
A Uniform Problem Solving in the Cognitive

Algebra of Bounded Rational Agents

Eugene Eberbach

Dept. of Engineering and Science, Rensselaer Polytechnic Institute
275 Windsor Street, Hartford, CT 06120, USA

eberbe@rpi.edu

Abstract. The $-calculus cognitive process algebra for problem solv-
ing provides the support for automatic problem solving and targets in-
tractable and undecidable problems. Consistent with the ideas of anytime
algorithms, $-calculus applies the cost performance measures to converge
to optimal solutions with minimal problem solving costs. In the paper,
we concentrate on a uniform problem solving and its implementation
aspects illustrated on two benchmarks from concurrency and machine
learning areas.

1 Introduction

The paper presents a theory of computation for automatic problem solving based
on process algebras, utility theory and anytime algorithms. In particular, we try
to formalize AI, based on classical (but unformalized) AI textbook by Russell
and Norvig on meta-search algorithms and bounded rational agents [8]. Such
unifying theory for AI does not exist so far yet. Resource-based reasoning [6,
8] called also anytime algorithms, trading off the quality of solutions for the
amount of resources used, seems to be a particularly well suited for such a
new AI framework. Process algebras [7], currently the most mature approach to
concurrent and distributed systems, seem to be the appropriate way to formalize
multiagent systems, and to span AI with the rest of computer science.

In the paper, we describe very briefly the $-calculus algebra of bounded ratio-
nal agents as a proposal of the unifying framework for AI [3–5]. The $-calculus
can be used in the same uniform way for search, planning, evolution, learning,
and problem solving under bounded resources in dynamic and uncertain envi-
ronments. In the paper, we concentrate on automatic problem solving and its
implementation aspects illustrated by examples from two divergent areas.

2 The $-calculus Algebra of Bounded Rational Agents

The $-calculus is a mathematical model of processes capturing both the final
outcome of problem solving as well as the interactive incremental way how
the problems are solved (the main difference compared to other computational
theories). The $-calculus is a cognitive process algebra of Bounded Rational

G. Jezic et al. (eds.), Agent and Multi-Agent Systems: Technologies and Applications, 117
Advances in Intelligent Systems and Computing 296,
DOI: 10.1007/978-3-319-07650-8_13, c© Springer International Publishing Switzerland 2014

118 E. Eberbach

Agents for interactive problem solving targeting intractable and undecidable
problems [3–5]. The $-calculus (pronounced cost calculus) is a formalization
of resource-bounded computation (also called anytime algorithms), proposed by
Dean, Horvitz, Zilberstein and Russell in the late 1980s and early 1990s [6, 8].
Anytime algorithms are guaranteed to produce better results if more resources
(e.g., time, memory) become available. The standard representative of process
algebras, the π-calculus [7] is believed to be the most mature approach for concur-
rent systems. Although being a new approach, the $-calculus has found already
several applications including DSL languages to control NAVY Autonomous Ve-
hicles (AUVs) (for more deatils look at [3–5]).

In $-calculus everything is a cost expression: agents, environment, communi-
cation, interaction links, inference engines, modified structures, data, code, and
meta-code. $-expressions can be simple or composite. Simple $-expressions α are
considered to be executed in one atomic indivisible step. Composite $-expressions
P consist of distinguished components (simple or composite ones) and can be
interrupted.

The set P of $-calculus process expressions consists of simple $-expressions α
and composite $-expressions P , and is defined by the following syntax:

α ::= ($i∈I Pi) cost
| (→i∈I c Pi) send Pi with evaluation through channel c
| (←i∈I c Xi) receive Xi from channel c
| (′i∈I Pi) suppress evaluation of Pi

| (ai∈I Pi) defined call of simple $-expression a with parameters Pi, and
and its optional associated definition (:= (ai∈I Xi) < R >)
with body R evaluated atomically

| (āi∈I Pi) negation of defined call of simple $-expression a

P ::= (◦ i∈I α Pi) sequential composition

| (‖ i∈I Pi) parallel composition

| (∪∪ i∈I Pi) cost choice

| (∪+ i∈I Pi) adversary choice
| (�i∈I Pi) general choice
| (fi∈I Pi) defined process call f with parameters Pi, and its associated

definition (:= (fi∈I Xi) R) with body R (normally
suppressed); (1 R) will force evaluation of R exactly once

The indexing set I is a possibly countably infinite. In the case when I is
empty, we write empty parallel composition, general, cost and adversary choices
as ⊥ (blocking), and empty sequential composition (I empty and α = ε) as ε
(invisible transparent action, which is used to mask, make invisible parts of $-
expressions). Adaptation (evolution/upgrade) is an essential part of $-calculus,
and all $-calculus operators are infinite (an indexing set I is unbounded). The
$-calculus agents interact through send-receive pair as the essential primitives of
the model. The $-calculus rests upon the primitive notion of cost in a similar way

A Uniform Problem Solving in the Cognitive Algebra 119

as the π-calculus was built around a central concept of interaction and λ-calculus
around a function.

Simple cost expressions execute in one atomic step. Cost functions are used for
optimization and adaptation. The user is free to define his/her own cost met-
rics. Send and receive perform handshaking message-passing communication,
and inferencing. The suppression operator suppresses evaluation of the under-
lying $-expressions. Additionally, a user is free to define her/his own simple
$-expressions, which may or may not be negated.

Sequential composition is used when $-expressions are evaluated in a textual
order. Parallel composition is used when expressions run in parallel and it picks
a subset of non-blocked elements at random. Cost choice is used to select the
cheapest alternative according to a cost metric. Adversary choice is used to select
the most expensive alternative according to a cost metric. General choice picks
one non-blocked element at random. General choice is different from cost and
adversary choices. It uses guards satisfiability. Cost and adversary choices are
based on cost functions. Call and definition encapsulate expressions in a more
complex form (like procedure or function definitions in programming languages).
In particular, they specify recursive or iterative repetition of $-expressions.

The unique feature of the $-calculus is that it provides a support for prob-
lem solving by incrementally searching for solutions and using cost to direct its
search. The basic $-calculus search method used for problem solving is called kΩ-
optimization. The kΩ-optimization represents this “impossible” to construct,
but “possible to approximate indefinitely” universal algorithm. It is a very gen-
eral search method, allowing the simulation of many other search algorithms,
including A*, minimax, dynamic programming, tabu search, or evolutionary al-
gorithms [3–5].

The problem solving works iteratively through select, examine and execute
phases. In the select phase the tree of possible solutions is generated up to k
steps ahead, and agent identifies its alphabet of interest for optimization Ω. This
means that the tree of solutions may be incomplete in width and depth (to deal
with complexity). However, incomplete (missing) parts of the tree are modeled
by silent $-expressions ε, and their cost is estimated (i.e., not all information
is lost). The above means that kΩ-optimization may be (if certain conditions
are satisfied) complete and optimal (see [4]). The building trees (or DAGs, in a
general case) is done either by using inference rules from LTS (in the style of AI
planners, unification from Prolog, or matching from expert systems), or by using
random number generators to generate random sequences of simple $-expressions
(in the style of genetic programming), or the user is responsible to define the LTS
tree. In the examine phase the trees of possible solutions are pruned minimizing
cost of solutions, and in the execute phase up to n instructions are executed.
Moreover, because the $ operator may capture not only the cost of solutions,
but also the cost of resources used to find a solution, we obtain a powerful tool
to avoid methods that are too costly, i.e., the $-calculus can directly minimize
search cost. This basic feature, inherited from anytime algorithms, is needed to
directly tackle hard optimization problems, and allows solving total optimization

120 E. Eberbach

problems (the best quality solutions with minimal search costs). The variable k
refers to the limited horizon for optimization, necessary due to the unpredictable,
dynamic nature of the environment. The variable Ω refers to a reduced alphabet
of information. The b is the branching factor of the search tree, n - the number
of steps selected for execution in the execute phase, and p - the number of
agents. No agent ever has reliable information about all factors that influence all
agents behavior. To compensate for this, we mask factors where information is
not available from consideration; reducing the alphabet of variables used by the
$-function. By using the kΩ-optimization to find the strategy with the lowest
$-function, meta-system finds a “satisficing” (i.e., good enough - term coined by
Simon [8]) solution, and sometimes (when appropriate conditions are satisified)
- the optimal one. This avoids wasted time trying to optimize behavior beyond
the foreseeable future. It also limits consideration to those issues where relevant
information is available. Thus the kΩ optimization provides a flexible approach
to local and/or global optimization in time or space. Technically this is done
by replacing parts of $-expressions with invisible $-expressions ε, which remove
part of the world from consideration (however, they are not ignored entirely -
the cost of invisible actions is estimated).

The kΩ-optimization meta-search procedure can be used both for single and
multiple cooperative or competitive agents working online (n �= 0) or offline (n =
0). The $-calculus programs consist of multiple $-expressions for several agents.
Each agent has its own kΩ-search procedure kΩi[t] used to build the solution
xi[t] that takes into account other agent actions (by selecting its alphabet of
interests Ωi that takes actions of other agents into account). Thus each agent
will construct its own view of the whole universe which only sometimes will be
the same for all agents (this is analogous to the subjective view of the “objective”
world by individuals having possibly different goals and different perception of
the universe).

More details on the kΩ-optimization, including the inference rules of the La-
beled Transition System, observation and strong bisimulations and congruences,
and the standard cost function definition can be found in [3–5].

3 Illustration of Versality and Power of the kΩ-meta
Search

3.1 Dining Philosophers - Multi-agent Searching and Planning for a
Deadlock-Free and Fair Solution

The Dining Philosophers Problem is a simple abstraction of a typical synchro-
nization problem to allocate mulitple shared reusable resources among several
processes in a deadlock and starvation-free manner (for example, an abstraction
of the access to I/O devices). It was posed and solved by E. Dijkstra. Sce-
nario: five philosophers are seated around a table. Each philosopher has a plate
of spaghetti, which is so slippery that each philosopher needs two forks to eat
(sometimes to be more realistic, spaghetti is replaced by rice, and forks by chop-
sticks). Between each plate is a fork, and if the fork is grabbed, it is not released

A Uniform Problem Solving in the Cognitive Algebra 121

until a philosopher finishes to eat. Each philosopher does in cycle: taking forks,
eating, releasing forks and thinking. The goal is to provide a solution allowing
maximum parallelism where philosophers do not deadlock (otherwise all philoso-
phers starve) and sometimes, additionally fairness is required, for a deadlock-free
solution to provide a guarantee that no one will starve. Of course, we know how
to solve the dining philosophers. We use this problem for illustration of how
kΩ-optimization will arrive at a solution that by minimizing costs will avoid
deadlocks (having infinite costs) and starvation (by design - philosophers who
ate above average will refrain nicely from competing for forks).

Let’s consider problem solving (planning + execution) for dining philosophers
providing deadlock-free and fair solution, and expressed as a special case of kΩ-
search. Note that the solution subsumes hierarchical (user-defined functions Phil,
Fork and Count) and partial-order planning (due to concurrency from process
algebra).

The system consists of 5 agents-philosophers, i.e., p=5, which are interested
and can observe everything, i.e., Ω is an alphabet of all simple $-expressions,
with a standard shared by all philosphers cost function $ = $1($2(kΩ[t], $3(x[t])),
where $1 is an aggregating function in the form of addition, $2(kΩ[t]) represents
costs of the kΩ-search, and $3(x[t]) represents the quality of solutions. A strong
congruence is used. In other words, payoff is associated with empty/invisible
actions ε for finding the plan (complete tree) and/or for executing it. The number
of steps in the derivation tree selected for optimization in the examine phase
k = ∞, the branching factor b = ∞, and the number of steps selected for
execution in the examine phase n = 0, i.e., execution is postponed until the plan
is found. Flags gp = reinf = update = 0 and strongcong = 1. The goal of plan
is to find the cheapest deadlock-free and fair solution. The solution takes the
form of the tree (truly DAGs) of $-expressions that are pruned and passed to
execution phase.

Let’s assume that user defined functions Phili, Forki, Count are given and

they are partially designed only, i.e., ∪∪ represents unsolved alternatives in the
design:

(:= grab2i 〈(‖ (← pi,i fi) (← p(i+4)mod 5,i f(i+4)mod 5)〉) -atomic grab2i def.

(:= Forki (◦ // allow to grab fork fi by right/left neighbor and receive it back

(� (◦ (→ pi,(i+1)mod 5 fi) (← pi,(i+1)mod 5 fi))

(◦ (→ pi,i fi) (← pi,i fi))
)
Forki // call recursively Forki, i = 0, 1,, 4 process again

))

(:= Count (◦ (→ ch c) // send and receive global count c of eatings

(← ch c)
Count // call recursively Count

))

122 E. Eberbach

(:= Phili (◦ (← ch c) //grab global count c of eatings; each i-th phil., i = 0, ..., 4

// grabs fork f(i+4)mod 5 through channel p(i+4)mod 5,i and fork fi through channel pi,i

(� (◦ (≤ 5ci c) // for fairness: grab forks if you did not eat above average

(∪∪ (◦ (← pi,i fi) (← p(i+4)mod 5,i f(i+4)mod 5)) // grab right next left fork

(◦ (← p(i+4)mod 5,i f(i+4)mod 5) (← pi,i fi)) // grab left next right fork

grab2i // grab both forks atomically in parallel, def. call of simple $-expr.

) // in atomic grab2i all components should not block, else grab2i will block

eat
ci ++ // increase your private count of eatings; initially all counts 0

c+ + // increase global count of eatings

(→ pi,i fi) (→ p(i+4)mod 5,i f(i+4)mod 5) //return both forks

think) // do the job that philosophers supposed to do

(> 5ci c) // for fairness: be nice - do nothing if you ate above average

)
(→ ch c) // return global count of eatings through channel ch to Count

Phili // call recursively Phili, i = 0, 1, ..., 4 process again

))
Total Optimization: The goal will be to minimize costs for $ = $2 + $3. The
empty actions (representing actions not executed yet) have cost being the sum of
payoffs for finding the plan/solutions and for execution of plan (for not starving
philosophers). Each action has negative payoffs for action planned and executed
(represented by function $3, and costs for searching for the plan and executing
it (costs of running $-Ruby interpreter - function $2). Assume that payoff for
finding the plan is 500 (negative cost -500) and payoff for executing plan is 1000
(because it is a reactive never terminating program, it will never be reached
and we can ignore it). Each action during planning (select and examine phase)
and execution has cost 1 and no payoff (payoff will be paid after end of plan-
ning). During execution each action has cost 1 and payoff 2 − 0.02m, where
m = 0, 1, 2, ... represents successive uses of the action. This means that payoffs
initially will dominate, but after 100 uses actions will incur only costs.

0. t=0, initialization phase init :

x[0] = (◦ (‖ Phil0 Phil1 Phil2 Phil3 Phil4 Fork0 Fork1 Fork2 Fork3
Fork4 Count) ε)
The initial tree consists of the root state x[0] calling in parallel processes
Phili, Forki,i = 0, 1, ..., 4 and Count , and an empty action ε which cost is
equal to the estimated payoffs for finding plan and execution 500. Because
x[0] is not the goal state (plan and its execution has not been done yet),
interpreter goes to the first loop iteration consisting of select, examine, and
execute phases.

1. t =1, first loop iteration:
select phase sel : because k = ∞ only one loop iteration will be needed and
a complete potential tree of solutions is expanded, i.e., user defined functions
Phili, Forki and Count are replaced by their body definitions.
examine phase exam :

A Uniform Problem Solving in the Cognitive Algebra 123

Execution is postponed (n = 0) until pruning is done. Assume that cost
of multiset of parallel actions is equal to maximum of its component costs,
thus grabbing in parallel two forks will have cost 1, and grabing sequentially
1+1=2. Some sequential orders like grabbing first left and next right fork by
all philosophers will result in deadlock (and infinite costs), thus they will be
eliminated by the $-calculus optimization mechanism. Parallel grabbing of
both forks will be cheaper than sequential (and deadlock-free), thus design

will leave only parallel grabbing in ∪∪ definition of Phili.
execute phase exec :
Actions are executed, but with gradually decreasing payoffs (corresponding
to the span of life of philosophers). Initially it will be cheaper to execute plan,
but after 100 cycles for philosphers, costs will decrease payoff for finding plan,
and execution should be stopped, because optimum will be lost and it will
lead to infinite cost for immortal philosophers. After that the kΩ-search
re-initializes for a new problem to solve (e.g., machine learning ID3).

3.2 Learning the Best Decision Tree for a Single Agent

Most algorithms that have been developed for learning decision trees are varia-
tions on a core algorithm that employs a top-down, greedy search through the
space of possible decision trees, i.e., the ID3 algorithm by Quinlan and its succes-
sor C4.5 [8]. ID3 performs a simple hill-climbing search through the hypothesis
space of possible decision trees using as an evaluation function the Shannon-
based information gain measure. ID3 maintains only a single current hypothesis
as it searches through the space of decision trees. The search space is exponen-
tial, i.e., the problem is intractable. To alleviate that, ID3 picks up the attribute
with the maximum information gain which leads to the shortest tree (i.e., it uses
the Occam razor principle). The information gain Gain(S,A) of an attribute A
relative to a collection of examples S is defined as Gain(S,A) = Entropy(S)−
Σv∈V alues(A)Entropy(Sv)|Sv|/|S|, where Entropy(S) = Σi − pilog2pi.

Let’s consider problem solving (learning + classification) for ID3 expressed as
a special case of kΩ-search finding the shortest classification tree by minimizing
the sum of negative gains, i.e., maximizing the sum of positive gains.

The system consists again of one agent only, i.e., p=1, which is interested
only in information gain for alphabet A = {ai, aij}, i, j = 1, 2, i.e., Ω = A,
i.e., costs of other actions are ignored (being neutral - in this case having zero
cost), and it uses a standard cost function $ = $3, where $3 represents the
quality of solutions in the form of cummulative negative information gains -
payoff in $-calculus. In other words, total optimization is not performed, only
regular optimization like in the original ID3 to illustrate a regular optimization,
not that the total optimization is not desirable. A weak congruence is used. In
other words, empty actions have zero cost. The number of steps in the derivation
tree selected for optimization in the examine phase k = 2, the branching factor
b = ∞, and the number of steps selected for execution in the examine phase
n = 0, i.e., execution is postponed until learning is over. Flags gp = reinf =
update = strongcong = 0. The goal of learning/classification is to minimize the

124 E. Eberbach

sum of negative information gains. The machine learning takes the form of the
tree of $-expressions that are built in the select phase, pruned in the examine
phase and passed to execution phase for classification work. Data are split into
training and test data as usual. Let’s assume for simplicity that we have only
one decision attribute and two input attributes a1 and a2 with data taking
two possible values on them denoted by a11,a12,a21,a22. Let assume that cost
of actions is equal to entropy of data associated with this action, i.e., $(ai) =
−Entropy(ai),$(aij) = Entropy(aij),i, j = 1, 2.

Optimization: The goal will be to minimize the sum of costs (negative gains).

0. t=0, initialization phase init : S0 = ε0
The initial tree consists of an empty action ε0 representing a missing classi-
fication tree of which cost is ignored (a weak congruence). Because S0 is not
the goal state, the first loop iteration consisting of select, examine, and exe-
cute phases replaces an invisible ε0 two steps deep (k = 2) by all offsprings
b = ∞.

1. t=1, first loop iteration:
select phase sel :

ε0 = (∪∪ (◦ a1(� (◦ a11 ε11)(◦ a12 ε12))) (◦ a2(� (◦ a21 ε21)(◦ a22 ε22))))
examine phase exam : $(S0) = $(ε0) =
= min($(a1) + p11$(a11) + p12$(a12), $(a2) + p21$(a21) + p22$(a22))
Let’s assume that attribute a1 was selected, i.e., $-expresion starting from
a1 is cheaper. Note that due to appropriate definition of the standard cost
function (for complete definition see [37,38]) this is a negative gain from ID3.
This confirms that $-calculus cost function is defined in a reasonable way
(at least from the point of ID3). Note that no estimates of future solutions
are used (weak congruence - greedy hill climbing search). Execution is post-
poned (n = 0), and follow-up ε11 and ε12 will be selected for expansion in
the next loop iteration.

2. t = 2, second loop iteration:

select phase sel : ε11 = (◦ a2 (� (◦ a21 ε21)(◦ a22 ε22)))
Let’s assume that ε12 has data from one class only, thus this is the leaf node
- no further splitting of training data is required.
examine phase exam : nothing to optimize/prune - all attributes were
used in the path or the leaf node contained sample data from one class of
the decision attribute. Thus the end of the learning phase and the shortest
decision tree is designated for the execution:
execute phase exec :
Test data are classified by the decision tree left from the select/examine
phases. After that the kΩ-search re-initializes for the new problem to solve.

Note that we can change for example values of k (considering a few attributes
in parallel), b, n and optimization to total optimization, then this will be related,
but not ID3 algorithm any more. This is the biggest advantage and flexibility
of $-calculus problem solving. It can modify “on fly” existing algorithms and
design new algorithms, and not simulation of ID3 alone (as obviously ID3 can
be expressed in any powerful enough programming language).

A Uniform Problem Solving in the Cognitive Algebra 125

Other examples of problem solving by search simulated by kΩ-optimization,
including A*, minimax, dynamic programming, TSP, the halting problem of
UTM, neural networks, cellular automata, simulation of λ-calculus or π-calculus
can be found in [3–5]. This illustrates the power and versatility of the kΩ-search
meta-algorithm.

4 Implementation in $-cala and $-calculisp

We started to implement $-calculus framework in $-cala [1] and $-Calculisp [9] to
gain necessary experience, to solve some theoretical problems, and as a prelim-
nary step in the main implementation in Ruby. Ruby is a powerful and versatile
object-oriented language that has at the same time a flexibility to that of LISP
in dealing with code and meta-code management. We selected Scala, because of
very concise implementation of related π-calculus process algebra in Scala [2].
On the other hand, Common Lisp seems be a natural contrcandidate to Ruby.
Initially, we implemented in $-cala and $-Calculisp the same examples as kΩ-
search: n-puzzle, A* and TSP, and next added dining philosphers and ID3. It
looks that both Scala and Lisp have similar metaprogramming capabilities as
Ruby, however they are less popular at this moment (and, most likely, in the
future) and seem to have less powerful programming environment.

$-Calculisp is implemented in Common Lisp using a combination of functional
programming, the powerful Common Lisp macro meta-programming system,
and the Common Lisp Object System. It implements an object tree of $-nodes,
and $-calculus operators for manipulating the $-node object tree. $-nodes are
sub-classed and their methods extended to match a given problem domain or al-
gorithm. Once the problem domain is defined, $-operators and the kΩ construct
are used to implement the bulk of the algorithm.

$-cala is implemented in Scala - an object functional language with an extensi-
ble syntax that makes it an ideal host language [2]. $-cala attempts to provide all
the primitives from $-calculus as objects. The programmer uses syntax similar
to $-calculus to create an abstract syntax tree (AST) and then the AST is inter-
preted as kΩ-search algorithm. As a consequence a $-cala program corresponds
closely to a $-calculus program.

5 Conclusions and Further Work

In the paper, we presented a uniform problem solving by the same kΩ-meta-
search algorithm, and its preliminary implementation in $-cala and $-Calculisp.
Using the same kΩ-search we can investigate completeness, optimality, search
optimality and total optimality of uninformed and informed search methods
for adversary and cooperating agents (see [3–5]). Both sequential and concur-
rent (partial-order) planning, conditional planning, hierarchical planning can be
expressed and investigated (their completeness and optimality) in the same uni-
form way as $-calculus search. We can quite easily express Dynamic Bayesian
Networks - DBNs (using sequential composition for conditional probabilities,

126 E. Eberbach

and general choice operator combining varius choices weighted by probabilities).
Bayesian learning (e.g., MAP/ML [8]) has a natural mapping by kΩ-search tree.

We want to use $-calculus to experiment and combine various approaches.
Even simple modifications with simulation of evolutionary algorithms, like chang-
ing for example values of n, k, b will lead to algorithms that are not sensu stricto
evolutionary algorithms any more. Similarly, we would be able to experiment
with algorithms based on existing algorithms, but they will not be classical A*
or minimax any more. For example, A* with n!=0 leads to “on-line A*”, or A*
using general choice (besides cost choice) will lead to “probabilistic, fuzzy set or
rough set A*” [5]; fixing b leads to SMA*. Additionally, using total optimiza-
tion leads to algorithms that stop to be classical A*, minimax or evolutionary
algorithms (they even do not have corresponding names in the literature). Of
course, you can try to do that in any language, but it will be much easier to do
in a language designed for it.

The author, besides earlier work on GPS by Simon and Newell and Koza’s
GPPS is not aware about any related approach so far. Thus the approach is
totally novel and if successful can be compared only in its significance with the
role of the Turing Machine model in computer science.

References

1. Ansari, B.: $-cala: An Embedded Programming Language Based on $-Calculus and
Scala, Master Thesis, Rensselaer Polytechnic Institute at Hartford (2013)

2. Cremet, V., Odersky, M.: PiLib: A Hosted Language for Pi-Calculus Style Concur-
rency. In: Lengauer, C., Batory, D., Blum, A., Odersky, M. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 180–195. Springer, Heidelberg (2004)

3. Eberbach, E.: $-Calculus of Bounded Rational Agents: Flexible Optimization as
Search under Bounded Resources in Interactive Systems. Fundamenta Informati-
cae 68(1-2), 47–102 (2005)

4. Eberbach, E.: The $-Calculus Process Algebra for Problem Solving: A Paradig-
matic Shift in Handling Hard Computational Problems. Theoretical Computer Sci-
ence 383(2-3), 200–243 (2007), doi:dx.doi.org/10.1016/j.tcs.2007.04.012

5. Eberbach, E.: Approximate Reasoning in the Algebra of Bounded Ratio-
nal Agents. Intern. Journal of Approximate Reasoning 49(2), 316–330 (2006),
doi:dx.doi.org/10.1016/j.ijar.2006.09.014

6. Horvitz, E., Zilberstein, S.: Computational Tradeoffs under Bounded Resources.
Artificial Intelligence 126, 1–196 (2001)

7. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I & II. Infor-
mation and Computation 100, 1–77 (1992)

8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall (1995) (2010)

9. Smith, J.: $-Calculisp: an Implementation of $-Calculus Process Algebra in Common
Lisp. Master Project, Rensselaer Polytechnic Institute at Hartford (2013)

	A Uniform Problem Solving in the Cognitive Algebra of Bounded Rational Agents
	1
Introduction
	2
The $-calculus Algebra of Bounded Rational Agents
	3
llustration of Versality and Power of the k-meta Search
	3.1
Dining Philosophers - Multi-agent Searching and Planning for a Deadlock-Free and Fair Solution
	3.2
Learning the Best Decision Tree for a Single Agent

	4
Implementation in $-cala and $-calculisp
	5
Conclusions and Further Work

