

G. Jezic et al. (eds.), Agent and Multi-Agent Systems: Technologies and Applications,
Advances in Intelligent Systems and Computing 296,

161

DOI: 10.1007/978-3-319-07650-8_17, © Springer International Publishing Switzerland 2014

Multi-agent Based Execution Environment for Task
Allocation via Coalition Formation

Merve Özbey and Nadia Erdoğan

Istanbul Technical University, Faculty of Computer and Informatics, Computer Engineering
Department 34469, Maslak Istanbul, Turkey

merve.ozbey@live.com,
nerdogan@itu.edu.tr

Abstract. This paper focuses on a solution to the problem of task allocation
through coalition formation and presents the design and implementation of a
framework for this purpose. The framework serves as a multi-agent execution
environment where worker agents follow the Shehory-Kraus’s coalition forma-
tion algorithm to negotiate and form coalitions. Worker agents prefer to form an
optimal coalition to maximize the joint utility of the system as a whole, rather
than to maximize their own utilities. There is no central authority for distribu-
tion of tasks among the agents. The framework provides the infrastructure,
which, allows the formation of coalitions, assigns a task to each coalition and
then monitors task execution, taking the necessary steps for rescheduling of
tasks in case of noncompletion due to agent errors, generating and recording of
task execution reports, handling cyclic execution of coalition formation process.
In addition, an efficient and fast messaging infrastructure has been developed
for effective agent communication.

Keywords: Multi-agent system, negotiation, coalition formation.

1 Introduction

Multi-agent systems are systems of intelligent autonomous agents which communi-
cate and collaborate with each other. Agents cooperate when the capability and know-
ledge of each agent alone is not sufficient to solve a problem. Coalition formation is
an important method for cooperation in a multi-agent environment. It is a process
where agents form coalitions and work together to solve a joint problem via cooperat-
ing or coordinating their actions within each coalition.

In this paper, we present a framework which serves as a multi-agent execution en-
vironment for coalition formation. Agents (employee) are autonomous. They follow
the Shehory-Kraus’s algorithm [1] to negotiate and decide on coalitions, with no user
interaction. The reason behind the choice of this algorithm is that, instead of having a
single agent calculate all possible coalitions, the algorithm distributes the coalitional
value calculations among agents, thus both improving execution time and preventing
the existence of a single point of failure. They prefer to form an optimal coalition to
maximize the joint utility of the system as a whole, rather than to maximize their own

162 M. Özbey and N. Erdoğan

utilities. There is no central authority for distribution of tasks among the agents. Each
agent has a predefined task execution capability and agents negotiate with each other
concurrently until they form a grand coalition to perform a predefined task. Agents
cannot be members of multiple coalitions, as the algorithm enforces disjoint coali-
tions. After a task is completed, the members of the coalition can join new coalitions.
Furthermore, agents cannot join an already formed coalition due to extra agent addi-
tion cost. It is assumed that tasks have no precedence order and inter dependency.

The framework we present provides an infrastructure that supports multiple agents
with different roles that cooperate to present the following functionalities:

• definition of employee agent capabilities and task requirements
• formation of coalitions
• assignment of tasks to each coalitions
• monitoring of task execution
• rescheduling of tasks in case of error and noncompletion
• generation and recording of task execution reports
• dynamic inclusion of new tasks
• cyclic execution of coalition formation process

The framework builds on various types of agents which are defined and implemented
to handle different issues. In the design phase, we have determined the actors of the
system, specifying their tasks and responsibilities. After associating each actor with
an agent type, e.g. employee agents, a controller agent, coalition manager agents and
a database agent, protocols that define in detail the interaction and coordination be-
tween agents were developed. In addition, an efficient and fast messaging infrastruc-
ture has been developed for effective agent communication. The framework will be
used for further research on coalition formation.

2 Related Work

In existing multi-agent literature there are several works about negotiation and coali-
tion formation. Shehory and Kraus’s work [1] proposes several methods for task allo-
cation through coalition formation. These methods are disjoint coalitions, overlapping
coalitions and coalitions for tasks that have precedence orders. In this work, we focus
on disjoint coalitions for tasks with no precedence orders, leaving the addition of
precedence to tasks as future work.

Shehory and Kraus’s another study with Taase [2] proposes a protocol that enables
agents to negotiate and form coalitions with time constraints and incomplete informa-
tion. Test results show that their solution is close to optimal solutions. Continuation of
this study [3] also shows that their solution gives good results with incomplete infor-
mation under time constraints.

Ferber, Gutknecht and Michel’s study [4] proposes an organizational view of mul-
ti-agent systems. They define roles for agents and assign a group manager to each
agent groups. Group managers are responsible from agents in their group.

Multi-agent Based Execution Environment for Task Allocation via Coalition Formation 163

 [5] presents a MAS based infrastructure for the specification of a negotiation
framework in multi-agent systems. They present role definitions for agents, and a
negotiation environment with design details. Another study [6] also proposes an ap-
plication of coalition formation in multi-agent systems particularly for electricity
markets. The framework presented is generic, appropriate for any type of application.

A current study [7] presents coalition formation process in detail. They present de-
finition of equilibrium process in coalition formation and describe basic concepts of
classical game theory which has coalitional constraints. They show how to cover
some of the coalitional stability’s standard notions using equilibrium process concept.

3 Shehory-Kraus Coalition Formation Algorithm

Employee agents in the execution environment follow the Shehory-Kraus’s algorithm
[1] to negotiate and decide on coalitions. There exist several variations of the algo-
rithm; our implementation focuses on disjoint coalitions. We first state the underlying
assumptions and definitions, and then describe the algorithm.

3.1 Assumptions

• Agents can communicate, negotiate and make agreements.
• Coalition enlargement is not considered, due to the cost of addition of agents to an

already formed coalition.
• Agents cannot participate multiple coalitions.
• There exists no explicit dependency between tasks.
• Agent population does not change during coalition formation.
• Complete information is not required. However, all of the agents know about all

the tasks and all other agents, and coalition members know all the details necessary
for fulfilling their task.

• In this work, it is assumed that agents are group rational. Agents are not concerned
with their own profits, but aim to maximize the total outcome of the system.

3.2 Definitions

• Agent set consists of n agents, ܰ ൌ ൛ܣଵ ,ܣଶ, … , ௜ , a capabilityܣ ௡ൟ. For each agentܣ
vector ܤ௜ ൌ ଵ௜ܾۃ , ܾଶ௜ , … , ܾ௥௜ has been defined. Each capability is a property of an ۄ
agent which quantifies its ability to perform a specific action.

• Task set consists of m independent tasks, ܶ ൌ ሼݐଵ, ,ଶݐ … , ௠ሽ. For the fulfillment ofݐ
each task ݐ௟ , a vector of capabilities ܤ௟ ൌ ଵ௟ܾۃ , ܾଶ௟ , … , ܾ௥௟ is necessary. The utility ۄ
gained from performing the task is a linear function of resource amount.

• Expected outcome after executing a task is selected as a linear function for de-
creasing complexity of calculations.

• A coalition C has a vector of capabilities ܤ௖ which is the sum of capability vectors
of the coalition member agents. A coalition C can perform a task t only if all capa-
bilities in the t’s capability vector ܤ௧ are satisfied by ܾ௜௧ ൑ ܾ௜஼ for all 0 ൑ ݅ ൑ .ݎ

164 M. Özbey and N. Erdoğan

• The joint utility of the coalition members by contributing to a coalition is defined
as the coalitional value, V.

• Coalitional cost, c, is calculated as the reciprocal of the coalitional value.

• Coalition formation problem:

Given a set of m independent tasks, ܶ ൌ ሼݐଵ, ,ଶݐ … , ܰ ,௠ሽ and a set of n agentsݐ ൌ൛ܣଵ ,ܣଶ, … , ௡ൟ with their capabilities, the coalition formation problem is assigningܣ
tasks ݐ௝Є ܶ to coalitions ܥ௜ ك ܰ such that ΣiVi (the total outcome) is maximal.

3.3 Shehory-Kraus Coalition Formation Algorithm

The algorithm proceeds in three stages. The agents that negotiate execute the steps in
all three stages concurrently, contributing to the process in distributed manner.

• Stage 1: All possible coalitions are calculated.
• Stage 2: Coalitional values of possible coalitions are calculated.
• Stage 3: Agents decide upon preferred coalitions and form them through iterations.

First Stage of the Algorithm
The first stage entails the calculation of the coalitional values in a distributed manner.
The maximum coalition size, k, is initialized. Each agent communicates with others
and eliminates duplicate coalitions from its potential coalition list L.

1. Calculate all of the possible coalitions up to size k in which Ai is a member and
form Pi, the set of the potential coalitions of agent Ai.

2. For each coalition in Pi, contact each member Aj and retrieve its capabilities Bj.
3. Commit to the calculation of the values of a subset Sij of the common potential coa-

litions (i.e., a subset of the coalitions in Pi in which both Ai and Aj are members).
4. Subtract Sij from Pi. Add Sij to long-term commitment list Li.
5. For each agent Ak that has contacted Ai, subtract from Pi the set Ski of the potential

coalitions Ak had committed to compute values for.
6. Repeat contacting of other agents until Pi = {Ai}.

Second Stage of the Algorithm
After the first stage, the agent has a list of coalitions for which it had committed to
calculate the values. It also has all of the necessary information about the capabilities
of the members of these coalitions. In the second stage each agent checks whether a
coalition’s capability vector is sufficient for the tasks in the task list. Coalition’s ca-
pability vector is the sum of capability vectors of the agents in that coalition. For suf-
ficient coalitions; agent calculates expected values. Then, agent selects the maximum
expected value as the coalition value for each coalition, calculates coalitional cost.

1. Calculate the coalitional potential capabilities vector Bc
pc by summing up the

unused capabilities of the members of the coalition.
2. Form a list Ec of the expected outcomes of the tasks in T when coalition C performs

them. For each task tj Є T, perform:

Multi-agent Based Execution Environment for Task Allocation via Coalition Formation 165

(a) Check what capabilities Bj are necessary for the satisfaction of tj.
(b) Compare Bj to the sum of the unused capabilities of the members of the coali-

tion Bc
pc, thus finding the tasks that can be satisfied by coalition C.

3. Calculate the expected outcome of the tasks that can be performed by the coalition.
4. Among all of the expected outcomes, on list Ec, choose the maximal. This will be

the coalitional value Vc.
5. Calculate the coalitional cost which is cc = 1/Vc.

Third Stage of the Algorithm
In this stage, each agent calculates coalitional weights w, as the cost divided by coali-
tional size, the number of agents in that coalition. Each agent chooses the best coali-
tion from among its list, i.e., the coalition Ci that has the smallest Wi. Next, each
agent announces the coalitional weight that it has chosen, and the lowest among these
is chosen by all agents. The members of the coalition that is chosen are deleted from
the list of candidates for new coalitions. In addition, any possible coalition from the
lists of any agent, that includes any of the deleted agents, is deleted from its list.
These steps are iteratively repeated until all agents join a coalition or all tasks are
assigned to a coalition. Each agent Ai iteratively performs the following steps:

1. Locate in Li the coalition Cj with the smallest wj.
2. Announce the coalitional weight wj that it has located.
3. Choose the lowest among all of the announced coalitional weights. This wlow will

be chosen by all agents. Choose corresponding coalition Clow and task tlow as well.
4. Delete the members of the chosen coalition Clow from the list of candidates.
5. If Ai is a member of the chosen coalition Clow, join its members and form Clow.
6. Delete from Li the possible coalitions that include deleted agents.
7. Delete from T the chosen task tlow.
8. Assign to Li

cr the coalitions in Li for which values should be re-calculated.
9. Execute second stage of the algorithm.

4 System Architecture

Four different types of agents cooperate to provide an infrastructure with the functio-
nalities listed in Section 1. Every type of agent is specialized in its actions, following
well defined protocols. The agent types and their roles are as follows:

• employee agents which execute the coalition formation algorithm to form coali-
tions and, after the coalitions are determined, perform the tasks assigned to them.

• a controller agent which is in charge of system’s overall coordination.
• coalition manager agents(s) which reduce the controller agent’s heavy work load

via coordinating the interaction and the communication between employee agents
and the controller agent.

• a database agent which stores and maintains information associated with em-
ployee agents and tasks in a database, and meets query requests of all types of
agents.

166 M. Özbey and N. Erdoğan

Fig. 1 depicts the architectural design of the framework, reflecting agent interactions
during the coalition formation phase. Employee agents can communicate with each
other and the controller agent. After a coalition is formed, this interaction slightly
changes, as described in Section 4.3.

Database
AgentEmployee

Agent

Controller
Agent

Employee
Agent

Employee
Agent

D
at

ab
as

e

Employee
Agent

Employee Agents

Fig. 1. System architecture displaying agent interaction during coalition formation phase

4.1 Database Agent

The database agent is the only agent in the system which has the capability of access-
ing the database. It accepts database requests, executes queries and delivers results.
Only, the controller agent has direct communication with the database agent. If other
agents need to query the database, they transmit their requests through the controller
agent to database agent and receive results in the same way.

4.2 Controller Agent

The framework presents an execution environment where coalitions are formed in a
distributed manner with no central control. However, the framework itself has a cen-
tral management system, the controller agent being in charge of system’s overall
coordination. Central management usually becomes a bottleneck; therefore the control
agent conveys some of its tasks to coalition manager agents as to decrease its work
load. The controller agent monitors agents’ status and task control period. When a
predefined task control period ends, it restarts the coalition formation phase, thus
eliminating the need to reset the system after new tasks have been defined.

Controller agent monitors the coalition formation phase. After coalition formation
is completed, the controller agent starts a new coalition manager agent for each coali-
tion, sends them the employee agents’ identifications and task details. Next, the con-
troller agent waits for messages from coalition manager agents. When a coalition
manager reports, the controller agent prepares an execution report and sends it to
database agent to be inserted into the database.

Furthermore, the controller agent is responsible for error handling. When an error
message is received from a coalition manager agent, the controller agent updates the
status of employee agents and also changes the task state to “failed” on the database.
The failed task is scheduled on the next round of coalition formation phase. With this
approach, the system becomes fault tolerant against agent failures.

Multi-agent Based Execution Environment for Task Allocation via Coalition Formation 167

4.3 Employee Agents

Employee agents execute the coalition formation algorithm to form coalitions and,
after deciding on the coalitions, they perform the tasks which have been assigned to
the coalition. They cannot be members of multiple coalitions at a time because of the
disjoint coalition assumption. When activated, these agents firstly contact the control-
ler agent and register themselves on the active agent list. Next, they wait for the arriv-
al of information related to currently active agents and tasks from controller agent.
After all employee agents receive the required information, they start executing the
coalition formation algorithm and determine the coalitions they will join. Employee
agents inform the controller about the result and wait until they are notified by the
coalition manager agents assigned to their coalition. At this point in time, employee
agents lose contact with the controller agent and carry on all further interactions with
their manager agents. Fig 2 depicts agent interactions after coalitions are formed.
Employee agents join their coalitions, execute their tasks and inform coalition manag-
er agents that they have completed subtasks. If an error occurs during subtask execu-
tion, it is reported to the coalition manager agent.

Coalition
Manager

Agent
D

at
ab

as
e

Coalition
Manager

Agent

Coalition 2

Coalition 1

Employee
Agent

Employee
Agent

Employee
Agent

Employee
Agent

Database
Agent

Controller
Agent

Fig. 2. Agent interaction after coalition formation

4.4 Coalition Manager Agents

For each coalition formed, a new coalition manager is created and remains in exis-
tence during the lifetime of the coalition. The coalition manager agent is representa-
tive of its coalition. It checks whether employee agents have completed subtasks; after
a task is completed, the manager agent informs the controller and shuts down itself.

Coalition manager agent is also responsible for error checking, informing the con-
troller agent about the error. The coalition manager also checks employee agents at
predefined time periods to see if they are alive. If any employee agent does not re-
spond in certain duration, the coalition manager assumes the agent has failed and
informs the controller agent about the error. In both error cases, coalition manager
stops execution of all subtasks and shuts down itself as the coalition is broken down.

168 M. Özbey and N. Erdoğan

5 Experiments and Evaluation

We have performed a comprehensive experimental analysis of the framework we
have presented. The implementation is coded in Java 7 and runs on a notebook com-
puter with 1.73 GHz Intel Core i7 processor, with 8.0 GB memory on a 64-bit Win-
dows 7 Professional operating system. Experiments were performed on agents which
were developed using JADE 4.2.0 version [8].

We tested our system approximately with 3000 runs to observe the effect of in-
creasing values of agents, tasks and coalition sizes on coalition formation time. Test
results reflect the time employee agents have consumed during the execution of the
coalition formation algorithm and exclude the time taken by other activities, such as
employee agent registration or task list sharing. We have applied the coalition forma-
tion algorithm to transportation problem and have carried out the test runs on the de-
scribed environment over this application.

5.1 Effect of the Number of Employee Agents on Coalition Formation Time

In order to see the effect of varying numbers of employee agents on coalition forma-
tion time, we have carried out two sets of experiment, each with a different of tasks.
Fig. 3 shows the results.

Fig. 3. Effect of number of employee agents on coalition time for different numbers of tasks

In both experiments, the maximum coalition size, k, was set to 2. The first set of
experiments were executed with the number of tasks equal to 1 (blue graph), and the
second with the number of tasks equal to 2 (red graph). In both cases, the number of
employee agents is increased from 2 to 9 and the time taken for coalition formation is
recorded. We have observed that increase in the number of employee agents directly
effects coalition formation time. While the increase is acceptable up to 8 agents, fur-
ther increases in the number of agents result in a steep rise. This is due to the heavy
communication load between agents. We also observe that an increase in the number
of tasks also effect coalition formation time, with larger values of tasks resulting in
longer time periods, as seen in Figure 3.

Multi-agent Based Execution Environment for Task Allocation via Coalition Formation 169

Next, we have carried out experiments to observe how varying numbers of em-
ployee agents effect coalition formation time in systems with different maximum
coalition sizes. The results are depicted in Fig. 4. In the experiments, the number of
tasks was to 1. The experiments were executed for two maximum coalition size, one
with k equal to 2 (blue graph), and another with k equal to 3 (green graph).

Fig. 4. Effect of number of employee agents on coalition time for different coalition sizes

We have observed that formation of larger coalitions take more time, compared to
smaller coalitions. In conclusion, we can say that increasing the number of employee
agents results in longer coalition formation time due to increase in the iterative calcu-
lations and inter agent communication.

5.2 Effect of Number of Tasks on Coalition Formation Time

We have also carried out experiments to observe how varying the number of tasks
effects coalition formation time in systems with different numbers of employee
agents. The results are depicted in Fig. 5.

Fig. 5. Effect of number of tasks on coalition formation time

170 M. Özbey and N. Erdoğan

In these experiments, we have set the maximum coalition size, k, to 2. Two sets of
experiments were executed, one with 2 (orange graph) and another with 4 (blue
graph) employee agents. The results conform with the experiments; coalition forma-
tion time is directly affected by the number of employee agents and increasing the
number of tasks does not create a significant difference in the time required.

6 Conclusions and Future Work

In this paper, we focus on a particular solution to the problem of task allocation
through coalition formation. First, we shortly describe the Shehory-Kraus coalition
formation algorithm, and next present a multi-agent based execution environment
where employee agents can negotiate to form coalitions and execute tasks in accor-
dance with the Shehory-Kraus algorithm. We describe the system architecture of the
framework and discuss its various components in detail. For an assessment of the
framework, we present experiments and report the effects of several factors, such as
numbers of employee agents, tasks, and coalition sizes on coalition formation time.

Experimental results show that the framework fully provides the requirements for a
negotiation environment for agents to form coalitions and execute tasks. The frame-
work can be used as a test bed for further research as well. We plan to enhance the
coalition formation algorithm by allowing agents to join multiple coalitions and add-
ing precedence constraints to tasks as future work.

References

1. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial
Intelligence 101(1-2), 165–200 (1998)

2. Kraus, S., Shehory, O., Taase, G.: Coalition formation with uncertain heterogeneous infor-
mation. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2003, Melbourne, Australia, July 14-18 (2003)

3. Kraus, S., Shehory, O., Taase, G.: The Advantages of Compromising in Coalition Forma-
tion with Incomplete Information. In: Proc. AAMAS, New York, July 19-23, pp. 588–595
(2004)

4. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organizational
View of Multi-Agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

5. Alfonso, B., Botti, V., Garrido, A., Giret, A.: A MAS-based Infrastructure for Negotiation
and its Application to a Water-Right Market. In: Infrastructures and Tools for Multiagent
Systems, Valencia, Spain (2012)

6. Pinto, T., Morais, H., Oliveira, P., Vale, Z., Praça, I., Ramos, C.: A new approach for multi-
agent coalition formation and management in the scope of electricity markets. Energy 36(8),
5004–5015 (2011)

7. Ray, D., Vohra, R.: Coalition Formation. In: Young, P., Zamir, S. (eds.) Preliminary draft,
prepared as a chapter for Handbook of Game Theory, vol. 4. North-Holland, The MIT
Press, Cambridge, Massachusetts (2013)

8. JADE Home Page, http://jade.tilab.com

	Multi-agent Based Execution Environment for Task Allocation via Coalition Formation
	1 Introduction
	2 Related Work
	3 Shehory-Kraus Coalition Formation Algorithm
	3.1 Assumptions
	3.2 Definitions
	3.3 Shehory-Kraus Coalition Formation Algorithm

	4 System Architecture
	4.1 Database Agent
	4.2 Controller Agent
	4.3 Employee Agents
	4.4 Coalition Manager Agents

	5 Experiments and Evaluation
	5.1 Effect of the Number of Employee Agents on Coalition Formation Time
	5.2 Effect of Number of Tasks on Coalition Formation Time

	6 Conclusions and Future Work
	References

