
A Proof-Carrying Code Approach
to Certificate Auction Mechanisms

W. Bai1,2(B), E.M. Tadjouddine2(B), T.R. Payne1, and S.U. Guan2

1 Department of Computer Science, University of Liverpool, Liverpool, England, UK
{Wei.Bai,T.R.Payne}@liverpool.ac.uk

2 Department of Computer Science and Software Engineering,
Xi’an Jiaotong-Liverpool University, SIP, Suzhou, China
{Emmanuel.Tadjouddine,Steven.Guan}@xjtlu.edu.cn

Abstract. Whilst it can be highly desirable for software agents to engage
in auctions, they are normally restricted to trading within known auc-
tions, due to the complexity and heterogeneity of the auction rules within
an e-commerce system. To allow for agents to deal with previously unseen
protocols, we present a proof-carrying code approach using Coq wherein
auction protocols can be specified and desirable properties be proven.
This enables software agents to automatically certify claimed auction prop-
erties and assist them in their decision-making. We have illustrated our
approach by specifying both the English and Vickrey auctions; have
formalized different bidding strategies for agents; have certified that up to
the valuation is the optimal strategy in English auction and truthful
bidding is the optimal strategy in Vickrey auction for all agents. The for-
malization and certification are based on inductive definitions and con-
structions from within Coq. This work contributes to solving the problem
of open societies of software agents moving between different institutions
and seeking to make optimal decisions and will benefit those engaged in
agent-mediated e-commerce.

Keywords: Coq · Proof-carrying code · Certification · e-commerce ·
Software agents

1 Introduction

One of the major challenges in developing agents that are capable of rational
decision making within open, heterogeneous environments, is that of compre-
hending the rules and social norms that govern the behavior of new institutions.
Although much work has addressed interoperability at the communication level
(with agent communication languages such as FIPA-ACL, and RDF to under-
pin recent developments within the Semantic Web [1]) thus allowing agents to
communicate, the decision of whether or not the communication is meaningful is
still an open challenge. Agents may understand how to conduct their behavior in
certain familiar scenarios, and bid strategically in marketplaces that adhere to
certain rules (e.g., an English or Dutch auction). However, such strategies may

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 23–40, 2014.
DOI: 10.1007/978-3-319-07602-7 4, c© Springer International Publishing Switzerland 2014



24 W. Bai et al.

not be applicable to other markets, such as those based on Vickrey auctions.
Within an open and dynamic environment (such as e-commerce), agents might
encounter a variety of auction houses, that could form part of an agent mediated
e-commerce scenario. It is therefore important for the agent to be able to acquire
a deeper model of the marketplaces that they could engage in (other than simply
relying in simple classifications) so that they can rationally determine whether
or not they should engage in the marketplace.

Agents should be able to query and comprehend the rules that govern an
auction house, and verify desirable properties that can be relevant to privacy,
security, or economics. This paper focuses on the economic properties, by look-
ing at specifying and verifying game-theoretic properties for single item online
auctions. An important game-theoretic property is strategy-proofness namely,
the existence of a dominant strategy for the players meaning a strategy that is
optimal regardless of the game configuration. For example, truthful bidding can
be the dominant strategy in certain auction settings. The aim of this paper is
to present an approach to help agents to automatically verify desirable proper-
ties in online auctions. To this end, we rely on the proof-carrying code (PCC)
paradigm [2] to allow for:

– the auctioneer to publish the auction mechanism along with the proofs of
desirable properties in a machine readable formalism,

– the potential buyer agent to read the published protocol, make sense of it, and
at will, check the proof of a given property by using a simple trusted checker,
which makes the automatic checking procedure computationally reasonable.

Our current work focuses on expressing the mechanism and game-theoretic
proofs in a machine checkable formalism. We have used Coq [3], an interac-
tive theorem prover based on inductive definitions and construction wherein the
formalizations of English and Vickrey auctions are carried out. Then, different
bidding strategies are specified followed by the proofs of a dominant strategy for
each bidder.

Previous efforts have explored the use of automatic checking of auction prop-
erties. The strategy-proofness property was checked using model checking in [4,5]
but the related computational complexity can be exponential [6]. To handle
the computational limits of exhaustive model checking, two property-preserving
abstractions are proposed. One is the classical program slicing technique [7].
The other is abstract interpretation [5]. In [8], a distributed computer system
infrastructure with a rationality authority that allows for safe consultations
among parties is presented. A rationality authority includes the game inven-
tor, participating agents and verifiers, which provide verification services. Game
inventors advise the agents about actions and their optimality. Verifiers send
their verification procedures to the agents. A typed language which allows for
automatic verification that an allocation algorithm is monotonic and therefore
truthful is introduced in [9]. Then, a more general-purpose programming lan-
guage is defined to capture a collection of basic truthful allocation algorithms.
This is similar to our current approach as we rely upon the proof-carrying code



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 25

paradigm and Coq to allow software agents to achieve reasonable automatic
checking of game properties.

Moreover, interactive theorem proving is used to express the proof of desirable
properties in a machine-checkable manner. There are two advantages in using
an interactive theorem prover [10]. One is that the specification of the desirable
properties can be precisely described by the designer. The other is that the proof
of a property is machine-checkable. We use the interactive theorem prover Coq
because it has been developed for more than twenty years [11] and is widely
used for formal proof development in a variety of contexts related to software
and hardware correctness and safety. Coq has been used to model and verify
sequential programs [12] and concurrent programs [13]. In [14], Coq was used
to develop and certify a compiler. A fully computer-checked proof of the Four
Colour Theorem was created in [15]. In [16], a Coq-formalised proof that all
non-cooperative, sequential games have a Nash equilibrium point is presented.

This paper is organized as follows. Section 2 describes our certification frame-
work and the scenario of single item auctions. Section 3 describes the formaliza-
tion of auction mechanisms followed by proofs of desirable properties in Sect. 4.
Section 5 discusses the evaluation of our approach and Sect. 6 concludes.

2 Our Certification Framework

The ability for heterogeneous software agents to interoperate between different
and open auction houses raise two main questions: how to get agents to operate
on previously unseen protocols and how to get agents to automatically check
desirable properties that are central to their decision making. In order to solve
this difficult problem, we start by looking at models or scenarios allowing us to
use a divide-and-conquer paradigm for an incremental solution. A brief overview
of our scenario can be stated as follows. Online protocols can be described using
some web-based description language; the resulting description is abstracted into
Coq specifications that are used to provide machine-checkable proofs of desir-
able properties for the protocol at hand. Such a Coq specification can be turned
back into the original web description so as to be read, understood, and checked
by a software agent. Such mappings back and forth can be carried out using
abstract interpretation [17]. Abstract interpretation enables us to analyze the
behaviors of a computer system by safely approximating its concrete seman-
tics into an abstract one involving a smaller set of values. Note that by safe
approximations, we mean approximations that are at least sound allowing us to
transpose properties that are true in the abstract domain into the concrete one.
For the abstraction, from a web-based description of an auction, we can build
up a Coq-based specification of that auction known as the abstract mapping
so that desirable properties can be proved from within the Coq system. This
abstraction approach can solve the problem of heterogeneity of different auction
houses by providing a uniform and formalized format of protocols to software
agents.

An abstract interpretation is defined as a sound approximated program
semantics obtained from a concrete one by replacing the concrete domain of



26 W. Bai et al.

computation and its concrete semantic operations with an abstract domain and
corresponding abstract semantic operations. An abstraction is sound if any prop-
erty that holds in the abstracted program holds also in the concrete program.
In the architecture of abstract interpretation, the abstract domain can be con-
cretized back into the concrete domain which means that the concretized abstract
context includes the concrete context. The success of abstraction and concretiza-
tion leads to the correctness of interpretation. Based on abstract interpretation,
program transformation frameworks were proposed in [18]. Figure 1 illustrates
our use of the abstract interpretation framework. Once a web based auction pro-
tocol is abstracted into Coq, desirable properties can be formally proven and the
resulting proof is machine-checkable and therefore verifiable by software agents.

In this work, we focus on the verification procedures for some desirable prop-
erties of auction mechanisms, which can be specified in Coq. The Coq system is
based on a typed lambda calculus [19], which can be taken as a glue specification
language into and from which any auction mechanism can be mapped to.

In order to effectively enable automatic checking of desirable properties, we
need to take into account the fact that software agents have limited computer
resources and may be constrained in their reasoning. On one hand, it is difficult
for a software agent to find the best possible or optimal bidding strategy on its
own or to optimize its utility out of various strategies in the same way humans
might. On the other hand, if the specification of auction protocols and proofs are
published in a machine-readable formalism, then automatic checking by software
agents can be facilitated and the computational complexity will be reduced. For
that purpose, we have relied upon the Proof-Carrying-Code (PCC) ideas since
it allows us to shift the burden of proof from the buyer agent to the auctioneer
who can spend time to prove a claimed property once for all so that it can be
checked by any agent willing to join the auction house.

PCC is a paradigm that enables a computer system to automatically ensure
that a computer code provided by a foreign agent is safe for installation and exe-
cution. A weakness of the original PCC was that the soundness of the verification
condition generator is not proved. To overcome this weakness, Foundational PCC
(FPCC) [20] provides us with stronger semantic foundations to PCC by gener-
ating verification conditions directly from the operational semantics. Figure 2
illustrates our framework that uses FPCC to certify auction properties. At the
producer or auctioneer’s side, we have the specifications of the auction mecha-
nism along with the proofs of desirable properties in a machine-checkable for-
malism in the form of a Coq file. The certification procedure works as follows.
The buyer agent arriving at the auction house can download its specification

Fig. 1. Framework of abstract interpretation



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 27

Fig. 2. Applying FPCC to certify auction properties

and the claimed proof of a desirable property. Then, the buyer requests the
proof checker coqhk, which is a standalone verifier for Coq proofs, to the auc-
tioneer. After the proof checker is installed to the consumer side, the buyer can
now perform all verifications of claimed properties of the auction before deciding
to join and with which bidding strategy.

We have implemented this FPCC framework from within the Coq system.
In our current implementation, we have considered a one-to-many scenario.
A single item is allocated using an online auction house. Various buyer agents
can enter or leave this house at will, make sense of its mechanism along with
some recommended strategies and their associated proofs. Such a recommenda-
tion can be for example, truthful bidding is the dominant or optimal strategy
for a buyer agent. We then showed how such a desirable property can be proved
using two examples of a single item auction: the English and Vickrey auctions.
In the remainder of this paper, we basically show how to specify such auctions
and its possible strategy-proofness property and how to prove it within Coq.
The specifications and proofs are split into different Coq files1.

3 Formalization of Auction Mechanisms Within Coq

In this section, we define the framework to specify single item auctions. Then, the
English and Vickrey auctions are specified respectively. For simplicity, we assume
no agents submit the same bid. To specify the English and Vickrey auctions,
we start by a framework that is used to describe a single item auction within
Coq. Coq uses the keyword Definition to define a variable or a function. The
keyword Inductive is used to provide inductive definitions and Fixpoint can
be used to define recursive functions in Coq. Coq provides library to define data
types, such as the type nat which represents natural numbers, the type Z which
represents integers and the type bool of booleans. When defining a function,
1 Our Coq code is available upon request.



28 W. Bai et al.

pattern-matching construct match ... with can be used to describe different
cases. Coq also provides functions to compare different numbers. For example,
function Z gt dec can be used to compare two integers and decide whether one
integer is greater than the other one or not.

3.1 Specifying Single Item Auction

To specify a single item auction in Coq, we define the following objects as
types: Agents, Bid, Utility to represent respectively the set of agents, their
bids, and their utilities. Note that Bid is declared as an integer to simplify the
calculation of the utility function but can be viewed as a natural number.
Definition Agents: = nat.
Definition Bid: = Z.
Definition Utility: = Z.

We then describe an inductive relation aRb binding agents with their bids
and provide two functions Agent aRb and Bid aRb that return respectively the
agent and the bid for a given relation.
Inductive aRb : Type :=

Binding : Agents -> Bid -> aRb.

Definition Agent_aRb (r:aRb):Agents :=
match r with
| Binding a b => a
end.

Definition Bid_aRb (r:aRb):Bid :=
match r with
| Binding a b => b
end.

To enable us reasoning on the agents’ utilities, we define a relation aRu bind-
ing agents to their utilities and a handle function Utility aRu to extract the
utility of a given agent.
Inductive aRu : Type :=

AUtility : Agents -> Utility -> aRu.

Definition Utility_aRu (au:aRu):Utility :=
match au with
| AUtility a u => u
end.

To eliminate negative bidding, we define a function TestBid allowing us to
set any bid that is smaller than zero to zero.
Definition TestBid (b:Z):Bid :=

match Z_gt_dec b 0 with
| left _ => b
| right _ => 0
end.

To enable agents to decide whether to bid or not, we have defined a relation
flag binding an agent with a boolean value indicating the choice of this agent.
If the value is true, then the agent wants to bid, otherwise the agent gives up
bidding in the current round. Agents can set their choices based on their bidding
strategies by using the function Set flag.



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 29

Inductive flag : Type :=
Choice : Agents -> bool -> flag.

Definition Set_flag (a:Agents)(b:bool) : flag :=
match b with
| true => Choice a b
| false => Choice a b

end.

With the help of flag, we can build up the state of the auction by a fixpoint
definition of the function AuctionState. We use the function Bool flag to get
the boolean value associated to each agent. We then store all the flag values into
a List structure flaglist, which is the input to the function AuctionState.
If AuctionState returns true, then the auction will continue, otherwise it stops.

Definition Bool_flag (f:flag) : bool :=
match f with
| Choice a b => b
end.

Inductive flaglist : Type :=
| nil : flaglist
| cons : flag -> flaglist -> flaglist.

Fixpoint AuctionState (fl:flaglist) : bool :=
match fl with
| nil => false
| cons h nil => match (Bool_flag h) with

| false => false
| true => true
end

| cons h t => match (Bool_flag h) with
| false => AuctionState t
| true => true
end

end.

Next, we will illustrate our single item auction specification by using the
English and Vickrey auctions to show how to specify agents’ strategies and how
a given strategy profile can be shown to be a dominant strategy equilibrium.

3.2 The English Auction Case

In the English auction, we consider two strategies: First, the agent starts to bid
from a lower price up to its valuation termed as bid below to value. Second,
the agent bids beyond its valuation termed as bid beyond value.
Definition bid_below_to_value (b : Bid) (v : Bid): bool :=

match Z_le_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

The English auction is a type of sequential auction in which bidders have
to beat the current bid. A new bid must be higher than the current one, oth-
erwise it is rejected. To take this into account, we have defined the relation



30 W. Bai et al.

aRboption and used it to return “Accept” or “Reject” for each new bid via
the function Compare. Two functions Agent flag and Find flag are used to
build up the Compare function. Agent flag returns an agent from one flag.
Find flag searches for the flag of an agent from the list flaglist. The return
value (Choice 0%nat false) is a default value when the flag of an agent can-
not be found. The function CurrentWinner returns the winner and its associated
bid aRb.

Inductive aRboption : Type :=
| Accept : aRb -> aRboption
| Reject : aRboption.

Definition Agent_flag (f:flag) : Agents :=
match f with
| Choice a b => a
end.

Fixpoint Find_flag (a:Agents) (fl:flaglist) : flag :=
match fl with
| nil => (Choice 0%nat false)
| cons h t => match beq_nat a (Agent_flag h) with

| true => h
| false => Find_flag a t
end

end.

Definition Compare (fl:flaglist)(new_aRb current_aRb : aRb) : aRboption :=
match Bool_flag (Find_flag (Agent_aRb new_aRb) fl) with
| true => match Z_gt_dec (Bid_aRb new_aRb) (Bid_aRb current_aRb) with

| left _ => Accept new_aRb
| right _ => Reject

end
| false => Reject
end.

Definition CurrentWinner (fl:flaglist)(new_aRb current_aRb : aRb) : aRb :=
match Compare fl new_aRb current_aRb with
| Accept n’ => n’
| Reject => current_aRb
end.

The auction ends when all agents have a flag value of false and the winner
can be found as the one with the highest bid. Given the agent’s valuation v and
a payment p, the utility u of an agent is defined as v − p if the agent wins and
zero otherwise. This utility function is formalized in Utility Eng wherein the
variable winbid represents the highest bid in the auction.

Definition Utility_Eng (winbid:Bid) (b:Bid) (v:Bid) : Utility :=
match Z_lt_dec b winbid with
| left _ => 0
| right _ => v - b
end.

3.3 The Vickrey Auction Case

In a Vickrey auction, also known as second-price sealed-bid auction, all the
bidders submit their bids at a time without any knowledge of other bidders’ bids.
The highest bidder wins but pays the second-highest bid. There are three bidding
strategies in this auction: bid truthfully (or its valuation) encoded in the function



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 31

bid value, bid below the valuation encoded in the function bid below value,
and bid beyond the valuation through the function bid beyond value.

Definition bid_value (b : Bid) (v : Bid): bool :=
match Z_eq_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_below_value (b : Bid) (v : Bid): bool :=
match Z_lt_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

We have used the List data structure to store the basic elements of aRb.
In the definition list of aRb, the binlist type can be described as follows: it is
either an empty (bnil) or else a pair of a aRb element and a binlist. This can
be described using the notation :: as an infix bcons operator for constructing
binding lists.

Inductive binlist : Type :=
| bnil : binlist
| bcons : aRb -> binlist -> binlist.

Notation "x :: l" := (bcons x l) (at level 60, right associativity).

The function addsortbid allows us to add and sort a binlist in a descending
order. In this recursively defined function, all bindings (Agents → Bid) are added
to the list one by one. Also, the function winbid is used to calculate the winning
bid (the head of the sorted binlist). When binlist is empty, it returns a default
value (Binding 0%nat 0). The utility u of an agent is defined as v − sb if the
agent wins and zero otherwise, where v is the agent’s valuation and sb is the second
highest bid in the sorted binlist. To calculate the utility of each agent, we need
to know the second highest bid in the sorted binlist. The function se hi bid
finds the second highest bid when there are at least two elements in the sorted
binlist. Otherwise, it will return a default value (Binding 0%nat 0).

Fixpoint addsortbid (b : aRb) (l : binlist) : binlist :=
match l with
| bnil => b :: bnil
| bcons a l’ => match Z_lt_dec (Bid_aRb b)

(Bid_aRb a) with
| left _ => a :: (addsortbid b l’)
| right _ => b :: a :: l’
end

end.

Definition winbid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)
| a :: l’ => a
end.



32 W. Bai et al.

Definition se_hi_bid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)
| a :: l’ => match l’ with

| bnil => (Binding 0%nat 0)
| h :: l’’ => h
end

end.

The UtilityOfTruthfulBidding function defines the utility for an agent
bidding its valuation v. Recall that the variable sb in this function stands for
the second highest bid.
Definition UtilityOfTruthfulBidding (v : Bid)
(sb : Bid) : Utility :=

match Z_le_dec sb v with
| left _ => v - sb
| right _ => 0
end.

The utility for an agent in the other two strategies is presented in Algorithm 1.
It summarizes the six different conditions giving rise to an agent’s utility and is
encoded in the function Utility OfOtherStrategies.
Definition Utility_OfOtherStrategies (b : Bid) (v : Bid)

(sb : Bid) : Utility :=
match Z_gt_dec b v with
| left _ => match Z_gt_dec sb b with

| left _ => 0
| right _ => match Z_le_gt_dec sb v with

| left _ => v - sb
| right _ => v - sb
end

end
| right _ => match Z_le_gt_dec sb b with

| left _ => v - sb
| right _ => match Z_ge_lt_dec sb v with

| left _ => 0
| right _ => 0
end

end
end.

Algorithm 1. Computation of Utility OfOtherStrategies

Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Different Cases in the definition of Utility OfOtherStrategies :
1. b > v

1.1 sb > b, u = 0;
1.2 sb ≤ v, u = v − sb;
1.3 v < sb ≤ b, u = v − sb, u < 0.

2. b < v
2.1 sb ≤ b, u = v − sb;
2.2 sb ≥ v, u = 0;
2.3 b < sb ≤ v, u = 0.



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 33

4 Certifying Desirable Properties

In the English auction with private values setting, in the sense that bidders know
only their own valuation, buyers sequentially submit their bids. The dominant
bidding strategy is for a buyer to start bidding from a lower price and keep
increasing its bid until its valuation. In a Vickrey auction, the buyers simul-
taneously submit their bids and a dominant strategy is for the bidder to bid
its valuation. We may be interested in additional auction properties, including
collusion-proofness meaning that agents cannot collude to achieve a favourable
outcome to them, or false-name bidding free meaning that agents cannot manipu-
late the outcome by using fictitious names. We may also be interested in showing
that the auction is well-defined function and that it is implemented in line with
its specification. In this section, we focus on the certification of dominant strategy
in both English and Vickrey auctions. To carry out the Coq proof, all different
bidding strategies and their related utilities are examined for comparison. The
keyword Variables can be used to define local variables in Coq. We can use the
keywords Hypotheses and Lemma to define Hypotheses and Lemma in a Coq
proof respectively.

4.1 Certification of Dominant Strategy in the English Auction

For the English auction, the dominant strategy is for each buyer to bid up to
its valuation. To provide a machine-checkable proof of this fact, we will use
the previously defined utility function Utility Eng along with some hypothe-
ses. Algorithm 2 is used to construct the certificate. This algorithm compares
two strategies: bid beyond the valuation (b > v) and bid up to the valuation
(b <= v). In total, there are three cases of comparison using different hypothe-
ses. In all cases, we see that for a buyer to bid up to its valuation yields an utility
that is higher or equal to that obtained when a buyer adopts any other strategy.

Algorithm 2. Proving the Dominant Strategy in the English auction
Variables:
v: valuation of one agent
b: bid of one agent
winbid: the highest bid
u: utility of one agent
Comparison Cases:
1. b = winbid,

b > v → u = v − b < 0 (If b ≤ v → u = v − b ≥ 0, Better);
2. b < winbid,

b > v → u = 0 (If b ≤ v → u = 0, Same);
3. b > v, b = winbid → u = v − b < 0 (If b ≤ v, b < winbid → u = 0, Better).

In here, we provide a detailed proof for the first case. The remaining two
cases are proved in a similar way. To carry out the Coq proof of the first case,



34 W. Bai et al.

we started by defining the three variables v, b, and winbid. Recall that v is the
valuation of one agent, b is the bid of one agent and winbid is the highest bid
in one auction.

Variables v b winbid : Z.

As seen in Algorithm 2, the first comparison case is on the condition that one
agent wins the auction with bid b. By relying upon this condition, we introduce
the hypothesis b = winbid, which means that the bid b is the winning bid in
the auction. This hypothesis is defined in Coq as:

Hypotheses English hy1 : b = winbid.

All of the Lemmas that are proved in this part rely upon this hypothesis. A tactic
omega, which is a solver of quantifier-free problems in Presburger Arithmetic,
i.e. a universally quantified formula made of equations and inequations, is used
in the following proofs. In the next step, we prove Lemma 1 to show that bid b
is not less than the winning bid winbid.

Lemma 1 (not b lt win). ∼ b < winbid.

Proof. In English hy1, we have bid b equals to the winning bid winbid. There-
fore, bid b is not less than the winning bid winbid. The proof is carried out by
using English hy1 and the tactic omega in Coq. ��
The following Lemma 2 expresses the fact that if one agent bids up to its valu-
ation (b <= v), it will get an utility of v - b.

Lemma 2 (U below to v). b <= v →∼ b < winbid → Utility Eng winbid b
v = v − b.

Proof. In here, we use the premises: one agent bids up to its valuation (b <= v)
and the previously proved Lemma 1. According to the definition of Utility Eng,
if bid b is less than the winning bid winbid, this agent gets the utility of zero.
Otherwise, it gets the utility of v-b. Furthermore, we have proved that bid b
is not less than the winning bid winbid in Lemma 1. Consequently, this agent
gets the utility of v-b. The proof is finished by a case-splitting following the
definition of function Utility Eng in Coq. ��
The next Lemma 3 shows that, under the premise (b <= v), the value of v - b
is greater or equal to 0.

Lemma 3 (v min b ge O). b <= v → v − b >= 0.

Proof. The proof is constructed by using the premise b <= v and the tactic
omega. ��
Lemma 4 takes Lemmas 2 and 3 as premises, and proves that the utility that
the agent gets is greater or equal to 0 when it bids up to its valuation.

Lemma 4 (U ge O). Utility Eng winbid b v = v − b → v − b >= 0 →
Utility Eng winbid b v >= 0.



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 35

Proof. Lemma 2 indicates that an agent gets the utility of v-b, and Lemma 3
establishes that the value of v-b is greater or equals to 0. By using these two
lemmas, we can draw the conclusion that this agent gets a nonnegative utility.
The proof is built up by combining the Lemmas 2 and 3 in Coq. ��
Next, we will calculate and prove that the utility that an agent gets when it bids
beyond its valuation under the hypothesis English hy1.

The premises of Lemma 5 are an agent bids beyond its valuation (b > v)
and the previously proved Lemma not b lt win. Under these two premises, we
can derive the fact that the agent should get the utility of v - b.

Lemma 5 (U beyond v). b > v →∼ b < winbid → Utility Eng winbid b
v = v − b.

Proof. The proof is carried out by combining the premise b > v and Lemma 1.
By the definition of Utility Eng, if bid b is not less than the winning bid winbid,
then the agent gets the utility of v-b. Lemma 1 establishes that ∼b < winbid is
true. So, we have proved that when an agent bids beyond its valuation, it gets
utility of v-b. We finish this proof by a case-splitting following the definition of
function Utility Eng in Coq. ��
Lemma 6 shows that under the premise b > v, the value of v - b is smaller
than 0.

Lemma 6 (v min b lt O). b > v → v − b < 0.

Proof. The proof is constructed by using the premise b > v and the tactic
omega. ��
Lemma 7 shows that if an agent bids beyond its valuation, then it will get
negative utility.

Lemma 7 (U lt O). Utility Eng winbid b v = v − b → v − b < 0 → Utility
Eng winbid b v < 0.

Proof. Lemma 5 shows one agent getting the utility of v-b, and Lemma 6 estab-
lishes that the value of v-b is less than 0. Based on these two lemmas, we can
conclude that this agent gets a negative utility. The proof is constructed by
combining both Lemmas 5 and 6. ��
On the basis of English hy1, Lemma 4 establishes that if one agent bids up to
its valuation, then it gets nonnegative utility whereas Lemma 7 shows that an
agent will get negative utility if it bids beyond its valuation. As a consequence,
we can conclude that for an agent to start bidding from a lower price up to its
valuation is a better strategy than for that agent bidding beyond its valuation.
This terminates the first case. By proving all the remaining cases, we complete
the proof of dominant strategy in the English auction.



36 W. Bai et al.

4.2 Certification of the Dominant Strategy in Vickrey Auction

Our certification is based on the proof in [21]. Six different cases of bidding
strategies are considered and defined in Utility OfOtherStrategies. They are
compared against the outcome of the truthful bidding strategy (bidding its val-
uation). The schema used to construct our machine-checkable proof is shown in
Algorithm 3. As in the case of the English auction, we only demonstrate how
to construct the Coq proof of the first case in Algorithm 3, since the remaining
cases are dealt with in a similar fashion.

Algorithm 3. Proving the Dominant Strategy in Vickrey auction
Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Comparison Cases:
1. sb > b,

b > v → u = 0 (If b = v → u = 0, Same);
2. sb ≤ v,

b > v → u = v − sb (If b = v → u = v − sb, Same);
3. v < sb ≤ b,

u = v − sb < 0 (If b = v → u = 0, Better);
4. sb ≤ b,

b < v → u = v − sb (If b = v → u = v − sb, Same);
5. sb ≥ v,

b < v → u = 0 (If b = v → u = 0, Same);
6. b < sb < v,

u = 0 (If b = v → u = v − sb > 0, Better).

Let us start by introducing three variables v, b and sb. The meanings of
these variables are listed in Algorithm 3.

Variables v b sb : Z.

In the first case of Algorithm 3, we have the hypothesis sb > b, meaning that
an agent’s bid is less than the second highest bid. All of the Lemmas that are
proved below are based on this hypothesis.

Hypotheses Vickrey hy1 : sb > b.

The Lemma 8 shows that if one agent bids beyond its valuation (b > v), it
will get the utility of zero.

Lemma 8 (Utility of CaseOne). b > v → Utility OfOtherStrategies b v
sb = 0.



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 37

Proof. We have the premise b > v. The definition of Utility OfOther
Strategies states that if an agent bids beyond its valuation (b > v) and the
second highest bid is greater than this agent’s bid (sb > b), then it gets the
utility of zero. The proof is completed by a case-splitting following the definition
of function Utility OfOtherStrategies in Coq. ��
So far, we have proved that based on Vickrey hy1, one agent gets the utility of
zero if it bids beyond its valuation. Then, we will prove that if one agent bids
its valuation, it also gets the utility of zero. To finish this proof, we introduce
Lemma 9 in the first step. Lemma 9 shows that sb is not smaller or equal to v
under the premise: b = v.

Lemma 9 (not sb le v). b = v → sb > v →∼ sb <= v.

Proof. The Coq proof is constructed by combining the hypothesis Vickrey hy1,
the two premises b = v, sb > v and the tactic omega. ��
The following Lemma 10 shows that when an agent bids its valuation, it gets
the utility of zero.

Lemma 10 (Utility of Valuation). ∼ sb <= v → UtilityOfTruthfu
lBidding v sb = 0.

Proof. The conclusion of Lemma 9 is used as a premise. Based on the definition
of Utility OfTruthfulBidding, if an agent bids its valuation and the second
highest bid sb is not less than or equal to its valuation v, this agent gets the
utility of zero. The proof is carried out by a case-splitting following the definition
of the function Utility OfTruthfulBidding in Coq. ��
Lemma 11 establishes that under the hypothesis Vickrey hy1, the utility asso-
ciated with the truthful bidding strategy is the same as that of bidding beyond
the valuation for an agent.

Lemma 11 (V E SOne). Utility OfOtherStrategies b v sb = 0 →
UtilityOfTruthfulBidding v sb = 0 →
Utility OfOtherStrategies b v sb = UtilityOfTruthfulBidding v sb.

Proof. Using the hypothesis Vickrey hy1, we have proved that an agent gets
the utility of zero if it bids beyond its valuation in Lemma 8. Moreover, in
Lemma 10, if an agent bids its valuation, then it gets the utility of zero. That
is to say, this agent gets the same utility, no matter which strategy it uses. The
proof is completed by combining Lemma 8 and Lemma 10 in Coq. ��
As mentioned earlier in this section, we do not present the Coq proofs related
to the remaining five cases in Algorithm 3 for simplicity of the presentation
because these five cases are proved in a similar way. This then completes the
Coq certification of truthful bidding be a dominant strategy in Vickrey auction.



38 W. Bai et al.

5 Discussion

In our current implementation of the FPCC framework to certify auction prop-
erties, we have enabled a participating agent to find out desirable properties
held by the auction house and to recognize whether a given recommendation
is correct or not. For example, suppose a buyer agent visits a first-price sealed-
bid auction (each agent independently submits a single bid, the highest bidder
wins and pays her bid). The server side of this auction house provides this agent
with a Coq proof that truthful bidding is a dominant strategy derived from the
Vickrey auction. Our system ensures that the proof checker will find a mismatch
between the auction specification and the given proof. Thus our implementa-
tion enables the buyer agent to find out that strategyproofness is not a property
of this auction house and that the given proof is wrong. The agent can only
check the proof that is related to a well-defined specification, which means that
the certificate of dominant strategy in Vickrey auction cannot be used for the
English auction for instance. This helps agents distinguish the properties of dif-
ferent auction mechanisms. Our approach can be extended to a broad range of
agent-mediated e-commerce systems. For example, we can use this approach to
certify whether the winner of the auction is the highest bidder. It also can be
applied to verify the communication protocols used by autonomous agents. For
the customer who may be concerned by security issues, this approach can be
used to verify transaction protocols implemented in an e-commerce system.

One of the limitations of our current work is that an agent cannot understand
a previously unseen mechanism unless the specification is part of the common
knowledge of this agent. For example, an agent with the knowledge of English
auction specification is roaming in the Internet. After this agent arrives at an auc-
tion house, it checks the specification of this auction house. The agent can recog-
nize this auction if the specification is an English auction. Otherwise, this agent
cannot figure out the type of the auction house. Assume that a human being
delegates a task to bid for one item in an English house to a buyer agent. The
buyer agent with the knowledge of English auction will join in the English auc-
tion house but will ignore any other unrecognized auction house. But, an agent
with all the specifications of widely used auction mechanisms can recognize dif-
ferent kinds of auction houses although it requires more computational resources.
Nonetheless, it is our intention to extend this implementation by enabling agents
to operate on previously unseen protocols by using the semantic web technology
so as to build up a shared ontology by the agents and connect this ontology with
the Coq formalism in order to enable the verification. Seemingly, Semantic Web
Service Language OWL-S is a good Logic-based Language candidate to describe
auction mechanisms in a machine understandable formalism.

Note that although, Coq is an interactive theorem prover, we have utilised
it to enable automated verification since the proof is constructed only once and
agents have to check the correctness of given certificates automatically. Moreover,
our approach can be generalised in any kind of auction by making use of ontology
based formalism to describe an auction and mapping this description to our Coq
specification.



A Proof-Carrying Code Approach to Certificate Auction Mechanisms 39

6 Conclusion and Future Work

In this paper, we have used the FPCC framework to e-commerce systems so
as to provide certification abilities for software agents. The setting is that of
online auction markets wherein agents can move between auction houses. Auc-
tion houses can publish their mechanism (auction rules) along with proofs of
some desirable properties. Buyer agents can download the auction rules, inquire
for a property and get the proof for that property so that the agent can check
that a proof is indeed correct. We have demonstrated the feasibility of this
FPCC approach by formalizing and checking strategy-proofness for the English
and Vickrey auctions from within Coq. The ability for an agent to verify auction
protocols will increase the trust to an online auction house, which in turn may
render this kind of trading attractive and boost its market value.

As future work, we will continue implementing the framework that is pro-
posed in this article. We plan to build an auction house using both Semantic
Web [1] and the Java Agent DEvelopment Framework (JADE) [22]. Semantic
web provides us with a mechanism that can be used by agents to communicate
and understand each other. It also enables software agent to provide intelligent
access to heterogeneous and distributed information. In this situation, a soft-
ware agent is an encapsulated computer system in some environment, capable
of perceiving and autonomously acting in that environment. JADE is a widely
used tool to implement multi-agent systems. It provides mechanisms to create
agents, enable agents to execute tasks and make agents communicate with each
other. Semantic Web agents can take benefits from Semantic Web technologies
in two parts:

– Metadata will be used to identify and extract information from Web sources.
– Ontologies will be used to assist in Web searches, to interpret retrieved infor-

mation, and to communicate with other agents.

In our scenario, all the information of agents, which are created by JADE, will be
translated into an OWL file. Combining the generated auction ontology file with
previously defined auction protocol ontology, we can generate an integral Seman-
tic Web Auction system, which is expressed in Semantic Web Languages. Then,
this Semantic Web Auction system can be abstracted into Coq specifications.
Wherein FPCC can be used for the verification process.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

2. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 106–119. ACM
(1997)

3. The Coq Development Team: The coq proof assistant reference manual: Version
8.4 (2012) http://coq.inria.fr

http://coq.inria.fr


40 W. Bai et al.

4. Tadjouddine, E.M., Guerin, F.: Verifying dominant strategy equilibria in auctions.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 288–297. Springer, Heidelberg (2007)

5. Tadjouddine, E., Guerin, F., Vasconcelos, W.: Abstractions for model-checking
game-theoretic properties of auctions. In: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3, Inter-
national Foundation for Autonomous Agents and Multiagent Systems, pp. 1613–
1616 (2008)

6. Tadjouddine, E.M.: Computational complexity of some intelligent computing sys-
tems. Int. J. Intell. Comput. Cybernetics 4(2), 144–159 (2011)

7. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189
(1995)

8. Dolev, S., Panagopoulou, P., Rabie, M., Schiller, E., Spirakis, P.: Rationality
authority for provable rational behavior. In: Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 289–
290. ACM (2011)

9. Lapets, A., Levin, A., Parkes, D.: A typed language for truthful one-dimensional
mechanism design. Technical report, Computer Science Department, Boston Uni-
versity (2008)

10. Sălcianu, A., Arkoudas, K.: Machine-checkable correctness proofs for intra-
procedural dataflow analyses. Electr. Notes Theoret. Comput. Sci. 141(2), 53–68
(2005)

11. Dowek, G., Felty, A., Herbelin, H., Huet, G., Werner, B., Paulin-Mohring, C., et
al.: The coq proof assistant user’s guide: Version 5.6 (1991)

12. Affeldt, R., Kobayashi, N.: Formalization and Verification of a Mail Server in Coq.
In: Okada, M., Pierce, B., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 217–233. Springer, Heidelberg (2003)

13. Affeldt, R., Kobayashi, N., Yonezawa, A.: Verification of concurrent programs using
the coq proof assistant: a case study. IPSJ Digital Courier 1(7), 117–127 (2005)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

15. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

16. Vestergaard, R.: A constructive approach to sequential nash equilibria. Inf. Process.
Lett. 97(2), 46–51 (2006)

17. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Jacquart,
R. (ed.) Building the Information Society. IFIP, vol. 156, pp. 359–366. Springer,
Heidelberg (2004)

18. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. ACM SIGPLAN Not. 37(1), 178–190 (2002)

19. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. ii. Oxford
University Press, Oxford (1992)

20. Appel, A.: Foundational proof-carrying code. In: 16th Annual IEEE Symposium
on Logic in Computer Science, Proceedings, pp. 247–256. IEEE (2001)

21. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)
22. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with

JADE (wiley series in agent technology). Wiley, Chichester (2007)


	A Proof-Carrying Code Approach to Certificate Auction Mechanisms
	1 Introduction
	2 Our Certification Framework
	3 Formalization of Auction Mechanisms Within Coq
	3.1 Specifying Single Item Auction
	3.2 The English Auction Case
	3.3 The Vickrey Auction Case

	4 Certifying Desirable Properties
	4.1 Certification of Dominant Strategy in the English Auction
	4.2 Certification of the Dominant Strategy in Vickrey Auction

	5 Discussion
	6 Conclusion and Future Work
	References


