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Abstract. Induction of predictive models is one of the most frequent
data mining tasks. However, for several domains, the available data is
unlabeled and the generation of a class label for each instance may have a
high cost. An alternative to reduce this cost is the use of active learning,
which selects instances according to a criterion of relevance. Diverse sam-
pling strategies for active learning, following different paradigms, can be
found in the literature. However, there is no detailed comparison between
these strategies and they are usually evaluated for only one classifica-
tion technique. In this paper, strategies from different paradigms are ex-
perimentally compared using different learning algorithms and datasets.
Additionally, a multiclass hypothesis space search called SG-multi is pro-
posed and empirically shown to be feasible. Experimental results show
the effectiveness of active learning and which classification techniques
are more suitable to which sampling strategies.

Keywords: machine learning, classification, active learning.

1 Introduction

Classification techniques are used in a large number of real problems, like face
recognition, news filtering, spam detection and others. However, it is common
to find applications which require handling of a huge amount of data. These
data are frequently unlabeled and the assignment of a class to each instance
may have a high cost. A promising way to selectively use this massive unlabeled
data for the induction of classification models is by employing active learning,
area dedicated to machines that evolve by asking questions [31]. One of the core
questions is about the class/label of an instance.

It is precisely the means by which this question can be asked the subject of
investigation in this document. The idea of selecting the best instances among
others is not new, it has appeared in the literature under different perspectives,
e.g Design of the Experiment [27]. In the context of classification, it dates back
to at least the 1970’s [26].

When labeled instances are needed to induce a classifier, it is reasonable to
acquire labels for only the most important of them, since each label acquisition
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has a cost. Depending on the application domain, this label acquisition process
can be categorized in three major settings: membership query synthesis, which
allows the learner to synthesize the most informative instance to ask for a label
[2]; stream-based query, which requires immediate learner’s decision about query-
ing or discarding each instance that arrive from a stream; and pool-based query,
formerly known as selective sampling, when the learner is given the freedom to
choose the most informative instance among several others in a pool, which is
the most common scenario and the focus of this work [18].

There are several successful strategies for the pool-based setting [21]. However,
this variety poses the problem of choosing the most appropriate to a given task.
The main contribution of this work is to empirically demonstrate the effectiveness
of active learning and to confront strategies from different paradigms under the
same experimental apparatus. The comparison includes an adaptation of one of
the strategies to support multiclass problems.

The remainder of this paper is organized as follows. In Section 2, the most
common niches of the pool-based query setting are reviewed; in Section 3 we
present the experiments performed in this study and discuss about the results
obtained; finally, the main conclusions and future directions are presented in
Section 4.

2 Related Work

There are not many comprehensive comparative studies in the active learning
literature. Those found are specific to strategies for a particular classification
algorithm [29], intended for specific tasks [32] or focused on a single niche of
strategies [16].

In the following sections, the most common active learning strategies under
the pool-based setting are reviewed and experimentally compared: uncertainty
sampling, hypothesis space search, expected error reduction, density-weighted
sampling and cluster-based sampling. Additionally, Expected Model Change is
presented, but not included in the experiments due to its incompatibility with
the selected techniques. Similarly, Query by Committee is also presented, but
excluded from the experiments to avoid unfair comparison of accuracies.

All paradigms will be presented along with their characteristic order of com-
plexity referring to the number of (re)trainings needed to perform each query. In
the following sections, the number of classes and the initial number of instances
in the pool will be denoted by |Y | and |U|, respectively.

2.1 Uncertainty Sampling

Probably, the simplest informativity measure to decide when to select an instance
(or a group of instances, in the original proposal) is the maximum posterior
probability given by a probabilistic model [18]:

Pmax(x) = argmax
y

P (y|x)
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where x refers to an instance vector sampled from the pool, and P (y|x) is the
posterior conditional probability of x being of the class y. P (y|x) is roughly
equivalent, e.g. to the output of a probability-based model. The uncertainty
sampling strategy consists of querying the most informative instance, i.e. the
instance with the lowest Pmax(x), to explore the decision boundary in the at-
tribute (or parameter) space. The maximum posterior can be substituted by
others measures. A similar measure is the margin M(x) between the two high-
est posterior probabilities. Given the second most probable class probability
P2ndmax, the margin M(x) is defined as:

M(x) = Pmax(x)− P2ndmax(x)

Another measure, which is inversely related to the previous measures is the
Shanon entropy [34], defined as:

E(x) = −
∑

y

P (y|x) logP (y|x)

These three measures depend on a probabilistic model. However, it is pos-
sible to roughly approximate such informativity measures or even probability
distributions for other families of learning algorithms.

This strategy requires only a single training on the labeled instances for
all candidates, having O(1) complexity (a single training per query).

2.2 Hypothesis Space Search

It is possible to perform active learning directly from the hypothesis space per-
spective. The rationale is to query the most controversial instances when different
valid hypotheses are compared with each other, i.e. to query instances that would
reduce the version space [23] after its inclusion in the training set. One way to
search through the hypothesis space is to track the sets S and G of specific and
general hypotheses during learning and consider only the most specific hS ∈ S
and the most general hG ∈ G hypotheses.

One important feature of this family of strategies is its binary decision
model: all instances for which the hypotheses disagree can be queried at once
or in any arbitrary order, i.e. there is no precedence among them.

One of the first active learning algorithms is a query by disagreement, called
SG-network [6]. It approximately induces specific/general models θS and θG by
means of generating or sampling random “background” instances and labeling
them artificially according to the desired training goal: specificity or generality.
Instances are sampled from the region of disagreement between θS and θG.

The comparison performed in this work is delimited by the pool-based setting,
independent on the learning algorithm and the number of classes. Therefore,
to fit SG-network into the experimental requirements, two sensible adaptations
were adopted, SG-multi and SG-multiJS. The order of complexity of the original
work (only binary problems) and the following adaptations is O(|Y |).
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SG-multi. For each class c ∈ Y , there is a pair model/training set 〈θc,Lc〉
properly designed to represent the most general hypothesis hc

G w.r.t. the class c.
Initially, all instances 〈x, y, w〉 ∈ Lc are the same instances present in the pool,
except for two differences: they are labeled as “positive” to the corresponding
class (y = c) and weighted to have only a small fraction of the importance of the
real labeled instances (w << 1), as suggested in the literature [31]. The weight
value adopted in this work is w = 1

|Y ||U| , since it ensures that the summed

influence of all background instances is no larger than a single real instance.
This measure avoids misleadings due to the scarce initial real training instances.

The prediction function f(θc,x) returns the most probable class to a given
instance x according to the provided model θc. It is possible to determine an
instance under disagreement x∗ by comparing the outcomes from all different
prediction functions. Each prediction function represents the most general con-
cept of each class:

∀a, b ∈ Y, a �= b, ∃x∗ | f(θa,x∗) �= f(θb,x
∗)

As soon as the instances from the region of disagreement x∗, i.e. those with
no consensus, are sampled and queried, they replace their counterparts in all
training sets with the real labels and integral weights:

Lc ← (Lc − {〈x∗, c, w〉}) ∪ {〈x∗, c, 1〉}∀c ∈ Y

In this adapted strategy (SG-multi), the decisions based on disagreement
were kept binary, i.e. there is no ordering in the sequence of queries, except the
precedence of the group of controversial instances over the rest.

SG-multiJS. A real-valued measure of disagreement can be adopted to soften
the binary querying criterion of SG-multi. It assumes that the probability dis-
tributions P (θc,x) can be estimated from the models θc∀c ∈ Y . Besides the
constraint on the classification algorithm being able to output probabilities, SG-
multiJS differs from SG-multi in the querying criterion: the Jensen-Shannon
divergence [20]. It is an information theoretic measure that compares probabil-
ity distributions, commonly used in ensembles to assess the degree of agreement
between their members. The non-weighted Jensen-Shannon divergence is defined
by the entropy of the distributions:

JS({θc∀c ∈ Y }) = E(
∑

c∈Y

P (θc,x))−
∑

c

E(P (θc,x))

The higher the JS, the further the members are from a consensus. Therefore, the
instance with the highest value should be queried first. This criterion disrupts
with the binary decision model underlying its theoretical background inspiration
and may be more adequate to select instances from the disagreement area.

2.3 Query by Committee

Committees, also called ensemble-based classifiers, are combinations of models
whose united predictions are meant to achieve better accuracy than a single
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model. Query by Bagging and Query by Boosting are two examples of active
learning committees [1]. Depending on the member models output, several mea-
sures of disagreement are possible.

In this paper, since the base learning algorithms of all strategies are not ensem-
bles, a comparison that includes Query by Committee is deferred to future work.
Moreover, a fair comparison between strategies requires the same base learner,
otherwise accuracies of classifiers trained on the actively sampled instances could
not be compared.

The complexity of Query by Committee is considered here as O(1), if the
ensemble is seen as a single base learner or O(M), if the number of members M
is considered.

2.4 Expected Error Reduction

Probably, the entropy reduction example [28] is the first proposal of an expected
error reduction strategy: the instance that achieves the greatest reduction in the
total predicted label entropy is select as the best query.

An important feature of the expected error reduction family of strategies is
the possibility to adopt any objective function, like g-means or f-measure [17]
- g-means, e.g. can be employed in the presence of class imbalance, a frequent
issue in multi-class problems.

A more recent work [11] presents a method that considers implicitly informa-
tion about the underlying clustering partitions, instead of relying only on the
scarce labeled data. It is the natural choice for the present comparison given
its reported superior performance. For each candidate instance x ∈ U from the
pool, its most probable label y′ is calculated optimistically:

y′ = argmin
y

∑

u

H(xu, θL∪{〈x,y〉})

where H(x, θ) is the objective function. Additionally to the accuracy, and in line
with the original work, the entropy on the unlabeled data is also adopted as
objective function in this work (amounting two variations of the same strategy:
accuracy and entropy).

The high complexity order of the algorithm (O(|U|2)) degrades linearly with
increases in |Y |, which is a major concern in problems with a big number of
classes. To alleviate the computational cost, a hundred instances were randomly
sampled from U in each iteration in the experiments of this article.

2.5 Expected Model Change

One can relief the sampling process from the computational complexity of an-
alyzing the expected impact over the pool. This is possible by observing only



Comparison of Active Learning Strategies 623

the expected impact on the model. One such strategy is the Expected Gradient
Length [33]. Since the true label is not known in advance, the expected model
change is calculated over all possible labels. The differences between two trainings
(the previous and the candidate to be the next training) ΔC(x, y,L) is weighted
by the model’s posterior probability estimates P (x):

EMC(x) =
∑

c∈Y

P (c|x)ΔC(x, y,L)

ΔC(x, c,L) = |C(L ∪ {〈x, c〉})− C(L)|
Expected Model Change is similar to uncertainty sampling because it is based

on a localized criterion: it is focused on the relation between the current model
and the candidate query instead of the rest of the instances.

The complexity of each query is O(|Y |.|U|). Like Expected Error Reduction,
training time can be reduced when the learning algorithm is incremental. Since
none of the learning algorithms adopted in this work have an analogous to the
gradient length, Expected Model Change was not included in the experiments.

2.6 Density-Weighted Sampling

The general contract of theDensity-weighted strategies is the information density
measure [30]:

ID(x) = H(x)
1

|U|
∑

u∈U
sim(x,u)

or the training utility [10], measure adopted by its improved version and used in
this work:

TU(x) = ID(x)(
∑

l∈L
sim(x, l))−1

Any similarity sim(x,u) and informativity measures H(x) can be adopted.
In this work, five distances d(x,u) were compared (Euclidian, Minkowsky, Man-
hattan, Chebyshev and Mahalanobis) and transformed into a similarity measure
by the formula:

sim(x,u) =
1

1 + d(x,u)

Due to publication restrictions concerning space, only the two best distances
were kept in the results (Euclidian and Manhattan). The margin M(x) was
adopted as the informativity measure.

The complexity order is O(1), but |U|2 distance calculations are needed for
each query. For this reason, their values should be cached in fast access memory
to reduce computational costs by taking advantage of the fact that the pool
remains the same along the whole process. The main feature of density-weighted
methods is their sensitivity to the spatial distribution of the data.
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2.7 Cluster-Based Sampling

The learning process can exploit natural clusters in the (unlabeled) pool, instead
of performing queries that focus the decision boundaries/version space division.
One such approach is the hierarchical sampling [7]. Instances are queried with
higher probability from the most impure and representative clusters. The original
implementation was adopted in the comparison of this work, with the same
clustering algorithm: the Ward’s average linkage method1.

Cluster-based strategies are independent from the classification algorithms.
Their hierarchical version is statistically sound, since it draws instances at ran-
dom from each cluster within estimates for the error induced by each pruning.
Therefore, it is guaranteed to not perform worse than random sampling. Because
of the independence regarding classification algorithms, they are called agnostic.
Another example of agnostic strategy is Random Sampling.

3 Experiments

In the evaluation of the active learning strategies, it is important to compare dif-
ferent classification algorithms, because non-agnostic strategies depend heavily
on the base learner. Therefore, all the evaluated strategies were assessed using
four algorithms commonly used in classification problems: C4.5, Naive Bayes
(NB) , Very Fast Decision Trees (VFDT) and 5-NN [24,19,9,15]. Specifically,
NB, VFDT and 5-NN are well suited for interactive active learning because they
accept incremental training. Redundant results, like the similar performance of
entropy E(x) and uncertainty Pmax(x) were omitted due to space restrictions.

The active learning process is divided in two phases: sampling and training.
For each new query, a new model is built/updated and tested against unknown
instances previously set apart. Ten runs of 10-fold cross-validation were used for
each dataset [5]. Duplicate instances were removed. Each fold was used as the
pool of unlabeled instances - as adopted by [22].

In real applications, at least at the first steps, it is expected from the supervisor
to perform some kind of guided active learning [3] to reduce the risk of incurring
into useless labeling. Therefore, in the experiments, it was assumed that one
instance from each class had its label revealed before each active learning strategy
took place2. One or more than one instance per class have been used in literature
[12].

3.1 Stopping Criterion

Learning stops after Q queries. Q is dataset-dependent and defined as follows.
In the literature, arbitrary values (50, 100, 200, |U| etc.) have been used [25,12].
However, arbitrary values do not take into account dataset’s peculiarities. In this

1 Clusterer and classifiers implementation, including their default parameters, are from
Weka library [14].

2 Except for the Cluster-based strategy.
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work, Q is the average number of queries the best strategy needed to achieve the
average passive accuracy. The passive accuracy was calculated after training the
classifier with all available instances in the pool and testing it in the test folds.

To assess the quality of the learned model, its accuracy was averaged along all
possible budgets until Q, resulting in the Area under the Learning Curve [13].

3.2 Datasets

Twenty-eight labeled data sets from the UCI repository [4] were used in the
experiments. They are detailed in Table 1. Datasets with imbalance level larger
or equal any of the average passive accuracies were discarded.

Table 1. Dataset details. Last column indicates the proportion of examples from the
majoritary class.

Dataset #Instances #Numeric #Nominal #Classes %Majoritary class

colon32 62 32 0 2 0.65
bodies 62 3721 0 2 0.55
subject 63 229 0 2 0.56
hayes-roth 84 4 0 3 0.37

accute-i 99 1 6 2 0.56
leukemia-h 100 50 0 2 0.51
breast-t 105 9 0 6 0.21
tae 106 3 2 3 0.36

molecular-p 106 0 57 2 0.50
iris 147 4 0 3 0.34
wine 178 13 0 3 0.40
connection 208 60 0 2 0.53

newthyroid 215 5 0 3 0.70
statlog-h 270 13 0 2 0.56
flare 287 0 11 6 0.30
ionosphere 350 34 0 2 0.64

monk1 432 0 6 2 0.50
breast-c 569 30 0 2 0.63
balance 625 4 0 3 0.46
australian 690 8 6 2 0.56

pima 768 8 0 2 0.65
vehicle 846 18 0 4 0.26
tic-tac-toe 958 0 9 2 0.65
vowel 990 10 0 11 0.09

yeast 1269 8 0 4 0.35
cmc 1358 2 7 3 0.44
wineq-r 1359 11 0 6 0.42
car 1728 0 6 4 0.70



626 D.P. dos Santos and A.C.P.L.F. de Carvalho

3.3 Experimental Results

In Table 2, all pairs of strategies are compared by the rankings shown in Table
3. Each symbol sr,c in a cell at row r and column c indicates that the strategy
r is better than strategy c within the confidence interval 0.05 according to the
Friedman test with the Nemenyi post-hoc test [8].

Table 2. Each placed symbol indicates when the strategy at the row is better than
the strategy at the column: C4.5 (©), NB (�), 5-NN (�) and VFDT (·)

Active Learning strategy 1 2 3 4 5 6 7 8 9 10

1 - Random Sampling -

2 - Uncertainty -
3 - Cluster-based -

4 - Margin -

5 - SGmulti -

6 - SGmultiJS -

7 - Exp. Error Reduction (entropy) -

8 - Exp. Error Reduction (accuracy) -

9 - Density Weighted Training Utility (euclidian) -

10 - Density Weighted Training Utility (manhattan) -

Table 2 shows that the performances of the strategies are strongly related to
the classification algorithm used. The proposed SG-network adaptations were
better than almost all other strategies when NB (�) was used. VFDT (·) also
presented a positive response under these strategies. The density-weighted strate-
gies achieved similar performance with C4.5 (©) and 5-NN (�); again VFDT
was partially well suited, but mostly for the Manhattan variation of the density-
based approaches. Uncertainty and Margin sampling using 5-NN were better
than random sampling, the baseline of most studies. They were also better
than expected error reduction (entropy) when using 5-NN. The worst strate-
gies were based on expected error reduction and random sampling because of
the significant losses. Cluster-based was outperformed only by SGmulti and
density-based variations, but did not outperformed any strategy with statistical
significance.

The expected error reduction strategy was not impacted by the 100-instance
subsampling. This is evidenced by noting that its performance was not better
even in datasets with less than 100 instances in the pool. The first nine rows of
tables 1 and 3 represent the small datasets, which required no subsampling.
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Table 3. ALC ranking for the first Q queries (Section 3.1). Lower is better. Strategy
numbers are the same given in the Table 2. The last row is the median for all datasets.

C4.5 VFDT 5-NN NB
Strat. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

col. 6 8 5 7 2 0 3 9 1 4 8 5 7 3 2 4 6 9 1 0 9 4 2 3 6 7 8 5 1 0 8 3 9 2 6 4 5 7 1 0
bod. 3 6 9 5 2 4 7 8 1 0 8 7 0 6 4 3 5 9 1 2 8 6 3 5 9 2 7 4 1 0 8 6 9 5 2 0 1 7 4 3
sub. 5 8 3 7 6 9 0 4 2 1 8 7 1 6 5 4 0 9 2 3 9 3 7 4 5 8 6 2 0 1 9 6 7 4 5 0 1 8 2 3
hay. 6 3 8 5 7 9 0 4 1 2 0 8 2 9 1 3 6 4 7 5 4 5 7 6 0 3 9 8 1 2 2 8 3 7 1 0 9 4 6 5

acc. 7 4 5 3 6 9 2 8 0 1 5 7 3 6 1 0 9 8 2 4 8 3 5 2 6 4 9 7 1 0 8 5 6 4 1 2 9 7 3 0
leu. 3 6 9 5 1 8 4 7 2 0 3 7 1 8 0 2 4 9 5 6 8 4 2 3 7 6 9 5 0 1 8 5 1 4 0 2 7 9 3 6
bre. 6 7 5 8 4 2 3 9 0 1 5 7 4 6 1 0 8 9 3 2 8 7 3 5 4 2 9 6 1 0 2 9 3 8 1 0 4 5 7 6
tae 4 0 6 3 1 5 7 9 2 8 5 2 9 7 8 0 4 3 6 1 4 1 8 2 6 7 9 3 0 5 3 9 4 8 2 1 6 0 5 7

mol. 8 3 7 2 5 4 6 9 0 1 3 8 2 9 5 1 6 0 7 4 6 2 1 3 5 8 9 7 4 0 7 9 1 6 4 0 8 5 3 2
iris 8 5 7 4 2 6 3 9 1 0 4 6 3 7 1 0 9 8 5 2 8 2 6 5 4 3 9 7 1 0 6 7 5 8 1 0 9 4 3 2
wine 8 5 3 4 2 7 6 9 1 0 7 5 4 6 2 0 9 8 3 1 8 2 7 3 5 6 9 4 1 0 9 5 8 4 1 0 6 7 3 2
con. 3 9 2 8 6 4 5 7 1 0 5 8 1 7 3 2 6 9 4 0 8 2 5 1 6 7 9 4 3 0 6 9 1 8 0 4 3 2 7 5

new. 5 8 9 7 2 6 4 3 1 0 8 2 4 5 1 0 9 7 6 3 9 2 6 3 7 8 5 4 0 1 9 6 7 5 1 0 8 4 3 2
stat. 5 8 2 7 3 4 6 9 1 0 0 9 1 8 4 3 7 2 5 6 8 3 5 2 6 7 9 4 0 1 5 9 6 7 0 1 8 2 4 3
flare 7 5 2 6 9 8 4 3 0 1 8 5 9 6 1 2 7 4 3 0 8 2 7 3 6 4 9 5 0 1 8 1 9 3 6 0 7 5 2 4
ion. 7 4 6 3 2 9 5 8 1 0 5 7 8 6 0 1 9 4 3 2 7 1 8 0 6 9 3 2 4 5 5 7 4 8 0 1 3 2 9 6

mon. 8 3 6 2 7 9 1 5 0 4 6 4 8 1 3 5 9 7 2 0 6 2 7 3 5 9 8 4 1 0 7 2 8 0 3 5 9 6 4 1
br.c 3 7 4 6 2 8 5 9 1 0 7 6 4 5 1 0 8 9 3 2 7 3 5 2 8 6 9 4 1 0 8 4 6 5 1 0 7 9 3 2
bal. 5 8 6 9 3 7 1 4 0 2 2 9 4 6 0 7 8 5 3 1 6 7 8 4 5 2 9 3 0 1 4 7 6 3 1 8 9 5 2 0
aus. 8 4 1 3 5 9 6 7 2 0 1 9 4 8 0 2 5 3 6 7 6 3 4 2 8 5 9 7 1 0 5 9 3 8 2 0 7 1 6 4

pim. 8 3 9 2 4 7 6 5 1 0 2 8 4 9 0 1 7 3 5 6 7 0 5 2 9 4 8 6 3 1 3 8 4 9 2 1 7 0 6 5
veh. 6 7 8 9 4 3 2 5 1 0 6 5 3 7 2 1 8 9 4 0 8 2 6 3 9 4 5 7 1 0 4 7 1 6 0 3 8 9 2 5
tic. 4 7 2 6 3 9 1 0 8 5 5 4 9 3 0 7 6 8 2 1 8 3 7 2 4 6 9 5 0 1 8 4 9 2 3 5 6 7 1 0
vow. 8 4 7 3 6 9 2 5 1 0 8 7 9 3 2 6 4 5 1 0 8 4 6 2 9 5 7 3 0 1 8 9 7 3 2 6 4 5 1 0

yea. 9 3 4 6 1 2 7 5 8 0 2 8 1 5 0 7 6 9 4 3 9 2 3 4 5 8 7 6 1 0 6 9 3 4 2 8 7 5 0 1
cmc 0 8 2 5 3 6 4 1 9 7 8 6 4 1 3 9 5 7 0 2 1 9 5 6 0 4 3 2 7 8 6 9 5 3 2 4 7 8 1 0
win.r 8 1 9 0 2 6 4 3 5 7 5 4 6 2 1 9 7 8 0 3 2 9 7 3 0 1 4 5 8 6 7 1 8 0 4 9 6 5 2 3
car 8 2 6 3 7 9 4 5 1 0 8 0 7 1 3 9 6 2 4 5 8 5 7 0 4 9 6 3 1 2 8 5 7 4 0 9 6 2 3 1

Med. 6 5 6 5 3 7 4 6 1 0 5 7 4 6 1 2 6 7 3 2 8 3 6 3 6 6 9 4 1 1 7 7 6 4 1 1 7 5 3 2

4 Conclusions

Despite its statistical soundness, sophisticated methods, like the cluster-based,
did not perform better than ad hoc approaches, like SGmulti and density-based
training utility. Therefore, possibly the sampling bias plays an important role in
active learning, analogous to the learning bias (representation/search bias) of a
classifier (learning algorithm): whilst generalization of learning is only possible
with a bias, a good choice of queries for a given pair dataset/classifier implies
the adoption of a strategy with the correct types of exploration and exploitation,
and also the adequate balance between both.
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The results obtained in this study suggests that active learning can be effec-
tive, but dependent on the classification algorithm. It is worth to mention the
good overall results for the first proposed multiclass adaptation of SG-network
(SGmulti) and density-based training utility. An investigation of the relation-
ship between dataset features and strategy performance, and the use of other
classifiers, with different learning biases, are intended as future works.
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