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Abstract We reviewed 54 studies on teleost fishes and crustaceans inhabiting
European waters to test for the emergence of phylogeographic patterns. Con-
cerning latitudinal variation of genetic diversity, we found that: (1) contrary to the
predictions of the ‘‘central-margin hypothesis,’’ only a minority of species
(*10 %) revealed higher genetic diversity in the center of their distribution; (2)
approximately a third of the fish had a peak of genetic diversity at their southern
limit; (3) another substantial fraction of species (41 % for fishes and 72 % for
crustaceans) showed little or no latitudinal variation of genetic diversity. Genetic
structure expressed by significant FSTs varied widely among species from cases
where Atlantic, North Sea, and the Mediterranean seem to correspond to distinct
populations, to others where no structure could be detected across their entire
range. Given the heterogeneity in sampling schemes we suggest that regular
sampling across entire species ranges can improve our understanding of the marine
phylogeography in Europe.

15.1 Introduction

The study of marine phylogeography in European shores is now ca. 15 years old
(Magoulas et al. 1996; Borsa et al. 1997). Data accumulated and, as sequencing
became more accessible, more labs were involved and more species were studied.
During this period, techniques changed radically and while the initial emphasis
was on enzyme electrophoresis it quickly moved to the analyses of mitochondrial
DNA and increasingly incorporated nuclear markers, including microsatellites and
introns (Sotelo et al. 2009; Almada et al. 2012). Analytical tools also changed and,
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in particular, estimation of the time to the most recent common ancestor (TMRCA)
and of past demography of populations gained accuracy. At the same time, some
initial assumptions were reconsidered, as many tools relied on concepts that seem
unrealistic for populations subjected to a succession of climatic oscillations during
the entire Pleistocene. Thus, models and statistical tools that assume that popu-
lations were in mutation-drift equilibrium, or those that assume that populations
show a continuous type of growth, are being critically evaluated (Neigel 2002;
Kuhner 2009).

The scope of geographical sampling also widened. As the cost of sequencing
decreased, more individuals in more populations were included in phylogeo-
graphic studies of an increasing number of species, allowing for more fine-scale
sampling and the study of local barriers, for the emergence of comparative phy-
logeography across diverse taxonomic groups, and for the detection of exceptions
to broad patterns. For instance, for many years the Atlantic-Mediterranean seaway
was thought to be a potential barrier for gene flow. However, the Atlantic-Med-
iterranean phylogeographic barrier proved to be effective only for some species,
while others, often closely related, apparently cross it without restriction (for a
review see Patarnello et al. 2007; Kettle et al. 2011).

The need for wide sampling coverage of populations and of comparing different
species is particularly acute for the study of the Northeastern Atlantic: a transi-
tional region between the tropics and boreal regions, whose climate has been very
dynamic since the Pleistocene. While to a great extent it harbors warm and cold
temperate species, it is also the northern limit of some tropical species and the
southern limit of some boreal species, thus constituting both a central and marginal
habitat (Almada et al. 2013). Furthermore, the climate in this region has changed
considerably and often over the last glacial cycles, and during glaciations popu-
lation ranges are thought to have been driven south or persisted in northern refugia.
Evidence is also accumulating that many boreal and cold temperate species sur-
vived in peri-glacial refugia (for a review see Maggs et al. 2008).

The central-margin hypothesis (Eckert et al. 2008) assumes the center of a
species distribution has a high and stable effective population size (Ne) and a high
rate of gene flow (m). Thus, central populations (in this instance, southern popu-
lations) should exhibit the highest genetic diversity and harbor the overall most
frequent haplotypes. In contrast, marginal (northern) populations should exhibit
lower genetic diversity and higher genetic differentiation, and harbor private
alleles. The pattern among populations in the Eastern North Atlantic, however,
with its history of shifting ranges and patterns of populations connectivity
(including presence of refugia), and fluctuations in local populations sizes is likely
to be more complex and varied than expected by the central-margin hypothesis.

Maggs et al. (2008) examined several population models, with varying degrees
of connectivity, for species distributed along a north–south gradient and expected
haplotype networks. Their review of eight benthic species revealed a variety of
patterns, and indicated that for some species the admixture of northern refugia
populations may lead to the unexpected pattern of greater haplotype diversity in
more northern populations. In addition, their coalescent simulations of haplotype
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networks for a history of ancestral panmixia followed by geographic isolation call
attention to the stochastic nature of genealogies. Overall, their examination indi-
cates that genetic signatures, such as latitudinal patterns of genetic diversity,
should be interpreted cautiously and that for a full understanding of population
history several aspects should be considered in conjunction—haplotype diversity,
monophyly, location of most frequent haplotype and of private haplotypes, rates of
migration and identification of admixture events—and in conjunction with the
coalescent simulation of different historical scenarios.

In this short review, we compiled information of 54 studies on teleost fishes and
crustaceans inhabiting European waters, characterized their sampling, and sum-
marized their phylogeography, in order to identify overall patterns.

15.2 Methods

To compile the set of chapters used in this mini-review, we searched ISI Web of
Knowledge database1 with the following keywords: phylogeograph*, northeastern
Atlantic, fish, crustaceans, population structure*, genet* diversity. In addition, we
included works that matched our criteria published in two representative journals
(Molecular Ecology and Molecular Phylogenetics and Evolution) between 1997
and 2012. For the complete list of chapters analyzed see Table 15.1. For each
chapter, the following data were recorded: distribution area of the species, sam-
pling area, genetic diversity, population structure, time of coalescence estimated
for the species, age of the populations, and proposed glacial refugia. When
information on any of these items was not reported in a given publication, it was
recorded as not available.

The species distributions were retrieved from Fishbase2 (for fishes) and
WoRMS3 (for crustaceans) and recorded as presence/absence in 13 geographical
areas: Arctic, Baltic Sea, North Sea, UK Atlantic coasts, Bay of Biscay, Western
Iberian Peninsula, Southern Iberian Peninsula, northwestern African coast, western
Mediterranean, eastern Mediterranean, Azores, Madeira and Canaries (Fig. 15.1).
The geographic coverage of each study was expressed as the fraction of areas
where samples were taken over the total number of areas where the species occurs.
An important point in our study was to compare the levels of genetic diversity
between northern and southern limits of each species. The southern limit of the
species distribution was considered sampled if the geographical area that contains
it was sampled in any point (likewise for the northern limit). For the purpose of

1 www.webofknowledge.com/.
2 Fish Base (ed, by Froese R, Pauly D). Digital resource available at www.fishbase.org.
3 WoRMS—World Register of Marine Species (eds by Appeltans W, Bouchet P, Boxshall GA,
De Broyer C, de Voogd NJ, Gordon DP, Hoeksema BW, Horton T, Kennedy M, Mees J, Poore
GCB, Read G, Stöhr S, Walter TC, Costello MJ). Digital resource available at www.
marinespecies.org.
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Table 15.1 List of species and publications considered in the present mini-review

Species Publication

Fishes Alosa alosa Faria et al. (2012)
Alosa falax Faria et al. (2012)
Anguilla anguilla Daeman et al. (2001)
Aphanopus carbo Stefanni and Knutsen (2007)
Atherina presbyter Francisco et al. (2009)
Chromis chromis Domingues et al. (2005)
Chromis limbata Domingues et al. (2006b)
Ciliata mustela Robalo et al. (2014)
Conger conger Correia et al. (2012)
Coris julis Aurelle et al. (2003)
Coryphoblennius galerita Domingues et al. (2007a)
Dentex dentex Bargelloni et al. (2003)
Dicentrarchus labrax Lemaire et al. (2005)
Diplodus puntazzo Bargelloni et al. (2005)
Diplodus sargus Domingues et al. (2007b)
Engraulis encrasicolus Magoulas et al. (2006)
Gasterosteus aculeatus Mäkinen and Merilä (2008)
Halobatrachus didactylus Robalo et al. (2013)
Helicolenus dactylopterus Aboim et al. (2005)
Lipophrys pholis Francisco et al. (2011)
Lithognathus mormyrus Bargelloni et al. (2003)
Lophius budegassa Charrier et al. (2006)
Lophius piscatorius Charrier et al. (2006)
Merluccius merluccius Lundy et al. (1999)
Mullus surmuletus Gallarza et al. (2009)
Pagellus bogaraveo Bargelloni et al. (2003)
Pagrus pagrus Bargelloni et al. (2003)
Parablennius parvicornis Domingues et al. (2008b)
Parablennius sanguinulentus Domingues et al. (2008b)
Pholis gunnellus Hickerson and Cunningham (2006)
Platichthys flesus Borsa et al. (1997)
Pleuronectes platessa Was et al. (2010)
Pomatoschistus microps Gysels et al. (2004)
Pomatoschistus minutus Larmuseau et al. (2009)
Salaria pavo Almada et al. (2009)
Salmo salar Consuegra et al. (2002)
Sardina pilchardus Atarhouch et al. (2006)
Scomber scombrus Nesbo et al. (2000)
Scophthalmus maximus Nielsen et al. (2004)
Solea solea Rolland et al. (2007)
Spondyliosoma cantharus Bargelloni et al. (2003)
Sprattus sprattus Debes et al. (2008)
Symphodus melops Robalo et al. (2012)
Taurulus bubalis Almada et al. (2012)

(continued)
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identifying latitudinal patterns, remaining areas were considered central popula-
tions. Nei’s gene diversity (Nei 1987) was selected to represent genetic diversity.
The population structure of a given species was assessed by analysis of molecular
variance (AMOVA, Excoffier et al. 1992) and pairwise FST between locations. We
considered that genetic discontinuity existed among locations when the respective
pairwise FST was significant (p \ 0.05). Due to the potential barriers to gene flow
between the northeastern Atlantic and the Mediterranean, and the northeastern
Atlantic and the North Sea, articles were searched specifically for the presence of
significant FST involving these three seas. This task was facilitated by the fact that
many studies included the assessment of these barriers as an explicit aim. Proposed
marine refugia were recorded as: (1) Azores, Canaries, and northwest Africa; (2)
southwestern Iberian Peninsula; (3) Mediterranean Sea; (4) western English
Channel; (5) southwest Ireland; (6) Iceland and Faroe Islands; and (7) northern
Norway (following Maggs et al. 2008). Statistical analyses were performed with

Table 15.1 (continued)

Species Publication

Thalasoma pavo Domingues et al. (2008a)
Thunnus thynnus Bremer et al. (2005)
Trachurus trachurus Karaiskou et al. (2004)
Tripterygion delaisi Domingues et al. (2006a)
Xiphias gladius Bremer et al. (2005)

Crustaceans Calanus helgolandicus Papadopoulos et al. (2005)
Carcinus maenas Roman and Palumbi (2004)
Chthamalus montagui Schemesch et al. (2009)
Chthamalus stellatus Schemesch et al. (2009)
Crangon crangon Luttikhuizen et al. (2008)
Euraphia depressa Schemesch et al. (2009)
Gammarus duebeni Rock et al. (2007)
Homarus gammarus Triantafyllidis et al. (2005)
Idotea balthica Wares and Cunningham (2001)
Liocarcinus depurator García-Merchán et al. (2012)
Macropipus tuberculatus García-Merchán et al. (2012)
Maja brachydactyla Sotelo et al. (2008)
Meganyctiphanes norvegica Papetti et al. (2005)
Mesopodopsis slabberi Remerie et al. (2006)
Munida intermedia García-Merchán et al. (2012)
Necora puber Sotelo et al. (2009)
Nephrops norvegicus Stamatis et al. (2004)
Pagurus alatus García-Merchán et al. (2012)
Pagurus excavatus García-Merchán et al. (2012)
Palinurus elephas Palero et al. (2008)
Parapenaeus longirostris García-Merchán et al. (2012)
Plesionika heterocamrpus García-Merchán et al. (2012)
Pollicipes pollicipes Quinteiro et al. (2007)
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the software STATISTICA (StatSoft 2003). Because areas in the Atlantic were less
affected by the glaciations than the North Sea and Baltic, we compared gene
diversity between these two areas.

15.3 Results

One major feature that emerges from this study is the existence of large gaps and
differences in analyses conducted across studies. Very few works sampled the
entire distribution area of the species (23 %). An important percentage of the
chapters did not assess the age of the populations (74 %). On the positive side,
the majority of studies evaluated the existence of population structure for the
studied area (93 %). The average geographic coverage found was 54.26 %
(S.D. 22.65 %, minimum 15.38 %, maximum 100 %).

Fig. 15.1 Number of studied species of fish (blue) and crustaceans (red) present in the area (total
height of the bars) and sampled (dark shade): Ar—Arctic, Ba—Baltic Sea, NS—North Sea,
UK—UK Atlantic coasts, Bi—Bay of Biscay, WI—Western Iberian Peninsula, SI—Southern
Iberian Peninsula, NA—Northwestern African coast, WM—Western Mediterranean, EM—
Eastern Mediterranean, Az—Azores, Ma—Madeira, Ca—Canaries
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15.3.1 Fishes

A total of 39 chapters were analyzed for teleost fishes (Actinopterygii), comprising
50 species belonging to 29 different families and involving 10 different molecular
markers.

For the Actinopterygii, only 20 % of the works analyzed in the present review
covered the entire area of distribution of the species (Fig. 15.1). In the remaining
phylogeographic studies considerable parts of the species range were not sampled.
In 34 % of the chapters the sampling was focused at the center of the species’
distribution. The northern limit of the species was less sampled than the southern
limit of their distribution (30 vs. 56 %) (Fig. 15.2). The sampling coverage was
more deficient for the peripheries (Artic 19 %, Baltic 19 %, NW African coast
23 %, Madeira 34 % and the Canaries 34 %), with the exception of the Azores
(82 % of the species studied) (Fig. 15.1).

The presence of population structure was not evaluated in only 8 % of the
species. Considering the remaining works, 67 % of the species presented genetic
structure in the sampled area (Fig. 15.3). Two-thirds of the species sampled in the
European Atlantic and the Mediterranean exhibited population structure. Half of
the species sampled in the Atlantic revealed genetic differentiation between
temperate and North Sea locations. Concerning the Atlantic islands, the following
results were found for population structure: 46 % of the studies involving Maca-
ronesian samples found no population structure; 31 % found population differ-
entiation between Azores and European coastal areas; and 23 % showed structure
within the Macaronesian Islands.

Genetic diversity was never higher in the North Sea than in the Atlantic, while
the opposite pattern (higher diversity in the south) was relatively common (36 %).
The pattern of higher diversity in the center of species distributions occurred only
in a minority of cases (9 %). Some species appear to have sufficient dispersal and
migration (past or present) so that no difference in the distribution of genetic
diversity was found along the whole sampled area (41 %) (Fig. 15.4).

Only 20 % of the studies accessed the age of the populations. In 70 % of the
species analyzed one or more populations sampled were dated after the Last
Glacial Maximum (LGM—18 kya). All studies estimated the age of one or more
populations as dating from the last glaciation, before the LGM (120–18 kya).

15.3.2 Crustaceans

A total of 15 chapters were analyzed for the Crustaceans, comprising 23 species
(18 from the class Malacostraca and five from the class Maxillopoda), belonging to
16 different families and involving six molecular markers.

Only 30 % of the studies analyzed covered the entire species distribution area
(Fig. 15.2). Thirty percent focused on the center of the species distribution, and the
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northern limit was slightly more sampled than the south (52 vs. 47 %). The
sampling for the crustacean chapters analyzed is more deficient in the peripheries
(0 % for Madeira, 13 % for Azores and 33 % for the Baltic Sea) (Fig. 15.1).

Fig. 15.2 Sampling schemes of the publications considered in this review. Blue—sampling
covers the entire distribution area of a species; red—sampling only covers the center of the
species’ distribution; green—sampling only covers the northern limit and the center of the species’
distribution; purple—sampling only covers the southern limit and the center of the species’
distribution

Fig. 15.3 Population structure across the studies compiled for this review: between Atlantic and
North Sea (dark blue), Atlantic and Mediterranean (yellow), Atlantic and Macaronesia (red),
within the Mediterranean (green), within the European Atlantic area (light blue) and within
Macaronesian islands (brown). For the Atlantic versus Mediterranean and North Sea versus
Atlantic areas, the proportion of population structure found is shown below the pies
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The existence of population structure across the studied area was evaluated in
96 % of the studies, with 54 % of the species presenting population genetic
structure (52 % of the total of species) (Fig. 15.3). Population structure was found
between the Mediterranean and the European Atlantic in 47 % of the studies that
addressed this issue, while for the European Atlantic versus North Sea 67 %
yielded population structure.

A majority of the studies (72 %) revealed a homogeneous distribution of the
genetic diversity across the sampled area (Fig. 15.4). Only 11 % of the species
presented a higher genetic diversity in the center of the sampled area. No chapters
reported more genetic diversity in the north or south of the species range. Con-
cerning the transition between the Atlantic and the Mediterranean, 6 % of the
species presented higher genetic diversity in the Atlantic, while 11 % showed the
opposite trend.

The age of the populations was considered in 39 % of the studies, with 44 % of
the species with one or more populations dated after the LGM. For 67 % of the
works the estimated age of one or more populations was in the last glaciation,
before the LGM.

15.3.3 General Patterns

No significant differences in gene diversity were found when comparing the
Atlantic coast (Biscay + Iberian Peninsula), North coasts (North Sea + Baltic
Sea), and the Mediterranean with Kruskal-Wallis tests (Kruskal and Wallis 1952):
total of 73 species: H = 1.055, p = 0.590, df = 2; fishes: H = 4.018, p = 0.134,
df = 2; crustaceans: H = 2.116, p = 0.347, df = 2.

Fig. 15.4 Distribution of the genetic diversity along the sampled areas: H—homogeneous, C+—
more diverse in the center of the distribution, S+—more diverse in the southern limit of the
distribution, N+—more diverse in the northern limit of the distribution, Atl+—more diverse in
the Atlantic than in the Mediterranean, Med+—more diverse in the Mediterranean than in the
adjacent Atlantic
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Only 21 species were evaluated for their potential glacial refugia. Of these, the
Mediterranean may have served as a refugium for five species, namely species that
now extend to the adjacent Iberian Atlantic, northern areas for six species and the
Iberian Peninsula for nine species.

15.4 Discussion

Several interesting patterns emerge that are supported by both fishes and
crustaceans.

1. There are gaps in geographic coverage and substantial heterogeneity in ana-
lytical procedures, a situation that reflects the rapid expansion of marine
phylogeography and should guide future research in terms of sampling and
statistical analysis. The pattern of diversity peaking in the center of the species
distribution and decreasing towards the margins holds for only a small minority
of species (9 % for fishes and 11 % for crustaceans). We suggest that, in
temperate conditions where strong climatic oscillations prevail, the so-called
central populations only rarely represent populations that persisted throughout
the successive cycles (e.g., Eckert et al. 2008). Rather, many species must have
moved up and down during glacial cycles tracking the changes of habitat
(Kettle et al. 2011) so that what is now in the center of a distribution will
usually reflect the historical contingencies that affected each species.

2. A considerable number of species (30 %) show no structure when different seas
are compared (Fig. 15.3). This pattern may have several causes. Perhaps the
most likely is that species with high dispersal capabilities and large effective
population size may disperse in large numbers, exporting much of the genetic
diversity across large geographical scales. This process may erode previous
phylogeographic signals (like ancestral polymorphisms) if, after an initial
colonization postdating the last glaciation, several millennia of dispersal and
mixing elapsed.

3. The observed data underline the importance of the Atlantic as a post-glacial
recolonization source for the North Sea. Nevertheless, several studies (e.g.,
Carcinus maenas in Roman and Palumbi 2004; Taurulus bubalis in Almada et al.
2012) suggest glacial refugia near the North Sea, and others demonstrate sur-
prisingly long persistence north of the glacial ice for several glacial cycles (e.g.,
Pholis gunnellus in Hickerson and Cunningham 2006). With regard to the
Mediterranean, it may have served as a refugium for some species, namely
species that now extend to the adjacent Iberian Atlantic (e.g., Chromis chromis in
Domingues et al. 2005; Parablennius sanguinolentus in Domingues et al. 2008b).
This rule is, however, far from being universal, as many species may have sur-
vived in the Atlantic part of the Iberian Peninsula, along the coast of northwest
Africa, and other unglaciated areas in west Europe (see Maggs et al. 2008).
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4. The origin of populations (especially in the Atlantic) was dated mainly from
the Lower and Middle Pleistocene. Populations with origin estimated after the
LGM occur primarily in the North Sea (for cold water species) and Macaro-
nesia, particularly in the Azores (for warm waters species).

5. For thermophilic species, the data seem to support the Azores colonization from
Madeira (e.g., Santos et al. 1995). Indeed, when migration was evaluated, more
migrants were detected from Madeira to the Azores than the reverse (e.g.,
Chromis limbata in Domingues et al. 2006b). Madeira is, in turn, biogeo-
graphically connected with the Canaries, and there are references that point to
links between Canaries and Mauritania (e.g., Tripterygion delaisi in Domingues
et al. 2006a). This colonization route, combined with high sea surface temper-
atures, probably explains why there are several fishes that are present in the
tropics and in the Macaronesian Islands, but not in Europe (e.g., C. limbata in
Domingues et al. 2006b; Parablennius parvicornis in Domingues et al. 2008b).

We are well aware that our sampling is not exhaustive and likely some pertinent
literature may have failed to be included in this study. We hope, however, that this
survey yielded a representative sample of the scope and patterns of the research
being done. Due to lack of time, other important groups could not be included
namely mollusks, echinoderms, algae and sea grasses. One major limitation of this
survey is that different works often use different molecular markers. There is a
substantial probability that slowly evolving markers did not capture the signature
of recent events which rapidly evolving ones can retain. The number of studies that
we surveyed was not very large, thus separating them by molecular marker would
result in a serious loss of information.

Although marine phylogeography is a relatively young science, the evolution of
problems and methods of analysis has been very profound. This review included
studies with poorly calibrated markers and analytical techniques that differed
greatly among studies. A closer communication among laboratories and the
building of international projects that cover the entire distribution area of species,
with regularly spaced sampling, can have a key role in the evolution of our
knowledge. The same holds for quality control of statistical tools and software
available, and a better understanding of their underlying assumptions.

Several important projects like Corona,4 FishPopTrace5 and a recent MarinERA
Project6 are encouraging examples that mobilized researchers of different coun-
tries and did much to share ideas and samples giving rise to a good number of
important chapters. We suggest that marine phylogeographers need to advance
toward more daring projects. The idea of standardizing sampling patterns that are
adequate to represent populations is also a requirement for large scale monitoring
of marine communities, while the changes in time of population structure and
genetic diversity, in close articulation with oceanographic information, seems

4 www.biology.duke.edu/corona/.
5 http://fishpoptrace.jrc.ec.europa.eu/.
6 http://biocongroup.eu/MarinEra/Welcome.html.
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critical to improve our ability to predict the impact of different climate change
scenarios. But to achieve this, more long term financing is needed to assure a
minimum stability of the networks. So, monitoring at a regular basis seems to us
an essential forward step in our field. Finally, a closer cooperation with palaeo-
climatologists and palaeoceanographers will add more and more realism to the
scenarios we postulate for the glacial conditions, relating the phylogeographic
patterns with population models, ocean circulation models and more realistic
patterns of larval dispersal.
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