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Abstract. Timed Petri nets (TPN) and first order hybrid Petri nets
(FOHPN) are tested here in order to model transport systems and to find
the suitable travel routes in different non-standard situations during the
increased traffic density (i.e. at the bounded traffic or congestion). This
work extends our previous work where the flexible routes in transport
systems were found by means of the place/transition Petri nets (P/T
PN). While at usage of the TPN only the time parameters are assigned
to the P/T PN model transitions, the FOHPN model is different and it
yields the continuous flows of vehicles.
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1 Introduction and Preliminaries

Place/transition Petri nets (P/T PN) [11, 12] are the effective tool for mod-
elling discrete event systems (DES). However, their extended (modified) version
- timed Petri nets (TPN) - are suitable for DES behaviour in time. Hybrid Petri
nets (HPN) [6, 8] are suitable for modelling hybrid systems (HS) containing both
the continuous part and the discrete one. Simplified version of HPN - the first
order HPN (FOHPN) [2–5, 7, 13] - are especially suitable for modelling HS be-
cause of the existence of the handy simulation tool HYPENS for Matlab [13, 14].
P/T PN are (as to their structure) bipartite directed graphs with two kinds of
nodes - places pi ∈ P, i = 1, . . . , n, and transitions tj ∈ T, j = 1, . . . ,m, and two
kinds of edges - the set F ⊆ P ×T of edges from places to transitions and the set
G ⊆ T ×P of edges from transitions to places. But moreover, P/T PN have also
dynamics - the evolution of marking of their places given as xk+1 = xk +B.uk,
where xk = (σp1 , . . . , σpn)

T with σpi ∈ {0, 1, . . . , c} (here c, being the capacity
of the places, may be either infinite or finite) is the marking vector express-
ing the state of the marking of the particular places, uk = (γt1 , . . . , γtm)T with
γtj ∈ {0, 1} is the vector of the states of transitions (disabled or enabled). The
matrix B = GT − F expresses the structure. F (Pre) and GT (Post) are the
incidence matrices of the arcs corresponding, respectively, to the sets F and G.
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P/T PN do not depend on time. Their transitions, places, arcs and tokens do
not contain any time specifications. In TPN [15] time specifications are defined.
In general, the time specification can be assigned to TPN places, transitions,
directed arcs, even to tokens. However, in this paper the time specifications will
be assigned exclusively to the TPN transitions (more precisely to the P/T PN
transitions). Namely, in the deterministic case they will represent time delays
of the transitions while in the non-deterministic cases they will express a kind
of probability distribution of timing (e.g. exponential, discrete uniformed, Pois-
son’s, Rayleigh’s, Weitbull’s). HPN in general are [6] an extension of Petri nets
(PN). HPN model the hybrid systems where discrete and continuous variables
coexist. HPN have two groups of places and transitions - discrete and continu-
ous. Consequently, three kinds of directed arcs exist in HPN: (i) the arcs between
discrete places and discrete transitions; (ii) the arcs between continuous places
and continuous transitions; (iii) the arcs between discrete places and continuous
transitions as well as the arcs between the continuous places and discrete tran-
sitions. While HPN discrete places and transitions handle discrete tokens, the
HPN continuous places and transitions handle continuous variables (different
kinds of flows). FOHPN are a simplified kind of HPN. FOHPN are defined in
details in [2–4, 7, 13]. The comprehensive definition will not be introduced here,
of course. But to give the basic idea about FOHPN it is necessary to introduce
that the set of places P = Pd∪Pc, where Pd is a set of discrete places (figured by
circles) and Pc is a set of continuous places (figured by double concentric circles).
Analogically, the set of transitions T = Td∪Tc, where Td is a set of discrete tran-
sitions (figured by rectangles) and Tc is a set of continuous transitions (figured
by double rectangles). Td contains a subset of immediate (no-timed) transitions
like those used in P/T PN and/or a subset of timed transitions (deterministic
and/or non-deterministic like in TPN). Consequently, the FOHPN marking con-
sists of two parts: (i) discrete - integer number of tokens in discrete places; (ii)
continuous - an amount of a fluid in continuous places. The instantaneous firing
speed (IFS) [2–4], determining an amount of fluid per a time units in a time
instance τ , is assigned to each of the continuous transition Tj . For all time in-
stances τ holds Vmin

j ≤ vj(τ) ≤ V max
j , where min and max denote the minimal

and maximal values of the speed vj(τ). IFS is piecewise constant. The rules for
enabling the continuous transitions are as follows. An empty continuous place Pi

is filled through its enabled input transition. So, the fluid can flow to its output
transition. The continuous transition Tj is enabled in the time τ [2–4, 13] if and
only if its input discrete places pk ∈ Pd have marking mk(τ) at least equal to the
element Predc(pk, Tj) of the incidence matrix Predc of arcs from discrete places
to continuous transitions and all of its input continuous places Pi ∈ Pc satisfy
the condition that their markings Mi(τ) ≥ 0 - i.e. the places Pi are filled. If all of
the input continuous places of the transition Tj have non-zero marking then Tj

is strongly enabled, otherwise Tj is weakly enabled. The continuous transition Tj

is disabled if some of its input places is not filled. Namely, Tj cannot take more
fluid from any empty input continuous place than the amount entering the place
from other transitions. This corresponds to the principle of mass conservation.
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Segments of a transport system (e.g. whole city or a part of country) with an
increased traffic density are understood to be agents. The agents are mutually
connected by the roads. The cooperation among the adjacent agents is realized by
means of passing the vehicles in/out each other. Here, we will be interested only
in the interior of one of such agents (segments) and test its internal dynamic
behaviour. Firstly, the segment will be modelled by the TPN and tested by
simulation in Matlab by means of the HYPENS tool. Secondly, the modelling
will be performed by FOHPN and tested by means of the HYPENS tool too.

2 Case Study

Let us start from the P/T PN model of the segment of a transport system given
in Fig. 1 studied in [1]. The P/T PN places (denoted by circles) represent the
intersections of roads while the arcs between the places containing the P/T PN
transitions (denoted by rectangles) represent the roads between the intersec-
tions. In order to find the route from the crossroad modelled by the place p1 at
respecting the bounded throughput of the particular roads at the increased traf-
fic density (i.e. when in some roads either the traffic is bounded or a congestion
occurs) to the crossroad modelled by the place p6, usage of TPN and FOHPN
will be tried. Consider that the distance of each road section is given by d12 =
40m, d24 = 30m, d13 = 30m, d34 = 20m, d45 = 50m, d65 = 30m, d76 = 30m, d73
= 40m, d37 = 40m, d87 = 40m, d18 = 30m, where dij is the distance from inter-
section point i to j. Assume that the average vehicle speed of each road section
is estimated by an Adaptive Gray Threshold Traffic Parameters Measurement
(AGTTPM) [9, 10] system as v12 =10m/s, v24 = 5m/s, v13 = 5m/s, v34 = 5m/s,
v45 = 10m/s, v65 = 10m/s, v76 = 3.33m/s, v73 = 10m/s, v37 = 5m/s, v87 =
10m/s, v18 = 10m/s (where m/s stands for meters per second), the estimated
travel time τij from the place pi to pj can be computed as the ratio of the dis-
tance to the average vehicle speed and assigned to the corresponding transition
as (τ12 = 4s) → t1, (τ24 = 6s) → t2, (τ13 = 6s) → t3, (τ34 = 4s) → t4, (τ45 =
5s) → t5, (τ56 = 3s) → t6, (τ76 = 9s) → t7, (τ73 = 4s) → t8, (τ37 = 8s) → t9,

Fig. 1. The P/T PN-based model of the segment of the transport system
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Fig. 2. TPN marking of the places p1−p4 with respect to time in the deterministic case.
The particular courses give us information about the occupation of the corresponding
crossroads. The crossroad modelled by p2 (its marking is 1.10−10 is passed not a bit.

(τ87 = 4s) → t10, (τ18 = 3s) → t11 (where s stands for seconds). These estimated
travel times can be incorporated into the transitions of the TPN model, namely,
in the deterministic case as their time delays, while in the non-deterministic case
as a kind of probability distributions of their timing. The graphical results ob-
tained by means of the HYPENS tool (it is able to model not only FOHPN but
also TPN) are given in Fig. 2, Fig. 3. While in Fig. 2 the marking of TPN places
p1−p4 are displayed, in Fig. 3 the marking of TPN places p5−p8 are shown. The
results correspond to the input parameters m0 ≡ xT

0 = (10, 0, 0, 0, 0, 0, 0, 0)
and the vector of the TPN transitions weights (it is the internal HYPENS pa-
rameter) α = (5, 3, 3, 5, 4, 6, 1, 5, 2, 5, 6) depending on the time delays (the
maximal priority is assigned to the transition with the shortest time delay). It
can be seen that the order of the sequence of activating the TPN places in time
is: p1 → p8 → p7 → p4 → p5 → p6. Just this sequence represents the route upon
which the passing from p1 to p6 happens in the shortest time.

Now, let us use the FOHPN model given in Fig. 4. The sense of the discrete
blocks can be explained on the block {p1, p2, p3, p4, t1, t2, Ti} displayed in Fig. 5
as follows. The discrete place p1 has to be active (i.e. to have the token) in order
that the continuous transition Ti might be open. When p2 is active, T1 is closed.
The active place p3 makes possible to open the closed Ti, while the active place
p4 makes possible to close the opened Ti. The transitions t1, t2 may be either
deterministic (with deterministic time delays only) or non-deterministic (with
a kind of the probability distribution of its timing). The flow through the Ti is
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Fig. 3. TPN marking of the places p5−p8 with respect to time in the deterministic case
show the occupation of the corresponding crossroads. All of them are passed during
the corresponding time interval.

Fig. 4. The FOHPN model of the situation in the transport segment
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Fig. 5. The P/T PN-based discrete block in FOHPN

liable to the rules (mentioned above) explained in details in [2–4, 13] concerning
the evolution of FOHPN continuous marking. Using the model in HYPENS tool
we can obtain the graphical simulation results in deterministic case as the courses
given in Fig. 6, Fig. 7, where the following input parameters were used: the ini-
tial continuous marking M0 = (100, 0, 0, 0, 0, 0, 0, 0), the initial discrete mark-
ing m0 = (1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1),
the limits of IFS for continuous transitions V min = (0 0 0 0 0 0 0 0 0 0 0), Vmax =
(11, 6, 6, 6, 11, 11, 3.7, 11, 6, 11, 11). Simultaneously, the parameters of the dis-
crete uniform probability distribution - fx = 1/(b−a) when x ∈ (a, b) and fx = 0
otherwise - for the discrete transitions timing are δ = 15∗([2 6], [2 6], [4 8], [4 8],
[4 8], [4 8], [2 6], [2 6], [3 7], [3 7], [1 5], [1 5], [7 11], [7 11], [2 6], [2 6], [6 10], [6 10],
[2 6], [2 6], [1 5], [1 5]), where the pairs [ai bi], i = 1, . . . , 22, create the param-
eters for particular discrete transitions t1 − t22. The weights of the discrete
transition were not predefined while the weights of the continuous transitions
are: (5, 3, 3, 5, 4, 6, 1, 5, 2, 5, 6). It can be seen from the results that at passing
the routes the crossroads modelled by the continuous places P5 and P8 are at-
tended less than the other ones. More or less it is confirmed also by the graphical
simulation results obtained at using the exponential probability distribution of
timing the discrete transitions: fx = λ.e−λ.x for x ≥ 0 and fx = 0 otherwise.
These results are given in Fig. 8, Fig. 9. In this non-deterministic case the pa-
rameters were the same, except the parameters characterizing the probability
distribution. Here, the parameters of the exponential probability distribution
are: λ = (4, 40, 6, 60, 6, 60, 4, 40, 5, 50, 3, 30, 9, 90, 4, 40, 8, 80, 4, 40, 3, 30).
It means that the transport is largely realized throughout the other places (out
of the P5 and P8). The results obtained by using the exponential probability
distribution are more smoothed than those gained at the discrete uniform one.
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Fig. 6. FOHPN continuous marking of P1−P4 with respect to time in non-deterministic
case with the discrete uniform probability distribution of timing the discrete transitions

Fig. 7. FOHPN continuous marking of P5−P8 with respect to time in non-deterministic
case with the discrete uniform probability distribution of timing the discrete transitions
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Fig. 8. FOHPN continuous marking of P1−P4 with respect to time in non-deterministic
case with the exponential probability distribution of timing the discrete transitions

Fig. 9. FOHPN continuous marking of P5−P8 with respect to time in non-deterministic
case with the exponential probability distribution of timing the discrete transitions
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3 Conclusion

The main idea of this paper is to point out the further possibilities of modelling
the transport systems throughput at the increased traffic density. The informa-
tion from the AGTTPM system makes possible to find the suitable routes. This
work extends our previous work [1] where the P/T PN-based approach was pre-
sented. While there the time specifications were missing, here, at the application
of TPN and FOHPN, the time specifications can be applied in a wide range.
Consequently, the simulation of the time behaviour of the transport segment
(agent) of a global transport system is possible. Such a procedure is very useful,
because it yields the flows of the vehicles in time. Then, the cooperation among
the adjacent segments (agents) can be realized by means of passing the vehicles
in/out each other - i.e. by means of the mutual exchange of the vehicles. Of
course, here (on the prescribed limited space) only one segment is dealt with.
The TPN model presented here was built directly from the P/T PN model pre-
sented in [1]. Namely, the time specifications - i.e. either simple time delays in
deterministic case of timing or a kind of the probability distributions of tim-
ing - were assigned to the P/T PN transitions. In such a way the TPN model
of the segment arose. Using the model for simulation in Matlab by means of
the HYPENS tool the graphical simulation results can be obtained in the form
of stepped time functions. To illustrate the soundness of such an approach the
graphical results for the deterministic case (where exclusively the deterministic
time delays were used) were introduced and verbally described in order to docu-
ment the abilities of the approach. The approach yields the most suitable passing
the roads with respect to prescribed conditions. Then, the FOHPN model was
proposed and used for the simulation in Matlab by means of the HYPENS tool.
In such a way the continual courses of the vehicle flows passing the intersections
of the roads can be found in the form of the continuous piecewise-linear real
time functions. To illustrate the soundness of such and approach two graphical
simulation results were presented. They correspond to non-deterministic case of
timing the discrete transitions of the FOHPN. While in the former illustration
the discrete uniform probability distribution was used at timing the discrete
transitions of FOHPN model, in the latter illustration the exponential proba-
bility distribution at timing the discrete transitions was used. The results were
corroborated by parameters used at the simulations and verbally interpreted.
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