
Chapter 1
Introduction

In this book we consider only processes, which future configurations are completely
defined by their initial states, i.e. the so-called evolutionary deterministic processes.
Since this chapter deals with basic concepts of theory of ordinary differential
equations, the reader is encouraged to be familiar with the monographs [10, 11,
54, 63, 70, 84, 103, 105, 111, 114, 122, 193, 216, 217, 236, 257].

A solution x D '.t/ to the system of ordinary differential equations

Px D F.t; x/; (1.1)

where x D .x1; : : : ; xn/ and F D .F1; : : : ; Fn/, is the function '.t/, which
substituted into (1.1) satisfies it identically. We have assumed that F1; : : : ; Fn are
C r (r � 1) smooth functions.

The representation of '.t/ in the space RnC1 of the variables .t; x/ is called the
integral curve of (1.1).

The solutions of (1.1) have the following properties:

(i) If x D '.t/ is a solution to (1.1) then also x D '.t C t0/ is a solution to (1.1).
Both of them correspond to the same initial point x0 but for different time
instant.

(ii) Let the solution satisfy the initial condition x0 D '.t0/. Then it can be written
in the form x D '.t � t0; x0/, where '.0; x0/ D x0, t � t0.

(iii) The following group property is satisfied:

'.t2; '.t1; x0// D '.t1 C t2; x0/: (1.2)

There exist two geometrical representations of a solution to (1.1). Let QD � RnC1
denote the so-called extended phase space QD D D �R1. Changing the parameter t
(time) we get points in phase space D for different values of the parameter t .
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2 1 Introduction

When only smooth systems are considered, a velocity vector F.t; x/ is tangent
to the phase trajectory at a given point x0, and there is only one trajectory passing
through such an arbitrary point (this question will be clarified in more detail later).
The phase curves are also called phase trajectories.

As it has been mentioned earlier, the space QD contains integral curves. Their
projection into the phase space D are phase trajectories or singular points (equili-
brium states). If a non-singular trajectory corresponds to a solution '.t/ of (1.1),
and '.t1/ D '.t2/ for t1 ¤ t2, then '.t/ is defined for all t and is periodic.

However, there are trajectories having no points of self-intersection, i.e. quasi-
periodic or chaotic orbits. When any two distinct solutions corresponding to the
same trajectory are identical up to a time shift t ! tCt0, all solutions corresponding
to the same periodic trajectory are periodic with the same period.

A solution also possesses a mechanical interpretation. Trajectory made by a point
with an increase of time is called a motion. Sometimes it is useful to consider
a ‘time-reversed’ system

Px D F.�t; x/; (1.3)

which can be obtained from (1.1), by reversing the direction of each tangent
vector. Knowing the trajectories of one system we can easily find the corresponding
trajectories of another system, simply by reversing the direction of the arrowheads.

Dynamical systems are the systems solution of which can be continued for time
t 2 .�1;1/, and the corresponding trajectories are called the entire trajectories.

Since in Eq. (1.1) the independent variable x.t/ as well as the function F are
treated as vector functions, one can investigate the system state via its vector state.
Hence, analysis of the function xt D 't .x0/ with respect to time t and the initial
condition is referred as system’s dynamics investigation.

Let Y be the metric space and 't W Y ! Y be a family of transformations
depending on the parameter t in a smooth way.

Definition 1.1. If 8z 2 D and t; t� 2 Œ0;1�, family of transformations satisfies
the identity

't Œ't�.z/� D 'tCt�.z/; (1.4)

then the pair .Y; 't / is called dynamical system (with continuous time) or a flow. In
a case of homeomorphism, when t 2 .�1;C1/, we have '�1

t D '�t .

In a case, when time has discrete natural numbers, one obtains the definition of a
cascade.

Definition 1.2. The pair .Y; '/, for natural values of the parameter t , where Y is
the metric space and ' W Y ! Y , is called a cascade (or a dynamical system with
a discrete time).
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Let 'm D ' ı ' : : : ı '
„��������ƒ‚��������…

m-times

. (Since 8z 2 Y and n;m D 0; 1; 2; : : :, we have

'nŒ'm.z/� D 'nCm.z/). If we have homeomorphism, i.e. one-to-one continuous
mappings with continuous inverse, then the above identity is true for all integer
numbers n andm. The definition of cascades is used during analysis of all problems
related to numerical solutions of the ordinary differential equations. Now we give
some basic notations and definitions related to either cascades or flows.

The sequence fxngC1
nD�1 is called a trajectory of the point x0, where

xnC1 D '.xn/. There are following distinct trajectories:

1. When  .x0/ D x0, then x0 is called a fixed point (or a periodic point with
period 1).

2. When xi D  i.x0/, i D 0; 1; : : : ; k � 1 and x0 D  k.x0/, .xi ¤ xj for i ¤ j /,
then each xi is called a periodic point of period k.

3. When for k ! ˙1, xi ¤ xj for i ¤ j , then a sequence fxkgC1�1 called
a bi-infinite (or unclosed) trajectory.

Recall that a set B is called invariant if B D '.t; B/ for any t . If x 2 A, then the
trajectory '.t; x/ 2 A.

A point x0 is called a wondering point if there is an open neighbourhood U.x0/
of x0 and T > 0, such that

U.x0/ \ '.t; U.x0// D ; for t > T: (1.5)

A set of wondering points W is open and invariant. In contrary, a set of
non-wondering points M D D=W is closed and invariant (equilibrium states
and periodic trajectories). The points on bi-asymptotic trajectories tending to
equilibrium states and periodic trajectories as t ! ˙1 are also non-wondering.

Definition 1.3. A point x0 is said to be positive Poisson-stable if for a given any
neighbourhood U.x0/ and any T > 0, there is t > T such that '.t; x0/ � U.x0/.
If for any T > 0 there exists t such that t < �T , then the point x0 is called
a negative Poisson-stable point. A point is said Poisson-stable .p/ if it is positive
.pC/ and negative .p�/ Poisson-stable. Note that pC, p� and p trajectories consist
of non-wandering points.

A very important result has been obtained by Birkhoff.

Theorem 1.1. If a p.p�; pC/-trajectory is unclosed, then its closure Np. Np�; NpC/
contains a continuum of unclosed p-trajectories.

Considering "-neighbourhood U".x0/ of a point x0 and denoting by series
ftn."/gC1�1 the successive intersection of U".x0/, then values £n."/ D tnC1."/�tn."/
are called the Poincare return times. When the series f£n."/g is bounded for
a finite ", then the p-trajectory is said to be recurrent. A closure Np, corresponding to
this trajectory, is non-empty, invariant and closed and it creates a so-called minimal
set. The return time in this case is not constrained.
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When the series f£n."/g is unbounded, then the closure Np ofD-trajectory is called
a quasi-minimal set. In this case the closure may contain other objects, like periodic
or quasi-periodic trajectories, which can be approached by a flow arbitrarily close.

Definition 1.4. A point x� is called an !-limit (’-limit) point of the trajectory
f'n.x/g if

lim
tk!˙1'tk .x/ D x�: (1.6)

A set of all !-limit (’-limit) points of the trajectory L are denoted by �L.AL/.

Observe that all of the points of the periodic trajectory L are both ˛ and
!-limit points and L D �L D AL. For an unclosed Poisson-stable trajectory
NL D �L D AL, where NL is the closure of L. As it has been stated earlier, NL is
either minimal or quasi-minimal set.

Owing to the earlier investigations of Poincaré and Bendixon, only three topolo-
gical cases can be found in two-dimensional (planar) systems: (a) equilibrium; (b)
periodic orbit; (c) cycles. In the latter case one deals with either !-limit homoclinic
(one equilibrium state) or heteroclinic (two or more equilibrium states) cycles.
A similar observation holds for negative semi-trajectories. The planar systems will
be considered in more detail later.

Another important feature of the trajectory studies is a topological equivalence.
Two objects in the phase space are topologically equivalent if there is a homeomor-
phism mapping the trajectories of one to another object. If the space D is compact
one (for instance a closed and bounded subset of Rn), then for 8x the set �.x/ is
non-empty and closed.

Definition 1.5. A subset I � D is called an invariant set of the cascade .D; '/ if
'.I / D I .

Let us introduce a set of homeomorphism H D fhig and the metric dist.h1; h2/ D
sup
x2G

jjh1x � h2xjj.

Definition 1.6. If the condition hiL D L holds for all homomorphism hi ,
satisfying dist.hi ; I / < ", where I is the identity homomorphism, then L 2 G

is called the special trajectory.

Closed trajectories are equilibrium states and periodic orbits.
In the case of cascades, the fixed points, periodic points and !-limit sets are

invariant. If the mapping ' is invertible, then an entire trajectory f'kg, k D
0;˙1;˙2; : : : is also invariant. It can be shown that a sum or a product of invariant
sets is also an invariant set.

Finally, let us introduce a definition of an attractor (repiler).

Definition 1.7. A closed, bounded and invariant set A � D is called attractor of
the dynamical system .D; '/, when it has a neighbourhood U.A/ such that for any
x 2 U.A/ the trajectory f'n.x/g remains in A and tends to A for n ! 1, i.e.

lim
t!C1 �..'.t; x/; A/; A/ D 0; (1.7)
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where

�.x;A/ D inf
x02A

jjx � x0jj: (1.8)

A set of all x for which f'n.x/g tends to A is called the basin of attraction of A.
A similar like definition can be formulated in a case of the repiler.

Definition 1.8. A closed, bounded and invariant set R � D is called repiler of the
dynamical system .D; '/, if there exists a neighbourhood U.R/ of R such that if
x … R and x 2 U.R/, then there is n when 'k.x/ … U.R/ for k > n.

The equilibrium states, periodic and quasi-periodic orbits can be either attractors
or repilers depending on their stability. The question how to find regular attractors
or repilers will be addressed later.

1.1 Existence of a Solution

It is well known that Eq. (1.1) may have a unique solution on a given interval,
may have no solution at all, may have infinitely many solutions or may have a
few distinct solutions. However, finding an analytical solution explicitly to specific
initial problems governed by (1.1) does not belong to easy tasks. It is important in
many cases that even if we do not know a solution, we are still interested in getting
the answer to the following problem: how we may know that a given ODE possesses
a solution, and if it so, then we would like to know if it is a unique one.

Theorem 1.2 (Picard’s Theorem). Let a function F.t; x/ of (1.1) is continuous on
the rectangular … D f.t; x/ W jt � t0j � a; jx � x0j � b; a > 0; b > 0g and satisfies
the Lipschitz conditions uniquely regarding x, i.e.

jF.t; x1/ � F.t; x2/j � Ljx1 � x2j

for all t , where jt � t0j � a, jx1 �x0j � b, jx2 �x0j � b. LetM D max
.t;x/2… jF.t; x/j,

t� D min
�

a; b
M

�

. Then the Cauchy problem associated with (1.1) has a unique
solution in the interval

jt � t�j � ˛; ˛ < min
�

a; b
M
; 1
L

�

A proof of Theorem 1.2 is given in [191] and it is omitted here. Picard’s theorem
allows not only to estimate a solution existence of (1.1), but it also guarantees its
uniqueness.

In what follows we apply this theorem to find the solution, when we cannot
find it using elementary approaches. If assumptions of Theorem 1.2 are satisfied,
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then a solution to (1.1) can be found as a limit of the uniformly convergent series
lim
n!1fxn.t/g defined by the following recurrent rule

xnC1.t/ D x0 C
t

Z

t0

F .y; xn.y//dy; x0.t/ D x0; n D 1; 2; : : : (1.9)

Furthermore, one may also estimate an error introduced by the N approximation
fxn.t/g via the following inequality

jx.t/ � xn.t/j � MLn�1

nŠ
.t�/n: (1.10)

Example 1.1. Consider the one-dimensional initial value problem

dx
dt

D t C x; x.0/ D 1:

Equation (1.9) takes the form

xnC1.t/ D 1C
t

Z

0

.y C xn.y//dy;

n D 0; 1; 2; : : : ; x0.t/ D 1:

We substitute successively n D 0; 1; 2; : : : to equation in the above to get

x0.t/ D 1I

x1.t/ D 1C
t

Z

0

.y C 1/dy D 1C t C t 2

2
I

x2.t/ D 1C
t

Z

0

�

y C 1C y C y2

2

�

dy D 1C t C t 2 C t 3

3Š
I

x3.t/ D 1C
t

Z

0

�

y C 1C y C y2 C y3

3Š

�

dy D 1C t C t 2 C 2t3

3Š
C t 4

4Š
I

xn.t/ D 1C
t

Z

0

�

y C 1C y C y2 C y3

3
C � � � C 2yn�1

.n � 1/Š C yn

nŠ

�

dy

D 1C t C t 2 C 2t3

3Š
C � � � C 2tn

nŠ
C tnC1

.nC 1/Š
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Final result can be presented in its equivalent form

xn.t/ D 2

n
X

kD0

tk

kŠ
C t kC1

.k C 1/Š
� t � 1

The solution to our problem follows

x.t/ D lim
n!1 xn.t/ D 2

1
X

kD0

tk

kŠ
� t � 1 D 2et � t � 1:

ut
Example 1.2. Apply the method of successive approximations to the following
Cauchy problem: dx

dt
D t�x2, x.0/ D 0 defined on the rectangular jt j � 1, jxj � 1.

Estimate an interval of the successive approximations convergence guaranteed by
the Picard’s theorem as well as an error between the exact solution and its second-
order approximation.

Observe that the function F.t; x/ D t � x2 is continuously differentiable
regarding x, and dF

dx
D �2x. Function F satisfies the Lipschitz condition with

L D max
ˇ

ˇ @F
@x

ˇ

ˇ D 2. Since

M D max
jt j�1Ijxj�1

jF.t; x/j D max
jt j�1Ijxj�1

jt � x2j D 2;

t� D min

�

a;
b

M

�

D min

�

1;
1

2

�

D 1

2
:

Therefore, the Picard’s approximation is convergent in the interval Œ� 1
2
; 1
2
�.

Successive approximations obey the following rule

xnC1.t/ W
t

R

0

.y � xn.y//dy; n D 0; 1; 2; : : : ;

and hence

n D 0 W x1.t/ D
t

R

0

.y � 0/dy D t2

2
I

n D 1 W x2.t/ D
t

R

0

�

y �
�

y2

2

�2
�

D t2

2
� t5

20
:

Equation (1.10) takes the form

jx.t/ � x2.t/j D ML1

2Š
.t�/2 D 2 � 2

2

�

1

2

�2

D 1

2
:

ut
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Example 1.3. Show that the so-called Riccati equation

dx

dt
D a.t/x2 C b.t/x C c.t/ � F.t; x/;

where a.t/, b.t/ and c.t/ are continuous functions, cannot have a singular solution.

Function F.t; x/ is continuously differentiable with respect to x, and
@F
@x

W 2ax C b is bounded in an arbitrary rectangular

… D f.t; x/ 2 R2I jt � t0j � a; jx � x0j � bg:
Function F.t; x/ satisfies the Lipschitz condition in the rectangular … with

respect to x, and hence it satisfies the Picard’s assumptions. The studied equation
does not have singular solutions. ut

In the given below Peano theorem one may guarantee existence of a solution but
its uniqueness is not defined.

Theorem 1.3 (Peano’s Theorem). Let function F.t; x/ of (1.1) is continuous on
the rectangular

… D f.t; x/ W t 2 Œt0; t0 C a�; jx � x0j � bg;

where sup
.t;x/2…

jF.t; x/j D M . Then the Couchy problem regarding (1.1) has a

solution in the interval Œt0; t0 C ˛�, where ˛ D min
�

a; b
M

�

.

Example 1.4. Find singular solutions to the equation dx
dt

D 1C 3
2
.x � t / 13 .

Let us introduce the new variable x � t D y, and the problem boils down to
investigation of the following equation dy

dt
D 3

2
y
1
3 . For y D 0 the last equation

does not satisfy the Lipschitz conditions, i.e. assumption of the Picard’s theorem
are not satisfied, although the Peano theorem assumptions are satisfied. The studied
equation can be solved by the following steps.

R

y� 1
3 dy D 3

2

R

dt I y 2
3 D .t � C/I y D .

p
t � C/3:

Initial condition y.t0/ D 0 is satisfied by y D .
p
t � t0/3 and by y D 0. Therefore,

y D 0 is a singular solution to equation dy

dt
D 3

2
y
1
3 , and the function x D t is a

singular solution to the initial equation. The remaining solutions are defined by the
formula x D t C .t � C/32 . ut

In general, if the function F.t; x/ satisfies the Picard’s theorem on the closed
rectangle …, then its any solution x D x.t/, x.t0/ D x0, .t0; x0/ 2 … can be
extended outside the rectangle. Furthermore, if the function F.t; x/ in a slab ˛1 �
t � ˛2, jxj < 1 .˛1 � �1; ˛2 � C1/ is continuous and satisfies the inequality
jF.t; x/j � a.t/jxj C b.t/, where a.t/, b.t/ are continuous functions, then any
solution of Eq. (1.1) can be extended in the interval ˛1 < t < ˛2.
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Theorem 1.4 (Global Existence of Solutions). Let F be a vector-valued function
of nC1 real variables, and let I be an open interval containing t D t0. If F.t; x/ is
continuous and satisfies the Lipschitz condition for all t in I and for all x1; x2 2 Rn,
then the initial value problem x.t0/ D x0 has a solution in the entire interval I .

Proof ([84]). In what follows we demonstrate that the series fxn.t/g1
0 of successive

approximation

x.t0/ D x0; xnC1 D x0 C
t

R

0

F.xn.s/; s/ds

converges to a solution x.t/ of dx
dt

D F.t; x/, x.t0/ D x0. ut
We take t0 D 0 and consider t � 0. We show that if Œ0; t�� is a closed and

bounded interval of I , then fxn.t/g converges uniformly on Œ0; t�� to a limit x.t/.
In other words, given " > 0, there is an integer N such that

jxn.t/ � x.t/j < ";
for all n � N and all t 2 Œ0; t��. Let M D max jF.x0; t/j for t 2 Œ0; t��, then

jx1.t/ � x0.t/j D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
Z

0

F.x0.s/; s/ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
t

Z

0

jF.x0.s/; s/jds � Mt;

and similarly

jx2.t/ � x1.t/j D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
Z

0

ŒF .x1.s/; s/ � F.x0.s/; s/�ds
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� m

t
Z

0

jx1.s/ � x0.s/jds

and therefore

jx2.t/ � x1.t/j � m

t
Z

0

Msds D 1

2
mMt2:

Assuming that

jxn.t/ � xn�1.t/j � M

m

.kt/n

nŠ
;

it follows (using induction)

jxnC1.t/�xn.t/j D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
Z

0

ŒF .xn.s/; s/�F.xn�1.s/; s/�ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� m

t
Z

0

jxn.s/�xn�1.s/jds;
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and finally

jxnC1.t/ � xn.t/j � m

t
Z

0

M

m

.ms/n

nŠ
ds D M

m

.mt/nC1

.nC 1/Š
D M

m
.emt

� � 1/:

It means that the terms of the series

x0.t/C
1

X

nD1
Œxn.t/ � xn�1.t/�

are dominated in the convergent series with positive constants. Since the sequence
of this uniformly convergent series on Œ0; t�� is the original sequence fxn.t/g1

0 , then
its uniform convergence has been proved. Standard theorems of advanced calculus
yield the following conclusions:

(i) The limit function x.t/ is continuous on Œ0; t��.
(ii) The Lipschitz continuity of F gives the estimation

jF.xn.t/; t/ � F.x.t/; t/j � mjxn.t/ � x.t/j < m"

for t 2 Œ0; t�� and n � N ; it means that the sequence fF.xn.t/; t/g1
0 converges

uniformly to F.x.t/; t/ on Œ0; t��.
(iii) It follows that

x.t/D lim
n!1 xnC1.t/ D x0C lim

n!1

t
Z

0

F.xn.s/; s/dsDx0C
t

Z

0

limF.xn.s/; s/ds

D x0C
t

Z

0

F.x.s/; s/ds:

(iv) Since x.t/ is continuous on Œ0; t��, then the latter results imply that dx=dt D
F.x.t/; t/ on Œ0; t��. Because this is true on every closed subinterval of I , then
it is true on the entire I .

Theorem 1.5 (Global Existence of a Solution of Linear Systems). Let the n � n
matrix-valued function A.t/ and the vector-valued function f .t/ are continuous on
the open interval I containing t D t0. Then the Cauchy problem

dx

dt
D A.t/x C f .t/; x.t0/ D x0

has a solution on the entire interval I .
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Proof. We need to show that for each closed and bounded subinterval of I there is
a Lipschitz constant L such that

jŒA.t/x1 C f .t/� � ŒA.t/x2 C f .t/�j � Ljx1 � x2j:

It means that

jA.t/xj � Ljxj D jjAjj � jxj;

where jjAjj D
s

n
P

i;jD1
.aij /2. Further, it means that L D jjAjj, and because A.t/ is

continuous on the closed and bounded subinterval I , then its norm jjAjj is bounded
on the considered subinterval. The global existence theorem for linear system has
been proved. ut

In the case of nonlinear ordinary differential equations a solution may exist only
on a small neighbourhood of t D t0, and the length of existence interval can depend
on a nonlinear differential equation and on the initial condition x.t0/ D x0.

If F.t; x/ of (1.1) is continuously differentiable in vicinity of the point .x0; t0/
in .n C 1/-dimensional space, then it can be concluded that F.x; t/ satisfies the
Lipschitz condition on a rectangle … centered at .x0; t0/ of the form jt � t0j < ˛,
jxi � x0i j < ˇi , i D 1; : : : ; n. If one applies the Lipschitz condition

xnC1.t/ D x0 C
t

Z

t0

F .xn.s/s/ds;

then the point .xn.t/; t/ lies in the rectangle … only for a suitable choice of t .

Theorem 1.6 (Local Solutions Existence). If the first-order partial derivatives of
F in (1.1) all exist and are continuous in a neighbourhood of the point .x0; t0/, then
the Cauchy problem (1.1) has a solution on some open interval containing t D t0.

However, if the Lipschitz condition is satisfied, then an investigated solution is
in addition unique.

Theorem 1.7 (Uniqueness). Let on some region Q in .n C 1/-space the function
F.x; t/ in (1.1) is continuous and satisfies the Lipschitz condition

jF.x1; t/ � F.x2; t/j � L.x1 � x2/:

If x1.t/ and x2.t/ are solutions to the Cauchy problem (1.1) on some open interval
I , where t D t0 2 I such that the solution curves .x1.t/; t/ and .x2.t/; t/ lie in Q
for all t in I , then x1.t/ D x2.t/ for all t in I .

Proof. We consider only 1D case, where x is real and we follow the steps given
in [191].
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Consider the function

φ.t/ D Œx1.t/ � x2.t/�2;
where x1.t0/ D x2.t0/ D x0, i.e. φ.t0/ D 0.

Differentiating equation in the above one gets

j Pφ.t/j D j2.x1�x2/�. Px1� Px2/j D j2.x1�x2/�.F.x1; t/�F.x2; d//j � 2Ljx1�x2j2 D 2Lφ.t/:

On the other hand a solution to the differential equation

P'.t/ D 2L'.t/; '.t0/ D '0

is as follows

'.t/ D '0e
2L.t�t0/:

For φ.t0/ D '.t0/ it yields

φ.t/ � '.t/ for t � t0:

Therefore

0 � .x1.t/ � x2.t//2 � .x1.t0/ � x2.t0//2e2L.t�t0/;
and taking into account square roots we finally obtain

0 � jx1.t/ � x2.t/j � jx1.t0/ � x2.t0/jeL.t�t0/:

Because x1.t0/ � x2.t0/ D 0; then x1.t/ � x2.t/. ut
The carried out so far proof allows to illustrate how solutions of (1.1) depend

continuously on the initial value x.t0/. Namely, if we take jx1.t0/ � x2.t0/j � ı,
then the last inequality implies that

jx1.t/ � x2.t/j � ıeL.t
��t0/ D "

for all t0 � t � t�. The Cauchy problems are said to be well posed as mathematical
model for real-world processes if the considered differential equation has unique
solutions that are continuous with respect to initial values.

As we will see further, through a point .t0; x0/ may pass only one integral curve
of Eq. (1.1) satisfying a given initial condition, which in many cases corresponds to
a proper modelling of real-world processes. However, more archetypical questions
are valid before starting to solve a given differential equation. The so far discussed
theorems allow to verify if a solution actually exists, and if it is unique.

As it will be shown further, one may deal with (a) failure of existence; (b) failure
of uniqueness; (c) one, a few or infinitely many solutions.
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