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Abstract. Recent studies propose that some dynamical systems, such
as climate, ecological and financial systems, among others, present criti-
cal transition points named to as tipping points (TP). Climate TPs can
severely affect millions of lives on Earth so that an active scientific com-
munity is working on finding early warning signals. This paper deals with
the segmentation of a paleoclimate time series to find segments sharing
common patterns with the purpose of finding one or more kinds of seg-
ments corresponding to TPs. Due to the limitations of classical statistical
methods, we propose the use of a genetic algorithm to automatically seg-
ment the series together with a method to perform time series segmen-
tation comparisons. Without a priori information, the method clusters
together most of the TPs and avoids false positives, which is a promising
result given the challenging nature of the problem.

Keywords: Time series segmentation, genetic algorithms, clustering,
paleoclimate data, tipping points, abrupt climate change.

1 Introduction

In contrast to the famous statement of Linnaeus (1751) “natura non facit saltus”
(or nature makes no leaps), it has been proven that some points of no return,
thresholds and phase changes are widespread in nature and these are often non
linear [1]. Such events can be rarely anticipated and some of them can have detri-
mental consequences on Earth’s climate and large-scale impacts on human and
ecological systems. Therefore, this increases the imperious necessity of study-
ing, analysing and developing techniques for characterizing them in order to
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construct reliable early warning systems. Although the human being have influ-
enced their local environment for millennia, e.g. reducing biodiversity, it is now,
since the industrial revolution, that truly global changes are been noticed [2].
Examples that are currently receiving attention include the potential collapse of
the Atlantic thermohaline circulation, the dieback of the Amazon rainforest or
the decay of the Greenland ice sheet [1]. Formally, a climate “tipping point” (also
known as “little things can make a big difference”) occurs when a small change
in forcing triggers a strongly nonlinear response in the internal dynamics of part
of the climate system, qualitatively changing its future state.

The critical relevance of early TPs detection has produced a growing attention
of the scientific community. Lenton differences between several types of TPs, and
presents some indicators that can help to detect them, such as the increase of
autocorrelation of the series values [3]. In [4], more concrete techniques regard-
ing data processing and indicators are presented. They study a bank of methods
using only simulated ecological data concluding, in concordance with the liter-
ature, that there is no unique best indicator for identifying an upcoming tran-
sition. They also conclude that all the methods require specific data-treatment.
Up to our knowledge, all previous works tackle the TPs detection with statistical
methods trying to select (by trial and error) the method more suitable to detect
those transitions. They require an intensive data preprocessing that include, for
instance, the use of Gaussian filters or rolling windows that introduces extra pa-
rameters (such as the width of the Gaussian function or size of the window) that
need to be optimised [3,4]. The main limitation behind these methods is that
different TPs and different statistical descriptors require different and specific
treatments.

This paper deals with climate time series segmentation. We introduce a seg-
mentation method as a first step to better understand the time series. This
segmentation provides a more compact representation of the time series through
splitting it into segments with similar behaviour [5]. A segmentation analysis
avoids the necessity of specifying predefined sliding windows for the different
TPs, which is one of the main difficulties of previous TP detection methods [4].
Moreover, the segmentation algorithm is able to detect differences between the
TPs. We address the segmentation problem as a heuristic search problem with
the proposal of a Genetic Algorithm (GA) to overcome the limitations of tradi-
tional statistical methods. The GA segments the data trying to obtain diverse
clusters of segments based on six statistical properties. Measuring the quality of
a segmentation can be only achieved by expert evaluation of the solutions given
by the algorithm. An important contribution of this paper is a quantitative
method to perform comparisons with respect to an expected ideal segmentation
of the series to assess the robustness and stability of the method. This method
allows evaluating a segmentation algorithm with a minimal effort by the expert,
who has only to provide the ideal segmentation. We test the proposal with data
collected within the North Greenland Ice Core Project 620 ice core data [6,15]
which includes climate records from -60,000 years to the present.
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The rest of the paper is organised as follows. Section 2 presents the segmenta-
tion algorithm, while Section 3 presents a proposal for segmentation comparison
and discusses the experimental results. The last section depicts the conclusions.

2 Segmentation Algorithm

Given a time series Y = {y,}N_;, our objective is to divide the values of ¥,
into m consecutive subsets or segments. These segments should present a ho-
mogeneous behaviour regarding the values of y,. This is done by partition-
ing the time indexes (n = 1,...,N) into segments: s1 = {y1,...,Ys },S2 =
{Ytsy-- s Uta}s-e oy Sm = {Yt,,_1,--- YN}, Where t’s are the cut points and are
subscripted in ascending order (¢; < t2 < t;,—1). The cut points belong to two
segments (the one before and the one after, which allows to analyse consistently
the transition from one segment to the next). The integer m and the cut points
ti,i =1,...,m — 1, are the parameters to be determined by the algorithm. As
done in [7], we extend this setting by trying to group the segments into k different
classes or clusters (k < m), where k is a parameter defined by the user. In this
way, each s; segment will be associated to a class label: (s1,21), ... ,(Sm, 2m),
where z;, [ = 1,...,m, is the class label of the [-th segment and takes values in
a set of k different labels, z; € {C1,...,C}.

2.1 Summary of the Algorithm

The Genetic Algorithm considered in this paper can be included in the area of
time series segmentation [5,8,9,10]. Each possible segmentation is represented
as an array of binary values (chromosome representation), where a value of 1
represents a cut point. The evolution starts from a population of randomly gen-
erated segmentations. Mutation and crossover operators are applied to explore
and exploit the search space. This procedure is repeated g generations. To eval-
uate a solution (or segmentation), we select a set of statistics to be calculated
for each segment. Then, similar segments are grouped using a clustering process.
The different characteristics of the GA are defined in the following subsections.

2.2 Chromosome Representation

As stated before, each individual chromosome consists of an array of binary
values, where the length of the chromosome is the time series length, N. Each
position ¢; stores whether the time index ¢; of the time series represents a cut
point for the evaluated solution'. In this sense, for a given segment s; delimited
by the cut points t;_1 and ¢; (t;—1 < t;), the corresponding chromosome values
willbe ¢;_1 =1,¢;, =1 and ¢ = O,V”ti_l <l <t.

! Note that the first and last points of the chromosome are considered as cut points.
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2.3 Initial Population

The population of the GA is a set of binary vectors of length N. In order to
initialise the population, an average segment length has to be specified by the
user (sl). Taking into account that the cut points belong to two segments, the
number of cut points will be m = fslji 1], so the chromosomes are binary arrays
where m random positions are 1s and the rest are Os.

2.4 Fitness Evaluation

Evaluation of the quality of a segmentation consists of three different steps:
extracting the characteristics of the segments, applying a clustering process and
measuring the quality of this clustering.

Extracting Segment Characteristics. Given that the segments in a chro-
mosome can have different length, an approach is designed to project all the
segments into the same dimensional space. Six statistical metrics are considered
and measured for all chromosome segments. Then, the similarities between seg-
ments can be calculated in the 6-dimensional space. Consider ss as a segment
fulfilling the previously stated conditions (i.e., s is a segment delimited by the
cut points t;_1 and ts, where the segment length is t; — ¢s—1 + 1). The mapping
is done by the function f : R(ts—ts—1+1) s R6 in the following way:

f(ss) - (Szap)/lsaﬁ)?saasaMSEsaACs) (1)
where the different characteristics are defined as:

1. Variance (S?): It measures the variability of the segment:

ts 2
S? = tsftsl,lJrl Zi:ts,l (yi - yS) ) (2)

where y; are the time series values of the segment, and ¥y, is the average
value of the segment.

2. Skewness (715): It represents the (vertical) asymmetry of the distribution of
the series values in the segment with respect to the arithmetic mean:

1 ts 3
ts—tg_1+1 27‘,&:%71 (yi—ys)

Ts = 53 ) (3)

where S5 is the standard deviation of the s-th segment.
3. Kurtosis (2s): This statistic is related to the degree of concentration that
the values present around the mean of the distribution:

1 t. 4
ts—tg_1+1 Zi;ts_l (yi—ys)

Y2s = 54 -3 (4)

4. Slope of a linear regression over the points of the segment (as): A linear
model is constructed for every segment trying to achieve the best linear
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approximation of the points of the time series in the evaluated segment. The
slope is a measure of the general tendency of the segment:
syt
s = (s1)2) (®)
where, for the s-th segment, S¥! is the covariance between the time indexes,

t, and the time series values, y; and S? is the standard deviation of the time
values. Covariance S¥' is defined by:

S:gt = tsftsl71+1 ZZ;ts—1(i - ts) ) (yz - y‘;) (6)

5. Mean Squared Error (M SE;): Considering the same linear model than the
one used for the slope, we measure the error (M SE;) of this linear fitting:

syt
MSE; = S? - (1 —1r2%), where r2 = s2.(51)?" (7)
6. Autocorrelation coefficient (AC;): This a measure of the correlation between
the current values of the time series and the previous ones:

Zﬁits_l (yi—ys) (Yit1—Ys)

Ac, = s (8)

Clustering Process: k-means. A clustering process is applied to group simi-
lar segments (taking into account the six selected statistical measures). For sim-
plicity, the algorithm chosen for the clustering step is the well-known k-means.
Before the clustering algorithm, note that a normalisation of the values of the
segment metrics is conducted, as the distance from each segment to its centroid
strongly depends on the range of values of each metric (e.g. variance can have a
much broader range of variation than skewness).

In the classic k-means, the initial centroids are randomly chosen from the set
of patterns. Instead, we have developed a deterministic process to select these
centroids which ensures that a chromosome will always present the same fitness.
First, we choose the feature with the maximum standard deviation. The first
initial centroid will be the segment with the highest value for this feature. The
second one will be the segment with the highest Euclidean distance from the
first centroid. The third centroid will be that which is farthest from both, and so
on. This assures a deterministic initialisation, at the same time that the initial
centroids are as far as possible from each other, favouring centroids diversity.

Measuring the Quality of the Clustering Process. The last step of the
evaluation of the chromosome is to measure how well the segments are grouped
(compactness of the clustering). It is clear that different clustering algorithms
usually lead to different clusters or reveal different clustering structures. In
this sense, the problem of objectively and quantitatively evaluating the clus-
tering results is particularly important and this is known in the literature as
cluster validation. There are two different testing criteria for this purpose [11]:
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external criteria and internal criteria. When a clustering result is evaluated based
on the data that was clustered itself, this is called internal evaluation. In exter-
nal evaluation, clustering results are evaluated using for example known class
labels. Based on these concepts, the internal criteria evaluation metrics will be
a suitable option for the evolution, because the GA is not given any a priori
information of the segments to be found. Note that the segments metrics are
normalised at this step as well. We have considered four different metrics:

1. Sum of squared errors (SSE): The simplest error measure is the sum of
squared errors (considering errors as the distance from each point to their
centroid), i.e

SSE = Zf=1 Doxec, d(x,€i)?, 9)

where k is the number of clusters, ¢; is the centroid of cluster C; and d(x, c;)
is the Euclidean distance between pattern x and centroid c;. This function
does not prevent clusters to fall very close in the clustering space. As this
index has to be minimised, the fitness will be defined as f = | n és 5

2. Caliriski and Harabasz index (CH ): This index has been found to be one of

the best performing ones for adjusting the value of k. It is defined as:

on - e ()
where N is the number of patterns, and Tr(Sg) and Tr(Sw ) are the trace
of the between and within-class scatter matrix, respectively. Note that the
value of k will be fixed in our algorithm. As this index has to be maximised,
the fitness will be defined as f = CH.

3. Davies-Bouldin index (DB): This index also attempts to maximize the bet-
ween-cluster distance while minimising the distance between the cluster cen-
troids to the rest of points. It is calculated as follows:

DB =" max; ﬂifﬁf)v (11)
where «; is the average distance of all elements in cluster C; to centroid c;,
and d(c;, c;) is the distance between centroids ¢; and c;. As this index has
to be minimised, the fitness will be defined as f = JJD Y

4. Dunn index (DU ): The Dunn index attempts to identify clusters that are
compact and and well-separated. In this case, the distance between two clus-
ters is defined as d(C;, Cj) = mingec, yec; d(X,y), that is, the minimum dis-
tance between a pair of points x and y belonging to C; and C;. Furthermore,
we could define the diameter diam(C;) of cluster C; as the maximum distance
between two of its members, such as: diam(C;) = maxx yec, d(x,y). Then,
the Dunn index is constructed as:

. . d(Ci.C;
DU = min;—1,.._ (mlnj=i+1,...,k (Inaxz=1( ké?iam(C;))) . (12)

.....

The Dunn index has been found to be very sensitive to noise, but this disad-
vantage can be avoided by considering different definitions of cluster distance
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or cluster diameter. For example, as suggested in [11], the cluster diameter
can be computed as:

diam(C;) = Nci(l\}cfl) Yoxyee, UxY), (13)

where N¢, is the number of patterns belonging to cluster C;. This cluster
diameter estimation has been found to be more robust in the presence of
noise. As this index has to be maximised, the fitness will be f = DU.

2.5 Selection and Replacement Processes

All individuals will be considered for reproduction and generation of offspring,
promoting a greater diversity because all individuals are possible parents. After
the application of the genetic operators, the offspring and the parent population
are joined and a replacement process is performed by roulette wheel selection.
The selection probability for each individual chromosome is calculated from its
fitness value. The roulette wheel process is repeated as many times as the popu-
lation size minus one, and the last place is kept for the best segmentation of the
previous generation, thus being an elitist algorithm. As can be seen, the selection
process promotes diversity, while the replacement process promotes elitism.

2.6 Mutation Operator

Two mutation operators are included in the GA with the aim of reducing the
dependency with respect to the initial population and escaping from local op-
tima. The probability p, of performing any mutation is decided by the user.
Once a mutation is decided to be performed, the kind of perturbation applied to
the chromosome is randomly selected from the following two: 1) add or remove
(with the same probability) a given number of cut points of the segmentation;
and 2) move a given number of cut points of the segmentation towards the left
or the right (with the same probability).

For all the mutations, the number of cut points to be mutated is decided by
a user parameter as a percentage of the current number of cut points. When
moving cut points to the right or the left, each selected cut point is randomly
pushed towards the previous or the following cut point (with the constraint that
it never reaches the previous or the next point).

2.7 Crossover Operator

The algorithm includes a crossover operator, whose main function is to perform
an exploitation of the existing solutions. For each parent individual, the crossover
operator is applied with a given probability p.. The operator randomly selects
the other parent and a time index. It interchanges the left and right parts of the
chromosomes selected with respect to the time index.
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3 Experiments

The dataset chosen for this study is the North Greenland Ice Core Project
(NGRIP) §'80 ice core data [6,15]. The §'80 water isotope record is used as
a proxy for past atmospheric temperature. We focus on the 20-yr resolution
5'80 isotope records. The dataset is pre-processed by obtaining a 5-point aver-
age in order to reduce short-term fluctuations within the data. In this way, the

X . . . N/5 . 5it4
time series we have considered is {y;;}n:/1 with yi =1 232;51 Yi-

3.1 Experimental Setting

The experimental design is presented in this subsection. The GA was configured
with the following parameters: the number of individuals of the population is P =
100. The crossover probability is p. = 0.8 and the mutation probability p,, = 0.2.
The percentage of cut points to be mutated is the integer part of the 20% of the
number of cut points, and the average segment length for the initialisation is
sl = 4. The maximum number of generations is set to g = 100, and the k-means
clustering process is allowed a maximum of 20 iterations. These parameters were
optimised by a trial and error procedure, although the algorithm showed a very
robust performance to their values. The most important parameters for the final
performance of the algorithm were sl and k.

We performed different experiments considering the 4 different fitness func-
tions presented in Section 2.4 and different values of k for the k-means algorithm
(k=2,...,6). It is important to recall that the algorithm estimates the optimal
segments and clusters them without any prior information of the DO events.
The only information given to the algorithm is the time series and the statistic
characteristics to use for the clustering in order to validate whether the statistics
proposed in the literature are useful for characterising paleoclimate TPs in gen-
eral. Given the stochastic nature of GAs, the algorithm was run 30 times with
different seeds to evaluate its stability and robustness.

3.2 Evaluation Metrics

In order to evaluate the results of the algorithm, two evaluation metrics were
used. These measures analyse both the homogeneity of cluster assignation with
respect to the DO events and the robustness of the results obtained from different
seeds. They are not included in the fitness function, serving only as an automatic
way of evaluating the quality of the segmentation, avoiding the intervention of
the expert. Both are indexes comparing two different clustering partitions:

1. Rand index (RI) This metric is particularly useful for data clustering eval-
uation [12]. It is related to the accuracy, but is applicable even when class
labels are not available for the data, as in our case. A set Y = {y,}_; is
given (in our case, the time series), and two clustering partitions of Y are to
be compared: X = {X1,..., X, } and Z = {73, ..., Z,}. For a given segmen-
tation, the partitions are defined in the following way: X; is a set containing
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North Greenland Ice Core Project (NGRIP) data
|

[ [ | | [ [ [ | | |
_35H I [ | | [ [ [ | I |
[ [ | | o [ [ | 1 !
(I (I | | [ [ [ | i 0
[ [ | . [ [ [ | i
g pm 4 R TR B l
0 [ | | (RO I [ |
3 16 15 10 ek .
2 | | | 13 : | ;) [ 43 :
D | ‘ 0o
< | |
= I
;;/ | | ] i i
< l | l { Rl | | | l I | ——Non DO event
RERE S L LA | - =00 even
[ [ | | o [ [l [ | | |
-45 L Ll Il L T | 1] L1 L 1 L [ J
-60 -50 -40 -20 -10 0

-30
Time before year 2000 (ka)

Fig. 1. Representation of the ideal segmentation and the different DO events

every y; € ss,Ss € Cy, i.e. the partitions are based on the label assigned to
each time series value y; from the current segmentation. The following two
numbers are defined: a (number of pairs in Y that are in the same set in
X and Z) and b (number of pairs in Y that are in different sets in X and
Z). Then, the Rand index is defined as: RI = (a +b)/(}). This metric has
a value between 0 and 1, with 0 indicating that the two partitions do not
agree on any pair of points and 1 indicating that they are exactly the same.

2. Adjusted rand index (ARI): It is a corrected version of the RI [13] trying to
fix some known problems with the RI, e.g. the expected value of the RI of
two random partitions does not take a constant value and it approaches its
upper limit of unity as the number of clusters increases. ARI values range
from —1 to +1, yielding negative values if the index is less than the expected
index. The detailed formulation can be found in [13].

In order to evaluate the segmentation returned by the algorithm, we com-
pare it with an ideal segmentation?. The ideal segmentation (Fig. 1) has been
designed by examining the literature about Dansgaard-Oeschger (DO) events,
which are associated to TPs. In the Figure, the onsets of the DO events (in a first
approximation, we do not consider the error margin) reported in [15] are repre-
sented by vertical lines and the segments covering the period precursor to the
DO events (which we hypothesize as TP) are delimited by the slope close to the
corresponding onset. The closer the segmentation returned by the GA is to this
ideal segmentation, the better the segmentation. To perform this comparison,
RI and ARI indexes will be used (ARI Ideal and RI Ideal).

Given that the wishful ideal segmentation would be binary (non DO event
or DO event) and the segmentation returned by the GA can have a value of
k > 2, we need to binarise the segmentation of the GA (i.e. decide which clusters

2 Hypothetically ideal segmentation, based on the available data. The hypothesis is
that the onset of the DO events is detected from combined analysis of benthic sedi-
ment data and ice core analysis [14]. Those data do not always agree, therefore part
of the error margin. The method of timing contributes the rest of the error.



Table 1. NGRIP average segmentation results for different algorithm settings

Time Series Segmentation of Paleoclimate Tipping Points

Fitness k ARI_Ideal RI_Ideal ARI_Seeds RI_Seeds
DB 5 0.315+£0.060 0.777£0.015 0.346+0.078 0.727 + 0.040
DU 5 0.308+ 0.067 0.788£0.018 0.341 4+ 0.092 0.727 +0.046
CH 5 0.260 + 0.073 0.772 + 0.008 0.223 +0.105 0.644 + 0.074
SSE 5 0.279 + 0.048 0.770 + 0.018 0.057 + 0.018 0.638 +0.017

Fitness k ARI_TPs RI_TPs ARI_Seeds RI_Seeds
DB 2 0.171 +0.132 0.766 + 0.001 0.258 4+ 0.292 0.821 + 0.081
DB 3 0.257 + 0.081 0.758 + 0.013 0.411 +£0.152 0.780 £ 0.046
DB 4 0.804 +0.045 0.773 + 0.009 0.412 + 0.080 0.761 + 0.037
DB 5 0.315+£0.060 0.777 £0.015 0.346 + 0.078 0.727 + 0.040
DB 6 0.286 + 0.075 0.779 + 0.014 0.214 +0.109 0.615 4+ 0.084

represent the DO events and which not). Preliminary experiments revealed that
DO events were usually grouped under one or two clusters, so we evaluated
ARI Ideal and RI Ideal for all possible combinations of one or two clusters.
The final value was the maximum ARI Ideal and RI_Ideal values of all these
combinations. Moreover, the stability of the GA was estimated by comparing the
30 segmentations from the different runs. This was done by averaging RI and
ARI comparing all possible pairs of segmentations (ARI Seeds and RI _Seeds).

3.3 Results

All these results are included in Table 1. The first part of the table compares
the different fitness functions for a predefined value of £k = 5 (as we initially
observed that this was obtaining suitable results). As can be seen, both DB
and DU fitness functions obtain very good segmentation quality and stability,
although D B performs slightly better. In contrast, CH and SSFE are performing
poorly in both scenarios (it is noteworthy the very low stability obtained by the
SSFE fitness function, which may be due to the fact that it only minimises the
intra-cluster distances and obviates the inter-cluster distances). The result that
the algorithm is robust and stable to different initialisations is crucial for the
following parts of the study (i.e. develop an early warning system for TPs of
climatic component). Concerning the experiment that studies different values of
k, it can be seen that k = 5 is indeed the optimal value for the segmentation.
This result indicates that the concept and nature of DO events is too complex
to only consider a binary approach (TPs versus non TPs). The climate system
exhibits a dynamical behaviour with intrinsic variability hence a binary approach
is not able to encompass all features present within a DO event, being k =5 a
reasonable choice. Moreover, the method can group several DO events together
and is still a useful tool to better understand the behaviour of DO events.

The segmentation obtaining the highest ARI Ideal metric (with a value of
0.498) for the fitness function DB, along with a representation of the 18 DO
events can be seen in Fig. 2. The segments have been coloured according to their
cluster assignation. The clusters associated to the DO events are C; and Cs. If we
compare this segmentation to the one in Fig. 1, we can see that almost all DO
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North Greenland Ice Core Project (NGRIP) data
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Fig. 3. Clustering space for the six metrics (each point represents a segment)

events are correctly segmented by the algorithm (C; and C5 segments are always
close to the DO onset) and that there are not “false positives” labels (C; and
Cs segments are not found in a non DO event part of the series). However, five
events are not detected: 2, 9, 11, 13 and 16 (some of which have been found in
the literature to be caused by random fluctuations of the dynamics of the time
series and for which there is no evidence of increase in the selected statistics).
The clustering space of this segmentation can be analysed in Fig. 3. This Figure
confirms that there are some differences between the two clusters associated to
the DO events (C; and Cs), mainly from the values of the S? metric.

4 Conclusions

This work tackles the problem of time series segmentation in the context of pa-
leoclimate time series analysis. We propose a Genetic Algorithm to perform the
segmentation and clustering of the time series by using six statistic characteris-
tics that have been found to reveal incoming tipping points (TPs). The results
have shown that the method clusters together most of the TPs avoiding “false
positives”, which is a promising result because it demonstrates that most of the
TPs can be segmented with the same data analysis, as opposed to other propos-
als in the literature, which design TP-specific descriptors. Future work includes
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extending the method to find early warning signals and considering other time
series datasets, mutation and crossover operators and fitness functions.
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