
Chapter 13
Bifurcations

13.1 Introduction

We consider the following system of ordinary differential equations

dx

dt
D QF .x; �/; (13.1)

where: x 2 Rn, � 2 Rk , QF W Rn � Rn ! R
n. The evolutionary system (13.1) can

be represented by the vector field x�. A solution of the system (13.1) is defined by
the phase flow ˆ� W Rk � Rn ! R

n, where ˆ�.x; t/ D x�.t/ with the attached
initial conditions x D x�.0/.

One can use a terminology introduced by Arnold [11]. An object depending on
parameters is said to be a family. A small change of parameters leads to the object
deformations. It appears that very often an analysis of all potential deformations is
reduced to analysis of a representative one, further referred as a versal deformation.
The latter can be found using a procedure of reducing a linear problem to that with
a Jordan form matrix.

Each set of parameters � is related to a special configuration of the phase space
of the considered dynamical system. It can happen that for different values of
� 2 Rk , the system behaves qualitatively different. The hyperplanes separating
different subspaces of the investigated phase space correspond to the bifurcation sets
of parameters. It may happen also that these separating hyperplanes can possess a
very complicated structure.

We have already considered a matrix with multiple eigenvalues and we have
shown, how to reduce it to a Jordan canonical form. As it has been pointed by Arnold
[11], in many engineering oriented sciences, when a matrix is approximately known
the obtained results may be qualitatively different from expectations. It is caused by
a fact that even a slight perturbation can easily destroy a Jordan canonical form.
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418 13 Bifurcations

Fig. 13.1 Saddle-node bifurcation. The pointsO1 andO2 approach each other (a), overlap (b) and
vanish (c)

However, in the case of parameterized families of matrices their perturbation
does not change the multiple eigenvalue matrix form from the family. The pro-
blem defined by Arnold [11] is focused on a construction of the simplest form and
to determine the minimum number of parameters to which a considered family can
be reduced. A versal deformation is called universal if the change of the introduced
transformation is determined uniquely. A versal deformation is miniversal one if
the dimension of the parameter space is the smallest required to realize a versal
deformation. The questions concerned a construction of miniversal deformations
(normal forms) of matrices with multiple eigenvalues and the minimal number of
parameters are also addressed in the monograph [243].

The main results are summed up in the following theorem.

Theorem 13.1. Every matrix A possesses a miniversal deformation and the number
of its parameters is equal to the codimension of the orbit of A.

The smallest number of parameters of a versal deformation of the matrix A can
be formally found following the steps given by Gantmacher [97] and Arnold [11].

To introduce a background of dynamical system bifurcations we briefly follow
Neimark [181], who analysed some properties of two- and three-dimensional phase
space bifurcations. In Fig. 13.1 three steps of the phase plain (portrait) changes are
shown which refer to the saddle-node bifurcations. In Fig. 13.2 a situation when
a stable focus changes lead to an occurrence of a periodic orbit is shown. In Fig. 13.3
three successive steps leading to occurrence of a stable and an unstable periodic
orbits are shown. Note that doubled limit cycle creates the so-called critical orbit.
In Fig. 13.4 the successive steps of an occurrence of a stable periodic orbit associated
with a stable type separatrice is shown. In Fig. 13.5 three successive steps of a
bifurcation changing the separatrices associated with two saddles are shown.
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Fig. 13.2 Focus—periodic orbit bifurcation. A stable focus (a) becomes unstable and a stable
periodic orbit is born (b)

Fig. 13.3 Bifurcation leading to occurrence of two periodic orbits. A stable focus (a) becomes
unstable and a stable periodic orbit is born (b), which eventually becomes also unstable and a
second (stable) periodic orbit appears (c)

Fig. 13.4 Stable and unstable manifolds of a saddle (a) become closed (b) eventually leading to
occurrence of a stable periodic orbit without a saddle point (c)

The dashed area corresponds to significant changes of the phase flow. Generally,
bifurcations can be separated into two classes: static and dynamical bifurcations.
Static bifurcations are related to equilibrium, whereas dynamic bifurcations are
related to other objects of a phase space.

Recall that � 2 Rk and assume that the eigenvalues �i , related to a being
investigated locally equilibrium (singular point) depend on k�1 passive parameters
(scalars) and one active parameter ��. It is clear that for fixed passive parameters
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Fig. 13.5 Bifurcation changing separatrices of two saddles ((a) a trajectory before (b) in a critical
state (c) and after bifurcation)

Fig. 13.6 Global bifurcation diagram

and for quasi-static changes of an active parameter one gets curves in the space
.Re �i ; Im �i ; �

�/, further called trajectories corresponding to the eigenvalues �i .
Suppose that increasing �� one of the eigenvalues crosses origin (an investigated

equilibrium) and other eigenvalues remain either in left-hand side plane (LHP) or
right-hand side plane (RHP). A small change of ˙�� close to �� results in ��˙��.
Two situations are possible. If a being investigated equilibrium changes its stability
when �� changes from �� � �� to �� C �� and the leading eigenvalue remains
always real then this bifurcation is called divergence.

The Hopf (or flatter) bifurcation occurs when a pair of complex conjugate
eigenvalues crosses (with nonzero velocity) the imaginary axis of the plane
.Re �; Im �/. The previously stable equilibrium becomes unstable and a new
periodic orbit is born. A divergence belongs to one-dimensional bifurcation whereas
Hopf bifurcation is two-dimensional one.

Note that although Hopf [124] stated the theorem valid for n-dimensional vector
field, the sources related to this problem can be found in the work of Poincaré [202],
and the first study of two-dimensional vector fields including a theorem formulation
belongs to Andronov [8]. Hence some authors (see [243] for example) call this
bifurcation as the Poincaré–Andronov–Hopf one.

In order to introduce a fundamental background of bifurcations we follow the
diagram shown in Fig. 13.6 (see also Iooss and Joseph [127]).
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The global bifurcation diagram includes branches of solutions (small letters)
and branching points (capital letters). A solution branch corresponds to the uni-
queness of the dependence x.�/. However there may exist points where the
uniqueness dependence is violated. They are called branching points. One also di-
stinguishes primary branching points (A—limiting point, B—bifurcation point) and
secondary bifurcation points (D—tangent point; C—limiting point; E—bifurcation
point; F—multiple bifurcation point).

Consider two solutions x.�0/ and x.�0/C " of Eq. (13.1). Both of them satisfy
the equations

dx.�0/

dt
D QF .�0; x.�0//;

d.x.�0/C "/

dt
D QF .�0; x.�0/C "/:

(13.2)

Hence in order to analyse equilibria states we obtain

F.�; "/ D 0; (13.3)

where F.�; "/ D QF .�0; x.�0/C "/ � QF .�0; x.�0//:
The isolated solutions of Eq. (13.3) can be classified in the following

way [127]:

1. Regular point. In this point derivative F� ¤ 0 or F" ¤ 0 and from the implicit
function theorem one can find either a curve �."/ or ".�/.

2. Regular limiting point. In this point �"."/ changes its sign and F�.�; "/ ¤ 0.
3. Singular point. In this point F� D F" D 0

4. Double bifurcation point. In this point two curves with different tangents intersect
each other.

5. Bifurcation-limiting point. In this double point the derivative �" changes its sign.
6. Tangent point. This is a common point of two curves with the same tangent.
7. Higher order singular point. In this point first- and second-order derivatives are

equal to zero.

13.2 Singular Points in 1D and 2D Vector Fields

13.2.1 1D Vector Fields

Our attention is focused on a first-order ordinary differential equation with one
parameter � of the form (13.1). For real values of both x and � values the singular
points (equilibria) are defined by the algebraic equation (13.3).

We are going to analyse an existence and uniqueness of singular points qualita-
tively including a construction of bifurcating solutions together with their stability
estimation. Note that (in general) considering an implicit function (13.3) one can
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get either the function x.�/ or �.x/, or isolated points, or it cannot be explicitly
described. Here, following the earlier introduced classification given in Sect. 13.1,
one deals either with regular or singular points. A regular point belongs to only one
curve, whereas a singular point can be either isolated or it can belong to a few curves
(branches). An order of singularity defines number of the associated branches. Here
we would like briefly to explain a word “singular”. It appears first as the name
of equilibria of the dynamical systems. However, it appears second time when a
nonlinear algebraic equation is considered and it concerns a classification of the
roots of the algebraic equation.

The classification of equilibria results from the implicit function theorem.

Theorem 13.2. Given the function f .x; y/ with continuous partial derivatives in
the neighbourhood of .x0; y0/, where f .x0; y0/ D 0. If either fx.x0; y0/ ¤ 0 or
fy.x0; y0/ ¤ 0, then:

(i) There exists such ˛ and ˇ that for x0 � ˛ < x < x0 C ˛, (or for y0 � ˇ < y <
y0 C ˇ) we have a unique solution y D y.x/ (or x D x.y/);

(ii) The function y D y.x/ (or x D x.y/) is differentiable in the neighbourhood
jx � x0j < ˛ (or jy � y0j < ˇ/, and dy

dx
.x/ D � fx.x;y.x//

fy.x;y.x//
(or dx

dy
.y/ D

� fy.x.y/;y/

fx.x.y/;y/
).

Now we can define the singular points more precisely. A point .�0; x0/ is said to
be regular, if both partial derivatives of the function F.�; x/ are not simultaneously
equal to zero, i.e.

F 2
� .�0; x0/C F 2

x .�0; x0/ ¤ 0 (13.4)

A regular point for which Fx.�0; x0/ D 0 is called the extremal point (it can be
either minimum or maximum). A point for which (13.4) does not hold is said to be
singular. A point .�0; x0/ is said to be singular of nth order, if the associated with
this point derivatives up to the order n � 1 are equal to zero and at least one of the
nth order derivatives is different from zero.

The solution branches are defined by the Taylor series. Introducing the new
function v D ���0

x�x0 and w D x�x0
���0 and dividing the Taylor series representation of

F.x; �/ D 0 by .x�x0/n
nŠ

and by .���0/n
nŠ

, we obtain the following nth order algebraic
equations,

A0v
n C A1v

n�1 C � � � C An�1v C An CO.� � �0/ D 0;

A0 C A1w C � � � C An�1wn�1 C Anwn CO.x � x0/ D 0;
(13.5)

where: Ai D @nF
@xi @�n�i .�0; x0/; i D 1; 2; : : : ; n:

In a limit case .�; x/ ! .�0; x0/ the algebraic equations with O .� � �0/ D
O .x � x0/ D 0 serve to find a tangent of a slope to a solution branch to the axis
x or �, respectively. An existence of n solutions to Eq. (13.5) yields n different
branches (some of them, however, can be degenerated). Real distinct solutions
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correspond to distinct intersecting branches, whereas multiple solutions correspond
to same tangent values of different solutions in the point .�0; x0/ or overlapping
of multiple branches. Complex solutions correspond to the so-called degenerated
branches (points) [144].

A point .�0; x0/ is called degenerated if it belongs simultaneously to degenerated
branches (solutions).

An order of degeneracy of a singular point .�0; x0/ is defined by a number of
complex roots of Eq. (13.5). In words, degeneracy order corresponds to a number of
degenerated branches. Following the approach given in monograph [144] consider
the first equation of the system (13.5), further referred as H.�; "/ D 0, where
" D � � �0. Let �0i be solutions to the first equation of (13.5). A unique solution
with the tangent �0i is obtained when H�.�0i ; 0/ ¤ 0. This holds when �0i is a
simple root of H.�0i ; "/ D 0. Note that in order to distinguish different tangent and
identical branches passing through the point .�0; x0/ one needs to calculate higher
order derivatives, which for instance define curvatures of the branches.

If A0;A1; : : : ; An�1 are equal to zero, then the first equation of (13.5) has n � k

roots, whereas the second possesses k roots equal to zero. Geometrically, it means
that k branches have a tangent parallel to the axis � in the point .�0; x0/. Now we
briefly outline a construction of a solution branch in vicinity of the singular point
.�0; x0/, for which

F.�0; x0/ D 0: (13.6)

Let us approximate function F by its double Taylor series of the form (we follow
here the approach given in monograph [144]):

F.�; x/ D ˛.�/C a.�/.x � x0/C 1

2Š
b.�/.x � x0/2 C 1

3Š
c.�/.x � x0/3 C � � �

D ˛0 C ˛1.� � �0/C 1

2Š
˛2.� � �0/2 C 1

3Š
˛3.� � �0/3 C � � �

C Œa0 C a1.� � �0/C 1

2Š
a2.� � �0/2 C 1

3Š
a3.� � �0/3 C � � � �.� � �0/

C 1

2Š
Œb0 C b1.� � �0/C 1

2Š
b2.� � �0/2

C 1

3Š
b3.���0/3C � � � �.���0/2C 1

3Š
Œc0Cc1.���0/C 1

2Š
c2.� � �0/2

C 1

3Š
c3.� � �0/3 C � � � �.� � �0/3 C � � � ; (13.7)

where: ˛i D @iF
@�i
.�0; x0/; ai D @iC1F

@x@�i
.�0; x0/; bi D @iC2F

@x2@�i
.�0; x0/; ci D

@iC3F
@x3@�i

.�0; x0/; and so on. Note that ˛0 D 0: If F.�; x0/ D 0 (independently of �)
then x D x0 is a solution. In addition, if .�0; x0/ is a regular point then x D x0 is
only one solution. However, if .�0; x0/ is a singular point then in spite of x D x0
there may exist also additional branches of solutions. If x � x0 D "; then a solution
can be parameterized by
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� � �0 D '."/; (13.8)

where '."/ can be approximated by the series

'."/ D �0 C �1"C �2"
2 C � � � (13.9)

It can be easily shown that �0 D 0: Substituting (13.8) and (13.9) into (13.7),
and comparing terms standing by the same powers of " the following equations are
obtained

" W ˛1�1 C a0 D 0;

"2 W 1
2
˛1�

2
1 C a1�1 C 1

2
b0 C ˛1�2 D 0;

"3 W ˛0�3 C 1

2
˛2�1�2 C 1

6
˛3�

3
1 C a1�2 C 1

2
a2�

2
1 C 1

2
b1�1 C 1

6
c0 D 0;

: : : (13.10)

which define �1; �2; �3; : : : Hence a solution in the neighbourhood of .�0; x0/ has
the following parameterized form

x � x0 D ";

� � �0 D �1"C �2"
2 CO."3/:

(13.11)

Note that if ˛1 D F�.�0; x0/ D 0, then one should use another parametrization,
i.e. x�x0 D  ."/; ���0 D ":Note also that if .�0; x0/ is singular then ˛1 D a0 D 0

and we get

˛2�
2
1 C 2a1�1 C 2b0 D 0: (13.12)

Therefore, if

(i) a21 > 2b0˛2; then we have two distinct roots for �;
(ii) a21 D 2b0˛2; then we have double real solution (two branches of solution are

tangent);
(iii) a21 < 2b0˛2; then the roots are complex (the point .�0; x0/ is singular).

If b0 D a1 D ˛2 D 0; then .�0; x0/ is the triple point and first non-trivial
algebraic equation is defined by the terms standing by "3: Many other examples are
given in the mentioned monograph [144].

When various branches of solutions are found, the next step is focused on
analysis of their stability. Consider one-dimensional problem governed by the
equations

Px D F.�; x/;

P� D F�.�; x/�;
(13.13)
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where the second equation governs behaviour of perturbations related to a being
investigated singular points (equilibria). The discussed earlier Lyapunov’s theorems
can be used to estimate stability. Since we deal with one-dimensional case, then
F�.�; x/ defines the characteristic exponent of (13.13). If � D F�.�; x/ is negative,
then a constant solution x of the original nonlinear differential equation is stable.

Observe that during stability investigation in the neighbourhood of the point
.�0; x0/ we deal with the functions:

(i) � D �.�/ D Fx.�; x.�// if a being investigated branch has the form x D x.�/I
(ii) � D �."/ D Fx.�."/; x."// if a being investigated branch is parameterized by

the equations x � x0 D "; � � �0 D '."/:

We give two examples studied in monograph [144].

Example 13.1. Consider the first-order differential equation with the right-hand
side F.�; x/ D �1�2�C2�xC�2C3x2�2x3:Display existence and classification
of singular points and build the corresponding bifurcation diagram.

Following the steps described earlier we obtain

Fx D 2�C 6x � 6x2;
F� D �2C 2�C 2x:

Solving two equations Fx D 0 and F� D 0, we obtain (0,1) as the singular point,
which is doubled .Fx.0; 1/ D 0; Fxx.0; 1/ ¤ 0/. Introducing the parametrization

" D x � 1;
� D �1"C �2"

2 CO."3/;

we obtain:

"2 W �21 C 2�1 � 3 D 0

"3 W �2 C �1�2 � 1 D 0:

Solving above algebraic equations we get: �11 D 1; �12 D �3; �21 D 0; 5;

�22 D �0; 5: Hence, the following branches of solutions are found:

x D ";

�1."/ D 2" � "2 CO."3/:

and

x D ";

�2."/ D �"CO."3/:



426 13 Bifurcations

Fig. 13.7 Stable (solid line) and unstable (dashed line) branches of solutions in a vicinity of (0,0)

Stability of the obtained branches are defined by the exponents

�1."/ D FxŒ�1."/; "� D �6"CO."2/;

�2."/ D F�Œ�2."/; "� D �3"CO."2/:

The corresponding bifurcation diagram is reported in Fig. 13.7. For " > 0 ." < 0/
we have stable (unstable) branches.

ut
Example 13.2. Consider a vertical slim rod of length l and a buckling caused by its
gravity.

The equilibrium conditions of the rod element are:

(i) �A Rwdx D dN sin˛ C dT cos˛ (transversal motion);
(ii) dN cos˛ D qdx C dT sin˛ (longitudinal static condition);

(iii) dM
dx

D T (static condition),

where: � is the material density; A is the area of rod cross section; N is the normal
force; T is the transversal force;M is the bending moment; ˛ defines buckling angle
and .�/ D d=dt:

From (iii), taking into account (i) and (ii), we get:

�
Ad2 Rw
dt2

D @2M

@x2
C qtan˛;

where

tan˛ D @w

@x
;

r
1C .

dw

dx
/2 D 1

cos˛
:
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The bending moment and a rod curvature are linked via relation

M D �EI
�
1C dw

dx

�� 3
2

;

where EI denotes the rod stiffness. Since we are going to consider rather large rod
deflections then we include two nonlinear terms of the Taylor series of M.w/, and
hence

M D �EI @
2w

@x2

"
1 � 3

2

�
@w

@x

�2
C 8

15

�
@w

@x

�4#
:

In addition, we approximate .cos˛/�1 by

1

cos˛
D 1C 1

2

�
@w

@x

�2
:

Taking into account the above relations we obtain the partial differential equation
governing slim vertical rod dynamics

d2w

dt2
D g

@w

@x
� EI

�A

"
@4w

@x4

 
1 �

�
@w

@x

�2
C 9

8

�
@w

@x

�4!
� 9@w

@x

@2w

@x2
@3w

@x3

C � 3@
2w

@x2
C 18

�
@w

@x

�3
@2w

@x2
@3w

@x3
C 21

�
@w

@x

�2 �
@2w

@x2

�#
:

The boundary conditions for w.x; t/ include:

(a) geometrical

w.0; t/ D 0;
dw

dx
.0; t/ D 0I

(b) approximate mechanical

d2w

dx2
.l; t/ D 0;

d3w

dx3
.l; t/ D 0:

In order to obtain an ordinary differential equation we separate the variables

w.x; t/ D u.t/h.x/:

Taking h.x/ as the fourth-order polynomial, and after orthogonalization procedure,
we get
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Ru D
�
A

�
� B

�4

�
u C C

�6
u3 � D

�8
u5;

where A;B;C;D are passive parameters, and � D l is the active parameter. Note
that although we have second-order differential equation, we are going to investigate
equilibria which are governed by

F.�; u/ D
�
A

�
� B

�4

�
u C C

�6
u3 � D

�8
u5 D 0

in a way similar to that of first-order differential equation. The trivial solution u D 0

corresponds to a straight form of the rod. The singular points are defined by

Fu .�; u/ D A

�
� B

�4
C 3C

�6
u2 � D

�8
u4 D 0;

F� .�; u/ D
�

� A

�4
C 4B

�5

�
u � 2C

�7
u3 C 4D

�9
u5 D 0:

For u D 0 from F� D 0 we get �0 D �
B
A

� 1
3 . The point .�0; u0/ D .�0; 0/

is the singular point. Because F�u .�0; 0/ ¤ 0 than this is second-order singular
point. The horizontal line u D 0 is one of the solutions crossing by this singular
point. The second branch can be parameterized in the following way

u D ";

� � �0 D �1"C �2"
2 C �3"

3 C �4"
4 CO."5/:

The being sought numbers �1; �2; �3 and �4 are found from the equations:

" W a1�1 C 1

2
b0 D 0I

(where a1 D F�u.�0; 0/ D 3A

�20
> 0; b0 D Fuu.�0; 0/ D 0 and hence �1 D 0)

"2 W a1�2 C 1

6
c0 D 0I

(where c0 D Fuuu.�0; 0/ D 6C

�60
> 0; and hence �2 D � C

3A�40
< 0I it can be easy

checked that also �3 D 0)

"4 W a1�4 C 1

2
a2�

2
2 C 1

6
c1�2 C 1

5Š
c0 D 0I
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(where a2 D F��u.�0; 0/ D � 18A2

B
< 0; c1 D F�uuu.�0; 0/ D 36C

�30
> 0; c0 D

Fuuuuu.�0; 0/ D � 5D

�80
< 0:) In result, we have found the following parameterized

branches of non-trivial solution

u D "

� � �0 D �2"
2 C �4"

4 CO."6/;

where �2 < 0 and �4 > 0: Now let us investigate stability. In a case of the trivial
solution

�1 D Fu.�; 0/ D A

�

�
1 � �30

�3

�
:

Hence �1 > 0; .�1 < 0/ when � > �0 .� < �0/: In the case of the second branch
we have

�2."/ D Fu .�."/; "/ D A

�."/
� B

�4."/
� 3C

�6."/
"2 C 5D

�8."/
"4;

and consequently

�2.0/ D 0I d�2

d"
.0/ D 0;

d2�2

d"2
.0/ D �6C

�60
< 0:

The exponent �2 can be approximated by

�2."/ D �3C
�60
"2 CO."3/:

In the extremum of this branch, which is equal to "ex D ˙
�
�2
�4

� 1
2
; a change of

stability occurs.
The results are shown in Fig. 13.8, where the hysteresis loop E1;E2;E3;E4 is

remarkable. ut

13.2.2 Two-Dimensional Vector Fields

Consider how two nonlinear algebraic equations with one parameter � of the form

Fi .x1; x2; �/ D 0; i D 1; 2 (13.14)

and x10; x20; �0 is a solution of (13.14).
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Fig. 13.8 Bifurcation diagram of a slim rod buckling

Theorem 13.3 (Implicit Function Theorem). If the Jacobian associated
with (13.14) @Fi

@xi
.x10; x20; �0/ ¤ 0 then there is a neighbourhood of the point

.x10; x20; �0/, where the curve defined by (13.14), is unique, i.e. there exist such
functions xi .�/ that

Fi Œx1.�/; x2.�/; �� D 0; i D 1; 2: (13.15)

In words, if the associated Jacobian with the investigated point differs from zero
then there are no other solutions in a neighbourhood of the point .x10; x20; �0/.
A necessary condition for bifurcation is defined by @fi

@xi
.x10; x20; �0/ D 0; i D 1; 2:

Now we are going to describe briefly a construction of a bifurcation solution of
the system (13.14). We consider a trivial case, i.e. we assume that x10 D x20 D 0 is
the solution of Eq. (13.14), and � D 0 corresponds to a critical state of the system.

Since

Fi .0; 0; �/ D 0; i D 1; 2; (13.16)

hence

F1 .x1; x2; �/ D a .�/ x1 C b .�/ x2 C ˛1 .�/ x
2
1 C 2ˇ1 .�/ x1x2

C 	 .�/ x22 CO
�
kxk3

�
;

F2 .x1; x2; �/ D c .�/ x1 C d .�/ x2 C ˛2 .�/ x
2
1 C 2ˇ2 .�/ x1x2

C 	 .�/ x22 CO
�
kxk3

�
; (13.17)
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where a; b; c; d; ˛i ; ˇi and 	i (i=1, 2) depend on the parameter � and k�k denotes a
norm in two-dimensional Euclidian space. The associated variational (perturbatio-
nal) equations have the form

� Px1
Px2
	

D
��
a0 b0
c0 d0

	
C
�
a1 b1
c1 d1

	
�CO

�
�2
�� �x1

x2

	
: (13.18)

A bifurcation condition leads to the equation

det ŒA0� D
ˇ̌̌
ˇa0 b0c0 d0

ˇ̌̌
ˇ D 0: (13.19)

It is clear that det ŒA0� D 0, if at least one of the eigenvalues of the matrix A0
is equal to zero. Knowing that .0; 0; 0/ is the bifurcation point one needs to find a
number of bifurcating solutions (from this point) occurring in a small vicinity of
� D 0. Taking into account the small increments of the variables and functions
in (13.16) and dividing the obtained linear equations by d� one obtains

dF1

d�
D a0

dx1

d�
C b0

dx2

d�
;

dF2

d�
D c0

dx1

d�
C d0

dx2

d�
:

(13.20)

This linear approximation cannot be used to find uniquely higher order deriva-
tives. One should include the nonlinear terms. For the case, when only quadratic
terms are taken into account, we get

a0
dx1

d�
C b0

dx2

d�
C ˛10

�
dx1

d�

�2
C 2ˇ10

dx1

d�

dx2

d�
C 	10

�
dx2

d�

�2
D 0;

c0
dx1

d�
C d0

dx2

d�
C ˛20

�
dx1

d�

�2
C 2ˇ20

dx1

d�

dx2

d�
C 	20

�
dx2

d�

�2
D 0:

(13.21)

A number of bifurcating solutions is defined by a number of intersection points
of two conical curves represented by Eq. (13.21). One can have 1, 2 or 3 solutions,
in spite of the trivial one.

In general we have three different cases to be considered in two-dimensional
vector fields:

(i) one eigenvalue is equal to zero;
(ii) two eigenvalues are zero with degeneracy order 1;

(iii) two eigenvalues are zero with a degeneracy order 2.

We consider only the case (i) and we follow the steps studied in the mono-
graph [144].
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Let us introduce the following parameterization

x1 D "; x2 D "y ."/ ; � D "� ."/ ; (13.22)

or

x1 D "x ."/ ; x2 D "; � D "� ."/ : (13.23)

The functions x ."/ ; y ."/ and � ."/ are polynomials and can be found in a way
described earlier. Using parameterization (13.22) the being analysed Eq. (13.14) can
be presented in the form

"gi Œ� ."/ ; y ."/ ; "� D 0; i D 1; 2; (13.24)

where

g1 D a0 C a1"�C .b0 C b1"�/ y C ˛1"C 2ˇ1"y C 	1"y
2 CO

�
"2
�
;

g2 D c0 C c1"�C .d0 C d1"�/ y C ˛2"C 2ˇ2"y C 	2"y
2 CO

�
"2
�
:

(13.25)

In fact, we are going to find the functions y ."/ and � ."/ which satisfy the
equations

a0 C b0y C "


.a1 C b1y/�C ˛1 C 2ˇ1y C 	1y

2
�CO

�
"2
� D 0;

c0 C d0y C "


.c1 C d1y/�C ˛2 C 2ˇ2y C 	2y

2
�CO

�
"2
� D 0:

(13.26)

For " D 0 we obtain two dependent equations and hence y0 D y .0/ D � a0
b0

D
� c0
d0

for b0 ¤ 0 or d0 ¤ 0:

In the case b0 D d0 D 0 one needs to apply the following parametrization x1 D
"x ."/ ; x2 D "; � D "� ."/. In a similar way, one obtains x0 D x .0/ D � b0

a0
D � d0

c0
for either a0 ¤ 0 or c0 ¤ 0: Let

y ."/ D y0 C " Qy ."/ (13.27)

Substituting (13.27) into (13.26) we get

"hi .�; Qy; "/ D 0; i D 1; 2; (13.28)

where

h1 D b0 Qy C � .a1 C b1y/C ˛1 C 2ˇ1y0 C 	1y
2
0 CO ."/ ;

h2 D d0 Qy C � .c1 C d1y/C ˛2 C 2ˇ2y0 C 	2y
2
0 CO ."/ :

(13.29)
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Since for " D 0 we have hi D 0; hence we get two linear equations of the form

b0 Qy0 C �0 .a1 C b1y0/C ˛10 C 2ˇ10y0 C 	10y
2
0 D 0;

d0 Qy0 C �0 .c1 C d1y0/C ˛20 C 2ˇ20y0 C 	20y
2
0 D 0;

(13.30)

which serve to find . Qy0; �0/. The first (linear) approximation to the being sought
bifurcated solutions has the form

x1 D "; x2 D "y0; � D "�0: (13.31)

Note that the solution . Qy0; �0/ is the only one, and " D
r
x21 C

�
x2
y0

�2
measures a

distance between the bifurcational and trivial solutions. One can include more terms
in order to get nonlinear functions " .�/ and � ."/. The associated linear variational
equation defines a local phase flow in a vicinity of a being investigated non-trivial
solution. Introducing the local variables v1 D u1 � " and v2 D u2 � "y0 one obtains

� Pv1
Pv2
	

D
�
a0 C " .�0a1 C 2˛10 C 2ˇ10/ b0 C " .�0b1 C 2ˇ10 C 2	10/

c0 C " .�0c1 C 2˛20 C 2ˇ20/ d0 C " .�0d1 C 2ˇ20 C 2	20/

	 �
v1
v2

	

(13.32)

The bifurcating solution (13.31) is unstable in Lyapunov sense if at least one
eigenvalue �i ."/ ; i D 1; 2 has a positive real part. For a case a0 D b0 D c0 D 0

and d0 < 0 from (13.32) one gets

� Pv1
Pv2
	

D
�
c1" c2"

c3" d0 C c4"

	 �
v1
v2

	
; (13.33)

where ci are real values. The associated eigenvalues are easily found

�1;2 ."/ D d0 C .c1 C c2/ "

2
˙ 1

2

q
d20 C 2d0 .c4 � c1/ "; (13.34)

and for enough small " they can be represented by their linear part only

�1 ."/ D c1"; �2 ."/ D d0 C c4": (13.35)

The corresponding bifurcational diagram is shown in Fig. 13.9. Unstable
solutions are marked by a dashed line.

Example 13.3. Display a bifurcation diagram and investigate stability of all bran-
ches of solutions occurred in the system

Px1 D px1 � px2 � x21 C x22 C x31;

Px2 D px2 C x1x2 C 2x31 :



434 13 Bifurcations

Fig. 13.9 Bifurcational diagram corresponding to simple zero eigenvalue (1 primary (trivial)
solution; 2 secondary (bifurcated) solution)

First we observe that a matrix associated with the origin does not have the terms
independent on p, hence A0 D 0. We have double zero eigenvalue for p D 0, with
the Riesz index � D 1 and degeneracy order 2. The eigenvalues of the matrix A
are �1;2 D p.

We introduce the following parametrization

x1 D ";

x2 D "y0 C "2y1 CO
�
"3
�
;

p D "�0 C "2�1 CO
�
"3
�
;

and we substitute the above equations to the analysed differential equations.
The following algebraic equations are obtained

"2 W �0 � �0y0 � 1C y20 D 0;

.�0 C 1/ y0 D 0I

"3 W �1 .1 � y0/C y1 .2y � �0/ D �1;
�1y0 C y1 .1C �0/ D �2:

(�)

Their solutions are

y
.1/
0 D 0; y

.2/
0 D 1; y

.3/
0 D �2;

�
.1/
0 D 1; �

.2/
0 D �1; �

.3/
0 D �1:

Since for each of three above pairs .y0; �0/ the main determinant of (�) is not

equal to zero, there are three pairs of solutions
�
y
.k/
1 ; �

.k/
1

�
corresponding to three

pairs
�
y
.k/
0 ; �

.k/
0

�
for k D 1; 2; 3:
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Fig. 13.10 Four branches of solutions (dashed curves correspond to unstable ones)

y
.1/
1 D �1; y

.2/
1 D �1

3
; y

.3/
1 D 4

3
;

�
.1/
1 D �1; �

.2/
1 D �2; �

.3/
1 D 1:

Therefore we have the following three branches of bifurcating solutions (see
Fig. 13.10)

x
.1/
1 D "; x

.2/
1 D "; x

.3/
1 D ";

x
.1/
2 D �"2 CO

�
"3
�
; x

.2/
2 D " � 1

3
"3 CO

�
"2
�
; x

.3/
2 D �2" � 4

3
"2 CO

�
"2
�
;

p.1/ D " � "2 CO
�
"3
�
; p.2/ D �" � 2"2; p.3/ D �"C "2 CO

�
"3
�
:

A stability of each bifurcated solutions depends on the eigenvalues of the matrix
calculated in the point x1 D ", x2 D "y0, p D "�0

B ."/ D
"
@F1
@x1

@F1
@x2

ıF2
@x1

@F2
@x2

#
D "2

�
�0 � 2 2y0 � �0
y0 1C �0

	
D "2B0:

Now, taking three pairs .y0; �0/ we obtain

B
.1/
0 D

��1 �1
0 2

	
; B

.2/
0 D

��3 3
1 0

	
; B

.3/
0 D

��3 �3
�2 0

	
;

and the corresponding eigenvalues read

�
.1/
01 D �1; �.1/02 D 2; �

.2/
01;2 D � 3

2
˙ 1

2

p
21; �

.3/
01;2 D � 3

2
˙ 1

2

p
33: ut

All of the so far presented examples are taken from the monograph [144].
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Fig. 13.11 Saddle-node bifurcation

13.2.3 Local Bifurcation of Hyperbolic Fixed Points

In the previous sections we have shown a general approach to analyse bifurca-
tion appeared in one- and two-dimensional vector fields. Here we present local
bifurcations of hyperbolic fixed points. A reader can easily apply the described
earlier method to construct the corresponding bifurcation diagrams.

(i) A saddle-node bifurcation

This bifurcation is governed by the equation

Px D � � x2 (13.36)

with the corresponding bifurcation diagram shown in Fig. 13.11.

(ii) A transcritical bifurcation.

This bifurcation is characterized by vector field

Px D �x � x2 (13.37)

and its associated bifurcation diagram is shown in Fig. 13.12.

(iii) A pitchfork bifurcation.

This bifurcation occurs in the one-dimensional system with a cubic type non-
liberality and is governed by the vector field

Px D �x � x3: (13.38)
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Fig. 13.12 A transcritical bifurcation

Fig. 13.13 A pitchfork bifurcation

The bifurcation diagram is shown in Fig. 13.13.
Note that for � < 0 we have one branch of solutions, whereas for � > 0 there

are three branches of solution (two stable and one unstable).
There is another important question related to the so-called normal forms of the

classical local bifurcations. In words, having a Taylor expansion around a trivial
non-hyperbolic fixed point of a general parameter family of one-dimensional vector
fields one can characterize the different geometry of the curves passing through
origin by an appropriate truncation of the series. For example by adding the signs
“˙” instead of the sign before two terms on the right-hand side of (13.36), (13.37)
and (13.38) we get the normal form of the mentioned local bifurcations.
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13.2.4 Bifurcation of a Non-hyperbolic Fixed Point
(Hopf Bifurcation)

The Hopf bifurcation plays a role of a door between static and dynamics and is
very important in engineering. In spite of the original work of [124] a problem
when a previously stable equilibrium becomes unstable and in a critical bifurcation
point periodic orbit appear has been analysed also by Andronov et al. in the
thirtieth (see [8,43]). Then in seventieth this central problem for dynamics has been
reconsidered by many researchers like Chow and Mallet-Paret [64], Crandall and
Rabinowitz [73], Hale [112], Hale and Oliveria [113], Hassard et al. [115], Holmes
[123], Marsden and McCracken [164], Golubitsky and Schaeffer [100], Golubistky
et al. [101], and others [125]. Here we briefly follow the approach described by
Hassard [115].

Consider the following differential equations

Px D F.p; x/; x 2 Rn: (13.39)

We assumed that p is the bifurcation parameter and for pcr D 0 we have
F.pcr ; 0/ D 0. We say that the system (13.39) has a family of periodic solutions
with the parameter " 2 .0; "0/, and the amplitude of periodic solutions tends to zero
when the formally introduced parameter " ! 0.

Theorem 13.4 (Hopf). Given

(i) F.p; 0/ D 0 for every p from an open interval including p D 0 and 0 2 Rn is
the isolated fixed point of (13.39);

(ii) The function F is analytical with regard to p and x in a certain neighbourhood
of .0; 0/ 2 Rn �R1;

(iii) The matrix A.p/ of the linearized system in a vicinity of zero solution has a
pair of conjugated eigenvalues � and N� , where

�.p/ D 
.p/C i�.p/; (13.40)

and


.0/ D 0;
d


dp
.0/ ¤ 0; �.0/ D �0 > 0I (13.41)

(iv) Other eigenvalues of the matrix A.0/ possess negative real parts.

Then the system (13.39) has a family of periodic solutions. In addition, there is a
certain "H and an analytical function

pH."/ D
1X
iD2

pi"
i ; .0 < " < "H /; (13.42)

such that for every " 2 .0; "H / the system (13.39) for p D pH."/ has a periodic
solution x".t/.
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The period of periodic solution x".t/ is the analytical function

T H."/ D 2�

�0
.1C

1X
iD2

i "
i /; .0 < " < "H /: (13.43)

For every L > 2�=p0 there is a neighbourhood R of the point x D 0 (x 2 Rn/
and an open interval J including 0, such that for every p 2 J the periodic solution
to the system (13.39) which lie in R and have a period smaller then T H are the
members of the family x".t/ for which pH."/ D p; " 2 .0; "H /. The solutions
which differ by an initial phase and corresponding to the same x".t/ cannot be
distinguishable. If pH."/ is not identically equal to zero, then a first nonzero
coefficient pi has an even index. There exists such "1 2 .0; "H / that pH."/ is either
positive or negative for " 2 .0; "1/. Two Floquet exponents of the solution x".t/ tend
to zero for " ! 0. One of them is identically equal to zero for " 2 .0; "H /, whereas
second one

�."/ D
1X
iD2

�i "
i ; 0 < " < "H : (13.44)

The periodic solution x".t/ is orbitally stable (unstable) with the asymptotic
phase, if �."/ < 0 .�."/ > 0/.

The proof of the Hopf theorem is here omitted, but it can be found in the work of
Marsden and McCracken [164]. Although the Hopf theorem in its source version is
related to the systems with analytical right-hand sides, but the similar like theorems
have been formulated later for the right-hand sides being differentiable (see [115]).
We have used the same reference to formulate the Hopf theorem. The main idea of
the proof is focused on reduction of initial n-dimensional system to two-dimensional
Poincaré form with use of the central manifold theory. A construction of a bifurcated
solution relies on application of the normal Poincaré form. Another alternative
approach has been presented by Iooss and Joseph [127] (see also Kurnik [145]).
We present the later one, since it seems to be more economical leading to estimate
bifurcating solutions and their stability.

Assume that self-excited oscillations equation of a mechanical system with
lumped parameters is governed by the equation

PU D F.�; U IQ/; (13.45)

where U 2 Rn and F W Rn�Rn ! R
n, � is the parameter governing self-excitation

and further referred as the bifurcation parameter; Q is another parameter.
Assume that F is analytical with regard to U and � in a vicinity of �cr . Let

U � D U �.�;Q/ be a constant solution. Note that for each Q the constant solution
depends on bifurcation parameter, and hence we have a family of constant solutions.
On the other hand, for a given � and Q, one may have many solutions U �

1 ; U
�
2 ; : : :.
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Dealing with a Hopf bifurcation we consider one of the U �
i solutions.

The corresponding critical value of � is found investigating stability of the
being analysed constant solution U �.�;Q/. Assuming that A.�;Q/ is the matrix
corresponding to the linearized system, then the characteristic equation is

det.A � �I / D 0; (13.46)

where I is the identity n � n matrix.
The critical point � D �cr .Q/ is defined by Ref�1.�cr ;Q/g D 0, where

�1 > �i ; i D 2; : : : ; n. Then the system (13.45) is transformed to its local form
by introducing the variable u D U � U �.�;Q/, and the parameter ! D � � !cr .
Equation (13.45) is recast to the following form

Pu D f .!; u/; (13.47)

where: f .!; u/ D F.! C !cr ; u C U �IQ/ � F.! C !cr ; U
�IQ/, Q;! 2

R
C; u; U � 2 Rn.
Observe that f .!; 0/ D 0. The parameter Q will be further omitted to simplify

our considerations. Therefore the problem is reduced to consideration of the
following system

Pu D A.!/u CN.!; u/; (13.48)

where A.!;Q/ D A.!/; Aij D Œ
@fi
@uj
�uD0:

Let �1.!/; : : : ; �n.!/ be the eigenvalues of A.!/. Claiming also that the
assumptions of Hopf theorem are satisfied in a vicinity of the critical point:

Re �1.0/ D 
.0/ D 0;

Im �2.0/ D �.0/ D �0;
d


d!
.0/ ¤ 0;

(13.49)

where �0 is the positive number and �1; �2 D N�1 are simple eigenvalues.
Let q and q� be the eigenvectors of the matrix A.!/ and A�.!/ D AT .!/,

respectively. They are associated with the imaginary eigenvalues in the critical point.
These are found from the equations

.A.0/ � �1.0/I /q D 0;

.AT .0/ � N�1.0/I /q� D 0:
(13.50)

The required uniqueness is achieved by introduction of the normalization
procedure

hq; q�i D 1; (13.51)
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where hq; q�i D Pn
iD1 ai Nbi is the Hermitean scalar product in complex

n-dimensional Euclidean space and the vectors q and Nq� are orthogonal, i.e.

hq; Nq�i D
nX
iD1

qiq
�
i D 0: (13.52)

They are linearly independent and they will play a role of skeleton of being
sought periodic solutions. The vector q� will be used during implementation of
the orthogonal condition within the Fredholm alternative.

The being sought bifurcated solution has the form

u.s; "/ D
1X
iD1

1

nŠ
u.n/.s/"n; (13.53)

where s D �."/t . We take

�."/ D �0 C
1X
iD1

1

nŠ
"n�n;

!."/ D !cr C
1X
iD1

1

nŠ
"n!n; .!cr D 0/;

(13.54)

where � is the frequency of the sought periodic solution; �0 D Im �1.0/I!n
and �n are the series terms; u.n/.s/ is the series of 2�� periodic continuous and
differentiable functions; " is the parameter measuring the distance between a trivial,
and periodic solutions in a sense of the applied norm.

Note that an existence of bifurcated solutions in the form (13.53) is guaranteed
by Hopf theorem. Let P2� is the space of complex and 2��periodic functions,
continuous and differentiable, where the following scalar product is defined

Œa.s/; b.s/�
dfD 1

2�

Z 2�

0

< a.s/; Nb.s/ > ds; (13.55)

and we take the norm

kak D
p
Œ Na; a�: (13.56)

In addition, following Iooss and Joseph ([127]), we introduce the Maclaurin
series of the function f .u; t I!; p/ with regard to u. Since f .0; t I!; p/ � 0, hence

f .u; t I!; p/ D
1X
iD1

1

nŠ
fuu:::u.!; p; t; 0jujuj : : : ju/; (13.57)
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where fuu:::u.!; p; t; 0jujuj : : : ju/ is nth-linear operator acting on the vector u in
neighbourhood of u D 0.

In general, an nth-linear operator of the vector field f .u; t; !; p/ acting on the
vectors a1; a2; : : : ; an in an arbitrary point u0 is defined by

fuu:::u.!; p; t; u0ja1ja2j : : : jan/D lim
h1;h2;:::;hn!0

@.n/f .u0Ch1a1C � � � C hnan; t I!; p/
@h1@h2 : : : @hn

(13.58)

The right-hand side of (13.47) can be developed into the Maclaurin series

f .!; u/ D
1X
iD1

1

nŠ
fuu:::u.!; 0jujuj : : : ju/: (13.59)

On the other hand, each term of the series (13.59) is developed into the Maclaurin
series with regard to !:

f .!; u/ D fu.0; 0ju/C fu!.0; 0ju/! C 1

2Š
fu!!.0; 0ju/!2 C � � �

: : :C 1

2Š

�
fuu.0; 0juju/C fuu!.0; 0juju/! C 1

2Š
fuu!!.0; 0juju/!2 C � � �



C 1

3Š

�
fuuu.0; 0jujuju/Cfuuu!.0; 0jujuju/!C 1

2Š
fuuu!!.0; 0jujuju/!2C � � �


C � � �

(13.60)

and hence

f .!; u/ D
1X
iD1

"i

i Š
fu.0; 0ju.i//

C
1X
iD1

1X
jD1

"iCj

i Šj Š
fu!.0; 0ju.i//!j C 1

2Š
fuu!.0; 0ju.i/ju.j //

C
1X
iD1

1X
jD1

1X
kD1

"iCjCk

i Šj ŠkŠ
ffu!!.0; 0ju.i//!j!k C 1

2Š
fuu!.0; 0ju.i/ju.j //!k

C 1

3Š
ffuuu.0; 0ju.i/ju.j /ju.k//g C

1X
iD1

1X
jD1

1X
kD1

1X
lD1

"iCjCkCl

i Šj ŠkŠlŠ
f: : :g C � � � (13.61)

The left-hand side of (13.47) has the form

Pu D �0

1X
iD1

"i

i Š

du.i/

ds
C

1X
iD1

1X
jD1

"iCj

i Šj Š
�j

du.i/

ds
: (13.62)
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Comparing the same terms by the same powers of " in (13.61) and (13.62) we get

��0

du.1/

ds
C fu.0; 0ju.1// D 0 ."1/

��0

du.n/

ds
C fu.0; 0ju.n// D

X
iCjDn

nŠ

i Šj Š

˚
�1

du.j /

ds
� fu!.0; 0ju.i//!jC

� 1

2Š
fuu.0; 0ju.i/j0.j //

� �
X

iCjCkDn

nŠ

i Šj ŠkŠ
: : :C � � � ."n for n > 1/:

(13.63)

Introducing the operator

J0.�/ dfD ��0

d.�/
ds

C fu.0; 0j.�//; (13.64)

Equation (13.63) takes the following form
(
J0u.1/ D 0;

J0u.n/ D gn.s/;
(13.65)

where

gn.s/ D gn.s C 2�/ D n�n�1
du.1/

ds
� n!n�1fu!.0; 0ju.1// �Rn�1;

Rn�1 D
X
iCjDn

X
i;j�1

 
n

i

!
1

2Š
fuu.0; 0ju.i/ju.j //C

X
iCjDn

X
i�2;j�1

nŠ

i Šj Š

�
��j

du.i/

ds

C !jfu!.0; 0ju.i//


C
X

iCjCkDn

X
i;j;k�1

nŠ

i Šj ŠkŠ

�
1

2Š
fu!!.0; 0ju.i//!j!k

C 1

2Š
fuu!.0; 0ju.i/ju.j //!k C 1

3Š
fuuu.0; 0ju.i/ju.j /ju.j //


C � � � (13.66)

Let us introduce the following harmonic functions

z D qeis; z� D q�eis: (13.67)

The following properties hold

J0z D J0Nz D 0; (13.68)
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and

J �
0

dfD�0

d.�/
ds

C fn.0; 0j.�//; (13.69)

where: f �
u D A�.0/u D AT .0/u.

The function z and Nz are linearly independent, and we assume the following
orthogonality condition

Œu; z�� D ": (13.70)

This condition implies a chain of conditions

Œu.1/; z�� D 1; Œu.n/; z�� D 0 for n > 1: (13.71)

In other words it means that the fundamental harmonic eis.e�is/ appears only
in u.1/. The condition (13.70) gives an iteration for " as the amplitude of the
bifurcated solution. In order to solve (13.65), we assume

u.1/ D cz C NcNz; (13.72)

where c is the complex constant.
The orthogonalization condition gives

Œu.1/; z�� D cŒz; z�� D NcŒz; z��; (13.73)

and hence c D 1 and

u.1/ D Œz C z��: (13.74)

The being sought periodic solution of (13.65) exists if the following orthogona-
lity condition is satisfied (Fredholm alternative).

Œgn; z
�� D 0: (13.75)

This condition eliminates the occurring secular terms from gn.s/. Taking into
account (13.72) and (13.74) in (13.75) we obtain the following complex equation

n�n�1i � n!n�1 < fu!.0; 0jqjq�/ > �ŒRn�1; z�� D 0 (13.76)

with two unknowns �n�1 and !n�1. If �.!/ D 
.!/ C i�.!/ is the eigenvalue
associated with the vector q.!/, then

�q D fu.!; 0jq/: (13.77)
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Differentiating both sides of (13.75) with regard to ! and taking ! D 0we obtain

fA.0/C i�0I gq!.0/ D �!.0/ � fu!.0; 0jq.0//; (13.78)

where q!.0/ is unknown. The Fredholm alternative applied to (13.78) gives

h�!.0/q.0/ � fu!.0; 0jq.0//; q�i D 0: (13.79)

Taking into account the earlier introduced notation q.0/ D q and q�.0/ D q�
.hq; Nq�i D 1/ we get

�!.0/ D< fu!.0; 0jq.0//; q� > : (13.80)

A solvability condition for n > 1 with regards to u.n/ 2 P2� yields the equation

� n�n�1i C n!n�1r!.0/C ŒRn�1; z�� D 0: (13.81)

Separating real and imaginary parts we obtain

!n�1 D �ReŒRn�1; z��
n
!.0/

(13.82)

and

�n�1 D �ReŒRn�1; z��
�!.0/


!.0/
C 1

n
ImŒRn�1; z��: (13.83)

The obtained dependencies (13.82) and (13.83) allow to find the unknown
coefficients. Taking n D 2, we get R1 D fuu.0; 0ju.1/ju.1// and ŒR1; z�� D 0, which
implies that !1 D �1 D 0. It can be shown that

!2k�1 D �2k�1 D 0 k 2N: (13.84)

It means that the functions !."/ i �."/ are even.
In order to obtain !2 and �2 we take n D 3, and we get

R2 D 3

2
fuu.0; 0ju.1/ju.2//C fuuu.0; 0ju.1/ju.1/ju.1//: (13.85)

To find ŒR2; z�� one needs to solve (13.66) for n D 2 (u.2/.s/). The right-hand
side of g2.s/ can be presented by

g2 D �R1 D �fuu.0; 0jqjq/ei2s � 2fuu.0; 0jqj Nq/� fuu.0; 0j Nqj Nq/e�i2s; (13.86)
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where the condition Œg2; z�� D 0 is always satisfied. Let us denote

� fuu.0; 0jqjq/ D P; � 2fuu.0; 0jqjq/ D S; (13.87)

and hence

g2 D S C Pei2s C NPe�i2s (13.88)

The solution u.2/.s/ of (13.65) is a sought in the form

u.2/.s/ D K C Lei2s C NLe�i2s (13.89)

where K;L are real and complex vectors of the form

K D A�1.0/S;L D fA.0/ � 2i�0I g�1P; (13.90)

where A.0/ and A.0/ � 2i�0I are nonsingular.
Denoting

Lei2s D y; (13.91)

we obtain

fuu.0; 0ju.1/ju.2// D fuu.0; 0jz C NzjK C y C Ny/ D fuu.0; 0jzjK/
Cfuu.0; 0jzjy/C fuu.0; 0jzj Ny/C fuu.0; 0jNzjK/C fuu.0; 0jNzjy/C fuu.0; 0jNzj Ny/:

(13.92)

Applying orthogonalization to each term of (13.72) with z� we obtain

Œfuu.0; 0ju.1/ju.2//; z�� D h.fuu.0; 0jqjK/C fuu.0; 0jqjL//; q�i

D
nX
iD1

nX
jD1

nX
kD1

bijk Nq�
i .qjKk C NqjLk/; (13.93)

where

bijk D @2fi

@uj @uk
juD0;!D0: (13.94)

Noting that

Œfuuu.0; 0ju.1/ju.1/ju.1//; z�� D 3hfuuu.0; 0jqjqj Nq/i

D
nX
iD1

nX
jD1

nX
kD1

nX
lD1

cijkl Nq�
i qj qkql ; (13.95)
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Fig. 13.14 Amplitude of the periodic solution versus the bifurcation parameter for sub-critical (1)
and super-critical (2) bifurcation

where:

cijkl D @3fi

@uj @uk@ul
juD0;!D0; (13.96)

we obtain

ŒR2; z
�� D 3

2
hfuu.0; 0jqjK/C fuu.0; 0j NqjL/; q�i

C3hfuuu.0; 0jqjqj Nq/; q�i:
(13.97)

The first-order approximation of the bifurcated solution is

u.s; "/ D "u.1/.s/ D ".z C Nz/ D 2"Refqisg D 2"fRe q cos�."/t � Im q sin�."/tg;
(13.98)

where:

� D �0 C 1

2
"2�2 (13.99)

and

! D !cr C 1

2
"2!2: (13.100)

The obtained dependence !."/ is shown in Fig. 13.14.
For !2 > 0 a super-critical bifurcation occurs, whereas for !2 < 0 a subcritical

bifurcation appears. In the case of !2 D 0 one has to calculate !4. Eliminating
" from (13.99) and (13.100) we obtain the dependence of self-excited frequency
versus the bifurcation parameter

� D �0 C �2

!2
.! � !cr/: (13.101)
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The second-order approximation to the bifurcated solution has the form

u.s; "/ D "u.1/ C 1

2
"2u.2/ D 2"Refqeisg C 1

2
"2K C "2RefLei2sg: (13.102)

It is seen that it contains harmonic and superharmonic parts as well as the
constant parts. The latter causes a shift of oscillation origin.

One can proceed in a similar way to get the successive approximations for
n D 3; 4; : : :.

For the first-order approximation we get

ku.s; "/k D
p
Œu; u� D

�
1

2�

Z 2�

0

< u; u > ds

 1
2

D "

(
1

2�

Z 2�

0

nX
iD1
.qi e

is C Nqie�is/. Nqie�is C qie
is/ds

) 1
2

D "

(
1

2�

Z 2�

0

nX
iD1
.q2i e

i2s C 2qi Nqi C . Nqi 2e�i2s/ds
) 1

2

D "

(
2

nX
iD1

2qi Nqi
) 1

2

D "

(
2

nX
iD1

jqi j2
) 1

2

D "
p
2kqk: (13.103)

In the second-order approximation we have

u.t; !/ D 2

s
2!

!2
Refqei�tg C !

!2
K C 2!

!2
RefLei2�t g: (13.104)

The !."/ approximation using nth order polynomial

!."/ D !cr C 1

2
!2"

2 C 1

24
!4"

4 CO."6/ (13.105)

yields the picture shown in Fig. 13.15.
The term !4 is defined by

!4 D �ReŒR4; z��
5
!.!cr /

; (13.106)

where:

R4 D 30!2hfuu.qjK/C fuu!. NqjL/C fuuu!.qjqjq/; q�i
C15hfuuu.qjKjK/C 2fuuu. NqjLj NL/C 2fuuu. NqjKjL/; q�i:

(13.107)
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Fig. 13.15 Hopf bifurcation diagram

Now we briefly describe a stability estimation of the periodic bifurcated solution
V.s; "/ of Eq. (13.47). Considering v as the perturbation to the investigated solution
V , i.e. by substituting

v D u � V (13.108)

to (13.47) we get

Pv D g.!; v; s; "/; (13.109)

where

g.!; v; s; "/ D f .!; V C v/ � f .!; V /: (13.110)

The linearized equation (13.109) has the form

Pv D gv.!; 0jv/; (13.111)

where

gv.!; 0jv/ D fn.!; v.s; "/jv/: (13.112)

Equation (13.111) has periodic coefficients. A stability of v D 0 depends on the
eigenvalues of the monodromy matrix. One of the eigenvalues (Floquet exponents)
is equal to zero, whereas the second depends analytically on ", i.e. � D �."/ and
�.0/ D 0.

Theorem 13.5 (Orbital Stability). A limit cycle is asymptotical orbitally stable if
all Floquet exponents have negative real parts.

The next theorem gives hints how to find real Floquet exponents.
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Theorem 13.6. A real Floquet exponent �."/ can be presented in the form

�."/ D O�."/d!
d"
; (13.113)

where: O�."/ is the smooth function in neighbourhood of " D 0 such that d O�."/
d"
.0/ D

�
.0/, and O�."/
"

is an even function. Since

d!

d"
D "!2 CO."4/ (13.114)

and

O�."/ D �
!.0/"CO."3/; (13.115)

therefore

�."/ D �
!.0/!2"2 CO."4/: (13.116)

To conclude, we have two following cases:

(i) !
!.0/ > 0, and �."/ < 0. Then the solution is orbitally asymptotic stable;
(ii) !
!.0/ < 0, and �."/ < 0. Then the solution is orbitally unstable.

Example 13.4 (See [144]). We consider the Van der Pol equation of the follo-
wing form

Px1 D x2;

Px2 D �x1 C !x2 � x21x2:

The matrix of the linearized system in the vicinity of .0; 0/ is

A.!/ D
�
0 1

�1 !
	
:

The eigenvalues of A.!/ are defined by the equation

�2 � !� C 1 D 0:

Hence, for j!j < 2 there exist complex conjugate roots, whereas for j!j � 2 we
have real eigenvalues �2 << �1 < 0 for ! < �2, and �1 > �2 > 0 for ! > 2. The
complex conjugate roots are

�1;2 D !

2
˙ i

2

p
4 � !2:
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The trajectories of the eigenvalues �1 and �2 form the up and down half-circle of
the complex plane .Re �/2 C .Im �/2 D 1: Depending on ! we have the following
types of the singular points

(1) ! < �2 (stable node);
(2) ! D �2 (stable node degenerated);
(3) �2 < ! < 0 (stable focus);
(4) ! D 0 (asymptotically stable focus);
(5) 0 < ! < 2 (unstable focus);
(6) ! D 2 (unstable node degenerated);
(7) ! > 2 (unstable node).

Let us check the Hopf bifurcation theorem assumptions:

(i) f .!; 0/ for every !; x D 0 is isolated equilibrium;
(ii) the function f is analytical for .x; !/ 2 R2 �R;

(iii) the matrix A.!/ has a pair of complex eigenvalues such that Re�1.0/ D
Re�2.0/ D 0; Im.�1/ D 1 > 0 and d.Re�1/

d!
.0/ D 1

2
¤ 0:

The bifurcated solutions and the eigenvectors are defined by the equations that
can be found using the Iooss and Joseph [127] method, and they are reported
in [144]. ut

13.2.5 Double Hopf Bifurcation

One may extend a concept of analysis of Hopf bifurcation into a case when a few
pairs of purely imaginary eigenvalues cross an imaginary axis of the complex plane
with nonzero velocities. Although there exist many papers devoted to this problem
[73, 100, 164], but we follow here Dei Yu [250] research results.

If the Jacobian of higher-dimensional dynamical system possesses two pairs of
purely imaginary eigenvalues, then the so-called double Hopf bifurcation may be
exhibited. If the ratio of the two eigenvalues is not a rational number, then associated
bifurcation in non-resonant.

Following Yu [250], consider the following dynamical system

Px D Ax C F.x/: (13.117)

where: x 2 Rn, F W Rn ! R
n, F.0/ D F 0.0/ D 0, and

A D

2
666664

0 !1c 0 0 0

�!1c 0 0 0 0

0 0 0 !2c 0

0 0 �!2c 0 0

0 0 0 0 B

3
777775
: (13.118)
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Notice that B matrix is of order .n� 4/� .n� 4/ and it is hyperbolic one, which
means that its associated eigenvalues have no zero real parts. We assume also that
!1c=!2c ¤ k=l , where k; l 2 C.

In an explicit form Eq. (13.117) reads

Px1 D !1cx2 C F1.x/; Px2 D �!1cx1 C F2.x/;

Px3 D !2cx4 C F3.x/; Px4 D �!2cx3 C F4.x/;

Pxp D �˛pxp C Fp.x/; p D 5; 6; : : : ; m1 C 4;

Pxq D �˛qxq C !qxqC1 C Fq.x/; PxqC1 D �!qxq � ˛qxqC1 C FqC1.x/;

q D m1 C 5;m1 C 7; : : : ; n � 1 (13.119)

and n D 4Cm1 C 2m2.
In what follows, the multiple time scale method is used assuming that t D

t .T0; T1; T2; : : :/, and T0 D t; T1 D "t; T2 D "2t; and so on. Therefore

d

dt
D @

@T0

@T0

@t
C @

@T1

@T1

@t
C @

@T2

@T2

@t
C � � �

D D0 C "D1 C "2D2 C � � � : (13.120)

A being sought solution is expanded into the power series with respect to "

xi .t I "/ D "xi1.T0; T1; T2; : : :/C "2xi2.T0; T1; T2; : : :/C "3xi3.T0; T1; T2; : : :/C � � �
(13.121)

Substituting (13.121) into (13.2.5), and accounting (13.120) the following
sequence of perturbation equations is obtained

" W D0x11 D !1cx21;

D0x21 D �!1cx11;
D0x31 D !2cx41;

D0x41 D �!2cx31;
D0xp1 D �˛pxp1;
D0xq1 D �˛qxq1 C !qx.qC1/1;
D0x.qC1/1 D �!qxq1 C ˛qx.qC1/1I

(13.122)

"2 W D0x12 D !1cx22 �D1x11 C F12.x1/;

D0x22 D �!1cx12 �D1x21 C F22.x1/;

D0x32 D !2cx42 �D1x31 C F32.x1/;

D0x42 D �!2cx32 �D1x41 C F42.x1/;

D0xp2 D �˛pxp2 C Fp2.x1/;

D0xq2 D �˛qxq2 C !qx.qC1/2 C Fq2.x1/;

D0x.qC1/2 D �!qxq2 C ˛qx.qC1/2 C F.qC1/2x1/;

(13.123)
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where x1 corresponds to the first-order approximation and fi2 D d2ŒFi .x/="�=d"
2/

"D0 are the functions of x1.
Differentiating the first of Eq. (13.122) and substituting the second equation into

the resulting equation yields

D2
0x11 C !21cx12 D 0; (13.124)

which has the following solution

x11 D r1.T1; T2; : : :/cosŒ!1cT0 Cˆ1..T1; T2; : : :/� � r1cos‚1; (13.125)

where r1 is the amplitude and ˆ1 is the phase. Knowing x11 it is easy to obtain x21
from the third equation of (13.122). Proceeding in a similar way one finds

x31 D r2.T1; T2; : : :/cosŒ!2cT0 Cˆ2.T1; T2; : : :/� � r2cos‚2; (13.126)

and then x41 is defined by the fourth equation of (13.122). The other varia-
bles xj1 D 0; j D 5; 6; : : : ; n:

Observe also that

D0r1 D D0r2 D 0; D0ˆ1 D D0ˆ2 D 0: (13.127)

From Eq. (13.123) we obtain

D2
0x12 C !21cx12 D �D1D0x11 � !1cD1x21 CD0F12 C !1cF22: (13.128)

The condition for avoiding secular terms determine D1ri and D1ˆi ; i D 1; 2.
In the next step one finds the particular solution of (13.128). Having obtained x12
one easily finds x22 from the second equation of (13.123).

Using Eqs. (13.125) and (13.126) the following first-order differential equations
are obtained

dri

dt
D D0ri C "D1ri C "2D2ri C "3D3ri C � � � (13.129)

dˆi

dt
D D0ˆi C "D1ˆi C "2D2ˆi C "3D3ˆi C � � � (13.130)

Recall that we analyse non-resonant double Hopf bifurcation, and hence we get
D2kC1ri D D2kC1‚i D 0 for k D 0; 1; 2; : : :, whereas

D2kr1 D r1Œa2k0r
2k
1 C a.2k�2/2r2k�1

1 r22 C � � � C a2.2k�2/r2k�1
1 C a02kr

2k
2 �;

D2kr2 D r2Œb2k0r
2k
1 C b.2k�2/2r2k�1

1 r22 C � � � C b2.2k�2/r21 r2k�2
2 C b02kr

2k
2 �

(13.131)

and D2kˆi have similar form.
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Introducing a back scaling "xi ! xi ; "ri ! ri ; Eqs. (13.129), (13.130) have
the new form

dri

dt
D D2ri CD4ri CD6ri C � � � (13.132)

dˆi

dt
D D2ˆi CD4ˆi CD6ˆi C � � � (13.133)

and

d‚i

dt
D !ic C dˆi

dt
; (13.134)

where: ‚i D !icT0 Cˆi � !ict Cˆi ; and i D 1; 2; : : : :

It is worth noticing that Eqs. (13.132), 13.133) and (13.134) are called normal
forms. A reason is thatD2kr1;D2kr2;D2kˆ1 andD2kˆ2 are obtained by eliminating
secular terms (i.e. resonant terms). The resonant terms are actually applied in
Poincaré normal form theory.

Furthermore, the obtained periodic solution given by (13.124)–(13.126)
and (13.132)–(13.134) represents both asymptotic and transient solution for the
critical variables (modes) xi ; i D 1; 2; 3; 4 .ri D ri .t/; and ˆi D ˆi.t/).
The non-critical variables (modes) xj ; j D 5; 6; : : : are found from Eq. (13.121)
(they are excited by critical variables),

Observe also that the periodic solution (13.121) can be treated as the nonlinear
transformation between (13.117) and the normal forms (13.132)–(13.134). This
observation is supported by the following consideration. The periodic solution can
be written as

x1 D r1 cos‚1 C h1.r1 cos‚1; r1 sin‚1; r2 cos‚2; r2 sin‚2/;

x2 D �r1 sin‚1 C h2.r1 cos‚1; r1 sin‚1; r2 cos‚2; r2 sin‚2/;

x3 D r2 cos‚2 C h3.r1 cos‚1; r1 sin‚1; r2 cos‚2; r2 sin‚2/;

x4 D �r2 sin‚2 C h4.r1 cos‚1; r1 sin‚1; r2 cos‚2; r2 sin‚2/;

xi D hi .r1 cos‚1; r1 sin‚1; r2 cos‚2; r2 sin‚2/; i D 5; 6; : : : ; n: (13.135)

Introducing the new variables

y1 D r1 cos‚1; y2 D �r2 sin‚1; y3 D r2 cos‚2; y4 D �r2 sin‚2;

(13.136)
from (13.135) one gets

xiDyiChi .y1; y2; y3; y4/; iD1; 2; 3; 4; xiDhj .y1; y2; y3; y4/; iD5; 6; : : : ; n:
(13.137)
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The obtained equation, which is the same as (13.121), manifests a transformation
between xi ; i D 1; 2; : : : ; n and yj ; j D 1; 2; 3; 4: In other words, the first four
equations can be considered as a nonlinear transformations between the coordinates
x1; x2; x3; x4 and y1; y2; y3; y4: The remaining equations represent the projection of
the original system to the four-dimensional centre manifold governed by the critical
variables y1; y2; y3; y4: Using the Cartesian coordinates the normal form governed
by (13.132)–(13.134) reads

Py1 D !1cy2 C g1.y1; y2; y3; y4/;

Py2 D �!1cy1 C g2.y1; y2; y3; y4/;

Py3 D !2cy4 C g3.y1; y2; y3; y4/;

Py4 D �!2cy3 C g4.y1; y2; y3; y4/: (13.138)

To sum up, the nonlinear transformation (13.138), which is equivalent
to (13.121), represents a transition between the original system (13.117) and the
normal form (13.138).

Now both stability and bifurcation analysis may be carried out using
Eqs. (13.132)–(13.134) or (13.138).

Following Yu [250], in order to outline a general bifurcational analysis, the
normal form is presented explicitly up to third order

Pr1 D r1Œ˛11�1 C ˛12�2 C a20r
2
1 C a02r

2
2 �; Pr2 D r2Œ˛21�1 C ˛22�2 C b20r

2
1 C b02r

2
2 �;

(13.139)

and similarly

P‚1D!1cCˇ11�1Cˇ12�2Cc20r21Cc02r22 ; P‚2D!2cCˇ21�1Cˇ22�2Cd20r21Cd02r22 ;
(13.140)

For the convenience two parameter variables ˛11�1 C ˛12�2; ˛21�1 C ˛22�2
are used, where �1; �2 are the perturbation parameters.

The tracked behaviour follows:

1. Equilibria (E):

r1 D r2 D 0 (13.141)

2. Hopf bifurcation with frequency !1 (H.!1/):

r21 D � 1

a20
.˛11�1 C ˛12�2/; r2 D 0; !1 D !1c C ˇ11�1 C ˇ12�2 C c20r

2
1 :

(13.142)

3. Hopf bifurcation with frequency !2 (H.!2/):

r22 D � 1

b02
.˛21�1 C ˛22�2/; r1 D 0; !2 D !2c C ˇ21�1 C ˇ22�2 C d02r

2
2 :

(13.143)
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4. 2-D tori with frequencies !1; !2 (2-D tori):

r21 D �a02.˛21�1 C ˛22�2/ � b02.˛11�1 C ˛12�2/

a20b02 � a02b20 ;

r22 D �b20.˛21�1 C ˛12�2/ � a20.˛21�1 C ˛22�2/

a20b02 � a02b20 ;

!1 D !1c C ˇ11�1 C ˇ12�2 C c20r
2
1 C c02r

2
2 ;

!2 D !2c C ˇ21�1 C ˇ22�2 C d20r
2
1 C d02r

2
2 : (13.144)

Evaluating the Jacobian of Eq. (13.139) on the equilibrium (13.141) yields two
critical lines

L1 W ˛11�1 C ˛12�2 D 0 .˛21�1 C ˛22�2 < 0/; (13.145)

L2 W ˛21u1 C ˛22u2 D 0 .˛11u1 C ˛12u2 < 0/; (13.146)

and L1 .L2/ corresponds to occurrence of a family of periodic solutions after Hopf
bifurcation with !1 .!2/: The solutions are stable if the following inequalities are
satisfied

˛11�1 C ˛12�2 > 0 and ˛21�1 C ˛22�2 < 0: (13.147)

Now, evaluating the Jacobian of Eq. (13.139) on the Hopf bifurcation solu-
tion (13.142), yields the stability conditions

˛11�1C˛22�2 > 0 and ˛21�1C˛22�2� b20
a20
.˛11�1C˛12�2/ < 0: (13.148)

One may check that the H.!1/ periodic solution exists, when a20 < 0:
The second inequality in (13.148) yields the critical line

L3 W .˛21 � b20

a20
˛11/�1 C .˛22 � b20

a20
˛12/�2 D 0 .˛11�1 C ˛12�2/ > 0/:

(13.149)

The L3 line represents a secondary Hopf bifurcation with frequency !2 from the
limit cycle produced by H.!1/ (i.e. a 2-D torus is created).

Similarly, the (13.143) solution associated with H.!2/ is stable when the
inequalities hold

˛21�1C˛22�2 > 0 and ˛11�1C˛12�2� a02
b02
.˛21�1C˛22�2/ < 0 (13.150)

and it exists when b02 < 0:
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A critical line L4 is defined by the second inequality of (13.150):

L4 W .˛11 � a02

b02
˛21/�1 C .˛12 � a02

b02
˛22/�2 D 0 .˛11�1 C ˛22�2/ > 0/:

(13.151)

Crossing L4 a secondary Hopf bifurcation with frequency !1 occurs from the
periodic orbits born after H.!2/: Again the 2-D tori is produced, with solutions,
governed by Eq. (13.144).

In [250] a family of solutions lying on 2-D tori is traced via evaluation the
Jacobian on Eq. (13.144) yielding

JT D
�
2a20r

2
1 2a02r1r2

2b20r1r2 2a02r
2
2

	
: (13.152)

The stability of the quasi-periodic motion is defined by trace .Tr < 0/ and
determinant .Det > 0/ of the Jacobian JT:

The mentioned stability conditions are supplemented by the following existence
conditions

a02.˛21�1 C ˛22�2/ � b02.˛21�1 C ˛12�2/ > 0;

b20.˛11�1 C ˛12�2/ � a20.˛21�1 C ˛22�2/ > 0:
(13.153)

Observe that the existence region boundaries (13.153) are defined by the critical
linesL3 andL4, i.e. the periodic solution associated withH.!1/ .H.!2// bifurcates
from the critical line L3 .L4/ into a quasi-periodic solution with the stability
boundary L3 .L4/:

Note that r1 > 0 and r2 > 0 guarantee satisfaction of conditions (13.153), and
Det > 0 yields

a20b02 � a02b20 > 0; (13.154)

and hence the condition T r < 0 gives

a20.a02 � b02/.˛21�1 C˛22�2/� b02.a22 � b20/.˛11�1 C˛12�2/ < 0: (13.155)

From (13.155) one gets

L5 W Œa20.a02 � b02/˛21 � b02.a22 � b20/˛11��1
CŒa20.a02 � b02/˛22 � b02.a22 � b20/˛12��2 D 0:

(13.156)

On L5 a quasi periodic solution may loose its stability, and bifurcate to a 3-D
torus with frequencies .!1; !2; !3/.

A combination of perturbation approaches and harmonic balance technique
to analyse various Hopf type bifurcations is presented in works [18–21, 30]
and examples of numerical technique to trace dynamical behaviour using a path
following method taken from mechanics and biomechanics are reported in [15–17].
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13.3 Fixed Points of Maps

There are three distinct situations possible for bifurcations of fixed points of maps.

(i) Dxf .x0; �0/ has a single eigenvalue equal to 1.
In this case the problem is reduced to a study of one-dimensional centre

manifold

x 7! f .x; �/; x 2 R1; � 2 R1: (13.157)

Fixed point can be transformed to the origin, where f .0; 0/ D 0 and
@f

@x
.0; 0/ D 1. In this case three situations are possible.
A saddle-node bifurcation at .x; �/ D .0; 0/ takes place if

f .0; 0/ D 0;
@f

@�
.0; 0/ D 1;

(13.158)

and

@f

@�
.0; 0/ ¤ 0;

@2f

@x2
.0; 0/ ¤ 0:

(13.159)

The map

x 7! f .x; �/ D x C �˙ x2; x 2 R1; � 2 R1 (13.160)

can serve as a normal form for the saddle-node bifurcations for maps.
A transcritical bifurcation can be represented by the map

x 7! f .x; �/ D x C �x ˙ x2; x 2 R1; � 2 R1: (13.161)

Note that .x; �/ D .0; 0/ is a non-hyperbolic fixed point with eigenvalue 1
(f .0; 0/ D 0, @f

@x
.0; 0/ D 1). A transcritical bifurcation appears if

@f

@�
.0; 0/ D 0;

@2f

@x@�
.0; 0/ ¤ 0;

@2f

@x2
.0; 0/ ¤ 0: (13.162)

A pitchfork bifurcation occurs in a one parameter family of smooth one-
dimensional maps (13.157) with a non-hyperbolic fixed point (f .0; 0/ D 0,
@f

@x
.0; 0/ D 1) if
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@f

@�
.0; 0/ D 0;

@2f

@x2
.0; 0/ D 0;

@2f

@x@�
.0; 0/ ¤ 0;

@3f

@x3
.0; 0/ ¤ 0;

(13.163)
and its normal form is given by

x 7! f .x; �/ D x C �x ˙ x3; x 2 R1; � 2 R1: (13.164)

(ii) Dxf .x0; �0/ has a single eigenvalue equal to �1.
In contrary to the bifurcation (i) this bifurcation does not have an analog with
one-dimensional dynamics of vector fields, since it refers to period-doubling
bifurcation at .x; �/ D .0; 0/. It occurs when

f .0; 0/ D 0;
@f

@x
.0; 0/ D �1; @f

@�
.0; 0/ D 0;

@2f

@x2
.0; 0/ D 0;

@2f

@x@�
.0; 0/ ¤ 0;

@3f

@x3
.0; 0/ ¤ 0:

(13.165)

One can display the period-doubling bifurcation using the map

x 7! f .x; �/ D �x � �x C x3: (13.166)

(iii) Dxf .x0; �0/ possesses two complex conjugate eigenvalues having modulus 1.
This situation corresponds to the Neimark–Sacker bifurcation or sometimes

it is referred as a secondary Hopf bifurcation ([106, 243]).

Consider the map (13.157) but for x 2 R2, and let us again introduce a suitable
transformation that .x; �/ D .0; 0/ and f .0; 0/. The associated matrix Dxf .0; 0/

possesses two complex conjugate eigenvalues �.0/ and
�
�.0/, with j�.0/j D 1.

In addition, we require that �n.0/ ¤ 1 for n D 1; 2; 3; 4.
It can be shown [243] that the normal form of the Neimark–Sacker bifurcation is

governed by the complex map

z 7! �.�/z C c.�/z2
�
z CO.4/; z 2 C; � 2 R1: (13.167)

We change the variables letting

z D re2�i‚; (13.168)

and we get

r 7! j�.�/j
�
r C

�
Re

�
c.�/

�.�/

��
r3 CO.r4/

�
;

‚ 7! ‚C �.�/C 1

2�

�
Im

�
c.�/

�.�/

��
r2 CO.r3/;

(13.169)



460 13 Bifurcations

where

�.�/ � 1

2�
tan�1 !.�/

˛.�/
;

c.�/ D ˛.�/C i!.�/: (13.170)

The Taylor expansion of (13.169) in � D 0 gives

r 7!
�
1C d

d�
j�.�/j j�D0�

�
r C

�
Re

�
c.0/

�.0/

��
r3 CO.�2r; �r3; r4/;

‚ 7! ‚C �.0/C d

d�
�.�/j�D0�C 1

2�

�
Im
c.0/

�.0/

�
r2:

(13.171)
The truncated normal form has the form

r 7! r C .d�C ar2/r;

‚ 7! ‚C �0 C �1�C br2;
(13.172)

where

dD d

d�
j�.�/j�D0; aDRe

�
c.0/

�.0/

�
; �0D�.0/; �1D d

dx
.�.�//; bD 1

2�
Im
c.0/

�.0/
:

(13.173)

Following [243] there are four potential cases for the bifurcation of an invariant
circle from a fixed point.

(a) d > 0, a > 0. The origin is an unstable fixed point for � > 0 and an
asymptotically stable fixed point for � < 0 with an unstable invariant circle
for � < 0.

(b) d > 0, a < 0. The origin is an unstable fixed point for � > 0 and an
asymptotically stable fixed point for � < 0 with an asymptotically stable
invariant circle for � > 0.

(c) d > 0, a < 0. The origin is an asymptotically stable fixed point for � > 0 and
an unstable fixed point for� < 0 with an unstable invariant circle for � > 0.

(d) The origin is an asymptotically stable fixed point for � > 0, and an unstable
fixed point for � < 0, with an asymptotically stable invariant circle for � < 0.

Note that here the bifurcation consists of a circle which has many different orbits.
Hence one should start with the initial condition laying on this circle. Since in this
case r D .��d

a
/
1
2 , then the associated circle map has the form

‚ 7! ‚C �0 C
�
�1 C d

a

�
�: (13.174)

For �0 C .�1 C d
a
/� rational (irrational) all orbits on invariant circle are periodic

(quasiperiodic, i.e. densely fill the circle).
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13.4 Continuation Technique

The introduced earlier considerations related to local bifurcations can be used to
follow the dynamics in a systematic way. In a case of vector fields, one can construct
a local Poincaré map, and then to reduce the problem of one order to study a
bifurcation of a fixed point of the map. In a case of a k periodic orbit one can take
into account the bifurcation of a fixed point of the kth iterate of the map.

Coming back to the differential equation (13.1) and taking into account the initial
condition x.t0/ D x0 (for a given specific numerical value of �0) one can trace a
periodic orbit occurred via Hopf bifurcation. We integrate numerically (13.1) during
the time equal to exact (or estimated) period of a new periodic orbit corresponding
to the parameter �0 C��, where k��k � 1.

In a case of second-order differential equation the situation is shown in
Fig. 13.16.

In a case of periodic solution with the period T0 we have the following boundary
condition

x.T0; x0/ � x0 D 0: (13.175)

Equation (13.175) yields x0 using, for instance, Newton’s method. Using Taylor
expansion around kth order approximation of x.k/0 we take only a linear term, and

we obtain a linear correction�x.k/0 . A Jacobian of the Newton method is defined by

Fig. 13.16 Transformation of the state vector x0
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J D @x.T0; x0/

@x0
� I D N � I; (13.176)

where I is the identity matrix. After computation with the required accuracy we
use the matrix N obtained in the last computational step as the monodromy matrix.
The associated eigenvalues decide about stability and bifurcation of the analysed
periodic orbit (or equivalently, a fixed point of the maps). This method is called
shooting and has already found a wide treatment in literature (see, for instance
Seydel [214], Awrejcewicz [14]).

Another equivalent approach is based on the Galerkin approximation [234]. It is
well known that any periodic solution (function) can be represented by its Fourier
expansion

yk D a0 C
KX
kD1

.ack cos k!t C ask sin k!t/; (13.177)

where K is the number of a highest harmonics, and ! is the fundamental frequency.
The assumed solution is substituted to the system of the second-order differential
equations governing dynamics of oscillating systems. Since from the assumption
we have the kth order Fourier approximation to a periodic solution, then between
left- and right-hand sides a difference occurs (a residual vector), which satisfies the
equation

r.a0; ack ; ask ; t/ D r.a0; ack ; ask ; t C T /: (13.178)

In general, whenK ! 1, then r ! 0. The residual vector is also expanded into
Fourier series

r D s0 C
KX
kD1

.sck cos k!t C ssk sin k!t/: (13.179)

The condition r D 0 implies that s0 D sck D ssk D 0, and hence

1

T

TZ
0

r.a0; ack ; ask ; t/dt D 0;

2

T

TZ
0

r.a0; ack ; ask ; t/ cos n!tdt D 0;

2

T

TZ
0

r.a0; ack ; ask ; t/ sinn!tdt D 0; k; n D 1; 2; 3; : : :

(13.180)
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Introducing the vectors

s D
0
@ s0
sck
ssk

1
A ; a D

0
@ a0
ack
ask

1
A ; (13.181)

equation r D 0 can be substituted by

s.a/ D 0; (13.182)

and can be solved using the iterational Newton method. In practice the Fast Fourier
Transformation (FFT) is used during computation of s [49,71]. After an appropriate
choice of a starting point for the vector a we compute

Pyk D
KX
kD1

.k!ask cos k!t � k!ack sin k!t/;

Ryk D
KX
kD1

.�k2!2ack cos k!t � k2!2ask sin k!t/:

(13.183)

Applying (FFT)�1 we can find (13.183), then we substitute (13.183) into the
governing equations to get (13.182). The FFT is especially economic when a
number of samples NFFT satisfies NFFT D 2M > 4K. The error of the introduced
estimation is equal to

� D

0
B@

NFFT
2X

nDkC1
.s2cnk

C s2snk
/

1
CA

1
2

: (13.184)

A stability of the found solution is estimated by the variational equations.

Example 13.5. Consider a model of human vocal chords oscillations (see more
details in [15–17]). The human lungs produces the air pressure required for larynx
to be opened. The vocal chords start to continue to open because of inertia, and then
their elastic properties cause their closing. The air stream leaves the larynx, and
then Bernoulli suction effect appears. Next the described cycle repeats. Display a
bifurcation diagram corresponding to the mechanical model of human vocal chords
shown in Fig. 13.17.

A point mass can move in the directions x and y. Since the vocal chords cannot
touch each other, the artificial damping cs and stiffness ks have been introduced.
The hyperbolic type stiffness associated with the coefficient ks approaches infinity
when the mass approaches origin. The larynx has been modelled as a reservoir
with stiff walls and real elastic properties have been included in the modified air
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Fig. 13.17 Mechanical model of a human vocal chord

parameters. It is assumed that the lungs pressure generates equal forces acting on the
vocal chords, which move symmetrically. This is a reason that we consider only one
vocal chord oscillations. In a case of some pathological cases (for instance caused
by cancer) the symmetry is violated and the number of equations is doubled.

The ordinary non-dimensional differential equations have the form (see [17] for
more details)

RX C C PX C fKx CKDŒ.X �X0/2 C Y 2�g.X �X0/ �KxyY�
�KsX

�s.1 � Cs PX/ D EP;

RY C C PY C fKy CKDŒ.X �X0/2 C Y 2�gY �Kxy.X �X0/ D EP;

PP D Q �
�
.X � 1/P 0;5; for X > 1;

0; for x 	 1:

where: C corresponds to damping properties of the vocal chords (C < 1); Ky

represents a vertical stiffness of a vocal chord (Ky 2 .0; 7I 0; 9/), Kx D 1; Kxy

is the stiffness coefficient coupling the vocal chord displacements in two directions
Kxy 2 .0; 3I 0; 5/); K0 is a Duffing (cubic) type stiffness coefficient (K0 < 1); Ks

is a coefficient of a hyperbolic type stiffness (Ks < 0; 1); s D 4; Cs represents
damping (Cs < 1); X0 is the horizontal equilibrium position of the vocal chord; E
is the average surface of the vocal chord (E 2 .0; 1I 0; 0/) and Q is outlay of the air
stream (Q 2 .0; 0I 100; 0/).
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Fig. 13.18 Equilibrium and stability

The analysed system of differential equations is strongly nonlinear especially in
a vicinity of origin (see the term responsible for hyperbolic type stiffness). We take
the following fixed parameters: Ky D O:9IKxy D 0:3IK0 D 0:001IKs D
0; 001ICs D 0:5IE D 1. First we calculate equilibria positions (see Fig. 13.18).

The solid curves in the planes .X0;Q/, .Y0;Q/ and .P0;Q/ correspond to the
equilibrium positions. They do not change with the change of C , but their stability
depends on C . The solid curves located in the plane .C;Q/ correspond to stability
loss boundaries.

Denote the eigenvalues associated with an equilibrium by �1;2 D ı1˙i!1, �3;4 D
ı2 ˙ i!2 (it can be proved that the fifth eigenvalue is real and negative). If ıi D 0

.i D 1; 2/, then for a fixed C value the Hopf bifurcation occurs with an increase
or decrease of Q (see directions of vertical arrows). A point of intersection of both
curves can be interpreted as a meeting point of two frequencies !1 and !2. If they
are irrational then a quasi-periodic orbit appears.

The bifurcation diagram for Ky D 0:3; KD D Ks D 0:001; Ds D 0:5;
Kxy D 0:3; X0 D E D 0:4; Q D 7 has been reported in Fig. 13.19, and the
calculations have been carried out using shooting method.

Damping coefficient C has been taken as an active parameter. Its decrease causes
occurrence of the Hopf bifurcation and a periodic orbit appears (this is example
of self-exciting oscillations). A slight further decrease of C yields an increase of
the oscillation amplitude represented by the branch 10. In the point PD10 we have
period doubling bifurcation and a new subharmonic solution appears (branch 30).
This solution is further traced numerically along this branch and in the point Q it
changes its stability. As the numerical analysis shown in the vicinity of Q a quasi-
periodic solution appears.
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Fig. 13.19 Bifurcation
diagram of the human vocal
chords

Fig. 13.20 Periodic
oscillation for vocal chords

The branch 1 becomes unstable in the point PD10. However between PD20 and
PD3 we have stable periodic solution. In the point H20 another periodic solution
branch appears which is unstable.

It is clear that for each point of the bifurcation curve one can easily obtain phase
trajectories or time histories. For instance, the latter are shown in Fig. 13.20 for
C D 0:16.

During calculations the period has been normalized to 2� and (from this figure)
it is seen that this a subharmonic stable solution of the branch 30. A cusp of yi is
visible, which is in agreement with our hyperbolic type stiffness assumption. It must
be emphasized that in this case the shooting method is much more economical in
comparison to the Urabe–Reiter method. In the latter case one needs to take high
number of harmonics which extremely extends computation time. The shooting
method does not have the mentioned drawback. ut
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13.5 Global Bifurcations

As it has been pointed out in monographs [216,217], sometimes a periodic orbit does
not exist on the stability boundary and Poincaré map is not defined i.e. it cannot be
analysed using a local approach.

First we can consider bifurcation of a homoclinic loop to a saddle-node
equilibrium, which is displayed by the equations

Px1 D �C �2x
2 CG.x1; �/;

Px2 D ŒAC h.x1; x2; �/�x2; (13.185)

where the eigenvalues of A lie in LHP (see Fig. 13.21).
For � < 0 saddle O1 and a node O2 are distinct. They approach each other

when � ! 0C. In the critical point � D 0 the saddle-node equilibrium with the
homoclinic loop disappears and a stable periodic orbit P� is born with a period of
�=
p
��2. In fact this observation can be formulated as a theorem and proved (see

[216]).
We give one more example taken from [85], where two mutually coupled

oscillators are considered:

Px1 D x2;

Px2 D �".1 � ˇx12 C x1
4/x2 � x1 C ˛x3;

Px3 D x4;

Px4 D �".1 � ˇx32 C x3
4/x4 � x3 C ˛x1; (13.186)

where 0 < ˛ < 1 is a coupling factor, ˇ controls amplitude and " is a control
parameter. It has been shown that two symmetric solutions disappear simultaneously
for " D 0:448 via saddle-node bifurcation. Just before this value a switching
between two symmetric solutions occurred. The situation is displayed in Fig. 13.22.

Fig. 13.21 Successive steps of a bifurcation of a saddle-node equilibrium with a homoclinic
trajectory
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Fig. 13.22 A heteroclinic
cycle at (a) and after
(b) saddle-node bifurcation

The authors using Poincaré map, traced the unstable manifold Wn of the saddle
in a vicinity of the saddle-node bifurcation and they observed the following scenario
(see Fig. 13.22). OneWn of S1 goes in N1, whereas the otherWn goes in N2. One of
Wn of S2 goes inN1 and the otherWn of it goes inN2. A node and a saddle coalesce
at the saddle-node bifurcation point creating a degenerate saddle. A heteroclinic
cycle links two degenerate saddles at this point. Two stableN1 andN2 are connected
by unstable manifolds even after disappearance of the synchronized solution via
saddle-node bifurcation and nodes are replaced by their traces. A flow stays traced
of N1 and N2 for a relatively long time and then quickly moves along a heteroclinic
cycle linking two traces.

Another important global bifurcation can lead to occurrence of an invariant torus
or Klein bottle, which has been analysed by Afraimovich and Shilnikov ([1, 2]).

Theorem 13.7 (See [216]). If the global unstable set of the saddle-node is a smooth
compact manifold (a torus or a Klein bottle) at � D 0, then a smooth closed
attractive invariant manifold T� (a torus or a Klein bottle, respectively) exists for
all small �.

With a continuous change of �, the invariant manifold will change continuously.
For � < 0 we have a set composed of the unstable manifold of the saddle
periodic orbit P�.�/ with the stable periodic orbit PC.�/ (by P˙.�/ we denote
periodic orbits occurred after the saddle-node bifurcations). The invariant manifold
for � D 0 is represented by wu

p . For � > 0 the Poincaré rotation number approaches
zero for � ! 0C (in case of torus). Hence, on the axis � there are infinitely many
phase-locking (resonant) zones (periodic orbits) as well as infinitely many zones
composed of irrational values of � (quasiperiodic orbits).

More detailed analysis of the briefly mentioned global bifurcations is given in
the monograph [216] and is beyond of this book. There are also many references
which include examples of various bifurcations in mechanics (see, for example [38,
145, 153, 190, 212, 231]).
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Finally the basic phenomena of bifurcations exhibited by continuous dynamical
systems, as well as explicit procedures for application of mathematical theorems to
particular real-world problems are widely reported in monograph [146].

13.6 Piece-Wise Smooth Dynamical System

13.6.1 Introduction

The piece-wise smooth dynamical systems (PSDS) are governed by the equation:

Px D F.xI�/; (13.187)

where: x D x.t/ 2 Rn represents the system state in time instant t ; � 2 Rm is
the vector of parameters, whereas the transformation F W Rn � Rm ! R

n is the
piece-wise smooth function. In other words, the phase spaceD 2 Rn is divided into
finite number of subspaces Vi , where the function F is smooth. The subspaces are
separated by .n � 1/ hyperplanes †ij , where the ‘discontinuities’ are exhibited.

The PSDS governed by (13.187) can be classified in the following manner:

(i) Systems with discontinuous Jacobian DF, with continuous but non-smooth
vector field F, and with smooth system’s state x.t/;

(ii) Systems with discontinuous vector field F and with non-smooth but continuous
x.t/;

(iii) Systems with discontinuous x.t/. In this case, whenever the system is in
contact with †ij , its state undergoes a jump described by xC D g.x�I�),
where x�.xC/ describes the system state just before (after) a contact.

Dynamical systems belonging to class (i) are often called Filippov systems
[93,152]. In mechanical and electrical engineering there exist many various systems
with piece-wise linear characteristics (see for example [46, 47, 161, 256]). Non-
smooth mechanical systems with impact and/or friction have very long history
and are described in many books (see, for instance [29] and references therein).
Systems with Coulomb friction can be treated as those with a jump of a damping
characteristics (class (ii))—see [95,151,152], or they exhibit a stick-slip movement.
A stick takes place, when a resulting force acting on a moving body is less than
the associated Coulomb force. Often the authors use differential inclusions in order
to attack this problem more rigorously (see [143]). Three simple examples of
mechanical systems with piece-wise nonlinearities are shown in Fig. 13.23.

In the first case (Fig. 13.23a) the system is governed by the equation

m Rx C F.x/ D 0; (13.188)
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Fig. 13.23 One-degree-of-freedom system with a gap (a), discontinuous force (b), and stick-slip
periodic motion (c)

where

F.x/ D

8̂̂
<
ˆ̂:
0 for � a 	 x 	 a;

k2.x � a/ for x > a;

k1.x C a/ for x < a:

(13.189)



13.6 Piece-Wise Smooth Dynamical System 471

In the points ˙a the function F.x/ is not differentiable. In the second case
(Fig. 13.23b) the springs are initially stretched and governing differential equation
is the same as (13.188), but

F.x/ D

8̂̂
<
ˆ̂:
k2x C F0 for x > 0;

0 for x D 0;

k1x � F0 for x < 0:

(13.190)

In the third case the system is self-exited and is governed by equation

m Rx C kx D T .w/ � T .0/; (13.191)

where:

T .w/ D mgŒ�0 � sgnw � ˛w C ˇw3�; ! D v0 � Px: (13.192)

In the above �0; ˛; ˇ are coefficients describing friction. Note that the periodic
orbit is not differentiable in the points A, B, C and the interval BC corresponds
to stick, i.e. the mass m does not move in relation to tape. The system shown in
Fig. 13.23a belongs to class (i), the system presented in Fig. 13.23b belongs to class
(ii), and system given in Fig. 13.23c belongs to class (iii). The mechanical systems
with impacts can be either modelled as a system with the sudden stiffness change
(class (ii)), or as systems belonging to class (iii). In the latter case, when a surface
†i;j is achieved, a sudden change of velocity occurs owing to the Newton’s law and
a definition of the restitution coefficient. In this case the system can be considered as
that of one sided constraints and its behaviour is governed by algebraic inequalities.
The described situation is equivalent also to a Dirac impulse of the function F on
one of two sides of hyperplane †i;j .

It is clear that in mechanical systems various classes of discontinuities may
appear simultaneously. Although often friction and impact are independent ([238])
but more realistic are situations, where impact and friction appear together.

13.6.2 Stability

Here we consider a simple situation when on †i;j discontinuities do not occur.
Recall also that when an analysed orbit belongs to any subspace Vi , than situation
is clear, since stability concepts of smooth systems can be applied. Therefore, a
stability devoted to PSDS is more general and when †i;j vanishes it is reduced to
classical (smooth) stability concepts.

Assume that a periodic orbit x.t/ of a PSDS intersects the hyperplanes†i;j finite
times in a periodic manner, and the intersections are non-degenerated, i.e. an orbit
intersects †i;j transversally, a contact time with †i;j is infinitely short and all †i;j
are smooth in contact points.
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Fig. 13.24 A piece-wise smooth periodic orbit and a Poincaré section †

One may introduce a Poincaré section † which do not overlap with any †i;j .
In what follows we are going to analyse locally an intersection point of x(t) with †
(further referred as x�

†). To estimate stability one has to define a monodromy matrix
�� owing to our earlier considerations for completely smooth systems. In order to
obtain �� corresponding to piece-wise smooth periodic orbit, consider the matrix of
fundamental solutions �.t; t0/ satisfying the following linear differential equations

P�.t; t0/ D DFi.x.t//�.t; t0/; �.t; t0/ D I; (13.193)

where D is the differential operator and DFi denotes Jacobian. Observe that in time
intervalsDi D ft 2 RI ti�1 < t < tig, for i D 1; 2; : : : ; kC1, the orbit x.t/ belongs
to subspace Vi , where F D Fi is smooth, and FkC1 D F1 (see also Fig. 13.24 for
k D 4). In each of the intersection (discontinuous) points defined by t D ti the orbit
undergoes sudden changes, which means that the fundamental matrix also changes
in these points. These changes can be formally expressed in the following way

�.tCi ; t0/ D Si�.t
�
i ; t0/; i D 1; 2; : : : ; k: (13.194)

In the above the superscript (�) denotes time instant just before a discontinuity,
whereas the superscript (+) denotes time instant just after a discontinuity, and Si is
called saltation matrix.

In order to obtain explicitly a saltation matrix, one has to trace perturbations of
two neighbourhood orbits x.t/ and x.t/ (see Fig. 13.25).

The described method has been introduced for class (ii) by Aizerman–
Gantmakher [3], and has been extended to the systems with discontinuous vector
state [175].
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Fig. 13.25 Perturbed x.t/ and unperturbed x.t/ orbits and the associated perturbations

Let us trace the orbit x.t/ in the time intervals Di and DiC1:

Px D Fi.x/; for ti�1 < t < ti ;
0 D hi .x

�
i /; for t D ti ;

xC
i D gi .x

�
i /; for t D ti ;

Px D FiC1.x/; for ti < t < tiC1;

(13.195)

where: x�
i D lim

t!ti
t<ti

x.t/, xC
i D lim

t!ti
t>ti

x.t/: Note that in the time instant t D ti defined

by zero of smooth function hi .x/ in Vi a discontinuity appears and in general the
system state can exhibit a jump defined by a smooth function gi .x/. In addition, it
can happen that Fi ¤ FiC1. The function hi .x/ can be scalar (for example during
impacts in mechanical systems), or it can be a vector.

The perturbed solution Nx.t/ D x.t/Cıx.t/ touches the constraint in time instant

Nti D ti C ıti ; (13.196)

and it satisfies Eq. (13.195), where now the bars over x have to be added.
Assuming ıti > 0 and following the introduced notations shown in Fig. 13.25,

one obtains

ıx�
i D Nx.ti / � x�

i ; ıx
C
i D NxC

i � x.t i /: (13.197)

Since the perturbed orbit Nx.t/ for t D Nti satisfies (13.195), the Taylor series
expansions is used and the following manipulations hold:

0 D hi . Nx�
i / D hi . Nx.ti C ıti //


 hi . Nx.ti /C d Nx
dt

jti ıti /
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 hi . Nx.ti /C Fi. Nx.ti //ıti /

 hi .x

�
i C ıx�

i C Fi.x
�
i C ıx�

i /ıti /


 hi .x
�
i C ıx�

i C Fi.x
�
i /ıti CDFi.x

�
i /ıx

�
i ıti /


 hi .x
�
i C ıx�

i C Fi.x
�
i /ıti /


 hi .x
�
i /CDhi.x

�
i /ıx

�
i CDhi.x

�
i /Fi .x

�
i /ıti : (13.198)

Finally, the following equation is obtained

Dhi.x
�
i /Œıx

�
i C Fi.x

�
i /ıti � D 0: (13.199)

In order to realize a non-degenerated contact between the orbit and discontinuous
hyperplane †i;j the following condition should be assumed

rankDhi.x
�
i /Fi .x

�
i / D rankŒDhi .x

�
i /Fi .x

�
i /;Dhi .x

�
i /ıx

�
i �: (13.200)

From (13.199) one obtains

ıti D � Dhi.x
�
i /ıx

�
i

Dhi .x
�
i /Fi .x

�
i /
: (13.201)

Now the Taylor series is applied to Eq. (13.195) and the manipulations similar to
those in (13.198) are carried out:

xC
i D gi . Nx�

i / 
 gi .x
�
i C ıx�

i C Fi.x
�
i /ıti /


 gi .x
�
i /CDgi.x

�
i /Œıx

�
i C Fi.x

�
i /ıti �


 xC
i CDgi.x

�
i /Œıx

�
i C Fi.x

�
i /ıti �: (13.202)

From (13.195), (13.197) and (13.202) one gets

ıxC
i D xC

i � x.t i /

 xC

i CDgi.x
�
i /Œıx

�
i C Fi.x

�
i /ıti � � .xC

i � ıxC
i /


 xC
i CDgi.x

�
i /Œıx

�
i C Fi.x

�
i /ıti � � .xC

i C PxC
i ıti /


 xC
i CDgi.x

�
i /Œıx

�
i C Fi.x

�
i /ıti � � .xC

i C FiC1.xC
i /ıti /; (13.203)

which finally yields

ıxC
i D Dgi.x

�
i /ıx

�
i C ŒDgi .x

�
i /Fi .x

�
i / � FiC1.xC

i /�ıti ; (13.204)
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and ıti is defined by (13.201). Recall that the saltation matrix transforms the
perturbation ıx�

i just before a discontinuity point into the perturbation ıxC
i just

after the discontinuity point via formula

ıxC
i D Siıx

�
i : (13.205)

Hence, accounting (13.204) and (13.201), the saltation matrix is found

Si D Dgi.x
�
i /C ŒFiC1.xC

i / �Dgi.x�
i /Fi .x

�
i /�

Dhi .x
�
i /

Dhi .x
�
i /Fi .x

�
i /
: (13.206)

Note that similar considerations can be repeated for ıti < 0.
The introduced theory can be used as an extension of earlier one to trace through

the described continuation technique the piece wise smooth periodic orbits and also
classical algorithms for computations of Lyapunov exponents in smooth systems
[89, 244, 245] (one has to include jumps of ıx.t/ in each of discontinuity points)
can be applied.

Example 13.6. Derive a saltation matrix using the Aizerman–Gantmakher theory in
one-degree-of-freedom mechanical system with an impact.

The following second-order differential equation governs dynamics with impacts
of the oscillator

Rq D Fq.q; Pq; t/; q 	 qmax;

where qmax defines a barrier position. Assume that in the time instant t D tk , q.tk/ D
qmax and an impact modelled within Newton’s hypothesis

PqC D �e Pq�

occurs, where: Pq� D Pq�.tk/ D lim
t!tk
t<tk

Pq.t/ is the oscillator velocity just before impact,

whereas PqC D PqC.tk/ D lim
t!tk
t>tk

Pq.t/ is the oscillator velocity just after impact, and e

is the restitution coefficient. The following phase coordinates are introduced

x D colfx1; x2; x3g D colfq; Pq; tg:

Hence, we have

Px D F.x/; x 2 R3;
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where

F.x/ D colfx2; Fq.x/; 1g D colf Pq; Fq; 1g:

The phase space configuration is defined by the inequality

h.x/ � 0;

where h.x/ D qmax � x1 D qmax � q:
In the time instant t D tk defined by h.x�.tk// D 0, we get

xC D g.x�/;

where: x� D x�.tk/ D lim
t!tk
t<tk

x.t/, xC D xC.tk/ D lim
t!tk
t>tk

x.t/: The function defining

a jump of the state vector in the point of discontinuity has the form

g.x/ D colfx1;�ex2; x3g D colfq;�e Pq; tg:

The associated Jacobians with h.x/ and g.x/ have the form

Dh.x/ D 
�1 0 0� ;

Dg.x/ D
2
41 0 0

0 �e 0
0 0 1

3
5 :

From (13.201) one gets

ıt D � Dh.x�/ıx�

Dh.x�/F.x�/
D �


�1 0 0�
8<
:
ıx�

1

ıx�
2

ıx�
3

9=
;


�1 0 0�
8<
:
x�
2

F �
q

1

9=
;

D �ıx
�
1

x�
2

D �ıq
�

Pq� ;

where F �
q D Fq.x

�/:
Observe that for a degenerated impact, when Pq� ! 0, the time ıt approaches

infinity. The saltation matrix is obtained from (13.206):

S D Dg.x�/C ŒF .xC/ �Dg.x�/F.x�/�
Dh.x�/

Dh.x�/F.x�/
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D
2
41 0 0

0 �e 0
0 0 1

3
5C

0
@
8<
:

PqC
FC
q

1

9=
; �

2
41 0 0

0 �e 0
0 0 1

3
5
8<
:

Pq�
F �
q

1

9=
;
1
A


�1 0 0�

�1 0 0�

8<
:

Pq�
F �
q

1

9=
;

D
2
41 0 0

0 �e 0
0 0 1

3
5C

0
@
8<
:

PqC
FC
q

1

9=
; �

8<
:

Pq�
�eF �

q

1

9=
;
1
A

�1 0 0�
.� Pq�/

D
2
41 0 0

0 �e 0
0 0 1

3
5C

2
4 �. PqC � Pq�/ 0 0

�.FC
q C eF �

q / 0 0

0 0 0

3
5 .� Pq�/�1

D
2
4 PqC= Pq� 0 0

.FC
q C eF �

q /= Pq� �e 0
0 0 1

3
5 ;

where FC
q D Fq.x

C/, and it can be cast to the following form

S D
2
4 �e 0 0

.FC
q C eF �

q /= Pq� �e 0
0 0 1

3
5 :

The obtained matrix transforms a perturbation ıx� just before a barrier into the
perturbation just after the barrier ıxC. It is worth noticing that in the case of grazing
bifurcation (tangent to the barrier surface), the velocity Pq� ! 0, and possesses
matrix element S21 ! 1.

13.6.3 Orbits Exhibiting Degenerated Contact
with Discontinuity Surfaces

In the previous section the eigenvalues of Jacobian changed smoothly with a smooth
change of a bifurcation parameter. Hence, the analysed piecewise smooth orbits can
exhibit all bifurcations described earlier and associated with smooth systems.

Here, we are going to analyse the cases, where a Poincaré map (or a vector field
during analysis of stationary points), its Jacobian and the associated eigenvalues
exhibit discontinuities, which are associated with smooth changes of a bifurcation
parameter. In this case either the obtained bifurcations are qualitatively similar to
those in smooth systems, or they are completely new.

The most explored bifurcation in PSDS is a so-called grazing bifurcation.
It occurs, when a part of trajectory becomes tangent to one of the discontinuity
surfaces while changing a bifurcation parameter smoothly. It cannot be predicted by
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Fig. 13.26 Grazing
bifurcations exhibited by
Filippov’s system (a) and a
system with discontinuous
vector state (b)

tracing a Jacobian behaviour. This type of bifurcation has been extensively studied
by Feigin ([89–92]), although it is known in Russian literature as C-bifurcation.

However, to be more precise the C-bifurcation is typical for Filippov’s systems
[80], whereas grazing bifurcation is more practically oriented one and appears in
systems with impacts. During investigations of maps a so-called border-collision
bifurcation may appear, which is related to grazing bifurcation of a vector field
([41, 79, 80, 183, 185, 186]). Namely, it characterizes a collision of a mapping point
with a discontinuity surface.

In Fig. 13.26 a grazing bifurcation is schematically shown for two different
PSDS. Namely, a system with continuous vector state (Fig. 13.26a), and a system
with a jump of a vector state (Fig. 13.26b) are displayed. The letter case is typical
for impacting systems.

Although the classical grazing bifurcation assumes that a discontinuous surface
in a contact place is smooth, but in practise very often it can be non-smooth.
Imagine that a surface †i;j is composed of two smooth parts †.1/i;j and †.2/i;j , which
intersection creates a set C with dimension (n � 2), where n is dimension of phase
space (see Fig. 13.27).

Two first bifurcations (Fig. 13.27a, b) belong to corner-collision bifurcation,
whereas the third one Fig. 13.27c is more complicated.

Another important class of bifurcations exhibited by PSDS is associated with a
sliding motion along †i;j (a trajectory remains on †i;j on a finite time interval).
In the Filippov systems the vector field either forces the trajectories to move into
†i;j from its both sides (attraction sliding mode) or to move away from it (repulsion
sliding mode). More details are given in [46, 152].

In our example reported in Fig. 13.23c a real stick phase of the mass (which
moves together with tape) can be referred as the attraction sliding mode.

When PSDS moves along a discontinuous surface a sliding type bifurcation
can occur [46, 82]. In this case an orbit interacts with a part † of a discontinuity
hyperplane †. Four different sliding bifurcations in Filippov’s systems are reported
in Fig. 13.28.
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Fig. 13.27 Internal (a) and external (b) corner—collision bifurcation and bifurcation with sliding
on †.i/1;2, i D 1; 2 (see [78])

Fig. 13.28 Four different sliding bifurcations in a Filippov’s system

Type I sliding bifurcation is shown in Fig. 13.28a. Increasing a bifurcation
parameter the orbit first intersects transversally †, and then it moves to right
successively touching the S-border between † and † (trajectory 2) and begins to
slide. Any trajectory leaves † tangently.

In Fig. 13.28b the trajectory 1 approaches † and †, it touches † and †

simultaneously (orbit 2). Increasing further a bifurcation parameter a sliding part
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on † occurs (see orbit 3). This bifurcation is said to be grazing-sliding and it
generalizes a grazing bifurcation concept.

The third example (Fig. 13.28c) is referred as a sliding bifurcation of type II
(sometimes it is also called switching-sliding).

First, the orbit 1 intersects transversally †. Two other orbits remain in †. All of
the orbits are associated with sliding out of the border S.

The last (Fig. 13.28d) type of sliding bifurcation is called multisliding. All orbits
belong to†. A change of a bifurcation parameter yields to partition of the orbit into
two parts (one of it lies on †, and the other one lies outside of †). The described
multisliding bifurcation is a member of a sliding adding scenario, which yields an
occurrence of periodic orbits with increasing number of sliding intervals [81].

13.6.4 Bifurcations in Filippov’s Systems

Filippov’s systems belong to classes (i) and (ii) and they are characterized by
systems with at least smooth vector state.

In [151, 152] bifurcations of periodic solutions in systems with discontinuous
vector fields are analysed. Although it is assumed that the Poincaré section in a
bifurcation point is continuous but not necessarily smooth. Assume that a being
analysed periodic solution is in contact with a discontinuous surface †. If the
perturbed orbit intersects † and moves into another part of the phase space, where
it stays infinitely short time, and then it returns to the previous phase domain, then
the associated Poincaré map is continuous. It can be proved that if the analysed
periodic orbit in tangent to a smooth discontinuity surface, then the Poincaré map
is smooth and its Jacobian is continuous. When the orbit goes through the point of
discontinuity surface which is non-smooth, then the associated Jacobian is non-
continuous. To omit the occurred problem a concept of a generalized Clarke’s
derivatives can be applied. It yields definitions of both generalized Jacobian and
generalized fundamental matrix. It can be shown also that a generalized Jacobian
can be obtained via linear approximation of a non-smooth vector field F in a thin
phase space † with � thickness including a surface of discontinuity †. In words,
a non-continuous vector field F is substituted by continuous but non-smooth vector
field QF , when � ! 1.

13.6.5 Bifurcations of Stationary Points

Consider first codimension 1 bifurcations of a fixed point x� D x�
†i;j

of the vector
field F lying on the non-smooth surface †i;j , being a border between subspaces Vi
and Vj , where F is smooth.
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Fig. 13.29 Two different path of eigenvalues � displaying discontinuous bifurcations

Since the point x�
†i;j

belongs simultaneously to Vi and Vj , it possesses two
different values of a DFi.x�

†i;j
I�†i;j / and DFj .x�

†i;j
I�†i;j / on each of two sides of

†i;j . In what follows the following generalized Jacobian is defined in the point x�
†i;j

:

QDF.x�
†i;j

I�†i;j / D .1 � q/DFi.x�
†i;j

I�†i;j /C qDFj .x
�
†i;j

I�†i;j /; (13.207)

where 0 	 q 	 1.
Formula (13.207) yields possible values of Jacobian in the point x�

†i;j
and it

represents the smallest convex set possessing two values of Jacobian on two sides
of†i;j . Note that for q D 0 we have QDF.x�

†i;j
I�†i;j / D DFi.x

�
†i;j

I�†i;j /, whereas

for q D 1 we get QDF.x�
†i;j

I�†i;j / D DFj .x
�
†i;j

I�†i;j /.
The mentioned set does not only define eigenvalues of Jacobians in a discontinu-

ous point, but also defines a path of their jumps, when x� goes through †i;j . Now,
if during such a jump the imaginary axis of the phase plane is crossed, then the
associated bifurcation is called discontinuous one (see Fig. 13.29).

In the first case (curve 1) two complex conjugate eigenvalues cross once the
imaginary axis, whereas in the second case (curve 2) the eigenvalues paths intersect
the imaginary axis two times.

It is worth noticing that for each classical local bifurcation there exist also
corresponding non-smooth bifurcations.
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Fig. 13.30 Discontinuous
saddle-node bifurcation

For instance, classical smooth saddle-node bifurcation can be displayed by the
following equation

Px D F.xI�/ D �� j x j : (13.208)

The PSDS (13.208) does not contain fixed points for � < 0, whereas for � > 0 it
has two fixed points x� D ˙� (one of them is stable (solid curve), and one unstable
(clashed curve)—see Fig. 13.30).

The generalized Jacobian computed in (0;0) is equal to QDF.0I 0/ D �2q C 1

for 0 	 q 	 1. The associated eigenvalue in the bifurcation point � D Œ�1; 1�. For
q D 0.q D 1/ we have � D 1 (� D �1), whereas for q D 1

2
we have � D 0.

Although it is not difficult to construct the corresponding discontinuous partners
to the classical smooth bifurcations, we consider only one more bifurcation of the
following non-smooth system

Px D F.xI�/ D ˙x C
ˇ̌
ˇ̌x C 1

2
�

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌x � 1

2
�

ˇ̌
ˇ̌ : (13.209)

The system has three stationary points x� D 0 (stable for � < 0, and unstable
for � > 0), and x� D ˙� with the marked stability in Fig. 13.31.

Since two non-smooth vector field surfaces appear in the point (0;0), two
parameters qi , i=1,2 are needed to define a generalized Jacobian QDF.0I 0/ D
2.q2 � q1/ � 1, where 0 	 qi 	 1. For q2 D q1 C 1

2
the associated eigenvalue

crosses the imaginary axis yielding the discontinuous pitchfork bifurcation.
One may also construct a discontinuous Hopf bifurcation, which is governed by

two following non-smooth equations
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Fig. 13.31 Discontinuous pitchfork bifurcation (supercritical (a) and subcritical (b))

Px1 D �x1 � !x2 C x1q
x21 C x22

�ˇ̌̌
ˇ
q
x21 C x22 C 1

2
�

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
q
x21 C x22 � 1

2
�

ˇ̌̌
ˇ
�
;

Px2 D !x1 � x2 C x2q
x21 C x22

�ˇ̌ˇ̌qx21 C x22 C 1

2
�

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ qx21 C x22 � 1

2
�

ˇ̌
ˇ̌� :

(13.210)

Introducing the transformation

x1 D r cos‚; x2 D r sin‚ (13.211)

one gets

Pr D �rC j r C 1
2
� j � j r � 1

2
� j;

P‚ D !:
(13.212)

For � < 0 the stationary point Œx1; x2�T D Œ0I 0�T is stable, whereas for � > 0

it becomes unstable, and a new stable periodic solution with the amplitude r Dq
x21 C x22 appears (a supercritical bifurcation).

13.6.6 Bifurcations of Periodic Orbits

A similar idea of generalized derivative can be used to trace periodic orbits yielded
by a non-smooth vector field. A so-called generalized fundamental matrix is defined
via relation

Q� D .1 � q/�� C q�C; (13.213)
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Fig. 13.32 Two paths of
eigenvalues during fold-flip
(2) and Neimark–Sacker (1)
discontinuous bifurcations

where 0 	 q 	 1. For � D �� we have two values � D �� or � D �C .�� D
lim
�!��

�<��

�I �C D lim
�!��

�>��

�/: Two typical discontinuous bifurcations, i.e. Neimark–

Sacker and fold-flip are shown in Fig. 13.32.
The unit circle of complex eigenvalues plane is crossed via a jump by a pair

of complex conjugated eigenvalues and it is referred as the discontinuous Neimark–
Sacker bifurcation. A real eigenvalue can jump from inside of the unit circle through
either �1 (discontinuous period doubling or flip bifurcation) or through +1 (fold
bifurcation). However, a real eigenvalue � < �1 can also jump over the circle
getting new value � > 1. This discontinuous bifurcation is called fold-flip (path 1
in Fig. 13.32).

The described simple smooth and they corresponding non-smooth bifurcations
have relatively simple geometrical interpretation (see Fig. 13.33).

One-dimensional Poincaré map in the vicinity of smooth saddle-node bifurcation
(Fig. 13.33a) does not intersect the line xiC1 D xi for � < ��, is tangent to this
line for � D ��, and possesses two intersection points for � > �� (the last case
corresponds to two periodic orbits of an associated dynamical system). The Poincaré
map of non-smooth saddle-node bifurcation touches xiC1 D xi in non-smooth point
(cusp), and hence it has different left-hand side and right-hand side derivatives.

In Fig. 13.33b for smooth period doubling bifurcation one-dimensional Poincaré
map intersects xiC1 D xi in the point, where the associated derivative is equal to �1.
On the other hand, in the case of non-smooth period doubling bifurcation (dashed
lines) the associated Poincaré map intersects xiC1 D xi in the cusp and it has two
different values of a derivative.

To sum up, the situation of classification of possible non-smooth bifurcations
is far to be completed. As it has been already mentioned, such bifurcation may
have their analogues in classical smooth bifurcations or they can be combinations
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Fig. 13.33 Poincaré maps displaying saddle-node (a) and period doubling (b) smooth (solid
curve) and non-smooth (dashed lines) bifurcations

of a sequence of such smooth bifurcations. However, there are also non-smooth
bifurcations which have not their analogy in smooth systems.

The earlier briefly described C-bifurcations or border collision bifurcation are
also locally analysed using piecewise smooth local modes in [78–80, 82, 92].
The popular grazing bifurcation is classified through estimation of real eigenvalues
of a map, which are less than �1 and larger than +1 on both sides of a discontinuity.
However, the Neimark–Sacker bifurcation is not discussed.

Almost nothing is done in the field of global non-smooth bifurcations and local
non-smooth bifurcations occurred in high dimensional systems.
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