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Preface

The International Workshop on Hybrid Metaheuristics was established with the
aim of providing researchers and scholars with a forum for discussing new ideas
and research on metaheuristics and their integration with techniques typical
of other fields. The papers accepted for the ninth edition confirm that such
a combination is indeed effective and that several research areas can be put
together. Slowly but surely, this process has been promoting productive dialogue
among researchers with different expertise and eroding barriers between research
areas.

The papers in this volume are a representative sample of current research in
hybrid metaheuristics. There are a large number of papers demonstrating how
metaheuristics can be integrated with integer linear programming and other
operations research techniques. Most of these papers are not only a proof of con-
cept, which can be valuable by itself, but also show that the hybrid techniques
presented tackle difficult and relevant problems.

In keeping with the tradition of this workshop, special care was exercised in
the review process: out of 22 submissions received, 14 papers were selected on
the basis of reviews by the Program Committee members and evaluations by the
program chairs. The corresponding acceptance rate is higher than in previous
editions. However, this was mainly due to the high average quality of the sub-
mitted works. Reviews were in great depth: reviewers sought to provide authors
with constructive suggestions for improvement. Special thanks are extended to
the Program Committee members who devoted their time and effort.

The present selection of papers can be of interest not only to researchers work-
ing on integrating metaheuristics with other areas for solving both optimization
and constraint satisfaction problems. We hope that those who participated in
HM 2014 succeeded in making connections between their own specific research
areas and others.

June 2014 Maria J. Blesa
Christian Blum

Stefan Voß
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Thomas Stuetzle IRIDIA - Université Libre de Bruxelles,
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Marie-Éléonore Marmion, and Thomas Stützle
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A CP/LNS Approach for Multi-day

Homecare Scheduling Problems

Luca Di Gaspero and Tommaso Urli

DIEGM – University of Udine
Via Delle Scienze, 206 - 33100 Udine, Italy
{luca.digaspero,tommaso.urli}@uniud.it

Abstract. Homecare, i.e., supportive care provided at the patients’
homes, is established as a prevalent alternative to unnecessary hospi-
talization or institutional care (e.g., in a rest home or a nursing home).
These activities are provided either by healthcare professional or by non-
medical caregivers, depending on the patient’s needs (e.g., medical care
or just instrumental activities of daily living).

In this paper, we consider the problem of scheduling Homecare Activ-
ities, that is, determining the caregivers’ daily tours and the schedules of
the homecare service to patients. We present a Constraint Programming
(CP) formulation of the problem and we propose a Large Neighborhood
Search method built upon the CP formulation.

1 Introduction

Supportive care at patients’ homes is a prevalent alternative to the classical
forms of institutional care (e.g., rest homes, nursing homes, hospitals) because it
will increase the patient’s quality of life while being more cost effective. Home-
care1 activities are performed by caregivers who visit the patient’s home, carry
out their tasks and then travel to the next patient. This specific feature makes
the labor organization of homecare activities different from the one arising in
institutional care. In particular, the patients’ visits could have specific temporal
and/or operator requirements which might impose the simultaneous presence of
different caregivers at a given place, thus requiring a coordination of the tours.

In this paper we consider the problem of scheduling homecare activities for a
time horizon H consisting of h consecutive days (H = {0, . . . , h− 1}). On each
day d ∈ H we have to schedule a set Ad = {0, . . . , nd − 1} of activities located
in a given geographic location (xa, ya) (i.e., the patient’s home), with a duration
da and a number ma of needed caregivers. In addition, specific requirements on
the time window [σa, εa] in which the service must be provided can be imposed.

Activities are performed by a set E = {0, . . . , E − 1} of caregivers. Each
caregiver e ∈ E starts and ends his/her tour from a geographic location (xe, ye)
and can work on a (possibly different) specific time window [σe,d, εe,d] on each

1 We do not distinguish here between activity of daily living and medical forms of
homecare, however the latter is also known as Home Healthcare.

M.J. Blesa, C. Blum, and S. Voß (Eds.): HM 2014, LNCS 8457, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014



2 L. Di Gaspero and T. Urli

day d ∈ H . Moreover, he/she cannot perform all the possible activities in a ∈⋃
d∈H Ad but only those which are compatible with his/her skills. This is stated

by a binary relation ρe,a, whose value is 1 if caregiver e is compatible with
activity a. Finally, because of labor regulations, each caregiver e should work
at least te,d hours on a given day or he/she should have a day off. Moreover,
a caregiver e cannot work for more than k consecutive days and for more than
te,d hours on each day. Moderate violations to this latter constraint are usually
allowed, but they will count as a overtime work, which has to be penalized.

The problem consists of determining the daily routes of caregivers and the
schedules of activities so that the traveling costs and the use of overtime work
is minimized. This problem is genuinely hard, being a combination of employee
scheduling (more precisely rostering) and vehicle routing with time windows on
a multi-period horizon.

It is worth noticing that the basic problem formulation relies on the hypothesis
of existence of perfect solutions: i.e., those for which all activities are assigned
to a caregiver. Unfortunately, in practice it is not always possible to serve all
activities with the available caregivers, therefore in a more realistic formulation
we will allow (but highly penalize) solutions in which some activities are left
unassigned. The formulation of the problem in this form is the result of the
real-world requirements collected and provided to us by EasyStaff, a company
specialized in software solutions to timetabling and scheduling problems.

In this paper, we first introduce a Constraint Programming (CP) model of
the problem that is based on a vehicle routing formulation. Then we show how
we can generally build effective Large Neighborhood Search methods upon this
model. Finally, we show with an experimental evaluation on the proposed so-
lution methods on a set of random instances that simulate the structure of
real-world Homecare assignment problems.

1.1 Related Work

To the best of our knowledge the first approaches to the problem are due to [1]
and [2]. In the first paper, a simple scheduling heuristic is employed, whereas in
the latter a MIP model has been formulated. Besides these early works, a few
other modeling and solution approaches have been proposed for the Homecare
problem. An established way, is to look at the problem from a set-partitioning
perspective with side constraints [3,4] and solve it through variants of ILP meth-
ods (branch-and-price). In particular, Rasmussen et al. [3] focus on different
temporal constraints among activities, which generalize the concept of synchro-
nization constraints that will be described in Section 2.2.

Other works deal with a variant of the problem that considers multimodal
transportation (i.e., car or public transportation), which is solved by hybrid
approaches. Bertels and Fahle [5] use a combination of linear programming,
constraint programming, and metaheuristics in a flexible tool that will handle
multiple variants of constraints. Rendl et al. [6] solve the problem with a hybrid
approach that employs CP for generating a valid initial solution to the problem
and improves it through a number of different metaheuristics.
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Other recent approaches to the problem are due to Trautsamwieser and Hirsch
[7], who also employ a VNS-based metaheuristics, and Allaoua et al. [8], who
devise a matheuristic approach based on the decomposition of the rostering and
the routing parts.

Our work differs from the previous literature mainly because in all the cited
paper the authors consider a daily time horizon. To the best of our knowledge
[9,10] are the only papers on this topic that considers a periodic problem and they
tackle it with an adaptive LNS approach. The main difference w.r.t. these works
is that the authors of these two papers focus on stable solutions w.r.t caregivers,
i.e., each patient should preferably always be visited by a single caregiver in
the week. Moreover the CP model is based on a scheduling perspective and the
LNS scheme they use is finer-grained that ours, since they relax a small set
of activities either randomly or based on the penalty contribution to the cost
function, whereas we consider a coarse-grained multi-day neighborhood.

Another difference of the present work with previous ones is that in some of the
cited papers the authors explicitly model personnel skills, and allow an activity to
be performed only by a sufficiently skilled caregiver. In our model, instead, skills
are not explicitly considered but they are modeled through incompatibilities
between activities and caregivers.

2 A Constraint Model for Homecare Activity Scheduling

The constraint model is based on the classical Vehicle Routing Problem (VRP)
CP model [11] with some adaptations to the special structure of our problem.

We present our model in stages. Let first consider a single day, disregard the
temporal components, assume that all homecare activities require exactly one
caregiver, and that all activities have to be scheduled. In this setting, we build
a special directed graph G, which consists of the following kinds of nodes:

– the departing node for each caregiver S = {0, . . . , E},
– the activities that should be executed by the caregivers in the tour R =

{E + 1, E + 2, . . . , E+,1 , . . . , E + 1 + (nd + rd)},
– the ending nodes for each caregiver T = {E + 1 + (nd + rd) + 1, . . . , 2(E +

1) + (nd + rd)}.
An edge between two nodes (a1, a2) is weighted with the distance of traveling
from a1 to a2.

The graphG contains 2E+nd nodes, whereE = |E| is the number of caregivers
and nd is the number of activities on day d. This graph structure allows to
define successor and predecessor variables for each node of the graph, which will
represent the caregivers routes. By imposing that the successor of the ending
node for a given caregiver e is set to be the departing node of the following
caregiver e + 1 mod E, the problem consists in finding a Hamiltonian circuit
in this graph. In this encoding, the sub-tour for the single caregiver e starts at
node e (denoted by e) and ends at node E + nd + e (denoted by e).

We first remove the last assumption, i.e., we allow some activities to remain
unscheduled. In order to do this, we use an additional “dummy” caregiver E,
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whose sub-path comprises all the activities that are left unserved. Consequently,
the set of caregivers becomes E = {0, . . . , E} and we will denote the set of
“regular” caregivers by E∗ = {0, . . . , E − 1}.

Secondly, we can easily remove the restriction on the number of caregivers
required by an activity a by adding to the graph one replicate of the activity
node for each caregiver required. As a consequence, the graph will have nd + rd
inner nodes, where rd is the overall number of activity replicates on day d.

Thirdly, we introduce the time components by extending each node of the
graph with a time window. As for the caregiver departing and ending node, the
time window will coincide with the allowed worktime of the caregiver, whereas
for the activity nodes it will consider the patient’s temporal constraints.

Finally, the extension to multiple days is straightforward, as it will consider
a set of distinct graphs, one for each day in the time horizon.

In the following, we give a detailed description of the variables, constraints,
and cost function involved in our model. Moreover, we describe a custom branch-
ing strategy which exploits problem-specific knowledge to guide the search.

2.1 Variables

Similarly to the previous section, for the purpose of easing notation, the model
variables are presented for a single day. The extension to multiple days is straight-
forward and will be denoted by using an additional superscript index d ∈ H on
all the following variables (which are summarized in Table 1).

As already mentioned, the routes in the graph G are represented by defining
the successor of each node in V . Thus, we have |V | successor variables succ that
range over V , where succi represents the node following node i in the route. In
addition, we define the redundant set of predecessor variables pred where predi
denotes the node which comes just before node i in the route. Although these
variables are redundant, according to [11], when channeled with the previous
ones they achieve a more effective propagation.

Second, to each node i we associate the caregiver that will serve that activity2

through the variable caregiveri that ranges over E .
The temporal components are captured by the variables starti, durationi, and

slacki, where the first two variables represent the start time and the duration of
activity i, whereas the third is an optional waiting time of the caregiver after the
activity has been served. In order to deal with manageable domain sizes for these
variables, time values have been discretized by expressing them using timeslots
of a given time granularity γ. For the purposes of this problem we choose γ =
10 minutes, which is adequate to express usual activity duration and practical
traveling times, also allowing the possible compensation for small delays. The
domain of the time variables for each day d, therefore, are proper subsets of the
range {0, . . . , 24h/γ}. Concerning the duration variables, in our problem they are
statically determined in the problem instance we are considering. However, for

2 We consider the starting and the ending nodes as placeholder activities that require
exactly that specific caregiver.
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Table 1. Variables in the CP Model; all variables are superscripted with the day d of
the time horizon which they refer to

name[dimension] domain description

succd[V ] V successor of activity i ∈ V
predd[V ] V predecessor of activity i ∈ V

caregiverd[V ] E∇ caregiver serving activity i ∈ V

startd[V ] [0 . . . 24h/γ] the starting time of serving activity i ∈ V

durationd[V ] {0, di} the duration of activity i ∈ V
slackd[V ] [0 . . . 24h/γ] possible slack time after serving activity i ∈ V

endd[V ] [0 . . . 24h/γ] the ending time of serving activity i ∈ V

worktimed[E ] [0 . . . 24h/γ] total worktime of caregiver e ∈ E
overtimed[E ] [0 . . . 24h/γ] total overtime of caregiver e ∈ E
isWorkingd[E ] {0, 1} caregiver is working on this day

unscheduledd [0 . . . nd] number of unscheduled activities

distanced [0, ub] total traveled distance

costd [l, u] overall cost

modeling purposes we allow also the singular value 0 for duration that, along
with the assignment to the dummy caregiver, will represent the duration of
unscheduled activities. For this reason, they should be treated as variables. slack
variables allow for flexible waiting times in case of spread activity time windows
or activity synchronization. The end variables are just convenience variables used
for representing the activity end time.

Finally, the variables worktime, overtime, and isWorking are defined on the
set of regular caregivers E∗. Variable worktimee and overtimee accounts for the
daily worktime and overtime of caregiver e ∈ E∗, whereas the boolean variables
isWorkinge state whether the caregiver e is working or has a day off.

The components of the cost function we consider are the number of unscheduled
activities, the total overtime (i.e.,

∑
e∈E overtimee) and the total traveled distance.

These are aggregated in a linear combination and expressed in monetary units.

2.2 Constraints

The presentation of the constraints in our model are divided in two parts. First
we introduce the essential constraints that are needed to thoroughly model the
problem and then we discuss some redundant constraints that will make the
tree-search process more efficient by allowing an early detection of infeasible
solutions. As in the previous section we temporarily omit the day superscript d
on the variables. The global constraints are presented using the Gecode syntax.

Essential Constraints. We start our description with the routing part of the
model. The first set of constraints states the relationship between the successor
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and predecessor variables for all the nodes. This is achieved by channeling them
through the element global constraint.

element(pred, succi) = i ∀i ∈ V (1)

element(succ, predi) = i ∀i ∈ V (2)

In order to build a circuit the connections between the ending node of one
caregiver and the starting node of the following one are explicitly set.

succE+(nd+rd)+e = (e + 1) mod (E + 1) ∀e ∈ E (3)

prede = E + 1 + (nd + rd) + (e − 1 mod (E + 1)) ∀e ∈ E (4)

Finally, the paths described by the succ and pred variables must be Hamil-
tonian circuits, and this is stated by means of the circuit global constraint.
The variant of the constraint we use, also binds an array of variables with the
distance of the edges selected by the path variables.

circuit(succ, T D, forwardDistance) (5)

circuit(pred, T D, backwardDistance) (6)

In the previous constraints, T D denotes the matrix with the traveling distances
between any pair of nodes in the graph. This is a static data of the problem in-
stance that can be either computed exactly (e.g., through GIS APIs) or just ap-
proximated (e.g., considering the haversine distance). Moreover, forwardDistance
and backwardDistance are the arrays with the distances of the selected edges.
These arrays cannot be simply summed up in order to compute the total trav-
eled distance because also the path of the dummy caregiver is included in the
circuit. We show in a while a workaround to this situation.

We proceed with constraints on the caregivers’ variables. First, we initialize
the correct caregiver e ∈ E for each of the starting and the ending nodes:

caregivere = e ∀e ∈ E (7)

caregivere = e ∀e ∈ E (8)

second, we push the caregiver-chain over the path variables on the regular ac-
tivity nodes so that every node in a path must be served by the same caregiver:

element(caregiver, succi) = caregiveri ∀i ∈ R (9)

element(caregiver, predi) = caregiveri ∀i ∈ R (10)

third, we remove a given caregiver from the domain of his/her incompatible
activities.

ρi,e = 0 ⇒ caregiveri �= e ∀i ∈ R (11)

As a result of these constraints, every activity in a path starting from node e
and ending on node E+1+(nd+ rd)+ e is served by the same caregiver e. Con-
sequently, we can filter out the edges traveled by the dummy caregiver by means
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of a linear combination of the forwardDistance and backwardDistance variables
whose multipliers are the boolean expressions stating whether the outgoing edge
from node i is traveled by the dummy caregiver, that is:

distance =
∑
i∈V

(caregiveri = E) · forwardDistance i (12)

Analogously, we can bind the number of activities that are left unscheduled with
the following constraint:

count(caregiver, {E}, unscheduled) (13)

Next, we present the temporal and scheduling constraints. However, before
doing that let us describe some modeling assumption we made in order to have
a tractable and uniform expression of these constraints. Since the number of
activities that will be assigned to the dummy caregiver E cannot be predicted in
advance, we decided to model the time variables of the special path starting from
the depot E with “zero” times. That is, we write the constraints that impose all
the start, the duration, and the slack to be 0 on that path. Conversely, on regular
caregivers these variables are constrained according to the temporal constraints
that are statically expressed in the problem instance.

Therefore, the first set of temporal constraints for regular activity nodes deals
with the special case of the dummy caregiver:

caregiveri = E ⇒ starti = 0 ∧ slacki = 0 ∀i ∈ R (14)

caregiveri = E ⇐⇒ durationi = 0 ∀i ∈ R (15)

Conversely, for a regular caregiver the following constraints hold:

caregiveri �= E ⇒ starti ≥ σi ∧ endi ≤ εi ∀i ∈ V (16)

These constraints are also extended on starting and ending nodes of the regular
caregivers, where the time window [σe, εe] for those nodes is the working time
window for the caregiver e �= E. The variables end are used here to represent
the ending time of the activities and they are constrained as follows:

endi = starti + durationi + slacki ∀i ∈ V (17)

For starting and ending nodes (S and T ), the variables duration and slack are
set to zero:

durationi = 0 ∧ slacki = 0 ∀i ∈ S ∪ T (18)

The time-chain on the regular nodes is pushed through the following constraints:

element(start, succi) = starti + (19)

(caregiveri �= E) ·
(
durationi + slacki +

element(T T , i, succi)
)

∀i ∈ S ∪R
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where T T is the matrix of the traveling time between two nodes and the ex-
pression (caregiveri �= E) is a boolean multiplier that propagates the zero start
in the case of the dummy caregiver.

Because of the modeling choice on activities requiring multiple caregivers,
which are exploded in different replicates of the same activity node, we must
ensure that those replicas are synchronized. Moreover, we require that either all
the replicates are assigned to a suitable regular caregiver or all replicates remains
unscheduled. These conditions are stated by the following constraints:

count(caregiveri,...,i+mi−1, E∗, regularCaregivers) ∀i ∈ R∗ (20)

nvalues(starti,...,i+mi−1, 1) ∀i ∈ R∗ (21)

nvalues(durationi, . . . , i+mi − 1, 1) ∀i ∈ R∗ (22)

The set R∗ denotes the set of nodes that are the first replicate of an original
activity and mi is the number of caregivers needed. Variable regularCaregivers is
bound with the number of regular caregivers assigned to the activity replicates
and its domain is {0,mi} so that is either zero or the correct number of replicates.
The following two set of constraints impose synchronization of activities start
times and duration.

Next, the schedule of the activities assigned to the same regular caregiver
must not overlap in time. To this aim we consider each caregiver as a unary
resource and the activities as tasks and impose the following constraints:

unary(starti∈R, endi∈R, (caregiveri∈R = e)) ∀e ∈ E∗ (23)

The expression (caregiveri∈R = e) is expanded in an array of |R| boolean variables
that activate the no-overlap scheduling constraint only on the indexes of the
temporal variables for which the expression is true. These constraints can be
efficiently propagated using a sophisticated sequence of methods (see [12]).

Finally, for this family of constraints, the computation of worktime and over-
time is given by the following constraints:

worktimee = startE+(nd+rd)+e − starte ∀e ∈ E∗ (24)

overtimee = max{0,worktimee − te} ∀e ∈ E∗ (25)

Because of the labor regulations concerning the daily worktime, we also impose
a minimum amount of worktime te for caregiver e or we give him/her a day off:

worktimee ≥ te ∨ worktimee = 0 ∀e ∈ E∗ (26)

The last family of constraints deals with the multi-day horizon of our problem.
To this aim, we reintroduce from now on the superscript d on variables belonging
to different days. The first constraint binds the isWorking variables:

isWorkingde ⇐⇒ worktimede > 0 ∀e ∈ E∗ (27)

According to these variables, the number of consecutive days a caregiver could
work can be limited to k by the following sequence constraints:

sequence(isWorkingd∈H
e , 1, h, wd) ∀e ∈ E∗ (28)
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where wd is a variable whose domain is {0, 1, . . . , k} thus allowing consecutive
sequences of at most k ones in the isWorking variables in the time horizon H .

This concludes the description of the essential of our CP model for the home-
care problem. The model can be enhanced by some redundant constraints, that
will take care of some particular substructure of the problem and will be pre-
sented in the next section together with a custom propagator that will perform
a look-ahead so to increase the pruning capabilities for the routing part.

Redundant Constraints. The first family of redundant constraints avoid sub-
tours from a starting node to another starting node or from an ending node to
another ending node.

succi ≥ |S| ∀i ∈ S ∪R (29)

predi < |S ∪R| ∀i ∈ S ∪R (30)

Moreover, from starting or ending nodes we allow either a path through regular
nodes or a short-circuit from a caregiver’s starting node to his/her ending node:

succe < |S ∪R| ∨ succe = E + 1 + (nd + rd) + e ∀e ∈ E∗ (31)

predE+1+(nd+rd)+e < |S ∪R| ∨ predE+1+(nd+rd)+e = e ∀e ∈ E∗ (32)

Similarly to constraint (12), we impose that the computed traveled distance
in should be also equal to the backward (i.e., pred) Hamiltonian circuit:

distance =
∑
i∈V

(caregiveri = E) · backwardDistance i (33)

It is possible to filter out edges that cannot belong to any route either by
looking at some static problem instance information or at dynamic assignments.
As for the static filtering we look at the allowed time windows of pair of activities:

caregiveri �= E ∧ [σi, εi] � [σj , εj] ⇒ succi �= j ∀i, j ∈ V (34)

The � relation between time intervals is true when the left-hand interval do not
overlap with the right-hand one and σi > εj. The dynamic filtering also looks at
pair of activities and their temporal assignments:

caregiveri �= E ∧ starti > endj ⇒ succi �= j ∀i, j ∈ V (35)

We state the following synchronization constraint among replicates:

regularCaregivers = 0 ⇐⇒ caregiveri = E ∧ caregiveri+1 = E ∧ . . .

. . . ∧ caregiveri+mi
= E ∀i ∈ R∗ (36)

where regularCaregivers is the one that corresponds to constraint (20).
Thanks to the isWorking variables, we can explicit pruning caregiver’s values

from the domain of regular activities, i.e.:

¬isWorkinge ⇒ caregiveri �= e ∀e ∈ E∗ ∀i ∈ R (37)
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Fig. 1. Value j2 can be removed from the domain of succi if all two steps paths from
i to an ending node e passing through j2 exceed the specific time window

In addition, we can immediately force the short-circuiting of the paths of non
working caregivers:

¬isWorkinge ⇒ succe = E + (nd + rd) + e ∀e ∈ E∗ (38)

¬isWorkinge ⇒ predE+(nd+rd)+e = e ∀e ∈ E∗ (39)

and impose a conventional starting time to the departing and ending nodes so
to break symmetries:

¬isWorkinge ⇐⇒ starte = σe ∧ startE+1+(nd+rd)+e = σe ∀e ∈ E∗ (40)

Look-ahead propagator. The final redundant constraint we impose is a look-
ahead constraint. This constraint has been implemented by means of a custom
propagator that performs a one-step look-ahead of the temporal variables of the
successors of a given node. The idea of this propagator (see Figure 1) is to prune
a value j from the succi variable if all two-step-paths from i to the ending depot
de passing through j will violate the temporal constraints (16). The addition of
this constraint was motivated by preliminary experiments on the model.

Cost Function. The cost function of the problem is a hierarchical one, and
comprises the three components measured by the variables unscheduled, distance,
and overtime. Moreover, since we would like to maximize the efficient use of
caregivers’ worktime we also penalize the use slack in solutions.

We consider a weighted aggregation of these components to obtain a measure
in a common unit of measurement, i.e.:

cost = w1

∑
d∈H

unscheduledd + w2

∑
d∈H

∑
e∈∈E∗

overtimede + (41)

w3

∑
d∈H

∑
i∈V d

slackdi + w4

∑
d∈H

distanced

where w1 = 100e, w2 = w3 = 25e/h, and w4 = 0.30e/Km. These weight values
have been set up according to the current work and traveling costs.
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2.3 Branching Strategy

The branching strategy we employ is a bi-level one. First we determine the
number of caregivers that will work on a given day of the timeslot. This is done
through a surrogate counting variable that sums up the values of the isWorking
boolean variables. The heuristic for value selection for this brancher is to take
the median value. The motivation is that we have also to assign days off to
caregivers, therefore it would be effective to spread these days off on the whole
time horizon. Once the number of available caregivers have been set, a second
brancher will randomly select the value of the isWorking variables accordingly.

In the second level of the branching strategy we aim at constructing the
caregivers’ routes and determine the activity schedule. To do so, in order to
exploit the problem structure, we implemented a custom branching strategy,
whose behavior is illustrated in Figure 2. The procedure tries to extend the
shortest caregivers’ route (Fig. 2(a)) by setting the succ variable of its current
last step. The selection of the next activity is driven by the following heuristics:

1. prefer a regular node over an ending node;
2. if replicates of multiple activities have already been scheduled, prefer an

unscheduled replicate of those activities;
3. prefer an activity that has to end earlier;
4. prefer shorter activities;
5. prefer an activity that has to start earlier;
6. prefer the activity with most replicates.

Once the succ variable has been selected, the brancher will set the start variable
of the just added node to its earliest value (Fig. 2(b)). All the other temporal
variables will be fixed thanks to constraint propagation. Once the routes of
regular caregivers are closed (i.e., they reach the ending node), all the remaining
activities are assigned to the dummy caregiver (Fig. 2(c)) and their temporal
variables are assigned to the conventional value 0 (Fig. 2(d)).

3 Hybrid Approach

Large Neighborhood Search (LNS) [13,14] is a neighborhood searchmeta-heuristic
based on the observation that exploring a large neighborhood, i.e., perturbing
a significant portion of a solution, generally leads to optima of much higher
quality. While this is an undoubted advantage in terms of search, exploring a
large neighborhood structure can be computationally impractical, and requires a
higher effort than exploring of a regular neighborhood. For this reason, LNS has
been often coupled with filtering techniques, with the aim of reducing the size
of the neighborhood by neglecting those choices that would lead to unfeasible
solutions. In particular, LNS has been often associated with constraint models
in order to tackle complex routing problems [15,16].

The LNS procedure is initialized by generating the first feasible solution us-
ing the branching strategy described above. This step is essentially equivalent
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Fig. 2. Custom tree-search branching strategy for the Homecare problem

to finding the first feasible solution with our CP model. Once the initial solu-
tion has been generated, the algorithm enters a refinement loop, which consists
of two alternate steps. First, the destroy step, relaxes (unassigns) a subset of
the decision variables, yielding a smaller constrained optimization problem (less
variables, filtered domains). Second, the repair step, re-optimizes the relaxed
variables by means of a tree-search.

In our destroy step, a fraction of the decision variables is relaxed uniformly
at random based on a parameter δ ∈ {1, . . . , h}, which represents the number
of full days that are relaxed by the destroy step, i.e., if δ = 1 then all the
variables related to a single day are relaxed, if δ = h the solution is completely
relaxed. Since the pure CP tree-search assigns the variables day after day, in
this understanding this relaxation scheme allows to undo possibly bad decision
made by CP towards the root of the search tree.

Once a subset of the decision variables have been relaxed, a new solution is
produced through tree-search. Ideally, the repair step should return the best
solution in the neighborhood. However, depending on the number of relaxed
variables, finding the optimum can be non-viable. Our re-optimization strategy
consists in giving the repair step a time budget, which is proportional to the num-
ber of relaxed variables, i.e., a fixed number of milliseconds tvar. Moreover, this
tree-search chooses the number and identity of the working caregivers uniformly
at random. Our choice of relaxation and re-optimization steps is completely
neutral to the model constraints, including the sequence constraints (28).

Our approach involves a strategy to adapt δ dynamically during the search,
starting from δ = 1. Once a maximum number of non-improving iterations iimax

has been spent on a certain value of δ, this value is increased by one. The rationale
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behind this is that, if the search cannot improve anymore by relaxing one day,
then we try relaxing two days at once, and so on. Moreover, the value of δ is reset
to 1 when a new best solution is found. When LNS has performed iimax iterations
on δ = h (the maximum number of relaxable days) the search is restarted.

A neighboring solution is accepted if its cost is lower or equal to the one of the
current best solution. This allows to escape plateaux in the fitness landscape.

4 Experimental Analysis

The CP model, the custom propagator, and the branching rules were all imple-
mented using the Gecode framework [12]. Moreover, the LNS method has been
implemented as a generic search meta-engine for Gecode.

To assess the performance of our hybrid approaches, we have generated a
number of random instances based on the presented problem formulation. The
behavior of our instance generator3 is influenced by a number of parameters.
Among these are the geographical area, the planning horizon in days, the num-
ber of daily activities, a caregiver correction rate (a multiplier that can be used
to increase or reduce the number of needed caregivers, which is computed heuris-
tically), the types and probabilities of shifts for caregivers, the probability of a
caregiver/activity incompatibility, the probability of an activity to need multi-
ple caregivers, and the parameter k for the Poisson distribution from which the
number of caregivers for an activity is drawn.

Overall, our benchmark set is composed of 18 families of 30 instances each
(totaling 540 instances), differentiated by planning horizon, number of activities,
and caregiver correction rate (c). In these instances, whose activities are located
in a 40Km × 40Km rectangular area centered on Udine (Italy), the number of
maximum consecutive days is always h−1, while the other parameters have their
default values. According to the best practices, we have tuned the parameters of
our LNS approach (iimax = 60 and tvar = 10ms) by running, through json2run

[17], an F-Race(RSD) [18] over a subset of 360 instances, and used the remaining
180 for validation against the pure CP approach. Both the training and validation
instances are distributed together with the instance generator.

Table 2 summarizes, for each family of the validation instances, the aggregated
mean cost (f) in e, number of unassigned activities (fu), distance in Kilometers
(fd), hours of overtime (fo), and hours of slack time (fs) attained, respectively,
by pure CP and our hybrid approach in 10 minutes. The last column shows the
cost improvement attained when using LNS instead of pure CP.

From the results, it is easy to see that the LNS approach outperforms pure CP
on all except one family of instances, mostly because of its superiority in dealing
with unassigned activities (the most weighted cost component) and overtime
work. On the other hand, CP seems to be better at reducing the total traveling
distance. This is likely due to our branching strategy, which is able to reconsider

3 Available at https://bitbucket.org/tunnuz/homecare-instance-generator

https://bitbucket.org/tunnuz/homecare-instance-generator
https://bitbucket.org/tunnuz/homecare-instance-generator
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Table 2. Comparison between performance of CP (branch & bound) and LNS

Group CP LNS Imp.
h nd c f fu fd fo fs f fu fd fo fs
3 20 0.6 2247.46 11 399.40 0.32 0.50 961.37 2 419.30 0.10 0.30 57.2%
3 20 0.7 1210.38 0 478.20 0.15 0.67 1059.02 0 367.80 0.04 0.72 12.5%
3 20 0.8 1358.65 4 345.17 0.14 0.53 975.08 0 341.20 0.06 0.64 28.2%

3 30 0.6 2621.19 9 512.43 0.41 0.90 1220.18 0 773.53 0.13 0.42 53.5%
3 30 0.7 2908.59 12 538.43 0.28 1.00 1480.50 0 591.67 0.27 0.72 49.1%
3 30 0.8 2255.51 9 537.23 0.13 0.78 1265.01 0 538.90 0.08 0.73 43.9%

3 40 0.6 4502.60 26 780.67 0.53 0.73 1851.14 0 807.93 0.18 0.99 58.9%
3 40 0.7 2710.03 4 833.37 0.58 1.05 2968.33 7 867.03 0.45 1.10 -9.5%
3 40 0.8 3330.83 7 785.37 0.52 1.48 2405.65 3 948.50 0.33 0.97 27.8%

6 20 0.6 3846.61 19 696.23 0.35 1.03 2017.17 0 787.97 0.10 1.27 47.6%
6 20 0.7 2713.60 5 824.00 0.32 1.21 1605.11 0 734.57 0.11 0.87 40.8%
6 20 0.8 3088.61 6 836.23 0.42 1.39 1589.25 0 725.83 0.08 0.90 48.5%

6 30 0.6 5862.63 27 1114.03 0.76 1.49 2188.90 0 1147.67 0.31 0.90 62.7%
6 30 0.7 4371.72 5 1137.47 0.85 2.12 2922.87 0 1060.97 0.40 1.65 33.1%
6 30 0.8 4000.81 5 1160.90 0.38 2.18 2595.11 1 1154.57 0.33 1.18 35.1%

6 40 0.6 7646.02 36 1557.80 1.02 1.73 4096.22 0 1542.47 0.57 2.25 46.4%
6 40 0.7 6721.86 17 1562.07 0.90 2.86 4827.88 0 1693.20 0.79 2.65 28.2%
6 40 0.8 6623.41 11 1634.90 0.93 3.30 5486.30 7 1540.33 0.73 2.81 17.2%

the caregivers’ routes, exploiting the fact that it does not have a bound on the
time, unlike LNS repair step.

5 Conclusions and Future Work

In this paper we tackle the problem of multi-day scheduling of homecare activi-
ties by means of two CP-based solution methods. The contributions of the paper
are the following ones. First, we propose an effective routing-based CP-model for
the problem, including custom look-ahead constraints, and a dedicated branch-
ing strategy. Second, we devise an adaptive LNS method, which considerably
improves the results found by pure CP tree-search.

Among the alternatives we want to explore, are different relaxation methods
for the LNS destroy step, and more refined branching strategies either for the
determination of caregivers’ days off or for a finer-grained construction of the
routes. Moreover, we plan to test future refinements of this approach over real-
world instances as soon as they will be provided by our industrial partner.
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9. Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health care
problem. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings 2007.
Operations Research Proceedings, vol. 2007, pp. 297–302. Springer, Heidelberg
(2008)
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Abstract. Bike sharing systems have recently enabled sustainable means of 
shared mobility through automated rental stations. Spatio-temporal variation of 
bike rentals, however, leads to imbalances in the distribution of bikes causing 
full or empty stations.  

The resource allocation problem tackles imbalances at a tactical planning 
level by means of bike allocation and relocation. We propose a MIP formula-
tion of an extended dynamic service network design model. The objective is to 
determine optimal fill levels at stations while minimizing the expected costs of 
relocation for the typical bike demand. The MIP formulation is hard to solve 
due to a large number of binary variables for relocations (stations times stations 
times periods). 

Thus, we present a hybrid metaheuristic integrating a large neighborhood 
search with exact solution methods provided by a solver. The large neighbor-
hood search iteratively improves the solution with the help of limiting and con-
trolling possible relocation regimes by a fix-and-optimize strategy, i.e. a small 
subset of “free” binary relocation variables. The majority of remaining binary 
variables are tentatively fixed to zero leading to a fast solvable truncated MIP of 
the resource allocation problem. Therefore, a commercial solver can provide a 
local optimal value based on the defined neighborhood, in a reasonable time. 
Results obtained indicate that the hybrid metaheuristic outperforms CPLEX for 
data from Vienna’s bike sharing system “Citybike Wien”. 

Keywords: Hybrid metaheuristic, large neighborhood search, fix-and-optimize, 
mixed-integer programming, resource allocation, bike sharing. 

1 Logistical Challenges in Bike Sharing Systems 

Bikes are gaining more and more attention as an alternative and sustainable mode of 
transportation in urban areas. In recent years, innovative bike sharing systems (BSS) 
have been implemented in about 400 cities in Europe [1]. BSS provide bikes at unat-
tended bike stations city-wide [2]. Prominent BSS grant that the first 30 minutes of 
trips are free. The operation of BSS will likely need financial support since money 
often cannot be directly earned with BSS [1]. 

Information systems enable fully automated rental and return operations, inducing 
one-way trips and potentially short rental times. Due to the mobility needs of users, 
spatio-temporal demand variation occurs leading to imbalances in bike distribution. 
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Depending on the location, stations may run full or empty or may have cyclic demand 
variation in the course of day. For instance, stations that tend to run empty are located 
on hills whereas stations in a residential area run empty in the morning and full in the 
evening due to commutes. 

Thus, BSS operators face challenging logistical tasks regarding the reliability of 
service. For instance, a tendering for the Arlington BSS requests that “stations shall 
not be full of bicycles for more than 60 minutes during the hours of 8am - 6pm and 
180 minutes during the hours of 6pm - 8am” [3]. Operators have to ensure bike avail-
ability for rentals as well as a sufficient number of free bike racks for returns by relo-
cating bikes from full to empty bike stations. However, relocation of bikes with the 
help of a service fleet results in significant costs affecting the viability of BSS [4]. 

On tactical level, the required relocation demand satisfying typical demand in 
terms of bike flows is determined. The resource allocation problem (RAP) deals with 
the adequate distribution of bikes by means of allocation whereas relocation opera-
tions are anticipated. Therefore, fill levels of bikes at stations need to be determined 
in order to compensate typical bike demand variation in the course of day. Anticipa-
tion of relocation demand occurs by determining relocation operations abstracting 
from relocation tours on the operational level. A relocation operation consist of the 
pickup and return station as well as the time-period and number of relocated bikes. 
Decisions on allocation and relocation are interdependent, since reasonable fill levels 
of bikes may reduce relocation efforts, whereas high relocation efforts may compen-
sate insufficient bike fill levels. Typical bike flows serve as input occurring due to 
recurring mobility patterns in the course of day. Thus, the relocation operations are 
computed once, e.g. for the typical working day in the summer season. The deter-
mined relocation operations then have to be implemented in relocation tours and pos-
sibly adjusted to the demand variation on the operational level. 

In this paper, we propose a MIP formulation of the RAP. The presented mathemat-
ical model determines the optimal fill level at stations by minimizing the expected 
costs of relocation while ensuring a given service level. Since the MIP is hard to solve 
due to a high number of binary variables modeling relocation operations, we propose 
a hybrid metaheuristic (HM). The HM consists of the definition and further explora-
tion of a neighborhood based on large neighborhood search (LNS) guided by a fix-
and-optimize strategy and exact solution methods provided by a solver. 

The remainder of this paper is organized as follows. A literature overview on the 
optimization of BSS is given in Section 2. We present the MIP formulation of the 
RAP in Section 3. The hybrid optimization approach is subject to Section 4. The pro-
posed methodology is exemplified with the help of a case study including trip data 
from Vienna’s BSS “Citybike Wien” (Section 5). Future work is subject of Section 6. 

2 Related Literature 

The optimization of BSS has become very active over the last years. The majority of 
papers focuses solely on the operational planning of relocation tours. Articles on the 
tactical planning of bike allocation as well as the integrated planning of allocation and 



18 P. Vogel, B.A. Neumann Saavedra, and D.C. Mattfeld 

 

relocation are rather scarce. The following literature review presents operational, 
tactical and integrated planning approaches.   

In many articles, the optimization of relocation tours is based on the one commodi-
ty pickup and delivery problem (PDP) and the swapping problem (SP). The PDP 
deals with a fleet of vehicles transporting a commodity from pickup to delivery sta-
tions. The SP deals with multiple commodities and a station serves as both a pickup 
and delivery station. Modeling of relocations can be further classified into static or 
dynamic. In the static case, relocations are usually realized at the time of the day with 
the lowest overall demand, e.g. early morning hours. In the dynamic case, demand 
variation and several decision points over time are considered.  

Benchimol et al. [5] combine PDP and SP and present a static relocation model as 
well as solution methods. Raviv et al. [6] study the static relocation problem minimiz-
ing user dissatisfaction by means of penalty costs and operating costs for relocation. 
Rainer-Harbach et al. [7] introduce a combined variable neighborhood search (VNS) 
and greedy heuristic for a maximum flow approach and linear program to determine 
the routes and number of relocated bikes for the static relocation problem. Raidl et al. 
[8] improve the aforementioned approach by efficiently determining optimal loading 
operations. Also addressing the static case, Di Gaspero et al. [9] present a HM com-
bining constraint-based programming (CP) and ant colony optimization. The objec-
tive is to minimize the travel time for relocation tours and difference between actual 
and target fill level at stations. Di Gaspero et al. [10] extend the CP approach and 
incorporate LNS to speed up to the branching strategy inherent in the CP. Ricker et al. 
[11] use a simulation-based approach to obtain the cost-efficient number of relocation 
operations in the course of day considering weighted sums of transportation costs and 
costs for unserved customers. Contardo et al. [12] present an arc-flow optimization 
model for the dynamic routing of relocation vehicles minimizing “lost demand”. Cus-
tomers who cannot rent or return rented vehicles at empty or full stations cause lost 
demand. Caggiani and Ottomanelli [13] propose a decision support system for the 
dynamic relocation problem. Here, a neural network is used to forecast rentals and 
returns at stations. Dell’Amico et al. [14] present MIP formulations addressing the 
dynamic relocation problem. Due to an exponential number of constraints, a branch-
and-cut algorithm for solving is implemented. 

Regarding the tactical planning, George and Xia [15] apply closed queuing net-
work to model the underlying system. A profit maximizing optimization is used to 
determine the optimal fleet size and allocation of rental vehicles. Raviv and Kolka 
[16] also pursue a queuing model approach. Based on a user dissatisfaction function, 
the optimal fill level at one bike station is determined. 

The work presented above focusses either the tactical or the operational planning 
level. Integrated approaches are scarce. Especially for tactical planning tasks, antici-
pation of operational decisions is crucial for the viability of BSS, since costly reloca-
tion can be alleviated by fill levels compensating expected demand variation. To the 
best of the authors’ knowledge, the following approaches integrating allocation and 
relocation exist:  
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• Correia and Antunes [17] present multi-periodic MIP formulations to maximize the 
profit of a car sharing system. The revenue of trips, costs of depot and vehicle 
maintenance as well as costs of vehicle relocation are considered. Optimization de-
termines the number and the location of stations as well as the number of vehicles 
at every station in each period of daily operation. They consider static relocation at 
the end of the day allowing relocation of vehicles between stations to reset the ini-
tial fill level. A simulation model validates the validity of the MIP [18]. 

• Sayarshad et al. [19] introduce a dynamic LP formulation to maximize profit in 
BSS. The objective function subtracts relocation, maintenance, capital investment 
and holding costs of bikes as well as penalty costs for lost demand from revenue 
generated by trips. Bikes can be relocated in every period of daily operation. 

• Cepolina and Farina [20] determine the fleet size and vehicle allocation for a sys-
tem with small electronic vehicles. Costs for user waiting times and system opera-
tion (vehicle purchasing and running costs) are minimized. The authors state, that 
flexible users perform relocation operations under the supervision of the system 
provider. 

• Schuijbroek et al. [21] minimize the costs of relocation tours and incorporate ser-
vice level requirements at stations. They consider the static case in which no user 
demand occurs whereas the service level is precalculated for each station. A clus-
ter-first route-second heuristic is proposed to solve the problem. 

In sum, none of the recent approaches sufficiently covers both the dynamic interac-
tion of bikes in BSS and minimizing costs from relocation operations. Thus, we pro-
pose an adequate integrated approach in the subsequent section. 

3 The Resource Allocation Problem 

The following MIP optimization model tackles the described tactical RAP. Decisions 
at this planning level are somehow abstracted and should apply to a wide-range of 
data and system parameters. We follow the work of Crainic [22] on tactical service 
network design in freight transportation. Decisions aim at the optimal allocation and 
utilization of resources to satisfy customer service and economic goals. The objective 
is to determine offered transportation services between nodes within the network and 
required capacities on the links at the lowest costs. In the case of BSS, the service 
operator transports bikes in capacitated trucks from full to empty stations to maintain 
service levels and associated fill levels. Thus, fixed transportation costs for providing 
relocation operations and variable costs for the particular handling of transported 
bikes occur. Input of the RAP are typical bike flows in the form of time-dependent 
origin-destination matrices reflecting daily mobility patterns. For more information on 
the typical system behavior and a LP formulation of the RAP see Vogel et al. [23].  

In the following MIP formulation, we minimize the total expected costs of system 
operation occurring from relocation while satisfying a minimal service level. Output 
of the optimization are the total expected costs for relocation and potentially unsatis-
fied demand. Moreover, the optimization yields relocation operations and fill levels at 
each station in the course of day. 
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Input of the optimization covers the configuration of the BSS and demand obtained 
from the BSS information system. The system’s configuration comprises a set of rent-
al stations  each providing  bike racks and a total number of  bikes in the sys-
tem. Considering  periods in the course of day, the number of available bikes at a 
station  and in period  is . The number of available bikes depends on the bike 
demand and relocated bikes. Bike demand is given by the bike flows , between 
stations  and  in a period . Relocation operations ,  are implemented com-
pensating missing bikes or bike racks by relocating a certain number of bikes , . 
The objective is to minimize the total costs of relocation ensuring safety buffers of 
bikes  and bike racks . If safety buffers are violated, additional costs for 
missing bikes  and missing bike racks  occur. The resource allocation 
model reads as follows: 

 
Sets 

• = {1, . . . , } : set of stations 
• = {0, . . , } : set of periods, e.g., hours of the day. For resetting the number of 

allocated bikes at the end of the day,  includes the first period of the next day 

Decision variables 

• , ∈ℝ : number of bikes at station  in time period  
• , ∈ ℝ : relocated bikes between stations  and  in time period  
• , ∈ {0,1} : relocation operation between stations  and  in time period  
• , ∈ ℝ : number of missing bikes at station  in time period  
• , ∈ ℝ : number of missing bike racks at station  in time period  

Parameters 

•  : size of stations in terms of bike racks at station  
•  : total number of bikes in the system 
• ,  : bike flow between stations  and  in time period  
• ℎ  : average handling costs of one relocated bike in time period  
•  : average transportation costs of a relocation operation between stations  and 

 
•  : penalization cost per missing bike and per missing rack bike 
• pb , ∈ [0,1]: proportion of returned bikes that are available for rentals at station  

in time period  
• pbr , ∈ [0,1]: proportion of rented bikes that are available for returns at station  

in time period  
•  : lot size (capacity) for relocation operations 
• ,  : bike safety buffer at station  in time period  
• ,  : bike rack safety buffer at station  in time period  
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With this notation the optimization model reads: 

Minimize  ℎ ⋅ , + ⋅ ,  + ⋅ , + ,   (1) 

subject to 

 , = , + ( , − , + , − , )  ∀ ∈ , ∈ \     (2) 

  , − , + pb , , − , + MB , ≥ sb ,  ∀ ∈ , ∈     (3) 

  − , − , + pbr , , − , + MBR , ≥ sbr ,  ∀ ∈ , ∈    (4) 

⋅ , ≥ ,  ∀ , ∈ , ∈                            (5) 

, = 0 ∀ , ∈                                                                     (6) 

, = ,  ∀ ∈                                                               (7) 

, = b ∀t ∈ T                                                                        (8) 

, , , , , , MB , , MBR , ≥ 0 ∀ , ∈ , ∈                (9) 

The objective function (1) minimizes the relocation costs comprising handling costs 
for each individual bike and one-time cost for the particular transport. In addition, 
costs for violating service levels by means of slack variables for missing bikes or 
missing bike racks occur. The slack variables guarantee feasibility of the model even 
if demand exceeds capacity. Equation (2) ensures flow conservation, i.e., the number 
of bikes in a station in the next period depend on the number of bikes in the current 
period plus returned bikes by users and relocation and minus rented bikes by users 
and relocation. It is assumed, that relocation operations last one time-period, e.g. one 
hour. However, relocation time can be adjusted. Constrains (3) and (4) are related to 
the service level offered by the system. Constraint (3) ensures a minimal safety buffer 
of bikes at stations, i.e. the number of allocated bikes minus customer rentals plus a 
certain proportion of returns pb ,  minus relocation pickups plus potentially missing 
bikes. We explicitly model the proportion of returns due to temporal aggregation of 
trips since information on the sequence of rentals and returns is lost, e.g. if trips are 
hourly aggregated to bike flows. By setting pb ,  to 1, rentals and returns are instantly 
interchanged within a period. By setting pb ,  to 0, rentals and returns are considered 
separately. Constraint (4) similarly ensures safety buffer for bike racks. The relocation 
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demand is aggregated to operations by modeling lots. Thus, equation (5) aggregates 
relocations by means of a binary variable and the capacity is given by the lot size . 
Relocation is prohibited in the first period (6). The typical demand reflects recurring 
mobility patterns. Equation (7) ensures that fill levels at the end of the day match the 
initial fill levels due to recurring demand patterns. However, the end fill levels can be 
adjusted, e.g. transition from working day to weekend. All existing bikes need to be 
allocated at the stations (8). Decision variables must be non-negative (9). 

4 The Hybrid Metaheuristic 

The proposed model can be seen as specialization of the service network design [22] 
and therefore belongs to the class of NP-hard problems. Especially real-world in-
stances are computational challenging since typical system sizes range from 50 to 
more than 1000 bike stations. Thus, excessive computation time is required to find the 
optimal solution since the model stands out due to a large number of binary variables 
for relocation operations (stations x stations x periods). That is why, we propose a 
HM integrating LNS guided by a fix-and-optimize strategy and exact solution tech-
niques provided by a solver to tackle the RAP. First, we motivate the use of a HM and 
sketch solution approaches related to our HM. Second, the basic idea of our HM is 
outlined followed by the algorithmic description. Last, the used neighborhood opera-
tors of LNS are presented. 

Blum and Roli [24] state that metaheuristics show good performance for combina-
torial problems that are computationally intractable for large instances. However, 
hybridization of metaheuristics leads even more powerful solution methods. Hybridi-
zation occurs by e.g. integrating metaheuristics with classical operation research 
methods [25]. Hence, they offer flexibility to combine different algorithm compo-
nents with other mathematical programming techniques such as branch and bound and 
therefore provide good strategies for solving large-scale problems. Blum et al. [26] 
give a recent survey and classification of HMs. 

We follow the HM approach by Shaw [27] based on LNS and using a constraint-
based tree search originally applied to the Vehicle Routing Problem. Di Gaspero et al. 
[10] also follow Shaw tackling the operational relocation problem in BSS. CP-based 
LNS exploits CP algorithms such as branch and bound to explore a large neighbor-
hood. Basically, each iteration of the local search is the solution of a set of the search 
space [28]. Basic idea of the approach is to improve an initial solution by removing 
and re-inserting customer visits, i.e. fixing variables to one or zero, by CP.  

The basic idea of our hybridization approach (cf. Fig. 1) is to guide LNS by a fix-
and-optimize strategy to iteratively limit and control the optimization problem to a 
tractable set of "free", i.e. ∈ {0,1}, binary variables. Our approach shows similarities 
to Pisinger and Ropke’s [29] adaptive LNS using fix-and-optimize operations as de-
stroy and repair operators. In the case of the RAP, LNS generates a neighborhood by 
freeing a tractable set of binary relocation variables and fixing the majority of binary 
variables to zero leading to a truncated, fast solvable version of the RAP. For the 
truncated RAP, the solver decides which relocation operations provide an optimal 
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solution, i.e. assigning either zero or one to the free binary variables. In particular, the 
algorithm iteratively improves a solution by exploring in each iteration  a neighbor-
hood  of a relocation solution based on LNS. The solver returns the new local 
optimal solution  for the truncated RAP that is further adapted by LNS. An initial 
solution  of the RAP with the full set of free binary variables is obtained by a  
solver with restricted running-time. 

 

Fig. 1. Proposed hybridization approach 

We refrain from the common fix-and-optimize strategy fixing binary variables to 
either one or zero. In the case of the RAP, this approach counteracts the dependencies 
of allocation and relocation due to the spatio-temporal demand characteristics of the 
bike station network. We assume for one moment that all binary variables are fixed to 
either one or zero. In addition, we presume that the system infrastructure can provide 
bikes and bike racks to satisfy all the service level. If many variables are fixed to zero, 
slack variables guarantee to always find a feasible solution. However, assigned slack 
variables result in a low quality solution. In contrast, if many variables are fixed to 
one, all the demand will be likely satisfied, but results in a low quality solution due to 
the high fixed costs. Thus, we prove free binary variables to the solver. Then the solv-
er decides on setting free binary variables to either one or zero. 

Input: RAP Problem 
Output: Best solution found ← 0 ← () 
While termination condition not met do 
 ← + 1 
Operators to explore the neighborhood  by selecting v 
of the fixed ,  variables: 

 ← ( )  
 ← ( ) 
 ← ( ) 
 = ∪ ∪ ∪  
Let  |  be the problem in which variables , ( ) 
are free. 

 ← ( ); 
End while 
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The proposed HM starts by generating an initial solution obtained by CPLEX. 
CPLEX will not likely find an optimal solution because of the high number of binary 
variables. Thus, the solver runs only for a short time to find a feasible solution . To 
improve the solution, we define in each iteration  a neighborhood  by means of 
adding a set of free binary variables to the former solution exploiting the characteris-
tics of relocation operations in practice. The neighborhood operators are described 
below in detail. Then we solve the truncated RAP with CPLEX returning the optimal 
decision in short computing time. Again, a set of free binary variables is added to the 
former solution leading to a truncated RAP and solved by CPLEX until we meet a 
termination condition, e.g. a running-time limit.  

For LNS, the definition of the neighborhood is very important for the performance 
of this improvement algorithm [30]. Despite of fixing a substantial set of binary vari-
ables to zero, the defined neighborhood may result in to many free binary variables 
and the truncated RAP could be computationally intractable. Otherwise, if the neigh-
borhood consists of too few free binary variables, the possibilities to improve the 
solution are low. Therefore, the decision on the number of free binary variables is not 
trivial. However, a suitable number can be estimated based on previous computational 
tests.  

Regarding the definition of the neighborhood, it is recommended to use filtering 
techniques or criteria based on the characteristics of the model to explore the search 
space efficiently [31]. We follow Ahuja [30] and define the neighborhood operators 
by exploiting characteristics of RAP. In particular, promising relocation operations, 
i.e. free binary variables, are added. The EXCHANGE and SHIFT neighborhood oper-
ators exploit spatio-temporal variations of relocations of the feasible solution. In addi-
tion, INSERT provides randomly selected relocation operations to explore the feasible 
space with more diversity. We propose that relocation selected to define a neighbor-
hood are preferably between near stations since the transportation costs are lower. 
Thus, a roulette wheel selection is implemented giving close stations a higher proba-
bility. Please note, that a specific destroy operator is not implemented since CPLEX 
decides on assigning binary variables. In particular, we present the following three 
neighborhood operators (cf. Fig. 2): 

 

Fig. 2. Neighborhood operators 
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• INSERT: additional relocation operations are added. The source station  is chosen 
randomly whereas the sink station  is selected depending on the distance based on 
the roulette wheel. This allows to explore zones of the search space without a di-
rect relation to the solution, providing diversity. 

• EXCHANGE: stations that provide bikes to other stations in some periods can be 
regarded as surplus stations. Thus, additional relocation operations from these 
source stations to other stations are freed. Again, a specific surplus station is ran-
domly chosen from all surplus stations and the sink station is selected depending 
on the distance based on the roulette wheel. 

• SHIFT: a source station for an existing relocation operations is randomly selected 
and shifted to other time periods. Here, the intervals of two adjacent time periods 
have a higher probability whereas other periods have a lower probability. 
 

Finally, the solver is executed. Thus, a new feasible solution  is obtained. In the 
worst case, the previous feasible solution may be obtained. 

5 Computational Study 

A case study is used to evaluate the performance of the HM. Input data are obtained 
based on the analysis of Vienna´s BBS “Citybike Wien” (CBW). CBW provided data 
comprising the years 2008 and 2009. In that time, CBW consisted of n = 59 stations 
placed around the city with a given number of bike racks and a total of = 627 bikes 
(~50% fill level). Time is discretized in terms of = 24 (hour) periods, reflecting 
typical aggregation from the field of traffic analysis. In the case of Vienna, 92 % of 
the trips are shorter than 60 minutes. Moreover, almost 70% of the trips end within 
the same hour, e.g., a trip that starts at 4:xx will end at 4:xx. We assume that reloca-
tion operations take one hour on average. Handling costs depend on the time of day 
and are set to ℎ = 4 Euro (in effect for periods 9 to 20), while night time han-
dling costs are more expensive ( ℎ = 7 Euro). Transportation costs are assumed 
independent of the time of the day and amount to = 0.5 Euro per kilometer. Bike 
and bike rack safety buffers are set to 0 avoiding the use of slack variables. Data min-
ing tools are used to estimate the bike flows in 24 periods of the typical working day 
[23]. In particular, we use instances with low, medium and high demand measured in 
the number of trips per bike per day. The average number of trips per bike and day in 
the summer season is 2.5 (1569 trips in total) and regarded as the low demand in-
stance. Furthermore, the medium demand instance has 4 and the high demand in-
stance has 6 trips per bike and day. We evaluate scenarios in which all demand is 
satisfied avoiding the use of slack variables since penalization cost can be a signifi-
cant proportion of the total cost and therefore distort the computational analysis of the 
algorithm. The MIP was implemented in IBM ILOG OPL. The HM was implemented 
in Java using the ILOG Concert Technology to access CPLEX. Both approaches use 
CPLEX 12.5 on an Intel® Core™2 Duo CPU at 3.17GHz processor with 6.00 GB 
RAM. 
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Table 1 shows the obtained results for the different demand instances and operator 
combinations (INSERT=I, EXCHANGE=E, SHIFT=S). Initial tests showed, that 
CPLEX provides an optimal solution for = 500 "free" binary variables within se-
conds. The mix of operators is tested in five runs each. We provide the average number 
of  iterations that the HM realizes in the runs, the best found solution and the average 
solution over the five runs. Both CPLEX and the HM were running for 20 minutes. The 
CPLEX solution is used as reference for comparison of CPLEX and HM. In particular, 
we measure the improvement of the HM according to best obtained solution by    ⋅ 100% and the improvement of the average solution analogously. 

The proposed HM seems stable providing good quality solutions since the HM 
yields lower costs in many of the tested runs of our case study. The three neighbor-
hood operators are tested independently to determinate their effect separately. The 
results show that INSERT and EXCHANGE yield better solutions than only using 
CPLEX to solve the full RAP. Spatial variation of relocations therefore effect the 
solution quality. The SHIFT operator produces low-quality solutions indicating that 
the effect of only temporal variation on relocations is small. The combination of  
spatial and temporal operators INSERT, EXCHANGE and SHIFT as well as the 
combination of both spatial operators INSERT and EXCHANGE yield good results. 
In addition, the best and average solutions of the HM, except for the SHIFT operator, 
are always better than the CPLEX solution. However, the proposed HM only obtains 
improvements up to 0.5%. Nevertheless, we are quite confident that the improvement 
increases for bigger instances.  

Table 1. Computational results of the HM operators 

    MIP CPLEX Hybrid Metaheuristic 

Demand Operator v p 

(AVG) 

Best GAP Best AVG Improv. 

Best 

Improv. 

AVG 

Low    495.899 1.96%     

 I 500 665.8   495.539 495.959 0.07% -0.01% 

 E 500 226   495.143 495.302 0.15% 0.12% 

 S 500 1445.6   500.477 500.477 -0.91% -0,91% 

 I,E,S 100,350,50 182.8   495.255 495.411 0.13% 0.10% 

 I,E 125,375 185   495.195 495.462 0.14% 0.09% 

Medium    773.163 1.53%     

 I 500 655   769.543 769.861 0.47% 0.43% 

 E 500 204.8   769.332 769.441 0.50% 0.48% 

 S 500 1260.8   775.125 775.125 -0.25% -0.25% 

 I,E,S 100,350,50 174   769.117 769.600 0.53% 0.46% 

 I,E 125,375 197   769.390 769.811 0.49% 0.44% 

High    1120.611 1.01%     

 I 500 829.2   1118.866 1119.617 0.16% 0.09% 

 E 500 204   1119.167 1119.581 0.13% 0.09% 

 S 500 1352.8   1125.715 1125.715 -0.45% -0.45% 

 I,E,S 100,350,50 179.6   1119.132 1119.550 0.13% 0.09% 

 I,E 125,375 170   1118.779 1119.405 0.16% 0.11% 
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Regarding the different demand instances, there is no superior operator combina-
tion. In the low demand case, the EXCHANGE operator yields the best solution. For 
medium demand the INSERT, EXCHANGE and SHIFT and for high demand the 
INSERT and EXCHANGE combinations are best. In order to give insights on the 
solution strategy, the run of the HM with INSERT, EXCHANGE and SHIFT is ex-
emplified for the medium demand instance (cf. Fig. 3). 

 

Fig. 3. The run of the CPLEX and MH (I,E,S) solution for the medium demand instance 

CPLEX quickly improves the solution after a few seconds. However, afterwards it 
only marginally progresses in finding better solutions. The MH is slower in the be-
ginning. It needs approximately one minute to improve the initial solution, but ob-
tained solutions outperform CPLEX in all runs. In the first five minutes, several better 
solutions are found that seem to be rather diverse. After that, solutions become  
similar. Nevertheless, they fade towards different local optimal solutions.   

These results are promising. Still we observe that it is increasingly difficult to find 
a neighborhood that improves a good-quality solution. The implementation of some 
techniques to penalize certain areas of the feasible space that does not generate a  
better solution can be an alternative to improve the performance of our algorithm. 

6 Conclusions and Outlook 

In this paper we have proposed a MIP formulation of the resource allocation problem 
in BSS. Since the formulation is computational challenging, a HM was introduced to 
the solve the MIP. Experiments for a small real-world BSS show that our approach 
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outperforms CPLEX. Although CPLEX obtains better solutions after a few seconds, 
the MH adds more diversity and thus finds better solutions in the long run. The com-
bination of operators yielding a good solution depends on the instances and one supe-
rior combination cannot be determined.  

It is up to future research to assess the performance of the HM for bigger instances. 
In particular, a large number of bike stations and bike flows might challenge the HM. 
Thus, the performance of our MH with the different operator combinations has to be 
assessed. Furthermore, we only tested a neighborhood size of 500 free variables. An 
increase of the neighborhood might further improve solutions. Regarding the search 
space, the run of the MH indicates that it stagnates in local optima. Thus, a control 
structure such as Tabu Search could be used to overcome local optima and further 
explore the search space.  
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Abstract. The benefits of hybrid stochastic local search (SLS) methods,
in comparison with more classical (non-hybrid) ones are often difficult
to quantify, since one has to take into account not only the final results
obtained but also the effort spent on finding the best configuration of
the hybrid and of the classical SLS method. In this paper, we study
this trade-off by means of tools for automatic algorithm design, and,
in particular, we study the generation of hybrid SLS algorithms versus
selecting one classical SLS method among several. In addition, we tune
the parameters of the classical SLS method separately and compare the
results with the ones obtained when selection and tuning are done at the
same time. We carry out experiments on two variants of the permutation
flowshop scheduling problem that consider the minimization of weighted
sum of completion times (PFSP-WCT) and the minimization of weighted
tardiness (PFSP-WT). Our results indicate that the hybrid algorithms
we instantiate are able to match and improve over the best classical SLS
method.

1 Introduction

Simple and hybrid stochastic local search (SLS) algorithms [13] have received an
enormous attention over the last two decades. Often, one of the crucial research
questions is which of the many different general-purpose SLS methods (also
known as metaheuristics) is the most suited for a specific type of problem and
how much performance improvement can be further obtained by considering
the hybridization of such methods. In the early stages of the research on SLS
methods, these questions were tackled across various papers. Roughly speaking,
in each paper an SLS methods was adapted to the specific problem under concern
and the computational results were compared to those of other papers. The
potential pitfalls of this “horse-race” kind of research have been described in
various occasions [12,16]. A better approach may be to run careful experimental
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comparisons of algorithms in a same controlled environment as done in more
recent works [22,25,27]. Such an approach avoids some pitfalls, such as comparing
algorithms across different computers and implementation languages, uneven
implementation effort and expertise, and data structures, which leads to a high
noise in the comparisons. This approach is certainly very useful in settling the
state of knowledge for what concerns the solution of specific problems by SLS.
However, the SLS algorithms compared are typically re-implementations of the
originally proposed algorithms and they use the originally proposed parameter
settings; therefore, these papers also inherit potential pitfalls in the original
papers such as uneven parameter tuning or sub-optimal algorithm designs.

In this paper, we follow a different approach for comparing SLS methods and
evaluating the impact hybrid SLS methods have over single ones. We propose to
use automatically configurable SLS algorithm frameworks for performing algo-
rithm comparisons and studying the impact of hybridization. This approach has
a number of advantages. In particular, various low level heuristics can be used
by all the automatically configured SLS methods. In fact, it is known that for
the engineering of effective SLS algorithms, the underlying low-level heuristics
are decisive for reaching high performance. Giving the possibility of using the
same algorithmic components should also contribute towards reducing the vari-
ance of computational results. Automatic configuration of the SLS algorithms
also helps to make the performance less dependent on the algorithm designers
intuition and ensures a comparable tuning effort.

In this article, we use a configurable algorithmic framework for the auto-
matic generation of SLS algorithms. This framework was introduced in [21] and
it allows the automatic generation of simple and hybrid SLS algorithms that
essentially manipulate a single solution at each step. In particular, the frame-
work is based on a recursive template of an iterated local search (ILS) [20]
that allows the instantiation of (i) SLS methods such as randomized iterative
improvement (RII) [28,13], probabilistic iterative improvement (PII) [13], simu-
lated annealing (SA) [18,2], tabu search (TS) [10], ILS [20], greedy randomized
adaptive search procedures (GRASP) [7], iterated greedy (IG) [29], and variable
neighbourhood search (VNS) [11]; and (ii), many different ways of hybridizing
these SLS methods, through having different methods at each level of the recur-
sive template. In this paper, we study the generation and comparison of simple
SLS algorithms and hybrids thereof, using as example problems two permuta-
tion flow-shop scheduling problems, the total weighted tardiness (PFSP-WT)
and the total weighted completion times flow-shop problems (PFSP-WCT).

The paper is structured as follows. In Section 2 we give an overview of the
framework for the automatic generation of SLS algorithms; in Section 3 we de-
scribe the two optimisation problems used for comparing the generated algo-
rithms; in Section 4 we present the experimental evaluation and the results; and
finally in Section 5 we summarize the conclusions.
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2 Framework

Methods for automatic design of algorithms are often based on instantiating al-
gorithms from a grammar using evolutionary algorithms [8,1] or automatically
configuring the parameters of flexible algorithmic frameworks [17,19]. We have
recently proposed a method for the automatic generation of heuristics based on
grammars but using automatic algorithm configuration tools [23]. Our method
starts from a grammar defining the algorithmic building blocks and how they
can be combined. From this grammar, we first generate a parameter space that
maps the derivation rules defined in the grammar, and then we use an auto-
matic algorithm configuration tool to search the algorithmic design space for an
effective algorithm. One of the main advantages of our method is that it com-
bines the flexibility of grammars for defining the algorithm design space with
the effectiveness of tools for automatic algorithm configuration. The method
was successfully applied to the generation of iterated greedy algorithms for the
permutation flowshop problem with weighted tardiness objective [23], and one
dimensional bin-packing [24].

Later, we extended our method in order to generate more types of simple
and hybrid SLS algorithms [21]. To do so, we defined, in terms of a problem-
independent grammar, the algorithmic building blocks of a recursive iterated
local search template using the ParadisEO [14] local search framework. From
such a generalised local search template, one can instantiate several SLS meth-
ods known in the literature as well as hybridizations thereof. The flexibility of
the grammar allows, for example, the instantiation of a simulated annealing or
an iterated greedy algorithm as well as more complex hybrids such as an iterated
local search that has as subsidiary local search a VNS, which in turn uses sim-
ulated annealing as the local search. Moreover, in a second, separate grammar,
we define the algorithmic building blocks to generate problem-specific heuristics.
The procedure is completely automated: once the problem-specific grammar is
defined, an automated system integrates this second grammar with the problem-
independent one, it generates the parameters to describe the alternative choices
in the algorithmic design space defined in the grammar, and, given a set of train-
ing instances, it searches for an effective algorithm for the problem at hand, by
automatically generating, compiling, testing, and evaluating the performance of
tenths of thousands of candidate SLS algorithms until a computational budget
is exhausted [21].

Figures 1, 2, and 3 show a subset of the derivation rules of a simplified version
of the problem-independent grammar. The rules in Fig. 1 define the target al-
gorithm <algo choice> as the aforementioned generalised local search procedure
<GLS> or one of a series of known SLS methods <known MH>. The generalised local
search procedure is defined as a recursive iterated local search, which is specified
by a perturbation, an acceptance criterion, and, as subsidiary local search, an
<algo choice>. If the latter is again a <GLS>, the rule is recursively evaluated and
a new iterated local search algorithm is defined.

The <GLS> procedure could per se be instantiated into any of the known SLS
methods defined in <known MH>. In fact, as shown in Table 1, such known SLS
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<start> ::= <problem specific initial solution> <algo choice>

<algo choice> ::= <known MH> | <GLS>

<known MH> ::= <SA> | <ILS> | <PII> | <RII> | <IG> | <VNS> | <TS>

<GLS> ::= <perturbation> <acceptance> <algo choice>

Fig. 1. Grammar description of the generalised local search procedure

<SA> ::= <perturbation one move> <ls none> <accept metropolis>

<ILS> ::= <perturbation> <local search> <accept ILS>

<PII> ::= <perturbation one move> <ls none> <accept metr fix temp>

<RII> ::= <perturbation one move> <ls none> <accept probab>

<VNS> ::= <perturb VNS> <local search> <accept ILS>

<IG> ::= <problem specific destruct reconstruct>

<local search> <acceptance>

<TS> ::= <perturbation none> <local search TS> <accept always>

<accept ILS> ::= <accept always> | <accept better> | <accept better equal>

<perturb VNS> ::= <pert strength dyn incr> <repeatable perturb>

Fig. 2. Known SLS methods that can be instantiated from the grammar

<pert strength> ::= <fixed str> | <random str> | <dynamic inc> | <dynamic dec>

<perturbation> ::= <pert restart> | <kopt pert> | <kopt pert stop>

| <pert none> | <repeatable pert> | <problem specific pert>

<local searches> ::= <ls> (<comparator>)
<ls> ::= <first imp hc ls> | <best imp hc ls> | <ls none>

| <first imp cont hc> | <problem specific ls>

<comparator> ::= <better> | <better equal>

<temp relative to> ::= <best> | <current>

<cooling schedule> ::= <rel fix temp> | <rel schedule> | <rel schedule stop at min>

| <rel schedule reheat>

<acceptance> ::= <accept always> | <accept better> | <accept better equal>

| <accept probab> | <accept threshold> | <accept random>

| <accept metropolis> | <accept metr fix temp>

Fig. 3. Other significant derivation rules in the grammar. Local searches, and pertu-
bations can be extended by defining them in the problem-specific grammar.

methods can be seen as particular cases of our generalised local search template.
The reason why these SLS methods are also defined with their own derivation
rules is that in this way we increase the probability that such specific combi-
nations of algorithmic building blocks are evaluated by the tool for automatic
algorithm configuration used to search the algorithmic design space.

Figure 2 shows a subset of the simplified rules for the known SLS meth-
ods defined in <known MH>. For example, the probabilistic iterative improvement
<PII> is defined as an iterative improvement method in which the perturbation
makes a single move in the neighbourhood <perturbation one move>, there is no
local search <ls none>, and the acceptance criterion is a Metropolis condition
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Table 1. Classical SLS algorithms modeled after the GLS scheme

Name Perturbation Local Search Acceptance Criterion

SA [18] one move ∅ Metropolis
PII [13] one move ∅ Metropolis (fixed temp.)
RII [28,13] one move ∅ probability
VNS [11] variable move first-improv. descent improvingStrictly
IG [29] deconstruction-construction “any” “any”
TS [10] ∅ tabu search always accept

with a fixed temperature. Some of the derivation rules such as <accept perturb>

limit the range of possible values assumed by a building block, in this case, the
derivation limits the acceptance criterion to three criteria commonly used in ILS
algorithms. Figure 3 shows other sample derivations in the grammar for the lo-
cal searches, perturbations, and acceptance criteria. All derivations starting with
<problem specific ...> are derivations defined in the problem-specific grammar
and are automatically integrated in the problem-independent one.

By using the grammar described above or subsets of it, we can generate either
hybrid SLS algorithms, or just limit ourselves to generate well-known non-hybrid
SLS algorithms, or even just focus on a single SLS method and tune its numerical
parameters, which are not shown in the grammars for brevity. In this paper, we
use various subsets of the grammars described here to investigate the generation
and tuning of hybrid versus non-hybrid SLS algorithms.

3 The Permutation Flowshop Problem

As a benchmark problem, we consider the widely studied permutation flowshop
scheduling problem (PFSP) [15]. The PFSP is an NP-hard [9] problem, thus
tackling large instances often requires the use of heuristic algorithms. Moreover,
the PFSP models a very common setup in industrial production, thus, it is of
practical relevance. For these reasons, the PFSP is still an important benchmark
problem for the design and comparison of SLS methods. There are many formu-
lations of the PFSP focusing on different objectives and with various constraints.
When tackling less-studied variants, the use of automatic generation to design
new algorithms can save a significant amount of effort.

The goal in the flowshop problem (FSP) is to schedule a set ofn jobs (J1, . . . , Jn)
on m machines (M1, . . . ,Mm), and all jobs must be processed on the machines in
the same order, i.e., all jobs have to be processed on machine M1, then machine
M2, and so on until machine Mm. A common restriction in the FSP is to forbid
job passing between machines, i.e., to restrict to solutions that are permutations
of jobs, resulting in the PFSP. In the PFSP, all processing times pij for a job Ji
on a machine Mj are fixed, known in advance, and non-negative. Formally, the
PFSP consists of finding a job permutation π, where πi denotes the job in the i-th
position, that minimizes a given objective function F (π)
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min F (π)

subject to Cπ0j = 0 j ∈ {1, . . . ,m},
Cπi0 = 0 i ∈ {1, . . . , n},
Cπij = max{Cπi−1j , Cπij−1}+ pij ,

i ∈ {1, . . . , n} j ∈ {1, . . . ,m},

(1)

where Cij denotes the completion time of a job i on machine j. Depending on
the definition of F (π), there are many variants of the FPSP. We study here the
following two variants.

Minimization of the Sum of Weighted Completion Times (PFSP-
WCT). In many practical situations, some jobs are more important than others,
which is represented by a weight associated to them. In such a case, the objective
may be to minimize the time required to complete each job on the last machine,
weighted by their importance:

min F (π) =

n∑
i=1

wi · Ci (2)

where Ci denotes the completion time of a job i on the last machine, and wi is
the weight assigned to job Ji to specify its relative importance. The PFSP-WCT
is strongly NP-hard already for two machines [9].

Minimization of the Total Weighted Tardiness (PFSP-WT). In other
practical scenarios, e.g., when products are due to customers at a specific time,
jobs have an associated due date (di for a job Ji), and the tardiness of a job Ji
is defined as Ti = max{Ci − di, 0}. In such a case, the goal may be to minimize
the total tardiness, weighted by the relative importance of jobs:

min F (π) =

n∑
i=1

wi · Ti. (3)

The PFSP-WT is NP-hard in the strong sense even for a single machine [4].

3.1 Problem-Specific Components for the PFSP

The problem-specific components of the grammar (Fig. 3) in the case of the
PFSP define constructive heuristics for generating the initial solutions, iterative
improvement algorithms, a perturbative search, the computation of the objective
function, and other helper functions to represent the problem instance in memory
in a format suitable for being used within ParadisEO.

For both, the PFSP-WT and the PFSP-WCTproblem, the constructive heuris-
tics implemented in our framework are a random permutation and an NEH [26]
heuristic, which is an insertion heuristic known from the PFSP with makespan
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objective. For the PFSP-WT problem, there is also a SLACK heuristic for com-
puting an initial ordering of the jobs to be passed to the NEH heuristic [5]. Further
components define single moves in the swap, exchange, and insert neighborhoods,
and a randomperturbative search operator, in which k jobs are removed randomly
from the current solution and reinserted in an order which minimises the objective
value of the partial solution. The iterative improvement local search procedure, is
a first-improvement algorithm in a swap neighborhood, with a maximum number
of swaps corresponding to 2 · (n− 1), where n is the number of jobs.

4 Experimental Evaluation

In this paper, we address two main questions related to the automatic generation
of hybrid SLS algorithms. The first question asks whether it is more advanta-
geous to tune all classical (non-hybrid) SLS methods together or to tune them
separately. Once we found the best way to tune the classical SLS methods, the
second question concerns whether there is an advantage on spending the total
computing budget searching for a hybrid SLS method, or it is more effective
to spend the same budget on selecting and tuning classical (non-hybrid) SLS
methods.

4.1 Experimental Setup

We consider the following grammar descriptions:

– Individual classical SLS methods (PII, RII, SA, ILS, IG, VNS, TS). In this
case, the design is fixed, and the task is to find the best parameter settings
of each individual SLS method. We can generate the grammar for automati-
cally configuring specific SLS methods by (automatically) adapting the rules
given in Fig. 1. In particular, it suffices to change the first rule <start> ::=

<problem specific initial solution> <algo choice> to a new rule <start>

::= <problem specific initial solution> <SLS-M> , where <SLS-M> is any of
the classical SLS methods we would like to include such as PII, RII, SA,
etc. As a result, the rule for <algo choice>, <known MH>, <GLS>, as well as all
other rules that cannot be reached by a sequence of derivation from <start>,
are implicitly removed, and the number of parameters (reported in Table 2)
depends on the specific SLS method tuned.

– MH. This grammar corresponds to the combination of all individual SLSmeth-
ods. In this case, the task is to select the best individual SLS method and tune
its parameter settings. This can be done by changing the rule <algo choice>

::= <known MH> | <GLS> in Fig. 1 to <algo choice> ::= <known MH>. This gram-
mar generates 107 parameters in total, which includes the parameters tomodel
the choice among the various SLS methods and all the parameters that arise
in each of the specific SLS methods.
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Table 2. Total number of parameters for each strategy

Hybrid MH PII RII SA ILS IG VNS TS

286 107 4 2 27 27 40 10 2

– Hybrid. This grammar corresponds to adding the possibility of hybridiza-
tion to MH, that is, the grammar can instantiate individual SLS methods
as well as hybridizations of them. This can be done by changing the rule
<algo choice> ::= <known MH> | <GLS> to <algo choice> ::= <GLS>. We limit
the depth of the recursive rule <GLS> to three, thus at most three hybridiza-
tion levels are allowed. This grammar generates 286 parameters in total.

Our experiments consist on applying irace, a tool for automatic algorithm con-
figuration, to the different grammar descriptions above in order to find the best
instantiation of the grammar, i.e., the best algorithm configuration and param-
eter setting, given a set of training problem instances and a tuning budget [23].
The tuning budget is defined as a maximum number of runs of the generated
algorithms. Hence, each algorithm that is genereated from the grammar corre-
sponds to one configuration tested during a run of irace. The best configuration
found by irace is then applied to a set of test instances, different from the training
set, in order to assess its performance.

For each problem, the PFSP-WT and the PFSP-WCT, we generate 15 random
instances for each of n = {50, 60, 70, 80, 90, 100} jobs and m = 20 machines. Five
instances are used for training, and the other ten for testing. The algorithms
generated by irace are run 30 times, with different random seeds, on the ten test
instances. Since the tuning process is stochastic, we repeat the aforementioned
tuning/testing procedure three times to account for the variability of the tuning
process.

The tuning budget considered here for each run of irace is 50 000 runs of
an algorithm, and each run of any of the specific algorithm configuration gen-
erated from the grammar is stopped after 20 CPU-seconds. Thus, one run of
irace requires roughly ten hours when running on a cluster of 30 AMD Opteron
6272 2.1GHz CPU-cores running on CentOS 6.2 Linux, that is, a single auto-
matic configuration run can be done overnight (while sleeping). The process of
instantiating an algorithm from a grammar produces C++ code that is compiled
with GCC 4.7.2 with options “-Ofast -flto -march=native”. In the case of
individual SLS methods, we divide the total tuning budget equally among the
seven SLS methods (PII, RII, SA, ILS, IG, VNS, TS), i.e., 7 143 runs for each SLS
method.

4.2 Experimental Results for PFSP-WCT

As described above, we first apply irace three times to the various grammars.
For the PFSP-WCT, the best configurations found by irace are rather consistent
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when considering the MH grammar, where the selected SLS method is always
VNS. In the case of Hybrid, it is either (i) an ILS with Metropolis condition as
acceptance criterion, a cooling schedule, random swap moves as perturbation,
and first-improvement as local search, or (ii) a more complex hybridisation with
two or three levels of hybridisation.

We run each of the algorithms generated by irace on the test instances and
rank them per instance (the lower the rank, the better). We also apply a Fried-
man test [3] to determine what difference of ranks is statistically significant. The
results are shown in Table 3. They indicate that the hybrid algorithm is consis-
tently better than the other tuned algorithms. The second ranked algorithms is
MH. As mentioned above, MH corresponds to a VNS, which is better tuned than
the stand-alone VNS, because of the difference in available budget. In fact, when
tuned as MH, irace has the possibility of allocating more tuning effort to the best
performing SLS methods. When tuning a standalone VNS, the allocated budget
is 1/7-th of the total tuning budget, instead.

Table 3. Comparison of the strategies through the Friedman test blocking on the
instances of the PFSP-WCT. ΔRα=0.05 gives the minimum difference in the sum of
ranks between two strategies that is statistically significant.

ΔRα=0.05 Strategy (ΔR)

28.53 Hybrid (0), MH (40), SA (46), VNS (75), ILS (138), IG (139), RII (276),
PII (342), TS (402)

In terms of solution quality, the differences are not very large, as shown by
the mean relative percentage deviations from the best-found solutions given in
Table 4. The only notable exception is TS, which performs substantially worse
than the rest. This might be due to our implementation of the tabu list in
ParadisEO [14] that stores the complete solutions in the tabu list. More efficient
schemas storing the moves in the neighbourhood would allow for a larger number
of iterations and better results in the 20 CPU-seconds allowed to the algorithm.

Table 4. Relative percentage deviations from the best known solutions averaged over
three tuning experiments, 30 runs, and ten instances of the PFSP-WCT

Instance size Hybrid MH PII RII SA ILS IG VNS TS

50x20 0.25 0.25 0.70 0.42 0.32 0.27 0.26 0.26 2.95
60x20 0.54 0.55 0.93 0.75 0.58 0.57 0.56 0.57 3.38
70x20 0.77 0.75 1.26 1.00 0.74 0.82 0.84 0.78 3.66
80x20 0.78 0.81 1.27 1.01 0.73 0.84 0.85 0.81 3.68
90x20 0.84 0.85 1.42 1.06 0.73 0.94 0.95 0.87 3.76

100x20 0.86 0.90 1.60 1.05 0.74 0.98 0.98 0.93 3.74
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Given the fact that we use a heterogeneous set of instances with various sizes,
we could expect some variation on the best algorithm for each instance size.
In Table 5, we partition the results per instance size. Although there is some
variability on the rankings, due to the effect of the instance size, overall, Hybrid,
MH, SA, and VNS are ranked consistently high across all instance sizes. To
further analyse the overall robustness of the automatic generation method, we
present in Table 6 the ranks of the algorithm across the three separate tuning
experiments. Also in this case, the best algorithms in Table 3 are also the highest
ranked ones in the single tuning experiments.

Table 5. Comparison of the strategies on the single instance sizes for the PFSP-WCT.
The ranks are given in parentheses.

Instance size Strategy (ΔR)

50x20 MH (0), Hybrid (3), IG (5), ILS (13), VNS (15), SA (36), RII
(47), PII (57), TS (67)

60x20 Hybrid (0), MH (10), IG (15), VNS (16), ILS (20), SA (29), RII
(50), PII (60), TS (70)

70x20 Hybrid (0), SA (1), MH (3), VNS (7), ILS (22), IG (33), RII
(46), PII (56), TS (66)

80x20 Hybrid (0), SA (4), VNS (15), MH (15), ILS (24), IG (26), RII
(49), PII (59), TS (69)

90x20 SA (0), Hybrid (9), MH (14), VNS (17), IG (36), ILS (39), RII
(53), PII (64), TS (74)

100x20 SA (0), Hybrid (12), MH (22), VNS (29), ILS (44), IG (48), RII
(55), PII (70), TS (80)

Table 6. Comparison of the strategies obtained with three different tuning for the
PFSP-WCT. The ranks are computed across all instance sizes.

Tuning Strategy (ΔR)

irace 1 SA (0), Hybrid (15), MH (27), ILS (66), VNS (76), IG (119),
RII (252), PII (317), TS (379)

irace 2 MH (0), VNS (30), Hybrid (39), SA (53), IG (101), ILS (130),
RII (256), PII (327), TS (387)

irace 3 Hybrid (0), SA (31), VNS (87), MH (89), IG (122), ILS (155),
RII (273), PII (347), TS (408)

4.3 Experimental Results for PFSP-WT

In the case of the PFSP-WT, similarly to the results for PFSP-WCT, irace
selected two VNS algorithms and one IG algorithm when using the grammar
described byMH. In the case of Hybrid, irace generated one hybrid algorithm with
two levels of hybridization and two ILS algorithms with a Metropolis condition
as acceptance criterion.
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Table 7 shows the rankings among the tuned algorithms and the statistically
significant differences according to the Friedman test. Also in this case, the
hybrid algorithm performs significantly better than the rest; the second highest
ranked algorithm is MH followed by IG, and ILS. MH has the advantage of tuning
all algorithms at the same time, hence to dynamically invest more tuning budget
on the most promising algorithmic schemas from the beginning of the tuning. IG
and ILS are also highly ranked. This comes at no surprise; ILS is the algorithm
that was often selected when tuning Hybrid, and the state of the art for the
PFSP-WT is an IG algorithm [29,6].

Table 7. Comparison of the strategies through the Friedman test blocking on the
instances of the PFSP-WT. ΔRα=0.05 gives the minimum difference in the sum of
ranks between two strategies that is statistically significant.

ΔRα=0.05 Strategy (ΔR)

28.75 Hybrid (0), MH (50), IG (54), ILS (54), VNS (59), RII (222),
SA (236), PII (333), TS (396)

Also for the PFSP-WT problem, in most cases, the difference between the
tuned algorithms in terms of average percentage deviation from the best known
solutions are minor (Table 8). For what concerns the robustness of the automatic
generation method, Hybrid, MH, IG, and ILS are consistently among the highest
ranked algorithms on the single instance sizes (Table 9) as well as across the
three different tuning experiments (Table 10).

Overall the results suggest that the use of a flexible grammar like the one of
Hybrid, allows to efficiently invest the tuning budget in the promising schemas
and obtain an effective simple or hybrid SLS algorithm for the problem at hand.
For both problem studied, complex hybridisations of the SLS methods were
shown to be among the top performing algorithms. However, when considering
relative percentage deviation, the difference to the best performing tuned known
SLS methods are small, although statistically significant.

Table 8. Relative percentage deviations from the best known solutions averaged over
three tuning experiments, 30 runs, and ten instances of the PFSP-WT

Instance size Hybrid MH PII RII SA ILS IG VNS TS

50x20 2.67 2.75 17.33 4.68 7.87 3.98 2.12 3.01 26.06
60x20 2.02 2.11 6.06 3.37 3.66 2.13 1.97 2.20 15.16
70x20 2.79 2.93 5.44 4.15 4.33 3.05 2.90 2.94 14.47
80x20 2.95 2.93 4.70 3.75 3.35 2.97 3.04 3.04 13.33
90x20 2.71 2.80 4.26 3.37 3.23 2.68 2.91 2.73 11.26

100x20 2.87 2.91 5.49 3.31 4.35 2.84 3.20 2.84 10.84
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Table 9. Comparison of the strategies on the single instance sizes for the PFSP-WT.
The ranks are given in parentheses.

Instance size Strategy (ΔR)

50x20 IG (0), Hybrid (12), MH (13), VNS (26), ILS (32), RII (43), SA
(57), PII (65), TS (76)

60x20 IG (0), Hybrid (5), MH (13), ILS (14), VNS (18), RII (42), SA
(48), PII (60), TS (70)

70x20 Hybrid (0), VNS (9), IG (14), MH (15), ILS (22), RII (44), SA
(51), PII (61), TS (72)

80x20 MH (0), Hybrid (2), ILS (6), IG (13), VNS (15), SA (24), RII
(45), PII (55), TS (65)

90x20 ILS (0), Hybrid (3), VNS (11), IG (16), MH (17), SA (30), RII
(43), PII (56), TS (67)

100x20 Hybrid (0), ILS (2), VNS (2), MH (14), RII (27), IG (33), SA
(48), PII (58), TS (68)

Table 10. Comparison of the strategies obtained with three different tuning for the
PFSP-WT. The ranks are computed across all instance sizes.

Tuning Strategy (ΔR)

irace 1 MH (0), Hybrid (23.5), ILS (33), VNS (46.5), IG (73), RII (188),
SA (238), PII (310), TS (384)

irace 2 IG (0), ILS (4.5), Hybrid (33.5), VNS (40), MH (78.5), RII
(198.5), SA (275.5), PII (306.5), TS (372.5)

irace 3 Hybrid (0), MH (35), IG (38), VNS (54), ILS (96), SA (124),
RII (227), PII (316), TS (370)

5 Discussion and Conclusions

We have examined the design of hybrid SLS algorithms in comparison with the
selection and tuning of non-hybrid SLS methods. In order to perform a unbi-
ased comparison, the design, selection and tuning is carried out automatically
using an automatic design framework that was recently proposed. This frame-
work is composed of a grammar description, from which various SLS methods
and hybrids thereof may be instantiated, and the application of an automatic
algorithm configuration method (irace), which searches for the best instantiation
of the grammar given a set of training instances and a tuning budget.

In this paper, we generated algorithms in three different ways: (i) equally
distributing the budget into the independent tuning of the parameters of clas-
sical SLS methods; (ii) spending all the budget on selecting the best classical
SLS method at the same time as the parameter tuning is performed; and (iii)
generating directly hybrid SLS algorithms that may reproduce the classical SLS
methods and hybridizations thereof.
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We carried out experiments on two variants of the PFSP, concretely, the
minimization of the weighted sum of completion times (PFSP-WCT) and the
minimization of the weighted tardiness (PFSP-WT). For both problems, method
(ii) is always able to identify one of the best SLS methods, which are VNS,
IG and ILS. The observed differences between these three SLS methods seem
to be more related to sufficiently tuning their parameters than to the choice
of SLS method. This is not entirely unexpected, since IG is the state-of-the-
art algorithm for these two problems [29,6], whereas VNS and ILS combine
perturbation moves with local search.

Overall, rather than tuning the non-hybrid SLS methods separately, it seems
more advantageous to let the automatic method to choose the most appropriate
SLS method and tune it at the same time, that is, to follow the grammar MH
described in the paper. Moreover, by allowing recursive rules in the grammar,
the automatic method is able to generate more complex hybrid SLS algorithms
when the problem requires it.

Method (iii) generates a variant of ILS with a Metropolis acceptance cri-
terion or hybrid ILS algorithms with at least two levels of hybridization. For
both problems, the difference between the hybrid algorithm and the other algo-
rithms tuned are always statistically significant. This result shows the flexibility
of method (iii), which is able to adapt the complexity of the generated hybrid
SLS algorithm to the problem and generate effective algorithms.

The methodology presented here can be straightforwardly extended to other
problems for which the use of hybrid SLS methods is appropriate. Moreover, we
are currently working on extending the proposed framework to include additional
SLS methods and allow other forms of hybridization. Finally, this paper only
analyzes the performance of the algorithms generated at the end of the automatic
design process, whereas it would be interesting to collect additional information
during the process. We are currently investigating which information should be
collected in order to obtain other useful conclusions from the automatic design
process.
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20. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and
applications. In: Gendreau, M., et al. (eds.) Handbook of Metaheuristics, ch. 9, 2nd
edn. International Series in Operations Research & Management Science, vol. 146,
pp. 363–397. Springer, New York (2010)
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Abstract In this paper we propose a Local Search approach for NP-
Hard problems expressed as binary programs. Our search method focuses
on the fast production of feasible solutions. The method explicitly consid-
ers the structure of the problem as a conflict graph and uses a systematic
neighbor generation procedure to jump from one feasible solution to an-
other using chains of movements. Computational experiments comparing
with two open source integer programming solvers, CBC and GLPK, in
MIPLIB 2010 instances, showed that our approach is more reliable for
the production of feasible solutions in restricted amounts of time.

Keywords: Binary Programming, Heuristics, Local Search.

1 Introduction

In this work we consider Binary Linear Programs, or Binary Programs (BP),
which can be expressed as:

min. :

cTx (1)

s.t. :

l ≤ Ax ≤ u (2)

xj ∈ {0, 1} ∀j ∈ J (3)

Where x is a vector of n binary variables with its associated cost vector c to
be minimized (1). A is a matrix with dimension m×n expressing the constraint
system where each constraint has a lower and upper bound expressed in vectors
l and u respectively.

In spite of its simplicity, Binary Programming , is one of the most important
techniques in Operations Research (OR). Some notable applications include The
Traveling Salesman Problem [1], Project Scheduling [2] and Computational Biol-
ogy [3]. The availability of constantly improving optimization packages [4], some
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of which are open source [5], has made Binary Programming a great choice for
OR practitioners.

Linear Programming based methods for Binary Programming typically work
by solving series of linear programs using some variation of the Branch-and-
Bound method [6]. This method works with fractional solutions but the sys-
tematic exploration of a tree of progressively restricted subproblems eventually
produces an Integer Feasible solution. Since the fractional solution is usually
useless for practical purposes, solvers are also being evaluated [7] considering
their ability to quickly produce an Integer Feasible solution.

In order to obtain feasible solutions in acceptable computational time, this
paper presents a hybrid heuristic. This approach is characterized by two phases:
a constructive phase, which involves solving the maximum independent set prob-
lem and a local search phase. Both phases work with information provided by
a conflict graph, created from the analysis of the constraints imposed by the
problem input. They do not require a black-box linear solver or branch-and-
bound family methods. Experiments with binary problems of the Mixed Integer
Programming Library (MIPLIB) 2010 show that the proposed approach is able
to produce more feasible solutions than the GNU Linear Program Kit (GLPK)
and COIN-OR [8] CBC [9] solvers in restricted time intervals.

The paper is organized as follows: Section 2 presents related works, Section 3
presents a description of the proposed approach. In Section 4 computational ex-
periments with MIPLIB are presented. Finally, Section 5 discusses future works
and conclusions.

2 Related Works

One common approach to the development of heuristics for Integer Program-
ming is to use the information from the linear programming relaxation alone
or combined with some black-box integer programming solver. These methods
solve series of linear programs iteratively [10–12]. One of them, called Feasibility
Pump, is a smart and simple heuristic, proposed by Fischetti et al. [10]. The
purpose of this heuristic is to find an initial feasible solution, even in difficult
problems. The basic idea is to start with a relaxed linear solution and then make
changes in the objective function to try to minimize the infeasibility related to
the integrality constraints. So, this method is designed to pump the feasibility of
a relaxed solution for an integer solution. Performed tests show that this method
is able to find feasible solutions quickly and can be used in other methods to
accelerate the search process.

Based in structure of Pure Integer Programming problems, in [13] is proposed
a approach that uses a genetic algorithm. In this approach, a gene corresponds
to a decision variable of the problem, represented by a bit array. Therefore, a
chromosome is defined by a decision variable set, which the fitness is the ob-
jective function. The initial population is generated randomly, respecting the
variables domains defined by constraints. Then, the method attempts to remove
the infeasibilities exchanging the variable values by rounded values of the linear
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relaxation of the problem. The basic steps of a genetic algorithm are performed:
crossover, mutation and selection. Crossover uses an one point operator. Muta-
tion is made inverting a bit value selected randomly of a chromosome. Lastly,
the selection phase is defined by a roulette based operation. Experiments were
performed to investigate the behavior of the proposed method with example in-
stances of Lingo 8.0 and the results were compared with this solver. The genetic
algorithm was able to obtain better solutions only in 2 of 9 instances.

LocalSolver [14] is local search based heuristic commercial solver that uses
local search to optimize linear and nonlinear binary problems. By default, Lo-
calSolver performs a descent method as search strategy using autonomous move-
ments. A Simulated Annealing based algorithm is also included. Both of these
strategies are implemented in multithreading. Initial solution is found by a basic
randomized greedy algorithm. Autonomous movements, which are k-flips move-
ments, are used, generating movements similar to Ejection Chains. These move-
ments preserve the feasibility of a solution. In its latest version, LocalSolver
reaches better solutions than Gurobi and CPLEX solvers in some MIPLIB 2010
instances classified as hard. Both local search and the constructive algorithm are
only superficially described by the authors, probably because of the commercial
nature of the product.

Vassilev et al. [15] presents a hybrid heuristic algorithm for Mixed Integer Pro-
gramming were each iteration has polynomial-time computing complexity. This
algorithm searches for feasible integer directions and uses a linear solver for the
continuous part. Three solutions are provided and the best of them is chosen. The
method proceeds, iteratively generating subproblems which the feasible region is
defined by all problem constraints satisfied at the current iteration. In these sub-
problems the objective function is one of the constraints which are not been satis-
fied yet. When a feasible solution was found, the objective function of the original
problem is inserted on the next subproblems. Any solution found from this stage
leads to a gradual improvement. Tests compare two versions of the method, one
that uses feasible integer directions with one non-zero component and other that
uses two of this components. The first variant shows solutions with better quality
and execution time, besides occupying a smaller portion of memory.

3 The BP Local Search Solver

Before proceeding to a detailed description of our solver it is important to com-
ment about the diversity of constraint types which can appear in BP problems
and how it determines the hardness of finding a first feasible solution. Some quite
common constraint types are:

Set Covering:
∑

xi ≥ 1, xi is binary
Set Packing:

∑
xi ≤ 1, xi is binary

Set Partition:
∑

xi = 1, xi is binary



48 S.S. Brito, H.G. Santos, and B.H. Miranda Santos

While for some BPs a feasible solution is trivial, e.g. Set Covering or Set
Packing, different constraints can significantly complicate this initial step. The
satisfaction of just one constraint can be a NP-Complete problem if it represents,
for instance the Number Partitioning Problem. Problems where only few, hidden,
subsets of all possible incidence vectors are feasible tend to be much harder. Set
Partitioning problems are typical examples of this type.

Our solver discovers and explores relationships between variables both in the
constructive phase and in the local search phase by means of conflict graphs,
which will be explained in the next subsection.

3.1 Conflict Graphs

A fundamental information from BP used by Linear Programming (LP) based
solvers to generate cuts and to strengthen the LP relaxation is the conflict graph
[16]. In ou work the conflict graph is always used in the primal search space, both
in our constructive approach and in the local search approach.

We construct a conflict graph by detecting pairs of variables which cannot be
activated at the same time. Since the construction of a full conflict graph may
require the execution expensive techniques such as probing [17], we opted for a
simpler procedure: conflicts are detect by processing each constraint individually,
checking for pairs of variables in this constraint whose activation cannot occur
at the same time without violating it.

To illustrate relationships between variables and conflict graph consider the
binary program P :

min. :

10x1 + 12x2 + 4x3 + 7x4 + 5x5

s.t. :

x1 + x2 ≤ 1 (4)

x1 + x3 + x5 = 1 (5)

x2 + x4 ≥ 1 (6)

x2 + x4 + x5 ≤ 1 (7)

x1, x2, x3, x4, x5 ∈ {0, 1}

In P , Set Partitioning (5) and Set Packing constraints (4 and 7) are the
constraints which provide obvious sets of conflicting variables. More generally,
Generalized Upper Bounds (GUB) constraints are rich sources of conflicts. The
conflict graph for P can be seen in Figure 1. Connected nodes represent con-
flicting variables. Besides conflicts this graph also shows a different relationship
between variables: dashed lines are drawn in groups of variables where at least
one variable must be activated.
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Fig. 1. Conflict Graph for P

3.2 Constructive Approach

An initial solution is built by solving a subproblem considering only the struc-
ture of set partition, packing and covering constraints. Solving this subproblem
corresponds to find an independent set in the conflict graph, i.e. finding a set of
variables that have no conflict with each other.

Finding and independent set corresponds to finding a clique in the compli-
mentary graph. Thus, the subproblem is modeled as a graph which is comple-
mentary to the original conflict graph. The weight of each vertex is related to the
number of Packing and Covering constraints that it satisfies when activated. A
Tabu Search based algorithm [18] then searches for cliques with weight above a
threshold given as input. In this case, the threshold is the number of set partition
and set covering constraints contained in the problem. When the algorithm fin-
ishes, a solution is created for the original problem, activating only the variables
returned by Tabu Search.

This phase was developed to obtain an initial set of variables that can be
activated without generating infeasibilities among them. In the case of instances
which contain only these three types of constraints, the result of the constructive
phase is a feasible solution for the original problem. Otherwise, the returned
solution can be infeasible, so that infeasible constraints are relaxed and sent to
be fixed in the local search phase. In our experiments we observed that even
when the BP has many other constraints, the initial satisfaction of these three
constraint types speeds up a lot the search process, since remaining constraints
are quite often easier to satisfy.
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3.3 Local Search : Chains of Flips

As the authors of [14] noted, the major obstacle when performing local search
with binary programming is to automatically detect relationships between deci-
sion variables. Problem specific metaheuristics usually have a compact solution
representation where few changes are required to jump from one solution to an-
other. In contrast, Binary Programs are usually modeled a much larger number
of decision and related auxiliary variables, so that it is very likely that by flipping
one bit at time only unfeasible solutions will be produced.

As an example, consider the BP stated in page 48. One feasible solution is
to activate variables x1 and x4, with cost 17. Once in this feasible solution, a
method whose local search only flips one bit at time would be trapped in a
local optimum surrounded by infeasible solutions. A smarter solver, when trying
to flip the then inactive variable x2, for instance, would have to automatically
detect that x1 should be flipped too, to remove the conflict caused by constraint
4, and that another variable should now flipped to satisfy constraint 5, say x3,
which would be infeasible. Thus, when trying to flip the then inactive variable
x2 the solver would detect a chain of movements: x2 → x1 → x3, where every
subsequent move would fix an infeasibility caused by a previous move. This
specific chain would produce a better solution with cost 16.

A fast algorithm to search for these chains of movements is the key component
to every local search based method for BP. In [14], even though authors comment
about the importance of this step, no details are given about how these chains
are generated, probably because the referred paper describes a commercial
product.

Algorithm 1.1 describes our implementation of an algorithm to detect a chain
of movements which lead from one feasible solution to another. The algorithm
performs a backtracking with limited depth d and limited breadth f . At each
recursion a set Ĵ of variables are flipped: the current variable j and all conflicting
variables, if j will become an active variable. These variables are put in a frozen
state (set S) in this and in deeper levels of the recursion. Subsequent variables
to be flipped are chosen from a set J̃ of variables. To fix new infeasibilities, only
variables which appear on the constraints set C can help. Candidate variables j̃
are evaluated with respect to how many conflicts it decreases in constraints of
C, this evaluation is stored in ej̃. The most promising variables flips are further
evaluated recursively in lines 21 to 26 and if the final effect is positive then
the recommended chain of movements J∗ is augmented. As one can observe, a
smart computation of j̃j is a key point to the success of the method, since large
values of d and f would result in prohibitive computing times. In this sense, we
observed that besides prioritizing variables which decrease the largest amount
of infeasibilities we also should include in this evaluation a larger priority to
variables which decrease infeasibilities in constraints with less options to resolve
these infeasibilities.
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Algorithm 1.1. chainFlip

Input :
x: current solution;
j: variable to be flipped;
J : variables already flipped;
C: constraints to check;
S: frozen variables;
d: current depth;

d: maximum depth;

f : maximum number of flips per recursive call;
Output:

(z∗, J∗): cost and variables of the best chain found
1 if d ≥ d then return

2 Ĵ = {j};
3 if xj = 0 then
4 S ← S ∪ {j′} : conflict(j, j′);
5 Ĵ ← Ĵ ∪ {j′} : conflict(j, j′) ∧ xj′ = 1;

6 end if
7 x′ = x;

8 for j′ ∈ Ĵ do

9 x
′
j = 1− x

′
j

10 end for

11 J ← J ∪ Ĵ ;
12 z∗ ← f(x′);
13 J∗ ← J ;

14 C ← C ∪ {i} : i is a constraint where one or more variables of Ĵ appear;

15 J̃ ← all j which appear in some constraint of C and is not in S;

16 ej̃ = 0, ∀j̃ ∈ J̃ ;

17 for j̃ ∈ J̃ do

18 compute the impact ej̃ of flipping j̃ considering constraints C;

19 end for

20 for k = 1 to min(f , |J̃ |) do
21 j̃ ← the k−th element from J̃ with best ej̃ ;

22 (z′, J ′) ← chainFlip(x′, j̃, J, C, S, d+ 1, d, f);
23 if z′ < z∗ then
24 z∗ ← z′;
25 J∗ ← J ;

26 end if

27 end for
28 return (z∗, J∗);

The current implementation of local search performs iterated calls to chainFlip
made from different, randomly selected variables. If the solution is still unfeasible,
the search concentrates in variables which appear in constraints which are still not
satisfied. In this case, we first randomly select one of the unfeasible constraints
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and then randomly select one of its variables. Movements are accepted according
to a RNA (Random Non Ascendent) rule. As it can be seen in the next section,
this simple approach, combined with our constructive algorithm was enough to
produce very encouraging results.

4 Computational Experiments

Our code was written in C++ using the open source COIN-OR libraries to read
instances. The code was compiled on GCC/G++ version 4.6.3. We ran all the
experiments on an Intel Core i7-3770 R© 3.4GHz computer with 16Gb of RAM
running the openSUSE Linux 12.3 operating system.

Table 1. Details of instances

Instance Rows Cols Objective COV PAC PAR

acc-tight5 3052 1339 0.00 11 288 244

air04 823 8904 56137.00 0 0 823

bab5 4964 21600 -106412.00 0 88 21

bley xl1 175620 5831 190.00 14 5133 169

bnatt350 4923 3150 0.00 183 0 0

cov1075 637 120 20.00 252 0 0

eil33.2 32 4516 934.01 0 0 32

eilB101 100 2818 1216.92 0 0 100

ex9 40962 10404 81.00 0 0 162

iis-100-0-cov 3831 100 29.00 3831 0 0

iis-bupa-cov 4803 345 36.00 4803 0 0

iis-pima-cov 7201 768 33.00 7201 0 0

m100n500k4r1 100 500 -25.00 0 100 0

macrophage 3164 2260 374.00 609 0 0

mine-166-5 8429 830 -5.66E+08 0 0 0

mine-90-10 6270 900 -7.84E+08 0 0 0

mspp16 561657 29280 363.00 15 1695 31

n3div36 4484 22120 130800.00 2 4424 0

n3seq24 6044 119856 52200.00 120 4484 0

neos-1109824 28979 1520 378.00 0 1520 23

neos-1337307 5687 2840 -202319.00 0 0 126

neos18 11402 3312 16.00 2809 0 2262

neos-849702 1041 1737 0.00 0 540 270

netdiversion 119589 129180 242.00 103 49799 1

ns1688347 4191 2685 27.00 0 382 88

opm2-z7-s2 31798 2023 -10280.00 0 0 0

reblock67 2523 670 -3.46E+07 0 0 0

rmine6 7078 1096 -457.19 0 0 0

sp98ic 825 10894 4.49E+08 6 627 0

tanglegram1 68342 34759 5182.00 7843 0 0

tanglegram2 8980 4714 443.00 2160 0 0

vpphard 47280 51471 5.00 0 0 320
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Table 2. Production of feasible solutions in 60 and 300 seconds

Instance 60 seconds 300 seconds
GLPK CBC BPLS GLPK CBC BPLS

acc-tight5

air04 � � � � � �
bab5 �
bley xl1

bnatt350

cov1075 � � � � � �
eil33-2 � � � � � �
eilB101 � � � � � �
ex9

iis-100-0-cov � � � � � �
iis-bupa-cov � � � � � �
iis-pima-cov � � � � � �
m100n500k4r1 � � � � � �
macrophage � � � � � �
mine-166-5 � � � � � �
mine-90-10 � � �
mspp16

n3div36 � � � � �
n3seq24 � � �
neos-1109824 � � � � �
neos-1337307 � � � �
neos18 � � � � � �
neos-849702

netdiversion

ns1688347

opm2-z7-s2 � � � � � �
reblock67 � � � � �
rmine6 � � � � � �
sp98ic � � � � � �
tanglegram1 � �
tanglegram2 � � � � � �
vpphard �

Total 17 19 20 19 23 21

Computational experiments were made using all 32 binary problems of MI-
PLIB 2010 benchmark set [19] which have a feasible solution. Since its introduc-
tion in 1992, the MIPLIB became a standard library of tests used to compare
the performance of integer programming solvers. It contains a collection of real
problems, most of them based on industrial applications. The details of the used
problems can be seen in Table 1. Columns Rows and Cols indicate the num-
ber of constraints and decision variables of the problems, respectively. Column
Objective presents the optimal objective value for each instance. The remaining
columns COV, PAC and PAR indicates the number of set covering, set packing
and set partition constraints for each instance, respectively.
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These experiments compare our approach with two of the best open source
integer programming solvers: CBC1 and GLPK2. Table 2 shows the obtained
results with execution time limit set to 60 and 300 seconds. In this table, columns
GLPK and CBC indicate, respectively, tests performed using GLPK and CBC
solvers with default parameters. The Last column, BPLS, corresponds to results
obtained by our approach. In both of these columns, a check mark is used to
indicate the method has found a feasible solution for a instance in the restricted
time limit.

Results show that our approach was able to find feasible solutions to a greater
number of instances in a 60 seconds timeout when comparing with CBC and
GLPK. Relaxing this time limit to 300 seconds, all methods were able to find
more feasible solutions. While our approach found feasible solutions for 21 in-
stances, GLPK and CBC found 19 and 23 feasible solutions, respectively.

5 Conclusions

In this work we proposed and evaluated computationally a hybrid, local search
based solver to search for feasible solutions for Binary Programming problems.
Computational experiments performed in the MIPLIB 2010 instance set showed
that our approach is more reliable to find feasible solutions in very restricted
amounts of time than two of the best open source integer programming solvers
available: CBC and GLPK.

This feature is fundamental for those interested in the application of Binary
Programming where time is a limiting factor. It is also worth to note that the
production of the first feasible solution can also speed up the production of high
quality solutions: once a feasible solution is available methods like RINS or Local
Branching can me immediately applied to improve the incumbent solution.
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Abstract. This paper deals with a new heuristic for the Steiner tree
problem (STP) in graphs which aims for the efficient construction of ap-
proximate solutions in very large graphs. The algorithm is based on a
partitioning approach in which instances are divided into several subin-
stances that are small enough to be solved to optimality. A heuristic
solution of the complete instance can then be constructed through the
combination of the subinstances’ solutions. To this end, a new STP-
specific partitioning scheme based on the concept of Voronoi diagrams
is introduced. This partitioning scheme is then combined with state-
of-the-art exact and heuristic methods for the STP. The implemented
algorithms are also embedded into a memetic algorithm, which incor-
porates reduction tests, an algorithm for solution recombination and a
variable neighborhood descent that uses best-performing neighborhood
structures from the literature. All implemented algorithms are evaluated
using previously existing benchmark instances and by using a set of new
very large-scale real-world instances. The results show that our approach
yields good quality solutions within relatively short time.

1 Introduction

The Steiner tree problem (STP) in graphs is a fundamental NP-hard combi-
natorial optimization problem with numerous applications, e.g., in telecommu-
nication network design or computational biology. In the STP we are given an
undirected graph G = (V,E) whose node set V is the disjoint partition of ter-
minal nodes T , ∅ �= T ⊂ V , and potential Steiner nodes V \ T as well as a cost
function c : E → Q+ assigning a nonnegative value to each edge. The goal is to
find a subgraph S = (VS , ES), VS ⊆ V , ES ⊆ E, of G spanning all terminals, i.e.,
T ⊆ VS , of minimum cost c(ES) =

∑
e∈ES

ce. The STP in graphs has received
significant attention from the scientific community in the last decades. Several
integer linear programming (ILP) formulations together with corresponding so-
lution methods have been developed [1] and the lower bounds arising from their
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linear programming relaxations as well as from Lagrangian relaxation or dual as-
cent have been studied, see, e.g., [2,3,4,5]. The current state-of-the-art approach
for solving instances of the STP to proven optimality has been proposed by
Polzin [4] and Daneshmand [6]. Their approach incorporates several algorithmic
techniques such as reduction tests [7], dual ascent, and construction of heuris-
tic solutions, within a branch-and-bound framework. Aside from exact methods
numerous metaheuristic approaches have been applied to the STP to compute
good solutions within shorter time, see e.g., [8,9,10].

In this work, we propose a new matheuristic and a memetic algorithm for the
STP. Our approaches, that will be detailed in the following, aim to effectively
solve very large-scale instances through the combination of graph partitioning
and state-of-the-art exact and heuristic methods for the STP. Note, that most
components of the algorithms discussed in the following are described in more
detail in the Master’s thesis of the third author of this work [11].

2 Partition-Based Construction Heuristic

This section details the partition-based construction heuristic (PCH), which ap-
plies graph partitioning as a means to find a heuristic problem decomposition.
A given STP instance is heuristically divided into a set of smaller subinstances,
which are solved separately and whose solutions are combined into a feasible
solution to the original instance. In the past this concept has been applied to
compute good feasible solutions to large-scale instances of other NP-hard prob-
lems which require too much computational effort for current exact methods,
see, e.g., [12]. A general framework which follows a similar principle has been
proposed by Taillard and Voß [13]. Figure 1 visualizes the general framework and
its four main steps (partition, decompose, solve, and repair) that are described in
the following subsections, while Figure 2 depicts each stage of the process when
applied to a simple problem instance. Note that we assume that preprocessing
in the form of reduction tests has been applied prior to the PCH.

2.1 Step 1: Partition

The goal of the first step is to compute a partition of the instance graph, which
is used later on to decompose the given STP instance into subinstances. As
indicated in Figure 1, given the preferred number of partitions k and a partition
imbalance parameter d, 1 ≤ d ≤ k, a partitioning algorithm AP is applied
to divide the given graph G into k subsets each containing no more than d ·
|V |
k nodes. The parameters k and d enable a trade-off between solution quality
and runtime, i.e., a high number of small subinstances is solved easily, but the
resulting solution quality may in turn be low.

For heuristic problem decomposition to yield good quality solutions, the in-
dependence of the subinstances plays an important role. Given an STP instance
and a set of subinstances thereof, we consider the subinstances as independent if
they can be solved separately, such that the union of their solutions corresponds
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instance I

Partition

Decompose

Solve[1. . . k]

Repair

solution S

partition algorithm AP

number of partitions k
partition imbalance parameter d

guiding solution SG

decomposition algorithm AD

repair algorithm AR

solution algorithm AS

time limit t

partition P

subinstances I1, . . . , Ik

solutions S1, . . . , Sk

Fig. 1. A partition-based procedure for heuristic solution construction

to the optimal solution of the original instance. In the context of the NP-hard
STP, completely independent subinstances do not exist in general (although in
some special cases an exact decomposition is feasible [4]).

Thus we propose two heuristic graph-structure-based measures which describe
the independence between potential subinstances: the edge-cut between sub-
graphs and the distance between terminals. The first measure is aimed at graphs
of varying density, while the second measure focuses on instances that contain
terminal clusters.

Furthermore, we introduce the concept of the guiding solution SG to enhance
our partition-based decomposition algorithms. A guiding solution is a heuris-
tic solution to the given instance as a whole, potentially computed by a fast
construction heuristic able to efficiently process large-scale instances.

Both algorithms proposed in this article aim to construct a partitioning that
splits SG into k subtrees. The goal is to group terminals together into the same
subset, if they are connected by a short path in SG. If SG is already a good
approximation of the optimal solution’s structure, the subinstances’ solutions
are also likely to be similar to parts of the optimal solution.

Edge-based Partitioning (Eb). The objective of this algorithm is to find a parti-
tioning that minimizes the edge-cut of the instance graph. Given a graphG = (V,
E) with node weights wi, i ∈ V , edge weights cij , {i, j} ∈ E, an integer k > 1
and a partition imbalance parameter d, the goal is to find a balanced partition
of V into k disjoint subsets V1, . . . , Vk such that

⋃k
i=1 Vi = V and such that the

weight of the edges between different subsets is minimized. Thereby, by balanced
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(a) (b)

(c) (d)

Fig. 2. PCH solution construction. (a) Graph after computing a partition (partitions
marked by the dashed lines and terminals in black). (b) Subinstances obtained from
decomposition. (c) Solutions of subinstances (bold edges indicate computed solutions).
(d) Solution to original instance after repair.

we mean that
∑

i∈Vi
wi ≤ d

k ·
∑

i∈V wi holds for each subset Vi, 1 ≤ i ≤ k. For the
purpose of problem decomposition for the STP, we assume that a heuristic parti-
tion suffices. In our implementation this task is handled by an efficient heuristic
implemented in the publicly available partitioning framework METIS [14], which
performs in linear time with respect to the number of nodes.

In our experiments we have considered two weighting schemes with either
uniform edge weights c′e = 1, ∀e ∈ E, (minimizing the size of the edge-cut) or
transformed original weights c′e = cmax − ce, ∀e ∈ E, with cmax = maxe∈E ce
(minimizing the weight of the edge-cut). For both weighting schemes we incor-
porate heuristic information provided by the guiding solution SG through weight
scaling, where the weights c′e of edges e ∈ SG are scaled by a certain priority
factor l to become heavier than regular edges. The goal is to make these edges
less likely to be included into an edge-cut, since partition subsets should be
computed so that they decompose the guiding solution into subtrees. For our
experiments we have chosen l = 2.

Voronoi-based Partitioning (Vb). Voronoi diagrams in graphs have been suc-
cessfully applied in the STP literature to design efficient local search and
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reduction techniques [4,10]. We now propose a new partitioning scheme for the
STP derived from the concept of Voronoi diagrams. In the context of the STP,
a Voronoi-diagram assigns each Steiner node to its nearest terminal, while ties
are broken arbitrarily. Thus the Voronoi diagram defines a partitioning of the
instance graph, where each subset contains exactly one terminal, as well as all its
closest Steiner nodes. Let P denote this initial partitioning, and let p ∈ P and
p′ ∈ P be disjoint subsets. Furthermore, let d[p, p′] denote the minimum distance
between any pair of terminals t1 and t2, where t1 ∈ p and t2 ∈ p′. Subsequently,
P is iteratively coarsened until it is sufficiently close to the specified partitioning
parameters k and d. The coarsening process is performed as follows:

1. Choose a subset p ∈ P such that |p| ≤ |p′|, ∀p′ ∈ P .
2. Merge p with an adjacent subset p′, such that d[p, p′] ≤ d[p, p′′], ∀p′′ ∈ P\{p},

and |p|+ |p′| ≤ |V | · d
k .

3. If |P | > k and there exists p′, go to 1.

Always choosing the subset with minimum cardinality ensures that the created
partitioning is roughly balanced, since two large subsets can only be merged
if no smaller subsets exist. Note that this procedure ensures that partitions
adhere to the imbalance parameter d. However, it may happen that the algorithm
terminates while more than k subsets remain, since no p′ may exist such that
the balance property is not violated. We consider this to be acceptable, since
our primary goal is to prevent subsets from becoming too large to be solved
efficiently.

To incorporate information provided by a guiding solution SG, in Step 2 of
the procedure, subsets are only merged if there exists a path between them in
SG. Thereby, two subsets are only contracted if a path connects them directly
in SG, i.e., without passing through another subset first.

2.2 Step 2: Decompose

During the decomposition step a set of subinstances I1, . . . , Ik is constructed
from the original instance I = (G, T ), where G = (V,E) is the instance graph
and T ⊂ V is the set of terminals. The decomposition is performed based on
the partition P of G computed in the previous step. We consider the following
decomposition strategy which turned out to perform best among different alter-
natives considered, see [11] for more details. Given the partition P , the edges
EP corresponding to the edge-cut defined by P are removed from E. Thus G
is split into a set of subgraphs G1, . . . , Gk. From each subgraph Gi = (Vi, Ei),
a subinstance Ii = (Gi, Ti) is constructed, where Ti = Vi ∩ T . Note that this
method implies that the union of all solutions Si of Ii will only form a partial
solution in I, since all subinstances are disjunct. The remaining edges have to
be computed in Step 4 (repair).

2.3 Step 3: Solve

The algorithm used for the exact solution of the STP which is also used for
solving subinstances is based on a branch-and-cut (B&C) approach similar
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to the one proposed by Koch and Martin [1], see also [5]. For each arc (i,
j) ∈ A = {(i, j) | {i, j} ∈ E}, an arc variable xij denotes membership of
the corresponding arc to the Steiner tree (xij = 1) or not (xij = 0). Simi-
larly, additional node variables yi for i ∈ V \ T denote if i is spanned by the
Steiner tree (yi = 1) or not (yi = 0). An arbitrary terminal is chosen as root
node r. For brevity, we use the following notations: Given a set W ⊂ V , we
define δ+(W ) = {(i, j) ∈ A | i ∈ W ∧ j ∈ V \W} as the set of all arcs with tail
inside W and the head in its complement. Conversely, δ−(W ) denotes the set of
arcs pointing into W from its complement set. For short, if W contains only a
single element v, we write δ+({v}) as δ+(v) and δ−({v}) as δ−(v), respectively.

(EDCF) min
{ ∑

(i,j)∈A

cijxij | (x, y) ∈ {0, 1}|A|+|V |−|T |

x(δ−(i)) = 1, ∀i ∈ T \ {r}, x(δ−(i)) = yi, ∀i ∈ V \ T (1)

x(δ−(W )) ≥ 1, ∀ W ⊂ V, r �∈ W, W ∩ T �= ∅
}

(2)

The objective function minimizes the weight of the selected arcs. Degree con-
straints (1) ensure that each terminal except the root and all Steiner nodes that
are part of the solution have in-degree exactly one. Constraints (2) are directed
cut constraints that ensure that there is a directed path between the root and
any other terminal node.

The following inequalities are additionally used to initialize the branch-and-
cut procedure:

x(δ+(i)) ≥ yi ∀i ∈ V \ T (3)

xij + xji ≤ yi ∀(i, j) ∈ A, i ∈ V \ T (4)

Constraints (3) ensure that Steiner nodes that are part of the solution have
at least one outgoing arc (they were referred to as “flow-balance” constraints
in the literature). Constraints (4) express that each arc in the solution tree can
only be oriented in one way. We also add root in- and out-degree constraints:
x(δ+(r)) ≥ 1 and x(δ−(r)) = 0 (notice that one can alternatively remove root-
incoming arcs from the input graph).

Since formulation (EDCF) contains an exponential number of directed cut
constraints (2) we implemented a branch-and-cut algorithm. The branch-and-
cut is initialized with all compact constraints and with a set of cut constraints
obtained through Wong’s dual ascent algorithm [5]. Thus, the linear program-
ming (LP) bound obtained from our initial model is at least as good as the one
obtained from dual ascent and hence a significant reduction of the runtime can
typically be observed, cf. [2,4]. We also initialize the upper bound using the fea-
sible solution obtained from dual ascent. Further cut constraints are separated
using the push-relabel maximum flow algorithm [15] and we also used nested
cuts, back cuts and creep-flow to improve the number and strength of separated
inequalities per call of the separation routine, see [1] for details. Our branch-
and-cut incorporates a primal heuristic which is called after each cutting-plane
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iteration, in order to compute tight upper bounds that enable effective prun-
ing of nodes of the search tree. We apply the improved implementation of the
well-known shortest path heuristic (SPH) [16], combined with a pruning step
(MST-Prune) as proposed in [17], which achieves a much better average-case
runtime than the classic implementation. MST-Prune can potentially enhance
the solution constructed by SPH by computing a minimum spanning tree on the
set of nodes contained in the solution and recursively removing Steiner nodes of
degree one. SPH followed by MST-Prune is applied to the original undirected
graph with adapted edge weights c′ij = cij ·(1−max(x̃ij , x̃ji)), ∀{i, j} ∈ E, which
are computed from the current LP solution (x̃, ỹ).

2.4 Step 4: Repair

As mentioned above, solving the subinstances generated in the decomposition
step results in a set of disconnected partial solutions. Thus a repair step is
necessary to extend these into a feasible solution for the original instance. Given
a set of solutions Si, 1 ≤ i ≤ k, to subinstances Ii, the goal is to identify a set
of edges E′ such that

⋃
1≤i≤k Si ∪E′ is connected.

In our implementation the edges E′ are computed through the construction
of an appropriate auxiliary STP instance to which either a heuristic or exact
algorithm can be applied. The auxiliary instance is obtained from the original
graph in which partial solutions Si, 1 ≤ i ≤ k are shrunk into “super-nodes”
(more precisely, “super-terminals”), self-loops are deleted, and among parallel
edges only the cheapest ones are kept. Subsequently, (1) for the heuristic repair:
SPH is performed followed by MST-Prune with a randomly selected terminal as
root, and (2) for the exact repair we use the branch-and-cut algorithm detailed
above.

3 Partition-Based Memetic Algorithm

In this section, we present a memetic algorithm (to which we refer to as MPCH )
in which PCH is applied in combination with several other problem-specific
algorithms. The objective is to exploit synergy effects arising from the interaction
between multiple algorithmic components.

Within MPCH, PCH is always supplied with already available heuristic in-
formation in the form of a guiding solution and therefore does not construct
solutions from scratch. Given a population of solutions, PCH can be interpreted
as a specialized mutation operator, which introduces new information and po-
tentially enhances a given solution. Its application is also similar to the iterative
improvement provided by a local search procedure. In the proposed algorithm
PCH is not only applied to a solution once, but several times. The solution
produced in the previous iteration is subsequently used as a guiding solution in
the next step. This procedure is allowed to continue until no improving solution
has been found for a specified number of iterations. In the end, the best found
solution replaces the original guiding solution in the population.
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Data: Instance I = (G,T, c), population size popmax, maximum number of
generations g, number of iterations without improvement n

Result: The best found solution S∗ and an associated lower bound lb.

pop ← ∅
lb ← 0

for popmax individuals do // Initialize population

(lb′, GA, c̃) ← DA(I)
I ′ ← (GA, T, c)
S ← SPH(I ′)
S ← VND(I, S)

insertInPopulation(pop, S)
lb ← max(lb, lb′)
reduce(I, c̃, lb, obj(best(pop)))

end

for g generations do // Generation step

foreach S ∈ pop do
S′ ← S
repeat

S ← PCH(I, S)
S ← VND(I, S)
S′ ← minobj(S

′, S)
until n iterations without improvement
replaceInPopulation(pop, S, S′)

end
pop ← recombination(pop)

end

S∗ ← best(pop)

Algorithm 1. Partition-based Memetic Algorithm

Algorithm 1 shows the structure of MPCH whose components will be detailed
below. Basic population-based parameters are the population size popmax and
the maximum number of generations g. The parameter n restricts the number
of PCH applications without improvement. The whole procedure returns the
best found solution S∗ and an associated lower bound lb as an estimate of the
solution’s quality. In the following, let best(pop) return the best solution of the
population pop with respect to the objective value, and let obj(S) denote the
objective value of a solution S.

Generation of an initial population. In each iteration, the dual ascent algorithm
(DA) [5] is executed with an arbitrary terminal as root node. The result is a
saturation graphGA, a lower bound lb′ and the reduced costs c̃. Subsequently, the
shortest path heuristic (SPH) is applied to GA to construct a feasible solution.
The result is improved through the application of variable neighborhood descent
(VND), see below. The resulting solution S is inserted into the population pop.
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Finally, the currently best lower bound lb and upper bound (i.e., the objective
value of the best solution in pop), as well as the reduced costs c̃ from the current
iteration are used to apply bound-based reduction tests to the instance I. After
the population initialization, one obtains a population pop of (diverse) feasible
solutions together with a lower bound lb and a reduced instance graph G.

Generation step. In the main phase, the population is evolved for a fixed number
of generations, each of which consisting of two steps: individual improvement
and solution recombination. In the improvement step, PCH followed by VND is
applied in a multi-start fashion to each solution S ∈ pop. For the first iteration of
the multi-start procedure, S is used as a guiding solution for PCH. The guiding
solution for each subsequent iteration is the solution from the previous iteration.
The multi-start procedure continues until no improving solution has been found
within n consecutive iterations. After the termination of the multi-start, the best
obtained solution S′ replaces S in the population. In the second step, the current
population is recombined to potentially construct new high quality solutions. In
each recombination step, every solution in pop is combined with a randomly
chosen second solution while ensuring that each pair of solutions is considered
at most once. Given, such a pair of solutions S1 and S2 to create new solution
the STP is solved (either heuristically or exactly) on the union of the subgraphs
defined by the solutions. To prevent repetitive calculations of exact solutions
of subinstances that have been treated before, MPCH also employs a solution
archive storing optimal solutions of previously solved subinstances.

Variable neighborhood descent. Within variable neighborhood descent, we con-
sider the following four neighborhood structures (in the same order as presented)
from the literature using fast neighborhood evaluation recently proposed by
Uchoa and Werneck [10]:

– The Steiner node insertion neighborhood structure contains all solutions
which can be constructed from an initial solution S through the insertion of
a single Steiner nodes v /∈ VS (and edges {v, u}, u ∈ VS) and the application
of MST-Prune to the induced subgraph.

– The key-path exchange neighborhood structure contains all solutions which
can be constructed from a given solution S through exchanging a key path
P1 from S by a new key path connecting the two components of S obtained
after removing P1. Thereby, a path is called a key path if its endpoints are
either terminal nodes or Steiner nodes with degree at least three (in S) and
all inner nodes of the path are Steiner nodes of degree two.

– The key-node elimination neighborhood structure is defined by all solutions
that can be created from a given solution S by removing a single key node
(i.e., a Steiner node of degree at least three) as well as its incident key paths,
and reconnecting the resulting subtrees through a set of shortest paths.
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4 Computational Results

In this section, our computational results are presented and analyzed. All algo-
rithms are implemented in C++ and compiled using GCC 4.8.1 with the full
compiler optimization flag (-O4). The B&C approach for model (EDCF) builds
upon IBM CPLEX 12.5, METIS [14] is used for computing a k-way graph par-
tition, and bossa [18] for preprocessing of STP instances. The test runs of all
experiments for which we report runtimes, have been computed on a single core
of an Intel Xeon E5540 2.53 GHz with 24 GB RAM.

Test instances have been selected by multiple criteria. We focused on large,
sparse instances, since these are the primary focus of our algorithm. Sets ES,
VLSI, and TSPFST have been chosen from the SteinLib [19]. The set VLSI con-
tains 10 instances with a low ratio of terminals, while ES and TSPFST contain 16
and 10 instances, respectively, with a relatively high number of terminals, see [11]
for more details. In addition, we use new large-scale real-world instances (10 par-
ticularly large instances from set I and 22 instances from set GEO) from telecom
applications [20]. These are on average larger than the instances contained in
the SteinLib, with up to 70 000 nodes and 110000 edges after preprocessing.

4.1 Evaluation of the Partitioning Algorithms

We first evaluate the proposed partitioning algorithms. For comparison purposes,
each algorithm is applied together with the heuristic repair algorithm, since this
configuration is expected to require the lowest runtime. This choice does not
have any impact on the performance of partitioning, since the application of
these techniques is independent from each other.

Table 1 details the solution quality obtained from the different partitioning
schemes. Each column contains results for a different partitioning scheme and
the given parameters k and d. The following abbreviations are used: Eb and V b
denote the edge-based and Voronoi-based partitioning schemes, cu and corig are
the uniform and original weighting strategies for Eb, while SG denotes the use
of a guiding solution. This guiding solution is constructed by applying SPH and
MST-Prune in the auxiliary graph generated by dual ascent. Note that instance
set GEO is not considered in these initial experiment, since the structure of these
instances is quite similar to the one of instances from set I.

We note that the results confirm that the parameters k and d affect PCH
as intended. In most cases, a clear progression is visible concerning runtime
(cf. [11]) and solution quality when the values of |T |/k and d are increased. The
creation of larger, imbalanced subinstances yields an improved solution quality,
but increases the runtime, since the created subinstances take longer to be solved.
Furthermore, we observe that V b outperforms Eb with respect to the obtained
solution quality in almost all cases. In addition, the solution quality obtained
when using Eb heavily depends on the chosen parameter values which is not true
for V b. Our results also clearly indicate that the edge-cut of a graph is not a
good measure to encourage the construction of good quality solutions. For V b we
observe that increasing d generally leads to better results. The exception is the
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Table 1. Comparing partitioning schemes in PCH w.r.t. the average gaps between the
computed solutions and the known optimum for each method [%]. Smallest average
gaps per considered setting are marked bold.

Edge-based partitioning (METIS) New Voronoi-based
partitioning

|T |/k d cu corig cu, SG corig, SG - SG

ES 10 1 8.88 9.13 8.57 8.13 1.54 0.98
2 1.99 1.43 1.37 1.05 1.03 0.69
3 1.82 1.24 1.29 0.94 0.97 0.63

100 1 3.41 3.90 1.35 1.53 0.37 0.18
2 0.67 0.64 0.58 0.42 0.22 0.14
3 1.63 0.95 0.80 0.75 0.20 0.13

VLSI 10 1 55.39 44.57 45.02 42.67 3.30 1.25
2 8.65 7.95 5.22 4.62 1.29 0.97
3 11.82 12.92 6.61 6.74 1.00 0.81

100 1 25.50 25.15 19.99 20.09 1.86 0.65
2 3.30 1.61 1.34 1.14 0.63 0.58
3 3.27 1.46 1.23 1.11 0.71 0.68

TSPFST 10 1 7.42 7.33 8.50 7.50 1.69 1.12
2 1.82 1.34 1.37 1.14 1.07 0.82
3 1.80 1.30 1.33 1.12 0.98 0.81

100 1 4.55 4.24 4.03 4.02 0.43 0.28
2 0.59 0.53 0.40 0.73 0.35 0.19
3 0.57 0.34 0.41 0.35 0.23 0.14

I 10 1 0.903 0.863 0.986 0.826 0.094 0.039
2 0.241 0.198 0.144 0.125 0.056 0.028
3 0.234 0.201 0.149 0.112 0.046 0.028

100 1 0.340 0.296 0.320 0.281 0.094 0.011
2 0.090 0.109 0.058 0.083 0.038 0.006
3 0.097 0.076 0.065 0.111 0.016 0.006

VLSI instance set, for which d = 2 achieves the best results. We conclude that
in instances which contain only a very small percentage of terminals, making
subsets in a partition too big may lead to less favorable results than creating
smaller subsets and connecting them heuristically. We also note that the average
runtime of V b is typically lower than the one of Eb and even for those cases where
Eb was faster the difference was typically less than a second. We note that the
running times of V b are significantly larger than those of Eb only when using
large values of d on instance set I. This is, however, compensated by better
solution quality. We further note that using a guiding solution speeds up V b for
all considered parameter values. Overall, we conclude, that V b performs much
better both with respect to solution quality and runtime, and is also a much more
robust strategy with respect to the choice of parameters. Thus, only V b with a
guiding solution is used when referring to PCH in the remaining experiments.
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4.2 Comparison to Other Methods

Tables 2 and 3 compare average gaps to the best known objective values (which
are proven optimal values except for several of the GEO instances) and average
runtimes grouped by instance set, see also Figure 3 for a graphical represen-
tation. In the listed results SPH+VND refers to applying the shortest path
heuristic (SPH) followed by VND, and DA+VND to a variant of SPH+VND
applied to the auxiliary graph which remains after execution of the dual ascent
algorithm. The latter may not only provide better solutions but more impor-
tantly also provides a lower bound for the estimation of the solution’s quality.
PCH+VND refers to a using PCH as initial solution for VND using the best
parameters from preliminary experiments (i.e., Voronoi-based partitioning with
k = |T |/100, d = 3, guiding solution, and heuristic repair), see also [11]. Thereby,
the guiding solution is produced as in DA+VND. MPCH is the memetic algo-
rithm with parameters g = 3, popmax = 10, n = 2, which have been determined
in preliminary experiments, see also [11], and using the exact solution recombi-
nation. PCH is internally applied as in PCH+VND.

In all variants, the time limit for each exact solution of a subinstance is set
to t = 100s. Finally, HGPPR refers to the hybrid GRASP with perturbations
and path relinking proposed by Ribeiro et al. [9] which has been rerun on our
environment. The publicly available implementation [18] has been configured as
follows: The number of iterations for the GRASP is fixed to 128. For the path
relinking phase, no restriction is enforced, and the algorithm only terminates if
no improved solution can be found based on the current population. Adaptive
path relinking is used, which means that the program tests the runtime of two
different path relinking algorithms for a few iterations, and chooses the faster
one. In the following, we present both solution quality and runtime for only
the GRASP phase and also the full procedure. The results after the GRASP
phase are denoted by HGP, while the result of the full procedure are denoted by
HGPPR. We note that although HGPPR has been applied to all instance sets
in our experiments, we have been unable to record any meaningful results for
the instance set GEO, since the used implementation failed to process this type
of instance correctly. In addition to the heuristic approaches, we also show the
results for the B&C with a time limit of 24 hours. Note that we did not compare
to the state-of-the-art exact approach of Polzin [4] and Daneshmand [6] since
their implementation is not publicly available.

We observe that the combination of SPH and VND produces good quality so-
lutions fast, even for larger instances. The dual ascent implementation typically
yields slightly better solutions but needs significantly more time for large-scale
instances. We see that a single iteration of PCH with local search yields excellent
results in a small amount of time and that for the large instances with many
terminals, a single iteration of PCH yields a better bound than HGPPR. The
required runtime is also extremely low, in particular compared to the long run-
times of HGPPR. We conclude that PCH outperforms the other algorithms if
there are many terminal nodes.
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Table 2. Comparison of different methods w.r.t. the average gaps between the obtained
and the best known solution values [%]. Smallest average gaps among the VND-based
methods and among the other methods marked bold.

SPH+VND DA+VND PCH+VND MPCH HGP HGPPR B&C

ES 0.82 0.57 0.12 0.04 0.32 0.09 0.005
TSPFST 0.88 0.70 0.14 0.03 0.31 0.09 0.037
VLSI 1.41 0.99 0.33 0.17 0.30 0.10 0.186
I 0.0264 0.0167 0.0019 0.0008 0.0100 0.0044 0.0000
GEO 0.9815 0.8595 0.2654 0.0681 - - 0.0478

Table 3. Comparison of different methods w.r.t. the average runtimes [s]. Smallest
average runtimes among the VND-based methods and among the other methods are
marked bold.

SPH+VND DA+VND PCH+VND MPCH HGP HGPPR B&C

ES 0.08 0.21 4.47 69.55 148.51 365.96 56.11
TSPFST 0.13 0.26 19.16 261.02 167.29 380.07 201.54
VLSI 0.11 0.39 37.77 117.63 47.33 76.76 458.13
I 4.14 31.31 156.95 1621.09 6262.05 63134.15 21906.91
GEO 2.02 10.78 200.28 1515.36 - - 20229.57

Concerning MPCH, the number of iterations and exact recombination leads
to a significant runtime increase compared to PCH. Despite the fact that MPCH
is costly with respect to runtime, it clearly pays off regarding solution quality.
Note that an improvement is achieved in all cases compared to PCH+VND.
Moreover, MPCH also outperforms HGPPR in the majority of cases.

We note that the bossa framework containing HGPPR does not employ the
improved local search strategies. They employ Steiner node insertion/elimination
and key-path exchange but not their improved implementations [10] which yield
a quite huge runtime for large-scale instances with many nodes. This clearly
highlights the importance of the improved implementations of the neighborhood
exploration. We assume that the runtime of HGPPR can be improved greatly
through the application of these implementations. We also note that though
B&C is an exact method, it is quite competitive to the other methods. The aver-
age runtimes for the sets ES, TSPFST and VLSI are not that far away from the
ones of the more sophisticated heuristics considered. The worst performance is
achieved for the VLSI instances which are known to be very hard for ILP based
approaches due to their regular cost structure. For ES, the average runtime and
gap are even better than for other approaches. The average runtime for the
I instance set is large, but not as large as the one of HGPPR. Only MPCH seems
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Fig. 3. A graphical representation of the performance comparison from Table 2 and
Table 3 comparing PCH+VND, MPCH, HGPPR and B&C.

to achieve an average gap close to B&C. We therefore conclude, that B&C is a
very powerful approach by itself, and that even if the time available for exact
solution is limited, acceptable results can be achieved.

5 Conclusions

In this article, a new partition-based construction heuristic (PCH) for effectively
solving large scale STP instances has been proposed. PCH combines a novel ap-
proach to STP graph partitioning with state-of-the-art exact and heuristic meth-
ods. The approach has also been incorporated into a partition-based memetic
algorithm (MPCH). Computational experiments have been performed on stan-
dard benchmark instances from the literature and new real-world instances from
telecommunications. The obtained results show that PCH is able to produce high
quality solutions (with gaps close to zero) and is competitive to other state-of-
the-art methods for the tested instances. In addition, the algorithm’s runtime
is orders of magnitude faster than the other methods for large-scale instances.
The introduced concept of Voronoi-based partitioning clearly outperforms other
tested variants and performs excellent in particular on sparse graphs and when
the relative number of terminals is relatively high or when a natural clustering of
terminals exists in an instance. Further improvements with respect to solution
quality have been achieved in MPCH which come, however, at the price of a
significantly higher runtime.
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Abstract. In this study we present a general matheuristic that decom-
poses the problem being solved in a master and a subproblem. In contrast
with the column generation technique, the proposed approach does not
rely on the explicit pricing of new columns but instead exploits features
of the incumbent solution to generate one or more columns in the mas-
ter problem. We apply this approach to large scale evacuation planning,
leading to the first scalable algorithm that complies with emergency ser-
vices practice.

1 Introduction

Natural and man-made disasters, such as hurricanes, floods, bushfires, or in-
dustrial accidents, often affect large populated areas, threatening the lives and
welfare of entire populations. In such events, a common contingency is to evac-
uate the persons at risk to different shelters and safe areas.

Existing work in evacuation planning typically relies on free-flow models in
which evacuees are dynamically routed in the network. In contrast, this paper
presents an evacuation algorithm that follows recommended evacuation method-
ologies, which divide the evacuated area in evacuation zones, each being in-
structed to leave at a specific time and following a pre-defined route [24]. More
specifically, it generates evacuation routes for each evacuation zone and uses
a lexicographic objective function that first maximizes the number of evacuees
reaching safety and then minimizes the total evacuation time. The algorithm can
be used for strategic and tactical planning.

From a technical standpoint, the algorithm can be broadly characterized as a
Conflict-Based Path-Generation Heuristic (CPG for short), which shares some
characteristics with column generation approaches. As in column generation, it
decomposes the problem by considering separately the generation of evacuation
paths (subproblem) and their selection (master problem). However, a challenge of
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our application is the spatio-temporal nature of the problem: one evacuation path
corresponds to multiple paths in the spatio-temporal graph modeling the actual
scheduling of the evacuation. As a consequence, the master problem contains
interdependent binary selection variables and continuous flow variables for each
evacuation path, which means that pricing a single column is not relevant, and we
therefore focus on generating evacuation paths. We propose two approaches for
the sub-problem. The first explicitly attempts to find a path that will improve
the value of the master problem objective function, while the second aims at
finding a path of least cost under constraints, where the edge costs are derived
from the conflicts and congestion in the incumbent solution.

We evaluate the CPG algorithm on real-scale, massive flood scenarios in the
Hawkesbury-Nepean river (West Sydney, Australia) which require evacuating in
the order of 70,000 persons. Experimental results indicate that the CPG algo-
rithm generates high-quality solutions in limited time. On small instances, where
optimal solutions can be found, the CPG algorithm finds optimal or near-optimal
solutions. On real-scale instances, the results show that the CPG algorithm is
capable of evacuating the entire Hawkesbury-Nepean region in under 10h even
if the population grows by 20%.

The remainder of this paper is organized as follows: Section 2 formulates the
Evacuation Planning Problem (EPP), Section 3 reviews related work, Section 4
presents the solution approaches, Section 5 compares the performance of the pro-
posed approaches on a set of realistic instances, and, finally, Section 6 concludes
this paper.

2 Problem Formulation

Figure 1 illustrates an instance of the Evacuation Planning Problem (EPP).
Fig. 1(a) presents an evacuation scenario with one evacuated node (0) and two
safe nodes (A and B). In this example, the evacuated node 0 has to be evacuated
by 13:00, considering that certain links become unavailable at different times (for
instance, (2, 3) is cut at 9:00). This evacuation scenario can be represented as
a graph G = (N = E ∪ T ∪ S,A) where E , T , and S are the set of evacuated,
transit, and safe nodes respectively, and A is the set of edges. Each evacuated
node i is characterized by a number of evacuees di and an evacuation deadline
f̄i (e.g., 20 and 13:00 for node 0 respectively), while each edge e is associated
with a triple (se, ue, f̄e), where se is the travel time, ue is the capacity, and f̄e
is the time at which the edge becomes unavailable.

A common way to deal with the space-time aspects of evacuation problems
is to discretize the planning horizon into time steps of identical length, and
to work on a time-expanded graph, as illustrated in Fig. 2. This graph Gd =
(N d = Ed ∪ T d ∪ Sd,Ad) is constructed by duplicating each node from N for
each time step. For each edge (i, j) ∈ A and for each time step t in which
edge (i, j) is available, an edge(it, jt+s(i,j) ) is created modeling the transfer of
evacuees from node i at time t to node j at time t + s(i,j). In addition, edges
with infinite capacity are added to model evacuees waiting at evacuated and safe
nodes. Finally, all evacuated nodes (resp. safe nodes) are connected to a virtual
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(a) Evacuation Scenario (b) Evacuation Graph

Fig. 1. Modeling of an Evacuation Planning Problem

super-source vs (super-sink vt), modeling the inflow (outflow) of evacuees. Note
that some nodes may not be connected to either the super-source or super-sink
(in light gray in this example), and can therefore be removed to reduce the graph
size. The problem is then to find a flow from vs to vt that models the movements
of evacuees in space and time.

Fig. 2. Time-Expanded Graph for the Evacuation Scenario With 1-hour Time Steps

In this study, we will make the following assumptions:

1. A decision-maker instructs each evacuee when to leave, which safe node to
go to, and which path to follow in the evacuation graph;

2. A single threat scenario is known at decision time;
3. The decision-maker objective is to ensure that all evacuees reach a safe node

as early as possible;
4. Each evacuated node should be assigned to a single evacuation path;
5. Edge capacities do not depend on the flow, and no congestion occurs at

intersections.
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Assumption 1 relates to the fact that our approach is targeted toward emergency
or safety services that need to design evacuation plans for buildings or regional
areas. Assumption 2 is linked to the deterministic nature of our models and algo-
rithms. Assumption 3 defines the objective function we will use, but it must be
noted that the approaches presented here can be adapted to different contexts.
Requirement 4 is a practical consideration and reflects the practice in the field
of emergency services operations. Finally, requirement 5 is a necessary simplifi-
cation to solve the models efficiently, and it is compensated by the fact that edge
capacities are set to ensure non-congested flow conditions. In that context, the
problem is to design an evacuation plan that assigns a single evacuation path to
each evacuated node, and to schedule the evacuation over the planning horizon,
with the objective of first maximizing the number of evacuees reaching a safe
node, and then minimizing the time at which the last evacuee reaches safety.

Model (1-9) presents a Mixed Integer Program modeling the Evacuation
Planning Problem (EPP-MIP). Let xk

e0 be a binary variable equal to 1 if and
only if edge e0 ∈ A belongs to the evacuation path for evacuated node k, and
ϕk
e a continuous variable equal to the flow of evacuees from evacuated node k

on edge e ∈ Ad. Constraints (2) ensure that exactly one path is used to route
the flow coming from a same evacuated node in the evacuation graph, while
constraints (3) ensure the continuity of the path. Constraints (4) ensure the
flow conservation through the time-expanded graph. Constraints (5) enforce the
capacity of each edge in the time-expanded graph. Constraints (6) ensure that
there is no flow of evacuees coming from an evacuated node k if edge e is not
part of the evacuation path for k, and Constraints (7) ensure that all evacuees
leave the virtual source.

min
∑
e∈Ad

ceϕe (1)

s.t.
∑

e0∈δ+0 (k)

xk
e0 = 1 ∀k ∈ E (2)

∑
e0∈δ−0 (i)

xk
e0 −

∑
e0∈δ+0 (i)

xk
e0 = 0 ∀k ∈ E , i ∈ T (3)

∑
e∈δ−(i)

ϕk
e −

∑
e∈δ+(i)

ϕk
e = 0 ∀i ∈ N d \ {vs, vt}, k ∈ E (4)

∑
k∈E

ϕk
e ≤ ue ∀e ∈ Ad (5)

ϕk
e ≤ ue ∗ xk

e0 ∀e ∈ Ad, k ∈ E (6)

ϕ(vs,k)
= dk ∀k ∈ E (7)

ϕk
e ≥ 0 ∀e ∈ Ad, k ∈ E (8)

xk
e ∈ {0, 1} ∀e ∈ Ad, k ∈ E (9)
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The objective (1) is to maximize the number of evacuees reaching a safe node
and minimize the weighted evacuation time. For computational efficiency, we
associate a penalty with edges arriving to a safe node proportional to the time
slice in which they belong. Let t(i) be the time slice of time-node i, and cne a
high penalty for non-evacuated evacuees. The cost c(i,j) of edge (i, j) ∈ Ad is
defined as:

c(i,j) =

⎧⎨
⎩

cne if i ∈ Ed, j = vt
t(i)
H if i ∈ T d, j ∈ Sd

0 otherwise

(10)

3 Related Work

According to Hamacher and Tjandra [10], evacuation planning can be tackled us-
ing either microscopic or macroscopic approaches. Microscopic approaches focus
on modeling and simulating the evacuees individual behaviors, movements, and
interactions. Macroscopic approaches, such as the one presented in this study,
aggregate evacuees and model their movements as a flow in the evacuation graph.

To the best of our knowledge, only a handful of studies attempt to design
evacuation plans as we defined them [22]. Huibregtse et al. [14] propose a two
stage algorithm that first generates a set of evacuation routes and feasible de-
parture time, and then assigns a route and time to each evacuated area using an
ant colony optimization algorithm. A key feature of the approach is the use of
traffic simulation to evaluate the quality of solutions. In later work, the authors
studied the robustness of the produced solution [13], and strategies to improve
the compliance of evacuees [12].

A significant number of contributions attempt to solve flow problems directly
derived from the time-expanded graph. For instance, Lu et al. [18, 19] propose
three heuristics to design an evacuation plan with multiple evacuation routes per
evacuated node, minimizing the time of the last evacuation. The authors show
that in the best case the proposed heuristic is able to solve randomly generated
instances of up to 50,000 nodes and 150,000 edges in under 6 minutes. Liu et al.
[17] propose a Heuristic Algorithm for Staged Traffic Evacuation (HASTE), a
similar algorithm that generates augmenting chains in the time-expanded graph.
The main difference between HASTE and the previous algorithms is that it relies
on a Cell Transmission Model (CTM)[8] to model more accurately the flow of
evacuees.

Acknowledging that all evacuated nodes may not be under the same level of
threat, Lim et al. [15] consider a short-notice regional evacuation maximizing
the number of evacuees reaching safety weighted by the severity of the threat.
The authors propose two solution approaches to solve the problem, and present
computational experiments on instances derived from the Houston-Galveston
region (USA) with up to 66 nodes, 187 edges, and an horizon of 192 time steps.

Other authors have focused on modeling more accurately the transportation
network. For example, Bretschneider and Kimms [5, 6] present a free-flow math-
ematical model that describes in detail the street network and, in particular, the
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lane configuration at intersections of the network. They present computational
experiments on generated instances with a grid topology of up to 240 nodes,
330 edges, and considering 150 times steps. Bish and Sherali [4] present a model
based on a CTM that assigns a single evacuation path to each evacuated node.
Computational results include instances with up to 13 evacuated nodes, 2 safe
nodes, and 72 edges.

Finally, dynamic aspects of evacuation have also been considered. For in-
stance, Lin et al. [16] present a time expanded graph in which they allow for
time-dependent attributes such as varying capacity or demand. The authors ap-
ply their findings on a case study considering the evacuation of a 11-floor building
with approximately 60 nodes, 100 edges, and 60 time steps.

Microscopic approaches include the work by Richter et al. [23] who challenge
two assumptions generally made: The existence of a central planning entity with
global knowledge, and the ability of this entity to communicate order to evacuees.
They propose a decentralized decision making approach supported by smart-
phones and mobile applications. We note however that our target applications,
such as evacuations for floods and hurricanes, use central decision making and
have the time and ability to communicate their decisions.

In contrast with the cited studies, the approach proposed in this work is
the first to produce evacuation plans that are actionable from an emergency
service perspective. It generates a plan that assigns one evacuation route to each
evacuated area, and optimizes both the evacuation routes and schedule globally.

Column generation is an optimization technique which consists in considering
only a subset of columns in a master problem and then iteratively generating
columns of negative reduced cost (assuming minimization) by solving a pricing
subproblem. It has been widely used to solve large-scale MIP problems, and we
refer the interested reader to the book by Desaulniers et al. [9] and the study by
Luebbecke and Desrosiers [20] for a recent review of techniques and applications
of column generation. In particular, it has been used to solve multi-commodity
network flow problems (MCNF) [1], integer MCNF [3], origin-destination MCNF
[2], and MCNF with side constraints on paths [11].

However, a distinctive feature of evacuation planning is the dependency be-
tween paths in the time-expanded network. More precisely, a commodity (i.e.,
evacuees from a specific evacuated node) can only follow paths that correspond
to the same physical path (sequence of edges in the evacuation graph). Therefore
classical MCNF approaches cannot be applied directly, as one path in the evac-
uation model introduces multiple variables in the master problem. In addition,
it is worth noting that heuristic column generation have mainly focused on solv-
ing the pricing subproblem heuristically. In contrast, our approach does not
consider the pricing problem explicitly, but heuristically generates new paths.
Similar ideas were also used by Coffrin et al. [7] and, to a lesser extent, in Massen
et al. [21].
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4 Proposed Approaches

Computational experiments show that the EPP-MIP model (1-9) becomes in-
tractable for instances with more than eight nodes and an horizon of 10h divided
in 5 minutes steps. Therefore, we propose a conflict-based heuristic path gener-
ation approach (CPG) that separates the generation of evacuation paths from
the scheduling of the evacuation.

Figure 3 gives an overview of the CPG approach. First, the algorithm gener-
ates an initial set of paths Ω′ (1) and solves a master problem to find an evac-
uation schedule optimizing the objective function (2). Then it identifies critical
evacuated nodes E ′ (3), which are not fully evacuated, or evacuated late, and
considers nodes that are potentially in conflict (5) with the objective of generat-
ing new paths (6). Finally, it solves the scheduling problem including the newly
generated paths (2). The steps are repeated for a fixed number of iterations.

1. Generate
initial paths

2. Solve the mas-
ter scheduling
problem (MIP)

3. Identify
critical nodes E ′

4.
Max it.?

5. Add to E ′ nodes
that share an edge

6. Generate paths
for nodes in E ′

End

no

yes

Fig. 3. Overview of the conflict-based heuristic path generation approach
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4.1 Master Problem

Let Ω be the set of all feasible paths between evacuated nodes and safe nodes and
Ωk be the subset of evacuation paths for evacuated node k. We define a binary
variable xp which takes the value of 1 if and only if path p ∈ Ω is selected, a
continuous variable ϕt

p representing the number of evacuees to start evacuating
on path p at time t, and a continuous variable ϕk accounting for the number of
non-evacuated evacuees in node k. In addition, we denote by ω(e) the subset of
paths that contain edge e and by τep the number of time steps required to reach
edge e when following path p. Finally, we denote by Hp ⊆ H the subset of time
steps in which path p is usable, and up the capacity of path p.

min
∑
k∈E

ϕkcne +
∑
p∈Ω

∑
t∈Hp

ϕt
pc

t
p (11)

s.t.
∑
p∈Ωk

xp = 1 ∀k ∈ E (12)

∑
p∈Ωk

∑
t∈Hp

ϕt
p + ϕk = dk ∀k ∈ E (13)

∑
p∈ω(e)

t−τe
p∈Hp

ϕ
t−τe

p
p ≤ ue ∀e ∈ A, t ∈ H (14)

∑
t∈Hp

ϕt
p ≤ |Hp|xpup ∀p ∈ Ω (15)

ϕt
p ≥ 0 ∀p ∈ Ω, t ∈ Hp (16)

ϕk ≥ 0 ∀k ∈ E (17)

xp ∈ {0, 1} ∀p ∈ Ω (18)

Model (11-18) presents the evacuation scheduling problem CPG-MP. The ob-
jective (11) minimizes the cost of the solution as defined previously. Constraints
(12) ensure that exactly one path is selected for each evacuated node, while con-
straints (13) account for the number of evacuated and non-evacuated evacuees.
Constraints (14) enforce the capacity on the edges of the graph. Finally, con-
straints (15) ensures that there is no flow on paths that are not selected. It is
interesting to observe that the master problem does not use a variable for each
edge e and time step t. Instead, it reasons in terms of variables ϕt

p which indicate
how many evacuees leave along path p at time t.

In practice, we only consider a subset of evacuation paths Ω′ ⊆ Ω each time
we solve CPG-MP. Fig. 4 depicts the structure of the master problem matrix.
Horizontal blocks represent groups of constraints numbered as in model (11-
18), while the shaded areas represent non-null coefficients in the matrix. Note
that each constraint in group (15) only involves variables associated with the
corresponding path and must be dynamically added to the model whenever a
new path is considered. Nonetheless, a solution of CPG-MP considering the
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(11)
(12)
(13)
(14)

(15)

Fig. 4. The Structure of the Evacuation Scheduling Master Problem Matrix

subset of paths Ω′′ ⊂ Ω′ is feasible when considering the set Ω′. Hence the
solution from the previous iteration is used as starting solution for the current
iteration.

4.2 Subproblem

Considering the spatio-temporal nature of this application, and the fact that a
path corresponds to multiple columns and introduces a new constraint, we do not
rely on traditional column generation techniques to generate new paths. Instead,
we use problem-specific knowledge to generate new columns that will potentially
improve the objective function of the master problem. First, we identify the
subset E ′ ⊆ E of critical evacuated nodes, i.e., nodes that are not fully evacuated
in the current solution or evacuated late. Then, we include in E ′ all the evacuated
nodes whose evacuation paths share at least one edge with a node from E ′.
Finally, we generate new paths for the critical evacuated nodes E ′.

Improving Path Generation (IPG). The first path generation approach
we propose borrows ideas from the Large Neighborhood Search algorithm [25].
Conceptually, we transform a solution of CPG-MP into a solution of EPP-MIP,
fixing all flow variables in EPP-MIP to their value derived from CPG-MP, except
for the subset of variables corresponding to the evacuation area k∗ ∈ E ′ for
which a new path is to be generated. In other words, we solve EPP-MIP for
a single evacuated area (k∗) reducing the capacity on the edges of the time-
expanded graph. Model (19-26) presents a MIP formulation of the resulting
problem. The model is very similar to the original problem, at the difference
that only one evacuation area is considered. In addition, Constraints (23) limit
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the flow on every edge to the residual capacity u′
e which is equal to the original

capacity minus the value of the flow on the incumbent solution (excluding the
flow corresponding to k∗).

min
∑
e∈Ad

ceϕe (19)

s.t.
∑

e0∈δ+0 (k∗)

xe0 = 1 (20)

∑
e0∈δ−0 (i)

xe0 −
∑

e0∈δ+0 (i)

xe0 = 0 ∀k ∈ E , i ∈ T (21)

∑
e∈δ−(i)

ϕe −
∑

e∈δ+(i)

ϕe = 0 ∀i ∈ N d \ {vs, vt} (22)

ϕe ≤ u′
e ∗ xe0 ∀e ∈ Ad (23)

ϕ(vs,k∗) = dk∗ (24)

ϕe ≥ 0 ∀e ∈ Ad (25)

xe ∈ {0, 1} ∀e ∈ Ad (26)

The values of the (xe0)e0∈E variables in each solution of the IPG problem
define a new path for the CPG-MP. If the IPG problem does not admit a solution,
or if the value of the solution is greater than the contribution of k∗ to the
incumbent solution value, we select up to n = 5 evacuation areas which share
some edges with k∗ and remove their contribution to residual capacity. This is
equivalent to assuming that the removed areas do not need to be evacuated,
and it relaxes the IPG by increasing the capacity on the edges. This process is
repeated for all evacuated nodes identified as critical.

Heuristic Path Generation (HPG). The second path generation approach
attempts to generate diverse evacuation paths by solving a series of independent
shortest path problems from each evacuated node to all safe nodes. The cost ce
of edge e is adjusted at each iteration using the following linear combination of
the edge’s travel time se, the number of occurrences of e in the current set of
paths, and the utilization of e in the current solution:

ce = αt
se

maxe∈E se
+ αc

∑
p∈Ω′
e∈p

1

|Ω′| + αu

∑
p∈Ω′
e∈p

∑
t∈Hp

ϕt
p

ue
(27)

where αt, αc, and αu are positive weights which sum is equal to 1.

5 Computational Experiments

We consider the evacuation of the Hawkesbury-Nepean (HN) floodplain, located
North-West of Sydney, for which a 1-in-200 years flood will require the evacu-
ation of 70,000 persons. The resulting evacuation graph contains 50 evacuated
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nodes, 6 safe nodes, 153 transit nodes, and 485 edges. We consider a horizon
of 10 hours with a time step of 5 minutes (starting at 00h00). In addition, we
generate the instances HN-Rx with a subset of x ∈ [2, 50] evacuation nodes and a
reduced graph, and HN-Ix which have the same evacuation graph but a number
of evacuees scaled by a factor of x ∈ [1.1, 3.0].

All approaches were implemented using Java 7 and Gurobi 5.5, and experi-
ments were conducted on a cluster of 64bits machines with 2.8GHz AMD 6-Core
Opteron 4184 and 16Gb of RAM. Results are an average over 10 runs given the
randomized nature of parts of the algorithms and of Gurobi internal heuristics.
We set a limit of 10 iterations for CPG, which generally converges quickly. The
IPG subproblem is solved using the Gurobi solver, while HPG relies on the
Dijsktra algorithm to evaluate the shortest paths.

Table 1 compares the percentage of evacuees reaching safety (Perc. Evac) and
the time at which the last evacuees reaches safety (Evac. End) in the solutions
produced by CPG and by solving the EPP-MIP with the Gurobi solver. The
figures in bold indicate proved optimum solution, figures in italics represent in-
cumbent solution at the 30 min time limit. The results indicate that for instances
of up to 5 nodes, the three approaches find the optimal solution. However, for
larger instances, EPP-MIP does not terminate in the time limit.

Table 1. Comparison of solution quality on reduced size instances

CPG

IPG HPG EPP-MIP

Perc. Evac. Perc. Evac. Perc. Evac.
Evac End Evac End Evac End

HN-R02 100% 02h30 100% 02h30 100% 02h30
HN-R03 100% 01h55 100% 01h55 100% 01h55
HN-R05 100% 02h25 100% 02h25 100% 02h25
HN-R08 100% 02h50 100% 02h50 100% 02h50
HN-R10 100% 02h50 100% 02h50 100% 04h25
HN-R20 100% 02h25 100% 02h50 78% 10h00
HN-R30 100% 02h45 100% 03h05 82% 10h00
HN-R40 100% 09h15 100% 09h15 76% 10h00
HN-R50 100% 09h15 100% 09h15 - -

Table 2 presents the percentage of evacuees reaching safety (Perc. Evac), the
time at which the last evacuees reaches safety (Evac. End) and the number
of paths generated (Num. Paths) for both the IPG and HPG path generation.
For comparison, we include results obtained when solving the master problem
with only the three shortest paths from each evacuated area to the closest safe
nodes. The results show that for instances with up to 20% additional evacuees,
the whole area can be evacuated in under 10h by both approaches. It is worth
noting that on these instances IPG and HPG give the same solutions, but IPG
generates more than 10 times less paths. When the population increases, HPG
performs increasingly better than IPG, evacuating more people in the 10h limit.
Both approaches dominate the 3 shortest paths baseline.
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Table 2. Comparison of solution quality

HPG IPG 3 Shortest Paths

Perc. Evac. Num. Perc. Evac. Num. Perc. Evac. Num.
Instance Evac. Time Paths Evac. Time Paths Evac. Time Paths

HN-I 100% 08h05 1057 100% 08h05 65 100% 09h55 150
HN-I1.1 100% 08h45 1058 100% 09h10 80 100% 09h55 150
HN-I1.2 100% 09h25 1117 100% 09h25 79 98% 10h00 150
HN-I1.4 99% 10h00 741 98% 10h00 69 95% 10h00 150
HN-I1.7 97% 10h00 1211 93% 10h00 80 84% 10h00 150
HN-I2.0 94% 10h00 1118 91% 10h00 85 75% 10h00 150
HN-I2.5 84% 10h00 1193 74% 10h00 87 65% 10h00 150
HN-I3.0 75% 10h00 995 61% 10h00 85 58% 10h00 150

Average 94% 09h31 1061 90% 09h35 79 84% 09h58 150

Table 3 provides further insights on the relative performance of both ap-
proaches. It presents the CPU time (in seconds) spent in the master problem
(MP) and path generation subproblem (SP) for the different instances. It ap-
pears that in the IPG approach solving the master problem takes less than 10
second in total, while it requires 67 minutes in the HPG. This difference can
be explained by the smaller number of paths generated by IPG, which greatly
reduces the size of the MP. On the other hand, IPG spends 285 minutes on the
generation of new paths, compared with 2 seconds for HPG. This is explained
by the algorithm used to solve the subproblem: HPG relies on the Dijsktra al-
gorithm which is polynomial in the size of the time expanded graph, while IPG
uses a MIP solver.

Table 3. Comparison of average CPU times (in seconds) for the master problem (MP)
and subproblem (SP)

HPG IPG

Instance MP SP MP SP

HN 2,617 1 5 2,533
HN-I1.1 2,684 1 9 15,094
HN-I1.2 2,652 1 9 8,622
HN-I1.4 1,459 1 3 11,868
HN-I1.7 3,623 2 5 17,367
HN-I2.0 5,156 2 9 17,121
HN-I2.5 7,000 2 9 25,357
HN-I3.0 6,906 2 7 39,195

Average 4,012 2 7 17,145

6 Conclusions

In this paper, we presented a generic matheuristic which borrows ideas from
column generation and large neighborhood search. This general framework de-
composes a complex problem in a master and subproblem. Similarly to column
generation approaches, the master problem provides information to the subprob-
lem to generate new variables. The first major difference is that the subproblem
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does not seek to generate a single column, but a set of columns linked by a con-
straint. The second major difference is that the subproblem does not explicitly
minimize the reduced cost of the new columns, which means that it does not
require access to the dual variables of the master problem. This is particularly
an advantage when the master problem is a MIP. Instead, it attempts to iden-
tify features of the current incumbent that can be improved to lead to a better
solution.

We applied the proposed matheuristic to the planning of large scale evacua-
tions and demonstrated that it was able to produce high quality evacuation plans
in reasonable time. In that application, the master problem selects evacuation
paths and schedule the flow of evacuees, while the subproblem generates new
paths for nodes identified as critical. We compared two approaches to solve the
subproblem. The first, namely IPG, transforms the incumbent solution of the
master problem in a solution of the original problem, and relaxes the variables
corresponding to the evacuation node for which a new evacuation is to be gen-
erated. The second, HPG, relies on a randomized heuristic that generates new
paths solving a shortest path problem on the evacuation graph where edges are
penalized depending on their usage in the incumbent solution.

Preliminary computational results indicate that HPG has an advantage in
terms of solution quality and CPU time. However, it appears that IPG produces
competitive results with significantly less paths, which translates into lower CPU
times for the master problem.

Future work will focus on the development of ad-hoc algorithms to solve the
IPG problem more efficiently to speed up the algorithm. In addition, we are
investigating ways to control the set of paths included in the master problem to
improve the solution quality without affecting the computational time.
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[20] Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Operations
Research 53(6), 1007–1023 (2005)

[21] Massen, F., Deville, Y., Van Hentenryck, P.: Pheromone-based heuristic column
generation for vehicle routing problems with black box feasibility. In: Beldiceanu,
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Abstract. In this work we consider the 3-staged 2-dimensional cut-
ting stock problem, which appears in many real-world applications such
as glass and wood cutting and various scheduling tasks. We suggest
a variable neighborhood search (VNS) employing “ruin-and-recreate”-
based very large neighborhood searches (VLNS). We further present a
polynomial-sized integer linear programming model (ILP) for solving
the subproblem of 2-staged 2-dimensional cutting with variable sheet
sizes, which is exploited in an additional neighborhood search within the
VNS. Both methods yield significantly better results on about half of the
benchmark instances from literature than have been published before.

1 Introduction

Cutting and packing problems are among the most well-studied combinatorial
optimization problems in literature. This is due to the versatility of these prob-
lems allowing many real-world applications to be modelled as such. In fact, both
cutting and packing usually refer to one and the same problem, however it is
common, according to the context, to use either one term or the other. Examples
of applications include actual industrial glass, paper or steel cutting, container
loading, VLSI design, or various scheduling tasks [1,2]. Consequently, there are
many different variants of the basic cutting and packing problems that have
been discussed and for which a multitude of approaches already exists. Wäscher
et al. [3] present an extensive typology of these problems, as well as a litera-
ture review of the most important works for the different variants. Neverthe-
less, this research area remains interesting, as additional modifications and side
constraints arise, especially promoted due to new requirements from industry.
Therefore, finding a most economical solution is still a challenging goal which
calls for new approaches that are especially tailored and capable of respecting
these new side constraints.

In this paper we consider in particular the 2-dimensional cutting stock prob-
lem (2CS), which – being a variant of the classical bin packing problem (1BP,
or 2BP respectively) – is NP-hard [4]. In the basic problem setting one is given
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a set of rectangular elements which need to be cut from a minimal number of
larger stock sheets. We also consider the common restriction that only guillo-
tine cuts are allowed, i.e. cuts are always parallel to one of the sheet sides and
reach from one border to the opposite one. A further common side constraint
due to the restrictions of real-world cutting machines, is that the cutting has to
be done using a certain number of stages. A k-staged cutting is a sequence of
k stages of cuts, where each stage consists of a series of parallel guillotine cuts
performed on the pieces obtained from the previous stage. The direction of the
cuts in one stage is always orthogonal to the cuts in the previous stage. Here, we
want to focus on 3-staged cutting, as this is a typical restriction, e.g. in the glass
manufacturing industry [5,6]. Secondly, experimental studies have shown that
frequently no substantial gains can be obtained from more stages [7]. In case of
the strip packing problem without allowing rotation the asymptotic performance
ratio of a 3-staged cutting approximating an optimal cutting has been shown to
be 1.69103 [8], whereas the 2-staged case is unbounded. The step from 2-staged
to 3-staged cutting unfortunately dramatically increases the practical difficulty
of the problem due to the possibility of stacking elements arbitrarily within a
strip. In existing approaches there are often restrictions to the way elements can
be stacked [9,10], but often the solution quality can be significantly increased
when dropping those restrictions.

In this work we present a variable neighborhood search (VNS) for the 3-staged
2CS which is composed by several very large neighborhood structures based on
the “ruin-and-recreate” principle. Trying to further improve the solution quality
we developed a new integer linear programming (ILP) model which also was
applied in the reconstruction phase of a “ruin-and-recreate” neighborhood.

The next section provides a detailed problem description of the 2CS, followed
by a literature review of the work related to our specific problem in section 3.
In section 4 we present our VNS framework, with the basic large neighborhood
searches. Section 5 describes the ILP model and how it is exploited in an ad-
ditional large neighborhood search. Section 6 gives experimental results for the
developed methods and an analysis thereof, and section 7 concludes this work.

2 Problem Definition

In the 2CS we are given a set of m rectangular elements M = {E1, . . . , Em} with
dimensions (h1, w1), . . . , (hm, wm), also called demand, which can be grouped
into t ≤ m element types having the same dimensions. Furthermore, we have a
(potentially unlimited) stock of identical rectangular sheets of height H > 0 and
width W > 0.

The objective is to find a cutting pattern, i.e. an arrangement of the elements
in M on the stock sheets without overlap, s.t. the number of required sheets is
minimal and the pattern can be cut in a 3-staged process. Elements are rotatable
by 90◦, which is reflected by adding for each element Ei ∈ M an element Em+i

with (hm+i, wm+i) = (wi, hi). We assume that an instance is generally feasible,
i.e. 0 < hi ≤ H and 0 < wi ≤ W for each Ei ∈ M . Stage-1 and stage-3 cuts are
always horizontal while stage-2 cuts are vertical.
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We refer to the rectangles resulting from stage-1 cuts as strips, and the ones
resulting from stage-2 cuts as stacks. We say that a cutting pattern is in normal
form, if

(i) Waste occurs only at the bottom of stacks, at the right end of a strip and
at the bottom of the sheet.

(ii) The topmost element of each stack is the widest one.
(iii) The leftmost stack of each strip is the highest one.

Clearly, every cutting pattern can be transformed into a pattern in normal form
of equivalent quality. It is therefore sufficient to only consider patterns in normal
form in the optimization.

We use the refined objective function proposed by Puchinger et al. [5] which
considers the last sheet only partly. Let S(x) denote the number of sheets used
in a solution x and cl the position of the last stage-1 cut of the last sheet. The
objective function is then

f(x) = min

(
S(x)− H − cl

H

)
, (1)

This refinement allows for a more fine-grained distinction between solutions hav-
ing an equal number of sheets. When considering real-world applications a cut-
ting pattern yielding one larger waste area is typically preferred as this part can
presumably more likely be reused than several smaller ones.

root

s1
h: 5870
w: 3080
c: 0

s11
h: 1988
w: 3080
c: 0

s12
h: 1875
w: 3080
c: 1988

s13
h: 1875
w: 3080
c: 3863

s111
h: 1988
w: 2985
c: 0

s121
h: 1875
w: 2174
c: 0

s122
h: 1875
w: 635
c: 2174

s131
h: 1875
w: 2174
c: 0

s1111
h: 1988
w: 2985
c: 0

s1211
h: 1875
w: 2174
c: 1988

s1221
h: 1337
w: 635
c: 1988

s1222
h: 378
w: 635
c: 3325

s1311
h: 1875
w : 2174
c: 3863

E1

h: 1988
w: 2985

E2

h: 1875
w: 2174

E3

h: 1337
w: 635

E4

h: 378
w: 635

E5

h: 1875
w: 2174

Fig. 1. A cutting tree (left) and the single sheet, s1, represented by it (right). The
leaf nodes E1, . . . , E5 represent the actual elements obtained by the applied cutting
pattern. The nodes s1111 and s1211 and s1311 are Null-cuts.
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2.1 Solution Representation

We represent a solution explicitly by its cutting tree (in the literature also referred
to as slicing tree). Note that a given cutting tree does not necessarily represent
a complete solution, but can also be used as a representation of partial solutions
or intermediate steps.

The root node represents the whole set of used sheets S = {s1, . . . , sn}. Each
of its children is associated with one sheet (and can be seen as a stage-0 cut).
Every further level in the tree corresponds to a guillotine cut of the next stage
l that has been applied. Note that the elements from M always appear as leaf
nodes at the third level. Whenever an element actually is already finished after
the stage-1 or stage-2 cuts, additional so-called Null-cuts are introduced to keep
this consistent structure.

Each node N in the tree stores the dimensions (h,w) of the represented area,
the waste within it and the absolute cut coordinate c on the sheet. If it is a leaf
node, the associated element is stored. Figure 1 shows a 3-staged cutting pattern
for a single sheet in normal form and the cutting tree representing it.

3 Related Work

The first exact solution approaches to the 2CS have been proposed by Gilmore
and Gomory [11], who introduced the “exact two-stage guillotine cutting stock
problem”, which is a 2-staged 2CS under the additional constraint that all el-
ements packed in one strip of the sheet have the same height. They further
introduced the “non-exact two-stage guillotine cutting stock problem” where a
final, third stage is allowed but only to separate an element from the waste area.
Their approach is the well-known set covering formulation of the problem in-
troducing a variable for each possible cutting pattern of a single sheet. Column
generation is used to avoid the explicit enumeration of the exponentially many
variables. Oliveira and Ferreira [12], already considering the 3-staged 2CS, pre-
sented a faster variant of this approach in which the pricing problem is solved by
a greedy heuristic. The exact method is only applied in case the heuristic fails.
A more recent approach is by Monaci and Toth [13] whose two-phase algorithm
first creates cutting patterns using greedy heuristics which are then the columns
in a set covering formulation solved by a Lagrangian-based heuristic algorithm.
Alvarez-Valdes et al. [14] proposed a more sophisticated method for solving the
pricing problem for the general n-staged 2CS without rotation using GRASP
or tabu search for column generation. Puchinger and Raidl [10,15] approached
the 3-staged 2CS without rotation restricting the elements in a stack to be of
equal width. They use a hierarchy consisting of a greedy construction heuris-
tic, an evolutionary algorithm, a restricted ILP model for the pricing problem
and an exact ILP model to generate columns, thus avoiding the computationally
expensive uses of the exact method as much as possible.

An important step towards the reduction of the search space was done by
Herz [16] who presented the concept of discretization points, excluding the ver-
tical and horizontal coordinates at which no cut can occur in a pattern in normal
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form. This is also the first definition of so-called “canonical patterns” which cor-
respond to patterns in normal form as defined in section 2. Later Christofides
and Whitlock [17] showed a dynamic programming approach to compute them.

Since most of the exact approaches found in the literature are, in fact, hy-
brid approaches in one way or another, there are also numerous heuristic and
metaheuristic approaches for the 2CS that have been studied. In [18] Lodi et al.
give a survey on the concept and performance ratios for the prominent greedy
heuristics, such as first-fit, first-fit decreasing height and finite first-fit.

4 Variable Neighborhood Search

The Variable neighborhood search (VNS) is a metaheuristic which relies on the
idea of systematically searching for a better solution in an ordered set of increas-
ingly complex neighborhood structures [19].

Frequently,VNS is combinedwith very large(-scale) neighborhood search (VLNS)
techniques. The basic idea of a VLNS in contrast to a “classical” local search ap-
proach is to employ a special problem-specific large neighborhood structureN(x),
for which an efficient algorithm exists to derive an optimal or good approximate
solution [20]. Methods that have been successfully used in VLNS for investigating
neighborhoods include shortest path andmatching algorithms, dynamic program-
ming, (mixed) integer programming (MIP) and constraint programming. It is not
always necessary to solve large neighborhoods to optimality but sometimes also
simpler greedy constructive approaches can be applied. These approaches are often
used in the context of so-called “ruin-and-recreate” methods, where one iteration
consists of destroying randomly chosen or weak parts of an incumbent solution fol-
lowed by a (usually relatively fast) recreation by a construction heuristic [21].

We follow these considerations in our VNS for the 3-staged 2CS, which is
presented in the following.

4.1 Construction Heuristics

As a starting solution for the search the best among the solutions obtained
by three different greedy construction heuristics is chosen. These approaches are
3-staged First Fit Decreasing Height with rotations (3SFFDHR), 3SFFDHR pre-
ceded by a matching step (MATCH) and Fill Strip (FS), which are summarized
in the following.

3SFFDHR. This heuristic is based on the well-known first-fit decreasing height
(FFDH) approach for the 2BP. The elements in M are ordered by non-increasing
heights hi; ties are broken randomly. The algorithm iterates through the element
list trying to fit the current element in the cutting tree at the first possible
position using a post-order traversal. At each level – given the dimensions of the
parent and the already existing siblings – it is checked (i) if there is still enough
room to accommodate the element, or (ii) if there is enough room for the rotated
counterpart of the element. If so, a new sibling is created offering the required
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height (for a horizontal cut) or width (for a vertical cut) to accommodate the
element.

In the worst case the algorithm needs to traverse trough the whole tree for
inserting a new element. Therefore the runtime is in O(m2).

MATCH. The basic construction principle is the same as for 3SFFDHR. How-
ever, one of the disadvantages of the method is that the extent of each area
created by a lower stage cut (height for stage-1 and width for stage-2) is fixed
based on the element that initialized it.

To increase the space of potential stage-1 heights a preprocessing step is in-
cluded based on the iterative matching approach by Fritsch and Vornberger [6].

A certain percentage p of the elements in M is chosen randomly and paired
into meta-rectangles, s.t. the overall waste is minimal. This is done by first con-
structing a complete graph G(V,E), where V corresponds to the elements and
each edge (u, v) ∈ E has associated a weight that is inversely proportional to the
amount of waste in the bounding rectangle when aligning the elements corre-
sponding to u and v. The meta-rectangles minimizing the overall waste are now
determined by calculating a maximum weight matching on this graph.

The resulting meta-rectangles and the remaining elements that were not
matched are then packed using the 3SFFDHR heuristic.

As the maximum-weight matching in a graph can be computed in O(|V |3),
the worst-case runtime of the MATCH construction heuristic is in O(m3).

FS. Fill Strip is a strip-based greedy construction heuristic and is an adaptation
of the FFFWS heuristic proposed by Puchinger et al. [5]. As for 3SFFDHR
the elements are ordered beforehand by non-decreasing height. The algorithm
then basically fits the elements according to the same criteria they are fit with
3SFFDHR with the two following modifications:

– Whenever an element does not fit in the current subtree, it is skipped and
the algorithm tries to fit the next one from M .

– Once the last element in M is reached, i.e. none of the remaining elements
can fit in the current position in the cutting tree, the respective subtree is
closed and never reconsidered again in the remaining construction process.

– When a strip is closed, the algorithm continues with the remaining unused
elements in M beginning again with the highest one.

In the worst case the algorithm has to restart at the beginning of M for every
new strip, hence its worst-case runtime is in O(m2).

4.2 Neighborhood Structures and Search

All neighborhood structures we consider follow the principle of a ruin-and-
recreate-based VLNS. We choose no “classical” local search neighborhood, since
a local search approach based on solutions encoded by e.g. the order of the el-
ement list M is prone to suffer from poor locality. Provided no sophisticated
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decoding algorithm different from simple greedy construction heuristics is em-
ployed, a move as basic as a 2-exchange might lead to a rather different cut-
ting pattern. Moreover, evaluating the objective of a solution requires decoding
the cutting pattern completely, thereby forfeiting the runtime advantage a local
search on a compact encoding usually comes with.

Maximum Waste Ratio. We consider the maximum unused capacity in a
used sheet as a secondary fitness value, following an idea that has also been
successfully applied for the classical 1BP, cf. [22]. The waste ratio wr(s) of a sheet
s is defined as the free area on s (i.e. the area not covered by elements) relative to
the total area of s. However, to be consistent with the (main) objective function
the last sheet is also considered only partly when determining the maximum.
Thus, we have

wr(s) =

⎧⎪⎪⎨
⎪⎪⎩
clW −

∑m
i=1 | i∈elems(s) hiwi

clW
, if s is the last sheet

HW −
∑m

i=1 | i∈elems(s) hiwi

HW
, otherwise

(2)

where elems(s) is the set of elements that are placed on s and cl defines the
position of the last stage-1 cut of the sheet. The secondary fitness G(x) of a
solution x is therefore

G(x) = max
s non-empty

wr(s) (3)

G(x) is used as a tie-breaking criterion for solutions with equal objective value
to steer the search further towards more compact cutting patterns.

A basic step in our neighborhood search works as follows:

In the incumbent solution one or more subtree(s) of the cutting tree are re-
moved, s.t. the elements associated with the leaves of these sub-trees become free.
Using one of the aforementioned construction heuristics they are then reinserted
again. Both steps can be efficiently done on the cutting tree representation. Next,
we describe the variants for each the ruin and the recreate step in greater detail.

Ruin Subtree. The general parameters for the ruin step are the tree-level
λ and either a fixed number of subtrees of the level to be ruined (δ), or a
percentage thereof (π). Furthermore, the range with respect to the affected sheets
can be controlled. The subtrees may either be chosen randomly from all sheets
or restricted to come from the same sheet(s), i.e. they are subtrees of the same
level-0 node in the cutting tree. Independent from these settings the last sheet
is always affected first, as both the objective function and the secondary fitness
capture gradual improvements in terms of the last stage-1 cut of the last sheet.
We consider two basic variants:

– Ruin Random Subtree (RAND): Remove the defined number of level-λ sub-
trees from randomly selected positions in the tree respecting the sheet
restrictions.
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– Ruin Max-Waste Subtree (MAX-W): Order the available level-λ subtrees by
non-increasing waste ratio. Starting with the first one, remove the defined
number from the tree respecting the sheet restrictions.

Recreate Cutting Tree. After the ruin step the ruined subtree is normalized,
i.e. the remaining subtrees are reordered (and the stored coordinates adapted),
s.t. the pattern represented by the tree is in normal form. The removed elements
are then sorted again by non-increasing height, shuffled or left unsorted in the
order they were removed, before 3SFFDHR, MATCH or FS is used to reinsert
them into the tree.

We also consider a next-improvement step function for the possible ruin and
recreate combinations. In this work we use a fixed neighborhood order, which
is shown in Table 1. Neighborhoods in which the ruin operation is restricted to
affecting elements on the same sheet are marked as (f). The first five neighbor-
hoods are chosen for intensification and finding improvements by relatively small
changes. The following neighborhoods increasingly perturb the cutting tree by
removing random and maximum waste subtrees and reinserting them in various
ways. In the last neighborhoods, a special ruin operator is used, the removed
subtrees are left intact, s.t. they can be reinserted as a whole (Soft Remove).

Table 1. Neighborhoods and their order used in the VNS

k Nk-Ruin Nk-Recreate Step function

1 Random (λ = 3, δ = 2) 3SFFDHR Unsorted Next Imp.
2-3 Random (λ = 2, δ = k − 1) 3SFFDHR Unsorted Next Imp.
4-5 Random (λ = 1, δ = k − 3) 3SFFDHR Unsorted Next Imp.
6-9 Random (λ = 3, π = (k − 5) · 0.1) 3SFFDHR Shuffled Random

10-13 Random (λ = 3, π = (k − 9) · 0.1) MATCH Shuffled Random
14-17 MAX-W (λ = 2, π = (k − 13) · 0.1) 3SFFDHR Shuffled Random
18-21 MAX-W (λ = 2, π = (k − 17) · 0.1) MATCH Shuffled Random
22-25 MAX-W (f) (λ = 2, π = (k − 21) · 0.1) 3SFFDHR Shuffled Random
26-29 MAX-W (f) (λ = 2, π = (k − 25) · 0.1) MATCH Shuffled Random
30-33 Soft (λ = 1, π = (k − 29) · 0.1) FFDH Shuffled Random

5 ILP-Based Very Large Neighborhood Search

In the following we introduce a novel compact ILP model for the 2-staged 2CS
with variable sheet size. This model is employed in the recreate step of a VLNS
neighborhood. More particularly, it is used for optimally packing strips (i.e.
defining the stage-2 and stage-3 cuts of the pattern). The remaining problem
consists then of packing these strips into sheets.
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5.1 An ILP for Packing Strips

Lodi et al. [23] proposed a polynomial-sized ILP model for the 2-staged 2CS. We
base our ILP formulation on this model extending it to a model for optimally
packing elements in strips of different sizes (in fact, it is a model for the 2-staged
2CS with variable sheet size). The dimensions of the different sheets reflect the
dimensions of the stage-1 cuts that can then be placed on the actual sheets.

As defined in section 2 we denote by t ≤ m the number of different element
types. Let further ej be the number of elements of type j ∈ {1, . . . , t} in the
demand. The model is now based on the following considerations: We assume
that m potential stacks are available. Each of them is associated with a different
element a of a certain type i initializing it. Analogously, there are m potential
strips, each initialized by a different potential stack a of type k (i.e. a stack
initialized by an element of type k).

Furthermore, there are d different dimensions for the strips and each strip, as
well as each stack, is of a certain type l ∈ {1, . . . , d}, defined by its dimensions.

We make use of the following observation which is similar to the definition of
the normal form of a cutting pattern: For any optimal solution to the problem
there exists an equivalent one in which the following conditions hold:

1. The first (topmost) element in each stack is the widest one in the stack.

2. The first (leftmost) element in each strip is the widest one in the strip.

We can further assume an ordering of the element types by nondecreasing width.
Finally, the occurrence of multiple elements of the same type in the demand

can be exploited. In a given cutting pattern every permutation of such elements
yields another pattern equivalent in structure and quality and can thus be con-
sidered symmetrical.

These considerations lead to the following 0/1-variables

ylia =

⎧⎪⎨
⎪⎩
1 if the a-th stack of dimension type l is initialized

by an element of type i,

0, otherwise

(4)

for i = 1, . . . , t; l = 1, . . . , d; a = 1, . . . ,m

qlka
=

⎧⎪⎨
⎪⎩
1 if the a-th strip of dimension type l is initialized

by a stack of type k,

0, otherwise

(5)

for k = 1, . . . , t; l = 1, . . . , d; a = 1, . . . ,m
and the positive integer variables

– xl
iaj

: The number of elements of type j packed in the a-th stack of dimension
type l, initialized by an element of type i.
for i = 1, . . . , t; j ≥ i; l = 1, . . . , d; a = 1, . . . ,m
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– zlkai
: The number of stacks of type i packed into the a-th strip of dimension

type l, initialized by a stack of type k.
for k = 1, . . . , t; i ≥ k; l = 1, . . . , d; a = 1, . . . ,m

Note that the variables inherently satisfy the guillotine cut restriction.
Our variant of the 2-staged 2CS with variable sheet size can now be stated as

the following ILP:

min

d∑
l=1

t∑
k=1

m∑
a=1

qlka
Hl (6)

s. t.

d∑
l=1

m∑
a=1

(
j∑

i=1

xl
iaj + ylja

)
= ej j = 1, . . . , t (7)

m∑
j=i

hjx
l
iaj ≤ (Hl − hi)y

l
ia i = 1, . . . , t; a = 1, . . . ,m; l = 1, . . . , d

(8)

m∑
a=1

(
i∑

k=1

zlkai + qlia

)
=

m∑
a=1

ylia i = 1, . . . , t; l = 1, . . . , d (9)

m∑
i=k

wiz
l
kai ≤ (Wl − wk)q

l
ka

k = 1, . . . , t; a = 1, . . . ,m; l = 1, . . . , d

(10)

d∑
l=1

ylia ≤ 1 i = 1, . . . , t; a = 1, . . . ,m (11)

d∑
l=1

qlka
≤ 1 k = 1, . . . , t; a = 1, . . . ,m (12)

The objective function (6) minimizes the total height of all used strips. Note that
strip a of dimension type l is initialized by an element of type k, iff qlka

= 1. Equa-
tions (7) ensure that each element j is packed exactly ej times and constraints (8)
impose that the height of each used stack does not exceed the respective dimension
type’s height. Analogously, equations (9) guarantee that each used stack is packed
in a used strip while constraints (10) imply that the width of each used strip does
not exceed the used dimension type’s width. The last two groups of constraints
strengthen the model by imposing that each potential stack (11) and each poten-
tial strip (12) a can only be used for one specific dimension type.

For the sake of clarity, we keep all variables in the model. However, in an
actual implementation we can exclude the following variables, which can never
be nonzero. For 1 ≤ a ≤ m and 1 ≤ l ≤ d we can set
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ylia = 0 1 ≤ i ≤ t |hi > Hl ∨ wi > Wl (13)

qlka
= 0 1 ≤ k ≤ t |hk > Hl ∨ wk > Wl (14)

xl
iaj = 0 1 ≤ i, j ≤ t |hi > Hl ∨ wi > Wl ∨ hj > Hl ∨ wj > Wl∨

hi + hj > Hl (15)

zlkai = 0 1 ≤ k, i ≤ t |hi > Hl ∨ wi > Wl ∨ hj > Hl ∨ wj > Wl∨
wi + wj > Wl (16)

Constraints (13) and (14) exclude variables for element types that do not fit in
the respective dimension type, while (15) and (16) additionally rule out that
two element types whose combination exceeds the dimensions can appear to-
gether. Finally, we can assume an ordering of the potential stacks and strips in
accordance to the order of the element types, i.e.

a1, . . . , ae1 , a(e1+1), . . . , a(e1+e2) . . . , a
∑

t
i=1 ei

This reflects that each of the stacks (strips) is associated with exactly one ele-
ment and we can additionally exclude the variables ylia and xl

iaj (qlka
and zlkai

)
according to the range associated with the element type i (k).

Note that the described ILP does not consider rotation of the elements. How-
ever, rotation can easily be incorporated by replacing the constraints (7) with

d∑
l=1

m∑
a=1

[(
j∑

i=1

xl
iaj + yli

)
+

( δj∑
i=1

xl
iaδj + ylδj

)]
= ej , j = 1, . . . , 2t; j < δj ,

where δj is the index of the rotated variant of type j in the element type or-
der, and by replacing m with 2m and t with 2t in all the remaining equations,
analogously to the variant proposed in [23].

In our ILP-VLNS approach we model the whole cutting tree but fix the vari-
ables corresponding to parts not selected by the ruin operator by the respective
constants. The resulting strips obtained from solving the ILP are then inserted
into the cutting tree, where completely new strips are packed using a FFDH
strategy.

This approach is used in two variants within the VNS, see Table 2.

Table 2. Aditional neighborhoods in the ILP-based VNS

k Nk-Ruin Nk-Recreate Step function

34 Random (f) (λ = 3, π = 0.33) ILP Random
35 Random (f) (λ = 3, δ = 0.33) ILP Random

5.2 Determining Strip Dimensions

The remaining open question is how to determine the different strip dimensions,
i.e. the different strip heights, that are considered by the model. Clearly, the
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already used dimensions in the parts of the cutting tree not affected by the ruin
operator need to be included. For the additional dimensions there are, however,
exponentially many possibilities in the number of element types, even when
restricting the choices to the discretization points as proposed in [16].

In our approach this number is reduced during the ILP model generation
by restricting the heights to multiples of the heights of available elements. In
more detail, a random integer n ∈ {�hmax

hmin
�, . . . , � H

hmin
�} is chosen, with hmax

and hmin being the largest and the smallest height of all the element types.
For each element type i the height dimensions hi · k, with k ∈ {1, . . . , n} are
then generated. As this usually still yields a relatively large number of different
heights, a quick evaluation is performed of how promising each of them is. This
is done by first shuffling the list of free elements and then letting 3SFFDHR
reinsert them into a strip of the given height. The strip heights that yield no
more than the average waste ratio are finally chosen.

6 Experimental Results

Our algorithms have been implemented in C++, compiled with GCC version
4.6.3 and executed on a single core of a 3.40 GHz Intel Core i7-3770 with 16 GB
RAM. For solving the developed ILP model we have used the general purpose
MIP solver CPLEX version 12.6 with default parameter settings and a general
time limit of 1000s, as well as a restriction to a single thread. Furthermore, the
optimization was stopped as soon as an integer solution having a relative gap of
less than or equal to 1% was found.

Computational experiments were performed on the benchmark instances from
Berkey and Wang [24] (classes 1 to 6) and Martello and Vigo [25] (classes 7 to
10). Each class consists of 5 subclasses with m = 20, . . . , 100 elements, each of
which comprising 10 instances. We compare the basic VNS (VNS SIMPLE), the
VNS consisting of the two ILP neighborhoods only (VNS ILP), a combination of
both (VNS FULL) and the results obtained by the so far best-performing Branch
& Price algorithm from [15] (BPStabEA), which were taken as presented in the
respective work. In order to stay comparable to these results rotation of elements
is not considered. For VNS SIMPLE, 25 major iterations over all neighborhoods
are done, for VNS ILP and VNS FULL the VNS is stopped, when a major
iteration does not yield an improvement. Each algorithm (VNS SIMPLE, VNS
ILP, VNS FULL, BPStabEA) was applied five times to each problem instance
and the average objective value and time spent per instance were determined.
These values are then used for computing the average objective f(x) and time
t for the instances of each subclass, which are shown in Table 3. The runtime
for each of the experiments was additionally limited to 1000s. Occasionally, this
limit was exceeded due to the same but independently measured time limit of
1000s given to CPLEX. The best objective value in each row is printed in bold.
In the last rows sums, average and median values over all instances are given.

In general, VNS SIMPLE outperforms VNS ILP and VNS FULL, whereas
VNS FULL performs better than VNS ILP for all instance subclasses. We per-
formed one-sided Wilcoxon signed rank tests comparing the objective for each
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Table 3. Experimental results. The best objective value in each row is printed in bold.
∗Runtimes and objective values for BPStabEA are from [15].

VNS SIMPLE VNS ILP VNS FULL BPStabEA

Class m f(x) t[s] f(x) t[s] f(x) t[s] f(x)
∗

t[s]
∗

20 6.93 1.4 7.06 0.0 6.90 0.2 7.2 4.2
40 13.34 10.4 13.47 0.2 13.40 1.4 13.6 201.5

1 60 20.09 33.2 20.34 1.0 20.13 5.6 20.1 112.6
80 27.60 81.5 27.88 1.8 27.71 13.2 27.5 68.6
100 32.24 161.4 32.31 3.2 32.25 22.1 31.7 236.9
20 0.74 0.9 0.75 0.0 0.74 0.1 1.0 0.1
40 1.42 6.7 1.44 0.5 1.42 1.6 2.0 100.5

2 60 2.12 22.8 2.14 1.9 2.12 4.7 2.7 207.1
80 2.89 54.6 2.89 63.2 2.87 40.3 3.3 228.1
100 3.42 113.9 3.43 89.3 3.43 86.3 4.1 239.7
20 4.90 1.3 5.00 0.1 4.91 0.3 5.4 0.3
40 9.56 9.7 9.83 0.4 9.65 1.7 9.7 6.1

3 60 14.16 33.0 14.46 1.9 14.31 6.1 14.0 45.2
80 19.65 73.1 19.95 4.2 19.69 18.0 19.2 166.8
100 23.23 141.8 23.53 8.0 23.24 44.9 22.5 651.4
20 0.75 0.9 0.75 0.0 0.75 0.1 1.0 0.1
40 1.40 5.8 1.41 2.1 1.40 3.8 2.0 100.5

4 60 2.11 20.9 2.12 22.7 2.12 21.4 2.6 339.2
80 2.87 50.9 2.86 499.7 2.85 420.2 3.3 321.5
100 3.42 100.2 3.42 532.1 3.42 618.3 4.0 352.8
20 6.30 1.3 6.35 0.0 6.33 0.2 6.6 0.5
40 11.94 10.1 12.16 0.5 11.97 2.4 12.3 3.0

5 60 18.35 35.1 18.63 2.1 18.46 10.9 18.3 10.2
80 25.34 84.8 25.78 6.5 25.52 25.9 24.8 129.7
100 29.38 164.3 29.75 14.6 29.49 55.9 28.7 326.8
20 0.66 0.9 0.67 0.0 0.67 0.1 1.0 0.0
40 1.24 6.4 1.25 1.2 1.24 2.4 1.9 400.9

6 60 1.87 21.2 1.87 45.9 1.87 70.2 2.2 118.2
80 2.53 52.1 2.53 412.6 2.52 565.6 3.0 14.0
100 3.03 107.5 3.03 748.5 3.02 818.3 3.6 431.6
20 5.16 1.7 5.25 0.1 5.19 0.2 5.7 0.6
40 11.03 11.7 11.12 0.5 11.05 2.4 11.5 4.8

7 60 15.89 42.3 16.09 2.0 15.95 9.6 16.1 22.9
80 22.79 96.9 23.03 5.4 22.84 22.0 23.2 77.8
100 27.11 185.2 27.26 12.2 27.16 47.4 27.1 305.5
20 5.69 1.3 5.92 0.0 5.90 0.1 6.1 1.0
40 11.42 10.2 11.56 0.7 11.45 1.9 11.4 6.7

8 60 16.24 30.9 16.48 6.8 16.21 22.2 16.4 30.0
80 23.00 73.9 23.23 54.5 23.03 64.9 22.6 79.5
100 28.28 143.0 28.40 92.5 28.20 190.6 28.1 215.5
20 13.86 2.2 14.04 0.1 13.94 0.2 14.3 0.1
40 27.31 15.8 27.61 0.7 27.49 1.8 27.8 0.3

9 60 43.29 55.7 43.64 1.7 43.49 5.6 43.7 0.9
80 57.21 129.1 57.50 7.4 57.27 13.2 57.7 2.6
100 69.11 242.8 69.43 13.3 69.23 29.3 69.5 7.1
20 3.96 1.0 4.06 0.1 3.99 0.2 4.5 0.4
40 7.29 7.9 7.42 0.6 7.33 1.9 7.7 109.6

10 60 10.14 24.3 10.41 3.0 10.15 10.1 10.4 461.6
80 13.03 59.1 13.26 8.6 13.07 33.0 13.2 889.1
100 16.16 127.1 16.37 50.4 16.17 100.3 16.4 1000.0

Sum 721.47 2670.0 729.12 2725.3 723.51 3419.2 732.7 8034.1
Average 14.43 53.4 14.58 54.5 14.47 68.4 14.65 160.68
Median 11.22 31.9 11.34 2.0 11.25 9.8 11.45 78.65
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instance class using a 95 % confidence interval. For five out of ten instance
classes (2,4,6,9 and 10) both VNS SIMPLE and VNS FULL yield significantly
better results than obtained by BPStabEA, VNS ILP is significantly better for
classes 2,4,6 and 9. VNS FULL does not yield significantly better results than
VNS SIMPLE but we observe an average increase in runtime. It can be expected
that allowing VNS FULL to run for 25 major iterations would further improve
the objective values, however, at the cost of a dramatic increase in the overall
runtime.

7 Conclusions

We presented a VNS for the 3-staged 2-dimensional cutting stock problem which
uses exclusively “ruin-and-recreate”-based VLNS. In a first straightforward ap-
proach greedy construction heuristics were used in the recreate step. We further
developed a polynomial-sized ILP as an alternative method for recreating a so-
lution. In fact, this model can also be applied for the 2-staged 2-dimensional
cutting stock problem with variable sheet sizes. Experimental results on well-
known problem instances show that the hybridization of VNS and VLNS indeed
leads to a significant increase in solution quality for half of the instance classes.
Using the ILP for recreation of the solution did not significantly increase the
performance in comparison to the recreation by construction heuristics.

In future work, we want to improve the ILP-based VLNS in order to reduce the
runtime allowing for more searches through larger neighborhoods. To this end we
want to develop a more sophisticated approach to determine the dimensions for
the strips and strengthen the model itself. Furthermore, it would be interesting
to see, if the performance can be improved by inserting the strips with an exact
method, e.g. an ILP formulation for the 1BP.
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Abstract. Tree decomposition introduced by Robertson and Seymour
aims to decompose a problem into clusters constituting an acyclic graph.
Recently, Fontaine et al. [8] introduced DGVNS (Decomposition Guided
VNS) that uses the graph of clusters provided by a tree decomposition to
manage the exploration of large neighborhoods. However, for large scale
problems, the performance of DGVNS may decrease significantly due to the
large number of clusters to be considered sequentially. To overcome this
shortcoming we propose CPDGVNS (Cooperative Parallel DGVNS) in which
the clusters are explored in parallel through an asynchronous master-
slave architecture. Experiments performed on real life instances show
the appropriateness and the efficiency of our approach.

Keywords: Tree decomposition, Weighted CSP, Parallelization,
Meta-heuristics, Variable Neighborhood Search (VNS), Master-Slave
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1 Introduction

Tree decomposition introduced by Robertson and Seymour [17] aims to decom-
pose a problem into subproblems (called clusters) constituting an acyclic graph.
Each cluster corresponds to a subset of variables that are strongly connected in
the initial graph. Once decomposed, the solving time of the initial problem can
be bounded by an exponent of its width, which is the size of the largest cluster in
the tree (minus 1). This nice property explains why tree decomposition received
a great interest in various domains: for checking satisfiability in SAT [16], for
solving Constraint Satisfaction Problem (CSP) [6], in Bayesian or probabilistic
networks [13], in relational databases [9], for constraint optimization [5,18]. All
these proposals exploit tree decomposition for complete search methods.

More recently, Fontaine et al. [8] investigated the incorporation of tree decom-
position within Variable Neighborhood Search (VNS) [14]. They proposed DGVNS

(Decomposition Guided VNS) that exploits the graph of clusters provided by
a tree decomposition of the constraints graph of the problem to build neigh-
borhood structures. However, as happens with other meta-heuristics, the main
limitation with DGVNS is that, for very large scale problems, its performance may
decrease significantly due to the large number of clusters to be considered.
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In this paper, we propose a first parallelization strategy for DGVNS called
CPDGVNS (Cooperative Parallel DGVNS) that consists simply in exploring all of
the clusters in parallel. CPDGVNS follows a master-slave architecture, where the
master process keeps, updates, and communicates the current overall best solu-
tion, while the slave processes manage the exploration of individual clusters. The
individual processes cooperate by asynchronously exchanging information about
the best solutions computed so far. That ensures independence of the individual
slave processes and allows starting with various initial solutions, thus enabling
more diversification.

Experiments performed on real life instances (RLFAP, SPOT5 and tagSNP) show
that, compared with DGVNS, CPDGVNS provides significant improvements, both in
terms of success rate and CPU times, on RLFAP instances (particularly Scen08)
and on large tagSNP instances. To the best of our knowledge, our proposal con-
stitutes the first attempt to use tree decomposition to efficiently parallelize the
exploration of large neighborhoods in VNS.

Section 2 introduces the context. Section 3 presents how to exploit tree decom-
position to efficiently parallelize the exploration of large neighborhoods within
VNS. Section 4 presents the problem instances we used for our experiments.
Section 5 is devoted to experimentations. Finally, we conclude and draw some
perspectives.

2 Context and Definitions

First, we recall the definition of Weighted CSP, the framework we have retained
for modeling all problems considered for our experiments (see Section 4). Then,
we present the MCS1 tree decomposition method that relies on the concept of
graph triangulation. Finally, we detail the DGVNS method.

2.1 Weighted CSP

A weighted CSP (WCSP) [11] is a generic framework used to model and solve
constrained optimization problems which allows to deal with over-constrained
problems. They have been successfully applied to resource allocation [3], schedul-
ing [2], bio-informatics [19] and probabilistic reasoning [15].

A WCSP is a pair (X,W ) where X = {x1, . . . , xn} is a set of n variables
(with a maximum domain size d) andW is a set of e cost functions. Each variable
xi ∈ X has a finite domainDi of values that can be assigned to it. A value a inDi

is denoted (xi, a). For a set of variables S ⊆ X ,DS denotes the cartesian product
of the domains of the variables in S. A complete assignment t=(a1, ..., an) is an
assignment of all variables; on the contrary, it will be called a partial assignment.
For a given complete assignment t, t[S] denotes the projection of t over S. A cost
function wS ∈ W , with scope S ⊆ X , is a function wS : DS �→ [0, k�] where, k�
is a maximum integer cost (finite or not) used to represent forbidden assignments

1 Maximum Cardinality Search.
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Fig. 1. Steps for computing a tree decomposition of a graph G

(expressing hard constraints). Costs are combined using the bounded addition
defined by α⊕β = min(k�, α+β). Solving a WCSP consists in finding a complete
assignment t minimizing ⊕wS∈WwS(t[S]).

2.2 Tree Decomposition

The constraints graph of a WCSP is a graph G=(X ,E) with one vertex for each
variable and one edge (u, v) for every cost function wS ∈ W, such that u, v ∈ S.

Definition 1. A tree decomposition [17] of G=(X,E) is a pair (CT , T ) where
T = (I, A) is a tree with nodes set I and edges set A, and CT = {Ci | i ∈ I}
is a family of subsets of X (called clusters) such that: (i) ∪i∈I Ci = X, (ii)
∀ (u, v) ∈ E, ∃Ci ∈ CT s.t. u, v ∈ Ci, (iii) ∀ i, j, k ∈ I, if j is on the path from
i to k in T , then Ci ∩ Ck ⊆ Cj.

The intersection of two clusters Ci and Cj is called a separator, and noted
sep(Ci, Cj). Two clusters Ci and Cj are adjacent if sep(Ci, Cj)�= ∅. The neigh-
borhood of Ci, denoted neighbor(Ci), is the set of clusters Cj that are adjacent
to Ci.

Definition 2. A graph of clusters for a tree decomposition (CT , T ) is an undi-
rected graph GT = (CT , ET ) that has a vertex for each cluster Ci ∈ CT , and
there is an edge (Ci, Cj) ∈ ET when sep(Ci, Cj)�= ∅. The edges are labeled by
the shared variables.

There has been a lot of work on tree decompositions. Usually, the prob-
lem considered is to produce a decomposition with a minimum treewidth, an
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Algorithm 1. DGVNS

Require: The constraint graph (X,W ), initial number of variables to unassign kinit,
maximum number of variables to unassign kmax, discrepancy δmax for LDS.

1: let G be the constraints graph of (X,W )
2: let (CT , T ) be a tree decomposition of G
3: let CT = {C1, C2, ..., Cp}
4: S ← genRandomSol()
5: k ← kinit, i ← 1
6: while (k < kmax)∧(not TimeOut) do
7: Cand ← CompleteCluster(Ci, k)
8: Xun ← Hneighborhood(Cand, k, S)
9: A ← S\{(xi, a) |xi ∈ Xun}
10: S′ ← LDS+CP(A, Xun, δmax, f(S), S)
11: neighborhoodChange(S, S′, k, i)
12: end while
13: return S

Algorithm 2. Neighborhood Change

1: procedure neighborhoodChange(S,S′, k, i)
2: if f(S′) < f(S) then
3: S ← S′

4: k ← kinit, i ← succ(i)
5: else
6: k ← k + 1, i ← succ(i)
7: end if
8: end procedure

NP- hard problem [1]. Approximate tree decompositions using triangulation
of a given graph are often exploited. We used Maximum Cardinality Search
(MCS) [20] heuristic aimed at the production of tree decompositions with small
treewidth.

Fig. 1 depicts the three steps for computing a tree decomposition of a graph
G (see Part a). First, triangulation is performed on G by adding edge BC (see
Part b). Then, maximal cliques in the chordal graph are determined in order to
build the graph of clusters (see Part c). Finally, tree decomposition is achieved
(see Part d).

2.3 Decomposition Guided VNS (DGVNS)

DGVNS (Decomposition Guided VNS) [8] extends the Variable Neighborhood Search
(VNS) method [14], by exploiting the graph of clusters in order to guide the ex-
ploration of large neighborhoods. Neighborhoods are obtained by unfixing a part
of the current solution according to a neighborhood heuristic. Then the explo-
ration of the search space, related to the unfixed part of the current solution, is
performed by a partial tree search LDS (Limited Discrepancy Search, [10]) with
Constraint Propagation (CP).
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Definition 3 (Neighborhood Structure Nk,i). Let G be a constraint graph
and GT=(CT ,ET ) its associated graph of clusters. Let Ci ∈ CT be a cluster of
GT and k the neighborhood dimension. Nk,i denotes the set of all subsets of k
variables from Ci.

Algorithm 1 depicts the pseudo-code of DGVNS. It starts from a tree decompo-
sition of G (line 2) and from an initial solution S which is randomly generated
(line 4). To favor moves on regions that are closely linked, DGVNS uses neighbor-
hood structures Nk,i (see Definition 3). Indeed, the concept of cluster embodies
this criterion, because of its size (smaller than the original problem), and by
the strong connection of the variables it contains. Thus, the set of candidate
variables Cand to be unassigned are selected from cluster Ci. If (k > |Ci|), then
we complete Cand by adding the clusters Cj adjacent to Ci in order to take
into account the topology of the graph of clusters. This treatment is achieved
by function CompleteCluster(Ci, k) (line 7). A subset of k variables Xun is
randomly selected in Cand among conflicted ones2 by the neighborhood heuris-
tic Hneighborhood(Cand, k, S) (line 8). A partial assignment A is generated
from the current solution S by unassigning the k selected variables; the (n− k)
non-selected variables keep their current value in S (line 9). Then, unassigned
variables are rebuilt by a partial tree search (LDS) combined with Constraint
Propagation (CP) (line 10). The search stops when the maximal dimension size
allowed or the T imeOut is reached (line 6).

To achieve a better diversification, DGVNS considers successively all the Ci.
This treatment is achieved by procedure neighborhoodChange(S, S′, k, i) (line
11). Let p be the total number of clusters, succ a successor function3, and Nk,i

the current neighborhood structure. Initially, k is set to kinit (line 5). In neigh-
borhood change strategy (Algorithm 2), if LDS+CP finds a solution of better
quality (line 2), then S′ becomes the current solution (line 3), k is reset to kinit
and the next cluster is considered (line 4). Otherwise, we look for improvements
in N(k+1),succ(i) (neighborhood structure where (k+1) variables of Cand will be
unassigned (line 6)).

3 Parallel DGVNS

First, we discuss and motivate the architecture we considered for our approach.
Then, we detail the role played by the master and the slave processes.

3.1 Asynchronous Master-Slave Architecture for CPDGVNS

The main motivation behind parallelism is to improve the performance of the al-
gorithms with respect to the computational time and the solution quality. Several
studies on parallel meta-heuristics confirm this trend. The parallel meta-heuristic

2 A variable is said to be conflicted if it occurs in at least one unsatisfied constraint.
3 if i < p then succ(i) = i+ 1 else succ(p) = 1.
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literature also indicates that while multiple independent search strategies pro-
vide good results, they are generally outperformed by well-designed cooperative
asynchronous search strategies (see [4] for more details). That is why we have
adopted this approach.

In order to explore a larger part of the solution space, we propose the Cooper-
ative Parallel DGVNS (CPDGVNS), that explores in parallel all of clusters provided
by a tree decomposition. CPDGVNS follows a master-slave architecture. The main
tasks performed by processes in CPDGVNS can be summarized as follows:

– master process:
- Sends to each slave process the initial solution and the cluster Ci to be
explored;

- Following a communication from a slave process, updates the best overall
solution;

- Verifies the stopping condition and relaunches the available slave process
starting from the best overall solution in Nkinit,succ(i).

– each slave process:
- Receives the initial solution and manages the exploration of the assigned
cluster;

- Communicates its solution to the master.

The slave processes cooperate by exchanging information about the best solu-
tions computed so far. They communicate exclusively with a master process. So-
lution updates and communications are performed asynchronously. This makes
this approach advantageous over the synchronous one as it allows starting with
various initial solutions during the successive resolutions of the clusters, thus
enabling more diversification.

3.2 Master Algorithm

Let CT = {C1, ..., Cp} be the set of clusters and nsl the number of slave processes
used. In our approach, to fully benefit from the parallelization, we fixed the
number of processes nsl

4 to the number of clusters. Thus, slave processes are
ranked from 1 to nsl, while the master process is ranked zero. CPDGVNS starts
from a tree decomposition of G and from an initial solution S which is randomly
generated (lines 3-5, Algorithm 3). It proceeds in three steps:

Initialization Step. The master initiates the search by launching in parallel
the execution of nsl slave processes (lines 7-11, Algorithm 3). This is done by
sending to each slave r the same initial solution, the corresponding cluster Ci

from CT , and the values of parameters kinit, kmax, and δmax (line 9). List CT is
managed as a FIFO strategy in order to ensure that every cluster is processed
by a unique slave process (line 10). Initially, the value of kmax is set to the size
of the cluster assigned to each slave process (line 8). This restricts the choice of
variables to be unassigned only to variables of this cluster.

4 Conceptually, the number of slave processes is equal to the number of clusters. In
practice, if the number of available physical cores is less than the number of clusters,
the same core will be used to process different clusters.
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Algorithm 3. Master process

1: function CPDGVNS(X,W, kinit, δmax, nsl)
2: let G be the constraints graph of (X,W )
3: let (CT , T ) be a tree decomposition of G
4: let CT = {C1, C2, ..., Cp}
5: S ← genRandomSol()
6: i ← 1
7: for each slave r = 1, . . . , nsl do
8: kmax ← |Ci|
9: Send(r, i, kinit, kmax, δmax, S)
10: i ← succ(i)
11: end for
12: Finished ← 0, adj ← 0
13: while (Finished < nsl) do
14: Receive(r, S′

r)
15: if (f(S′

r) < f(S)) then
16: S ← S′

r, adj ← 0
17: i ← succ(i), kmax ← |Ci|
18: else
19: i ← succ(i), kmax ← |Ci|
20: adj ← adj + 1
21: for j = 1, . . . , adj and adj ≤ |neighbor(Ci)| do
22: Select the jth cluster Cj from neighbor(Ci)
23: kmax ← kmax + |Cj |
24: end for
25: end if
26: if (not global TimeOut) then
27: Send(r, i, kinit, kmax, δmax, S)
28: else
29: Finished++
30: end if
31: end while
32: return S
33: end function

Updating Step. The master waits for the best solution found by each slave
process (lines 14-25, Algorithm 3). Let S′

r be the new solution communicated
by the slave process r to the master. If S′

r is of better quality than S (line 15),
S′
r becomes the best overall solution (line 16), the next cluster Ci is considered

and kmax is reset to |Ci| (line 17). Otherwise, we look for improvements in the
next cluster Ci (line 19) and we enlarge the set of candidate variables to be
unassigned by adding clusters Cj adjacent to Ci. This treatment is achieved by
increasing the number of adjacent clusters adj to be considered (line 20) and the
value of kmax accordingly (lines 21-23). This is done each time the slave does
not succeed to improve the best overall solution.

First, diversification performed by moving from cluster Ci to cluster Csucc(i)

is necessary. Experiments we performed have shown that remaining in the same
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Algorithm 4. Slave process r

Require: Tree decomposition (CT , T )
1: Receive(0, i, kinit, kmax, δmax, S)
2: Sr ← S
3: k ← kinit

4: while (k < kmax)∧(not local TimeOut) do
5: Cand ← CompleteCluster(Ci, k)
6: Xun ← Hneighborhood(Cand, k, Sr)
7: A ← Sr\{(xi, a) |xi ∈ Xun}
8: S′

r ← LDS+CP(A, Xun, δmax, f(Sr), Sr)
9: neighborhoodChange(Sr, S

′
r, k)

10: end while
11: Send(0, Sr)
12: procedure neighborhoodChange(S,S′, k)
13: if f(S′) < f(S) then
14: S ← S′

15: k ← kinit

16: else
17: k ← k + 1
18: end if
19: end procedure

cluster leads to lower improvements: selecting a new cluster enables to improve
the quality of the solution by visiting new parts of the search space. Second, when
a local minimum is found in the current neighborhood, increasing the value of
kmax will also provide some diversification by enlarging the neighborhood size.

Intensification Step. The aim of this step is to use the best local optimum
found by the processes to improve the intensification of the search (lines 26-
30, Algorithm 3). Thus, if the global T imeOut is not reached, the search is
continued by re-launching the slave process r starting from the best available
overall solution (line 27). Otherwise, it is stopped (line 32). The whole solving
process terminates when all of the slave processes finish (line 13).

3.3 Slave Algorithm

The aim of slave processes is to improve the solution of the master by unfixing
k variables of this solution in the neighborhood structure Nk,i, where Ci is the
cluster where the variables will be selected from, and rebuilding them using
LDS+CP.

Algorithm 4 depicts the pseudo-code of the slave process r. It requires the
tree decomposition (CT , T ) of G. It receives from the master, the index of the
assigned cluster, the values of parameters kinit, kmax, the value of discrepancy
δmax for LDS+CP, and the initial solution S (line 1). As for DGVNS, the set of can-
didate variables Cand to be unassigned are selected from cluster Ci. If (k > |Ci|)
and (kmax > |Ci|) (see treatment achieved by lines 21-23, Algorithm 3), then
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we complete Cand by adding the clusters Cj adjacent to Ci. This treatment is
achieved by function CompleteCluster(Ci, k) (line 5). A subset of k variables
Xun is randomly selected in Cand among conflicted ones by the neighborhood
heuristic Hneighborhood(Cand, k, Sr) (line 6). A partial assignment A is gen-
erated from the current solution Sr by unassigning the k selected variables; the
(n− k) non-selected variables keep their current value in S (line 7). Then, unas-
signed variables are rebuilt using LDS+CP (line 8).

If LDS+CP finds a solution of better quality S′
r in the neighborhood of Sr (line

13), then S′
r becomes the current solution (line 14) and k is reset to kinit (line

15). Otherwise, contrary to DGVNS, the slave process looks for improvements in
the neighborhood structure where (k+1) variables of X will be unassigned (line
17). This treatment is achieved by procedure neighborhoodChange(Sr, S

′
r, k)

(line 9). The search stops when it reaches the maximal number of variables to
be unassigned kmax or the local T imeOut (line 4).

4 Benchmark Problems

Experiments have been performed on instances of three different problems mod-
eled as Cost Function Network (CFN) (see Section 2.1).

RLFAP instances: The CELAR (Centre d’Electronique de l’Armement) has made
available a set of instances for the Radio Link Frequency Assignment Problem
(RLFAP) [3]. They consist in assigning a limited number of frequencies to a set
of radio links defined between pairs of sites, in order to minimize interferences
due to the re-use of frequencies. We report experiments on the most difficult
instances: Scen06, Scen07 and Scen08.

SPOT5 instances: The daily management of an earth observation satellite such
as SPOT5 consists in selecting a subset of candidate photographs to fit physical
limitations and maximize the importance of the selected photographs [2]. We
report experiments on six instances from those without hard capacity constraint.

tagSNP instances:A Single Nucleotide Polymorphism (SNP) is a DNA sequence
variation occurring when a single nucleotide - A, T, C or G - in the genome differs
between members of a biological species or paired chromosomes in an individ-
ual [7]. SNPs act as biological markers that may help predict risk of developing
particular diseases. The tagSNP problem consists in selecting a small subset of
SNPs, called tagSNPs, that captures most of the genetic information. This prob-
lem is known to be very hard to solve, due to its close relation to the set covering
problem (NP-Hard) [18]. We report experiments on twelve challenging instances
derived from human chromosome-1-data5 with r0=0.5 (up to n=1550 variables
with maximum domain size d ranging from 30 to 266, and up to e=250, 000 cost
functions). Six instances are medium-sized, and the six other ones are large-sized.

5 http://www.costfunction.org/benchmark

http://www.costfunction.org/benchmark
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5 Experiments

We compare CPDGVNS with DGVNS, on RLFAP, SPOT5 and tagSNP instances. Ex-
periments we performed clearly show:

• The relevance of parallelizing the exploration of the graph of clusters.
• Compared with DGVNS, CPDGVNS provides significant improvements, both
in terms of success rate and CPU times, on RLFAP instances (particularly
Scen08) and on large tagSNP instances.

5.1 Experimental Protocol

To compare CPDGVNS to DGVNS, we have taken the same parameters as those
described in [8]. The value of discrepancy for LDS is set to 3 which is the best
value found on RLFAP instances (see [12]). kmin and kmax are respectively set
to 4 and n (the total number of variables) so that all variables of the problem
will be covered, and global T imeOut fixed to 3600 seconds. For CPDGVNS, the
number of processes nsl is fixed to |CT | which is the number of clusters of the
tree decomposition.

The experimentations have been carried out on the high performance com-
puting center of the university of Oran6. A set of 50 runs per instance has been
performed. All search strategies have been implemented in C++ using the li-
brary toulbar27. The parallelization has been done within MPI (Message Pass-
ing Interface) environment 8. For instance, Send and Receive synchronization
routines correspond respectively to MPI Send and MPI Recv procedures of
the MPI library.

To evaluate the impact of our parallel strategy, we compare the quality of
solutions obtained by DGVNS and CPDGVNS by considering the computation time.
To implement this purpose, we fixed the local T imeOut allocated to each slave
process to global T imeOut/nsl. For each instance and each method, we report:

1. the number of successful runs; a run is successful if the optimum is reached.
2. the average CPU time (in seconds) for the successful runs,
3. the average cost of the final best solution over the 50 runs,

5.2 Contribution of the Parallelization

RLFAP instances. CPDGVNS clearly outperforms DGVNS on RLFAP instances, both
in terms of success rates and CPU times (see Table 1). CPDGVNS reaches the op-
timum with success rate of 100% on all the instances. For Scen06, CPDGVNS im-
proves the success rate about 10% (from 90% to 100%) and CPDGVNS is 9.4 times
faster than DGVNS. For Scen07, the two methods get the same success rates,
but CPDGVNS is more faster. For Scen08, one of the most challenging instances,

6 http://www.univ-oran.dz/uci/index.html
7 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
8 http://www.mcs.anl.gov/research/projects/mpi/

http://www.univ-oran.dz/uci/index.html
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
http://www.mcs.anl.gov/research/projects/mpi/
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Table 1. Comparing CPDGVNS and DGVNS on RLFAP instances

Instance Method Succ. Time Avg.

Scen06 S∗ = 3, 389 CPDGVNS(nsl = 12) 50/50 5.28 3,389
n = 100, d = 44, e = 1, 222 DGVNS 45/50 49.70 3390

Scen07 S∗ = 343, 592 CPDGVNS(nsl = 19) 50/50 221.07 343,592
n = 200, d = 44, e = 2, 665 DGVNS 50/50 344.48 343,592

Scen08 S∗ = 262 CPDGVNS(nsl = 46) 50/50 371.57 262
n = 458, d = 44, e = 5, 286 DGVNS 15/50 826.26 273

Table 2. Comparing CPDGVNS and DGVNS on SPOT5 instances

Instance Method Succ. Time Avg.

#408 S∗ = 6, 228 CPDGVNS(nsl = 9) 50/50 6.49 6,228
n = 200, e = 2, 232 DGVNS 28/50 2.06 6,228

#412 S∗ = 32.381 CPDGVNS(nsl = 9) 50/50 16.05 32,381
n = 300, e = 4, 348 DGVNS 27/50 7.67 32,381

#414 S∗ = 38, 478 CPDGVNS(nsl = 14) 50/50 66.95 38,478
n = 364, e = 10, 108 DGVNS 19/50 54.44 38,479

#505 S∗ = 21, 253 CPDGVNS(nsl = 12) 40/50 6.07 21,253
n = 240, e = 2, 242 DGVNS 16/50 3.67 21,254

#507 S∗ = 27, 390 CPDGVNS(nsl = 11) 47/50 33.16 27,390
n = 311, e = 5, 732 DGVNS 25/50 15.72 27,390

#509 S∗ = 36, 446 CPDGVNS(nsl = 13) 50/50 63.14 36,446
n = 348, e = 8, 624 DGVNS 29/50 38.49 36,447

the trend is greatly amplified: CPDGVNS improves very significantly the success
rate about 70% (from 30% to 100%) and obtains solutions with a mean devia-
tion (percentage deviation from the optimum) of 0% above the optimum against
4.2% for DGVNS. Moreover, CPDGVNS is 2.22 times faster than DGVNS.

SPOT5 Instances. Table 2 confirms the robustness of CPDGVNS on SPOT5 in-
stances, where CPDGVNS reaches the optimum with success rate of 100% on the
instances (#408, #412, #414, #509), and DGVNS gets on average a success rate
about 51.5%. For instance #505, CPDGVNS improves the success rate about 48%,
while for #507 it improves the success about 44%.

Finally, Table 2 suggests that DGVNS is (on average) faster than CPDGVNS. This
is clearly due to the fact that DGVNS gets significant less successful runs compared
with CPDGVNS, thus impacting the average CPU-times. However, if we consider
unsuccessful runs, CPDGVNS clearly outperforms DGVNS.

tagSNP Instances. Table 3 compares CPDGVNS and DGVNS on tagSNP instances.
For medium-sized instances, CPDGVNS clearly dominates DGVNS in terms of CPU
times. CPDGVNS reaches the optimum for each of the 50 runs (i.e. success rates
of 100%). DGVNS gets the same success rates (except for instance #8956), but
CPDGVNS is on average 3.39 times faster. For the instance #8956, CPDGVNS im-
proves the success rate about 4%.
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Table 3. Comparing CPDGVNS and DGVNS on tagSNP instances

Instance Method Succ. Time Avg.

#3792, n = 528, d = 59, CPDGVNS(nsl = 70) 50/50 19.57 6,359,805
e = 12, 084, S∗ = 6, 359, 805 DGVNS 50/50 90.59 6,359,805

#4449, n = 464, d = 64, CPDGVNS(nsl = 56) 50/50 16.61 5,094,256
e = 12, 540, S∗ = 5, 094, 256 DGVNS 50/50 36.81 5,094,256

#8956, n = 486, d = 106, CPDGVNS(nsl = 54) 50/50 19.24 6,660,308
e = 20, 832, S∗ = 6, 660, 308 DGVNS 48/50 85.99 6,666,309

#9319, n = 562, d = 58, CPDGVNS(nsl = 62) 50/50 10.05 6,477,229
e = 14, 811, S∗ = 6, 477, 229 DGVNS 50/50 33.23 6,477,229

#16421, n = 404, d = 75, CPDGVNS(nsl = 35) 50/50 14.15 3,436,849
e = 12, 138, S∗ = 3, 436, 849 DGVNS 50/50 48,19 3,436,849

#16706, n = 438, d = 30, CPDGVNS(nsl = 49) 50/50 5.13 2,632,310
e = 6, 321, S∗ = 2, 632, 310 DGVNS 50/50 11.95 2,632,310

#6858, n = 992, d = 260, CPDGVNS(nsl = 105) 40/50 398.93 20,833,413
e = 103, 056, S∗ = 20, 162, 249 DGVNS 33/50 2788.92 20,565,101

#9150, n = 1, 352, d = 121, CPDGVNS(nsl = 120) 50/50 260.07 43,301,891
e = 44, 217, S∗ = 43, 301, 891 DGVNS 27/50 2660.00 43,497,252

#14007, n = 1554, d = 195, CPDGVNS(nsl = 31) 50/50 665.54 50,290,563
e = 54, 753, S∗ = 50, 290, 563 DGVNS 19/50 2,523.38 50,913,924

#10442, n = 908, d = 76, CPDGVNS(nsl = 25) 50/50 168.59 21,591,913
e = 28, 554, S∗ = 21, 591, 913 DGVNS 50/50 228.50 21,591,913

#14226, n = 1, 058, d = 95, CPDGVNS(nsl = 94) 50/50 159.18 25,665,437
e = 36, 801, S∗ = 25, 665, 437 DGVNS 50/50 295.78 25,665,437

#17034, n = 1, 142, d = 123, CPDGVNS(nsl = 120) 50/50 166.65 38,318,224
e = 47, 967, S∗ = 38, 318, 224 DGVNS 50/50 565.06 38,318,224

For large instances, CPDGVNS clearly outperforms DGVNS both in terms of suc-
cess rates and CPU times, particularly on the three instances #6858, #9150
and #14007. CPDGVNS improves the success rate about 14% on instance #6858,
46% on instance #9150, and 62% on instance #14007. Moreover, for these three
instances, CPDGVNS is up to 10 faster than DGVNS (it is on average 7 times faster).
For the other instances, CPDGVNS is on average 2.2 times faster than DGVNS.

Performance Profile. We have selected four instances to describe the mean
performance profiles of the evolution of the average solution quality over time for
the 50 runs of both CPDGVNS and DGVNS on the instances of RLFAP and tagSNP.
Two instances are from RLFAP (Scen06 and Scen08), and two other large in-
stances from tagSNP (#14007 and #17034).

Fig. 2 compares the performance profiles of both CPDGVNS and DGVNS on
Scen06 and Scen08 respectively. From an anytime point of view, CPDGVNS clearly
outperforms DGVNS especially on Scen08, where the curve of CPDGVNS shows a
significant steep initial slope. This remark is also confirmed on the two large
tagSNP instances (#14007 and #17034, Fig. 3). For instance Scen08, on av-
erage, CPDGVNS intensifies the search around the optimum after 60 seconds of
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Fig. 2. Profile performance of CPDGVNS and DGVNS on RLFAP instances: Scen06 and
Scen08

computation time, while DGVNS takes about 120 seconds to get close to the
optimum. Indeed, experiments showed that CPDGVNS escape easily from the local
optimum compared to DGVNS due to the multiple search on different clusters. This
confirms the contribution of parallelism to compromise between diversification
and intensification.

Synthesis. These experiments clearly demonstrate the efficiency of CPDGVNS.
Compared with DGVNS, CPDGVNS provides significant improvements, both in terms
of success rate and CPU times, on RLFAP instances (particularly Scen08) and on
large tagSNP instances.
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Fig. 3. Profile performance of CPDGVNS and DGVNS on tagSNP instances: #14007 and
#17034

6 Conclusions

In this paper, we have proposed a first parallelization strategy for DGVNS called
CPDGVNS (Cooperative Parallel DGVNS), that explores in parallel all of clusters
provided by a tree decomposition. CPDGVNS follows a master-slave architecture,
where the master process keeps, updates, and communicates the current over-
all best solution, while the slave processes manage the exploration of individual
clusters. The individual processes cooperate by asynchronously exchanging infor-
mation about the best solutions computed so far, thus enabling more diversifica-
tion. Experimental results show that CPDGVNS provides significant improvements,
both in terms of success rate and CPU times.

We are currently investigating a better cooperation strategy between the slave
processes, inparticular inthecontextofgraphicsprocessingunit (GPU)computing.
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Abstract. Data centres are facilities with large amount of machines
(i.e., servers) and hosted processes (e.g., virtual machines). Managers of
data centres (e.g., operators, capital allocators, CRM) constantly try to
optimise them, reassigning ‘better’ machines to processes. These man-
agers usually see better/good placements as a combination of distinct
objectives, hence why in this paper we define the data centre optimisa-
tion problem as a multi-objective machine reassignment problem. While
classical solutions to address this either do not find many solutions (e.g.,
GRASP), do not cover well the search space (e.g., PLS), or even can-
not operate properly (e.g., NSGA-II lacks a good initial population), we
propose GeNePi, a novel hybrid algorithm. We show that GeNePi out-
performs all the other algorithms in terms of quantity of solutions (nearly
6 times more solutions on average than the second best algorithm) and
quality (hypervolume of the Pareto frontier is 106% better on average).

Keywords: Data Centres, Machine Reassignment, Evolutionary Algo-
rithms, Multi-Objective Optimisation.

1 Introduction

Data centres are facilities dedicated to hosting many computer resources, and
while they have been around for decades, they are now the centre of attention
as they are increasingly the crucial element of our digital lives (e.g., for the
Cloud). These data centres evolve constantly as for instance machine age and are
eventually decommissioned, new ones (more powerful) are bought regularly, and
processes hosted are updated to potentially more greedy ones. Managers of data
centres have to adapt their systems to these evolutions and migrate processes
from one machine to another according to technical and non-technical reasons,
what we call reassignment of processes to machines. For instance, managers may
want to increase the reliability of their data centre and move workload from
overloaded machines to less loaded and/or more powerful ones. Often, they also
try to move services to power efficient machines, in order to lower the cost and
environmental impact of the data centres.
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One problem is that machines can range to up to tens of thousands (e.g., OVH,
a European leader in the domain, have 150,000 servers in 12 data centres1), and
services up to millions (e.g., VMware ESX accepts up to 320 VMs per host).
At this scale, any instance of the reassignment problem becomes a challenge
to the existing heuristics and solvers, and finding the ‘best’ (re-)assignment an
illusion. Another problem is that, as we mentioned in the previous paragraph,
managers have different perspectives on what is a ‘good’ solution, and ranking
all the solutions according to a single utility function (e.g., minimising energy
consumption) is probably not relevant.

This is a perfect example of a problem where multi-objective decision making
makes sense: an optimisation problem with various independent objectives that
only decision makers can compare – possibly collectively. For instance, Xi et
al. [1] describe such an enterprise environment where managers of virtual data
centres have various perspectives when it comes to placement decisions. Hence
we call the problem we address in this paper multi-objective optimisation for the
machine reassignment problem. While this problem has been addressed in the
context of machine assignment [2], or for dynamic assignment of small amount
of machines [3], it has not been in itself the topic of research in the past. In this
paper we identify three objectives for the problem: (i) reliability, i.e., a penalty
is given to assignments that load too much the machines; (ii) migration, i.e.,
assignments that move processes too much (especially to remote locations) are
penalised; and (iii) electricity: trying to obtain assignments that minimise the
(electrical) cost of running the data centre.

In this paper we show that the classical solutions do not perform well against
this problem, in terms of the number of non-dominated solutions found (the
quantity of solutions) or the hypervolume [4] of the search space area defined by
the Pareto frontier (the quality of the solutions). Pareto Local Search (PLS) [5,6,7]
usually finds solutions but they are grouped in one area of the search space (small
hypervolume) and it is a slow algorithm – these are the expected behaviour of
this algorithm. NSGA-II [8] needs a good initial population in order to operate
properly, while here it gets only one solution: the initial assignment. GRASP [9]
does not perform well in such large search spaces and ends up trying a lot of
non-feasible settings, eventually finding few or no solutions. We then propose a
novel hybrid algorithm called GeNePi, using successfully three steps: a first step
(inspired from GRASP) to explore quickly all the search space, a second (using
NSGA-II) to introduce some variety and quality in the solutions and a last one
(PLS-based) to increase the number of solutions. GeNePi outperforms all the
state-of-the-art other algorithms (the previously mentioned ones and some clas-
sical bin packing ones), finding nearly 6 times more non-dominated solutions on
average and covering the search space better (106% better on average).

In the rest of this paper we first give a problem definition, with the constraints
and the three objectives that we identified as the most relevant (Section 2).
Then we describe GeNePi, our algorithm for solving this multi-objective machine
reassignment problem (Section 3). After this, section 4) proposes an evaluation

1 Source: http://www.ovh.com/fr/backstage/ – accessed on 23/11/2013.

http://www.ovh.com/fr/backstage/
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of GeNePi against the state-of-the-art other algorithms. Finally we make some
concluding remarks (Section 5).

2 Problem Definition

The Multi-Objective Machine Reassignment Problem consists in optimising the
usage of a set of machine M according to various objectives. More specifically,
reassignment in general seeks to find a new machine M(p) for every process p
in the system, initially placed in machine M0(p), satisfying the constraints of
the system while its multi-objective version tries to find non-dominated (better
than every other solution in some directions of the space). In some casesM0(p) =
M(p), which means that the process p does not move during the reassignment.

The machine reassignment problem can be seen as a complex (i.e., with more
constraints such as dissemination and dependency) instance of d-dimensional
vector bin packing [10,11] with each machine a d-dimensional bin, such that
d is the number of the resources. The aim is to place the processes in these
machines, such a way they satisfy their capacities and they minimise the number
of bins used. This problem is NP − Hard and it has drawn lot of attention
[12]; in this work we do not consider the scheduling aspects of it (bin repacking
scheduling problem [13]). The model we describe below is loosely inspired by
several work (e.g., [14] for a linear model), among which the problem definition
of the ROADEF challenge [15] has an important place.

2.1 Reassignment Problem

A machine m ∈ M belongs to a location l ∈ L (the site where the server is
located). It is also in a neighbourhood N(m) ⊆ M, which represents a set of
machines with which it is linked to by fast connections or with which it shares
the same protocol. Each machine belongs to one and only one location and
one neighbourhood. Every m has also several resources r ∈ R (e.g., RAM, CPU,
disk), in limited capacitiesQm,r. We consider that the quantity of resource r that
the process p needs is fixed to dp,r and corresponds to a VM parameter/SLA2.
The first constraint regards the number of processes a machine can host:∑

p∈P | M(p)=m

dp,r ≤ Qm,r, ∀m ∈ M, ∀r ∈ R (1)

Some resources are called transient : r ∈ T R ⊆ mathcalR. Such resources
(e.g., RAM and disk) are needed on both machines during a new assignment, as
the processes use the resources on both machines during the migration.∑

p∈P|M0(p)=m∨M(p)=m

dp,r ≤ Qm,r, ∀m ∈ M, ∀r ∈ T R (2)

2 a Service-Level Agreement (SLA) is a contract agreed between a data centre provider
and a customer which describes the service provided (e.g., allocated resources, time
to recover after an outage).
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Other resources are called non-transient : r ∈ NR = R \ T R.
Services/applications are often multi-tier (e.g., to separate concerns) and repli-

cated (for performance and security reasons), so it is realistic to assume here that
processes (the atomic element of workload) are organised by services. It is a com-
mon for services to have an anti-cohabitation constraint [16], i.e., the processes
composing a service cannot share the same host – for some reliability, security
and performance reasons. Let P be the set of processes and S the set of services,
then the anti-cohabitation constraint can be expressed as in (3).

∀pi, pj ∈ P , i �= j, ∀s ∈ S, (pi, pj) ∈ s2 ⇒ M(pi) �= M(pj) (3)

For the same reasons of reliability, security and performance, services require
that the number of locations hosting at least one process has to be greater than
a certain number, caller spread number. This allows increasing the resilience in
case of failure of a data centre: the bigger the spread number, the safer the
service.∑

l∈L
min (1, |{p | p ∈ s ∧ M(p) ∈ l}|) ≥ spreadNumbers, ∀ s ∈ S (4)

Services can also depend on each other and in this case the processes of these
services need to be close to each other – to increase the performance of the
system. We note this dependency of services ↪→. Of course, as the dependencies
between services can be complex, the assignment can be tricky: a process p ∈ P ,
belonging to service si ∈ S which is dependent on service sj ∈ S and service
sk ∈ S, needs to be assigned to a machine in N(m) with ∃p′ ∈ sj∩skm = M(p′).

∀si, sj ∈ S, si ↪→ sj =⇒ ∀pu ∈ si, ∃pv ∈ sj | N(M(pu)) = N(M(pv)) (5)

Figure 1 shows graphically a scenario (i.e., instance and initial solution) of the
problem. Note that resource capacities and demands are not represented here to
make it simpler to understand.

Definition 1 (Machine Reassignment). An assignment A of processes to
machines is a mapping: A : P �→ M, such that A(p,M) → m, which satisfies
all the previous constraints 1, 2, 3, 4 and 5.

A reassignment is a function that modifies an initial assignment: ReA : A �→ A
and gives a new assignment of processes to machines.

2.2 Objectives

As said in the introduction, there are several perspectives on the best optimi-
sation, which translate in our case into several objectives. Some studies [17]
show that a large number of objectives decreases drastically the performance of
evolutionary algorithms, and that decision makers tend to favour small number
of dimensions. We have then decided to focus only three objectives that seem
to make the most sense from the literature and discussions with industrials:
reliability, migration and electricity costs.
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Fig. 1. Simple scenario of a correct assignment of processes to machines (spread= 2)

There are many elements that can help data centre operators to predict the
risk of failure of a server: to name a few the age of a machine, the vendors of its
parts (e.g., processor maker) and the past history of similar machines. They are
complex to collect and understand, and we do not know exactly how to process
them to obtain an objective that the data centre operators and decision makers
could use (the literature seems uncertain on the matter [18]). One thing we know
is that as opposed to the risk of failure, the reliability is easier to compute and
gathers less questions.Machines do operate better when they are not too loaded,
and reliability can be estimated through the load: the more loaded a machine,
the greater the risk of performance issues or failures.

Definition 2 (Reliability Cost). A machine m ∈ M is reliable if it is not
loaded more than a reliability value ρ(m, r) for each resource r ∈ R, and we
compute a reliability cost of m, ρ(m), as:

ρ(m) =
∑
r∈R

max

⎛
⎝0 ,

∑
p∈P|M0(p)=m∨M(p)=m

dp,r − ρ(m, r)

⎞
⎠ (6)

If the safety capacity of m for the resource r is higher than the sum of the
demands, then it does not impact the safety of the machine. Note that this
definition is inspired by the concept of safety capacity introduced in [19]: if one
or several resources of a machine are over-loaded then the machine may not be
able to satisfy its SLAs.

Migrating a process has a cost which is often neglected by research in the
area but is well known by practitioners [20]. Basically, this consists in the time
needed to prepare a process p for a migration (μ1(p,Mo(p))), to transfer p
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(μ2(p,Mo(p),M(p))) and to install p on a new machine (μ3(p,M(p))). All these
costs are dependent on some process parameters (e.g., size of the data stored on
disk and RAM, complexity of the installation) and topology parameters (e.g.,
number of hops, bandwidth), that we do not evaluate in this paper.

Definition 3 (Migration Cost). The cost of migrating a process p ∈ P from
a machine M0(p) to a machine M(p) is defined:

μ(p,Mo(p),M(p)) = μ1(p,Mo(p)) + μ2(p,Mo(p),M(p)) + μ3(p,M(p)) (7)

Electricity cost of running machines accounts for up to 50% of their operating
costs [21] and it is a burden for countries’ electricity production systems: in
2007, Western European data centres consumed 56 TWh of electricity, and this
is expected to double (104 TWh, or about 4 times the annual production or
Ireland) by 2020 [22]. There is a global trend towards more greener and power-
aware practices, and this will certainly lead to an increase in the electricity
price and other incentive for data centre managers to minimise their electricity
consumption. Modelling electricity cost is complex but we follow the general
assumption that states that it is a linear function of its CPU usage [23,24]. We
then just define two parameters, αm (linear factor) and βm (fixed cost of running
m with n load on the CPU) for every machine m. This does not take into account
other elements that may be relevant but are somehow out of the scope of our
study here (e.g., cooling of data centres).

Definition 4 (Electricity Cost). The electricity cost of a machine m ∈ M
in the location l ∈ L depends on the variables αm, βm (electricity consumption
constants) and γl (electricity cost in l), and is expressed by the following formula:

ε(m) =

⎧⎪⎨
⎪⎩

γl ×
(
αm ×

∑
p∈P|M(p)=m

dp,CPU + βm

)
if m is running

0 otherwise

(8)

3 Description of Our Solution: GeNePi

GeNePi applies successively three (modified) optimisation algorithms: GRASP,
NSGA-II and PLS. This idea of using three steps for approximate resolution [25]
is new in the domain of data centres optimisation.

3.1 Ge: A Variant of the Constructive Phase of GRASP

We use a variant of the constructive phase ofGreedy Randomized Adaptive Search
Procedure [9] (GRASP). Solutions are generated by trying to reassign processes
one after the other, according to a greedy heuristic which is slightly relaxed
to include a random factor. This method is commonly used for combinatorial
problems, and applied to get some quick initial solutions with good objectives.
After ranking the processes according to their dependencies and their needs of
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resources, they are selected one by one. A decision of reassigning one per cent
of the processes from their initial hosts has been taken, because of the tightness
of transient resource constraints that limits the number of reassignments. The
choice of the reassignment of every process is based on a linear combination of
the three utility/objective functions (one per objective). Even if a linear com-
bination of these utility functions allows us to go beyond the objective types
barrier, its static definition induces getting solutions with a same objectives
level of interest. This behaviour goes against the aim of a multi-objective op-
timisation. That is why we adopted a panel of triplet weights (λi, λj , λk) in
]0, 1]3, with λk = 1 − λi − λj . They are chosen in such a way they cover a
maximum search space by optimising the objectives separately in addition to
their trade-offs. They will be used to introduce a diversification in the inter-
est of each objective, ensuring a trade-off between them. The random part of
GRASP lays in the assignment of a machine to each process, at each iteration.
For each process, a set of assignable machines that respect the constraints is
computed, and a value of interest is given to each machine by a weighted sum:
(Ui):

∑3
i=1 λiUi,, which creates a set of machine with a utility lower than or

equal to (minUtility + (1− r) ∗ [maxUtility −minUtility]), with r ∈ [0, 1].
A random machine is selected from this eligible set to assign the process to it.
During the assignment, it may happen that a process has no machine able to
host it. The solution is declared infeasible, and removed from the initial solu-
tions. Globally, at the end of this step, we expect to have a set of decent solutions
spread over the search space.

3.2 Ne: NSGA-II

We use for this step a genetic algorithm called Non-dominated Sorting Genetic
Algorithm-II [8] (NSGA-II). This step is useful for the improvement of the
Pareto set3 obtained from the first step. This metaheuristic allows to get a good
dissemination of the solutions around the Pareto frontier and prevent their accu-
mulation in some area of the search space. Hopefully, it allows GeNePi getting a
smooth frontier and increases the number and the quality of the non-dominated
solutions. It is a genetic algorithm, i.e., it runs an evolutionary process which
matches individuals (i.e., solutions or assignments) at each generation and mixes
their features (as the biological evolution would do with genes). The two main
actions are crossover which mixes genes from two parents, and mutation that
creates randomly individuals with new features. There exists several ways of do-
ing crossovers, which is more or less a cut and paste operation where assignments
in the set of actual solutions are split into regular length segments and swapped
with one another [26]. In our case crossovers consider the exchange of services
(group of processes) rather than blocks of process assignments – that minimise
the number of bad crossovers. Of course the diversity is less than with crossovers
on processes, but we compensate with a bigger probability of mutations (i.e., ran-
dom assignments in solutions to see whether this improve the utilities). After a

3 Pareto set: a set of non-dominated solutions (i.e., better than all other solutions in
one or more objectives).
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generation has “passed”, some new individuals are kept (usually the fittest, those
with the best objective values: low domination rank, but also some other that
allow to introduce some variety: high crowding-measure [8]), and others are sup-
pressed. Hence the global population of assignments only improves (descendants
worse than their parents are likely to be suppressed). Beside, last generations
tend to be well distributed over the Pareto frontier.

3.3 Pi: A Pareto Local Search

Finally, we try to improve the Pareto set by using a Pareto Local Search [5,6,7]
(PLS). It consists in applying several local search operators on the solutions be-
longing to the Pareto frontier. Few simple moves are chosen to analyse the neigh-
bourhood of actual solutions: (i) swap, i.e., taking two processes and exchanging
their assignment; (ii) 1-exchange, where one process at a time is selected and re-
assigned to any machine that accepts it; (iii) shift, where processes belonging to
the same service exchange their assignments (which maintains the satisfaction
on the dependency constraints). These moves allow probing of a large neigh-
bourhood around the current solutions, which may generate some redundancies
if the solutions are close of one another. To overcome this problem, we generate
boxes by clustering solutions, and apply a local search to the most isolated so-
lution in each of them (i.e., has the largest crowding-measure value). Only one
neighbourhood is generated for every selected solution at every iteration, even if
new interesting solutions have been found. This balances the improvement and
reduces the execution time as redundancy is less likely.

4 Evaluation

In this section, we evaluate the performance of our solution against other state-of-
the-art multi-objective and reassignment solutions, using several metrics: time,
quantity (number of solutions) and quality of solutions (hypervolume). We create
a benchmark inspired by the ROADEF Challenge 2012 [19].

4.1 Experimental Setups

The ROADEF challenge 2012 is particularly suited to our needs, as it is rather re-
alistic (proposed by Google, who claim it represents accurately some of their data
centres) and it is quite comprehensive: lot of resources for the machines/processes
while many papers in the area only consider two (namely, RAM and CPU), rea-
sonably high number of machines and processes, complex dependencies and con-
straints on the services and processes which make the assignments not straight-
forward. The ROADEF dataset distinguishes three categories of instances (a 1
are considered ‘easy’, a 2 ‘medium’ and b ‘hard’).

In this paper, we pick up 14 instances (see Figure 1), leaving only the biggest
ones. We have added variables αm and βm to each machine m ∈ M, and γl
for every location l ∈ L in order to include electricity consumption. All tests
were made on a 4 cores Intel Xeon 3.10GHz CPU, with 8GB of RAM, running
Ubuntu 12.4 LTS 64-bits.
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Table 1. The dataset used for our evaluation (ID and size of the different instances)
and execution time of GeNePi on them

Instance # Resources # Machines # Services # Processes Execution Time (s)

a 1 1 2 4 79 100 1.58
a 1 2 4 100 980 1,000 3,108
a 1 3 3 100 216 1,000 441
a 1 4 3 50 142 1,000 309
a 1 5 4 12 981 1,000 332
a 2 1 3 100 1,000 1,000 3,905
a 2 2 12 100 170 1,000 600
a 2 3 12 100 129 1,000 695
a 2 4 12 50 180 1,000 342
a 2 5 12 50 153 1,000 347
b 1 12 100 2,512 5,000 14,990
b 2 12 100 2,462 5,000 10,028
b 3 6 100 15,025 20,000 39,595
b 4 6 500 1,732 20,000 63,534

4.2 Metrics

Comparing multi-objective optimisation approaches is complex as the set of so-
lutions they give on a problem can be seen from different perspectives: coverage,
closeness to the Pareto frontier, variety, and many more [27]. The problem prob-
ably roots in the fact that the Pareto frontier is unknown most of the time, and
that the different objectives cannot be taken in isolation to give the quality of
any solution. In this paper, we made the decision to take only few unary opera-
tors as metrics (see other studies for a more comprehensive study of the various
possible operators [28]): unary as they take a set of solutions and give a single
value, which allows comparing the different approaches.

The first metric we use is the number of non-dominated (efficient) solutions
and we refer to it as the quantity of solutions. Finding a large number of solutions
is always better as it provides more alternatives to the decision makers.

The other metric is the hypervolume [4] (also known as the S metric). We
sometimes call it quality of the solutions. This is a widely used metric in the
area of optimisation to evaluate the performance of multi-objective algorithms
that aims at understanding how the output sets are spread in the different di-
mensions. In short, the hypervolume measures the space (in the n dimensions
of the n objectives) defined by the set of non-dominated solutions and a refer-
ence point, picked in the space as far as possible from the Pareto frontier. The
bigger the hypervolume, the more interesting are the solutions in the found non-
dominated solution set, as they increase the dominated area. In formal terms,
this is proven by Fleischer [29] who states that the maximisation of the hyper-
volume is equivalent to finding the optimal Pareto frontier. Note that in order
to compare the result sets of different algorithms, we use the same reference
points for each instance of the multi-objective machine reassignment problem. A
last remark is that although hypervolume is obviously impacted by the random
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seeds applied to algorithms, a preliminary study we conducted did not give us
any sense that the relative results of the different algorithms would vary. In other
words, good algorithms are always good, bad are always bad, whatever the seed
- in particular GeNePi always gives the best hypervolume values. We hence use
the same seed for each algorithms, but plan to study in more details the impact
of each technique on the Pareto front in some future work.

4.3 Algorithms

We compare our solution to three different types of algorithms, running for
the same period of time. The first algorithms are from the First Fit family.
These heuristics are designed for Vector Bin Packing [30] and they are considered
efficient. We chose among them the First Fit (FF) which selects the first machine
that fits for every process in a sequence; the Random Fit (RF) which selects
randomly a machine among those which fit; and the First Fit Descent Bin-
Balancing (BB) which selects the least loaded machine for each process.

The second set of algorithms is the state-of-the-art solutions from the multi-
objective optimisation field. The first of them is GRASP in its original definition,
i.e., the choice of reassigning is based on a uniform probability distribution on the
eligible machines. We also run the first step of GeNePi (Ge) as it is a variation
on GRASP that we expect is better than GRASP for our scenario. We also try
NSGA-II where we reserve a third of the execution time to GRASP in order
to create an initial population and run NSGA-II in the two remaining thirds of
the execution time. The last Algorithm is a Pareto Local Search (PLS), with
a number of boxes at every iteration equal to the number of solutions in the
non-dominated solution set.

4.4 Tuning the Steps of GeNePi

Each of the three steps composing GeNePi has several parameters that need to
be tuned, and globally we need to decide how many iterations or how much time
we allocate to each of them to make the best use of each. The tuning has been
performed on the instance a 1 5.

The first step of GeNePi is Ge (based on GRASP), which has only one value
to tune: α, the factor leading to more randomised greedy search (bigger α) or
local search (smaller α). We conducted a thorough evaluation of the impact of
different values of α from 0.05 to 0.95 (repeated 10 times). The best value of α
seems to be 0.6 regardless to the number of iterations. For Ne (i.e., NSGA-II),
we combined 9 possible values {0.1, 0.2, . . . , 0.9} for Pc and Pm, obtaining 81
different variations of the parameters (we again run 10 times each combination).
We realise that Pc values between 0.6 and 0.8 give better results, while the
impact of Pm seems less important (values of Pm between 0.1 and 0.3 giving
slightly better results though). We then decided to use Pc = 0.6 and Pm = 0.2.
Pi has only one parameter that we can tune here: the number of zones (boxes)
that it can explore. This number of zones has an impact on the quality of the
Pareto frontier, and hence on the hypervolume. A small number of zones means
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less neighbourhood probing, but also less redundancy and execution time, while
more zones allow to analyse more neighbourhoods (and to find more solutions)
but there is a cost in redundancy and execution time. 10 seems to us a good
trade-off between probing a large search area and reducing the execution time.
Table 2 summaries the tuned parameters for each part of GeNePi.

GeNePi aims at providing decision makers with an important set of good
solutions, covering the solutions space, and in a reasonable time. These two
ideas (quality and time) seem to be incompatible, but they just force to consider
time in a different way. In particular, Ne/NSGA-II needs to have a set of good
initial solutions, and then we have to make sure Ge/GRASP has enough time.
It appeared from tests that served to define α that a number of iterations from
100 to 500 lead to practically the same hypervolume. This is why; we picked 100
as the number of iteration for Ge. The good number of iterations for Ne/NSGA-
II is much trickier to find as it depends greatly on the quality of the initial
population. It seems, experimentally, that 100 iterations with a population size
of 50 give good results, so this is what we use for Ne/NSGA-II. Pi/PLS is the
most time consuming part, we use it only for one iteration in order to get a
smooth Pareto.

Table 2. Parameters for the different steps of GeNePi after a tuning study

Ge (1st step - GRASP) Ne (2nd step - NSGA-II) Pi (3rd step - PLS)

α 0.6 Probability of crossover 0.7 # zones (# boxes) 10

|Λ| 4 Probability of mutation 0.3 # iterations 1

# iterations 100 Size of population 50
# iterations 100

4.5 Results

Table 3 shows that GeNePi outperforms notably all the other algorithms, both in
terms of number of solutions (5.84 times more solutions found than the second
best on average) and hypervolume (106% better on average). We notice that
solutions from the first fit family have acceptable results only for some instances
(a 1 1, a 1 5 and a 2 1). In general those algorithms favour the reassignment of
the processes, with the side effect that more transient resources are consumed
and more anti-cohabitation and dependency constraints are violated. That is why
they perform better with instances that have larger transient resource capacities
and a ratio between the number of processes and services close to one – this
corresponds exactly to the three instances mentioned above. The same behaviour
is observed for GRASP, which tends to reassign processes instead of keeping
them on their initial assignment, as a decision is made based on a basic draw
among several relevant machines for every process, based on a utility function.
Hence the probability of choosing the initial assignment is low and GRASP
tries a lot of solutions that end up being infeasible. NSGA-II, being dependent
on the quality of the initial population, performs badly – although we give a
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Table 3. Summary of solutions found and hypervolume (in brackets) for the various
algorithms and the various instances. For both metrics, the higher the better. We put
in bold the best values for each instance.

RF FF BB GRASP Ge NSGA PLS GeNePi

a 1 1 4(2.6) 10(2.95) 87(3.73) 20(2.73) 42(3.6) 14(2.8) 10(2.4) 193(3.95)

a 1 2 1(7.49) 1(7.49) 1(7.49) 1(7.49) 26(8.47) 1(7.49) 2(7.49) 133(9.14)

a 1 3 1(4.17) 1(4.17) 1(4.17) 1(4.17) 19(4.27) 1(4.17) 2(4.17) 62(4.32)

a 1 4 1(9.72) 1(9.72) 1(9.72) 1(9.72) 40(11.1) 1(9.72) 2(9.72) 187(12.2)

a 1 5 4(2.51) 10(2.51) 2(2.45) 14(2.59) 49(2.74) 16(2.57) 32(2.52) 66(2.78)

a 2 1 33(4.86) 41(4.95) 1(4.57) 69(5.41) 57(5.43) 71(5.46) 4(4.61) 227(5.68)

a 2 2 1(1.33) 1(1.33) 1(1.33) 1(1.33) 22(1.55) 1(1.33) 2(1.33) 171(1.76)

a 2 3 1(2.02) 1(2.02) 1(2.02) 1(2.02) 30(2.36) 1(2.02) 67(2.04) 250(2.67)

a 2 4 1(6.42) 1(6.42) 1(6.42) 1(6.42) 28(7.62) 1(6.42) 2(6.42) 374(8.63)

a 2 5 1(9.91) 1(9.91) 1(9.91) 1(9.91) 28(10.3) 1(9.91) 2(9.91) 245(11)

b 1 1(8.2) 1(8.2) 1(8.2) 1(8.2) 27(8.34) 1(8.2) 39(8.34) 207(8.49)

b 2 1(1.43) 1(1.43) 1(1.43) 1(1.43) 23(1.48) 1(1.43) 2(1.43) 300(1.53)

b 3 1(6.25) 1(6.25) 1(6.25) 1(6.25) 20(6.27) 1(6.25) 108(6.27) 162(6.3)

b 4 1(3.65) 1(3.65) 1(3.65) 1(3.65) 22(3.67) 1(3.65) 3(3.67) 118(3.7)

partial result of GRASP to help it at the start. This is a major (but well known)
drawback for this algorithm, especially for our scenario for which NSGA-II is
clearly not fitted. The results for PLS are contrasting as they can be good in
terms of quantity (better than Ge at times) but are poor in terms of quality –
hypervolume values for PLS are always among the lowest. This comes from the
fact that PLS searches for possible solutions locally, and may find some, but they
are similar to the original ones and do not increase the diversity of the solutions
set. For a multi-objective problem like ours, PLS is then not fitted either. Ge, the
first step of GeNePi gets a good hypervolume but not an outstanding number
of solutions. This was expected as it is only an improvement of GRASP which
itself suffers from a lack of solutions. GeNePi is by far the best algorithm, and
we explain it by the composition of elements: Ge (i.e., modified GRASP) finds a
large number of solutions, allowing NSGA-II (the second step to operate properly
and finding new solutions that compromise all the objectives, while PLS, the last
step, increase the number of solutions around the previously found ones.

Table 1 shows that GeNePi works in a short time for the easy and medium
instances, and in a reasonable time (for our scenario) for the bigger ones. The 17
hours of running GeNePi for the biggest instance we consider (b 4) are totally
justified if this can save money, increase the reliability and do not put the data
centre at risk by performing too many migrations. Especially as GeNePi can give
118 solutions for this instance, i.e., 118 options for the operators to make the most
informed decision. To give the reader a sense of what happens during GeNePi
and specially the impact of the three phases, we plot the improvement curve
of the instance a 1 5 (see Figure 2). Each point corresponds to one or several
new non-dominated solutions found (with the timestamp of this new solution in
x-axis and the new hypervolume of the solution set in y-axis). We can see that
GRASP finds solutions quickly (9 s.) and the rise in the hypervolume signifies
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Fig. 2. Improvement curve of GeNePi on the instance a 1 5. Each point is a new
solution (or a set of new solutions).

that they are distributed in the search space (which is good). GRASP continues
after the first 9 s. and finds new solutions, but we notice a quasi-stagnation of the
hypervolume after 46 s. NSGA-II finds group of solutions, each group improving
significantly the hypervolume: they correspond to a new search areas in the space
discovered by the first solution of the group and improved by the others. PLS
takes more time than the other steps, but it finds some new solutions and bring
a little improvement in terms of hypervolume.

5 Conclusion

Reassigning processes to servers automatically is complex (lot of dimensions and
constraints), large scale for most of the real instances (data centres are usually big
computing facilities) and needs to consider different objectives. In this paper we
define the multi-objective machine reassignment problem and propose an hybrid
solution using successively three optimisation steps: GeNePi. Multi-objective
approaches are good when the set of possible solutions is large and extracting
the ‘best solution’ is difficult. In this case, the system needs to be assisted by
decision makers who can evaluate the different solutions with respect to their
value in the different dimensions of the problem. Here, we defined the machine
reassignment in the three dimensional space defined by: (i) reliability of the
assignment, (ii) migration cost of the assignment, and (iii) energy consumption.
Our solution, GeNePi, is based on three optimisations algorithms: Ge, a variant
of the constructive phase of GRASP, which aims at finding an initial population
with solutions representing every objective; Ne, based on a genetic algorithm
called NSGA-II that mixes solutions of the initial population and tries to find
new solutions (and more diverse ones); and Pi a local search that looks for more
solutions in the neighbourhood of those that GeNePi has already found. We
showed in a large experimental validation that GeNePi outperforms other state-
of-the-art solutions: it finds 5.84 times more good (non-dominated) solutions
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that are scattered over more of the search space (hypervolume is 106% better) –
which is desirable as we want to offer decision makers a large variety of different
solutions. There are two things that we would like to explore more in some future
work: electricity consumption which will need to incorporate more parameters
(such as cooling of data centres) and SLAs.
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10/CE/I1855 to Lero - the Irish Software Engineering Research Centre
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Hybrids of Integer Programming and ACO

for Resource Constrained Job Scheduling

Dhananjay Thiruvady, Gaurav Singh, and Andreas T. Ernst

CSIRO, Australia

Abstract. A recent line of research considers hybrids of Lagrangian re-
laxation and Ant Colony Optimisation (ACO). Studies have shown that
for hard constrained optimisation problems Lagrangian relaxation can
effectively guide ACO to provide good feasible solutions. We consider
applying these ideas to create a matheuristic combining ACO with de-
composition approaches from mathematical programming for a resource
constrained job scheduling problem. We are given a number of jobs which
have to be executed on a number of machines satisfying several con-
straints. These include precedences and release times within machines
and the machines are linked via a central resource constraint. By re-
moving the linking constraint, the each machine’s scheduling problem
can be solved independently as a relatively simple subproblem. Both
Danzig-Wolfe decomposition with column generation and Lagrangian re-
laxation are tried to carry out this decomposition. The relaxed solutions
can provide useful guidance to determine solutions either via problem
specific heuristics and ACO. Empirical results show that the Lagrangian
relaxation matheuristic performs well in limited time-frames whereas the
column generation based heuristic provides improved lower and upper
bounds when run to convergence.

1 Introduction

We consider a problem motivated by an application in mining supply chains.
Minerals from various mining sites have to be transferred by rail or road to
ports and the resources available on these modes of transport such rail wagons
and trucks are limited and have to be shared. This is due to the remote locations
of the mines where limited infrastructure is available.

This problem can be formulated as resource constrained job scheduling (RCJS)
problem. The transport of minerals can be viewed as jobs which must be exe-
cuted on machines or mines. Each job requires some amount of the available
resource and the cumulative resource requirements of jobs executing at the same
time must not exceed the available resource. In some cases, certain materials
may have to arrive at the ports before others which amount to enforcing prece-
dences between jobs. Furthermore, certain materials have to arrive at the ports
by specific times imposing due times on the jobs. If these due times are not
satisfied, ships at the ports waiting for the materials may have to pay significant
demurrage costs. Thus, the objective of this problem is to minimise the total
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weighted tardiness. This problem has been previously considered in [17], where
a Lagrangian relaxation heuristic is developed for this problem. A variant of the
problem with hard deadlines is considered in [22], where it is shown that a hy-
brid constraint programming and ant colony optimisation approach is effective
for this problem.

A similar class of problems with shared resources is project scheduling1, with
an extensive literature (eg [1,8,9,16]). Branch & bound and heuristic/local search
approaches are investigated in [8]. Demeulemeester & Herroelen (2002) [9] also
consider a variety of project scheduling problems and discuss exact approaches
and meta-heuristics such as simulated annealing and genetic algorithms. Neu-
mann et al. (2003) [16] consider a variant with time windows and also investigate
various exact and heuristic approaches. Ballestin & Trautmann (2008) [1] inves-
tigate a project scheduling problem similar to the RCJS where the objective
is to minimise the deviation from the completion times across all tasks. They
show that a population-based iterated local search is effective on this problem.
Regarding the objective, some studies have also considered total weighted tar-
diness [18,19]. These two studies consider similar problems but assume that
the data is decentralised. They use an agent-based approach to determine good
schedules in the presence of minimal information sharing.

Two popular methods within the mixed integer programming community are
lagrangian relaxation (LR) [24,12] and column generation (CG) [3,2,24]. In this
paper we are particularly interested in Danzig-Wolfe decomposition based col-
umn generation approaches. Here a restricted master problem is used to deter-
mine dual prices which then feed into the costs for one or more subproblems.
Hence LR and CG can be viewed as closely related: underlying both of these
methods is the idea of relaxing a number of complicating constraints, determin-
ing appropriate penalties for violating these constraints and building feasible
solutions by using the relaxed solution as guidance. the main distinction is that
in LR there is no master-problem, instead sub-gradient optimisation [5] is used
to determine appropriate lagrangian or dual values. For the RCJS problem dis-
cussed above, LR is already proven [17] though not in combination with ACO.
To the authors’ knowledge CG has not previously been applied to this problem.

Meta-heuristics provide an alternative to deal with scheduling and combina-
torial optimisation problems [6]. Within this class of algorithms, ACO has been
demonstrated to work well on a range of problems [10,11]. It is based on the for-
aging behaviour of real ants when they go in search of food. On the paths they
use to the food sources, the ants deposit a chemical (pheromone) which provide
guidance on how good the food sources were. In the future, when other ants go
out looking for food, they make use of the amount of pheromone to determine
which paths to take. The paths with more pheromones receive more ants, who
will in turn, deposit more pheromones. This feedback loop results in favouring
better paths and eventually the colony converges to one of the best paths.

In the context of the RCJS problem, we consider hybrids of LR and ACO and
CG and ACO. Meta-heuristics like ACO, often struggle when dealing with hard

1 See [8] for an overview of the variants of project scheduling problems.
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constraints but are very good at exploring search spaces whereas LR and CG
provide a way of intelligently dealing with constraints or penalising violation.
Furthermore the methods are complementary in that ACO only provides heuris-
tic solutions (upper bounds) while LR & CG primarly provide lower bounds and
often don’t find good upper bounds without the use of additional techniques
(such as repair heuristics or branch and bound). Thus, by combining these ap-
proaches, we aim to determine good feasible solutions to the RCJS problem in a
reasonable time-frame while also getting some indication of solution quality via
lower bounds. Hybrids of LR and metaheuristics have already been explored [7].
Furthermore, LR and ACO hybrids have been applied to project scheduling [23]
and car sequencing [21]. CG and ACO combinations have also been explored
with vehicle routing [13,14].

The paper is organized as follows. The problem is formally described next in
Section 2. The following sections, Section 3, 5, 4 and 6, discuss the details of
all the methods implemented. This is followed by the experiments and results in
Section 7. The paper concludes with Section 8.

2 Problem Specification

Formally, the RCJS problem can be defined as follows. We are given a number
of jobs J = {1, . . . , n} to be processed on machines M = {1, . . . , l}. Each job
i has a release time ri, processing time pi, due time di, weight wi, resource
requirement gi and a machine mi. A job must execute on the machine it is
assigned to and a machine may only execute one job at a time. Jobs assigned to
the same machine may have precedences between them: for two jobs i, j ∈ J ,
if i precedes j (i → j), then j may start only after i completes. The total
amount of resource consumed by all jobs executing concurrently on the set of
machines is limited to G. While we could treat time as being continuous and
with an infinte horizon, it is convenient for the presentation here to consider
discrete time with a finite horizon. In particular if all of the processing times
and relase times are integer then only integer times need to be considered and
we can easily compute a heuristic bound on the maximum completion time of
any optimal schedule (eg D = maxj∈J rj +

∑
j∈J pj). Hence we define the set

of time intervals T = {0, . . . , D}.
The ACO component makes use of a sequence or permutation π of jobs. From

π a feasible schedule S(π) may be obtained by assigning each job i in the order
of the permutation the first start time si such that all of the constraints are
satisfied. To be feasible we require that: si ≥ ri, sj ≥ si + pi if i → j. Further,
let Pt be the set of jobs either starting at time t or being processed at time t:

Pt = {j|sj ≤ t < sj + pj , j ∈ J }. (1)

Now S(π) is considered resource feasible if at any time t the amount of resource
consumed by jobs across all machines does not exceed the capacity G:∑

j∈Pt

gj ≤ G ∀t. (2)
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The objective is to minimize the total weighted-tardiness of a resource feasible
schedule S(π)

f(S(π)) =
n∑

i=1

wi × Ti(si) (3)

where Ti(si) is the tardiness of the job i and can be defined as max(si+pi−di, 0).
In many of the optimisation methods presented in this paper we make use of

Algorithm 1 to create a resource feasible schedule. In this algorithm jobs may not
be scheduled in the order in which they appear in the sequence (ie it is possible
that sπi+1 < sπi). This is because a subsequent job on a different machine may
be able to run earlier if it requires less resource. Also for any problem an optimal
solution can be constructed using Algorithm 1 using some sequence π∗. In fact
if we knew an optimal schedule s∗ we could construct such a sequence π∗ by
sorting jobs in order of their start times s∗j and Algorithm 1 would return a set
of start times with sj ≤ s∗j .

Algorithm 1. Schedule a Sequence of Jobs

Require: A RCJS instance and a permutation of the jobs π
Ensure: A resource feasible schedule S(π) defined by job start times sj ∀ j ∈ J
1: for all i < j do
2: if πj → πi then modify π by inserting πi in position j + 1
3: end for
4: Rt := G ∀ t ∈ T
5: for i = 1, . . . , n do
6: tmin := max

{
rπi ,max

{
sπj + pπj | j < i ∧mπi = mπj

}}

7: sπi := min
{
t ≥ tmin | Rt+k ≥ gπi ∀ 0 ≤ k < pπi

}

8: Rt := Rt − gπi ∀ t = sπi , . . . , sπi + pπi − 1
9: end for
10: return S(π) = {s1, . . . , sn}

3 An Integer Programming Formulation

The problem can be formulated as an integer linear program (ILP) as follows.
Let zjt be a binary variable which is 1 iff job j ∈ J is completed by time t or
earlier.

min
∑
j∈J

∑
t∈T

cjt (zjt − zj,t−1) (4)

s.t.
∑

j∈Jm

zj,t+pj − zjt ≤ 1 ∀ t ∈ T , ∀ m ∈ M (5)

zjt ≥ zj,t−1 ∀ j ∈ J, ∀ t > 0 (6)

zjT = 1 ∀ j ∈ J (7)

zj,t−pk
≥ zkt ∀ j → k, ∀ t ∈ T (8)
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zj,t = 0 ∀ t ∈ 0, . . . , rj + pj − 1, ∀ j ∈ J (9)∑
j∈J

gj (zj,t+pj − zjt) ≤ G ∀ t ∈ T (10)

zjt ∈ {0, 1}∀ t ∈ T

where cjt = wj max{t − dj , 0}, ∀j ∈ J, ∀ t ∈ T . Equation (4) is the objective.
Equation (5) requires that only one job on a machine is processed at one time.
Equation (6) requires that a job stays completed once it has been finished.
Equation (7) requires that all jobs are completed and Equation (8) specifies the
constraints for the precedences. Equations (9) enforces the release times and
finally, Equation (10) is the resource constraint across all machines.

4 Column Generation

Danzig-Wolfe decomposition can be used to reformulate the above problem in
a way that separates the scheduling subproblem for each machine. Instead of
the original z variables we define xmc if machine m ∈ M uses schedule c. In
principle we would need to enumerate all of the possible schedules c (or at least
all extreme points of the polyhedron associated with the scheduling problem
for machine m). However in practice it is sufficient to simply use a pool of such
schedules or columns which is iteratively updated. This gives rise to a Restricted
Master Problem (RMP) and a set of column generation or pricing subproblems
for each machine (see [24]). Let Cm be the set of schedules for machine m,
C = �mCm then:

Problem RMP(C)

min
∑

m∈M

∑
c∈Cm

fmc xmc (11)

s.t.
∑
c∈Cm

xic = 1 ∀ m ∈ M (12)

∑
m∈M

∑
c∈Cm

smct · xmc ≤ G ∀t ∈ T (13)

xmc ∈ {0, 1} ∀ m ∈ M, c ∈ Cm

where fmc is the weighted tardiness cost of schedule c on machine m. The first
constraint ensures only one schedule per machine is selected. Constraint (13) is
the maximum resource constraint and smct is the amount of resource used by the
cth solution in the mth machine at time point t. In order to solve this problem
exactly we would need to employ branch-and-price [2]. However here we are only
interested in getting heuristic solutions so we solve the continuous relaxation of
RMP (ie 0 ≤ xmc ≤ 1) and then use the dual prices λt of constraints (13) to
generate new columns. The pricing problem for generating new schedules for
each machine m is:
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Algorithm 2. CG for RCJS

Require: An RCJS instance
1: πbs := null (best solution)
2: initialize λ0

t = 0,∀t ∈ T
3: γ := 2.0, k := 0, gap := ∞, UB∗ := ∞, LB∗ := 0
4: C = generateCols()
5: while γ > 0.01 & UB∗−LB∗

UB∗ > 0.01 & sf > 0.01 do
6: for all m ∈ M do
7: Solve SPm(λ) to obtain Lm(λ) and a new column cm
8: Cm := C ∪ {cm}
9: end for
10: LB∗ := max{LB∗, L(λ)}
11: π :=GenerateSequence(c1, . . . , c|M|)
12: ImproveUB(π)
13: UpdateBest(πbs,π,γ)
14: UB∗ := f(πbs)
15: Solve RMP(C) to obtain objective MLB
16: sf := MLB−LB∗

MLB

17: λ := UpdateDual(λ)
18: end while
19: return πbs

Problem SPm(λ)

Lm(λ) = min
z

∑
j∈Jm

∑
t>0

(
cjt +

min{pj ,t}∑
i=1

λt−i gj

)
(zjt − zj,t−1) (14)

subject to (5)-(8).

This problem is still not trivial to solve but due to its smaller size and simpler
structure compared to the original problem, it can usually be optimised using
a commercial MILP solver in a relatively short amount of time. Note that for
any λ ≥ 0 a lower bound for problem may be calculated using the lagrangian
function:

L(λ) =
∑

m∈M
Lm(λ)− G

∑
t∈T

λt (15)

The Column Generation (CG) algorithm is presented in Algorithm 2. In line 4
a number of feasible columns are generated. This essentially involves determining
the start times for tasks on each machine such that a resource feasible solution
may be found. This will ensure the RMP may at least generate one solution to
begin with. Within the main loop (line 5) the column generation procedure is
executed. First the sub-problems for each machine are solved resulting in the
lower bound L(λ). If new columns are found for any machine they are added to
the pool of solutions (line 8). We can also generate a permutation of the jobs
π by sorting them in the order of the start times produced by the subproblems
(line 11).
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The sequence π can be used to generate a feasible solution (see Algorithm 1)
and this sequence is improved using an ACO heuristic as described in Section 6.

At Line 15 the LP relaxation of the master problem RMP is solved. We could
now update the dual values simply by using the optimal dual values λ∗

t of LP
solution. However this tends to be fairly unstable. Here we update λ using

λt := 0.5λ∗
t + 0.5 λ̂t ∀ t ∈ T (16)

where λ̂t are the dual prices that resulted in the highest lower bound at Line 10.
This linear combination allows for stabilisation2 of the dual prices and serves a
similar purpose as bundle methods [4].

The objective value of RMP (C) is an upper bound on the original lower
bound. This is used to compute the stability factor sf in Line 16. A low sta-
bility factor implies that the lower bound has reached its limit and thus the
algorithm can terminate. Alternatively we could continue until no new columns
with negative reduced cost are generated in the pricing subproblems

5 Lagrangian Relaxation

A related decomposition method to Danzig-Wolfe decomposition is Lagrangian
relaxation. By relaxing the resource constraints (9) using Lagrangian multipliers
λt ≥ 0, ∀t ∈ T , we obtain the lagrangian function L(λ) provided in (15). This
again results in the same subproblems as we have seen in the column generation
approach. However instead of solving a restricted master problem we attempt
to solve the Lagrangian optimisation problem

max
λ≥0

L(λ) (17)

As this is a non-smooth optimisation problem, subgradient optimisation is com-
monly used to search for a good value of λ.

5.1 The Lagrangian Heuristic

A Lagrangian heuristic can be defined as shown in Algorithm 3. This algorithm
is based loosely on previous work on Lagrangian relaxation for the RCJS in
[17] but differs in the use of ACO to obtain better solutions as well as some of
the details of the implementation. After initialising the multipliers and various
parameters, the main loop starts at line 4 and executes for 1000 iterations or
while the gap and γ are above a threshold.

The relaxed problem is solved in line 5 and we extract both the objective
function Lm(λ) and schedule z(λ). After all machine subproblems are solved,
a complete set of start times are available, but possibly violating the resource
constraint. In order to determine a feasible solution from these start times a

2 We found that this simple linear combination is effective. However, more complex
stabilisation schemes may be attempted [15], also including bundle methods [4].
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Algorithm 3. LR for RCJS

Require: A RCJS instance
1: πbs := null (best solution)
2: initialize λ0

t = 0,∀ t ∈ {1, . . . , D}
3: γ := 2.0, k := 0, UB∗ := ∞, LB∗ := 0, i := 0
4: while γ > 0.01 & UB∗−LB∗

UB∗ > 0.01 & i < 1000 do
5: for all m ∈ M do Solve SPm(λ) to obtain Lm(λi) and z(λi)
6: LB∗ := min

{
LB∗,

∑
m LRR(λi)m − G

∑
t λ

i
t

}

7: π := GenerateSequence(z(λi))
8: ImproveUB(π)
9: UpdateBest(πbs,π,γ)
10: UB∗ := f(πbs)
11: λi+1 := UpdateMult(λi, LB∗, UB∗, z(λi), γ)
12: i := i+ 1
13: end while
14: return πbs

repair heuristic is used as before. That is we apply first Algorithm 1 to the
sequence of jobs sorted by start times in the subproblems. Then ImproveUB(π)
uses ACO (see Section 6) to improve this sequence.

UpdateBest(πbs,π,γ) does two things: πbs := π and γ = min{1.3γ, 2.0} if
f(π) < f(πbs), and γ := 0.95γ otherwise. The next procedure is UpdateMult(λi,
LB∗, UB∗, x, γ) which makes use of subgradient optimisation [5] to update the
Lagrangian multipliers t ∈ T :

λi+1
t = max

{
0, λi

t +
γ(UB∗ − LB∗)∑

t̂∈T Δ2
t̂

Δt

}
(18)

where Δt = (1.0 − φ)Δ̂t + φ(G −
∑

j∈J gj(zt,t+pj − ztj)). Δ̂ are the best set of
multipliers known, for further details we refer the reader to [17].

6 Ant Colony Optimisation

The ACO algorithm used in the hybrid matheuristic is based on the implemen-
tation of ACO for the RCJS discussed in [20]. For the sake of completeness we
provide the details here. The variant of ACO used here is sometimes referred to
as ant colony system (ACS) [11] and is presented in Algorithm 4. The phero-
mones τij represent the desirability of picking job j in position i, i.e., πi = j.

A complete sequence of jobs is obtained by incrementally adding jobs to π
(ConstructSequence()). The selection of a job is done in one of two ways. A
random number q ∈ (0, 1] is generated and compared to a pre-defined parameter
q0. If q < q0, a deterministic selection is used to pick job k for variable i according
to

k = argmax
j∈J

τij (19)
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Algorithm 4. ACO for RCJS

Require: A RCJS instance, T , initial solution πbs

Ensure: Updated solution πbs that is at least as good as the input solution.
1: while termination conditions not satisfied do
2: S := ∅
3: for j = 1 to nants do πj := ConstructSequence()
4: πib := argminj=1,...,nants

f(πj)

5: πib := Improve(πib)
6: πbs := Update(πib)
7: T := PheromoneUpdate(πbs)
8: end while
9: return πbs

Otherwise, a probabilistic selection is used

P (πi = k) =
τik∑
j∈J τij

(20)

The solutions are built in Line 3 and then the iteration best (πib) is im-
proved with local search (πib := Improve(πib)).3 The best solution found so far
πbs is updated in line 6 if πib is an improvement. This is followed by an up-
date to the pheromone trails based on the solution components in πbs (T :=
PheromoneUpdate(πbs)) using the following formula:

τij = τij · (1.0− ρ) + δ (21)

where δ = Q/f(πbs), and the reward Q is selected such that 0.01 ≤ δ ≤ 0.1 .
The evaporation rate ρ = 0.1 was determined from [22].

6.1 Variants of CG/LR and ACO Hybrids

There are two different ways of integrating ACO with the CG or LR algorithms.
As we have described so far, the ACO algorithm can perform a few iterations
to try to improve the best upper bound in each main iteration of the CG or
LR algorithm. That is ACO is run as part of ImproveUB(π) in Algorithm 2 or
Algorithm 3. This has the advantage that if the ACO finds new solutions these
can be used by the mathprogramming methods. For the CG method the ACO
provides additional columns to be used in the RMP problem. Hence for CG
the ACO provides a way of heuristically expanding and diversifying the set of
columns. For LR the feedback is less immediate, though having better upper
bounds can improve the step-size calculation in Equation (18). The downside
of this approach is that the ACO can consume a non-trivial amount of com-
putational time and spend much of this time looking at solutions far from the
optimum. We refer to this integrated version as CG-ACO and LR-ACO.

3 See [22] for beta-sampling which is used as the improvement method here.
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An alternative is to run the ACO for a longer time but only after the main loop
of the mathprogramming algorithm has finished. This second type of hybrid will
be referred to as CG+ACO and LR+ACO respectively. In order to learn from
the effort during the main mathprogramming loop and to warm-start the ACO,
a partial converged pheromone matrix is maintained through the CG or LR run.
The pheromones are intialised: τtj = 1.0 ∀ t ∈ T and j ∈ J . After every LR or
CG sub-problem solve, the repaired solution π produced by GenerateSequence is
determined and corresponding to its solution components, the pheromones are
updated ∀i, j ∈ π: τij ← τij + 1.0. Over a number of iterations, this scheme
essentially favours the relaxed solutions seen so far. This scheme also requires
relatively few ACO iterations since the pheromone matrix has converged. Similar
ideas have been tried on other combinatorial optimisation problems in [23,21]
though only in the context of Lagrangian relaxation

7 Experiments and Results

Problem instances from [17]4 were considered for the experiments, with the same
subset used as in [20]. Additionally, a number of larger instances were generated
with up to 200 jobs to determine how the algorithms scale with larger problem
sizes. CG and LR were the two base algorithms considered here using either in-
terleaved (CG-ACO, LR-ACO) or sequential (CG+ACO, LR+ACO) integration
with ACO.

Thirty runs per instances were conducted on two Xeon X7350 machines at
2.93GHz with 65 GB of shared memory. The machines consist of 4 quad-core
CPUs allowing 16 parallel threads. The sub-problems were solved with CPLEX
12.5. For the implementation reported here only multiple threads were only used
within the CPLEX library to solve the SP (λ) subproblems.

The parameters for the ACO component were set according to [20] and the
LR and CG parameters were determined from [17] and through tuning by hand.
na was set to 10 as the number of solutions to construct per iteration of ACO.
The learning rate was selected to be relatively high, ρ = 0.1 and q0 = 0.9
was chosen to favour high deterministic selection. For the hybrids, 500 ACO
iterations were chosen for LR-ACO and CG-ACO as means to find improvements
quickly and also since there will be multiple ACOs that are run over the course
of the algorithm’s execution. For LR+ACO and CG+ACO, a larger number
of ACO iterations are conducted (5000) since ACO is run only once for these
implementations.

Two sets of experiments were conducted. In the first experiment, each algo-
rithm was given a time limit of 3 hours based on CPU cycles. In the second
experiment, all the algorithms were run for 100 iterations to allow them to con-
verge substantially.

4 Data available from http://dx.doi.org/10.4225/08/506B728AB6308

http://dx.doi.org/10.4225/08/506B728AB6308
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7.1 Results

Table 1 shows results for all algorithms for 3 hours of CPU time. Overall, we
see that ACO provides advantages for the small and medium size problems
up to 12 machines. For these problems, we also see that CG-ACO is nearly
always better than the other two CG-based algorithms. This shows that the
additional columns provided by ACO to CG assist with convergence. Beyond
12 machines, the LR-based algorithms are more effective with all CG-based
algorithms being outperformed. On close investigation we find that the number
of iterations conducted by both algorithms is very different with the CG-based
algorithms completing only about half the iterations compared to the LR-based
algorithms for the large instances. For example, for the instance 20-2, CG does 15
iterations compared to LR which completes 31 iterations within the 3 hour CPU
time limit. This is a large difference which accounts for the poor performance of
the CG-based algorithms for the large instances.

Given that the sub-problems in LR or CG are similar, we would expect both
implementations to carry out a similar number of iterations in the same time-
frame. It is possible that there may be a difference of one or two iterations in
favour of LR since CG solves the master problem. However, the differences seen
are much greater and we determined two reasons for observing this effect. Firstly,
the range on dual prices associated with CG are much larger than LR. This makes
the CG subproblem slower to solve. Secondly, most of the Lagrangian multipliers,
at least in the early iterations, are nearly all zero whereas the the dual prices
are often positive-valued. This also leads to slower sub-problem solving time for
CG.

Considering the upper bounds, we see that ACO clearly provides improve-
ments throughout whether it is combined with LR or CG for up to 15 machines.
This is not surprising since ACO is designed to improve the upper bounds.
However, the CG and ACO hybrids are the most effective across all the in-
stances. This implies that the dual prices provide more useful information than
the Lagrangian multipliers when converting the relaxed solutions to their feasi-
ble counterparts. Beyond 12 machines, LR performs best which is attributable
to the larger number of sub-problems solved by this method.

Considering the lower bounds, CG, CG-ACO and LR are all effective. In
theory all of these methods should produce similar lower bounds with minor
differences due to time spent on the ACO component for example. Hence, dif-
ferences are purely due to the rate of convergence for the different approaches.
Overall, CG-ACO is the most effective up to 12 machines, beyond which LR is
more effective. Clearly, the additional columns provided by ACO assist CG to
even generate improved lower bounds. Thus for CG, ACO proves advantages in
two different ways. As mentioned earlier, there are very few iterations conducted
with CG for instances with 15 machines and hence, LR is significantly better
here. The LR and ACO hybrids are not as effective since the ACO component
does not provide any feedback via the multipliers.
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Comparison by Iterations. The results above show that given a limited
amount of CPU time, one of the LR and ACO hybrids is the best option. This is
especially true for the larger instances. However, we often see that the CG-based
algorithms do not converge in the given time-frame. Thus, we compare the al-
gorithms on how they perform over 100 iterations and we only consider large
instances (≥ 10 machines). Note, the CG-based algorithms take significantly
longer to complete the 100 iterations for these instances.

Table 2 compares the lower and upper bounds for 100 iterations and a subset
of the instances. We first focus on the upper bounds. Apart from the first two
instances with 10 machines, the CG-based algorithms provide the best upper
bounds. This result shows that when CG is given sufficient time it can assist in
providing better guidance with and without ACO compared to LR. Examining
ACO’s influence, we see that using it nearly always provide advantages to both
LR and CG.

Table 2 also shows a comparison of the lower bounds for 100 iterations. Again,
apart from a small number of instances (10-13,10-31,11-56 and 11-63), CG is
always superior. The effect of ACO here is not as significant, especially with
LR, compared to the upper bounds’ result. This is not surprising since ACO is
designed to improve the upper bounds and does not have a significant influence
on the LR algorithms. However, with CG we see that although the lower bounds
are always similar, CG-ACO does provide improvements on occasion (e.g. 12-36,
20-6). This can be attributed to the additional columns that ACO provide to
CG to help it converge more quickly.

Table 2. Results of CG, CG-ACO, LR and LR-ACO on large instances for 100 itera-
tions. The results are the % to the best upper bound (UB*) found in these 4 runs.

CG CG-ACO LR LR-ACO

Instance UB* LB UB LB UB LB UB LB UB

10-7 2655.33 0.794 0.016 0.794 0.002 0.793 0.041 0.794 0.000
10-13 2301.41 0.798 0.010 0.798 0.002 0.798 0.039 0.797 0.000
10-31 652.79 0.744 0.000 0.744 0.000 0.742 0.067 0.740 0.049
11-21 1066.3 0.791 0.031 0.791 0.000 0.788 0.054 0.784 0.047
11-56 1839.05 0.812 0.007 0.812 0.000 0.812 0.056 0.811 0.021
11-63 2091.68 0.819 0.012 0.819 0.000 0.820 0.021 0.818 0.022
12-14 1838.08 0.793 0.001 0.793 0.000 0.788 0.024 0.787 0.016
12-36 2961.7 0.841 0.000 0.842 0.004 0.840 0.035 0.839 0.034
12-80 2463.02 0.807 0.010 0.806 0.000 0.807 0.015 0.806 0.009
15-2 3832.04 0.865 0.000 0.864 0.006 0.862 0.006 0.863 0.024
15-3 4272.93 0.852 0.000 0.852 0.013 0.850 0.028 0.850 0.031
15-5 3494.9 0.842 0.000 0.842 0.001 0.840 0.026 0.840 0.013
20-2 8179.02 0.886 0.002 0.886 0.000 0.883 0.001 0.884 0.008
20-5 13701.8 0.873 0.002 0.873 0.000 0.872 0.003 0.872 0.005
20-6 7182.62 0.894 0.000 0.894 0.013 0.892 0.032 0.892 0.032
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8 Conclusion

This study considers integer programming based heuristics combining column
geneation (CG) and Lagrangian relaxation (LR) with Ant Colony Optimisation
(ACO) for a resource constrained job scheduling problem. We see that such a
hybrid of decomposition-based methods provide a useful way to provide good
feasible solutions to the problem and furthermore provide a guarantee on the
quality of these solutions. As such, the results here show that CG or LR com-
bined with ACO can be effective where a problem can be relaxed and there is a
reasonable way to repair the solutions.

We find that in a limited amount of CPU time LR-based algorithms are the
most effective. However, if the algorithms are allowed to run for a large number
of iterations, the CG-based algorithms are preferred. ACO provides assistance
with the upper bounds for both CG and LR. It also provides some assistance
with the lower bounds in CG. Thus, if the main aim is to provide a solutions with
good bounds, CG-ACO is the preferred option whereas if run time is the main
constraint, LR-ACO provides a useful way to generate good solutions quickly.

There is still room for improvement in these results. The gaps are often still
quite large (smallest gap for 10 or more machines is 12%) suggesting improve-
ments are possible with the lower and upper bounds. The lower bounds are
clearly good, however, there is still the possibility to improve them for the largest
instances. We are considering introducing additional cuts (e.g. knapsack cuts
which disallow jobs from executing at the same time) which may help improve
the bounds or convergence. Clearly, the upper bounds can also still be improved
and the guidance provided by the improved formulation.

Since these algorithms require large run-times, investigating parallel imple-
mentations would be beneficial. There are two obvious ways in which a parallel
implementation could work. Firstly, each sub-problem could be run in parallel
and secondly, the ants could be constructed in parallel. Solving the sub-problems
in parallel are likely to be most effective since the main run-time overheads are
incurred here. Thus, a parallel implementation could significantly reduce the
run-time in providing the same quality solutions.
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Abstract. The minimum common string partition problem is an NP-
hard combinatorial optimization problem with applications in compu-
tational biology. In this work we propose an iterative probabilistic tree
search algorithm for tackling this problem. By means of an extensive ex-
perimental evaluation we show the superiority of our approach in com-
parison to a standard greedy algorithm and a metaheuristic based on ant
colony optimization from the related literature.

1 Introduction

Optimization problems related to strings—such as, for example, DNA sequences—
are very common in bioinformatics. Examples include the longest common sub-
sequence problem and its variants [13,21], string consensus problems such as the
far-from most string problem [19,18], and alignment problems [11]. Many of these
problems are computationally very difficult, if not evenNP -hard. In this work we
deal with the minimum common string partition (MCSP) problem. In this prob-
lem, we are given two related input strings which must both be partitioned into
the same collection of substrings. The size of the collection is subject to minimiza-
tion. Note that a formal description of the problem will be provided in Section 1.1.
Chen et al. [2] point out, for example, that the MCSP problem is closely related
to the problem of sorting by reversals with duplicates, a key problem in genome
rearrangement.

In this paper we introduce an iterative, probabilistic variant of a known greedy
heuristic for the MCSP problem. The construction of solutions in this algorithm
is similar to the solution construction phase of a greedy randomized adaptive
search procedure (GRASP) [7]. Therefore, the algorithm belongs to the class
of metaheuristics. The proposed algorithm also makes use of parallel solution
constructions in the search tree defined by the given problem instances and the
solution construction mechanism. This means that algorithm combines algorith-
mic components of metaheuristics with those ones of complete search. Therefore,
the algorithm can be seen as a so-called hybrid metaheuristic [1]. The obtained
results show that the performance of the proposed algorithm outperforms the
current state of the art.

M.J. Blesa, C. Blum, and S. Voß (Eds.): HM 2014, LNCS 8457, pp. 145–154, 2014.
c© Springer International Publishing Switzerland 2014
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1.1 Problem Description

The MCSP problem can technically be stated as follows. Given are two related
input strings, s1 and s2, of length n over a finite alphabet Σ. In this context,
note that two strings are called related if each letter appears the same number of
times in each of the two strings. This definition implies that s1 and s2 have the
same length. A valid solution to the problem is obtained by partitioning s1 into
a set P1 of non-overlapping substrings, and s2 into a set P2 of non-overlapping
substrings, such that P1 = P2. Moreover, we are interested in finding a valid
solution such that |P1| = |P2| is minimal.

Consider the following example. Given are DNA sequences s1 = AGACTG
and s2 = ACTAGG. Obviously, s1 and s2 are related because A and G appear
twice in both input strings, while C and T appear once. A trivial valid solution
can be obtained by partitioning both strings into substrings of length 1, that is,
P1 = P2 = {A,A,G,G,C,T}. The objective function value of this solution is
6. However, the optimal solution, with objective function value 3, is P1 = P2 =
{ACT,AG,G}.

1.2 Related Work

The MCSP problem has been introduced by Chen et al. [2] due to its relation to
genome rearrangement. More specifically, it has applications in biological ques-
tions such as: May a given DNA string possibly be obtained by rearrangements of
another DNA string? The general problem has been shown to be NP -hard even
in very restrictive cases [9]. Other papers concerning problem hardness consider,
for example, the k-MCSP problem, which is the version of the MCSP problem
in which each letter occurs at most k times in each input string. The 2-MCSP
problem was shown to be APX-hard in [9]. When the input strings are over
an alphabet of size c, the corresponding problem is denoted as MCSPc. Jiang
et al. proved that the decision version of the MCSPc problem is NP -complete
when c ≥ 2 [14].

The MCSP has been considered quite extensively by researchers dealing with
the approximability of the problem. Cormode and Muthukrishnan [4], for exam-
ple, proposed an O(lognlog∗n)-approximation for the edit distance with moves
problem, which is a more general case of the MCSP problem. Shapira and
Storer [20] extended on this result. Other approximation approaches for the
MCSP problem have been proposed in [17]. In this context, Chrobak et al. [3]
studied a simple greedy approach for the MCSP problem, showing that the ap-
proximation ratio concerning the 2-MCSP problem is 3, and for the 4-MCSP
problem the approximation ratio is Ω(log(n)). In the case of the general MCSP
problem, the approximation ratio is between Ω(n0.43) and O(n0.67), assuming
that the input strings use an alphabet of size O(log(n)). Later Kaplan and
Shafir [15] raised the lower bound to Ω(n0.46). Kolman proposed a modified ver-
sion of the simple greedy algorithm with an approximation ratio of O(k2) for the
k-MCSP [16]. Recently, Goldstein and Lewenstein proposed a greedy algorithm
for the MCSP problem that runs in O(n) time (see [10]). He [12] introduced a
greedy algorithm with the aim of obtaining better average results.
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Damaschke [5] was the first one to study the fixed-parameter tractability
(FPT) of the problem. Later, Jiang et al. [14] showed that both the k-MCSP and
MCSPc problems admit FPT algorithms when k and c are constant parameters.
Finally, Fu et al. [8] proposed a O(2nnO(1)) time algorithm for the general case
and an O(n(logn)2) time algorithm applicable under some constraints.

To our knowledge, the only metaheuristic algorithm which has been proposed
in the related literature for the MCSP problem is the MAX -MIN Ant System
by Ferdous and Sohel [6]. The authors applied their algorithm to a range of
artificial and real DNA.

1.3 Organization of the Paper

The remainder of this work is organized as follows. Section 2 provides a descrip-
tion of the proposed algorithm. Furthermore, Section 3 presents a detailed study
of the performance of the proposed algorithm in comparison to the state of the
art. Finally, in Section 4 we provide conclusions and an outlook to future work.

2 Proposed Algorithm

In the following the proposed algorithm is described. However, before the main
algorithm can be described, it is necessary to introduce a number of definitions.

2.1 Preliminaries

Henceforth, a common block b of input strings s1 and s2 is denoted as a triple
(tb, ib, jb) where tb is a string which can be found starting at position 1 ≤ ib ≤ n
in string s1 and starting at position 1 ≤ jb ≤ n in string s2. Moreover, let B be
the set of all possible common blocks of s1 and s2. Then, a valid solution S to
the MCSP problem is a subset of B such that:

1.
∑

b∈S |tb| = n, that is, the sum of the length of the common blocks is equal
to the length of the input strings

2. For any two common blocks b, b′ ∈ S it holds that they neither overlap in s1
nor in s2

Moreover, a valid partial solutionSpartial is a subset ofB such that
∑

b∈Spartial
|tb| <

n and for any two common blocks b, b′ ∈ Spartial it holds that they neither over-
lap in s1 nor in s2. Note that any valid partial solution can be extended to be a
valid solution. Furthermore, given a partial solution Spartial, set B(Spartial) ⊂ B
denotes the set of common blocks that may be used in order to extend Spartial such
that the result is again a valid partial solution. Finally, Bmax(Spartial) ⊆ B(Spartial)
is the subset of B(Spartial) which contains the common blocks of maximal size.
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2.2 Main Algorithm

The proposed algorithm is sketched in Algorithm 1. Apart from the two input
strings s1 and s2, the algorithm requires the setting of three paramters: (1) bsize,
henceforth referred to as beam size; (2) drate, henceforth called the determinism
rate; and (3) lsize, the so-called candidate list size.

While the CPU time limit is not reached, the algorithm repeats the following
procedure over and over again. The set of current partial solutions, P , is initial-
ized with an empty partial solution. Then, while the size of the current set of par-
tial solutions does not surpass bsize, the algorithm iteratively extends all partial
solutions from P deterministically with all common blocks from Bmax(Spartial).
Remember that this set contains all common blocks from B(Spartial) of maximal
length. Once this stage of the algorithm ends, the algorithm completes each of
the partial solutions Spartial from P in the following way. It each step, a random
value δ ∈ [0, 1] is chosen. If this value is smaller or equal than drate, the de-
terminism rate, a deterministic construction step is performed by selecting the
longest common block (b∗) from B(Spartial) and adding b∗ to Spartial. Otherwise,
a probabilistic construction step is performed by, first, selecting a subset L of
B(Spartial) of (at most) size lsize that contains the longest common blocks from
B(Spartial). Spartial is then extended by a common block randomly chosen from
L. The output of the algorithm consists in the best complete solution that was
generated by the algorithm within the allowed CPU time.

3 Experimental Evaluation

TreeSearch was implemented in ANSI C++ using GCC 4.7.3 for compiling the
software. The experimental results that we outline in the following were obtained
on a cluster of PCs with ”Intel(R) Xeon(R) CPU 5130” CPUs of 4 nuclii of 2000
MHz and 4 Gigabyte of RAM. In the following we first describe the benchmark
set that we used for the experimental evaluation. After the description of the
algorithm tuning, the numerical results are presented.

3.1 Problem Instances

Each problem instance consists of two related input strings. For testing the al-
gorithm we chose the same set of benchmark instances that was used by Ferdous
and Sohel in [6] for the experimental evaluation of their ant colony optimization
approach. This set contains, in total, 30 artificial instances and 15 real-life in-
stances consisting of DNA sequences. Moreover, the benchmark set consists of
four subsets of instances. The first subset (henceforth labelled Group1) consists
of 10 artificial instances in which the input strings are maximally of length 200.
The second set (Group2) consists of 10 artificial instances with input string
lengths between 201 and 400. In the third set (Group3) the input strings of the
10 artificial instances have lengths between 401 and 600. Finally, the fourth set
(Real) consists of 15 real-life instances of various lengths.
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Algorithm 1. Iterative probabilistic treesearch (TreeSearch) for the MSCP
problem

1: input: s1, s2, bsize, drate, lsize
2: Sbsf := null

3: while CPU time limit not reached do
4: Spartial := ∅
5: P := {Spartial}
6: while |P| < bsize and not P = ∅ do
7: Pnew := ∅
8: for all Spartial ∈ P do
9: for all b ∈ Bmax(Spartial) do
10: S′

partial := Spartial ∪ {b}
11: if S′

partial is a complete solution then
12: if |S′

partial| < |Sbsf| then Sbsf := S′
partial end if

13: else
14: Pnew := Pnew ∪ {S′

partial}
15: end if
16: end for
17: end for
18: P := Pnew

19: end while
20: for all Spartial ∈ P do
21: while Spartial is not a complete solution do
22: Choose a random value δ ∈ [0, 1]
23: if δ ≤ drate then
24: Choose b∗ such that |tb∗ | ≥ |tb| for all b ∈ B(Spartial)
25: Spartial := Spartial ∪ {b∗}
26: else
27: Let L ⊆ B(Spartial) contain the (at most) lsize longest common blocks

from B(Spartial)
28: Choose randomly b∗ from L
29: Spartial := Spartial ∪ {b∗}
30: end if
31: end while
32: if |Spartial| < |Sbsf| then Sbsf := Spartial end if
33: end for
34: end while
35: output: Sbsf (the best solution found)
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Fig. 1. Graphical presentation of the tuning results. See the text for an analysis of the
graphics.

3.2 Algorithm Tuning

The three algorithm parameters—that is, bsize, drate and lsize, as described in
Section 2.2—were considered for parameter tuning. More specifically, for bsize
we considered values from {1, 50, 200}, for drate values from {0.0, 0.5, 0.9}, and
for lsize from {3, 5, 10}. This results in a total of 27 different parameter value
combinations. For each of these 27 settings, the algorithm was applied—with a
run time limit of 1000 CPU seconds—exactly once to the first and to the last
problem instance of each of the four instance groups.

The following procedure was applied for displaying the results. First, we sepa-
rated the results into two sets. The first set contains the results of all parameter
settings with bsize = 1, which is the setting that does not make use of the parallel
construction of solutions (lines 6–19 of Algorithm 1). The second set contains
the rest of the results. Then, within each set the results are ranked concerning
each of the eight considered problem instances. And finally, an average rank is
computed for each parameter combination. These average ranks are shown (for
both sets of results) in Figure 1. Additionally, the color of a grid cell indicates
the quality of the corresponding parameter setting. In general, the darker the
color the lower the quality of the corresponding parameter setting. The displayed
graphic contains three grids. In each of the grids the x-axis represents the three
values for drate (the determinism rate), while the y-axis represents the three val-
ues for lsize (the candidate list size). The grid on the left presents the average
ranks of all parameter settings with bsize = 1, while the other two grids present
the average ranks of the parameter settings with bsize = 50 (grid in the middle),
respectively bsize = 200 (grid on the right).

The following conclusions can be drawn from the results. First, the quality of
the results seems to improve with a growing determinism rate (drate). Second,
the candidate list size (lsize) should be rather small. In summary, the best-ranked
parameter setting when bsize = 1 is (drate = 0.9, lsize = 3), and the best-ranked
parameter setting when bsize > 1 is (bsize = 200, drate = 0.9, lsize = 3). In fact, these
are the parameter values that we selected for the final experimental evaluation.
Henceforth we refer to the algorithm using the former set of parameters—that
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Table 1. Results for the 10 instances of Group1

# of instance Greedy Aco TreeSearch1 TreeSearch2

value average best average (std.) time best average (std.) time

1 46 42.75 42 42.50 (0.53) 197.36 42 42.30 (0.48) 285.63
2 56 51.50 48 48.90 (0.32) 175.95 49 49.00 (0.00) 91.96
3 62 56.75 56 56.00 (0.00) 253.47 56 56.00 (0.00) 123.97
4 46 43.00 43 43.00 (0.00) 52.34 43 43.00 (0.00) 88.72
5 44 43.00 41 41.00 (0.00) 124.53 41 41.00 (0.00) 30.48
6 48 42.25 41 41.10 (0.32) 278.28 41 41.70 (0.48) 221.10
7 65 60.00 60 60.80 (0.42) 106.12 61 61.00 (0.00) 21.34
8 51 47.00 45 45.30 (0.48) 389.73 45 45.30 (0.48) 369.13
9 46 45.75 43 43.00 (0.00) 247.70 43 43.00 (0.00) 166.10

10 63 59.25 58 58.80 (0.42) 218.88 59 59.00 (0.00) 76.57

is, the ones for bsize = 1—with TreeSearch1, and to the algorithm using the
latter set of parameters with TreeSearch2.

3.3 Numerical Results

Both TreeSearch1 and TreeSearch2 were applied with a run time limit of
1000 CPU seconds to all 45 problem instances. 10 repetitions were performed
for each instance. The numerical results are presented in Tables 1–4. The layout
of all four tables is as follows. The first column provides the instance number.
The second column contains the results of the greedy algorithm from [3] (results
were taken from [6]). The third column provides the results (averaged over four
independent runs) of the MAX -MIN Ant System (henceforth simply labelled
Aco) by Ferdous and Sohel [6]. Concerning Aco, each run was performed with a
CPU time limit of 2 hours on a computer with an ”Intel(R) 2 Quad” CPU with
2.33 GHz and 4 GB of RAM. Note that in the case of Table 4 we also provide
the values of the best solutions found by Aco which were obtained by personal
communication with the authors of [6]. Finally, the results of TreeSearch1

and TreeSearch2 are presented in three columns for each algorithm version.
The first of these four columns provides the value of the best solution found
in 10 independent runs. The second column provides the average solution qual-
ity obtained together with the corresponding standard deviation (in brackets).
The third column gives the average time at which the best solution of a run
was found. Finally, note that for each problem instance the result of the best-
performing algorithm (concering the average solution quality) is marked with a
grey background.

The following conclusions can be drawn from the results. First, both version
of TreeSearch outperform, in general, both Greedy and Aco. Concerning
the average solution quality, TreeSearch1 outperforms Aco in 39 out of 45
cases, while TreeSearch2 outperforms Aco in 41 out of 45 cases. Based on
the numerical results shown in Tables 1–4 we computed the average percent-
age improvement of the TreeSearch versions over Aco, averaged over the
four instance groups. These numbers can be seen in Table 5. In all cases, the
improvements are between two and three percent.
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Table 2. Results for the 10 instances of Group2

# of instance Greedy Aco TreeSearch1 TreeSearch2

value average best average (std.) time best average (std.) time

1 119 114.25 112 112.80 (0.42) 236.02 111 112.10 (0.74) 270.48
2 122 119.00 114 115.60 (0.70) 471.67 115 115.60 (0.52) 466.58
3 114 112.25 107 108.30 (0.67) 207.00 107 107.60 (0.52) 501.57
4 116 116.25 111 112.40 (0.70) 291.36 111 112.40 (0.70) 206.16
5 135 132.25 127 128.70 (1.16) 373.68 128 129.50 (0.85) 379.25
6 108 105.50 103 103.60 (0.52) 353.94 102 103.20 (0.63) 229.14
7 108 99.00 96 96.90 (0.32) 327.40 96 96.70 (0.67) 318.24
8 123 118.00 115 115.10 (0.32) 369.12 114 115.30 (0.67) 305.54
9 124 119.50 114 114.80 (0.63) 235.29 113 114.50 (0.97) 281.77

10 105 101.75 98 98.60 (0.52) 162.48 98 98.70 (0.48) 308.61

Table 3. Results for the 10 instances of Group3

# of instance Greedy Aco TreeSearch1 TreeSearch2

value average best average (std.) time best average (std.) time

1 182 180.00 171 172.90 (1.20) 196.92 171 172.90 (0.88) 434.40
2 175 176.25 168 170.80 (1.23) 390.75 170 170.70 (0.48) 396.32
3 196 188.00 185 186.30 (0.67) 361.04 186 186.80 (0.63) 446.02
4 192 184.25 179 181.00 (0.94) 335.72 179 180.50 (0.85) 423.51
5 176 171.75 164 165.00 (0.47) 399.88 163 164.70 (0.82) 437.65
6 170 163.25 163 164.40 (0.70) 427.94 162 164.40 (0.97) 506.95
7 173 168.50 161 162.40 (0.84) 488.96 161 162.60 (0.84) 474.20
8 185 176.25 172 172.40 (0.52) 316.08 169 171.90 (1.37) 376.09
9 174 172.75 170 170.60 (0.52) 365.62 169 170.40 (0.84) 368.80

10 171 167.25 161 162.50 (0.85) 346.42 161 162.30 (0.82) 483.19

Table 4. Results for the 15 instances of set Real

# of instance Greedy Aco TreeSearch1 TreeSearch2

value best average best average (std.) time best average (std.) time

1 95 87 87.75 87 87.80 (0.42) 314.42 86 87.30 (0.67) 332.09
2 161 155 158.50 154 154.50 (0.53) 384.93 155 155.50 (0.53) 424.61
3 121 116 116.50 113 113.80 (0.63) 268.66 113 113.80 (0.63) 430.52
4 173 164 164.75 159 160.60 (0.84) 360.61 158 160.30 (1.16) 436.76
5 172 171 171.75 166 167.80 (1.03) 521.06 165 167.60 (1.07) 375.17
6 153 145 146.00 144 144.90 (0.80) 212.69 143 144.10 (0.74) 365.66
7 140 140 140.75 131 133.00 (0.94) 425.30 131 132.50 (0.71) 286.02
8 134 130 131.00 128 128.70 (0.48) 414.49 128 128.90 (0.57) 482.46
9 149 146 148.50 142 142.60 (0.52) 314.78 142 142.70 (0.67) 330.21

10 151 148 149.00 144 145.30 (0.82) 465.11 145 145.60 (0.52) 274.35
11 126 124 124.50 121 121.60 (0.52) 464.24 121 121.70 (0.48) 331.92
12 143 137 138.25 138 139.00 (0.82) 360.15 138 139.40 (0.70) 256.56
13 180 180 181.00 171 173.20 (1.14) 417.10 172 173.20 (0.92) 455.36
14 152 147 147.75 147 147.80 (0.63) 367.72 146 147.30 (0.67) 465.47
15 157 160 161.25 152 153.20 (0.92) 313.26 152 153.10 (0.57) 389.08

Concerning a comparison between TreeSearch1 and TreeSearch2, no
significant difference can be observed. However, it is clearly the case that some
problem instances are more easily solved by TreeSearch1—see, for example,
instance 5 of Group2 or instance 2 of Real—while other problem instances
should better be solved by TreeSearch2, such as, for example, instance 1 of
Group2 or instance 6 of Real. However, the results do not permit to make
general claims in this context.



Iterative Probabilistic Tree Search for the MCSP Problem 153

Table 5. Average percentage improvement of the TreeSearch variants over Aco per
instance group

Algorithm version Group1 Group2 Group3 Real

TreeSearch1 2.34% 2.71% 2.28% 2.34%
TreeSearch2 2.16% 2.82% 2.35% 2.39%

4 Conclusions and Future Work

In this work we introduced an iterative probabilistic tree search algorithm for
the so-called minimum common string partition problem. The tackled problem,
which has applications in computational biology, is an NP -hard combinatorial
optimization problem. The proposed algorithm can be seen as a hybrid technique,
due to the fact that it combines elements from metaheuristic search methods
with algorithmic components originating from complete search. Two different
versions of the algorithm were tested. In comparison with a recently proposed
ant colony optimization approach from the literature, our algorithms have proved
to be very competitive, outperforming the ant colony optimization approach in
39 (respectively 41) out of 45 cases.

Future work will deal with the use of bounding information within tree search
for obtaining a better guidance of the search process. We also plan to invest some
time into the development of complete methods in order to generate optimal
solutions.
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Abstract. In this paper we study a version of the Multidimensional
Arrangement Problem (MAP) that embeds a graph into a multidimen-
sional array minimizing the aggregated (Manhattan) distance of the em-
bedded edges. This problem includes the minimum Linear Arrangement
Problem (minLA) as a special case, among others. We propose JAM,
a tabu-based two-stage simulated annealing heuristic for this problem.
Our algorithm relies on existing techniques for the minimum linear ar-
rangement (minLA) problem, which are non-trivially adapted to work
in multiple dimensions. Due to the scarcity of specific benchmarks for
MAP, we have tested the performance of our algorithm with benchmarks
for the minLA and Quadratic Assignment Problems (with more than 80
graphs). For each graph in these benchmarks, we provide results for 1, 2
and 3-dimensional instances of MAP, enlarging, hence, the benchmark-
ing resources for the research community. The results obtained show the
practicality of JAM, often matching the best known result and even im-
proving some of them.

Keywords: Multidimensional Arrangement Problem, Minimum Linear
Arrangement Problem, Quadratic Assignment Problem, Simulated An-
nealing, Tabu Search.

1 Introduction

Assignment and arrangement problems have been extensively studied for decades.
The most classical and well known application of these problems is the assign-
ment of n facilities to m locations in order to minimize or maximize a certain
magnitude, such as cost, flow, etc. In this work, we deal with one of these ar-
rangement problems, the Multidimensional Arrangement Problem (MAP), which
was firstly studied by Hansen [12]. MAP covers a great number of applications,
such as graph drawing or job scheduling (in 1 dimension), the backboard wiring
problem or the arrangement of electronic components in printed circuits (in 2
dimensions), and placing servers in the racks of a data center (in 3 dimensions).
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In this paper we focus on the MAP problem, which embeds a graph into a mul-
tidimensional arrayminimizing the aggregatedManhattan distance. To solve this
problem, we propose a hybrid simulated annealing heuristic, non-trivially adapt-
ing techniques used for the Minimum Linear Arrangement Problem (minLA, the
one-dimensional version of MAP) to work in multiple dimensions.

1.1 Problem Definition

Given a graph G = (V,E) and a host D-dimensional array H(V ′, E′) such that
|V ′| ≥ |V |, we can define the Multidimensional Arrangement Problem as
the embedding of G into H , i.e., a mapping of the edges of G to paths in H , such
that the aggregated length of the paths in H is minimized. As we will usually
work with weighted graphs, the goal is to minimize the weighted sum of the path
lengths. Formally, the cost of an embedding ϕ : V → V ′ is defined as

C(ϕ) =
∑

(u,v)∈E

wuv · dist (ϕ(u), ϕ(v)) , (1)

where wuv is the weight of edge (u, v) and dist (ϕ(u), ϕ(v)) is the Manhattan
distance (the path length) between the images of u and v in the host graph H .

The particular case of D = 1 is a well known problem, called the minimum
linear arrangement (minLA). In this problem, the objective is to embed a
graph onto a one dimensional array. As minLA is known to be NP-complete and
MAP has minLA as a special case, it can be concluded that MAP is NP-hard.

1.2 Related Work

The Quadratic Assignment Problem, which is a more general problem than MAP,
is an NP-hard problem [31] which has been creating interest during more than
50 years [16]. The QAP objective function can be mathematically formulated as
follows

n∑
i=1

n∑
j=1

fij · dist(π(i)π(j)) +
∑
i,π(i)

b(i, π(i)),

where fij is the flow between facilities i and j, π(·) is the location at which a
facility has been assigned, dist(x, y) denotes the distance between two locations
x and y, and b(i, x) is the initial allocation cost of facility i to location x. Many
well-known problems, like the traveling salesman problem (TSP), minLA, and
MAP, are special cases of QAP.

Some exact algorithms have been developed to solve the QAP problem. How-
ever, they are only capable to solve small instances due to the enormous compu-
tation capacity required. The largest instances solved optimally surpassed just
recently the 100 locations frontier [9], but most of the latest works still work
with instances of 30-40 locations [9][26]. These algorithms typically use branch
and bound, branch and cut, or dynamic programming.
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Approximate methods have also been developed to tackle the QAP problem.
We classify them in heuristics and metaheuristics. Starting with heuristics, most
of the ones that have been developed can be grouped in constructive, enumera-
tion, and improvement methods. We can find some examples of heuristics applied
to the QAP problem in [20,25,11].

Despite of the richness in heuristics, metaheuristics have been attracting most
of the attention lately. Most of the metaheuristics applied to the QAP problem
can be included in one of the following families: genetic algorithms (GA) [22,8],
simulated annealing (SA) [4,38], ant colony optimization (ACO) [32], tabu search
(TS) [23,24,33,13], breakout local search (BLS) [2], greedy randomized adaptive
search procedures (GRASP) [17], variable neighborhood search (VNS) [39], or
hybrid combinations of them [10,34]. Given that QAP is more general than MAP,
it is possible to adapt many of these techniques to obtain solutions also for MAP.

Simulated annealing (SA) is a local search based metaheuristic, introduced
by Kirkpatrick et al. [15] in 1983. It was inspired in the metallurgical process
of annealing, and used to solve combinatorial optimization problems. An SA
algorithm is usually described by the following elements: initial solution, neigh-
borhood function, cooling rate, number of iterations per temperature, and stop
criteria or final temperature. In a nutshell, SA applied to MAP starts from an
initial solution ϕ0; and then, in each iteration, a candidate neighboring solution
ϕl is chosen, based on a cost-based neighborhood function. Once ϕl is chosen
it is compared against the current solution (ϕ∗) and, depending on whether
δ = C(ϕl) − C(ϕ∗) is larger than 0 or not, ϕl is accepted as the new current
solution ϕ∗ or tested with an acceptance function. This function depends on
the current temperature and is based on the Metropolis criterion [19], that will
finally accept ϕl as the new ϕ∗ or refuse it. If a new solution is chosen and
it is better than the best-so-far solution ϕbest, it becomes the new ϕbest. After
running a given number of iterations the system’s temperature is cooled down.
This process follows until a total number of iterations is run or a termination
criteria is met.

Observe that the acceptance function allows the heuristic to admit solutions
which are worse than the previous ones. This is generally known as climbing up
and helps to avoid that heuristics are trapped in a local optimum. Although the
mechanics of SA are not complicated, choosing the cooling rate, stop criteria,
and neighborhood function is not trivial.

Simulated annealing was one of the first techniques applied to the QAP prob-
lem (c.f., Burkard et al. [4], Wilhelm et al. [38]). We now describe some of the
main characteristics of some of the latest works using SA, alone or combined
with other techniques. We start with the work of Wang [36], who proposed in
2007 a tabu-based simulated annealing algorithm. In that work, a pure SA al-
gorithm was compared to a tabu-search SA, trying different tabu list sizes and
also trying different guided restart and reannealing strategies, enhancing the
ability to escape from local optima. In 2012, Wang [37] presented a new work
based also on simulated annealing, but trying different guided restart strategies.
In both works a local-search-based neighborhood function was used jointly with
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a geometrical cooling rate schedule (like Kirkpatrick et al. [15]), reheating the
algorithm when a restart takes place. In 2012, Jingwei et al. [14] presented a
new hybrid algorithm combining ant colonies and simulating annealing. Here,
simulated annealing was used to select the best ants in each iteration, while the
cooling schedule was also geometrical. In 2003, Misevičius [21] presented a very
detailed work comparing multiple previously proposed cooling schedules. With
this, he proposed an SA heuristic using a normal-local-search-based neighbor-
hood function, an inhomogeneus annealing cooling schedule without equilibrium
tests, like the one proposed by Connolly et al. in [7], and modified reannealing so
the cooling schedule oscillates depending on the behavior of the annealing. This
heuristic was completed by a post optimization stage based on Taillard’s robust
tabu search. This heuristic was even able to improve one of the QAPLIB [3]
instances.

Finally, Tello et al. [28], in 2008, presented a 2-stage simulated annealing
algorithm for the minLA problem. This work was able to improve multiple results
from the typical set of minLA benchmarks compiled by Petit [27]. Its main
contribution is to design a 2-stage SA algorithm, where the first stage obtains
an initial approximation through a frontal increase minimization algorithm, and
the second stage is devoted to improve this initial solution. They consider a
modified median-based neighborhood function in which the typical 2-exchange
strategy is conditioned by the nodes connected to a candidate-to-be-moved node.
They also consider different ways of establishing the initial temperature, based
on [35], and a different cooling schedule [1]. We will detail these aspects when
describing our algorithm in Section 2, as we adopted and adapted some of their
ideas for our MAP heuristic.

1.3 Contributions

In this work we present JAM, a tabu-based two-stage simulated annealing heuris-
tic for MAP. In JAM, we use a novel median-based neighborhood function and
we non-trivially adapt multiple techniques from the minLA literature to work
for multiple dimensions.

Due to the lack of benchmarks specific for theMAP problem, we test our heuris-
tic against minLA and QAP benchmarks, with weighted and unweighted graphs.
The minLA benchmark has a one-dimensional array as host graph, while the QAP
benchmarks have a 2-dimensional array as host graph. JAM obtains the optimal
or best known result in most of the problem instances. Although the benchmarks
used were originally for 1 or 2 dimensions, we present results for them for 1, 2 and
3 dimensions, broadening hence the available benchmarks for minLA and QAP
as well as creating a benchmark set for MAP. We also present 2 different results
for 2 dimensions. The first one is restricted to the case in which guest and host
graphs have the same size, i.e., where |V ′| = |V |. The second one is for a deploy-
ment which is more compact (square) and that allows having extra locations, i.e.,
where |V ′| ≥ |V |.
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RoadMap. The paper is organized as follows. In Section 2 we present our own
algorithm as well as a detailed description of its different elements. In Section 3
we present the numerical results obtained with our heuristic for multiple bench-
marks from the minLA and QAP literature and for which we provide results in
1, 2 and 3 dimensions. We close the paper by presenting some conclusions in
Section 4.

2 The Algorithm JAM

In this section we present JAM, a tabu based two-stage simulated annealing
algorithm applied to MAP. First, we introduce the notation used throughout
the rest of the paper, then provide an overview of JAM, and finally describe
each one of its elements.

2.1 Notation

Given a graph G = (V,E), V and E denote its sets of vertices and edges,
respectively. Each edge (i, j) ∈ E has an associated weight denoted by wij . We
denote by Au the set of nodes adjacent to node u in G.

The host graph H(V ′, E′) is a D-dimensional array. Recall that |V ′| ≥ |V |.
The nodes ofH are called locations. Each location l ∈ V ′ is defined by aD-vector
(l1, l2, . . . , lD), where li is the dimension i coordinate of location l. On the other
hand, di(X) is used to denote the dimension i coordinate of all elements of a set
X of locations.

In order to improve the cost C(ϕ) of an arrangement ϕ, JAM performs node
“movements.” By movement we refer to the action of “moving” node u from a
location l to a location l′, and “moving” the node v, if any, which is at location
l′ to l. Formally, this means transforming the arrangement ϕ into a new ϕ′ such
that ϕ′(x) = ϕ(x) for all x ∈ V \ {u, v}, ϕ′(u) = l′, and ϕ′(v) = l. There is only
a set of valid locations to which a node u can move (see Section 2.3 below), this
set is called its neighborhood and is denoted Nu.

2.2 Overview of JAM

A sketch of JAM is provided as pseudo code in Algorithm 1. JAM is a two-stage
heuristic whose first stage provides an initial solution based on the McAllister
heuristic [18]. This arrangement is also the initial best known solution. The cur-
rent solution and the best known solution are stored in ϕ∗ and ϕbest, respectively
(Lines 1 − 2). Then, the initial temperature T (0) (Line 3) for the SA is com-
puted. After that, the cooling down process starts, which will take place until
the termination criteria are met (Line 4). For every temperature T (k), JAM runs
a predefined number of iterations (Line 5), starting with T (0). In each iteration,
a node u to be moved is chosen uniformly at random (Line 6). Then, with prob-
ability pN , the set of locations L to which u may be moved is chosen to be the
neighborhood Nu (Line 7). Otherwise the only location that will be considered
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Algorithm 1. JAM Pseudo Code

1 ϕ∗ ← SetInitialSolution();
2 ϕbest ← ϕ∗;
3 k ← 0; T (k) ← SetInitialTemperature();
4 while the termination criteria do not hold do
5 for the predefined number of iterations at temperature T (k) do
6 Choose a node u uniformly at random;
7 with probability pN : set L ← Nu;
8 else set L ← {l}, where l is a location chosen uniformly at random

Discard all locations l ∈ L that would lead to a move in the tabu list;
9 Φ ← {ϕl : ϕl is the arrangement after moving u to l in ϕ∗, ∀l ∈ L};

10 ϕ′ ← argminϕ∈Φ{C(ϕ)};
11 if C(ϕ′) > C(ϕ∗) then
12 ϕ′ ← ϕ chosen from Φ with probability proportional to C(ϕ);
13 δ ← C(ϕ′)− C(ϕ∗);
14 with probability e−δ/T (k): ϕ∗ ← ϕ′; ϕbest ← argmin{C(ϕbest), C(ϕ∗)};
15 k ← k + 1; T (k) ← UpdateTemperature(T (k − 1));
16 GuidedRestart(ϕ∗, ϕbest);

is a randomly chosen one l (Line 8). Not explicitly shown in Algorithm 1, JAM
maintains a tabu list of movements that are not to be redone. Hence, all ele-
ments in L that lead to a move in this tabu list are discarded (Line 9). Now,
the arrangements Φ resulting of moving u to the remaining locations in L are
obtained (Line 10), and the arrangement ϕ′ with the lowest cost among them
is chosen (Line 11). If the cost of this ϕ′ is larger than the cost of the current
solution ϕ∗, ϕ′ is replaced by an arrangement chosen from Φ with probabilities
proportional to their respective costs (Line 12− 13). To complete the iteration,
the proposed ϕ′ is adopted with probability e−δ/T (k), which implies updating
ϕ∗ and, if corresponds, ϕbest (Line 15). (Observe that if δ < 0 then ϕ′ is always
adopted.) Once the given number of iterations for T (k) is reached, it is updated
(Line 16) and it is decided whether resetting ϕ∗ to ϕbest is needed (Line 17).

2.3 Elements of JAM

We now provide a detailed description of the elements mentioned above that
conform JAM.

First Stage: Initial Solution. McAllister heuristic [18] has been adapted
to multiple dimensions and used to obtain an initial solution. McAllister’s is a
greedy heuristic based on a frontal increase minimization strategy. It chooses a
starting node at random and maps it to some location. Then, it greedily maps
the rest of nodes. To do so, it maintains three sets of nodes U (Unplaced), P
(Placed) and F (Front, the set of placed nodes with at least one neighbor in set
U). The next node to be mapped is the one with the least neighbors in set U \F ,
so the front set is minimized.
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We implement McAllister’s heuristic with all the proposed refinements: a tie
breaking strategy, improved initial node selection and deferred node placement
(We refer the reader to [18] for further details). Then, we devised a multidimen-
sional allocation technique which maps the first node to location (0, 0, . . . , 0) in
the host graph, and then greedily decides which of the neighboring locations to
those of the already allocated nodes is the best position, in terms of cost, for the
next node.

Initial Temperature. We decided to initialize the temperature using the same
method as Tello et al. [28], which employs the technique proposed by Varanelli
and Cohoon [35]. This method approximates the simulated annealing tempera-
ture T (k) at which a solution ϕ∗ with cost C(ϕ∗) can be found as best solution.
Hence the initial temperature is given by1

T (0) ≈
∣∣∣∣ σ2

∞
C∞ − C(ϕ∗)− γ∞σ∞

∣∣∣∣ ,
where C∞ and σ∞ represent the expected cost and average deviation of the cost
over the solution space; C(ϕ∗) represents the cost of the initial solution and
γ∞ represents the difference between the expected cost C∞ and the best known
solution ϕbest at temperature T (k). γ∞ can be calculated probabilistically from
the number of iterations predefined at each temperature. We refer the reader to
[35] for further details.

Cooling Schedule. Our cooling schedule is based on the work from Aarts and
Korst [1]. They propose a statistical cooling schedule which depends on the
previous temperature, the average deviation of the solutions obtained with the
previous temperature σT (k−1), and a tuning parameter λ (such that for small
values of λ we obtain small temperature reductions). The cooling schedule is
given by the following equation:

T (k) = T (k − 1)

(
1 +

log (1 + λ)T (k − 1)

3σT (k−1)

)−1

.

Neighboring Solutions. In order to reduce the search space of locations to
which a certain node u can be moved, we define a median-based neighborhood
function. This function returns a set of neighbors Nu, which is the set of con-
tiguous locations that will be considered for the movement of u. Intuitively, we
choose the set Nu to be the locations that minimize the cost of the edges incident
in u assuming that only u changes its location (in this fictitious arrangement u
may share location with other nodes).

We describe now the process we use to obtain Nu. Let us assume that the
nodes adjacent to u in G are Au = {v1, v2, . . . , vn}, and that their respective
current location is lj = ϕ∗(vj), ∀j ∈ [1, n]. Let us fix one dimension i ∈ [1, D],

1 We use the absolute value of the expression, unlike in [35], to deal with some cases
that resulted in negative values.
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and let us sort the nodes in Au by the dimension i coordinate of their current
location, so that lj1i ≤ lj2i ≤ · · · ≤ ljni . Then, we compute the smallest m ∈ [1, n]
that satisfies

Δ(m) =

m∑
k=1

wuvjk −
n∑

k=m+1

wuvjk ≥ 0.

If Δ(m) = 0 then we define a range of values ri = [ljm , ljm+1). Otherwise, if
Δ(m) > 0 then we define the range as the singleton value ri = [ljm ].

After applying this method to each dimension separately we have ranges
r1, r2, . . . , rD. The D-polytope obtained by the combination of these ranges is
the set of locations in Nu. I.e., all locations l such that li ∈ ri, ∀i ∈ [1, D] belong
to Nu. In our implementation of JAM we extended Nu with all the locations
that are within distance 2 of the set described, just to increase the movement
options.

Evaluating Solutions. We defined the cost of an arrangement C(ϕ) in Eq. 1.
However, two different solutions might have the same cost. To consider these
cases, we use instead a cost function C′(ϕ) introduced in [29]. The authors
there proposed a refined method for estimating the cost of solutions in a minLA
problem which considers not only the cost derived from the paths in H but also
how the costs of these paths are distributed. The cost of an arrangement ϕ is
then given by

C′(ϕ) =
Θ∑

k=1

(
k +

n!

(n+ k)!

)
ek, (2)

where Θ =
∑D

i=1 di − 1 is the diameter of H and ek is the number of paths
of length k in H . Note that the second term of this formula is always smaller
than 1. Then, for solutions where the cost would be the same if we had only
considered the first term, the total cost will be smaller if the arrangement has
longer paths. A solution with a larger number of longer paths is preferred as it
would be, in principle, easier to improve.

Tabu Search (TS). In order to favor the exploration abilities of JAM we
incorporate TS. As we said, moving a node u from position l to position l′

implies moving the node v in position l′, if any, to position l. Our TS mechanism
will check that neither u nor v have been in locations l or l′, respectively, during
the last Ts moves, being Ts the size of our tabu list.

To control when a move is tabu we use a |V | × |V ′| matrix. Every time a
node is moved to a certain location, we store the iteration number at which that
move was done. If a proposed move has been done during the last Ts iterations,
it is discarded. There is one exception to this rule, the aspiration criterion. We
implemented the most common one: a move will be accepted, despite of being
tabu, when it leads to a smaller C′(ϕbest).
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Guided Restarts. We implement guided restarts in order to help the algorithm
to escape from some strong local minima. A restart consists in resetting ϕ∗ to
ϕbest. We decide if a restart is needed after finishing all the iterations at a certain
temperature. A restart occurs with probability

P (restart) = 1− e
(− |ϕ∗−ϕbest|

ϕbest

T(0)
T(k)

γ)
,

where T (0) and T (k) are the initial and current temperatures, and γ is a tuning
parameter that depends on the size of the graph.

Termination Criteria. We use two termination criteria. Our algorithm will
stop when (1) T (k) goes below a predefined temperature threshold Tth or when
(2) the percentage of accepted moves improving ϕ∗ while at temperature T (k)
goes below a second predefined threshold Pth. The values for these thresholds
depend on the size of the graph.

3 Evaluation of JAM

In this section we present the results obtained for a set of benchmark instances
ran in order to evaluate JAM’s performance. Ideally, we would have used a set of
instances for which we had results in multiple dimensions. However, due to non-
existence, to the best of our knowledge, of such a set of instances, we used graphs
belonging to benchmarks from the minLA and QAP literature. Our intention,
however, is two-fold. First, we want to create such a collection of instances so they
can be used in future MAP works as benchmark. Second, by running these graphs
in 1 and 2 dimensions, we are broadening the available number of instances and
results for both minLA and QAP benchmark collections.

JAM results for graphs from both collections of instances are presented in
Tables 2 and 3. We provide two different results for 2 dimensions. First, with
either |V ′| = |V | or the original configuration (for the case of QAPLIB instances).
Second, for a more compact layout allowing that |V ′| ≥ |V |. The BKV (Best
Known Value) and a δ (the difference between JAM’s result and the BKV in
percentage) are provided when a BKV is available. In particular, they are given
for 1 dimension results in Table 2 and for the first results in 2 dimensions in
Table 3. For the 3-dimensional host graphs we chose the number of nodes in
each dimension so that the number of empty locations is minimized. In these
tables R, C and D denote the number of nodes in the respective dimensions of
H (the letters come from rows, columns and depth).

Table 1. Parameters used depending on the number of edges of the graph

Parameter
# Edges

≤ 500 ≤ 1000 ≤ 5000 ≤ 10000 ≥ 10000

Iterations per Temperature 2 · 105 2 · 106 2.5 · 106 3 · 106 3.5 · 106
Tth 0.25 0.5 0.75
Pth 0.125 0.075 0.05
Restart Factor γ 0.3 0.5 1 1.5
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Table 2. Results for the minLA benchmark

Graph |V | |E| 1D 2D 3D
BKV δ Cost R C Cost R C Cost R C D Cost

bcspwr01 39 46 106 0% 106 3 13 57 5 8 51 2 4 5 50
bcspwr02 49 59 161 0% 161 7 7 72 - 2 5 5 66
bcspwr03 118 179 [588, 679] -2,50% 662 2 59 384 10 12 255 4 5 6 225
bcsstk01 48 176 1132 1,77% 1152 6 8 384 - 2 4 6 314
bcsstk02 66 2145 47916 -0,02% 47905 6 11 12155 8 9 11505 2 3 11 10945
bcsstk04 132 1758 [27569, 29804] 0,03% 29812 11 12 7126 - 3 4 11 5192
bcsstk05 153 1135 [9653, 11057] 0,02% 11059 9 17 11060 11 14 3508 2 7 11 2895
bcsstk22 110 254 - - 981 10 11 374 - 2 5 11 353
bintree10 1023 1022 3696 0% 3696 31 33 1231 32 32 1233 3 11 31 1098
c1y 828 1749 62230 0.33% 62436 23 36 5760 27 31 5752 6 6 23 3962
can 144 144 576 [2304, 3224] 0% 3224 12 12 1058 - 4 6 6 990
can 161 161 608 [5657, 6696] 0% 6696 7 23 1371 12 14 1253 4 6 7 1012
can 24 24 68 210 0% 210 4 6 98 - 2 3 4 98
can 61 61 248 1137 0% 1137 1 61 1137 7 9 485 3 3 7 425
can 62 62 78 [187, 212] -0,94% 210 2 31 130 7 9 90 3 3 7 84
can 73 73 152 [971, 1100] 0% 1100 1 73 1100 7 11 284 3 5 5 229
can 96 96 336 [2105, 2702] 0% 2702 8 12 600 9 11 599 4 4 6 525
curtis54 54 124 454 0% 454 6 9 194 7 8 191 3 3 6 179
dwt 162 162 510 [2032, 2431] 0,25% 2437 9 18 812 12 14 814 3 6 9 766
dwt 209 209 767 [5905, 6387] 20,78% 7714 11 19 1588 14 15 1653 5 6 7 1258
dwt 221 221 704 [3603, 3779] -0,13% 3774 13 17 1184 15 15 1176 5 5 9 1062
dwt 245 245 608 [3422, 3860] 4,53% 4035 7 35 1143 15 17 1054 5 7 7 920
dwt 59 59 104 289 0% 289 1 59 289 7 9 134 3 4 5 128
dwt 66 66 127 192 0% 192 6 11 164 8 9 163 2 3 11 159
dwt 72 72 75 167 0% 167 8 9 78 - 3 4 6 80
dwt 87 87 227 932 0% 932 3 29 448 8 11 384 2 4 11 334
fidap005 27 126 414 0% 414 5 6 250 - 3 3 3 242
fidapm05 1003 0% 1003 6 7 545 - 2 3 7 487
gd95c 62 144 506 0% 506 2 31 318 7 9 233 3 3 7 210
gd96b 111 193 1416 0% 1416 3 37 602 10 12 461 4 4 7 380
gd96c 65 125 519 0% 519 5 13 196 8 9 188 2 3 11 166
gd96d 180 228 2391 0% 2391 12 15 518 13 14 517 5 6 6 382
ibm32 32 90 485 0% 485 4 8 192 5 7 183 2 4 4 155
impcol b 59 281 [1810, 2076] 0% 2076 1 59 2076 7 9 713 3 4 5 588
lunda 147 1151 [10772, 11323] 0,03% 11326 7 21 2866 11 14 2802 3 7 7 2483
lundb 147 1147 [10712, 11187] 0,04% 11192 7 21 2836 11 14 2787 3 7 7 2452
mesh33x33 1089 2112 31729 3,03% 32693 33 33 2112 - 9 11 11 2764
nos4 100 247 1031 0% 1031 10 10 424 - 4 5 5 367
pores 1 30 103 383 0% 383 5 6 167 - 2 3 5 147
RandomA1 1000 4974 866968 3,00% 892986 25 40 57855 29 35 57436 10 10 10 26757
RandomA2 1000 24738 6522206 0,44% 6550805 25 40 427480 29 35 415460 10 10 10 196135
steam3 80 424 1416 0% 1416 8 10 946 - 4 4 5 842
tub100 100 148 246 0% 246 10 10 158 - 4 5 5 152
will57 57 127 335 0% 335 3 19 218 7 9 187 2 5 6 180

We provide results for 81 different graphs. We ran JAM a minimum of 5 times
per instance, for the sake of statistical significance. We used different configu-
rations that depended on the number of edges of the graph. In particular, the
parameters being changed were the predefined number of iterations per tempera-
ture, Tth, Pth and γ. The values used can be found in Table 1. Other parameters
used during the experiments which fixed for all the graph instances were the
probability pN , fixed at a 0.9; λ, which was fixed to 0.1; and Ts, which was fixed
to 2 · |V |.

Numerical results. There are three types of best known values (BKV) that
can be found in Tables 2 and 3. The first ones are optimal results (in boldface);
the second ones are values computed by heuristics and, hence, we do not know
whether they are optimal or not. Finally we have instances for which only upper
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Table 3. Results for the QAPlib benchmark

Graph |V | |E| 1D 2D 3D
Cost R C BKV δ Cost R C Cost R C D Cost

nug12 12 45 1000 3 4 578 0% 578 - 2 2 3 524
nug14 14 68 1866 3 5 1014 0% 1014 - 2 2 4 920
nug15 15 75 2186 3 5 1150 0% 1150 - 2 2 4 1030
nug16a 16 93 3050 4 5 1610 0% 1550 4 4 1550 2 2 4 1398
nug16b 16 84 2400 4 4 1240 0% 1240 4 4 1240 2 2 4 1130
nug17 17 101 3388 4 5 1732 0% 1672 3 6 1672 2 3 3 1466
nug18 18 113 3986 4 5 1930 0% 1900 3 6 1900 2 3 3 1646
nug20 20 141 5642 4 5 2570 0% 2570 - 2 2 5 2352
nug21 21 137 5084 3 7 2438 0% 2438 4 6 2270 2 3 4 1988
nug22 22 153 6184 2 11 3596 0% 3596 4 6 2742 2 3 4 2344
nug24 24 185 8270 4 6 3488 0% 3488 - 2 3 4 2938
nug25 25 200 9236 5 5 3744 0% 3744 - 3 3 3 3100
nug27 27 233 11768 3 9 5234 0% 5234 5 6 4612 3 3 3 3802
nug28 28 251 13090 4 7 5166 0% 5166 5 6 4988 2 3 5 4302
nug30 30 293 16502 5 6 6124 0% 6124 - 2 3 5 5240
scr12 12 28 42776 3 4 31410 0% 31410 - 2 2 3 30490
scr15 15 42 80862 4 4 51140 0% 51140 - 2 2 4 49968
scr20 20 62 183270 5 4 110030 0% 110030 - 2 2 5 101686
sko100a 100 3431 757188 10 10 152002 0,016% 152026 - 4 5 5 103176
sko100b 100 3414 771792 10 10 153890 0,005% 153898 - 4 5 5 104186
sko100c 100 3372 736510 10 10 147862 0% 147862 - 4 5 5 100438
sko100d 100 3367 747542 10 10 149576 0,011% 149592 - 4 5 5 101452
sko100e 100 3366 745104 10 10 149150 0,008% 149162 - 4 5 5 101330
sko100f 100 3377 746562 10 10 149036 0,005% 149044 - 4 5 5 100922
sko42 42 603 51050 6 7 15812 0% 15812 - 2 3 7 13758
sko49 49 811 81964 7 7 23386 0% 23386 - 2 5 5 18856
sko56 56 1061 128106 7 8 34458 0% 34458 - 2 4 7 28396
sko64 64 1386 193878 8 8 48498 0% 48498 - 4 4 4 34962
sko72 72 1781 278408 8 9 66256 0% 66256 - 3 4 6 48800
sko81 81 2274 410562 9 9 90998 0% 90998 - 3 3 9 73022
sko90 90 2771 547124 9 10 115534 0% 115534 - 3 5 6 82248
ste36a 34 172 20574 2 17 9526 0% 9526 5 7 9258 3 3 4 8226
tho150 150 4732 48711062 10 15 8133398 0,114% 8142732 12 13 7926106 5 5 6 5088332
tho30 30 217 348124 3 10 149936 0% 149936 5 6 128772 2 3 5 109408
tho40 40 312 729452 4 10 240516 0% 240516 6 7 232752 2 4 5 192988
wil100 100 4459 1372700 10 10 273038 0% 273038 - 4 5 5 184756
wil50 50 1099 163508 5 10 48816 0% 48816 7 8 45672 2 5 5 37090

and lower bounds are found in the literature and are represented with a range
of values. The BKVs from Table 2 come from works [28] and [30] and the up-
per/lower bounds from [5] and [6]. On the other hand, the BKVs from Table 3
come from [10,7,21,33].

These results show that JAM is capable of matching most of the BKVs for the
evaluated instances. Moreover, JAM even improved some of the results found in
[6] for some minLA instances. The remarkable aspect of matching and improving
some of these results is that, while they were achieved by heuristics devoted and
optimized for a particular problem, JAM is able to perform with very compet-
itive results with benchmark instances from multiple problems and in multiple
dimensions. This fact also allows us to propose different layouts, enabling extra
locations, that let us find layouts for which the evaluated graphs would reduce
their costs. This means that, for an unconstrained real problem, we would be
able to propose a layout with more locations than facilities and aim to find the
best possible arrangement.



166 J.A. Aroca and A.F. Anta

4 Conclusions

In this paper we have presented the JAM algorithm for the Multidimensional
Arrangement Problem. We have tested its practicality with benchmarks from
the minLA and QAP literature. The results obtained with JAM often match the
best known results and even improve some of them. Our experiments provide
results for 1, 2 and 3 dimensions for 81 different graphs, broadening the available
instances for both minLA and QAP as well as creating a valid set of benchmark
instances for MAP.

As future work we intend to find application for JAM in real scenarios. For
instance, we plan to apply JAM to find efficient deployments of data center
topologies in a data center physical layout.
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34. Taillard, É.D., Gambardella, L.M.: Adaptive memories for the quadratic assign-
ment problems. Technical report (1997)



168 J.A. Aroca and A.F. Anta

35. Varanelli, J.M., Cohoon, J.P.: A fast method for generalized starting temperature
determination in homogeneous two-stage simulated annealing systems. Computers
& Operations Research 26(5), 481–503 (1999)

36. Wang, J.-C.: Solving quadratic assignment problems by a tabu based simulated
annealing algorithm. In: ICIAS 2007, pp. 75–80. IEEE (2007)

37. Wang, J.-C.: A multistart simulated annealing algorithm for the quadratic assign-
ment problem. In: IBICA 2012, pp. 19–23. IEEE (2012)

38. Wilhelm, M.R., Ward, T.L.: Solving quadratic assignment problems by simulated
annealing. IIE Transactions 19(1), 107–119 (1987)

39. Zhang, C., Lin, Z., Lin, Z.: Variable neighborhood search with permutation distance
for qap. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI),
vol. 3684, pp. 81–88. Springer, Heidelberg (2005)



Online Performance Measures for Metaheuristic

Optimization

Kay Hamacher

Dept. of Computer Science, Dept. of Physics & Dept. of Biology,
Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany

http://www.kay-hamacher.de

Abstract. (Global) optimization is one of the fundamental challenges
in scientific computing. Frequently, one encounters objective functions or
search space topologies that do not fulfill necessary requirements for well
understood and efficient procedures like, e.g., linear programming. This
methodological gap is filled by metaheuristic optimization approaches.
Their search dynamics in high dimensional search spaces and for compli-
cated objective functions is not well understood at present. In particular,
the choice of parameters driving the procedures is a demanding task. In
this contribution we show how insight from time series analysis help to
investigate – on a pure empirical basis – metaheuristic schemes. Rather
than deriving analytical results on convergence behavior, ex ante, we
propose online observation of the search and optimization progress. To
this end, we use the Detrended Fluctuation Analysis – a method from
time series analysis – to investigate the search dynamics of metaheuristics
as stochastic processes. We apply the proposed method to two different
metaheuristic, namely differential evolution and basin hopping.

1 Introduction

From parameter fitting and model selection over molecular structure predic-
tion to optimal control researchers and engineers face global optimization (GO)
problems. Whenever the objective function is nonlinear and especially not dif-
ferentiable, randomized search approaches have been suggested in the literature
as a promising route [23]. The first well-known success was simulated annealing
[19,6]. This approach, however, suffers from the “freezing problem”: the search
process gets trapped in a local optimum. Among others, basin hopping (BH)
[38] and stochastic tunneling [39,14] have been suggested to tackle this particu-
lar problem.

Other metaheuristics [23] to navigate the search space are inherently parallel
search techniques like genetic and evolutionary algorithms, such as differential
evolution (DE) [33,7]. Previous work showed that in some applications DE con-
verges faster and with more certainty than, e.g., Adaptive Simulated Annealing
as well as the annealed Nelder & Mead approach [33]. Here, the simultaneous
dynamics of several solution vectors can help to escape local minima. Although,
this is intuitively correct, situations arise where even a large population size
cannot guarantee desired properties as good convergence speed.
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Now, while automated parameter tuning has a long history in the research on
metaheuristics [4,24] and these algorithms were successfully applied in various
domains [36,9], they are still poorly understood [41] in their behavior. In contrast,
other approaches – such as branch-and-bound methods – have turned out to
be more easily accessible to analytic analysis [28]. While general metaheuristics
might still escape an analytics treatment, their performance and search dynamics
is always accessible from a pure empirical point of view.

Our contribution in this study is the ex post analysis of metaheuristics while
we regard them as stochastic processes that can be made accessible by tools from
time series analysis. We use the Detrended Fluctuation Analysis (DFA) method
to this end. We were able to show that a “super-diffusive” like behavior in visited
objective function values is connected with high performance; furthermore – and
from the point of view of algorithm steering more important – suboptimal search
performance is always related to random walk like behavior and thus insufficient
coverage of the search space.

2 The Global Optimization Problem

2.1 Definitions

The Global Optimization (GO) problem can be stated as the task to find a
best estimator xbest of any of the (potentially degenerated) solutions x∗ to the
problem1

x∗ := argmin
x∈D

E (x) (1)

for a (continuous or discrete) objective function E (x). Examples for E are the
energy in physics, the path-length in the well-known Traveling Salesperson Prob-
lem, or the loss function in machine learning. E is defined on a D-dimensional
space D. The function value at the global optimum will be called E∗ := E (x∗)
and at the best estimator xbest it is called Ebest := E (xbest) in the subsequent
parts of this paper.

2.2 Practical Issues in Global Optimization

For algorithm development and performance evaluation one typically uses func-
tions that are fast to compute, but nevertheless show similar characteristics as
real-world applications, such as continuity, barriers and transition states, de-
generated minima, or sometimes differentiability. Two well-known test cases are
discussed in Sec. 4.1.

To empirically assess the performance of global optimization algorithms there
are several approaches discussed in the literature [37,21]:

1. One might compare alternative approaches based on the computational costs
(in CPU cycles, no. of iterations and so on) it takes to determine the global

1 We are only concerned with minimization; maximization is just a trivial mapping.
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optimum of the problem of Eq. 1. However, as general GO problems areNP-
hard [18,26,15,27,22,40] such a measure is most likely in itself very costly to
quantify.

2. Alternatively, researchers have introduced [13] the relative error of a sug-
gested solution Ebest for given computational costs of n iterations with re-

spect to the known global optimum of a test function εrel(n) :=
Ebest(n)−E∗

E∗
.

This approach leads to rather pragmatic insight and does not touch the
subtleties of computational complexity.

3. One might also consider alternative approaches such as the distance (in some
metric) in the D-space of the suggested solution xbest to the known solution
x∗. If several, degenerated minima exists, on would chose the “nearest” on
as reference.

In the subsequent parts of this study we will employ the εrel measure to assess
the quality of the computed solution to the problem of Eq. 1. Note, however,
that εrel was critically discussed [42] in the context of integer programming,
where the definition of other and conceptually better quality measures is possible.
Other, slightly changed variants to use function values and differences to known
solutions were proposed [43]. However, all this methods necessarily need to be
monotonous to our εrel to sensible. As we will describe below, our results show
correlations between εrel and our analysis procedure. Such correlations could,
however, not change qualitatively under any monotonous transformation of error
measures in function values.

3 Our Contribution : Time Series Analysis for
Performance Assessment of Metaheuristics

The search dynamics of a metaheuristic optimization algorithm leads to a dis-
tinct time series of values of the objective function tested or evaluated. We will
call this series {Eg} for iteration or generation no. g with a total length G. We
will apply the Detrended Fluctuation Analysis (DFA) [25,5] to {Eg}. Our DFA
implementation in Algorithm 1 quantifies the correlations within a time series
involving an overall trend of polynomial order. We did not investigate other
potential trends, such as exponential or periodic ones [17], because low-degree
polynomial DFA was already sufficient for our purposes (cmp. Fig. 1).

The averaged squared fluctuation of values of the time series F 2 are related to
the exponent γ in the scaling law F 2(Γ ) ∼ Γ 2−γ . Quantifying the correlations
by DFA is done by computing the exponent γ of the auto-correlation function
of visited objective function values – regarded as a time series

C(t) =
1

g − t

g−t∑
τ=0

(Eτ − 〈Eg〉) · (Eτ+t − 〈Eg〉) ∼ t−γ

〈Eg〉 :=
1

g

g∑
τ=0

Eτ
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Algorithm 1 . Detrended Fluctuation Analysis (DFA): for time window sizes
between Gs and Ge a polynomial (the trend) is fitted to the cumulative series
of the input series {Eg}. The mean-square deviations F 2(Γ ) scale like Γ 2−γ .

Require: E′
g :=

g∑

g′=0

(Eg′ − 〈Eg′〉)

� cumulative series of Eg with 〈. . . 〉 as expectation value
for Γ = Gs to Ge do � Γ : time window length

D := decompose E′
g into �G

Γ
� many consecutive series

for all d in D do
p:= Fit polynomial of order n to data in d

F 2(Γ )
d := 1

L(Γ )

L(Γ )∑

i=1

(di − pi)
2 � mean-square deviation of the series d of

� length L(Γ ) from the polynomial p; i: idx of data points in d

F 2(Γ ) := 1
|D|

∑
d∈D F 2(Γ )

d

Fit F 2(Γ ) ∼ Γ 2−γ to the list of F 2(Γ )

by disregarding trends up to a given polynomial order. Now, γ ≈ 0 indicates a
“super-diffusive” behavior – a dynamics that explores the function value range
“fast”, while γ ≈ 1 indicates random-walk like behavior.

Eventually, the latter case is the worst behavior any stochastic search pro-
cedure can show: at this point no “structure” or “topology” of the objective
function and its transition states are leveraged and the search amounts to ran-
dom guessing. In the former case (γ ≈ 0), however, the search process is sampling
quite efficiently and is obviously subject to some guiding force that leads to “fast”
exploration of function values – as the function values Eg′ and Eg′′ at different
g′ �= g′′ are correlated.

We note in passing, that previous results for directed random walks (DRW)
and their efficient dynamics [10] support our notion on the dynamics of random-
ized optimization algorithms — due to the fact that the network of “nearest-
neighbor” local minima form structured graphs [8].

It is non-obvious, but one can perform the DFA analysis in constant memory
and constant time even under increasing overall number of iterations G: as we
seek the exponent in the scaling law F 2(Γ ) ∼ Γ 2−γ we can always store the time
series {Eg} modulo some time scale T . Using just every T -th function value from
the original series {Eg} does not change the scaling exponent γ at all.

4 Applications of DFA for Metaheuristics

4.1 Differential Evolution (DE) as an Optimization Technique

DE seeks optima by evolving a population of solution vectors. A current popu-
lation P of P individuals is taken over into a new generation g → g + 1 under
mutation, recombination, and eventually selection. Since its introduction DE has
been extended both in the areas of applicability as well as in design [29,7].
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Algorithm 2 . Differential Evolution algorithm; here S ∈ {0; 1} switches be-
tween two strategies and 0 ≤ λ ≤ 1 provides for a continuum on how strong
to focus the search dynamics on the vicinity of the best solution found so for
xbest. The indices r1, r2, r3, r4, r5 are drawn from the range [1;P ] and are dis-
tinct from each other. n is drawn from the uniform distribution U(1, D), L
from the truncated Poisson distribution S(L, ν,D) ∼ νL, however, not larger
than D. If L + n > D, we obtain the indices of the components to be taken
from t modulo D. Here, n is the component index at which the original vec-
tor xi and the new “test vector” t are “recombined”. L is the number of alle-
les, that is entries, which are transferred from t to xi in the next generation:

u := (u1, . . . , uD)
T

=
(
xi,1, xi,2, . . . , tn, tn+1, . . . , tn+L, xi,n+L+1, . . . , xi,D

)T

Here xi,k is the k-th entry of the vector xi.

for 1 ≤ g ≤ G do
for all xi in the population P do

set t := S·xr1+(S−1)·(xi + λ [xbest − xi])+F1·(xr2 − xr3)+F2·(xr4 − xr5)
draw L from S(L, ν,D)
draw n from U(1, D)
copy L entries from t to u starting at index n
copy the other D − L entries from xi to u
if E(u) < E(xi) then

replace xi by u

if E(u) < Ebest then
Ebest := E(u)
xbest := u

After initialization, in which all individuals are set to some random starting
point in the D-space, the generations are formed according to Algorithm 2.
Here, xbest is our estimate of the location of the global minimum and Ebest its
respective energy. Note, that the general DE scheme of Algorithm 2 enables us
to model all DE variants suggested earlier [32] by appropriate choices of internal
parameters P, F1, F2, λ, S and ν.

In the DFA analysis of DE we will record as {Eg} the newly generated so-
lutions, because this is the new “information” within this generation of the
population. Other strategies might analyze the time series of the best individ-
ual or of an average performance. These measures are, however, not an ideal
indicator of progress: suppose one analyzes the best energy; under this analysis
regime we cannot obtain any information on the population as a whole. Even if
the whole population is stuck in a local minimum, or it is exploring the whole
energy landscape, thus randomly guessing.

A Test Problem for DE. The Shubert test function [37,30] is one of the
most frequently used test functions. It shows all characteristics listed above
(continuity, differentiability, . . . ). Its definition reads:



174 K. Hamacher

Algorithm 3. Basin Hopping with an acceptance criterion based on the thresh-
old b. U(x) is a neighborhood of x based on an application-dependent metric.

Require: randomly chosen start solution x0

E0 := E(x0)
for 1 ≤ g ≤ G do

t := draw from U(xg−1)
if E(t)− Eg−1 < b then � accept smaller E(t) or within b

xg := t
Eg = E(t)
if Eg < Ebest then

Ebest := Eg and xbest := t

else
xg := xg−1 and Eg = Eg−1

s(x) =
5∑

k=1

k · sin ((k + 1) · x+ k)

Previously, s(x) was used in one dimensional optimization. However, this situ-
ation is conceptually different from the problem in two and more dimensions,
due to the existence of “transition states” or saddle points in higher dimensions.
This insight lead to the suggestion to abandon one dimensional test functions
all together [11].

A generalized Shubert function sD (x) is used for D dimensions. For D ≥ 1,

we then define x = (x1, x2, . . . , xD)
T ∈ RD and

sD (x) :=

D∏
i=1

s(xi)

defined on the D-dimensional, real-valued D-space. In the subsequent parts of
this paper we will consider the three-dimensional Shubert function (D = 3) to
avoid the aforementioned problem with low dimensionality (D = 1).

4.2 Basin Hopping (BH) as an Optimization Technique

BH was first successfully used in chemical physics and biomolecular structure
prediction [8,38]. BH is a Markov chain Monte Carlo technique, but differs in the
acceptance criterion: whereas simulated annealing [19], Glauber dynamics [2], or
Metropolis sampling [20] use a criterion based on or related to a Boltzmann-
factor, BH applies a binary threshold criterion. In Algorithm 3 we describe BH
in more detail.

A Test Instance for BH. To illustrate the general applicability of the DFA
procedure we decided to apply BH to a different optimization problem, this time
a discrete one: energy ground state of spin-glasses [3] for which exact solutions
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are available [31]. The objective function is defined as E(s) =
∑

<i,j> Jijsisj .

The summation < i, j > includes nearest neighbors2 and si ∈ [+1;−1] are Ising
spins, while the interaction parameters Jij are normally distributed. Here, the
neighborhood U(s) of a given configuration s is defined as those configurations

s′ with an edit distance of one, thus |s− s′| =
n∑

i=1

|si − s′i|
!
= 1.

5 Experimental Results

5.1 DE – General Findings

Overall, we performed some 145, 000 simulations for a sampling of parameter
settings (F1, F2, λ, S, ν, P ). In general, at the maximal iteration count of G =
600, 000 we found only weak dependency on ν. Population sizes P larger than
250 always showed inferior results; this finding can be attributed to the fact that
large population sizes tend to sample the solution space more homogeneously
the larger the population – effectively removing correlation from the population
members – and thus the rationale of evolutionary dynamics altogether.

Furthermore, the performance dependency on F1, F2, and λ was small; how-
ever, there are some indications that larger values for F1, F2 and smaller values
for λ lead to better performance in the respective error measures εrel. It turns
out that S = 0 showed better performance with regard to the relative error in
the final estimate of the global optimum value.

5.2 DE – On-Line Performance Measure

The DFA results, however, were unambiguous: any “super-diffusive” search as
indicated by small γDFA exponents showed almost always better relative errors
εrel in the minima found so far. This is evident from the results presented in
Fig. 1.

Fig. 1 also suggests potential over-fitting for third and fourth order DFA.
Typically, polynomials of higher order are able to fit better through any given
number of data points. However, resulting exponents are not stable due to over-
fitting. The exponents for smaller degrees (first and second order DFA) were,
on the other hand, not sensitive to changing random generator seeds [data not
shown]. Thus, in the subsequent parts of this work we focus exclusively on first
order DFA analysis.

5.3 DE – Online Adaption of Parameter Choices

The results above from Sec. 5.2 suggest a potential adaptation mechanism [12,13]:
online estimates of the DFA exponent of first order can be used to compare the
current DE-parameter vector (F1, F2, λ, S, ν, P ) to any other choice and thereby

2 Here in a 2D, periodic, regular lattice of size
√
n×

√
n.
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Fig. 1. For each iteration number (x-axis) the y-axis shows the percentile of sorted
DFA-exponents for the sampled parameter vectors (F1, F2, λ, S, ν, P ) for which the best
estimator of the global optimum (the minimal εrel) was worse than for the estimator
with the smallest γ encountered so far. Note, that a percentile close to one indicates
that almost all runs showed a larger value of the scaling exponent γ. The DFA was
performed up to fourth order. Over-fitting with higher polynomial order can easily be
observed within the graphs.

control for suboptimal search performance. In particular non-“super-diffusive”
dynamics (γ ≈ 1) on the energy landscape has to be avoided.

To this end, we have revised our simulation data for the Shubert function
and modeled on it an adaptive scheme: switching between periods of a) running
the optimization for a particular DE-parameter vector (F1, F2, λ, S, ν, P ) and b)
deciding to maintain this vector or choosing a modified one; this decision is based
on whether the DFA-γ indicates suboptimal search dynamics. If a switch to a
new DE-parameter vector (F1, F2, λ, S, ν, P ) is suggested, we choose one drawn
from the range of possible values of (F1, F2, λ, S, ν, P ) chosen above and present
in the precomputed data set.

In comparison to previous approaches [1], that mainly focus on a-priori knowl-
edge of algorithms, distributions of (local) minima and the like, our DFA-based
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approach is a novel strategy, that employs insights from dynamical system theory
to find efficient parameters of the underlying DE algorithm.

In Figure 2a we show the results. Almost for all iteration numbers the adaptive
scheme performs better than the average 25% of the best parameter choices. It
never outperforms the behavior of the best parameter choice. Note, however, that
the knowledge, what is the best parameter choice, is itself an a posteriori insight,
which requires sampling over the full or a large fraction of the DE-parameter
space. This would be orders of magnitude more costly in computational terms
than a single run of the adaptive scheme.

To illustrate the performance increase more clearly, we show in Figure 2b the
observed relative errors for the adaptive scheme and the top 25% of traditional
DE runs. Within sampling errors an adaptive scheme is most likely to be better.
Note, that the cases, for which the top 25% turned out to be better, are for
larger εrel and therefore mostly for small iteration numbers and thus at the start
of the optimization runs.

We conclude that using a rather simple criterion, such as a measure on the
correlated dynamics in function value space E of the DE-solution vectors, can
easily indicate whether a stochastic optimization protocol is exploring the search
space essentially in a “random guessing” like fashion or whether the protocol
exploits an underlying structure for a guided search. The proposed, very simple,
adaptive scheme implements a first attempt to harness this insight. The efficiency
gain is estimated to be some 100-fold as sampling dozens to hundreds of DE-
parameter settings (F1, F2, λ, S, ν, P ) is avoided.

5.4 BH – Results of DFA Analysis

We applied the BH algorithm to a set of 2D Ising spin glasses of size 20 × 20
spins and obtained the DFA exponents as described in Algorithms 3 and 1.
We sampled over individual incarnations (via randomized Jij choices) of spin
glasses and independent runs. We repeated this sampling for systematically var-
ied threshold parameters b. In Figs. 3a and 3b we show the empirical results.
Again, we find that high DFA exponents γ go hand in hand in with inferior
performance. Therefore, again the γ values can serve as online indicators of per-
formance. In stark contrast to the findings for DE, however, small or vanishing
γ do not necessary lead to best performance with respect to the average relative
error εrel. We investigated this effect in more detail by increasing the number of
iterations and found some (partial) explanation; our results indicate that the γ
vs. εrel relationship evolves in the direction as in DE. Thus, we expect a more
monotonous relation of εrel and γ the longer the run.

6 Discussion

In this paper, we have motivated the usage of time series analysis techniques to
evaluate the performance of otherwise very efficient and robust stochastic opti-
mization protocols, namely differential evolution (DE) and basin hopping (BH).
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A very instructive method of time series analysis is the detrended fluctuation
analysis (DFA) paradigm, which is implemented to observe correlated searches
in the space of objective function values.

We found a striking correlation between a) the performance of an optimiza-
tion run in terms of relative error of the objective function value and b) the
DFA exponents that quantify the dynamical regime DE and BH are working in.
Typically, for the test functions employed here we found that runs with smaller
DFA exponents γ performed superior when judged under their respective εrel(n).
Such small γ represent a “super-diffusive” search dynamics and thus efficient ex-
ploitation of structure in the particular energy landscape. Always, we found that
large γ are an indicator of poor performance.

Conceptually, there are two approaches how to incorporate the knowledge
generated from the DFA into DE and making it adaptive, and thus a block-box
algorithm without any need for a priori knowledge on good parameter choices:

1. we can analyze the exponents and adjust the internal parameters adaptively
to increase the efficiency of the DE protocol, or/and

2. we can take the stochastic behavior as an indicator, when the injection of a
randomly generated, new individual might push the DE process out of some
trapping minimum.

The second approach constitutes an adaptive variant open for further investiga-
tion and beyond the scope of this study. The first variant was investigated and
shown to eventually make this DE-enhancement parameter-free. We hope that
this study will encourage further research along these lines and encourage other
researchers to improve our knowledge not only about convergence properties and
the like, but also about dynamical behavior of algorithms [41].

Note, that previous investigation of heuristics under their “time behavior”
[16,34,35] measure the overall time of convergence and their respective distribu-
tions. Therefore, these approaches would hardly be applicable for online mea-
surements, e.g., in online parameter tuning.
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Abstract. Benders’ Decomposition (BD) is a prominent technique for tackling
large mixed integer programming problems having a certain structure by itera-
tively solving a series of smaller master and subproblem instances. We apply a
generalization of this technique called Logic-Based BD, which does not restrict
the subproblems to have continuous variables only, to a bi-level vehicle rout-
ing problem originating in the timely distribution of printed newspapers to sub-
scribers. When solving all master and subproblem instances exactly by CPLEX,
it turns out that the scalability of the approach is quite limited. The situation can
be dramatically improved when using a meaningful metaheuristic – in our case
a variable neighborhood search – for approximately solving either only the sub-
problems or both, the master as well as the subproblem instances. More generally,
it is shown that Logic-Based BD can be a highly promising framework also for
hybrid metaheuristics.

1 Introduction

Benders’ Decomposition (BD) [1] is a classical and frequently applied approach for
solving large Mixed Integer Linear Programming (MIP) problems having a special
block-diagonal structure with “complicating variables”. It essentially reformulates a
given problem by expressing it as a master problem on only a subset of all original vari-
ables – the complicating ones – and considering the contributions of all further variables
by additional inequalities, so-called Benders’ cuts. The optimization starts by solving
a restricted form of the master problem without any or with only few of these inequal-
ities. A new Benders’ cut is then identified by solving a subproblem and its dual on
the remaining variables with the master problem variables fixed to the current master
solution. Obtained Benders’ cuts are added to the master problem and the process is
iterated until no further Benders’ cuts can be derived. When the master problem and all
subproblems are solved to optimality, the finally obtained solution also is optimal for
the original problem.
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A major restriction of this original form of BD is the fact that the subproblem must
be a Linear Programming (LP) problem with only continuous variables as its dual solu-
tion is required to derive the Benders’ cuts. Some authors, however, have also general-
ized BD to other types of subproblems, such as certain kinds of continuous non-linear
ones [2]. In particular, Hooker and Ottosson [3] proposed logic-based BD, which is
applicable to a wide category of subproblems including discrete ones. This is achieved
by generalizing the LP dual to an inference dual. Constraint programming techniques
turned out to be especially useful in conjunction with logic-based BD, and this combi-
nation could be successfully applied to several problems, in particular in the planning
and scheduling domain [4].

In other works it has been shown that metaheuristics can be very useful in conjunc-
tion with classical BD: While the LP subproblems are usually solved efficiently by
an LP-solver, the master problem typically remains a MIP, although smaller than the
original problem, and in general needs to be resolved with newly added Benders’ cuts
many times. It has therefore been suggested to solve the master problem only approx-
imately but faster by means of metaheuristics, and possibly only in the end apply an
exact method in order to obtain a guaranteed optimum. Poojari and Beasley [5] de-
scribe such an approach for solving general MIPs in which a genetic algorithm together
with a feasibility pump heuristic are applied to the master problem. The authors argue
that a population based metaheuristic like a genetic algorithm is particularly useful as
it provides multiple solutions in each iteration giving rise to more Benders’ cuts. Sim-
ilarly in spirit, Lai et al. [6, 7] propose a genetic algorithm/BD hybrid for solving the
capacitated plant location problem; results indicate a tremendous saving of computa-
tion time in comparison to classical BD. Lai et al. [8] further discuss such an approach
for a Capacitated Vehicle Routing Problem (VRP). Rei et al. [9] suggest to use local
branching for solving a MIP master problem in order to sooner find improved upper as
well as lower bounds.

It has also been recognized that BD subproblems need not necessarily always to be
solved to optimality in order to obtain useful Benders’ cuts, even when completeness
of the whole approach shall be retained [10]. Especially when considering difficult sub-
problems in logic-based BD, this aspect becomes increasingly interesting. However,
we are not aware of any work so far where metaheuristics have been applied to dis-
crete BD subproblems for deriving Benders’ cuts. The major reason obviously lies in
the difficulty that it is not sufficient to find a heuristic solution to the subproblem but
dual solution information is also required for identifying Benders’ cuts that are guar-
anteed to be valid for any master problem solution. In fact, suboptimal solutions to the
subproblem may easily yield inequalities that cut away too large portions of the search
space, possibly also a global optimum.

This work considers a bi-level vehicle routing problem motivated by the time-critical
distribution of newspapers from a printing center via satellite depots to subscribers and
demonstrates how a metaheuristic may effectively be applied to the master as well as
the subproblem instances of a suitable logic-based BD. Experimental results indicate
that high-quality solutions can be obtained much faster than when using CPLEX for
solving the master and subproblem instances exactly, and the scalability of the BD to
large instances is substantially improved.
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The next Sections 2 to 4 introduce the considered bi-level vehicle routing problem,
refer to related work, and present a basic MIP formulation, respectively. Section 5 de-
scribes the applied logic-based BD. All the metaheuristic enhancements are presented
in Section 6. Experimental results of the basic MIP, classical logic-based BD where all
subproblems are solved to optimality, and metaheuristic hybrid variants are discussed
in Section 7. Finally, Section 8 concludes this article with remarks on future work.

2 The Bi-Level Capacitated Vehicle Routing Problem with Time
Limits

We consider a two-level vehicle routing problem in which goods shall be transported
from a main depot to satellite depots and from there further to customers. Homogeneous
vehicle fleets exist at the main depot and each satellite depot. A global time limit is
imposed on all deliveries, i.e., each customer has to receive its goods within this time.
In contrast to the two-echelon vehicle routing problem known in the literature [11–13],
the assignment of customers to the satellite depots is pre-specified in our case.

This problem is motivated by the real-world scenario at Mediaprint, a major Aus-
trian newspaper print shop who has to distribute printed newspapers from each printing
center to subscribers within a guaranteed time. A natural assignment of subscribers
to satellite depots arises here from the fact that region-specific supplements such as
advertisements are added to the newspapers, and each region-specific version is only
distributed via a dedicated satellite depot. The real distribution scenario even comprises
three levels, but it turns out that only the first two levels, up to certain delivery points
we call customers here, can be meaningfully optimized as the lowest level corresponds
to routes of delivery agents who do not need a more serious planning or do this on their
own.

We define the Bi-Level Capacitated Vehicle Routing Problem with Time Limits
(2L-VRP-TL) as follows. Given are

– a complete, directed graph G0 = (V0, A0) with node set V0 = {0}∪V ′
0 and arc set

A0 = V0 × V0, where the special node 0 represents a main depot and V ′
0 the set of

further satellite depots;
– for each satellite depot s ∈ V ′

0 a complete, directed graph Gs = (Vs, As) with
node set Vs = {s} ∪ V ′

s , where V ′
s represents a set of customers that receive their

deliveries via satellite depot s;
– a demand qv ≥ 0 for each customer v ∈ V ′

s and a resulting total demand qs =∑
v∈V ′

s
dv for each satellite depot s ∈ V ′

0 ;
– travel cost cu,v ≥ 0 and a travel time tu,v ≥ 0 for each arc (u, v) ∈

⋃
s∈V0

As

representing the fastest way to go from u to v;
– vehicle capacities Qs ≥ 0 for each vehicle starting at depot s ∈ V0; thus, we

assume a homogeneous vehicle fleet for each depot and the number of vehicles is
not limited; in our practical application, larger vehicles are used for the first level
and smaller ones for the second level;

– and a global time limit T (due time) within which all deliveries at customers have
to be performed.
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A solution R consists of a set of routes Rs in each subgraph Gs, ∀s ∈ V0, with a
route r ∈ Rs being an ordered sequence of nodes r = (ri)i=1,...,|r| with ri ∈ V ′

s . Each
vehicle starts its route at the depot s, visits the nodes as specified by r and finally has to
return to the depot again. For convenience, we also define r0 = r|r|+1 = s. Each node
except the main depot 0 has to be visited exactly once, all satellite depots within the
first-level routes R0 and all customer nodes within the second-level routes

⋃
s∈V ′

0
Rs.

Thus, each set of routes Rs also defines a partitioning of V ′
s .

The cost c(r) of a route r ∈ Rs, ∀s ∈ V0, is

c(r) =

|r|+1∑
i=1

cri−1,ri , (1)

the route’s total demand is

q(r) =

|r|∑
i=1

qri , (2)

and the times needed to reach each node ri from the route’s depot s are

t(ri) =

i∑
j=1

trj−1,rj ∀i = 1, . . . , |r|. (3)

A solution is feasible if the routes satisfy the capacity constraints

q(r) ≤ Qs ∀r ∈ Rs, s ∈ V0, (4)

and all deliveries are performed within the due time T . Since the second-level tours
may only start after the goods have been delivered to the respective satellite depots by
the first-level tours, the latter holds when

t(s) + t(v) ≤ T ∀v ∈ V ′
s , s ∈ V ′

0 . (5)

The objective is to minimize the total cost of a solution, which is the sum over all its
routes’ costs

c(R) =
∑
s∈V0

∑
r∈Rs

c(r). (6)

3 Related Work

As already mentioned, 2L-VRP-TL is related to the Two-Echelon Vehicle Routing Prob-
lem (2E-VRP) [11], in which also a two-level distribution via satellite depots is consid-
ered. Major differences are, however, that in 2E-VRP no time constraints are considered
and the assignments of customers to satellites are not fixed but shall also be optimized.
This additional degree of flexibility makes 2E-VRP even harder to solve in practice.
Perboli et al. [11] propose a flow-based MIP model, strengthening inequalities, and two
matheuristics. Experimental results are shown for instances with up to 50 customers
and four satellites.
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Crainic et al. [14] describe for the same problem multi-start heuristics based on sepa-
rating the depot-to-satellite transfer and the satellite-to-customer delivery by iteratively
solving the two resulting routing problems. In its spirit, this concept comes close to
our logic-based Benders’ decomposition, although it is not an exact approach. Hem-
melmayr et al. [12] further describe an adaptive large neighborhood search heuristic
involving several neighborhood structures exploiting specificities of the 2E-VRP.

Already in 1989, Jacobsen and Madsen [15] addressed the Two-Echelon Location-
Routing Problem in the context of newspaper delivery, which further generalizes
2E-VRP by the additional aspect of deciding at which locations to open facilities (corre-
sponding to depots). The authors suggest and compare three rather simple construction
heuristics. Later more sophisticated approaches include a tabu search [16], diverse MIP
models [17], and a variable neighborhood search [13].

Concerning BD and more classical (single-level) VRPs, Fisher and Jaikumar [18]
describe an approach where the master problem is a general assignment problem and
the subproblem is a traveling salesman problem with time-windows for each vehicle.
Lai et al. [8] propose the already mentioned hybrid of BD and a genetic algorithm.
Here the VRP is expressed by a multi-commodity flow formulation, the subproblems
are network flow problems that can be solved efficiently, and the remaining master
problem is approximately solved by the genetic algorithm.

For a more general introduction that presents BD and Lagrangian relaxation from a
metaheuristic design perspective see [19].

4 MIP Model for 2L-VRP-TL

The above introduced 2L-VRP-TL can be modeled by the following MIP using
variables

– xu,v ∈ {0, 1}, ∀(u, v) ∈ As, s ∈ V0 indicating the arcs used for realizing the
routes and

– tv ≥ 0, ∀v ∈ Vs, s ∈ V0 corresponding to the above defined t(v), i.e., the time
needed make the delivery at v from starting at the respective depot s.

(2L-VRP-TL)

minimize
∑
s∈V0

∑
(u,v)∈As

cu,v xu,v (7)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) ∀s ∈ V0 (8)

ts + tv ≤ T ∀v ∈ Vs, s ∈ V ′
0 (9)

0 ≤ tv ≤ T ∀v ∈ V ′
s , s ∈ V0 (10)

xu,v ∈ {0, 1} ∀(u, v) ∈ As, s ∈ V0 (11)

In (8) VRP(Gs) represents a valid formulation for the classical capacitated vehicle
routing problem including the calculation of the corresponding traveling times t(v) on
graph Gs expressed on the variables x(As) and tv(Vs). Equations (9) limit the total
times for the deliveries at all customers to T .
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VRP(Gs), for s ∈ V0, can be expressed in different ways, for simplicity we use here
the following compact Miller-Tucker-Zemlin-based formulation, see e.g. [20], although
significantly fore effective (but much more complex) approaches exist. Additionally
used variables are

– gv ≥ 0, v ∈ Vs corresponding to the total demand of the nodes in the tour starting
from s up to (and including) v.

(VRP(Gs))∑
v∈Vs

xu,v = 1 ∀u ∈ V ′
s (12)

∑
u∈Vs

xu,v = 1 ∀v ∈ V ′
s (13)

∑
v∈V ′

s

xs,v =
∑
u∈V ′

s

xu,s (14)

gv − gu +Qs(1 − xu,v) ≥ qv ∀(u, v) ∈ As, u �= s, v �= s (15)

gv + qv(1− xs,v) ≥ qv ∀(s, v) ∈ As (16)

tv − tu + (T + tu,v)(1 − xu,v) ≥ tu,v ∀(u, v) ∈ As, u �= s, v �= s (17)

tv + tu,v(1 − xs,v) ≥ tu,v ∀(s, v) ∈ As (18)

0 ≤ gu ≤ Qs ∀u ∈ V ′
s (19)

Inequalities (12) and (13) state that any node other than s must have exactly one
ingoing and one outgoing arc. Equality (14) ensures that every tour must finish at s or
more precisely that s has the same number of ingoing and outgoing arcs. Inequalities
(15) and (16) are the Miller-Tucker-Zemlin constraints that calculate the amounts of
goods delivered up to node v. The domains of variables gv (19) ensure that the capac-
ity Qs of a vehicles is not exceeded. Likewise inequalities (17) and (18) are used to
calculate the traveling times up to each node v as defined above.

We can further strengthen VRP(Gs) by the following inequalities from [20]:

Qs

∑
u∈V ′

s

xu,s ≥
∑
v∈V ′

s

qv (20)

∑
u,v∈U, u�=v

xu,v ≤ |U | −
⌈∑

u∈U qu

Qs

⌉
∀U ⊆ V ′

s (21)

In our implementation we initially provide inequalities (21) for subsets U of cardinality
two and three, but do not separate the more general ones as cuts.

5 Logic-Based Benders’ Decomposition for 2L-VRP-TL

Hooker [3] generalized classical BD to logic-based BD by replacing the LP dual with
a so-called inference dual. Benders’ cuts need not to be linear inequalities anymore but
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are more general functions. Benders’ subproblems may then involve discrete variables
and nonlinear functions.

We apply this approach here and decompose the above MIP model for 2L-VRP-TL
into a master problem corresponding to the first-level VRP augmented with Benders’
cuts and a Benders’ subproblem that decouples into a set of |V ′

0 | independent second-
level VRPs. More specifically, our master problem is

(MP)

minimize
∑

(u,v)∈A0

cu,v xu,v +
∑
s∈V ′

0

cs (22)

s.t. (x(A0), t(V
′
0)) ∈ VRP(G0) (23)

cs ≥ βtks
(ts) k ∈ Ks, s ∈ V ′

0 (24)

0 ≤ ts ≤ T ∀s ∈ V ′
0 (25)

0 ≤ cs ∀s ∈ V ′
0 (26)

xu,v ∈ {0, 1} ∀(u, v) ∈ A0 (27)

It only considers the first-level decision variables xu,v and ts associated with G0 and
new variables cs representing (upper bounds for) the total cost of the second-level tours
in Gs for each satellite depot s. Inequalities (24) are the Benders’ cuts relating cs with
ts in order to ultimately ensure optimality.

The associated Benders’ subproblem to be solved for deriving Benders’ cuts assumes
the above master problem variables ts to be fixed to some current values tks and becomes
for each s ∈ V ′

0

(SPs(t
k
s ))

minimize
∑

(u,v)∈As

cu,v xu,v (28)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) (29)

0 ≤ tv ≤ T − tks ∀v ∈ V ′
s (30)

xu,v ∈ {0, 1} ∀(u, v) ∈ As (31)

Thus, a minimum cost VRP-solution on Gs with delivery times at most T − tks shall be
found for each s ∈ V ′

0 .
In general, Benders’ algorithm starts by solving MP with none or only a small set

of initial Benders’ cuts. This yields values for the MP variables, i.e., tks , for which
the subproblem and its dual are solved in order to derive one or more cuts. These are
added to the MP and the whole process is iterated until no further violated cuts exist. It
has been shown that when the master problem as well as the duals and the associated
inference duals are always solved to optimality, an optimal solution for the original
problem will be obtained [3].

The inference dual of subproblem (SPs(t
k
s )) is
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(DSPs(t
k
s ))

maximize βs (32)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) ∧ (tv ≤ T − tks ∀v ∈ V ′

s )

{0,1}|As|,[0,T ]|V
′
s|

−−−−−−−−−−−−→
∑

(u,v)∈As

cu,v xu,v ≥ βs (33)

i.e., to find the best possible lower bound βs on the cost
∑

(u,v)∈As
cu,v xu,v that can

be inferred from the constraints, assuming the fixed tks .
The heart of Logic-based Benders’ decomposition is now to derive from this result a

more general function βtks
(ts) that gives a valid lower bound on the optimal value of the

cost
∑

(u,v)∈As
cu,v xu,v for any given value of ts, ideally with βtks

(tks ) corresponding

to the optimal solution value of SPs(t
k
s ). This function βtks

(ts) then directly yields a
corresponding Benders’ cut (24).

Fortunately, in our case the situation is relatively simple. We can observe that in-
creasing or decreasing tks results in stronger or weaker constraints for SPs, respectively,
and consequently the subproblem’s cost will weakly monotonically increase with tks .
Consider a current SPs(t

k
s ) and assume it is bounded and non-empty and thus has an

optimal solution. Let cks be this solution’s cost. From the previous observations we can
define a Benders’ cut

cs ≥ βtks
(ts) =

{
cks if ts ≥ tks
0 else.

(34)

Intuitively this means that the costs are at least cks or we need more than T − tks time for
the subproblem, i.e., cs ≥ cks ∨ ts < tks . As we want to solve the MP by a MIP-solver,
this logic-based Benders’ cut is translated into the following pair of linear inequalities

cs ≥ cks χk (35)

ts ≤ (tks − ε) (1− χk) (36)

with χk ∈ {0, 1} being a new decision variable that is also added to MP and ε being a
small constant to ensure cs ≥ cks in case of ts = tks .

In general, it might happen that SPs(t
k
s ) is infeasible. Then, DSPs(t

k
s ) is unbounded

and a feasibility cut – in contrast to above optimality cut – needs to be derived, which
is a condition that cuts away the current tks from MP. In our case, however, we avoid
infeasible subproblems by initially determining a minimum time required for each sub-
problem SPs, s ∈ V ′

0 to be solvable and limiting ts correspondingly. As we can safely
assume that the triangle inequality holds for travel times, a minimum time solution is
achieved by visiting each customer by an individual vehicle directly from the depot,
i.e.,

ts ≤ T −max
v∈V ′

s

ts,v ∀s ∈ V ′
0 . (37)

To start with a more meaningful initial MP, general lower bounds for the subproblem
costs cs are determined by solving SPs(0) and requiring cs ≥ cks ∀s ∈ V ′

0 .
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To avoid unnecessary recalculations, we store all solved subproblems with their op-
timal solutions (tks , x

k, cks , t̂
k
s ), ∀k ∈ Ks, s ∈ V ′

0 , with

t̂ks = T −
∑

(u,v)∈As, v �=s

tu,v xu,v (38)

being the latest possible time for ts for which this subproblem solution xk would still
be feasible and optimal; note that tks ≤ t̂ks . A new subproblem SPs(t

l
s) only needs to be

processed if there is no stored solution with tks ≤ tls ≤ t̂ks .
When solving SPs(t

l
s), a possibly existing record (tks , x

k, cks , t̂
k
s) with the largest

tks less than tls yields a lower bound on the costs and a possibly existing record
(tk

′
s , xk′

, ck
′

s , t̂k
′

s ) with the smallest tks larger than tls yields an upper bound, i.e.,

cks ≤ cls ≤ ck
′

s (39)

can be added as strengthening inequalities, and xk′
can be used as initial heuristic solu-

tion to speed up the optimization.
Finally, when the solution xl to SPs(t

l
s) has cost cl that were already encountered at

an earlier instance SPs(t
k
s ), i.e., ∃k ∈ Ks | cls = cks , the corresponding records can be

merged to

(min(tks , t
l
s), x

k, cks , t̂
k
s) if t̂ks ≥ t̂ls (40)

(min(tks , t
l
s), x

l, cks , t̂
l
s) else, (41)

and the already existing Benders’ cut cs ≥ βtks
(ts) is adapted (lifted) accordingly with-

out introducing a new cut.

6 Metaheuristic Improvements

The subproblems as well as the master problem we obtain in above decomposition are
much smaller than the original 2L-VRP-TL, and therefore there might be hope that
they can be solved to proven optimality in practice. However, all these are still NP-hard
problems, and we pay the price of using a decomposition by usually having to solve
many instances of the master and subproblems.

For generally improving scalability to larger instances, we can turn the exact BD
approach into a faster approximate one by solving the subproblems and/or the master
problem only approximately. When we terminate the MIP-solver on each of these in-
stances early after reaching a solution with costs that are guaranteed to not exceed a
specified optimality gap of p% and we obtain a feasible final solution, we can be sure
that this solution’s cost also does not exceed an optimal value by more than p%.

While this might be a practical approach in some cases, the MIP-solver will often still
require too much time to obtain approximate solutions with reasonable quality guaran-
tees. In fact, experiments indicated in our scenario that only very moderate speedups
could be achieved when allowing a gap of 5%. Suitable metaheuristics appear to be a
more promising alternative.
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6.1 Heuristic BD

We might consider virtually any well-working metaheuristic for the VRP with time-
windows which is not too slow to approach our master and subproblem. For our proof-
of-concept experiments here, we decided to apply the following previous work for the
periodic VRP with time-windows [21]:

– One initial solution is created by Clarke and Wright’s savings algorithm [22], which
is adapted in a straight-forward way to only merge feasible routes w.r.t. the time
limits.

– A set of ninit further, diverse initial solutions is derived by applying a randomized
variant of the savings algorithm. The savings of combining two tours is accepted as
the currently best savings if its value multiplied by a uniformly distributed random
value within [0.7, 1.3] is greater than the previously best known savings.

– The best initial solution undergoes variable neighborhood descent [23] using the
following neighborhood structures in this order: intra-route 2-opt, intra or-opt (se-
quences of one, two, or three stations are moved to another position), and inter-
route 2-opt* (exchange of all feasible end-segments among two routes); for details
see [21]. A first-improvement strategy is applied and the procedure only stops after
reaching a locally optimal solution w.r.t. all these neighborhoods. Each candidate
solution is checked for feasibility concerning the time limits and only feasible so-
lutions are accepted.

In the BD, this metaheuristic can directly replace the exact resolution of the master
and subproblems by the MIP-solver. However, we must take care in the bookkeeping
of already known solutions (tks , x

k, cks , t̂
k
s ) as they are not necessarily optimal anymore.

On the one hand, a later identified solution for a time tls may dominate earlier solutions
tks < tls even with lower cost, i.e., cks < cls. Thus, existing entries need to be verified
and must possibly be removed together with the corresponding cuts. On the other hand,
it may also happen that a newly found solution (tls, x

l, cls, t̂
l
s) has higher cost than an

already known solution (tks , x
k, cks , t̂

k
s ) with t̂ks ≥ tls. In this case, no new violated cut

can be derived, we may just store (tks +ε, xl, cls, t̂
l
s) and the corresponding cut if t̂ls ≥ t̂ks

for possible future use.

7 Computational Experiments

We compare the performance of directly solving the MIP model (7)–(11) for 2L-VRP-
TL, the MIP-based exact BD approach, and two variants of the heuristic BD on a set of
synthetic Euclidean instances and instances based on the TSPlib1.

All algorithms have been implemented with GCC 4.6. Each test run was performed
on a single core of an Intel Xeon E5540 machine with 2.53 GHz. CPLEX version 12.1
was used for solving the MIPs.

1 https://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
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7.1 Instances

The synthetic Euclidean instances can be divided into four subtypes:

– instances where the first-level VRP and the second-level VRPs are equally large,
i.e. |V0| = |Vs|, ∀s ∈ V ′

0 ,
– instances with a larger first-level VRP, i.e. |V0| > |Vs|, ∀s ∈ V ′

0 ,
– instances with larger second-level VRPs, i.e. |V0| < |Vs|, ∀s ∈ V ′

0 , and
– instances where each of the second-level VRPs has different size,

i.e. |Vs| = �0.5|V0|�+ 1, . . . , �1.5|V0|�.

For the first-level VRP, satellites are randomly placed on a 201×201 grid with the depot
node being located at the center. Each second-level VRP is constructed essentially in
the same way considering a separate grid of the same size: The satellite is assumed
to be at the center, and all customers are placed randomly at the grid. Traveling times
are rounded Euclidean distances, and traveling costs are derived from these times by
adding uniform random perturbations of 20%. Demands are chosen randomly from
{1, . . . , 100}. The vehicle capacity and the global time limit were selected manually in
a way that the instances are non-trivial.

For the TSPlib instances we applied a clustering that roughly simulates the process
of opening satellite depots in real-world. Given the basic nodes which represent cus-
tomers, we added satellites manually at plausible locations and then assigned each cus-
tomer node to the closest satellite. As a result, the sizes of the second-level VRPs differ
to a certain degree. Customer demands are chosen randomly from {1, . . . , 10} while
traveling times and costs, vehicle capacity and the global time limit are determined in
the same way as above. All instances are available online2.

7.2 Results

Tables 1 and 2 compare the following algorithm variants: directly solving the MIP
model (7)–(11) (“pure MIP”), the MIP-based exact BD, the BD variant where the sub-
problems are solved heuristically, and the fully heuristic BD variant where the master
problem as well as the subproblems are solved heuristically. Synthetic instances are
specified by the size of the master problem (|V0|) and the size of the subproblems (|Vs|).
For the TSPlib problems we only list |V0| since the subproblems have different sizes.

Table 1 shows the objective values of final solutions and the required CPU times.
Best values are printed bold for each instance. For the exact BD variants, we list the
gaps between lower and upper bounds after reaching the time limit of one hour. For the
variants where we use heuristics, 30 independent runs were performed in order to obtain
average objective values of final solutions and standard deviations. The time limit was
set to 10min. Table 2 displays for the BD variants further information on the number of
added Benders’ cuts and the number of times the master problem is (re-)solved.

First of all, we observe that the pure MIP approach is only viable for small instances
where the size of the sub-VRPs is at most 15. For larger instances the gaps are soon too
large for the solutions to be meaningful. The exact MIP-based BD performs better on

2 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances
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Table 2. Numbers of generated cuts and master problem resolves of the BD variants

Synthetic instances
BD using MIP heur. BD for subp. fully heuristic BD

|V0| |Vs| #cuts #resolves #cuts #resolves #cuts #resolves
5 5 4.0 3.0 4.0 3.0 4.0 3.0
5 3 1.0 2.0 1.0 2.0 1.0 2.0
3 5 3.0 3.0 3.0 3.0 3.0 3.0
5 4...7 3.0 2.0 3.0 2.0 3.0 2.0
9 9 10.0 3.0 3.0 2.0 7.0 3.0
9 5 5.0 3.0 5.0 3.0 4.0 3.0
5 9 3.0 2.0 3.0 2.0 3.0 2.0
9 6...13 10.0 4.0 9.0 3.0 9.4 3.3

15 15 32.0 7.0 30.3 7.1 27.6 6.6
15 9 34.0 6.0 34.9 7.0 22.0 4.1
8 15 12.0 5.0 10.2 5.0 10.2 5.0

15 9...22 13.0 2.0 28.0 6.8 25.8 6.3
25 25 16.0 2.0 - - 87.9 11.5
25 14 12.0 2.0 31.7 1.0 104.9 14.5
13 25 - - 41.9 8.5 39.6 7.9
25 14...37 - - 47.4 2.1 105.4 12.9
35 35 - - - - 125.9 12.3
35 19 17.0 2.0 29.0 3.2 165.4 13.2
18 35 - - - - 56.2 11.1
35 19...52 - - - - 182.8 16.9
50 50 - - - - 138.4 8.4
50 27 - - - - 251.4 22.3
26 50 - - - - 76.9 12.3
50 27...75 - - - - 113.4 4.1

instances with sub-VRPs with up to 15 nodes. However, on larger instances it is often
not able to solve all subproblems of the first major iteration in time, and we therefore
do not get any feasible solution for the master problem. For instances with sub-VRPs
of size 25 or more, this even holds when terminating CPLEX early with an optimality
gap limit of 15%. We remark that this rather bad behavior is particularly due to the
relatively weak Miller-Tucker-Zemlin formulation, and one can expect to improve the
situation by using a more state-of-the-art exact VRP solver. When using the heuristic
approach for the BD subproblems, they are solved in a relatively short time to very
reasonable quality so that a feasible solution to the master problem can be obtained
most of the time. However, on the larger instances it proves to be difficult nonetheless
to solve the master problem via MIP and in some cases it was not possible to solve it
even once within the time limit. The fully heuristic BD works well on small instances
where optimal solutions are reliably reached in short times. On larger instances it has
excellent scalability and produces by far the best results.

Comparing the different subtypes of synthetic instances, we clearly see that the most
challenging ones are those where the master problem and the subproblems are equally
large. The pure MIP approach and the exact BD approach are able to solve instances
with small subproblems in comparison faster since they can concentrate on the master
problem. This is expressed by the low number of Benders’ cuts that are added and thus
the low number of times that the master problem has to be (re-)solved, see Table 2.
Instances where subproblems have different sizes are usually also easier to solve. The
reason here is that the master problem often is easier: In the first-level VRP, the satel-
lites of larger subproblems typically need to be visited earlier than satellites of smaller
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subproblems. In Table 2 we also observe that for larger instances, the fully heuristic BD
variant is able to perform much more iterations, i.e., more Bender’s cuts are added and
the master problem is more often resolved within the same time limit.

8 Conclusions

Logic-based BD is a promising extension of classical BD to tackle far more problems
from practice because subproblems are not restricted to LPs anymore. Its application
to our 2L-VRP-TL is relatively intuitive and Benders’ cuts can be derived from primal
subproblem solutions and its inference dual in a rather straight-forward way.

Applying the logic-based BD with CPLEX for exactly solving all master and sub-
problem instances turned out to be beneficial for some mid-size instances in comparison
to solving the original MIP formulation directly. Problematic, however, are the long run-
ning times for solving the Benders’ subproblems, preventing the approach from find-
ing feasible solutions to larger 2L-VRP-TL instances at all. By just aiming for good
approximate solutions and using a variant of variable neighborhood search to heuris-
tically solve the master and subproblem instances, we could dramatically improve the
scalability and obtain by far the best results on the considered instances.

More generally, it was shown that logic-based BD may be a fruitful framework also
for metaheuristics. While previous work already documented the usefulness of meta-
heuristics for approximately solving the master problem in classic BD approaches, our
work goes beyond and applies a metaheuristic especially to more complex subproblems
(and their inference duals) as they appear in logic-based BD. The general technique
seems to be promising also for other classes of problems and deserves further research.

Our implementation for 2L-VRP-TL only is a first proof-of-concept. It is obvious
that it can be improved on the one hand by utilizing a tighter MIP-formulation for
VRP(Gs), e.g., based on multi-commodity flows, or even a more sophisticated branch-
and-cut. On the other hand a more advanced metaheuristic may also be chosen for
VRP(Gs). The principles of the logic-based BD and the combination with the meta-
heuristic, however, stay the same.

Future work should in particular investigate a combined application of heuristic and
exact methods for solving the Benders’ subproblems. For example, one can first solve
the subproblems heuristically yielding approximate Benders’ cuts and a heuristic so-
lution quickly. In a second phase, the existing Benders’ cuts are iteratively validated
by solving corresponding subproblems exactly, exploiting the already known heuris-
tic solutions. Possibly found improved subproblem solutions yield new exact Benders’
cuts that replace the dominated heuristic cuts. When resolving the master problem and
validating all Benders’ cuts in this way, an exact solution is obtained in the end.
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