass moment
equal B D ml2, with air resistance coefficient c forced by the moment M D
M1 cos!t has the form (see Fig. 15.34)

B R' D �mgl sin' � c0 P' CM1 cos!t: (15.119)
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Fig. 15.35 Scheme of the process of Rayleigh–Benard convection used to derive equations Lorenz

After dividing by B we get

R' C c P' C ˇ sin' D F cos!t; (15.120)

where: c D c0=B , ˇ D mgl=B , F D M1=B .
Chaotic dynamics of the pendulum takes a place for ! D 1, F D 2:4, c D 0:2,

ˇ D 1.

15.7.4 Lorenz Attractor

Lorenz model is a system of three nonlinear ordinary differential equations of the
first order [157]. Now we will derive those equations basing on the old problem
of Rayleigh–Benard (reading of this induction of equations process can be omitted
without problems in further analysis of the chaotic dynamics).

Let between two infinitely long plates with H distance be a liquid (Fig. 15.35).
The liquid is heated from the bottom. Let u to be the velocity of liquid particles, let
Ts to be the temperature surface, s to be density surface and pressure ps , where
T0 corresponds 0 and g is the acceleration due to gravity. Temperature, pressure
and density are changed according to the following formulas (for u D 0), �T is the
linear increase of the temperature.

Ts.z/ D T0 C�T �
� z

H

�
�T;

s.z/ D 0Œ1 � ˛.Ts.z/ � T0/�;
rps.z/ D �s.z/gNz; (15.121)

where Nz is the normal vector in the z direction. Firstly (that is with the provision
of the low thermal energy) occurs laminar convection. Subsequently, stable vortices
are formed, wherein the temperature increase is nonlinear described by

‚.x; y; z; t / D T .x; y; z; t / � Ts .z/ : (15.122)
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Speed u changes in time and the dynamics of the flow is described following
system of partial differential equations

@u

@t
C .u � r/ u D ˛‚gNz �

�
1

0

�
rıp C �r2u;

@‚

@t
C .u � r/‚ D �r2‚ � uz

�
�T

H

�
;

ru D 0: (15.123)

Here ıp is the pressure change proportional to the convection state, � is the liquid
kinetic viscosity coefficient, � is a constant thermal diffusion process, and r2 is the
Laplace operator. Since uy D 0, then the remaining components of the velocity
vector can be obtained from the equations:

ux D �@ 
@z
; uz D @ 

@x
: (15.124)

In addition, Lorenz introduced the following boundary conditions:

‚.0/ D ‚.H/ D  .0/ D  .H/ D r2 .0/ D r2 .H/ D 0: (15.125)

Function of temperature dispersion ‚ and flow function  can be found in the
form of the following Fourier series:

‚.x; y; z; t / D
JX
jD1

sin .j�z/‚j .x; t/ ;

 .x; y; z; t / D
JX
jD1

sin .j�z/  j .x; t/ :

(15.126)

Further Lorenz limited his considerations to only three basic solutions, and taking
into account the boundary conditions he obtained

‚.x; z; t / D �TRc

Ra�

p
2Y .t/ cos

��ax
H

�
sin
��z

H

�
� z .t/ sin

�
2�z

H

��
;

 .x; z; t / D
p
2
�
1C a2

�
�

a
X .t/ sin

��ax
H

�
sin
��z

H

�
; (15.127)

where Ra is the Rayleigh number with the critical value Rc :

Ra D ˛gH3�T

��
; Rc D �4

�
1C a2

�3
a2

: (15.128)
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X;Z and Z are amplitudes of three successive forms of the assumed solution that
are dependent on time. Lorenz equations we obtain by substituting (15.127) into
Eq. (15.123). They have the following form

dX

d	
D � .Y �X/ ;

dY

d	
D �XZ C rX � Y;

dZ

d	
D XY � bZ; (15.129)

where

	 D �
�
1C a2

�
�t

�2
; � D �

�
; b D 4

1C a2
; r D Ra

Rc
: (15.130)

During computer simulations of these equations Lorenz noticed irregular oscilla-
tions for certain parameters of this strongly simplified version of a physical model.
He also noted in the plane .X; Y / a geometric shape somewhat resembling a human
kidney. Phase point wandered around the left or right kidney, while the jumps
between them were random and impossible to predict.

Lorenz equations system is an autonomous system (without acting external
force). Let us try to determine the equilibrium position of the system and investigate
their stability. For b > 0, � > 0 and r > 0, Eq. (15.129), we obtain

� .Y �Z/ D 0;

�XY C rX � Y D 0;

XY � bZ D 0: (15.131)

As one can easily verify .X; Y;Z/ D .0; 0; 0/. Disturbing the equilibrium
position and limiting the discussion to the differential equations of the linear
disorders we obtain the characteristic equation of the form

Œ�C b�
�
�2 C .� C 1/ �C � .1 � r/	 D 0: (15.132)

For 0 < r < 1 Eq. (15.132) has three real roots neither of which is negative.
This means that considered equilibrium position is a stable. For r D 1 occurs
solutions branching–bifurcation. For r > 1 we have the following solution set (the
equilibrium)

X DY D ˙
p
b .r � 1/;

Z D r � 1: (15.133)



578 15 Chaos and Synchronization

Fig. 15.36 Lorenz attractor
projection on the plane
.X; Y / for � D 10, r D 28,
b D 2:67

The previous solution (0,0,0) still exists, but is unstable. Characteristic equation
in the considered case takes the form

�3 C .� C b C 1/ �2 C .r C �/ b�C 2�b .r � 1/ D 0: (15.134)

Both the equilibrium positions defined by Eq. (15.133) lose their stability after
exceeding the critical value of the parameter.

rc D � .� C b C 3/

� � b � 1 : (15.135)

Lorenz attractor projection is shown in Fig. 15.36. Numerically calculated
attractor dimension equals d D 1:768 ˙ 0:071. Figure 15.37 shows a graph of
the Lyapunov exponent � in dependence of the control parameter r . For big values
it assumes positive values, what reflects the chaotic traffic.

15.8 Synchronization Phenomena of Coupled Triple
Pendulums

15.8.1 Mathematical Model

The investigated system consists of N identical triple pendulums [27]. Each triple
pendulum, exhibited in Fig. 15.38a is a plane subsystem of three rigid links,
rotationally coupled in points Oj .j D 1; 2; 3/, with viscous damping of the
coefficients Ncj .i D 1; 2; : : : ; N /, respectively. The position of the system is defined
by 3N angles  i;j .i D 1; 2; : : : ; N; j D 1; 2; 3/. Masses of the corresponding
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Fig. 15.37 � Lyapunov
exponent as a function of the
parameter r

Fig. 15.38 The i th triple pendulum (a) and example of three coupled sets of pendulums (b)

links are denoted by mj .j D 1; 2; 3/, while Ij denote mass moments of inertia
of the corresponding bodies with respect to axes zcj .j D1; 2; 3/ - principal central
axes perpendicular to the motion plane. It is assumed that the mass centers (axes
zcj ) of the links lie on the lines including the corresponding joints (Oj , j D1; 2; 3).
The first link of each pendulum is forced by the external and common signal
' .	/ D N!	 (where 	 is time), realized by relative rotation of additional body (of
mass m0 and inertia moment I0) connected to the first link in the joint O1. Other
geometric parameters of the system are visible in Fig. 15.38a. The pendulum sets
are situated along a line perpendicular to the motion plane and they are coupled by
viscous and elastic connections (with angular viscous damping coefficient Nks Ncrs and
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angular stiffness Nks) between the first links of neighbouring sets of triple pendulums.
Figure 15.38b exhibits an example of three coupled sets of triple pendulums.

The system is governed by the following set of differential equations in the
Lagrange formalism

d

d	

0
B@ @ NTi
@

j
 i;j

1
CA� @ NTi

@ i;j
C @ NVi
@ i;j

D NQi;j i D 1; : : : ; N; j D 1; 2; 3; (15.136)

where
j

.: : :/—denotes derivative with respect to real time 	; NTi ; NVi—real kinetic and
potential energy of the i th pendulum, NQi;j—real generalized forces acting in the
system. The reader may find more material devoted to numerical and experimental
investigations of the triple pendulum set in [27, 28, 36].

Real kinetic energy of the i th pendulum follows

NTi D Ai.
j
 i;1/C 1

2
B1

j
 2

i;1 C 1

2
B2

j
 2

i;2 C 1

2
B3

j
 2

i;3

CN12
j
 i;1

j
 i;2 cos . i;1 �  i;2/CN13

j
 i;1

j
 i;3 cos . i;1 �  i;3/

CN23
j
 i;2

j
 i;3 cos . i;2 �  i;3/ (15.137)

where:

B1 D I0 C I1 C e21m1 C e20m0 C l21 .m2 Cm3/ ;

B2 D I2 C e22m2 C l22m3;

B3 D I3 C e23m3;

N12 D m2e2l1 Cm3l1l2;

N13 D m3e3l1;

N23 D m3e3l2; (15.138)

and where

Ai.
j
 i;1/ D 1

2
N!i

I0

�
N!i � 2

j
 i;1

�
C e20m0

�
N!i C 2

j
 i;1

��
: (15.139)

Real potential energy of gravitational forces for the i -th pendulum is as follows

NVi D �M0 cos . i;1 C N!i	/�M1 cos i;1�M2 cos i;2�M3 cos i;3; (15.140)
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where

M0 D m0g e0; M1 D m1g e1 C .m2 Cm3/ g l1;

M2 D m2g e2 Cm3g l2; M3 D m3g e3;
(15.141)

and g is the gravitational acceleration.
The coupling between the adjacent sets of triple pendulums is modelled by

following generalized forces

NQi;1 D �Nc1
j
 i;1 � Nc2

� j
 i;1 �

j
 i;2

�

C � Nks

. iC1;1 �  i;1/C . i�1;1 �  i;1/C Ncrs

� j
 iC1;1 �

j
 i;1

�

CNcrs
� j
 i�1;1 �

j
 i;1

��
;

NQi;2 D �Nc2
� j
 i;2 �

j
 i;1

�
� Nc3

� j
 i;2 �

j
 i;3

�
;

NQi;3 D �Nc3
� j
 i;3 �

j
 i;2

�
; where i D1; : : : ; N (15.142)

and where we assume that  0;1 D  1;1,
j
 0;1 D

j
 1;1,  NC1;1 D  N;1,

j
 NC1;1 D

j
 N;1.

Then we introduce the non-dimensional time t

t D ˛1	; (15.143)

where

˛1 D �
M1B

�1
1

� 1
2 : (15.144)

Furthermore, we take

d .: : :/

d	
D ˛1

d .: : :/

dt
(15.145)

and therefore
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j
 i;j D ˛1 P i;j ;

N! D ˛1!;

@ .: : :/

@
j
 i;j

D @ .: : :/

@ P i;j
@ P i;j .

j
 j /

@
j
 i;j

D 1

˛1

@ .: : :/

@ P j
;

(15.146)

where i D 1; : : : ; N; j D 1; 2; 3; ! denotes the non-dimensional counterpart of real
angular frequency N! and .: : :/ is derivative with respect to non-dimensional time t .

Dividing both sides of the real equations (15.136) by 2E1, where

E1 D 1

2
˛21B1 D 1

2
M1; (15.147)

the following non-dimensional Lagrange formulation of the governing equations is
obtained

d

dt

 
@Ti

@ P i;j

!
� @Ti

@ i;j
C @Vi

@ i;j
D Qi;j ; i D 1; : : : ; N j D 1; 2; 3: (15.148)

Non-dimensional kinetic energy of the i -th pendulum is as follows

Ti D
NTi
2E1

D ai . P i;1/C 1

2
P 2
i;1 C 1

2
ˇ2 P 2

i;2 C 1

2
ˇ3 P 2

i;3

C �12 P i;1 P i;2 cos . i;1 �  i;2/C �13 P i;1 P i;3 cos . i;1 �  i;3/
C �23 P i;2 P i;3 cos . i;2 �  i;3/ (15.149)

where

ˇ2 D B2

B1
; ˇ3 D B3

B1
; �12 D N12

B1
; �13 D N13

B1
; (15.150)

and

ai . P i;1/ D Ai.
j
 i;1/

2E1
D 1

2B1
!i
�
I0
�
!i � 2 P i;1

�C e20m0

�
!i C 2 P i;1

�	
:

(15.151)
Non-dimensional potential energy of gravitational forces for the i -th pendulum

has the form

Vi D
NVi
2E1

D ��0 cos . i;1 C !i t/�cos i;1��2 cos i;2��3 cos i;3 (15.152)
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where

�0 D M0

M1

;�2 D M2

M1

;�3 D M3

M1

: (15.153)

Non-dimensional generalized forces have the following form

Qi;1 D
NQi;1

2E1
D �c1 P i;1 � c2

� P i;1 � P i;2
�

C �ks
�
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�
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� P i�1;1 � P i;1

�	
;

Qi;2 D
NQi;2

2E1
D �c2

� P i;2 � P i;1
� � c3

� P i;2 � P i;3
�
;

Qi;3 D
NQi;3

2E1
D �c3

� P i;3 � P i;2
�
; i D1; 2; : : : ; N; (15.154)

where

cj D Ncjp
M1B1

; for j D 1; 2; 3;

ks D
Nks
M1

; crs D Ncrs
s
M1

B1

(15.155)

and where we take  0;1 D  1;1, P 0;1 D P 1;1,  NC1;1 D  N;1, P NC1;1 D P N;1.
Finally, the non-dimensional governing equations can be written as follows

M . i /
R i C N . i / P 2i C C P i C p . i ; t / D f

�
 i�1; i ; iC1; P i�1; P i ; P iC1

�
i D1; 2; : : : ; N

(15.156)
where

 i D

8̂<
:̂
 i;1
 i;2
 i;3

9>=
>; ; P i D

8̂<
:̂

P i;1P i;2P i;3

9>=
>; ; P 2

i D

8̂<
:̂

P 2
i;1P 2
i;2P 2
i;3

9>=
>; ; R i D

8<
:

R i;1
R i;2
R i;3

9=
; ;

M . i / D
2
4 1 �12 cos . i;1 �  i;2/ �13 cos . i;1 �  i;3/
�12 cos . i;1 �  i;2/ ˇ2 �23 cos . i;2 �  i;3/
�13 cos . i;1 �  i;3/ �23 cos . i;2 �  i;3/ ˇ3

3
5 ;
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15.8.2 Numerical Simulations

The following set of real parameters is constant during the numerical simulations
presented in the current section

m0 D m1 D m2 D m3 D 1 kg;

I0 D I1 D I2 D I3 D 1

12
kg � m2;

e1 D 0; e0 D e2 D e3 D 1

2
m; l1 D l2 D 1m;

Nc1 D Nc2 D Nc3 D 0:1N m s; Ncrs D 0:347611 s; g D 10m=s2: (15.158)

The set of real quantities (15.158) leads to the following non-dimensional
parameters

ˇ2 D 0:5517; ˇ3 D 0:1379;

�0 D 0:25; �2 D 0:75;

�23 D 0:2068; �12 D 0:6207; �13 D 0:2068;

c1 D c2 D c3 D 0:01438; crs D 1: (15.159)

Figure 15.39a exhibits bifurcational diagram for one .N D 1/ or for unco-
upled triple pendulums (ks D 0), with the excitation angular frequency ! as a
bifurcational parameter. In Fig 15.39b–d there are presented two exemplary orbits:
the periodic (b) for ! D 0:68 and the chaotic one for ! D 0:72 (c, d). Then,
for (chaotic behaviour of uncoupled systems), we present bifurcational diagrams
(Fig. 15.40) of dynamical behaviour of three coupled pendulums .N D 3/, with
coupling coefficient ks as a control parameter. The first Poincaré section (for ks D 0)
of each bifurcational diagram is performed by the use of the following set of initial
conditions
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Fig. 15.39 Bifurcational diagram for one .N D1/ triple pendulum (a) and the corresponding
periodic solution for ! D0:68 (b) and chaotic attractor for ! D0:72 [(c) trajectory, (d) Poincaré
section]

 i;j .0/ D 0; P i;j .0/ D 10�5i where i D 1; 2; : : : ; N; j D 1; 2; 3;

(15.160)
so the pendulums start from closely located, but different states. During a jump to
the next Poincaré section (the change of control parameter), see Fig. 15.40a, the
system state preserves continuity or is restarted to the initial conditions (15.160)—
see Fig. 15.40b. Figure 15.40 exhibits rich spectrum of synchronization phenomena
governed by the investigated system (the associated Poincaré maps are reported in
Fig. 15.41). In particular, we have observed the intervals of chaotic and periodic
behaviour of the system, or even regions of coexistence of chaotic and periodic
attractors. We have also found the intervals of exact synchronization between
chaotic behaviour of all three pendulums and the zones of exact synchronization
between irregular motion of the first pendulum and the third one, while the second
pendulum moves non-synchronically on chaotic attractor. We can also observe
other kinds of non-exact synchronization, usually between periodic motions of the
pendulums.

To conclude, in this section the preliminary research results of the system of
coupled triple pendulums are presented. We have identified and shown examples
of rich dynamics exhibited by the investigated system, including many different
kinds of synchrony and opening the route to more deep and general view of
synchronization phenomenon. Since there is a direct mechanical interpretation of
the proposed model, the experimental verification is potentially possible. There are
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Fig. 15.40 Bifurcational diagrams for three .N D3/ coupled triple pendulums

many possibilities of further research of the system, e.g. investigations of larger
number of coupled subsystems of pendulums consisting of larger or smaller number
of links.

15.9 Chaos and Synchronization Phenomena Exhibited
by Plates and Shells

15.9.1 Introduction

In the past two decades a key role of the theory of bifurcation and chaos has been
exhibited in the studies on high-dimensional nonlinear systems, and in particular
structural members like beams, plates and shells. On the other hand, the mentioned
structural members are widely applied in civil aerospace and mechanical engi-
neering, including space stations, satellite solar panels, precision micromachines
and instruments, and so on. In engineering an attempt to fabricate light-weight
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Fig. 15.41 Poincaré sections corresponding to Fig. 15.40a, for ks D 0:05 (a, b) and ks D 1:4 (c,
d)

high-speed and energy-saving structures by simultaneously keeping large structural
flexibility and stability, even for relatively large vibration deformation, is observed.
In order to satisfy the engineering expectations, novel mathematical models are
needed, supported by development of the theory of bifurcation and chaos as well as
novel theoretical/numerical tools aimed at solving the governing partial differential
equations are highly required. Below, a brief state of the art validating the mentioned
remarks is given.

An averaging method was applied by Yang and Sethna [246, 247] to detect and
analyse local and global bifurcations in parametrically excited nearly squared plates
for symmetric and anti-symmetric cases. They formulated analytical conditions
for the Shilnikov-type homoclinic orbits and deterministic chaos. A double mode
approach to predict chaotic vibrations of a large deflection plate utilizing the Mel-
nikov method was proposed by Shu et al. [218]. Lyapunov exponents, bifurcation
diagrams and fractal dimension concepts were applied by Yeh et al. [249] to study
chaotic and bifurcation vibrations of a simply supported thermo-elastic circular plate
in large deflection.

Nagai et al. reported analytical results for a shallow cylindrical panel with a
concentrated mass under periodic excitation [178] as well as experimental results
of a shallow cylindrical shell-panel [177]. Amabili [5, 6] analysed the transition
to chaotic vibrations for circular cylindrical shell and doubly curved panels in the
vicinity of the fundamental frequency.
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Ye et al. [248] analysed chaotic vibrations of antisymmetric cross-ply laminated
composite rectangular thin plate under parametric excitation.

Wang et al. [241] studied chaotic vibrations of a bimetallic shallow shell of
revolution under time-varying temperature excitation using the Melnikov functions,
Poincaré maps, phase portraits, Lyapunov exponents and Lyapunov dimensions.
They reported the onset of chaos, transient chaos, direct and reversed period-
doubling scenario, jump phenomena and interior crisis. Nonlinear dynamics and
chaos of a simply supported functionally orthotropic gradient material rectangular
plate in thermal environment subjected to parametric and external excitations was
studied by Zhang et al. [252]. The governing partial differential equations were
reduced to ordinary differential equations modelling the truncated three degree-of-
freedom nonlinear mechanical system.

Touzé et al. [232] studied von Kármán equation for thin plates which exhibit
large amplitude vibrations putting emphasis on the transition from periodic to
chaotic vibrations in free-edge, perfect and imperfect circular plates. The bifurcation
diagrams, Lyapunov exponents and Fourier spectra were applied to analyse both
transitions into chaotic regimes and the energy exchange between modes.

In spite of the application oriented and so far briefly described papers, the
existence of global attractors and inertial manifolds exhibited by von Kármán
equations for various types of damping laws was rigorously analysed by Chuesov
and Lasiecka [66–68].

15.9.2 One Layer Shell

This section is devoted to the investigation of plates/shells subjected to harmonic
load actions of their parameters, as it is shown in Fig. 15.42 (see [23]).

We consider flexible one-layer thin shells of length a, width b and height h, made
from an isotropic and homogeneous material. The shell is loaded via continuous px
and py loads distributed along its perimeter. The following hypothesis are applied:
arbitrary shell’s cross-section, being normal to the shell middle surface deformation
remains normal after the deformation, and the cross-section height is not changed;
although rotational inertia of shell elements is not taken into account, inertial forces
associated with displacements along a normal to the middle shell surface are taken

Fig. 15.42 Shell with normal
and longitudinal harmonic
loads

X

Z

h

q

y

py =p0 + p2 sin(wp t)

px =p0 + p1 sin(wp t)
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into consideration; external forces do not change their directions during the shell
deformation; geometric nonlinearity is taken in the Kármán form [240].

The so far listed hypotheses are based on the Kirchhoff–Love ideas, and they can
be understood as the first approximation approach to build a mathematical model of
the shell. The governing non-dimensional PDEs have the following form [239]:

1

12.1 � �2/r�
4w � r2

kF � L.w; F / � @2w

@t2
� "@w

@t
� q.x; y; t/ D 0;

r�
4F C rk

2w C 1

2
L.w;w/ D 0;

(15.161)
where

r�
4 D 1

�2
@4

@x4
C �2

@4

@y4
C 2

@4

@x2@y2
; L.w; F / D @2w

@x2
@2F

@y2
C @2w

@y2
@2F

@x2

� 2 @
2w

@x@y

@2F

@x@y
;

rk
2 D ky

@2

@x2
C kx

@2

@y2
:

Here w and F are the deflection and stress functions, respectively; � D a=b,
where a; b are the shell dimensions regarding x and y, respectively; � is Poisson’s
coefficient and " denotes the damping coefficient. The initial conditions follow

w.x; y/jtD0 D '1.x; y/;
@w

@t

ˇ̌
ˇ̌
tD0

D '2.x; y/; (15.162)

and the boundary conditions have the form

w D 0;
@2w

@x2
D 0; F D 0;

@2F

@x2
D py for x D 0; 1;

w D 0;
@2w

@y2
D 0; F D 0;

@2F

@y2
D px for y D 0; 1:

(15.163)

System (15.161)–(15.163) is transformed to its non-dimensional counterpart
form using the following parameters: � D a=b , x D ax, y D by, w D
h Nw—deflection; F D Eh3F—Airry’s function; t D Nt ab

h

q



Eg
—time; q D Eh4

a2b2
q—

transversal load; " D h
ab

q
Eg



N"—damping coefficient; g—Earth acceleration;

 D 
h (
—unit weight density); Nkx D kx
a2

h
, Nky D ky

b2

h
, kx D 1

rx
, ky D

1
ry

(kx , ky—shell curvature regarding x and y; respectively); rx , ry—curvature
radius of the middle shell surface regarding x and y; respectively. We have also
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E—elasticity modulus, py D Eh3

b2
,px D Eh3

a2
—longitudinal loads regarding x and

y respectively. Bars over the non-dimensional quantities are omitted. Harmonic load
px D p0 C p1 sin!pt , py D p0 C p2 sin!pt , where p0 D const, !p is the
frequency of harmonic excitation, and p1 and p2 are the amplitudes of the excitation.
In addition, q D q0 C q1 sin!qt , where q0 D const, !q , q1 are the frequency and
amplitude of the transversal harmonic load, respectively.

The system of PDEs (15.161) is reduced to ODEs via the FDM (Finite Difference
Method) with approximationO.h2/ regarding the spatial coordinates x and y. First,
equations of nonlinear ODEs in time are solved via the fourth-order Runge–Kutta
method with respect to the deflection w. Then, the values w are substituted into
the right-hand side of the second system of ODEs. Therefore, the second equation
becomes linear, and it is solved using the method of inversed matrix regarding the
Airy’s function F on each time step. The latter is chosen via the Runge principle.
The number of FDM partitions n D 14. Discussion of the influence of n on the
obtained results can be found in [31], where the rectangular plate is studied. It is
shown, among others, that convergence of the results can be obtained in the averaged
meaning, i.e. via the estimation of wavelets spectra and Lyapunov exponents. In
the case of chaotic vibrations only the integral convergence is achieved, whereas
for small amplitudes of the exciting loads also the convergence regarding regular
vibrations can be obtained.

(i) Reliability of the Results

Reliability of the results is examined via the relaxation method applied for the
first time for shells by Feodos’ev [88]. Since stability loss of any deformed system
is a process which takes place in time, it should be studied from the point of view of
dynamics. However, in many cases stability of the majority of constructions carrying
the load can be estimated by a static method (in the case of a conservative system it
yields the same results as those obtained using a dynamical approach [215]).

Solving the Cauchy problem for " D "cr , for a series of constant load fPig,
we get a sequence of deflection fwig. The value of deflection w should tend to
steady-state. Then the dependencies px.wst/ and py.wst/ are constructed and the
strain-stress system state is investigated. Observe that in order to initiate vibrations
the shell had initially introduced imperfection of the magnitude of q0 D 0:001.

We compared the dependencies px.wst/ and py.wst/ for the fixed parameters
kx D 12, ky D 0 and kx D 0, ky D 12 (Fig. 15.43a); kx D 24, ky D 0 and kx D 0;

ky D 24 (Fig. 15.43b); kx D 48, ky D 0 and kx D 0, ky D 48 (Fig. 15.43c). In
order to solve the second governing equation via the inversed matrix method, it is
necessary to build this equation in the corresponding matrix form and to construct
the matrix A Œn2 	 n2� and the column matrix B containing n2 rows. Boundary
conditions regarding x and y appear inB in a different way. Comparing the obtained
results reported in the mentioned figures it is seen that the curves coincide (the
difference is less than 1%). The difference appears only for the shells with two
geometric parameters kx D 12I 24, ky D 0 and kx D 0, ky D 12I 24: It happens
when the same longitudinal load along the shell perimeters is applied in unstable
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Fig. 15.43 Dependencies w.p/ for kx D 12, ky D 0/kx D 0, ky D 12 (a); kx D 24, ky D
0/kx D 0; ky D 24 (b); kx D 48, ky D 0/kx D 0, ky D 48 (c)

zones, i.e. when the load intensity belongs to .100I 200/. In the latter case non-
unique solutions are observed, and this case is described and studied in [26, 140].

The zone of instability occurs only for high order loads. Dependencies px.wst/

and py.wst/ for curvatures kx D 48, ky D 0 and kx D 0, ky D 48 are computed for
the load intensity p0 2 .0I 10/. For the longitudinal loads of p0 > 10, the deflection
values are not within the assumed hypotheses regarding the introduced shell model.
In the reported results we do not observe zones of stability loss and the difference in
results does not reach 1%. This validates the reliability of the results and correctness
of the applied algorithms.

Since we studied the squared shell with a D b, intensity of the applied loads in
both directions is the same for each experiment. In other words, the given pairs of
curves describe in fact the same physical models. Therefore, the analysis carried out
using the Feodos’ev method with respect to the geometric parameters shows good
coincidence with the physical aspects of the investigated process. This validates the
reliability of the results and correctness of the applied algorithms.

(ii) Wavelet Analysis

Observe that signals obtained as a result of the numerical experiments are
presented in time domain. To visualize the signal we need time (independent
variable) as one coordinate, and amplitude as a dependent variable, i.e. we should
get an amplitude-time signal representation. For the purpose of a qualitative
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investigation we need to study the frequency spectrum of a signal, i.e. the set of
its frequency components. The Fourier transformation has been applied for a long
time to study frequencies of a signal. However, from the point of view of exact
analysis and detection of the local signal properties, the Fourier series has a lot of
limitations and drawbacks. Being well localized in the frequencies domain, it does
not yield time representation. It is well known that practically all signals obtained
while studying dynamics of nonlinear systems are non-stationary. This fact indicates
difficulties while applying the standard Fourier approach. The theory of wavelets,
which is an alternative approach to the Fourier analysis, offers deeper techniques of
signal analysis. The main advantage of the wavelet analysis relies on a possibility
of monitoring of the signal localized properties, whereas the Fourier analysis fails
to solve the latter task. The Fourier coefficients express characteristic features of the
studied signal within the whole time interval. In other words, if we study a complex
signal using the Fourier analysis, i.e. a signal whose characteristics change in time,
then in the output we will get the sum of all features exhibited by its local behaviour.

Signals produced by numerical simulations while investigating the continuous
mechanical systems often have a complex structure. Their frequency characteristics
strongly change in time. Therefore, in this paper in spite of the classical Fourier
analysis, the wavelet analysis is applied, which allows us to detect a number of
interesting peculiarities of vibrations of the studied systems.

A first key point requiring a serious investigation concerns the choice of a
wavelet, which entirely depends on the character of the studied problem. In order to
solve the given problem, we consider a non-stationary signal obtained in a numerical
experiment. Here we consider the shell with parameters kx D 24, ky D 0, we apply
the harmonic longitudinal load in the directions of axis x and y with !p D 6:7 < !0,
and amplitude p1 D 4:9 (!0 is the natural shell frequency). For a given signal
various wavelet spectra are constructed [75, 76, 163, 173, 174, 220].

The Haar wavelet is badly localized in the frequency domain, whereas the
Shannon wavelet is badly localized in time. Analysis of the wavelets spectra
obtained with the help of the Daubechies wavelets, coiflets and symlets shows that
an increase of the order of the applied filter implies an increase of the wavelet
resolution regarding frequency.

In spite of the differences in the wavelets forms, the wavelet spectra obtained
on the basis of the Daubechies wavelets, coiflets and symlets of the same order
are practically the same. However, they do not allow us to get a sufficient
frequency localization of the investigated vibrating continuous mechanical systems.
Considering the results obtained on the basis of the Gauss function derivatives, the
accuracy of frequency estimation increases with an increase of the derivative order.

Table 15.1 gives results obtained via Meyer, Morlet (real and complex), Gauss
(real and complex) wavelets from 16 up to 32 derivative order, and the Daubechies
16 wavelet.

The data given in Table 15.1 show that the localization with respect to frequency
increases with an increase in the number of zero-order moments of an applied
wavelet. Complex Morlet and Gauss wavelets exhibit better localization regarding
the frequencies than their real counterparts, but the time localization is better in the
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Table 15.1 Frequency vs. time (wavelet spectra of different wavelets)
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Fig. 15.44 2D wavelet
spectrum of the plate
(!p D !0 D 5:8,
kx D ky D 0)
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case of real wavelets. Therefore, in order to study chaotic vibrations of plates and
shells one can apply either complex or real Morlet wavelets, as well as the real and
complex wavelets obtained via high order differentiation of the Gauss function.

(iii) Numerical Results

Numerical experiment carried out for (!p D !0 D 5:8, kx D ky D 0) yielded
a bifurcation for a small excitation amplitude with a sudden reconstruction of the
plate vibrations character, which is shown by 2D wavelet spectrum in Fig. 15.44. In
the initial time interval excitation frequency is exhibited, and then beginning from
t � 50 the first subharmonic !1 D 2:9 D !p=2 dominates. Since in this case
the change of the vibration character takes place through a narrow chaotic window,
therefore the application of Fourier transformation in the whole time interval is not
feasible to monitor peculiarities of evolution of the frequency characteristics in time.

However, as expected, the application of Fourier analysis in each of shorter
time interval coincides with the results obtained by the wavelets spectrum (second
bifurcation for p1 D 1:1 takes place for t � 120). The monitored scenario is a kind
of modification of the Feigenbaum scenario (see Table 15.2).

While investigating a shell with geometric parameters kx D ky D 12 for !p D
5:7 < !0 the following scenario of transition from periodic to chaotic vibrations is
observed. For the excitation amplitude 1.7999, the Fourier spectrum exhibits a pair
of dependent frequencies !2 D !p�!1 (!1 D 1:644, !2 D 4:36). For p1 D 1:8 the
Fourier spectrum consists already of two pairs of non-commensurable frequencies
and one more frequency of a third pair with small amplitude (Table 15.3a). The
increase of control parameter p1 makes the Fourier spectrum noisy implying chaotic
vibrations of the shell. The monitored wavelet spectra approve that the transition into
chaotic vibrations is realized via the Pomeau–Manneville route.

We pay more attention to the information obtained by the wavelet spectra. The
wavelet spectra register frequency !1 D 1:644 for p1 D 1:81, but only in the initial
time interval (Table 15.3b). This low information property of the applied apparatus
is caused by the domination of excitation frequency over the remaining frequencies.
However, this drawback is removed while constructing a wavelet spectrum with the
frequency constrained. Namely, considering the interval of frequencies for ! < 4,
the mentioned phenomenon is now well reported (Table 15.3c).
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Table 15.2 The Fourier S.!/ and wavelet 2D spectra for kx D ky D 0, !p D !0 D 5:8;

p1 D 1:1
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The wavelet spectrum corresponding to the periodic Fourier spectrum .p1 D 0:1/

exhibits two pairs of linearly independent frequencies which are detected by the
Fourier spectrum for p1 D 1:81: Therefore, the frequency spectrum constructed on
the basis of the wavelet transformation allows for the detection and monitoring of
frequency characteristics of vibrations.

The numerical simulation for the fixed parameters: kx D ky D 24, !p D !0 D
24:8 shows that a number of linearly dependent frequencies may increase not only
due to the increase of a control parameter, but even for its fixed value (p1 D 0:1)
owing to the modified Ruelle–Takens scenario. Namely, in the interval t < 150 we
have two pairs of frequencies !2 D !p �!1 and !3 D !p �!5; where !1 D 3:927;

!2 D 20:873; !3 D 7:854; !4 D 16:946: In time interval t 2 Œ150; 250� the
frequency !5 D 10:21 appears which belongs to a third pair. Then the number of
frequencies increases more in the finite time interval. The signal time evolution is
well demonstrated by the 2D wavelet-spectrum in Table 15.4.
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Table 15.3 Fourier S.!/ and wavelet W.!/ spectra for different p1
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Table 15.4 Fourier S.!/ and wavelet spectrum for kx D ky D 24, !p D !0 D 24:8, p1 D 0:1:

−5

−10

−10

−8

−6

−4

−2

−15

0
S

0 10 20

0 10 20

20

15

10

5

50 100 150

t

200 250

25

S(w) t<150 S(w) , t ∈[150;250]

S(w) , t ∈[250,286] 2D wavelet spectrum

ω

ω4

ω2
ωp

ω3

ω1

S

ω

ω
ω4

ω5

ω2

ωp

ω3

ω1

−4

−2

−6

−8

0
S

0 10 20
ω

ω4

ω2

ωp

ω3 ω5

ω1

15.9.3 Two-Layer Shell

(i) Problem Formulation

In this section we study a two-layer spherical flexible isotropic elastic shell
with constant stiffness and density which is subjected to the action of harmonic
longitudinal load (Fig. 15.45) (see [23]). The constant load q is applied only to the
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Fig. 15.45 Computational
scheme of a two-layer shell
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upper shell layer. The layers move freely or slide without friction. Due to small
values of the contact pressure, zones of permanent sticks rather do not occur. Contact
conditions occurring between the layers can depend on the coordinates, and they
include all possible cases of a one-sided contact. The hypotheses are the same as
for the one-layer shell. The contact pressure function is excluded from a number
of unknowns. The shell occupies the following space: �1 D fx1; y1; z1j.x1; y1/ 2
Œ0I a� 	 Œ0I b�; z1 2 Œ�h1Ih1�gI �2 D fx2; y2; z2j.x2; y2/ 2 Œ0I a� 	 Œ0I b�; z2 2
Œ�h2Ih2�g; 0 � t < 1.

The governing equations of the theory of flexible shallow shells [239] taking
into account a contact between the layers [133] have the following non-dimensional
form:

1
12.1��2/r4

�wm � L.wm; Fm/ � r2
kFm C q ˙K.w1 � hk � w2/‰ D @2wm

@t2
C "1

@wm
@t
;

r4
�Fm D �1

2
L.wm;wm/ � r2

kwm;

(15.164)
where

r�
4 D 1

�2
@4

@xm4
C �2

@4

@ym4
C 2

@4

@xm2@ym2
; rk

2 D kxm
@2

@xm2
C kx1

@2

@ym2
;

L.wm; Fm/ D @2wm
@x2m

@2Fm

@y2m
C @2wm

@x2m

@2Fm

@y2m
� 2 @2wm

@xm@ym

@2Fm
@xm@ym

;

 D 1

2
Œ1C sign .w1 � hk � w2/� :

Here wm and Fm are the deflection and stress functions, respectively; m D 1; 2;
K is the stiffness coefficient of the transversal contact zone. We have‰ D 1; if w1 >

w2 C hk; i.e. contact between panels occurs, or ‰ D 0I w1;w2 denote deflection
of the upper and lower panel, respectively. The following boundary conditions are
attached:
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w1 D 0;
@2w1
@x21

D 0; F1 D 0;
@2F1

@x12
D py1.t/ for x1 D 0; 1;

w1 D 0;
@2w1
@y21

D 0; F1 D 0;
@2F1

@y21
D px1.t/ for y1 D 0; 1;

w2 D 0;
@2w2
@x22

D 0; F2 D 0;
@2F2

@x22
D 0 for x2 D 0; 1;

w2 D 0;
@2w2
@y22

D 0; F2 D 0;
@2F2

@y22
D px2.t/ for y2 D 0; 1;

(15.165)
where px1.t/ D p0Cp1 sin.!pt , py1.t/ D p0Cp2 sin.!pt/ denote the longitudinal
loads. The initial conditions are as follows:

wm.xm; ym/jtD0 D �1.xm; ym/;
@wm
@t

D �2.xm; ym/: (15.166)

Equation (15.164) is transformed to non-dimensional using the following rela-
tions: xm D a Nxm, ym D b Nym; Nkxm D kxm

a2

hm
, Nkym D kym

b2

hm
, kxm D 1

rxm
, kym D 1

rym
,

qm D Nqm Emh
4
m

a2b2
, 	m D ab

hm

q
m

Emgm
, �1 D a

b
, where a; b are the dimensions of

the rectangular cylindrical panel regarding xm and ym, respectively; hm denotes
the shell thickness; gm is the Earth acceleration; m D 
mhm, where 
m is the
volume weight density; rxm , rym is the curvature radius of the shell regarding xm
and ym, respectively. Furthermore, t is time, "m is the damping coefficient, � D 0:3

is Poisson’s coefficient for the isotropic material, Em is the elasticity modulus,
qm.x; y; t/ denotes the transversal load, and K D K h4b

a4
is the stiffness coefficient

of the contact zone. Bars over non-dimensional quantities are omitted.
In order to reduce PDEs (15.164) to ODEs we apply FDM (Finite Difference

Method) with approximations O .c2/ regarding spatial coordinates. The obtained
Cauchy problem is solved via the fourth-order Runge–Kutta method. Simultane-
ously, on each time step a linear system of algebraic equations is solved.

(ii) Phase Chaotic Synchronization

We introduce phase �.t/ of a chaotic signal [188,199], with its frequency denoted
as an averaged phase velocity

˝ P�.t/˛. There is no universal way to introduce the
phase of a chaotic signal which gives correct results for an arbitrary dynamical
system. Here, we apply wavelets to detect a regime of chaotic synchronization
of mechanical dynamical systems with a badly defined phase. Dynamics of the
mentioned systems can be characterized with the help of a continuous set of phases
which are defined by a continuous wavelet transformation of the chaotic signal w.t/
[147] in the following form



15.9 Chaos and Synchronization Phenomena Exhibited by Plates and Shells 599

V .S; t0/ D
C1Z

�1
w.t/ �

s;t0 .t/dt ;  s;t0 .t/ D 1p
s
 0

�
t � t0
s

�
;

where  s;t0 .t/ is the wavelet function, obtained from wavelet  0.t/, where .
/
denotes a complex conjugate. Time scale s defines wavelet width, and t0 is the time
shift of the wavelet function along time axis. We take the Morlet wavelet of the
form  0.�/ D ��1=4 exp .j!0�/ exp

���2=2�. Owing to the choice of !0 D 2� ,
we keep the s � 1=! ratio between time scale s of the wavelet transformation and
the frequency ! of the Fourier transformation. Therefore, the time scale s within
the wavelet analysis corresponds to the frequency yielded by the Fourier analysis.
The wavelet surface V.s; t0/ D jV.s; t0/ j exp .j�S.t0// characterizes the system
behaviour on each time scale s in the arbitrary time instant t0: Magnitude jV.s; t0/ j
characterizes the time scale s in the given time instant t0: Analogously is defined the
phase �s.t/ D argV.s; t/ for each time scale s. Therefore, behaviour of each time
scale s is characterized by the corresponding phase �s.t/.

If the structural members are out of the synchronization regime, their behaviour
is asynchronous on all time scales s. If synchronization takes place on certain time
scales, then the phase synchronization occurs. It is clear that firstly these time scales
are synchronized where the largest system energy is transmitted via the wavelet
spectrum. Consequently, the phase synchronization implies the phase locking in the
synchronized time scales: j�s1.t/ � �s2.t/ j <const, where �s1.t/ and �s2.t/ are
the continuous phases of the first and second shells respectively, corresponding to
the synchronization of the time scales s.

(iii) Numerical Experiment

We consider nonlinear dynamics of the flexible two-layer shell (plate) with
curvatures kxm D 0, kym D 0, where the first plate is subjected to harmonic
longitudinal load px1.t/ D py1.t/ D p1 sin.!pt/; and !p D 5:6, K D 1:75 	 104.
In the initial time interval 0 � t � 0:001 we apply the uniform and constant
load of q D 0:001. The amplitude of excitation p1 changes in the interval p1 2
.0:5I 0:5358/, and the gap between panels is hk D 0:5. The obtained time histories
wm.t/ (Fig. 15.46), and phase portraits as well as Fourier spectra are shown in
Table 15.5 for periodic vibrations for p1 D 0:5.
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Fig. 15.46 Signals wm.t/ for periodic vibrations (p1 D 0:5)
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Table 15.5 Fourier spectra and phase portraits (p1 D 0:5)

Table 15.6 Fourier spectra and phase portraits (p1 D 0:534)
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Fig. 15.47 Signals wm.t/ for periodic vibrations (p1 D 0:534)

Increasing the excitation amplitude implies the Hopf bifurcation. Table 15.6 pre-
sents the power spectra (time histories are shown in Fig. 15.47) and phase portraits
for the upper and lower plate obtained for p1 D 0:534. Hopf bifurcations are easily
recognized in the power spectra, whereas phase portraits exhibit two limit cycles.

A further increase of the amplitude of the longitudinal load causes intermittency,
i.e. periodic vibrations interacting with chaotic vibrations. Figure 15.48 shows time
histories obtained for p1 D 0:534. After an initial chaotic burst for 0 � t � 100,
time history wm.t/ becomes periodic (see Table 15.7). All characteristics besides
the phase difference given in Table 15.7 hold for the upper plate. The Fourier
analysis carried out in time interval t 2 .100I 330/ implies periodic vibrations.
Then the system changes its dynamics in time. Power spectrum and phase portrait
constructed for t 2 .330I 450/ again exhibit chaotic vibrations. Further, for 450 <
t < 532, the signal again becomes laminar. The phase difference shows that
the frequencies synchronization of both plates takes place only on the excitation
frequency. A further increase of the excitation amplitude increases development of
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Fig. 15.48 Time histories of plate vibrations for p1 D 0:534

Table 15.7 Time histories, phase portraits, power spectra and phase differences for different time
intervals
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Table 15.8 Time histories, phase portraits, power spectra and phase differences for q1 D 0:15,
!p D 8:4
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the intermittency effect. Therefore, our mechanical signal exhibits a transition from
periodic to chaotic vibrations via the classical Pomeau–Manneville scenario.

Next, we investigated a two-layer shell with kxm D 12, kym D 12, the first
shell being subjected to the periodic load px1.t/ D py1.t/ D p1 sin.!pt/; where
!p D 8:4,K D 1:75	104. In the initial time interval 0 � t � 0:001 we applied the
transversal constant load with q D 0:001. The amplitude of excitation p1 is changed
in the interval p1 2 .0:15I 0:178/, and the gap between shells is hk D 0:5. Similar
characteristics as in the previous case are shown in Table 15.8 for p1 D 0:15. In
the time instant of a contact between the shells, the first shell continues to vibrate
periodically. Power spectrum of the first shell has one frequency !p , whereas in the
power spectrum of the lower shell two frequencies !1 D 0:41724, !3 D 2:1476

and the linear combination of !1, !2 D 2!1 D 0:83448 appear. Phase portraits well
coincide with the power spectra. Phase portrait for the upper (lower) shell presents
a limit cycle (torus). The phase difference shows that the action of small pressure
on the lower shell implies its vibration asynchronously with the upper shell (black
(white) color corresponds to synchronous (asynchronous) vibrations).

A further increase of the excitation amplitude up to p1 D 0:177 (Table 15.9)
yields shell vibrations of the same frequencies. In the power spectrum of the upper
shell one independent frequency !1 D 0:41724 appears, and the linear combination
of !1 is !2 D 2!1 D 0:83448, !4 D 3!1 D 1:25172. Power spectrum of the
upper shell does not have the frequency !3. Phase portraits of both plates show
tori. Chaotic synchronization of the frequencies takes place only on the frequency
of excitation !p , and synchronization (black areas) appears in the interval of 6 <

! < 10. This is confirmed by the character of their simultaneous vibrations.
A further increase of p1 D 0:178 (Table 15.10) forces the system to reach

chaos. Power spectra exhibit broad band regions, and phase portraits exhibit black
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Table 15.9 Time histories, phase portraits, power spectra and phase differences for q1 D 0:177,
!p D 8:4
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Table 15.10 Time histories, phase portraits, power spectra and phase differences for q1 D 0:178,
!p D 8:4
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areas. Synchronization has only a local-timing character and is associated with the
excitation frequency. Therefore, transition into chaos takes place for the upper and
lower shells within the different scenarios: the upper shell exhibits Ruelle–Takens–
Newhouse scenario.

In conclusion, the studied simply supported shells being harmonically excited
along its perimeter exhibit mainly subharmonic vibrations with the frequency !p=2.
The analysed vibrations are mainly transitional exhibiting sequences of bifurcations
typical for the classical scenario of transition from regular to chaotic vibrations.
In addition, we have reported the modified scenarios, where the qualitative change
of system vibrations appears in time, i.e. in the illustrated modified Feigenbaum
scenario bifurcations appear for the fixed values of the control parameters. The
modified Ruelle–Takens scenario stands for another example, where the increase
of a number of dependent frequencies takes place in time.

The second part concerns dynamics of a two-layer flexible isotropic elastic shells
harmonically excited taking into account the contact interaction between them. In
particular, various phase chaotic synchronizations have been detected and studied.
We have also reported different scenarios of a transition from periodic to chaotic
vibrations of both interacting shells, among others.
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