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{okouchnarenko,jfweber}@femto-st.fr

2 Inria/Nancy-Grand Est, Villers-les-Nancy, France

Abstract. Dynamic reconfiguration allows adding or removing compo-
nents of component-based systems without incurring any system down-
time. To satisfy specific requirements, adaptation policies provide the
means to dynamically reconfigure the systems in relation to (events in)
their environment. This paper extends event-based adaptation policies by
integrating temporal requirements into them. The challenge is to recon-
figure component-based systems at runtime while considering both their
functional and non-functional requirements. We illustrate our theoretical
contributions with an example of an autonomous vehicle location sys-
tem. An implementation using the Fractal component model constitutes
a practical contribution. It enables dynamic reconfigurations guided by
either enforcement or reflection adaptation policies.

1 Introduction

Dynamic reconfiguration is a mechanism that allows components of component-
based systems to be added to or removed without incurring any system down-
time. The challenge is to build or maintain trustworthy systems which satisfy
both functional and non-functional requirements.

Let us illustrate the adaptation and reconfiguration needs on a characteristic
example inspired from a real case study in the land transportation domain.
The example concerns the Cybercar concept, a public transport system with
automated driving capabilities. Within the autonomous vehicle case study, a
location composite component — a critical part of land transportation systems
— is made up of different positioning systems, like GPS or Wi-Fi. Thanks to
adaptation policies, the location composite component architecture can be mo-
dified to use either GPS, Wi-Fi, or GPS+Wi-Fi positioning systems, depending
on some non-functional properties, such as available energy.

Recent implementations to support the development of component-based sys-
tems, like those for the Fractal reference implementation Julia1 or for GCM2,
tend to provide mechanisms for the execution of high-level adaptation policies.
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Adaptation polices implemented in Tangram4Fractal [1], triggered by qualitative
expressions of fuzzy logic (e.g., “power is low”), do not allow expressing tempo-
ral constraints. In [2,3], the authors have introduced a component-based system
model equipped with either (a) adaptation policies using qMEDL3 logic [4] or
(b) a linear temporal logic, called FTPL4, expressing architectural constraints,
events, and temporal patterns [3]. FTPL, based on Dwyer’s work on patterns
and scopes [5], and being more expressive than qMDEL at providing temporal
schemas, this paper proposes to bridge the gap between [2] and [3].

Our main contribution is the use of FTPL logic for triggering adaptation
policies and specifying behaviours of the system under scrutiny. As a practical
contribution, we have implemented these more expressive adaptation policies
to guide and control dynamic reconfigurations via enforcement and reflection
adaptation policies. When a violation of a property is detected, the reflection’s
purpose is to reconfigure the system to mitigate, if possible, the failure, whereas
the enforcement aims to circumvent property violations.

Furthermore, as temporal properties often cannot be evaluated to true or false
during the system execution, and so cannot, a fortiori, the extended policies, this
paper addresses this question by evaluating at runtime, in a progressive manner,
both temporal properties and extended policies. To this end, like in RV-LTL [6],
in addition to true and false values, potential true and potential false values
are used whenever an observed behaviour has not yet led to an acceptance or a
violation of the property under consideration.

Layout of the paper. Section 2 introduces our motivating example, a compo-
nent model, and its operational semantics, while Sect. 3 covers a temporal pat-
tern logic over reconfiguration sequences. In Sect. 4, linear temporal patterns are
integrated into adaptation policies. The evaluation at runtime of both tempo-
ral properties and extended—reflection and enforcement—adaptation policies is
presented in Sect. 5. We show that these mechanisms guarantee a system’s behav-
iour allowed by the initial system specification (correctness result). Finally, an
implementation allowing the user to deal with the Fractal component model is
described in Sect. 6. Section 7 presents our conclusion.

2 Motivating Example and Background

Component models can be very heterogeneous. Most of them consider software
components that can be seen as black boxes (or grey boxes if some of their inner
features are visible) having fully described interfaces. Behaviours and interac-
tions are specified using components’ definitions and their interfaces. In this
section, after introducing a motivating example, we revisit the architectural
reconfiguration model introduced in [3,7]. In general, the system configuration
is the specific definition of the elements that define or prescribe what a system
3 qMEDL is a flavor of MEDL used to express quantity of resource properties.
4 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its
relation to Fractal-like components and to first-order integrity constraints over them.
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Fig. 1. The location component in Fractal

is composed of, while a reconfiguration can be seen a transition from a configu-
ration to another.

Motivating Example. The development, validation, and certification of a new
type of urban vehicles with fully or partially automated driving capabilities, like
CyCab [8] or Cristal5 aimed at replacing the private car, are a challenging issue.
These distributed and embedded systems require the expression of functional as
well as non-functional properties, for example time-constrained response, QoS,
and availability of required services.

A positioning system is a critical part of a land transportation system. Many
positioning systems have been proposed over the past few years. Among them,
we can mention GPS, GALILEO or GLONASS positioning systems which belong
to the Global Navigation Satellite Systems (GNSS, for short). Other localisation
systems have been designed using various technologies, like Wireless personal
networks such as Bluetooth, sensors, GNSS repeaters, or visual landmarks.

Figure 1 gives an abstract view of a composite location component developed
within the Fractal component framework. This component includes several posi-
tioning systems, like GPS or Wi-Fi, a controller, and a merger. Each positioning
system is composed of an atomic positioning component and a software compo-
nent to validate perceived data. The validation components transfer the posi-
tioning data to the merger if they are precise enough. The merger applies a
particular algorithm to merge data obtained from positioning systems. Finally,
the controller’s purpose is to request and to acknowledge the receipt of position-
ing data.

Moreover, there is a need to make the system’s architecture evolve at runtime.
Reconfigurations, however, must not happen at any but suitable circumstances.
The location composite component architecture can be modified to use, e.g.,
either GPS, or Wi-Fi, or GPS+Wi-Fi positioning systems, depending on some
non-functional properties, such as available energy, and the events from the cur-
rent indoor/outdoor environment. For example, the following requirement “After
the GPS component has been removed, the level of energy has to be greater than
33% before this component is added back” makes use of temporal and archi-
tectural constraints to allow the “with GPS” reconfiguration. Then, thanks to
adaptation policies, several possible reconfigurations can be determined, and
the most suitable reconfiguration can be chosen. For example, when the avail-
able energy makes both reconfigurations “with GPS” and “with GPS+Wi-Fi”
5 http://www.projet-cristal.net/

http://www.projet-cristal.net/


Dynamic Adaptations Component-Based Systems 237

possible within an adaptation policy, this policy can be used to put system’s
priorities to the “with GPS+Wi-Fi” reconfiguration, for more reliability.

Configurations. Following [3], we define a configuration to be a set of architec-
tural elements (components, required or provided interfaces, and parameters)
together with relations to structure and to link them.

Definition 1 (Configuration). A configuration c is a tuple 〈Elem,Rel〉 where

– Elem = Components � Interfaces � Parameters � Types is a set of
architectural elements, such that
• Components is a non-empty set of the core entities, i.e., components;
• Interfaces = RequiredInts � ProvidedInts is a finite set of the (required

and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes � PTypes is a finite set of the interface types and the

parameter data types;

– Rel =
{

Container � ContainerType � Contingency
� Parent � Binding � Delegate � State � V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces � Parameters → Components is a total func-

tion giving the component which supplies the considered interface or the
component of a considered parameter;

• ContainerType : Interfaces � Parameters → Types is a total function
that associates a type to each (required or provided) interface and to each
parameter;

• Contingency : RequiredInts → {mandatory, optional} is a total function
indicating whether each required interface is mandatory or optional;

• Parent ⊆ Components×Components is a relation linking a sub-component
to the corresponding composite component6;

• Binding : ProvidedInts → RequiredInts is a partial function which
binds together a provided interface and a required one;

• Delegate : Interfaces → Interfaces is a partial function to express del-
egation links;

• State : Components → {started, stopped} is a total function giving the
status of instantiated components;

• V alue : Parameters → {t|t ∈ PType} is a total function which gives the
current value of each parameter.

Example 1. To illustrate our model, the example of Fig. 1 is described in Fig. 2.

We also introduce a set CP of configuration propositions on the architectural
elements and the relations between them. These properties are specified using
first-order logic formulae [9]. The interpretation of functions, relations, and pred-
icates over Elem is done according to basic definitions in [9] and Definition 1.
6 For any (p, q) ∈ Parent, we say that q has a sub-component p, i.e., p is a child of q.
Shared components (sub-components of multiple enclosing composite components)
can have more than one parent.
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Fig. 2. Configuration of the example of Fig. 1

Let C = {c, c1, c2, . . .} be a set of configurations. We introduce an interpre-
tation function l : C → CP which gives the largest conjunction of cp ∈ CP
evaluated to true on c ∈ C. We say that a configuration c = 〈Elem,Rel〉 satisfies
cp ∈ CP , written [[ c |= cp ]] = �, when l(c) ⇒ cp. In this case, cp is valid on
c. Otherwise, c does not satisfy cp, written [[ c |= cp ]] = ⊥.

Among all the configuration propositions, there are constraints common to all
the component-based system architectures. They define consistent configurations.
For example, two bound interfaces must have the same interface type and their
suppliers must be sub-components of the same composite. These consistency con-
straints are respectively expressed by ∀ ip ∈ ProvidedInts, ir ∈ RequiredInts.
(Binding(ip) = ir ⇒ ContainerType(ip) = ContainerType(ir)), and ∀ ip ∈
ProvidedInts, ir ∈ RequiredInts.(
Binding(ip) = ir ⇒

(
∃ c ∈ Components.

(
(Container(ip), c) ∈ Parent

∧(Container(ir), c) ∈ Parent

)))
The reader interested in consistency constraints is referred to [7].

Reconfigurations. Reconfigurations make the component-based architecture
evolve dynamically. They are combinations of primitive operations such as instan-
tiation/destruction of components; addition/removal of components; binding/
unbinding of component interfaces; starting/stopping components; setting para-
meter values of components. The normal running of different components also
changes the architecture, e.g., by modifying parameter values or stopping com-
ponents. Let Rrun = R ∪ {run} be a set of evolution operations, where R is a
finite set of reconfiguration operations, and run is the name of a generic action
used to represent all the running operations of the component-based system.
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Definition 2 (Reconfiguration model). The operational semantics of
component-based systems with reconfigurations is defined by the labelled tran-
sition system S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of con-
figurations, C0 ⊆ C is a set of initial configurations, → ⊆ C × Rrun × C is the
reconfiguration relation, and l : C → CP is a total interpretation function.

Let us note c
ope→ c′ for (c, ope, c′) ∈→, and c

ope→ when there is a target configu-
ration c′ such that c

ope→ c′. Given the model S = 〈C, C0,Rrun ,→, l〉, an evolution
path (or a path for short) σ of S is a sequence of configurations c0, c1, c2, . . . such
that ∀i ≥ 0. ∃ opei ∈ Rrun.(ci

opei→ ci+1). We write σ(i) to denote the i-th con-
figuration of σ. The notation σi denotes the suffix path σ(i), σ(i+1), . . ., and σj

i

denotes the segment path σ(i), σ(i + 1), . . . , σ(j − 1), σ(j). Let Σ denote the set
of paths, and Σf (⊆ Σ) the set of finite paths. A configuration c′ is reachable
from c when there is a path σ = c0, c1, . . . , cn in Σf s.t. c = c0 and c′ = cn. An
execution is a path σ in Σ s.t. σ(0) ∈ C0.

3 FTPL: A Temporal Logic for Dynamic Reconfigurations

In this section, we briefly recall the FTPL logic introduced in [3]. Inspired by
[10,11], we present a new progressive semantics for FTPL properties evaluation
at runtime, where, unlike [12], the evaluation of a trace or temporal property at
any given state of a path σ is based on its evaluation at the previous state.

3.1 Syntax and Notations

Basically, constraints on the architectural elements and the relations between
them are specified as configuration propositions defined in Sect. 2. In addition,
the proposed logic contains external events, as well as events from reconfiguration
operations, temporal properties, and, finally, trace properties embedded into
temporal properties. Let PropFTPL denote the set of the FTPL formulae obeying
the FTPL grammar given below. Let us first give the FTPL syntax.

<FTPL> ::= <tpp> | <events> | cp

<tpp> ::= after <events> <tpp> | before <events> <trp> | <trp> until <events> | <trp>

<trp> ::= always cp | eventually cp | <trp> ∧ <trp> | <trp> ∨ <trp>

<events> ::= <event>,<events> | <event>

<event> ::= ope normal | ope exceptional | ope terminates | ext

In order to give the semantics for these formulae, we introduce the set
B4 = {⊥,⊥p,�p,�}, where ⊥,� stand resp. for false and true values, and ⊥p,�p

for potential false and potential true values. As in [6], we consider B4 together
with the truth non-strict ordering relation � satisfying ⊥ � ⊥p � �p � �. On
B4 we define the unary operation ¬ as ¬⊥ = �, ¬⊥p = �p, ¬�p = ⊥p, ¬� = ⊥,
and we define two binary operations �, � resp. as the minimum and maximum
interpreted wrt. �. Thus, (B4,�) is a finite de Morgan lattice but not a Boolean
lattice.
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3.2 FTPL Basic Semantics

FTPL semantics is basic for events and configuration propositions, and runtime-
oriented for other properties. We write [[σ(i) |= cp]] to denote the evaluation of
the configuration proposition cp in B4

7 at the i-th configuration of the path σ.
External events (like events in [13]) occur instantaneously and can be seen

as invocations of methods performed by (external) sensors when a change is
detected in their environment. For each external event ext that may occur on a
given execution path σ, we define (a) a guard cpext, which is a first-order logic
formula over the parameters specified in the invocation of the method ext, and
(b) an assertion evalσ, valued in B2. Intuitively, if, at or before the i-th and after
the i − 1-th state (or, if i = 0, at the first state) of an execution path σ, there is
at least one occurrence of ext s.t. cpext = � then evalσ(cpext, i) = �, otherwise
evalσ(cpext, i) = ⊥.

The following definition present FTPL semantics for (a) reconfiguration events
—“ope normal” (resp. “ope exceptional”) when a reconfiguration ope termi-
nates normally (resp. abnormally) or “ope terminates” when ope terminates
regardless of its result—, (b) external events, and (c) lists of events. We write
[[σ(i) |= e]] to denote the evaluation of the event (resp. list of events) e in B4 at the
i-th configuration of the path σ.

Definition 3 (FTPL Events Semantics). Let ope be a reconfiguration ope-
ration, ext an external event, e an event, and events a list of events.

The interpretation of the events at the i-th state of the path σ is defined by:

[[σ(i) |= ope normal]] =

{
� if i > 0 ∧ σ(i − 1) �= σ(i) ∧ σ(i − 1)

ope→ σ(i)

⊥ otherwise.

[[σ(i) |= ope exceptional]] =

{
� if i > 0 ∧ σ(i − 1) = σ(i) ∧ σ(i − 1)

ope→ σ(i)

⊥ otherwise.

[[σ(i) |= ope terminates]] = [[σ(i) |= ope normal]] 
 [[σ(i) |= ope exceptional]]

[[σ(i) |= ext]] = evalσ(cpext, i)

[[σ(i) |= e, events]] = [[σ(i) |= e]] 
 [[σ(i) |= events]]

3.3 FTPL Progressive Semantics

Let σ ∈ Σ be a path. Given an FTPL property from PropFTPL, its value on σ
is given by the interpretation function [[ |= ]] : Σ × PropFTPL → B4 defined
below by induction. In order to evaluate, in a progressive fashion, FTPL expres-
sions at runtime, without consulting a complete history of FTPL properties’
evaluation (like in [12]), we introduce the following notations. Let φσ = [[σ |= φ]]
be the evaluation of an FTPL formula where φ is a list of events, a trace pro-
perty, or a temporal property. We denote φσ(i) the evaluation of φ on σ, at the
i-th state of the path.

Furthermore, following [5], if the scope of an FTPL property φ is restricted
to the suffix path σk, k ≥ 0, we write φσk

= [[σk |= φ]] for such a restriction, and
7 Since B2 ⊂ B4, the evaluation [[c |= cp]] of the configuration proposition cp ∈ CP on
the configuration c detailed on p. 5 is considered to be valued in B4.
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φσk
(i) for the evaluation in B4 of this restriction at the i-th state of σ, where

i ≥ k. Then, the evaluation of φ on the path σ (φσ = [[σ |= φ]]), is similar to the
evaluation of φ on the suffix path σ0 starting at the first configuration, wich is
φσ0 = [[σ0 |= φ]]. For the sake of simplicity, we also write cpσk

(i) = [[σk(i) |= cp]].

Definition 4 (FTPL Runtime Progressive Trace Properties Seman-
tics). Let cp be a configuration proposition, φ (resp. ϕ) a trace property of
the form φ = always cp (resp. ϕ = eventually cp). We define φσk

(i) (resp.
ϕσk

(i)), the evaluation in B4 of [[σk |= φ]] (resp. [[σk |= ϕ]]) at the i-th state of σ
when the scope is restricted to σk, by:

− for i = k, φσk
(k) = �p � cpσ(k) ; ϕσk

(k) = ⊥p � cpσ(k)
− for i > k, φσk

(i) = φσk
(i − 1) � cpσ(i) ; ϕσk

(i) = ϕσk
(i − 1) � cpσ(i)

Furthermore, let ψ1 and ψ2 be two trace properties, then:
[[σk |= ψ1 ∧ ψ2]] = [[σk |= ψ1]] � [[σk |= ψ2]] ; [[σk |= ψ1 ∨ ψ2]] = [[σk |= ψ1]] � [[σk |= ψ2]]

On the scope starting at the k-th state of σ, if at state k one has cpσ(k) =
� (resp. cpσ(k) = ⊥), the trace property always cp (resp. eventually cp) is
evaluated to �p (resp. ⊥p); otherwise, it is evaluated to ⊥ (resp. �). Then, for
i > k, at the i-th state of σ, always cp (resp. eventually cp) is evaluated to
the minimum (resp. maximum), interpreted wrt. �, of (a) its evaluation at the
previous state and (b) cpσ(i). Table 1 shows an example of the evaluation of such
trace properties.

Table 1. Evaluation of trace properties

Definition 5 (FTPL Runtime Progressive Lists of Events Semantics).
Let e be a list of events. We define eσk

(i), the evaluation in B4 of [[σk |= e]] at
the i-th state of σ when the scope is restricted to σk, by:

− for i = k, eσk
(k) = [[σk(k) |= e]]

− for i > k, eσk
(i) = [[σk(i) |= e]] � (�p � eσk

(i − 1))

Intuitively, the expression [[σ(i) |= e]] � (�p � eσk
(i − 1)) evaluates to � if

there is an occurrence of e at configuration i, and to ⊥ (resp. �p) if there is
no occurrence of e at configuration i and no (resp. at least one) occurrence of e
happening before configuration i on the scope starting at configuration k.

Definition 6 (FTPL Runtime Progressive Temporal Properties Seman-
tics). Let tpp be a temporal property, trp a trace property, e a list of events,
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φ (resp. ϕ, ψ) a temporal property of the form φ = after e tpp (resp. ϕ =
before e trp, ψ = trp until e). We define φσk

(i) (resp. ϕσk
(i), ψσk

(i)), the
evaluation in B4 of [[σk |= φ]] (resp. [[σk |= ϕ]], [[σk |= ψ]]) at the i-th state of σ
when the scope is restricted to σk, by: for i ≥ k,

φσk
(i) =

( �

j∈I
σi

k
(e)

tppσj
(i)

)
� �p where I

σi
k
(e) = {j|k ≤ j ≤ i ∧ [[σ(j) |= e]] = �}

represents the set of indexes for an occurrence of e.

ϕσk
(i) =

⎧⎪⎨
⎪⎩

�p if eσk
(i) = ⊥ ∨ i = k

⊥ if eσk
(i) = � ∧ trpσk

(i − 1) ∈ {⊥, ⊥p}
ϕσk

(i − 1) otherwise

ψσk
(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�p if trpσk
(i) �= ⊥ ∧ eσk

(i) = � ∧ eσk
(i − 1) = ⊥ ∧ trpσk

(i − 1) ∈ {�p, �}
⊥p if trpσk

(i) �= ⊥ ∧ (eσk
(i) = ⊥ ∨ i = k)

⊥ if trpσk
(i) = ⊥ ∨ (eσk

(i) = � ∧ trpσk
(i − 1) ∈ {⊥, ⊥p})

ψσk
(i − 1) otherwise

By definition, the evaluation of φ = after e tpp is either (a) �p as long as e does
not occur or if tpp is evaluated to �p or � on each suffix of the path starting at
an occurrence of e, or (b) ⊥ if on any of these suffixes tpp is evaluated to ⊥, or
(c) ⊥p, otherwise.

For ϕ = before e trp, its evaluation is either (a) �p if e has not occurred yet,
or (b) ⊥ if for each occurrence of e, trp is evaluated to ⊥ or ⊥p on the segment
starting at the beginning of the considered scope and ending at the previous
i − 1-th configuration on the σ path. Otherwise, φ at the i-th configuration is
evaluated to its value at the previous i − 1-th configuration.

Intuitively, the ψ = trp until e property can be seen as being evaluated
similarly to before e trp, but with the two following exceptions: (a) when trp
is evaluated to ⊥, ψ is evaluated to ⊥; otherwise, (a) on the beginning part of
the scope and as long as e has not occurred, ψ is evaluated to ⊥p.

Finally, we say that a reconfiguration model S = 〈C, C0,Rrun ,→, l〉 satisfies a
property φ ∈ PropFTPL, written S |= φ, if ∀σ.(σ ∈ Σ(S)∧σ(0) ∈ C0 ⇒ φσ =�).

Table 2 shows the evaluation of the temporal property φ which is always
⊥p except on and after the configuration when the event entry occurs until the
configuration preceding the occurrence of the event exit where it is �p. Note that
the event entry occurs at both the j-th and the l-th configurations whereas the
evaluation of e = start, exit is � at configurations 0 and k, hence φσ0(i) = ϕσ0(i)
for i < k, and φσ0(i) = ϕσ0(i) � ϕσk

(i) for i ≥ k.

3.4 FTPL Expressiveness

We should note that FTPL trace properties are either (a) a subset of safety
properties, as always cp, or, (b) a subset of guarantee properties, as even-
tually cp, or (c) conjunctions and disjunctions of properties from these subsets
(safety and guarantee properties). Consequently, according to the safety-progress
hierarchy [14,15], they are included in obligation properties which represent a
subset of response properties. In [16] the issue of enforceable properties, originally
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Table 2. Detail of the evaluation of “after start, exit (�p until entry)”

addressed because of infinite sequences, is extended to finite and infinite proper-
ties at runtime. It is then established that enforceable properties are exactly
response properties. Hence, FTPL trace properties, as a subset of obligation
properties, are enforceable as well.

Before ending this section, let us mention (infinite) renewal properties [17],
a superset of safety properties also containing some liveness properties, that
can be enforced by edit-automata as runtime monitors. Intuitively, a property
is a renewal property if every valid infinite sequence of actions has infinitely
many valid prefixes. This is exactly the case of response properties [15]. FTPL
trace properties being, as established above, response properties, they are also
renewal properties and can then be enforced by edit-automata. Consequently,
FTPL temporal properties, acting as scopes [5] of trace properties, can also be
enforced in the same way.

4 Integrating Temporal Properties into Adaptation
Policies

Although one of the main advantages of reconfigurable component-based systems
is the ability of the system’s architecture to evolve at runtime, reconfigurations
must not happen at any but in suitable circumstances. In order to supervise and
to dynamically influence component-based systems reconfigurations, this section
introduces adaptation policies indicating reconfigurations suitable to perform,
and rules that can impact on the architecture of the component-based system
model.

To take into account some resource constraints, events in the system envi-
ronment, or even properties over sequences of reconfigurations, we propose to
extend adaptation policies by integrating FTPL properties into them. For that,
adaptation policies exploit the above-mentioned properties and their domains.
Each domain defines its specific vocabulary to qualify associated properties,
based on the evaluation of the architectural or temporal constraints. Adaptation
policies are defined by: (a) architectural reconfiguration operations to specify the
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possible modifications of the architecture; and (a) adaptation rules to link the
properties concerning the component-based system and the need8 to activate a
reconfiguration. We adapt definitions in [1,2] to fit in with our component-based
system model semantics, when extending them with temporal properties.

Definition 7 (Adaptation Policies). Let S be a reconfiguration model, and
Ftype a set of fuzzy types. Given σ(i) ∈ C, a finite set AP of adaptation policies
for σ(i) is composed of elements A = 〈RN , RR〉, where:

– RN ⊆ R is a finite (non-empty) set of architectural reconfiguration names,
– RR = {〈F,B,G, I〉} is a finite (non-empty) set of adaptation rules, where

• F ∈ Ftype is a fuzzy type,
• B ⊆ {φσ(i) = value | φ ∈ PropFTPL ∧ value ∈ B4} is a set of properties in

PropFTPL evaluated in B4 on σ(i),
• G ⊆ {cpσ(i) = value | cp ∈ CP ∧ value ∈ B2} is a set of configuration

propositions in CP evaluated in B2 on σ(i),
• I ⊆ RN × F is a relation between reconfigurations and fuzzy values.

Let us denote Bσ(i) (resp. Gσ(i)) the conjunction of the properties evaluations
in B (resp. guards evaluations in G) on σ(i).

To illustrate adaptation policies with events, let us suppose that the system
where the location component is running can dynamically support the removal
or the addition of either the GPS and the Wi-Fi components. Of course, at any
given time there should be at least one of these components present. In certain
cases, however, it can be beneficial to remove one of these components.

For example, when the energy level of the vehicle is low, the Wi-Fi component
can be removed, and then added back when the internal batteries are recharged.
Furthermore, when the vehicle enters a “Wi-Fi area” where there is no GPS
signal available, it is suitable to remove the GPS component, which can be added
back after exiting such an area. Figure 3 displays the cycabgps adaptation policy,
which is written using a syntax inspired by Tangram4Fractal [1] adaptation
policies. This policy influences the addgps and removegps reconfigurations to
respectively add or remove the GPS component. It uses three events (lines 3–5):
start (that occurs only when the adaptation policy becomes effective) and entry
(resp. exit) that occurs when the vehicle enters (resp. exits) a “Wi-Fi area”.

Example 2. For the adaptation policy in Fig. 3, we have the architectural recon-
figurations set RN = {addgps, removegps} and Ftype = {{low, medium, high}}
which contains all the fuzzy types used in this policy. For the adaptation rule
spanning lines 23–25, we have, using the notation of Definition 7, F = {low,
medium, high}, B = {after start, exit (�p until entry) = �p}, G = {gps ∈
Components∧wifi ∈ Components = �}, and finally I = {(removegps, high)}.
This adaptation rule expresses that when the expression in B holds (i.e., the
vehicle is within a “Wi-Fi area” - cf. Table 2 for details of the evaluation), if
both the GPS and the Wi-Fi components are present, then the utility of remov-
ing the GPS component, by invoking the removegps reconfiguration, is high.
8 As in [1,2], we use a fuzzy value (e.g., in {low, medium, high}) to express this need.
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Fig. 3. cycabgps adaptation policy

Let S = 〈C, C0,Rrun ,→, l〉 be a reconfiguration model and APS a finite set
of adaptation policies for S. We now define how the adaptation policies affect
the behaviour of the component-based system model.

Definition 8 (Restriction by Adaptation Policies). The restriction of S by
adaptation policies in APS is defined as S�APS = 〈C�APS , C0�APS ,Rrun,→, l〉,
where C � APS is the least set s.t. if c ∈ C and A ∈ APS then c � A ∈ C � APS,
Rrun ∩ (∪A∈APS

RN ) �= ∅, l : C � APS → CP is a total interpretation function,
and for every ope ∈ Rrun, the transition relation →∈ C � APS × Rrun × C � APS

is the least set of triples (c � A, ope, c′ � A) satisfying the following rules:

[ACT1] c
ope→ c′

c � A
ope→ c′ � A

(ope ∈ ⋃A∈APS
RN ) ∧ Bc ∧ Gc

[ACT2] c
ope→ c′

c � A
ope→ c′ � A

ope /∈ ⋃A∈APS
RN

This definition means that all the configurations in C � APS are reachable from
initial configurations by either reconfiguration operations obeying adaptation
policies (Rule [ACT1]), or by normal reconfigurations which are not involved in
the adaptation policy (Rule [ACT2]).

5 Runtime Policy Evaluation

Given a component-based system and a set of adaptation policies, a problem
occurring while applying adaptation policies is to ensure that the reconfigura-
tions (of a component-based system obeying the policies) conform to the specified
reconfigurations. More formally, for two component-based systems modelled by
S and S � APS , the problem is to decide whether the behaviour of S obeying its
adaptation policies in APS is also a behaviour of S. To address this problem, we
propose to use the ready simulation notion [18].
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Definition 9 (Ready Simulation). Let S1 and S2 be two reconfiguration mo-
dels over Rrun. A binary relation �⊆ C1 × C2 is a ready simulation iff, for all
ope in Rrun, (c1, c2) ∈� implies

(i) Whenever (c1, ope, c′
1) ∈→1, then there exists c′

2 ∈ C2 such that (c2, ope, c′
2)

∈→2 and (c′
1, c

′
2) ∈�.

(ii) Whenever c1
ope

�→ , then c2
ope

�→ .

We say that S1 and S2 are ready-similar, written S1 � S2, if ∀c01 ∈ C0
1∃c02 ∈

C0
2 .(c01, c

0
2) ∈�. Following [18], we keep the ready-set definition for S as readies

(c) = {ope | ope ∈ Rrun ∧ c
ope→}. A useful fact follows immediately from Defin-

ition 9: (c1, c2) ∈� implies readies(c1) = readies(c2). Consequently, it is enough
to show the disequality of the ready-sets to show that the ready simulation does
not hold between two configurations.

To be able to establish whether S � APS � S or not, and thus to provide a
correctness result concerning the restriction by adaptation policies, we consider
the following decision problem.

Adaptation Problem
Input: Component-based system modelled by S = 〈C, C0,Rrun,→, l〉, c ∈ C,
and the set AP ⊆ APS of adaptation policies for c.
Output: true if ∀A ∈ AP, c � A � c, and false otherwise.

For the component-based system under its adaptation policies, we define the
ready set wrt. Definition 8 by: readies(c � A) = {ope | ope ∈ Rrun \ ∪A∈AP RN ∧
c

ope→} ∪ {ope | (ope ∈ ⋃
A∈AP RN ) ∧ Bc ∧ Gc ∧ c

ope→}. Then, again, it is easy to
see that c � A � c implies readies(c � A) = readies(c). Both S and S � APS being
infinite state systems, the simulation problem is undecidable in general. However,
when the ready sets are different, we can reach a conclusion. Consequently,

Proposition 1. The adaptation problem is semi-decidable.

The adaptation policies can be used for specifying reflection or enforcement
mechanisms. The notion of reflection means that any unwanted behaviour trig-
gers a corrective reconfiguration through an adaptation policy. The notion of
enforcement, exposed in the AdaptEnfor algorithm in Fig. 4, means that no
reconfiguration that would lead the system to behave in an unwanted way is
allowed. This algorithm uses as inputs (1) a generic component-based system
gcbs—an object used to manage a component-based system regardless of the
design/development framework, and, (2) an array, v, containing candidate recon-
figurations ordered by priority. Each of the variables currentConf , targetConf ,
and endConf represents a configuration while the variable r designates a recon-
figuration9.

This algorithm contains five functions: (a) retrieveConf(s) returns the con-
figuration of the generic component-based system s; (b) size(v) returns the size
9 In AdaptEnfor Algorithm, ≡ can be implemented by various (pre-)congruence
relations—set equality for Elem and Rel in Definition 1, structural refinement in [19],
or other relations compatible with the reconfiguration relation.



Dynamic Adaptations Component-Based Systems 247

Fig. 4. Algorithm AdaptEnfor

of the array v; (c) getNextElement(v) returns the next element of the array
v; (d) applyReconf(c, r) returns the resulting configuration when the reconfig-
uration r is applied to the configuration c; (e) preserveEnforProps(c) returns
� if every enforcement property loaded holds on the configuration c, ⊥ oth-
erwise. Finally, there are also five procedures used within this algorithm: (a)
remove(v, e) removes the element e of the array v; (b) applyToSystem(c, s) initi-
ates a reconfiguration of the system s to reach a configuration c; (c) sendEvent
(r, arg) sends the event “r normal” or “r exceptional”, where r is a reconfigu-
ration, and arg stands for “normal” or “exceptional”; (d) break exits the current
“while” loop; (e) systemExit terminates the current run of the program.

Let us add that the way we enforce properties on adaptation policies supports
the soundness and transparency principles [20]. Given a set of properties to
enforce at runtime, the mechanism we use is (a) sound because it prevents (by
not entering in the IF statement’s body at line 16) the occurrence of reconfi-
gurations that would lead the system to violate, at the next state of execution,
the properties to enforce, (b) transparent because it allows (by entering in the
IF statement’s body at line 16) the occurrence of reconfigurations (if any) that
put the system in a state complying with these properties.
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The “while” loop starting at line 12 in Fig. 4 ends when the size of the
array v becomes equal to 0. Since, on every loop iteration, the size of v is only
decremented (line 14), this algorithm always terminates.

Proposition 2. The AdaptEnfor algorithm always terminates.

When the AdaptEnfor algorithm terminates with no reconfiguration opera-
tion available to be applied to the current configuration, i.e., when the v size
becomes equal to 0 in the “while” loop, it means that the set {ope | (ope ∈⋃

A∈AP RN ) ∧ Bc ∧ Gc ∧ c
ope→}(⊆ readies(c � A)) is empty. In this case, as every

adaptation policy for c specifies at least one adaptation rule for a reconfiguration
operation, the ready sets of c and c � A are different. This way the AdaptEnfor
algorithm allows answering the adaptation problem with false. Moreover,

Theorem 1 (Correctness). If a configuration c is not reachable in S then, for
any APS, it is not reachable in S � APS.

Correctness is clear because when we forget the B and G parts of an adaptation
policy A from APS restricting a behaviour of S � APS , we get a behaviour of S.

Reflection can be applied in a way similar to the enforcement mechanism
presented above. The main difference is that, whereas enforcement prevents the
occurrence of specific reconfigurations to avoid unwanted behaviours before they
actually happen, reflection allows the detection of such behaviours and triggers
corrective actions in the form of reconfigurations performed through adaptation
policies. Such actions can range up to the total stop of the system in case of the
detection of behaviours that would justify it.

6 Implementation and Case Study

This section describes an implementation developed in Java for the dynamic
reconfiguration of component-based systems guided by adaptation policies. A
case study shows the result of our experiment on the location component of the
CyCab given in Fig. 1.

As shown in Fig. 5, in a nutshell, our implementation uses three controllers:
(a) the event controller receives events, stores them, and flushes then after they
have been sent to a requester, (b) the reflection controller sends events to the
event controller when a property of a reflection policy is violated, and (a) the
adaptation policy controller manages reconfigurations, as well as, adaptation and
enforcement policies as in the AdaptEnfor algorithm displayed in Fig. 4.

In addition, an event handler is used to receive events from an external source
and to send them to the event controller. All interactions with the component-
based system (implemented using Fractal in our case) take place through the
generic component-based system manager, a set of Java classes developed in
such a way that they can be used regardless of the framework used to design the
component-based system without modifying its code.
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Fig. 5. Implementation architecture

Since we want our imple-
mentation to be independent
of a particular component-
based framework, only a few
classes implementing Java
interfaces of the generic
component-based system
manager use API specific
to the component-based sys-
tem framework. This way,
the controllers of Fig. 5 not
being Fractal-based, our
implementation can mana-
ge various component-based
frameworks. The synchro-
nization between adaptation
policy and reflection con-

trollers coupled with the way events are managed allows the controllers to oper-
ate together under the perfect synchrony hypothesis [21].

When running the implementation, each reconfiguration is simulated (cf. line
15 of the AdaptEnfor algorithm, Fig. 4), starting with the ones with higher priori-
ty. The first one which does not violate any property from an enforcement policy
is applied (lines 16 and 17). If the reconfiguration ends normally the event “r
normal” (line 20), where r is the name of the above-mentioned reconfiguration,
is sent to the event controller. If the reconfiguration ends with an error, the
previous configuration is rolled back and the event “r exceptional” (line 26) is
sent to the event controller. Events sent by the reflection controller to the event
controller are caught by the adaptation policy controller that apply corrective
actions using appropriate adaptation policies.

Figure 6 provides the results obtained by running our implementation with
the location component of the CyCab given in Fig. 1. The top chart illustrates
the evolution of the energy level, while the middle (resp. bottom) chart shows the
presence (value 1) or the absence (value 0) of the GPS (resp. Wi-Fi) components.
Note that the rate of energy consumption is related to the presence or absence of
the GPS and Wi-Fi component. When the vehicle enters (resp. exits) a “Wi-Fi
area”, the event entry (resp. exit) is sent to the event controller, as shown by
vertical segments on Fig. 6 at configurations 66 and 134 (resp. 78 and 147).

When the energy level goes below 10, a reflection policy triggers a reconfi-
guration (chargeBattery) that has the effect to update the energy level to 100.
Just before configuration 100, a Fractal API has been used to artificially set
the energy level to a negative value, this triggers (through a reflection policy)
the reconfigurations stopCycab and chargeBattery that respectively stop the
location composite component and update the energy level to 100. The location
composite component being stopped, the energy level does not decrease until
configuration 116 when it is restarted.
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Fig. 6. Experiment with the location component

The cycabgps (Fig. 3) (resp. cycabwifi) adaptation policy, favours the
removal of the GPS (resp. Wi-Fi) component when the energy is low, and favours
its addition when the energy level is medium to high. Furthermore, when the
CyCab is in a “Wi-Fi area”, cycabgps (resp. cycabwifi) favours the removal of
the GPS (resp. addition of the Wi-Fi) component.

At configuration 66, the CyCab enters a “Wi-Fi area” having only the GPS
component present. The reflection controller, detecting that the vehicle is within
a “Wi-Fi area” without the Wi-Fi component, sends, to the event controller,
the reflectionNoWifiInWifiArea event. At the next configuration, as a con-
sequence of the retrieval of this event the adaptation policy controller initiates
the addwifi reconfiguration which adds and starts the Wi-Fi component. Then,
at the following configuration, the application of the cycabgps adaptation po-
licy (Fig. 3) by the adaptation policy controller causes the removal of the GPS
component through the removegps reconfiguration. At configuration 134, the
CyCab enters a “Wi-Fi area” having only the Wi-Fi component present. When
the level of energy becomes high (configuration 142), in application of cycabgps,
the GPS component is not added. As soon as the vehicle exits the “Wi-Fi area”
(configuration 79 and 148), since the level of energy is high, the GPS component
is added back.

Outside of a “Wi-Fi area”, the Wi-Fi (resp. GPS) component is removed at
configurations 15, 64, 89, and 159 (resp. 37 and 130), as a result of the application
of adaptation policies, because the level of energy becomes low. Still outside of
a “Wi-Fi area”, when there is only one component present (among the Wi-Fi
and GPS components), the other is added when the level of energy is medium
to high (configurations 24, 50, 79, 99, 148, and 167).

These experimental results show that extending adaptation policies with tem-
poral patterns provides the specifier with means allowing to better — in com-
parison with [1,2,4] — comprehend and control the component-based system’s
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behaviour. Because the frequency at which adaptation occurs depends on the
system under scrutiny, this parameter must be specified as a user-defined para-
meter. In a future development it will be possible to specify that adaptation
needs to happen in some bounded time.

Of course, it should be possible to come up with a finite encoding of the
bounded version of our example to use techniques for finite state systems. Our
point, however, is to evaluate temporal and architectural constraints over change-
able architectures at runtime. One can imagine new components, not even imple-
mented at the beginning of the run, to be added at execution time. This, indeed,
can lead to infinite behaviours.

7 Related Work and Conclusion

7.1 Related Work

The analysis of systems whose topology evolves over time is a challenging topic.
Tangram4Fractal [1] presents a qualitative approach of adaptation policies, but
disallow the use of temporal properties. The work in [2] shows an evolution of
Tangram4Fractal that permits adaptation policies based on a qMEDL logic [4]
to use external events. Architectural constraints, however, cannot be expressed
with qMEDL.

The FTPL logic, expressing temporal and architectural constraints, is intro-
duced in [3]. It is based on Dwyer’s work on patterns and scopes [5] and uses
specifications inspired by [22]. Nevertheless, this version of FTPL does not sup-
port external events and cannot always be evaluated at runtime.

Like Bounded Model Checking [23] (BMC for short), our approach may pro-
duce counterexamples when detecting property violation. Moreover, when no
violation is detected, both approaches are incomplete for the safety properties.
However, for some liveness properties, for example eventually, the satisfaction
can be established. It is also possible to establish the satisfaction of some safety
properties within the appropriate scope [5,22]. Similar to [7] using BMC, we can
validate architectural or temporal properties over instantiated reconfigurable
systems; this validation is size-bounded and partial.

Evaluation of FTPL properties at runtime is detailed in [12]. This version
of FTPL, however, does not support the use of external events. Furthermore,
to allow easier runtime evaluation, we use a progressive semantics inspired by
[10,11]. This semantics, unlike the one in [12], takes fully into account the usage
of scopes [5,22]

Our implementation for handling reflection is somehow similar to the steering
performed with the MaCS framework in [13]. The coupled PEDL and MEDL
scripts act as the event and adaptation controllers in our implementation while
the SADL script acts as our reflection controller. No enforcement is provided in
MaCS.

In [24], only runtime verification is performed; there is no adaptation mecha-
nism. Nevertheless, by using locations spanning over several components, the
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specifications considered for BIP systems allow, similar to our approach, descri-
bing global behaviours of the system. Dissimilar to our approach where the code
of the component-based system under scrutiny is not modified, RV-BIP slightly
modifies components and thus may not allow the component reusability; in this
case, the separation of concerns principle would not be respected.

The work in [25] allows runtime monitoring of temporal properties for com-
ponent interfaces. When components come with an abstract behavioural model,
they can be considered as grey boxes rather than black boxes. Our approach,
not limited to monitoring interactions of component interfaces with an external
application, works in both cases.

7.2 Conclusion

As component-based systems evolve at runtime, and as a behaviour in which the
runtime temporal property evaluation becomes false might be not acceptable,
this paper has proposed to integrate temporal properties into adaptation poli-
cies, and to supervise—at runtime—the reconfiguration execution allowed by the
adaptation policies. Inspired by proposals in [6], this paper continues with a four-
valued logic allowing to characterize the “potential” properties (un)satisfiability.
In addition, the four-valued logic helps in guiding the reconfiguration process,
namely in choosing the next reconfiguration operation to be applied. A proto-
type Java implementation of the algorithm for verifying and enforcing FTPL
properties integrated into the adaptation policies has been developed, as a proof
of concept.

As a future work, we plan to investigate a decentralized method to evaluate
adaptation policies and temporal formulae by progression, as in [10]. On the
implementation side, a future direction is to handle component-based systems
using the FraSCAti [26] framework.
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Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)

11. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math.
Artif. Intell. 22, 5–27 (1998)

12. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal pat-
terns for dynamic reconfigurations of components. In: Arbab, F., Ölveczky, P.C.
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