
José Luiz Fiadeiro
Zhiming Liu
Jinyun Xue (Eds.)

 123

LN
CS

 8
34

8

10th International Symposium, FACS 2013
Nanchang, China, October 27–29, 2013
Revised Selected Papers

Formal Aspects of
Component Software

Lecture Notes in Computer Science 8348

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7408

http://www.springer.com/series/7408

José Luiz Fiadeiro • Zhiming Liu
Jinyun Xue (Eds.)

Formal Aspects of
Component Software

10th International Symposium, FACS 2013
Nanchang, China, October 27–29, 2013
Revised Selected Papers

123

Editors
José Luiz Fiadeiro
Royal Holloway University of London
Egham
UK

Zhiming Liu
Birmingham City University
Birmingham
UK

Jinyun Xue
Laboratory of High-Performance

Computing
Jiangxi Normal University
Nanchang
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-07601-0 ISBN 978-3-319-07602-7 (eBook)
DOI 10.1007/978-3-319-07602-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941590

LNCS Sublibrary: SL2 – Programming and Software Engineering

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at FACS 2013, the International Sympo-
sium on Formal Aspects of Component Software, held during October 27–29, 2013, in
Nanchang, China. This was the 10th edition of FACS, a series of events that address
component-based software development, a paradigm that has been offering novel
solutions for addressing the complexity of present-day software systems by bringing
together sound engineering principles and formal methods into software engineering.

A total of 51 submissions were received, each of which was reviewed by an
average of three Program Committee members. The committee accepted 19 papers for
presentation at the conference. The authors were then invited to take into account
feedback received at the conference to submit an extended and revised version of their
accepted submission, which was again reviewed. These are the versions that are
published in this volume, together with the three invited talks.

We are particularly thankful to the Organizing Committee for their work, in par-
ticular the organization of satellite workshops and tutorials, and Jiangxi Normal
University for hosting the event and offering participants the chance of interacting
with so many young researchers and visiting the city of Nanchang.

We would also like to thank Springer for their continued support in publishing the
proceedings of FACS, and EasyChair for providing the environment in which papers
were reviewed and this volume was put together.

Finally, our thanks to all authors, Program Committee members, and invited
speakers for helping us uphold the quality of FACS.

January 2014 José Luiz Fiadeiro
Zhiming Liu

Jinyun Xue

Organization

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Christian Attiogbe University of Nantes, France
Luis Barbosa Universidade do Minho, Portugal
Roberto Bruni Università di Pisa, Italy
Tevfik Bultan University of California at Santa Barbara, USA
Carlos Canal University of Málaga, Spain
Chunqing Chen HP Labs Singapore
Xin Chen Nanjing University, China
Zhenbang Chen National University of Defense Technology, China
Van Hung Dang Vietnam National University, Vietnam
Zhenhua Duan Xidian University, China
José Luiz Fiadeiro Royal Holloway University of London, UK
Marcelo Frias Instituto Tecnologico Buenos Aires, Argentina
Lindsay Groves Victoria University of Wellington, New Zealand
Rolf Hennicker Ludwig-Maximilians-Universität München,

Germany
Axel Legay IRISA/Inria, Rennes, France
Jing Liu East China Normal University
Shaoying Liu Hosei University, Japan
Zhiming Liu Birmingham City University, UK
Antónia Lopes University of Lisbon, Portugal
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine Inria, Sophia Antipolis, France
Tom Maibaum McMaster University, Canada
Dominique Mery Université de Lorraine, LORIA, France
Peter Olveczky University of Oslo, Norway
Corina Pasareanu CMU/NASA Ames Research Center, USA
Frantisek Plasil Charles University, Prague, Czech Republic
Pascal Poizat Université Paris Ouest Nanterre, France
Shaz Qadeer Microsoft Research, USA
Markus Roggenbach Swansea University, UK
Gwen Salaün Grenoble INP - Inria - LIG, France
Bernhard Schaetz TU München, Germany
Marjan Sirjani Reykjavik University, Iceland
Meng Sun Peking University, China

Neil Walkinshaw University of Leicester, UK
Farn Wang National Taiwan University, Taiwan
Gianluigi Zavattaro University of Bologna, Italy
Naijun Zhan Chinese Academy of Sciences, China
Jianjun Zhao Shanghai Jiao Tong University, China

Additional Reviewers

Aminof, Benjamin
Astefanoaei, Lacramioara
Betarte, Gustavo
Bozga, Marius
Bucchiarone, Antonio
Böhm, Thomas
Fijalkow, Nathanael
Gerostathopoulos, Ilias
Hauzar, David
Igna, Georgeta
Jackson, Ethan
Jaghoori, Mohammad Mahdi
Keznikl, Jaroslav
Khalil, Maged
Khosravi, Ramtin
Knapp, Alexander
Komuravelli, Anvesh
Lanese, Ivan
Liu, Jie
Moscato, Mariano

Nyman, Ulrik
O’Reilly, Liam
Piterman, Nir
Regis, German
Schlingloff, Holger
Tiezzi, Francesco
Truong, Hoang
Viroli, Mirko
Wang, Guobin
Wang, Shuling
Welner, Yaron
Wolovick, Nicolas
Yan, Rongjie
Yang, Shaofa
Ye, Lina
Yin, Ling
Yuan, Zhenheng
Zhao, Hengjun
Zhu, Jiaqi

VIII Organization

Contents

Probabilistic Modal Specifications (Invited Extended Abstract) 1
Kim G. Larsen and Axel Legay

Orchestration . 5
Jayadev Misra

Super-Dense Computation in Verification of Hybrid CSP Processes 13
Dimitar P. Guelev, Shuling Wang, Naijun Zhan, and Chaochen Zhou

A Proof-Carrying Code Approach to Certificate Auction Mechanisms. 23
W. Bai, E.M. Tadjouddine, T.R. Payne, and S.U. Guan

Towards Verification of Ensemble-Based Component Systems. 41
Jiří Barnat, Nikola Beneš, Tomáš Bureš, Ivana Černá,
Jaroslav Keznikl, and František Plášil

Hierarchical Scheduling Framework Based on Compositional Analysis
Using Uppaal . 61

Abdeldjalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim G. Larsen,
Marius Mikučionis, Ulrik Nyman, and Arne Skou

Incremental Modeling of System Architecture Satisfying SysML
Functional Requirements . 79

Oscar Carrillo, Samir Chouali, and Hassan Mountassir

Formalising Adaptation Patterns for Autonomic Ensembles 100
Luca Cesari, Rocco De Nicola, Rosario Pugliese, Mariachiara Puviani,
Francesco Tiezzi, and Franco Zambonelli

Towards a Failure Model of Software Components. 119
Ruzhen Dong and Naijun Zhan

Formally Reasoning on a Reconfigurable Component-Based System —
A Case Study for the Industrial World . 137

Nuno Gaspar, Ludovic Henrio, and Eric Madelaine

A General Trace-Based Framework of Logical Causality. 157
Gregor Gössler and Daniel Le Métayer

Axioms and Abstract Predicates on Interfaces in Specifying/Verifying
OO Components . 174

Ali Hong, Yijing Liu, and Zongyan Qiu

http://dx.doi.org/10.1007/978-3-319-07602-7_1
http://dx.doi.org/10.1007/978-3-319-07602-7_2
http://dx.doi.org/10.1007/978-3-319-07602-7_3
http://dx.doi.org/10.1007/978-3-319-07602-7_4
http://dx.doi.org/10.1007/978-3-319-07602-7_5
http://dx.doi.org/10.1007/978-3-319-07602-7_6
http://dx.doi.org/10.1007/978-3-319-07602-7_6
http://dx.doi.org/10.1007/978-3-319-07602-7_7
http://dx.doi.org/10.1007/978-3-319-07602-7_7
http://dx.doi.org/10.1007/978-3-319-07602-7_8
http://dx.doi.org/10.1007/978-3-319-07602-7_9
http://dx.doi.org/10.1007/978-3-319-07602-7_10
http://dx.doi.org/10.1007/978-3-319-07602-7_10
http://dx.doi.org/10.1007/978-3-319-07602-7_11
http://dx.doi.org/10.1007/978-3-319-07602-7_12
http://dx.doi.org/10.1007/978-3-319-07602-7_12

A Framework for Handling Non-functional Properties Within
a Component-Based Approach . 196

Jean-Michel Hufflen

Using Daikon to Prioritize and Group Unit Bugs . 215
Nehul Jain, Saikat Dutta, Ansuman Banerjee, Anil K. Ghosh,
Lihua Xu, and Huibiao Zhu

Adapting Component-Based Systems at Runtime via Policies
with Temporal Patterns . 234

Olga Kouchnarenko and Jean-François Weber

Automatic Component Deployment in the Presence of Circular Dependencies . . . 254
Tudor A. Lascu, Jacopo Mauro, and Gianluigi Zavattaro

Modeling and Analysis of Component Connectors in Coq 273
Yi Li and Meng Sun

On the Complexity of Input Output Conformance Testing 291
Neda Noroozi, Mohammad Reza Mousavi, and Tim A.C. Willemse

Compatibility Checking for Asynchronously Communicating Software 310
Meriem Ouederni, Gwen Salaün, and Tevfik Bultan

Layered Reduction for Modal Specification Theories 329
Arpit Sharma and Joost-Pieter Katoen

Define, Verify, Refine: Correct Composition and Transformation
of Concurrent System Semantics . 348

Anton Wijs

A Formal Model for Service-Based Behavior Specification Using
Stream-Based I/O Tables . 369

Xiuna Zhu

Author Index . 385

X Contents

http://dx.doi.org/10.1007/978-3-319-07602-7_13
http://dx.doi.org/10.1007/978-3-319-07602-7_13
http://dx.doi.org/10.1007/978-3-319-07602-7_14
http://dx.doi.org/10.1007/978-3-319-07602-7_15
http://dx.doi.org/10.1007/978-3-319-07602-7_15
http://dx.doi.org/10.1007/978-3-319-07602-7_16
http://dx.doi.org/10.1007/978-3-319-07602-7_17
http://dx.doi.org/10.1007/978-3-319-07602-7_18
http://dx.doi.org/10.1007/978-3-319-07602-7_19
http://dx.doi.org/10.1007/978-3-319-07602-7_20
http://dx.doi.org/10.1007/978-3-319-07602-7_21
http://dx.doi.org/10.1007/978-3-319-07602-7_21
http://dx.doi.org/10.1007/978-3-319-07602-7_22
http://dx.doi.org/10.1007/978-3-319-07602-7_22

Probabilistic Modal Specifications
(Invited Extended Abstract)

Kim G. Larsen1 and Axel Legay2(B)

1 Aalborg University, Aalborg, Denmark
kgl@cs.aau.dk

2 INRIA/IRISA, Rennes, France
axel.legay@inria.fr

Abstract. This extended abstract offers a brief survey presentation of
the specification formalism of modal transition systems and its recent
extensions to the stochastic setting.

1 Modal Transition Systems: The Origines

Modal transition systems [18] provids a behavioural compositional specification
formalism for reactive systems. They grew out of the notion of relativized bisim-
ulation, which allows for simple specifications of components by allowing the
notion of bisimulation to take the restricted use that a given context may have
in its.

A modal transition system is essentially a (labelled) transition system, but
with two types of transitions: so-called may transitions, that any implementa-
tion may (or may not) have, and must transitions, that any implementation
must have. In fact, ordinary labelled transition systems (or implementations)
are modal transition systems where the set of may- and must-transitions coin-
cide. Modal transition systems come equipped with a bisimulation-like notion
of (modal) refinement, reflecting that the more must-transitions and the fewer
may-transitions a modal specification has the more refined and closer to a final
implementation it is.

Example 1. Consider the modal transition system shown in Fig. 1 which models
the requirements of a simple email system in which emails are first received and
then delivered – must and may transitions are represented by solid and dashed
arrows, respectively. Before delivering the email, the system may check or process
the email, e.g. for en- or decryption, filtering of spam emails, or generating
automatic answers using as an auto-reply feature. Any implementation of this
email system specification must be able to receive and deliver email, and it may
also be able to check arriving email before delivering it. No other behavior is
allowed. Such an implementation is given in Fig. 2.

Modal transition systems play a major role in various areas. However, the
model is best known by its application in compositional reasoning, which has

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 1–4, 2014.
DOI: 10.1007/978-3-319-07602-7 1, c© Springer International Publishing Switzerland 2014

2 K.G. Larsen and A. Legay

Fig. 1. Modal transition system modeling a simple email system, with an optional
behavior: once an email is received it may e.g. be scanned for containing viruses, or
automatically decrypted, before it is delivered to the receiver.

Fig. 2. An implementation of the simple email system in Fig. 1 in which we explicitly
model two distinct types of email pre-processing.

been recognized in the ARTIST Network of Excellence and several other related
European projects. In fact, modal transition systems have all the ingredients of
a complete compositinal specification theory allowing for logical compositions
(e.g. conjunction) [15], structural compositions (e.g. parallel) [13] as well as quo-
tienting permitting specifications of composite systems to be transformed into
necessary and sufficient specification of components [12]. Thus, modal transition
systems have all the benefits of both logical and behavioural specification for-
malisms [4]. Though modal refinement – like bisimulation – is polynomial-time
decidable for finite-state modal transition systems, it only provides a sound but
not complete test for the true semantic refinement between modal specification,
in terms of set inclusion between their implementation-sets (so-called thorough
refinement). For several years, the complexity of thorough refinement – as well
as the consistency – between modal specifications was an open problem, which
after a series of attempts [1,2,16] was shown to be EXPTIME-complete [3].

2 Probabilistic Modal Specifications

In [14], modal transitions systems were extended into a specification formal-
ism for Markov Chains by the introduction of so-called probabilistic specifica-
tions (now known as Interval Markov Chains), where concrete probabilities are
replaced with intervals, and with refinement providing a conservative extension
or probabilistic bisimulation [17]. However, Interval Markov Chains lack several
of the properties required for a complete compositional specification theory; in
particular, they are not closed neither under logical nor structural composition.
Recently, the extended notion of Constraint Markov Chains [5] was introduced
precisely with the purpose of providing these closure properties. A Constraint

Probabilistic Modal Specifications 3

Fig. 3. Implementation PA and specification APA of a coffee machine.

Markov Chain (CMC) is a Markov Chain (MC) equipped with a constraint on
the next-state probabilities from any state. Roughly speaking, an implementa-
tion for a CMC is thus a MC, whose next-state probability distribution satis-
fies the constraint associated with each state. The power of constrains can be
exploited to obtain closure under any logical/structural composition operation.
The complexity of the refinement relation largely depends on the one to solve
the constraints – it is at least quadratic (resp. exponential) for syntactic (resp.
thorough) refinement. The reader interested in decision probblems for CMCs is
redirected to [10,11].

More recently, the concept of CMC was extended to offer abstractions for
Probabilistic Automata (PA), i.e., structures that mix both stochastic and non-
deterministic aspects. The work in [7] proposes Abstract Probabilistic Automata,
that are a combination of modal transition systems and CMCs, modalities being
used to capture the non-determinism in PAs. The model was implemented in
the APAC toolset [9] and various decision problems, including stuttering and
abstraction, were studied in [8,19].

Example 2 (taken from [8]). Consider the implementation (left) and specifica-
tion (right) of a coffee machine given in Fig. 3. The specification indicates that
there are two possible transitions from initial state I: a may transition labeled
with action r (reset) and a must transition labeled with action c (coin). May
transitions are represented with dashed arrows and must transitions are rep-
resented with plain arrows. The probability distributions associated with these
actions are specified by the constraints ϕr and ϕc, respectively.

3 Future Work

In future work, we intend to combine the APA formalism with the one of timed
specifications [6]. This will allows us to reason on timed stochastic systems.
Another objective is to exploit the formalism to derive a CEGAR loop for timed
stochastic systems.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94–129 (2008)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: Modal and mixed
specifications: key decision problems and their complexities. Math. Struct. Comput.
Sci. 20(1), 75–103 (2010)

4 K.G. Larsen and A. Legay

3. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking thorough refinement
on modal transition systems is EXPTIME-complete. In: Leucker, M., Morgan, C.
(eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126. Springer, Heidelberg (2009)

4. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: Arnold, A.
(ed.) CAAP 1990. LNCS, vol. 431, pp. 57–71. Springer, Heidelberg (1990)

5. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint Markov Chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

6. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed i/o automata:
a complete specification theory for real-time systems. In: Johansson, K.H., Yi, W.
(eds.) HSCC, pp. 91–100. ACM (2010)

7. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
W ↪asowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

8. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
Wasowski, A.: New results on abstract probabilistic automata. In: ACSD,
pp. 118–127. IEEE (2011)

9. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: APAC: a
tool for reasoning about abstract probabilistic automata. In: QEST, pp. 151–152.
IEEE Computer Society (2011)

10. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., W ↪asowski, A.: Decision
problems for interval Markov Chains. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide,
C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011)

11. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Consis-
tency and refinement for interval Markov Chains. J. Log. Algebr. Program. 81(3),
209–226 (2012)

12. Goessler, G., Raclet, J.-B.: Modal contracts for component-based design. In:
SEFM, pp. 295–303. IEEE Computer Society (2009)

13. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic.
In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp.
163–180. Springer, Heidelberg (1989)

14. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277 (1991)

15. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

16. Larsen, K.G., Nyman, U., W ↪asowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

18. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
19. Sher, F., Katoen, J.-P.: Compositional abstraction techniques for probabilistic

automata. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 325–341. Springer, Heidelberg (2012)

Orchestration

Jayadev Misra(B)

The University of Texas at Austin, Austin, USA
misra@cs.utexas.edu

Abstract. In this position paper we argue that: (1) large programs
should be composed out of components, which are possibly heteroge-
neous (i.e., written in a variety of languages and implemented on a vari-
ety of platforms), (2) the system merely orchestrates the executions of
its components in some fashion but does not analyze or exploit their
internal structures, and (3) the theory of orchestration constitutes the
essential ingredient in a study of programming.

Keywords: Program composition · Component-based software construc-
tion · Orchestration · Concurrency

1 On Building Large Software Systems

This paper is about a theory of programming, called Orc1, developed by me and
my collaborators [1,7–9,12]. The philosophy underlying Orc is that: (1) large
programs should be composed out of components, which are possibly heteroge-
neous (i.e., written in a variety of languages and implemented on a variety of
platforms), (2) the system merely orchestrates the executions of its components
in some fashion but does not analyze or exploit their internal structures, and
(3) the theory of orchestration constitutes the essential ingredient in a study of
programming.

I am sorry if I have already disappointed the reader. None of the points made
above is startling. Building large systems out of components is as old as computer
science; it was most forcefully promulgated by Dijkstra in his classic paper on
Structured Programming [2] nearly a half century ago. It is the cornerstone of
what is known as object-oriented programming [6,10]. In fact, it is safe to assert
that every programming language includes some abstraction mechanism that
allows design and composition of components.

It is also well-understood that the internal structure of the components is of
no concern to its user. Dijkstra [2] puts it succinctly: “we do not wish to know
them, it is not our business to know them, it is our business not to know them!”.
Lack of this knowledge is essential in order that a component may be replaced
by another at a later date, perhaps a more efficient one, without affecting the
rest of the program.
1 See http://orc.csres.utexas.edu/ for a description of Orc and its related documenta-

tion. A book on Orc is under preparation.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 5–12, 2014.
DOI: 10.1007/978-3-319-07602-7 2, c© Springer International Publishing Switzerland 2014

http://orc.csres.utexas.edu/

6 J. Misra

Component-based design makes hierarchical program construction possible.
Each component itself may be regarded as a program in its own right, and designed
to orchestrate its subcomponents, unless the component is small enough to be
implemented directly using the available primitive operations of a programming
language. Hierarchical designs have been the accepted norm for a very long time.

Where Orc differs from the earlier works is in insisting that programming be
a study of composition mechanisms, and just that. In this view, system building
consists of assembling components, available elsewhere, using a limited set of
combinators. The resulting system could itself be used as a component at a
higher level of assembly.

There are few restrictions on components. A component need not be coded in
a specific programming language; in fact, a component could be a cyber-physical
device or a human being that can receive and respond to the commands sent
by the orchestration mechanism. Components may span the spectrum in size
from a few lines of code, such as to add two numbers, to giant ones that may
do an internet search or manage a database. Time scales for their executions
may be very short (microseconds) to very long (years). The components may be
real-time dependant. A further key aspect of Orc is that the orchestrations of
components may be performed concurrently rather than sequentially.

We advocate an open design in which only the composition mechanisms are
fixed and specified, but the components are not specified. Consequently, even
primitive data types and operations on them are not part of the Orc calculus.
Any such operation has to be programmed elsewhere to be used as a compo-
nent. By contrast, most traditional designs restrict the smallest components to
the primitives of a fixed language, which we call a closed design. Closed designs
have several advantages, the most important being that a program’s code is in a
fixed language (or combinations of languages) and can be analyzed at any level
of detail. The semantics of the program is completely defined by the semantics of
the underlying programming language. It can be run on any platform that sup-
ports the necessary compiler. Perhaps the most important advantage is that the
entire development process could be within the control of a team of individuals
or an organization; then there are fewer surprises. In spite of these advantages for
a closed system design, we do not believe that this is the appropriate model for
large-scale programming in the future; we do not believe that a single program-
ming language or a set of conventions will encompass the entirety of a major
application; we do not believe that a single organization will have the expertise
or resources to build very large systems from scratch, or that a large program
will run on a single platform.

The second major aspect of Orc is on its insistence on concurrency in orches-
tration. Dijkstra [2] found it adequate to program with three simple sequen-
tial constructs, sequential composition, a conditional and a looping construct2.
2 Dijkstra did not explicitly include function or procedure definition. This was

not essential for his illustrative examples. In his later work, he proposed non-
deterministic selection using guarded commands [3,4] as a construct, though con-
currency was not an explicit concern.

Orchestration 7

However, most modern programming systems, starting from simple desktop
applications to mobile computing, are explicitly or implicitly concurrent. It is
difficult to imagine any substantive system of the future in purely sequential
terms.

We advocate concurrency not as a means to improving the performance of
execution by using multiple computers, but for ease in expressing interactions
among components. Concurrent interactions merely specify a large number of
alternatives in executing a program; the actual implementation may indeed
be sequential. Expressing the interactions in sequential terms often limits the
options for execution as well as making a program description cumbersome.
Components may also be specified for real time execution, say in controlling
cyber-physical devices.

Almost all programming is sequential. Concurrency is essential but rarely a
substantial part of programming. There will be a very small part of a large
program that manages concurrency, such as arbitrating contentions for shared
resource access or controlling the proliferation (and interruption) of concurrent
threads. Yet, concurrency contributes mightily to complexity in programming.
Sprinkling a program with concurrency constructs has proven unmanageable;
the scope of concurrency is often poorly delineated, thus resulting in disaster in
one part of a program when a different part is modified. Concurrent program
testing can sometimes show the presence of bugs and sometimes their absence.
It is essential to use concurrency in a disciplined manner. Our prescription is to
use sequential components at the lowest-level, and orchestrate them, possibly,
concurrently.

In the rest of this paper, we argue the case for the orchestration model of pro-
gramming, and enumerate a specific set of combinators for orchestration. These
combinators constitute the Orc calculus. Orc calculus, analogous to the λ-calculus,
is not a suitable programming language. A small programming language has been
built upon the calculus. We have been quite successful in using this notation to
code a variety of common programming idioms and some applications.

2 Structure of Orc

2.1 Components, Also Known as Sites

Henceforth, we use the term site for a component3.
The notion of a (mathematical) function is fundamental to computing. Func-

tional programming, as in ML [11] or Haskell [5], is not only concise and elegant
from a scientist’s perspective, but also economical in terms of programming cost.
Imperative programming languages often use the term “function” with a broader
meaning; a function may have side-effects. A site is an even more general notion.
It includes any program component that can be embedded in a larger program,
as described below.
3 This terminology is a relic of our earlier work in which web services were the only

components. We use “site” more generally today for any component.

8 J. Misra

The starting point for any programming language is a set of primitive built-in
operations or services. Primitive operations in typical programming languages
are arithmetic and boolean operations, such as “add”, “logical or” and “greater
than”. These primitive operations are the givens; new operations are built from
the primitive ones using the constructs of the language. A typical language has
a fixed set of primitive operations. By contrast, Orc calculus has no built-in
primitive operation. Any program whose execution can be initiated, and that
responds with some number of results, may be regarded as a primitive operation,
i.e. a site, in Orc.

The definition of site is broad. Sites could be primitive operations of common
programming languages, such as the arithmetic and boolean operations. A site
may be an elaborate function, say, to compress a jpeg file for transmission over
a network, or to search the web. It may return many results one by one, as in a
video-streaming service or a stock quote service that delivers the latest quotes
on selected stocks every day. It may manage a mutable store, such as a database,
and provide methods to read from or write into the database. A site may interact
with its caller during its execution, such as an internet auction service. A site’s
execution may proceed concurrently with its caller’s execution. A site’s behavior
may depend on the passage of real time.

We regard humans as sites for a program that can send requests and receive
responses from them. For example, a program that coordinates the rescue efforts
after an earthquake will have to accept inputs from the medical staff, firemen
and the police, and direct them by sending commands and information to their
hand-held devices. Cyber-physical devices, such as sensors, actuators and robots,
are also sites.

Sites may be higher-order in that they accept sites as parameters of calls and
produce sites as their results. We make use of many factory sites that create
and return sites, such as communication channels. Orc includes mechanisms for
defining new sites by making use of already-defined sites.

2.2 Combinators

The most elementary Orc expression is simply a site call. A combinator combines
two expressions to form an expression. The results published by expressions may
be bound to immutable variables. There are no mutable variables in Orc; any
form of mutable storage has to be programmed as a site.

Orc calculus has four combinators: “parallel” combinator, as in f |g, executes
expressions f and g concurrently and publishes whatever either expression pub-
lishes; “sequential” combinator, as in f >x> g, starts the execution of f, binds
x to any value that is published by f and immediately starts execution of an
instance of g with this variable binding, so that multiple instances of g along
with f may be executing concurrently; “pruning” combinator, as in f <x< g,
executes f and g concurrently, binds the first value published by g to variable
x and then terminates g, here x may appear in f; and “otherwise” combinator,
as in f ;g, introduces a form of priority-based execution by first executing f, and
then g only if f halts without publishing any result.

Orchestration 9

There is one aspect worth noting even in this very informal description. An
expression may publish multiple values just as a site does. For example, each of
f and g may publish some number of values, and then f |g publishes all of those
values; and (f |g) >x> h executes multiple instances of expression h, an instance
for each publication of f |g. The formal meanings of the given combinators have
been developed using operational semantics.

2.3 Consequences of Pure Composition

The combinators for composition are agnostic about the components they com-
bine. So, we may combine very small components, such as for basic arithmetic
and boolean operations drawn from a library, to simulate the essential data struc-
tures for programming. This, in turn, allows creations of yet larger components,
say for sorting and searching. Operations to implement mutable data structures,
such as for reading or writing to a memory location, can also be included in
a program library. A timer that operates in real time can provide the basics
for real time programming. Effectively, a general purpose concurrent program-
ming language can be built starting with a small number of essential primitive
components in a library. This is the approach taken in the Orc language design.

Even though it is possible to design any kind of component starting with a
small library of components, we do not advocate doing so in all cases. The point
of orchestration is to reuse components wherever possible rather than building
them from scratch, and components built using Orc may not have the required
efficiency for specific applications.

3 Concluding Remarks

There is a popular saying that the internet is the computer. That is no less or
no more true than saying that a program library is a computer. This computer
remains inactive in the absence of a driving program. Orc provides the rudiments
of a driving program. It is simultaneously the most powerful language that can
exploit available programs as sites, and the least powerful programming language
in the absence of sites.

A case against a grand unification theory of programming. It is the dream of
every scientific discipline to have a grand unification theory that explains all
observations and predicts all experimental outcomes with accuracy. The dream
in an engineering discipline is to have a single method of constructing its arti-
facts, cheaply and reliably. For designs of large software systems, we dream of
a single, preferably small, programming language with an attendant theory and
methodology that suffices for the constructions of concise, efficient and verifiable
programs. As educators we would love to teach such a theory.

Even though we have not realized this dream for all domains of programming,
there are several effective theories for limited domains. Early examples include
boolean algebra for designs of combinational circuits and BNF notation for syn-
tax specification of programming languages. Powerful optimization techniques

10 J. Misra

have been developed for relational database queries. Our goal is to exploit the
powers of many limited-domain theories by combining them to solve larger prob-
lems. A lowest-level component should be designed very carefully for efficiency,
employing the theory most appropriate for that domain, and using the most
suitable language for its construction. Our philosophy in Orc is to recognize and
admit these differences, and combine efficient low-level components to solve a
larger problem. Orc is solely concerned with how to combine the components,
not how a primitive component should be constructed.

Bulk vs. Complexity. It is common to count the number of lines of code in a
system as a measure of its complexity. Even though this is a crude measure,
we expect a system with ten times as many lines of code to be an order of
magnitude more complex. Here we are confusing bulk with complexity ; that
bulkier a program, the more complex it is. There are very short concurrent
programs, say with about 20 lines, that are far more complex than a thousand
line sequential program. Concurrency adds an extra dimension to complexity. In
a vague sense, the complexity in a sequential program is additive, whereas in a
concurrent program it is multiplicative.

The philosophy of Orc is to delegate the bulkier, but less complex parts
to components and reserve the complexity for the Orc combinators. Though
solvers of partial differential equations can be coded entirely in Orc using the
arithmetic and boolean operations as sites, this is not the recommended option.
It should be coded in a more suitable language, but concurrent executions of
multiple instances of the solvers, with different parameters, for instance, should
be delegated to Orc.

Some sweeping remarks about programming. Consider the following scenario.
A patient receives an electronic prescription for a drug from a doctor. The patient
compares prices at several near-by pharmacies, and chooses the cheapest one to
fill the prescription. He pays the pharmacy and receives an electronic invoice
which he sends to the insurance company for reimbursement with instructions
to deposit the amount in his bank account. Eventually, he receives a confirmation
from his bank. The entire computation is mediated at each step by the patient
who acquires data from one source, does some minor computations and sends
data to other sources.

This computing scenario is repeated millions of times a day in diverse areas
such as business computing, e-commerce, health care and logistics. In spite of the
extraordinary advances in mobile computing, human participation is currently
required in every major step in most applications. This is not because security
is the over-riding concern, but that the infrastructure for efficient mediation is
largely absent, thus contributing to cost and delay in these applications. We
believe that humans can largely be eliminated, or assigned a supporting role, in
many applications. Doing so is not only beneficial in terms of efficiency, but also
essential if we are to realize the full potential of the interconnectivity among
machines, using the services and data available in the internet, for instance.
We would prefer that humans advise and report to the machines, rather than
that humans direct the machines in each step.

Orchestration 11

The initial impetus for Orc came from attempting to solve such problems by
orchestrating the available web services. Ultimately, languages outgrow the ini-
tial motivations of their design and become applicable in a broader domain. Orc
is currently designed for component integration and concurrency management
in general.

The programming community has had astonishing success in building large
software systems in the last 30 years. We routinely solve problems today that
were unimaginable even a decade ago. Our undergraduates are expected to code
systems that would have been fit for a whole team of professional program-
mers twenty years ago. What would programs look like in the future? We can
try to interpolate. The kinds of problems the programmers will be called upon
to solve in the next two decades will include: health care systems automating
most of their routine tasks and sharing information across hospitals and doctors
(for example, about adverse reaction to drugs); communities and organizations
sharing and analyzing data and responding appropriately, all without human
intervention; disaster recovery efforts, including responding to anticipated dis-
asters (such as, shutting down nuclear reactors well before there is a need to)
being guided by a computer; the list goes on. These projects will be several
orders of magnitude larger than what we build today. We anticipate that most
large systems will be built around orchestrations of components. For example,
a system to run the essential services of a city will not be built from scratch
for every city, but will combine the pre-existing components such as for traffic
control, sanitation and medical services. Software to manage an Olympic game
will contain layer upon layers of interoperating components.

A Critique of Pure Composition. A theory such as Orc, based as it is on a single
precept, may be entirely wrong. It may be too general or too specific, it may prove
to be too cumbersome to orchestrate components, say in a mobile application, or
it may be suitable only for building rapid prototypes but may be too inefficient
for implementations of actual systems. These are serious concerns that can not
be argued away. We are working to address these issues in two ways: (1) prove
results about the calculus, independent of the components, that will establish
certain desirable theoretical properties, and (2) supply enough empirical evidence
that justifies claims about system building. While goal (1) is largely achievable,
goal (2) is a never-ending task. We have gained enough empirical evidence by
programming a large number of commonly occurring programming patterns.

References

1. Cook, W., Misra, J.: Computation orchestration: a basis for wide-area computing.
J. Softw. Syst. Model. 6(1), 83–110 (2007)

2. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press, London (1972)

3. Dijkstra, E.W.: Guarded commands, nondeterminacy, and the formal derivation
of programs. Commun. ACM 8, 453–457 (1975)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

12 J. Misra

5. Marlow, S. (ed.): Haskell 2010, Language Report (2010). http://www.haskell.org/
onlinereport/haskell2010/haskell.html

6. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co. Inc., Boston (1983)

7. Hoare, T., Menzel, G., Misra, J.: A tree semantics of an orchestration language.
In: Broy, M. (ed.) Proceedings of the NATO Advanced Study Institute, Engineer-
ing Theories of Software Intensive Systems. NATO ASI Series, Marktoberdorf,
Germany (2004). http://www.cs.utexas.edu/users/psp/Semantics.Orc.pdf

8. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009)

9. Kitchin, D., Quark, A., Misra, J.: Quicksort: combining concurrency, recursion, and
mutable data structures. In: Roscoe, A.W., Jones, C.B., Wood, K. (eds.) Reflections
on the Work of C.A.R. Hoare, History of Computing. Springer (2010) (Written in
honor of Sir Tony Hoare’s 75th birthday)

10. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice Hall, Upper
Saddle River (1997)

11. Milner, R., Tofte, M., Harper, R.: The Definition of ML. The MIT Press, Cambridge
(1990)

12. Wehrman, I., Kitchin, D., Cook, W., Misra, J.: A timed semantics of Orc. Theoret.
Comput. Sci. 402(2–3), 234–248 (2008)

http://www.haskell.org/onlinereport/haskell2010/haskell.html
http://www.haskell.org/onlinereport/haskell2010/haskell.html
http://www.cs.utexas.edu/users/psp/Semantics.Orc.pdf

Super-Dense Computation in Verification
of Hybrid CSP Processes

Dimitar P. Guelev2, Shuling Wang1(B), Naijun Zhan1, and Chaochen Zhou1

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wangsl@ios.ac.cn
2 Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract. Hybrid Communicating Sequential Processes (HCSP)
extends CSP to include differential equations and interruptions. We feel
comfortable in our experience with HCSP to model scenarios of the Level
3 of Chinese Train Control System (CTCS-3), and to define a formal
semantics for Simulink. The Hoare style calculus of [5] proposes a cal-
culus to verify HCSP processes. However it has an error with respect to
super-dense computation. This paper is to establish another calculus for
a subset of HCSP, which uses Duration Calculus formulas to record pro-
gram history, negligible time state to denote super-dense computation
and semantic continuation to avoid infinite interval. It is compositional
and sound.

Keywords: Hybrid system · Differential invariant · Hybrid CSP · Dura-
tion Calculus · Super-dense computation · Hybrid Hoare logic

1 Introduction

Hybrid system combines discrete control and continuous evolution. A continu-
ously evolving plant with discrete control is a typical example. The behaviour
of the plant can be defined by a differential equation, say F (ṡ, s, u) = 0. A
computer samples the state of the plant every d time units through a sensor,
calculates its control parameter u according to the sensed state s and sends back
to the plant through an actuator. Communicating Sequential Processes (CSP,
[4]) provides channels to model the sensor and the actuator, and parallelism to
model interaction between the computer and the plant. However CSP lacks a
construct to model physical behaviour of the plant. References [3,14] propose a
Hybrid CSP (HCSP) and suggest to use HCSP to model hybrid systems. HCSP
introduces into CSP continuous variables, differential equations, and interrup-
tions by boundary, timeout and communication. Our experience in using HCSP
to describe the scenarios of Level 3, Chinese Train Control System (CTCS-3)
[15] and give a formal semantics of Simulink [16] is quite satisfactory, and will
be reported in other papers.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 13–22, 2014.
DOI: 10.1007/978-3-319-07602-7 3, c© Springer International Publishing Switzerland 2014

14 D.P. Guelev et al.

This paper presents a compositional Hoare style calculus to verify properties
of HCSP processes. The calculus has to meet two challenges. The first one is
to reason about differential equations. We adopt differential invariants from
[8,9]. An algorithm which generates a polynomial (in)equality invariant from a
polynomial differential equation is developed in [6]. The algorithm is complete
as it always produces an invariant, provided that one exists. The generation
of the polynomial invariant is supported by a symbolic computation tool for
semi-algebraic system, DISCOVERER, which is based on the theory invented
in [10,11].

Another challenge is how to accommodate super-dense computation in the
calculus. By super-dense computation we mean that computer is much faster
than other physical devices and computation time of a computer is therefore
negligible, although the temporal order of computations is still there. In the plant
control example, the control parameter sent from the computer is supposed to
control the state sensed before. The computation time for calculating the new
control parameter is neglected.

A Hoare style logic for reasoning about HCSP is firstly proposed by [5], which
simply uses the chop modality of Duration Calculus (DC) [13] to describe the
sequential composition, and point intervals to describe super-dense computa-
tions. Unfortunately chop degenerates into conjunction at a point interval, and
the temporal order of computations disappears. Hence, the monotonicity rule
cannot be maintained, and it forms an error of [5]. In this paper we use a dedi-
cated DC state variable N to mark negligible time. This idea can be traced back
to [1,7]. It is also used in [2], where another Hoare style calculus for HCSP is
proposed with different semantic specification. Another approach to deal with
super-dense computation is to use pre- and post-conditions as well as history
formulas as done in [5], but delete point values in the history formulas in order
to maintain the monotonicity rule (see [12] for details).

We also use Hoare triple in our calculus. Triples have the form

{PreH }Sys{PostH },

where Sys is an HCSP process, and PreH and PostH are DC formulas to express
properties of the pre-history and post-history of the execution of Sys. A dedicated
propositional letter C is used to indicate whether a behaviour defined by a history
formula can be further extended.

Structure of the Paper. In Sect. 2, we will introduce the language Hybrid
CSP briefly, and then present the calculus for reasoning about Hybrid CSP in
Sects. 3 and 4. Finally, we conclude the paper by a discussion about the calculus.

2 Hybrid CSP

Hybrid CSP is an extension of CSP with differential equations and interruptions
to model behaviour of hybrid systems.

Notation:
HCSP vocabulary includes:

Super-Dense Computation in Verification of Hybrid CSP Processes 15

– a countable set of discrete and continuous variables, which are interpreted as
functions from time (non-negative reals) to reals, and

– a countable set of channel names.

HCSP is defined according to the following grammar, where v stands for a
variable, s and ṡ stand for a vector of variables and their time derivatives, ch
stands for channel name, I stands for a non-empty finite set of indices, e and
B are arithmetical expression and boolean expression of variables, and d is a
positive (real) constant.

P ::= skip | v := e | wait d | P ;Q | B → P | P ∼ Q

| ch?x | ch!e | []i∈I(ioi → Pi)
| ⊆F (ṡ, s) = 0&B〉 | ⊆F (ṡ, s) = 0&B〉 �d P

| ⊆F (ṡ, s) = 0&B〉 � []i∈I(ioi → Pi)
Sys ::= P | P ∗ | Sys1 ← Sys2

Here follows the meaning of each construct:

– skip does nothing and terminates immediately.
– v := e is an atomic assignment.
– wait d does nothing and terminates right after d time units.
– P ;Q is the sequential composition of P and Q. It behaves as P first, and then

Q after P terminates.
– B → P behaves like P if B is true. Otherwise it terminates immediately.
– P ∼ Q is the internal choice of CSP. We include this operator to simulate

non-deterministic actions.
– ch?x inputs a value over channel ch and stores in x.
– ch!e sends the value of e over channel ch. Here we assume the synchronous

communication as defined in CSP.
– []i∈I(ioi → Pi) is the external choice of CSP. An occurrence of ioi can lead to

the execution of Pi, where ioi stands for an input or output.
– ⊆F (ṡ, s) = 0&B〉 defines a bounded evolution of the differential equation F

over s. B is a boolean expression of s, which defines a domain of s in the sense
that, if the evolution of s as defined by F (ṡ, s) = 0 is beyond B, the statement
terminates. Otherwise it goes forward.

– ⊆F (ṡ, s) = 0&B〉�d P behaves like ⊆F (ṡ, s) = 0&B〉 if it can terminate within
d time units. Otherwise, after d (inclusive) time units, it behaves like P .

– ⊆F (ṡ, s) = 0&B〉�[]i∈I(ioi → Pi) behaves like ⊆F (ṡ, s) = 0&B〉 until a commu-
nication in the following context appears. Then it behaves like Pi immediately
after the communication ioi occurs.

– P ∗ means that the execution of P can be repeated for arbitrarily finitely many
times.

– Sys1 ← Sys2 behaves as if Sys1 and Sys2 are executed independently except
that all communications along the common channels between Sys1 and Sys2
are to be synchronized. In order to guarantee that Sys1 and Sys2 have no

16 D.P. Guelev et al.

shared continuous nor discrete variables, and neither shared input nor output
channels, we give the following syntactical constraints:

(VC(Sys1) ∩ VC(Sys2)) = ∅,

(InChan(Sys1) ∩ InChan(Sys2)) = ∅,

(OutChan(Sys1) ∩ OutChan(Sys2)) = ∅,

where VC(Sys) stands for variables of Sys, InChan(Sys) for input channels
of Sys and OutChan(Sys) for output channels of Sys.

Example: Plant Control (PLC)
A computer every d time units senses a plant, calculates the new control accord-
ing to the sensed state and sends back to the plant. This can be modelled in
HCSP as

(⊆F (s, ṡ, u) = 0〉 � cp2c!s → cc2p?u)∗ ←
(wait d; cp2c?v; cc2p!contl(v))∗

where contl(v) is an expression of v to stand for a calculation of the control
parameter corresponding to v, which stores the sensed state.

3 Hoare Triple

The calculus is given in
{PreH } Sys {PostH },

which is similar to the Hoare triple but has PreH and PostH in Duration Cal-
culus (DC) [13] to record pre-history and post-history of Sys.

DC is based on Interval Temporal Logic, and reasons about terms
∫
S, where

S is a Boolean function over time (non-negative reals) and
∫
S is the duration of

state S within the reference time interval. We define

ϕ =
∫
1,

⇐S
 = (
∫
S = ϕ) ∧ (ϕ > 0),

⇐S
< = ⇐S
 ∨ (ϕ = 0).

Hence, for any given interval, ϕ is the length of the interval, and ⇐S
 means that
S holds (almost) everywhere in the interval and the interval is not a point one.

A history formula is a DC formula, or followed by the propositional letter C
to stand for Continuation, or a disjunction of such formulas:

HF ::= A | AΣC | HF1 ∨ HF2

where A is a DC formula without occurrence of C. PreH and PostH are history
formulas.

Example: Stability of PLC

{⇐Controllable(s, u)
ΣC} PLC {(ϕ > T) ⇒ ((ϕ = T)Σ⇐| s − starget |< σ
)}

Super-Dense Computation in Verification of Hybrid CSP Processes 17

The pre-history requires that the initial state and control are controllable and
the pre-history can be continued. The post-history concludes that after T time
units the plant will be very close to the target (starget).

In order to treat super-dense computation, we introduce N state to stand for
negligible time. Therefore time is measured by

∫¬N .

Example: Stability of PLC becomes

{⇐Controllable(s, u) ∧ N
ΣC} PLC {(
∫¬N > T) ⇒

((
∫¬N = T)Σ⇐| s − starget |< σ
)}

4 Axioms and Rules

We introduce for each channel name c two shared states c! and c? to represent
the readiness of output and input plus a shared variable c to store the message
to be passed.

– Monotonicity
If {PreH }Sys{PostH }, (PreH ↑ ⇒ PreH) and (PostH ⇒ PostH ↑), then

{PreH ↑} Sys {PostH ↑}.

– Disjunction
History formula can be restricted to disjunction of DC formulas with or with-
out C as its last part. Correspondingly we can establish the following rule:

If {PreH i} Sys {PostH i}, i = 1, ..., n,
then {∨n

i=1 PreH i} Sys {∨n
i=1 PostH i}

This rule can be generalized to the Existential one, such as

If {PreH } Sys {PostH }
then {∃z.PreH } Sys {∃z.PostH }
provided z ⊕∈ VC(Sys)

– Skip
{PreH } skip {PreH }

It means, skip does nothing and terminates immediately.
– Assignment

If (PreH [(ϕ = 0)/C] ⇒ �Σ⇐Pre[e/x]
), then

{PreH } x := e {PreH [(⇐Pre ∧ ¬Chan(P) ∧ N
ΣC)/C]}
where we assume that Pre does not contain N nor channel variables, Chan(P)
is {c? | c ∈ InChan(P)} ∪ {c! | c ∈ OutChan(P)}, and, by ¬Chan(P), we
mean the conjunction of ¬c, c ∈ Chan(P), assuming that the assignment
statement is inside process P .
The hypothesis says that the last period of the pre-history (after ignoring
C, i.e. C is replaced by (ϕ = 0)) can conclude e satisfying Pre. Then the
post-history can make sure that x satisfies Pre after the assignment, and no
channels are ready for communication during the assignment. By N this rule
also shows that an assignment consumes negligible time.

18 D.P. Guelev et al.

– Wait
If (PreH [(ϕ = 0)/C] ⇒ �Σ⇐Pre
), then

{PreH } wait d {PreH [(⇐Pre ∧ ¬Chan(P)
 ∧ (
∫¬N = d))ΣC)/C]}

where d > 0, Pre follows the assumption stated in the Assignment and so
does in the followings. This rule specifies, wait d inherits the last state from
PreH and no channel is ready for communication during this waiting period
(i.e. non-negligible time passes d).

– Sequential Composition
If {PreH i}Pi{PostH i}, i = 1, 2, and PostH 1 ⇒ PreH 2, then

{PreH 1} P1;P2 {PostH 2}

– Conditional
1. If (PreH [(ϕ = 0)/C] ⇒ �Σ⇐B
), then

{PreH } B → P {PostH }

provided {PreH }P{PostH }.
2. If (PreH [(ϕ = 0)/C] ⇒ �Σ⇐¬B
), then

{PreH } B → P {PreH }

– Internal Choice

If {PreH } Pi {PostH i}, i = 1, 2
then {PreH } P1 ∼ P2 {PostH 1 ∨ PostH 2}

– Input
If PreH [(ϕ = 0)/C] ⇒ �Σ⇐Pre
,
then {PreH } c?x {PreH [In(c, x)/C]}

where

WaitIn(c, x) = ⇐Pre ∧ c? ∧ ¬c! ∧ ¬(Chan(P) \ {c?})

SynIn(c, x) = ⇐(∃x.Pre) ∧ c? ∧ c! ∧ (x = c) ∧ ¬(Chan(P) \ {c?}) ∧ N
Σ

⇐(∃x.Pre) ∧ (x = c) ∧ ¬Chan(P) ∧ N

In(c, x) = WaitIn(c, x)<�

SynIn(c, x)ΣC ∨ WaitIn(c, x)

An input has to be firstly synchronized by an output that is described through
WaitIn. Otherwise the input side will wait forever (i.e. the second disjunct of
In cannot be continued). After the synchronization, a message is input to x
through c (i.e. x = c, as c stores the message), and the other variables do not
change (i.e. ∃x.Pre). Here, we also assume, the message passing consumes
negligible time and after it all channels become not ready for a negligible
period to prevent multi-usage of a single message passing event.

Super-Dense Computation in Verification of Hybrid CSP Processes 19

– Output
If PreH [(ϕ = 0)/C] ⇒ �Σ⇐Pre
,
then {PreH } c!e {PreH [Out(c, e)/C]}

where

WaitOut(c,e) = ⇐Pre ∧ c! ∧ ¬c? ∧ ¬(Chan(P) \ {c!})

SynOut(c, e) = ⇐Pre ∧ c! ∧ c? ∧ (c = e) ∧ ¬(Chan(P) \ {c!}) ∧ N
Σ

⇐Pre ∧ (c = e) ∧ ¬Chan(P) ∧ N

Out(c, e) = WaitOut(c, e)<�

SynOut(c, e)ΣC ∨ WaitOut(c, e)

A symmetrical explanation can be given for the Output.
– External Choice

We use c1?x1 → P1 [] c2?x2 → P2 to explain this rule.
1. Let (PreH [(ϕ = 0)/C] ⇒ �Σ⇐Pre
).
2. Waiting Phase:

Wait = ⇐Pre
2∧

i=1

(ci? ∧ ¬ci!) ∧ ¬(Chan(P) \ {c1?, c2?})

3. Synchronous Phase: for i = 1, 2

Syni = ⇐(∃xi.P re) ∧ ci! ∧ ci? ∧ (xi = ci) ∧ ¬(Chan(P) \ {ci?}) ∧ N
Σ

⇐(∃xi.P re) ∧ (xi = ci) ∧ ¬Chan(P) ∧ N

where, in ci, 1 = 2 and 2 = 1.

4. If for i = 1, 2

{PreH [(Wait<�

SynΣ
i C ∨ Wait)/C]} Pi {PostH i}

then we can conclude

{PreH } c1?x1 → P1 [] c2?x2 → P2 {PostH 1 ∨ PostH 2}
– Boundary Interruption

Given a differential invariant Inv of ⊆F (ṡ, s) = 0&B〉 with initial states satis-
fying Init

If PreH [(ϕ = 0)/C] ⇒ �Σ⇐Init ∧ Pre
, then
{PreH } ⊆F (ṡ, s) = 0&B〉

{PreH [((⇐Inv ∧ Pre ∧ B ∧ ¬Chan(P)
<�

⇐Pre ∧ Close(Inv) ∧ Close(¬B) ∧ ¬Chan(P) ∧ N
ΣC)
∨⇐Inv ∧ Pre ∧ B ∧ ¬Chan(P)
)/C]}

where Pre does not contain s, and Close(G) is for the closure of G to include
the boundary, e.g. Close(x < 2) = x ≤ 2.
During the evolution of s, Inv and B must hold and so does Pre for the
variables other than s. However, when s stops, it will transit to the consecutive
statement immediately (i.e. in negligible time). But, during the transition, ¬B
becomes true, or B reaches its boundary and Close(¬B) becomes true (if B
is closed). This can also argue for Inv.

20 D.P. Guelev et al.

– Timeout Interruption

⊆F (ṡ, s) = 0&B〉 �d Q

can be semantically defined as

⊆F (ṡ, s) = 0, ṫ = 1&(B ∧ t < d)〉; ((t = d) → Q)

with 0 as initial value of t.
For the Boundary Interruption rule, if we rewrite ⊆F (ṡ, s) = 0&B〉 into
⊆F (ṡ, s) = 0, ṫ = 1&B〉 and can generate a differential invariant which can
deduce a range of t, say Rg(t), then we can make sure that the duration of∫¬N for ⇐Inv∧Pre∧B ∧¬Chan(P)
< in the Boundary Interruption rule
must satisfy Rg(

∫¬N).
– Communication Interruption

The rule for ⊆F (ṡ, s) = 0&B〉� []i∈I(ioi → Pi) is a combination of the Bound-
ary Interruption rule and the External Choice rule but quite complicated.
Here we use ⊆F (ṡ, s) = 0〉 � (c!s → Q) to demonstrate its main idea. Assume
Inv is a differential invariant of F for initial values Init, and

PreH [(ϕ = 0)/C] ⇒ �Σ⇐Init ∧ Pre
,
where Pre does not contain s.

If {PreH [((⇐Inv
 ∧ WaitOut(c, s)<�

SynOut(c, s))ΣC
∨(⇐Inv
 ∧ WaitOut(c, s)))/C]} Q {PostH },

then {PreH } ⊆F (ṡ, s) = 0〉 � (c!s → Q) {PostH }
Since B is �, s can evolve forever unless an output over c occurs.

– Repetition
We use the conventional history invariant as defined below

If {InvH } P {InvH }
then {InvH } P ∗ {InvH }

– Parallel Composition

If {PreH i} Sysi {PostH i}
and PostH i[(ϕ = 0)/C] ⇒ �Σ⇐Posti
, i = 1, 2
then {∧2

i=1 PreH i} Sys1 ← Sys2 {∧2
i=1 PostH i[⇐Posti
/C]}

where Posti, i = 1, 2 do not contain N and channel variables.
In order to avoid different length and occurrence of N state between parallel
processes, we use ⇐Posti
 to fill up PostH i, for i = 1, 2.

5 Discussion

1. The calculus can only prove safety property, although it introduces the con-
cept of readiness. It is still a challenge to develop a calculus for liveness
property.

Super-Dense Computation in Verification of Hybrid CSP Processes 21

2. To prove properties of HCSP processes, we have to find out appropriate dif-
ferential invariants for various differential equations. Although [6] proposes
an algorithm to establish polynomial invariants for polynomial differential
equations, the complexity of the algorithm is terribly high. We are making
efforts to establish nonlinear invariants with reasonable complexity.

3. In [5], the notation of HCSP includes (P �dQ) and (P �[]i∈I(ioi → Pi)), where
P can be an arbitrary HCSP process. The history formulas of the calculus
record all details of various HCSP processes. We believe that the calculus can
be revised for [5].

4. Intuitively this calculus is sound. A rigorous proof of its soundness is to
give HCSP another naive semantics and to prove consistency between the
semantics and the calculus.

Acknowledgment. This work has been partly supported by the 973 project with
grant No. 2014CB340-700, and the projects from NSFC with grant No. 91118007 and
6110006.

References

1. Guelev, D.P., Van Hung, D.: Prefix and projection onto state in duration calculus.
In: Proceedings of TPTS’02, volume 65(6) of ENTCS, pp. 101–119. Elsevier Science
(2002)

2. Guelev, D.P., Wang, S., Zhan, N.: Hoare-style reasoning about hybrid CSP in the
duration calculus. Technical report ISCAS-SKLCS-13-01, ISCAS (2013)

3. He, J.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) Proceedings of a
Classical Mind: Essays in Honour of C. A. R. Hoare. Prentice-Hall International
Series in Computer, pp. 171–189. Prentice-Hall, New Jersey (1994)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, New Jersey
(1985)

5. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

6. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Proceedings of EMSoft’11, pp. 97–106 (2011)

7. Pandya, P.K., Van Hung, D.: Duration calculus of weakly monotonic time. In:
Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 55–64. Springer,
Heidelberg (1998)

8. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008)

9. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal
verification. In: Proceedings of ICFEM ’09, pp. 246–265 (2009)

10. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic
systems. J. Symbolic Comput. 34, 461–477 (2002)

11. Yang, L.: Recent advances on determining the number of real roots of parametric
polynomials. J. Symbolic Comput. 28, 225–242 (1999)

22 D.P. Guelev et al.

12. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid
systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Program-
ming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer,
Heidelberg (2013)

13. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. Springer, Heidelberg (2004)

14. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III. LNCS, pp. 511–530.
Springer, Heidelberg (1995)

15. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014)

16. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams via
a hybrid Hoare logic prover. In: Proceedings of EMSoft’13, pp. 1–10 (2013)

A Proof-Carrying Code Approach
to Certificate Auction Mechanisms

W. Bai1,2(B), E.M. Tadjouddine2(B), T.R. Payne1, and S.U. Guan2

1 Department of Computer Science, University of Liverpool, Liverpool, England, UK
{Wei.Bai,T.R.Payne}@liverpool.ac.uk

2 Department of Computer Science and Software Engineering,
Xi’an Jiaotong-Liverpool University, SIP, Suzhou, China
{Emmanuel.Tadjouddine,Steven.Guan}@xjtlu.edu.cn

Abstract. Whilst it can be highly desirable for software agents to engage
in auctions, they are normally restricted to trading within known auc-
tions, due to the complexity and heterogeneity of the auction rules within
an e-commerce system. To allow for agents to deal with previously unseen
protocols, we present a proof-carrying code approach using Coq wherein
auction protocols can be specified and desirable properties be proven.
This enables software agents to automatically certify claimed auction prop-
erties and assist them in their decision-making. We have illustrated our
approach by specifying both the English and Vickrey auctions; have
formalized different bidding strategies for agents; have certified that up to
the valuation is the optimal strategy in English auction and truthful
bidding is the optimal strategy in Vickrey auction for all agents. The for-
malization and certification are based on inductive definitions and con-
structions from within Coq. This work contributes to solving the problem
of open societies of software agents moving between different institutions
and seeking to make optimal decisions and will benefit those engaged in
agent-mediated e-commerce.

Keywords: Coq · Proof-carrying code · Certification · e-commerce ·
Software agents

1 Introduction

One of the major challenges in developing agents that are capable of rational
decision making within open, heterogeneous environments, is that of compre-
hending the rules and social norms that govern the behavior of new institutions.
Although much work has addressed interoperability at the communication level
(with agent communication languages such as FIPA-ACL, and RDF to under-
pin recent developments within the Semantic Web [1]) thus allowing agents to
communicate, the decision of whether or not the communication is meaningful is
still an open challenge. Agents may understand how to conduct their behavior in
certain familiar scenarios, and bid strategically in marketplaces that adhere to
certain rules (e.g., an English or Dutch auction). However, such strategies may

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 23–40, 2014.
DOI: 10.1007/978-3-319-07602-7 4, c© Springer International Publishing Switzerland 2014

24 W. Bai et al.

not be applicable to other markets, such as those based on Vickrey auctions.
Within an open and dynamic environment (such as e-commerce), agents might
encounter a variety of auction houses, that could form part of an agent mediated
e-commerce scenario. It is therefore important for the agent to be able to acquire
a deeper model of the marketplaces that they could engage in (other than simply
relying in simple classifications) so that they can rationally determine whether
or not they should engage in the marketplace.

Agents should be able to query and comprehend the rules that govern an
auction house, and verify desirable properties that can be relevant to privacy,
security, or economics. This paper focuses on the economic properties, by look-
ing at specifying and verifying game-theoretic properties for single item online
auctions. An important game-theoretic property is strategy-proofness namely,
the existence of a dominant strategy for the players meaning a strategy that is
optimal regardless of the game configuration. For example, truthful bidding can
be the dominant strategy in certain auction settings. The aim of this paper is
to present an approach to help agents to automatically verify desirable proper-
ties in online auctions. To this end, we rely on the proof-carrying code (PCC)
paradigm [2] to allow for:

– the auctioneer to publish the auction mechanism along with the proofs of
desirable properties in a machine readable formalism,

– the potential buyer agent to read the published protocol, make sense of it, and
at will, check the proof of a given property by using a simple trusted checker,
which makes the automatic checking procedure computationally reasonable.

Our current work focuses on expressing the mechanism and game-theoretic
proofs in a machine checkable formalism. We have used Coq [3], an interac-
tive theorem prover based on inductive definitions and construction wherein the
formalizations of English and Vickrey auctions are carried out. Then, different
bidding strategies are specified followed by the proofs of a dominant strategy for
each bidder.

Previous efforts have explored the use of automatic checking of auction prop-
erties. The strategy-proofness property was checked using model checking in [4,5]
but the related computational complexity can be exponential [6]. To handle
the computational limits of exhaustive model checking, two property-preserving
abstractions are proposed. One is the classical program slicing technique [7].
The other is abstract interpretation [5]. In [8], a distributed computer system
infrastructure with a rationality authority that allows for safe consultations
among parties is presented. A rationality authority includes the game inven-
tor, participating agents and verifiers, which provide verification services. Game
inventors advise the agents about actions and their optimality. Verifiers send
their verification procedures to the agents. A typed language which allows for
automatic verification that an allocation algorithm is monotonic and therefore
truthful is introduced in [9]. Then, a more general-purpose programming lan-
guage is defined to capture a collection of basic truthful allocation algorithms.
This is similar to our current approach as we rely upon the proof-carrying code

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 25

paradigm and Coq to allow software agents to achieve reasonable automatic
checking of game properties.

Moreover, interactive theorem proving is used to express the proof of desirable
properties in a machine-checkable manner. There are two advantages in using
an interactive theorem prover [10]. One is that the specification of the desirable
properties can be precisely described by the designer. The other is that the proof
of a property is machine-checkable. We use the interactive theorem prover Coq
because it has been developed for more than twenty years [11] and is widely
used for formal proof development in a variety of contexts related to software
and hardware correctness and safety. Coq has been used to model and verify
sequential programs [12] and concurrent programs [13]. In [14], Coq was used
to develop and certify a compiler. A fully computer-checked proof of the Four
Colour Theorem was created in [15]. In [16], a Coq-formalised proof that all
non-cooperative, sequential games have a Nash equilibrium point is presented.

This paper is organized as follows. Section 2 describes our certification frame-
work and the scenario of single item auctions. Section 3 describes the formaliza-
tion of auction mechanisms followed by proofs of desirable properties in Sect. 4.
Section 5 discusses the evaluation of our approach and Sect. 6 concludes.

2 Our Certification Framework

The ability for heterogeneous software agents to interoperate between different
and open auction houses raise two main questions: how to get agents to operate
on previously unseen protocols and how to get agents to automatically check
desirable properties that are central to their decision making. In order to solve
this difficult problem, we start by looking at models or scenarios allowing us to
use a divide-and-conquer paradigm for an incremental solution. A brief overview
of our scenario can be stated as follows. Online protocols can be described using
some web-based description language; the resulting description is abstracted into
Coq specifications that are used to provide machine-checkable proofs of desir-
able properties for the protocol at hand. Such a Coq specification can be turned
back into the original web description so as to be read, understood, and checked
by a software agent. Such mappings back and forth can be carried out using
abstract interpretation [17]. Abstract interpretation enables us to analyze the
behaviors of a computer system by safely approximating its concrete seman-
tics into an abstract one involving a smaller set of values. Note that by safe
approximations, we mean approximations that are at least sound allowing us to
transpose properties that are true in the abstract domain into the concrete one.
For the abstraction, from a web-based description of an auction, we can build
up a Coq-based specification of that auction known as the abstract mapping
so that desirable properties can be proved from within the Coq system. This
abstraction approach can solve the problem of heterogeneity of different auction
houses by providing a uniform and formalized format of protocols to software
agents.

An abstract interpretation is defined as a sound approximated program
semantics obtained from a concrete one by replacing the concrete domain of

26 W. Bai et al.

computation and its concrete semantic operations with an abstract domain and
corresponding abstract semantic operations. An abstraction is sound if any prop-
erty that holds in the abstracted program holds also in the concrete program.
In the architecture of abstract interpretation, the abstract domain can be con-
cretized back into the concrete domain which means that the concretized abstract
context includes the concrete context. The success of abstraction and concretiza-
tion leads to the correctness of interpretation. Based on abstract interpretation,
program transformation frameworks were proposed in [18]. Figure 1 illustrates
our use of the abstract interpretation framework. Once a web based auction pro-
tocol is abstracted into Coq, desirable properties can be formally proven and the
resulting proof is machine-checkable and therefore verifiable by software agents.

In this work, we focus on the verification procedures for some desirable prop-
erties of auction mechanisms, which can be specified in Coq. The Coq system is
based on a typed lambda calculus [19], which can be taken as a glue specification
language into and from which any auction mechanism can be mapped to.

In order to effectively enable automatic checking of desirable properties, we
need to take into account the fact that software agents have limited computer
resources and may be constrained in their reasoning. On one hand, it is difficult
for a software agent to find the best possible or optimal bidding strategy on its
own or to optimize its utility out of various strategies in the same way humans
might. On the other hand, if the specification of auction protocols and proofs are
published in a machine-readable formalism, then automatic checking by software
agents can be facilitated and the computational complexity will be reduced. For
that purpose, we have relied upon the Proof-Carrying-Code (PCC) ideas since
it allows us to shift the burden of proof from the buyer agent to the auctioneer
who can spend time to prove a claimed property once for all so that it can be
checked by any agent willing to join the auction house.

PCC is a paradigm that enables a computer system to automatically ensure
that a computer code provided by a foreign agent is safe for installation and exe-
cution. A weakness of the original PCC was that the soundness of the verification
condition generator is not proved. To overcome this weakness, Foundational PCC
(FPCC) [20] provides us with stronger semantic foundations to PCC by gener-
ating verification conditions directly from the operational semantics. Figure 2
illustrates our framework that uses FPCC to certify auction properties. At the
producer or auctioneer’s side, we have the specifications of the auction mecha-
nism along with the proofs of desirable properties in a machine-checkable for-
malism in the form of a Coq file. The certification procedure works as follows.
The buyer agent arriving at the auction house can download its specification

Fig. 1. Framework of abstract interpretation

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 27

Fig. 2. Applying FPCC to certify auction properties

and the claimed proof of a desirable property. Then, the buyer requests the
proof checker coqhk, which is a standalone verifier for Coq proofs, to the auc-
tioneer. After the proof checker is installed to the consumer side, the buyer can
now perform all verifications of claimed properties of the auction before deciding
to join and with which bidding strategy.

We have implemented this FPCC framework from within the Coq system.
In our current implementation, we have considered a one-to-many scenario.
A single item is allocated using an online auction house. Various buyer agents
can enter or leave this house at will, make sense of its mechanism along with
some recommended strategies and their associated proofs. Such a recommenda-
tion can be for example, truthful bidding is the dominant or optimal strategy
for a buyer agent. We then showed how such a desirable property can be proved
using two examples of a single item auction: the English and Vickrey auctions.
In the remainder of this paper, we basically show how to specify such auctions
and its possible strategy-proofness property and how to prove it within Coq.
The specifications and proofs are split into different Coq files1.

3 Formalization of Auction Mechanisms Within Coq

In this section, we define the framework to specify single item auctions. Then, the
English and Vickrey auctions are specified respectively. For simplicity, we assume
no agents submit the same bid. To specify the English and Vickrey auctions,
we start by a framework that is used to describe a single item auction within
Coq. Coq uses the keyword Definition to define a variable or a function. The
keyword Inductive is used to provide inductive definitions and Fixpoint can
be used to define recursive functions in Coq. Coq provides library to define data
types, such as the type nat which represents natural numbers, the type Z which
represents integers and the type bool of booleans. When defining a function,
1 Our Coq code is available upon request.

28 W. Bai et al.

pattern-matching construct match ... with can be used to describe different
cases. Coq also provides functions to compare different numbers. For example,
function Z gt dec can be used to compare two integers and decide whether one
integer is greater than the other one or not.

3.1 Specifying Single Item Auction

To specify a single item auction in Coq, we define the following objects as
types: Agents, Bid, Utility to represent respectively the set of agents, their
bids, and their utilities. Note that Bid is declared as an integer to simplify the
calculation of the utility function but can be viewed as a natural number.
Definition Agents: = nat.
Definition Bid: = Z.
Definition Utility: = Z.

We then describe an inductive relation aRb binding agents with their bids
and provide two functions Agent aRb and Bid aRb that return respectively the
agent and the bid for a given relation.
Inductive aRb : Type :=

Binding : Agents -> Bid -> aRb.

Definition Agent_aRb (r:aRb):Agents :=
match r with
| Binding a b => a
end.

Definition Bid_aRb (r:aRb):Bid :=
match r with
| Binding a b => b
end.

To enable us reasoning on the agents’ utilities, we define a relation aRu bind-
ing agents to their utilities and a handle function Utility aRu to extract the
utility of a given agent.
Inductive aRu : Type :=

AUtility : Agents -> Utility -> aRu.

Definition Utility_aRu (au:aRu):Utility :=
match au with
| AUtility a u => u
end.

To eliminate negative bidding, we define a function TestBid allowing us to
set any bid that is smaller than zero to zero.
Definition TestBid (b:Z):Bid :=

match Z_gt_dec b 0 with
| left _ => b
| right _ => 0
end.

To enable agents to decide whether to bid or not, we have defined a relation
flag binding an agent with a boolean value indicating the choice of this agent.
If the value is true, then the agent wants to bid, otherwise the agent gives up
bidding in the current round. Agents can set their choices based on their bidding
strategies by using the function Set flag.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 29

Inductive flag : Type :=
Choice : Agents -> bool -> flag.

Definition Set_flag (a:Agents)(b:bool) : flag :=
match b with
| true => Choice a b
| false => Choice a b

end.

With the help of flag, we can build up the state of the auction by a fixpoint
definition of the function AuctionState. We use the function Bool flag to get
the boolean value associated to each agent. We then store all the flag values into
a List structure flaglist, which is the input to the function AuctionState.
If AuctionState returns true, then the auction will continue, otherwise it stops.

Definition Bool_flag (f:flag) : bool :=
match f with
| Choice a b => b
end.

Inductive flaglist : Type :=
| nil : flaglist
| cons : flag -> flaglist -> flaglist.

Fixpoint AuctionState (fl:flaglist) : bool :=
match fl with
| nil => false
| cons h nil => match (Bool_flag h) with

| false => false
| true => true
end

| cons h t => match (Bool_flag h) with
| false => AuctionState t
| true => true
end

end.

Next, we will illustrate our single item auction specification by using the
English and Vickrey auctions to show how to specify agents’ strategies and how
a given strategy profile can be shown to be a dominant strategy equilibrium.

3.2 The English Auction Case

In the English auction, we consider two strategies: First, the agent starts to bid
from a lower price up to its valuation termed as bid below to value. Second,
the agent bids beyond its valuation termed as bid beyond value.
Definition bid_below_to_value (b : Bid) (v : Bid): bool :=

match Z_le_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

The English auction is a type of sequential auction in which bidders have
to beat the current bid. A new bid must be higher than the current one, oth-
erwise it is rejected. To take this into account, we have defined the relation

30 W. Bai et al.

aRboption and used it to return “Accept” or “Reject” for each new bid via
the function Compare. Two functions Agent flag and Find flag are used to
build up the Compare function. Agent flag returns an agent from one flag.
Find flag searches for the flag of an agent from the list flaglist. The return
value (Choice 0%nat false) is a default value when the flag of an agent can-
not be found. The function CurrentWinner returns the winner and its associated
bid aRb.

Inductive aRboption : Type :=
| Accept : aRb -> aRboption
| Reject : aRboption.

Definition Agent_flag (f:flag) : Agents :=
match f with
| Choice a b => a
end.

Fixpoint Find_flag (a:Agents) (fl:flaglist) : flag :=
match fl with
| nil => (Choice 0%nat false)
| cons h t => match beq_nat a (Agent_flag h) with

| true => h
| false => Find_flag a t
end

end.

Definition Compare (fl:flaglist)(new_aRb current_aRb : aRb) : aRboption :=
match Bool_flag (Find_flag (Agent_aRb new_aRb) fl) with
| true => match Z_gt_dec (Bid_aRb new_aRb) (Bid_aRb current_aRb) with

| left _ => Accept new_aRb
| right _ => Reject

end
| false => Reject
end.

Definition CurrentWinner (fl:flaglist)(new_aRb current_aRb : aRb) : aRb :=
match Compare fl new_aRb current_aRb with
| Accept n’ => n’
| Reject => current_aRb
end.

The auction ends when all agents have a flag value of false and the winner
can be found as the one with the highest bid. Given the agent’s valuation v and
a payment p, the utility u of an agent is defined as v − p if the agent wins and
zero otherwise. This utility function is formalized in Utility Eng wherein the
variable winbid represents the highest bid in the auction.

Definition Utility_Eng (winbid:Bid) (b:Bid) (v:Bid) : Utility :=
match Z_lt_dec b winbid with
| left _ => 0
| right _ => v - b
end.

3.3 The Vickrey Auction Case

In a Vickrey auction, also known as second-price sealed-bid auction, all the
bidders submit their bids at a time without any knowledge of other bidders’ bids.
The highest bidder wins but pays the second-highest bid. There are three bidding
strategies in this auction: bid truthfully (or its valuation) encoded in the function

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 31

bid value, bid below the valuation encoded in the function bid below value,
and bid beyond the valuation through the function bid beyond value.

Definition bid_value (b : Bid) (v : Bid): bool :=
match Z_eq_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_below_value (b : Bid) (v : Bid): bool :=
match Z_lt_dec b v with
| left _ => true
| right _ => false
end.

Definition bid_beyond_value (b : Bid) (v : Bid): bool :=
match Z_gt_dec b v with
| left _ => true
| right _ => false
end.

We have used the List data structure to store the basic elements of aRb.
In the definition list of aRb, the binlist type can be described as follows: it is
either an empty (bnil) or else a pair of a aRb element and a binlist. This can
be described using the notation :: as an infix bcons operator for constructing
binding lists.

Inductive binlist : Type :=
| bnil : binlist
| bcons : aRb -> binlist -> binlist.

Notation "x :: l" := (bcons x l) (at level 60, right associativity).

The function addsortbid allows us to add and sort a binlist in a descending
order. In this recursively defined function, all bindings (Agents → Bid) are added
to the list one by one. Also, the function winbid is used to calculate the winning
bid (the head of the sorted binlist). When binlist is empty, it returns a default
value (Binding 0%nat 0). The utility u of an agent is defined as v − sb if the
agent wins and zero otherwise, where v is the agent’s valuation and sb is the second
highest bid in the sorted binlist. To calculate the utility of each agent, we need
to know the second highest bid in the sorted binlist. The function se hi bid
finds the second highest bid when there are at least two elements in the sorted
binlist. Otherwise, it will return a default value (Binding 0%nat 0).

Fixpoint addsortbid (b : aRb) (l : binlist) : binlist :=
match l with
| bnil => b :: bnil
| bcons a l’ => match Z_lt_dec (Bid_aRb b)

(Bid_aRb a) with
| left _ => a :: (addsortbid b l’)
| right _ => b :: a :: l’
end

end.

Definition winbid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)
| a :: l’ => a
end.

32 W. Bai et al.

Definition se_hi_bid (l : binlist) : aRb :=
match l with
| bnil => (Binding 0%nat 0)
| a :: l’ => match l’ with

| bnil => (Binding 0%nat 0)
| h :: l’’ => h
end

end.

The UtilityOfTruthfulBidding function defines the utility for an agent
bidding its valuation v. Recall that the variable sb in this function stands for
the second highest bid.
Definition UtilityOfTruthfulBidding (v : Bid)
(sb : Bid) : Utility :=

match Z_le_dec sb v with
| left _ => v - sb
| right _ => 0
end.

The utility for an agent in the other two strategies is presented in Algorithm 1.
It summarizes the six different conditions giving rise to an agent’s utility and is
encoded in the function Utility OfOtherStrategies.
Definition Utility_OfOtherStrategies (b : Bid) (v : Bid)

(sb : Bid) : Utility :=
match Z_gt_dec b v with
| left _ => match Z_gt_dec sb b with

| left _ => 0
| right _ => match Z_le_gt_dec sb v with

| left _ => v - sb
| right _ => v - sb
end

end
| right _ => match Z_le_gt_dec sb b with

| left _ => v - sb
| right _ => match Z_ge_lt_dec sb v with

| left _ => 0
| right _ => 0
end

end
end.

Algorithm 1. Computation of Utility OfOtherStrategies

Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Different Cases in the definition of Utility OfOtherStrategies :
1. b > v

1.1 sb > b, u = 0;
1.2 sb ≤ v, u = v − sb;
1.3 v < sb ≤ b, u = v − sb, u < 0.

2. b < v
2.1 sb ≤ b, u = v − sb;
2.2 sb ≥ v, u = 0;
2.3 b < sb ≤ v, u = 0.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 33

4 Certifying Desirable Properties

In the English auction with private values setting, in the sense that bidders know
only their own valuation, buyers sequentially submit their bids. The dominant
bidding strategy is for a buyer to start bidding from a lower price and keep
increasing its bid until its valuation. In a Vickrey auction, the buyers simul-
taneously submit their bids and a dominant strategy is for the bidder to bid
its valuation. We may be interested in additional auction properties, including
collusion-proofness meaning that agents cannot collude to achieve a favourable
outcome to them, or false-name bidding free meaning that agents cannot manipu-
late the outcome by using fictitious names. We may also be interested in showing
that the auction is well-defined function and that it is implemented in line with
its specification. In this section, we focus on the certification of dominant strategy
in both English and Vickrey auctions. To carry out the Coq proof, all different
bidding strategies and their related utilities are examined for comparison. The
keyword Variables can be used to define local variables in Coq. We can use the
keywords Hypotheses and Lemma to define Hypotheses and Lemma in a Coq
proof respectively.

4.1 Certification of Dominant Strategy in the English Auction

For the English auction, the dominant strategy is for each buyer to bid up to
its valuation. To provide a machine-checkable proof of this fact, we will use
the previously defined utility function Utility Eng along with some hypothe-
ses. Algorithm 2 is used to construct the certificate. This algorithm compares
two strategies: bid beyond the valuation (b > v) and bid up to the valuation
(b <= v). In total, there are three cases of comparison using different hypothe-
ses. In all cases, we see that for a buyer to bid up to its valuation yields an utility
that is higher or equal to that obtained when a buyer adopts any other strategy.

Algorithm 2. Proving the Dominant Strategy in the English auction
Variables:
v: valuation of one agent
b: bid of one agent
winbid: the highest bid
u: utility of one agent
Comparison Cases:
1. b = winbid,

b > v → u = v − b < 0 (If b ≤ v → u = v − b ≥ 0, Better);
2. b < winbid,

b > v → u = 0 (If b ≤ v → u = 0, Same);
3. b > v, b = winbid → u = v − b < 0 (If b ≤ v, b < winbid → u = 0, Better).

In here, we provide a detailed proof for the first case. The remaining two
cases are proved in a similar way. To carry out the Coq proof of the first case,

34 W. Bai et al.

we started by defining the three variables v, b, and winbid. Recall that v is the
valuation of one agent, b is the bid of one agent and winbid is the highest bid
in one auction.

Variables v b winbid : Z.

As seen in Algorithm 2, the first comparison case is on the condition that one
agent wins the auction with bid b. By relying upon this condition, we introduce
the hypothesis b = winbid, which means that the bid b is the winning bid in
the auction. This hypothesis is defined in Coq as:

Hypotheses English hy1 : b = winbid.

All of the Lemmas that are proved in this part rely upon this hypothesis. A tactic
omega, which is a solver of quantifier-free problems in Presburger Arithmetic,
i.e. a universally quantified formula made of equations and inequations, is used
in the following proofs. In the next step, we prove Lemma 1 to show that bid b
is not less than the winning bid winbid.

Lemma 1 (not b lt win). ∼ b < winbid.

Proof. In English hy1, we have bid b equals to the winning bid winbid. There-
fore, bid b is not less than the winning bid winbid. The proof is carried out by
using English hy1 and the tactic omega in Coq. ⊆�
The following Lemma 2 expresses the fact that if one agent bids up to its valu-
ation (b <= v), it will get an utility of v - b.

Lemma 2 (U below to v). b <= v →∼ b < winbid → Utility Eng winbid b
v = v − b.

Proof. In here, we use the premises: one agent bids up to its valuation (b <= v)
and the previously proved Lemma 1. According to the definition of Utility Eng,
if bid b is less than the winning bid winbid, this agent gets the utility of zero.
Otherwise, it gets the utility of v-b. Furthermore, we have proved that bid b
is not less than the winning bid winbid in Lemma 1. Consequently, this agent
gets the utility of v-b. The proof is finished by a case-splitting following the
definition of function Utility Eng in Coq. ⊆�
The next Lemma 3 shows that, under the premise (b <= v), the value of v - b
is greater or equal to 0.

Lemma 3 (v min b ge O). b <= v → v − b >= 0.

Proof. The proof is constructed by using the premise b <= v and the tactic
omega. ⊆�
Lemma 4 takes Lemmas 2 and 3 as premises, and proves that the utility that
the agent gets is greater or equal to 0 when it bids up to its valuation.

Lemma 4 (U ge O). Utility Eng winbid b v = v − b → v − b >= 0 →
Utility Eng winbid b v >= 0.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 35

Proof. Lemma 2 indicates that an agent gets the utility of v-b, and Lemma 3
establishes that the value of v-b is greater or equals to 0. By using these two
lemmas, we can draw the conclusion that this agent gets a nonnegative utility.
The proof is built up by combining the Lemmas 2 and 3 in Coq. ⊆�
Next, we will calculate and prove that the utility that an agent gets when it bids
beyond its valuation under the hypothesis English hy1.

The premises of Lemma 5 are an agent bids beyond its valuation (b > v)
and the previously proved Lemma not b lt win. Under these two premises, we
can derive the fact that the agent should get the utility of v - b.

Lemma 5 (U beyond v). b > v →∼ b < winbid → Utility Eng winbid b
v = v − b.

Proof. The proof is carried out by combining the premise b > v and Lemma 1.
By the definition of Utility Eng, if bid b is not less than the winning bid winbid,
then the agent gets the utility of v-b. Lemma 1 establishes that ∈b < winbid is
true. So, we have proved that when an agent bids beyond its valuation, it gets
utility of v-b. We finish this proof by a case-splitting following the definition of
function Utility Eng in Coq. ⊆�
Lemma 6 shows that under the premise b > v, the value of v - b is smaller
than 0.

Lemma 6 (v min b lt O). b > v → v − b < 0.

Proof. The proof is constructed by using the premise b > v and the tactic
omega. ⊆�
Lemma 7 shows that if an agent bids beyond its valuation, then it will get
negative utility.

Lemma 7 (U lt O). Utility Eng winbid b v = v − b → v − b < 0 → Utility
Eng winbid b v < 0.

Proof. Lemma 5 shows one agent getting the utility of v-b, and Lemma 6 estab-
lishes that the value of v-b is less than 0. Based on these two lemmas, we can
conclude that this agent gets a negative utility. The proof is constructed by
combining both Lemmas 5 and 6. ⊆�
On the basis of English hy1, Lemma 4 establishes that if one agent bids up to
its valuation, then it gets nonnegative utility whereas Lemma 7 shows that an
agent will get negative utility if it bids beyond its valuation. As a consequence,
we can conclude that for an agent to start bidding from a lower price up to its
valuation is a better strategy than for that agent bidding beyond its valuation.
This terminates the first case. By proving all the remaining cases, we complete
the proof of dominant strategy in the English auction.

36 W. Bai et al.

4.2 Certification of the Dominant Strategy in Vickrey Auction

Our certification is based on the proof in [21]. Six different cases of bidding
strategies are considered and defined in Utility OfOtherStrategies. They are
compared against the outcome of the truthful bidding strategy (bidding its val-
uation). The schema used to construct our machine-checkable proof is shown in
Algorithm 3. As in the case of the English auction, we only demonstrate how
to construct the Coq proof of the first case in Algorithm 3, since the remaining
cases are dealt with in a similar fashion.

Algorithm 3. Proving the Dominant Strategy in Vickrey auction
Variables:
v: valuation of one agent
b: bid of one agent
sb: second highest bid in the bid list
u: utility of one agent
Comparison Cases:
1. sb > b,

b > v → u = 0 (If b = v → u = 0, Same);
2. sb ≤ v,

b > v → u = v − sb (If b = v → u = v − sb, Same);
3. v < sb ≤ b,

u = v − sb < 0 (If b = v → u = 0, Better);
4. sb ≤ b,

b < v → u = v − sb (If b = v → u = v − sb, Same);
5. sb ≥ v,

b < v → u = 0 (If b = v → u = 0, Same);
6. b < sb < v,

u = 0 (If b = v → u = v − sb > 0, Better).

Let us start by introducing three variables v, b and sb. The meanings of
these variables are listed in Algorithm 3.

Variables v b sb : Z.

In the first case of Algorithm 3, we have the hypothesis sb > b, meaning that
an agent’s bid is less than the second highest bid. All of the Lemmas that are
proved below are based on this hypothesis.

Hypotheses Vickrey hy1 : sb > b.

The Lemma 8 shows that if one agent bids beyond its valuation (b > v), it
will get the utility of zero.

Lemma 8 (Utility of CaseOne). b > v → Utility OfOtherStrategies b v
sb = 0.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 37

Proof. We have the premise b > v. The definition of Utility OfOther
Strategies states that if an agent bids beyond its valuation (b > v) and the
second highest bid is greater than this agent’s bid (sb > b), then it gets the
utility of zero. The proof is completed by a case-splitting following the definition
of function Utility OfOtherStrategies in Coq. ⊆�
So far, we have proved that based on Vickrey hy1, one agent gets the utility of
zero if it bids beyond its valuation. Then, we will prove that if one agent bids
its valuation, it also gets the utility of zero. To finish this proof, we introduce
Lemma 9 in the first step. Lemma 9 shows that sb is not smaller or equal to v
under the premise: b = v.

Lemma 9 (not sb le v). b = v → sb > v →∼ sb <= v.

Proof. The Coq proof is constructed by combining the hypothesis Vickrey hy1,
the two premises b = v, sb > v and the tactic omega. ⊆�
The following Lemma 10 shows that when an agent bids its valuation, it gets
the utility of zero.

Lemma 10 (Utility of Valuation). ∼ sb <= v → UtilityOfTruthfu
lBidding v sb = 0.

Proof. The conclusion of Lemma 9 is used as a premise. Based on the definition
of Utility OfTruthfulBidding, if an agent bids its valuation and the second
highest bid sb is not less than or equal to its valuation v, this agent gets the
utility of zero. The proof is carried out by a case-splitting following the definition
of the function Utility OfTruthfulBidding in Coq. ⊆�
Lemma 11 establishes that under the hypothesis Vickrey hy1, the utility asso-
ciated with the truthful bidding strategy is the same as that of bidding beyond
the valuation for an agent.

Lemma 11 (V E SOne). Utility OfOtherStrategies b v sb = 0 →
UtilityOfTruthfulBidding v sb = 0 →
Utility OfOtherStrategies b v sb = UtilityOfTruthfulBidding v sb.

Proof. Using the hypothesis Vickrey hy1, we have proved that an agent gets
the utility of zero if it bids beyond its valuation in Lemma 8. Moreover, in
Lemma 10, if an agent bids its valuation, then it gets the utility of zero. That
is to say, this agent gets the same utility, no matter which strategy it uses. The
proof is completed by combining Lemma 8 and Lemma 10 in Coq. ⊆�
As mentioned earlier in this section, we do not present the Coq proofs related
to the remaining five cases in Algorithm 3 for simplicity of the presentation
because these five cases are proved in a similar way. This then completes the
Coq certification of truthful bidding be a dominant strategy in Vickrey auction.

38 W. Bai et al.

5 Discussion

In our current implementation of the FPCC framework to certify auction prop-
erties, we have enabled a participating agent to find out desirable properties
held by the auction house and to recognize whether a given recommendation
is correct or not. For example, suppose a buyer agent visits a first-price sealed-
bid auction (each agent independently submits a single bid, the highest bidder
wins and pays her bid). The server side of this auction house provides this agent
with a Coq proof that truthful bidding is a dominant strategy derived from the
Vickrey auction. Our system ensures that the proof checker will find a mismatch
between the auction specification and the given proof. Thus our implementa-
tion enables the buyer agent to find out that strategyproofness is not a property
of this auction house and that the given proof is wrong. The agent can only
check the proof that is related to a well-defined specification, which means that
the certificate of dominant strategy in Vickrey auction cannot be used for the
English auction for instance. This helps agents distinguish the properties of dif-
ferent auction mechanisms. Our approach can be extended to a broad range of
agent-mediated e-commerce systems. For example, we can use this approach to
certify whether the winner of the auction is the highest bidder. It also can be
applied to verify the communication protocols used by autonomous agents. For
the customer who may be concerned by security issues, this approach can be
used to verify transaction protocols implemented in an e-commerce system.

One of the limitations of our current work is that an agent cannot understand
a previously unseen mechanism unless the specification is part of the common
knowledge of this agent. For example, an agent with the knowledge of English
auction specification is roaming in the Internet. After this agent arrives at an auc-
tion house, it checks the specification of this auction house. The agent can recog-
nize this auction if the specification is an English auction. Otherwise, this agent
cannot figure out the type of the auction house. Assume that a human being
delegates a task to bid for one item in an English house to a buyer agent. The
buyer agent with the knowledge of English auction will join in the English auc-
tion house but will ignore any other unrecognized auction house. But, an agent
with all the specifications of widely used auction mechanisms can recognize dif-
ferent kinds of auction houses although it requires more computational resources.
Nonetheless, it is our intention to extend this implementation by enabling agents
to operate on previously unseen protocols by using the semantic web technology
so as to build up a shared ontology by the agents and connect this ontology with
the Coq formalism in order to enable the verification. Seemingly, Semantic Web
Service Language OWL-S is a good Logic-based Language candidate to describe
auction mechanisms in a machine understandable formalism.

Note that although, Coq is an interactive theorem prover, we have utilised
it to enable automated verification since the proof is constructed only once and
agents have to check the correctness of given certificates automatically. Moreover,
our approach can be generalised in any kind of auction by making use of ontology
based formalism to describe an auction and mapping this description to our Coq
specification.

A Proof-Carrying Code Approach to Certificate Auction Mechanisms 39

6 Conclusion and Future Work

In this paper, we have used the FPCC framework to e-commerce systems so
as to provide certification abilities for software agents. The setting is that of
online auction markets wherein agents can move between auction houses. Auc-
tion houses can publish their mechanism (auction rules) along with proofs of
some desirable properties. Buyer agents can download the auction rules, inquire
for a property and get the proof for that property so that the agent can check
that a proof is indeed correct. We have demonstrated the feasibility of this
FPCC approach by formalizing and checking strategy-proofness for the English
and Vickrey auctions from within Coq. The ability for an agent to verify auction
protocols will increase the trust to an online auction house, which in turn may
render this kind of trading attractive and boost its market value.

As future work, we will continue implementing the framework that is pro-
posed in this article. We plan to build an auction house using both Semantic
Web [1] and the Java Agent DEvelopment Framework (JADE) [22]. Semantic
web provides us with a mechanism that can be used by agents to communicate
and understand each other. It also enables software agent to provide intelligent
access to heterogeneous and distributed information. In this situation, a soft-
ware agent is an encapsulated computer system in some environment, capable
of perceiving and autonomously acting in that environment. JADE is a widely
used tool to implement multi-agent systems. It provides mechanisms to create
agents, enable agents to execute tasks and make agents communicate with each
other. Semantic Web agents can take benefits from Semantic Web technologies
in two parts:

– Metadata will be used to identify and extract information from Web sources.
– Ontologies will be used to assist in Web searches, to interpret retrieved infor-

mation, and to communicate with other agents.

In our scenario, all the information of agents, which are created by JADE, will be
translated into an OWL file. Combining the generated auction ontology file with
previously defined auction protocol ontology, we can generate an integral Seman-
tic Web Auction system, which is expressed in Semantic Web Languages. Then,
this Semantic Web Auction system can be abstracted into Coq specifications.
Wherein FPCC can be used for the verification process.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

2. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 106–119. ACM
(1997)

3. The Coq Development Team: The coq proof assistant reference manual: Version
8.4 (2012) http://coq.inria.fr

http://coq.inria.fr

40 W. Bai et al.

4. Tadjouddine, E.M., Guerin, F.: Verifying dominant strategy equilibria in auctions.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 288–297. Springer, Heidelberg (2007)

5. Tadjouddine, E., Guerin, F., Vasconcelos, W.: Abstractions for model-checking
game-theoretic properties of auctions. In: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3, Inter-
national Foundation for Autonomous Agents and Multiagent Systems, pp. 1613–
1616 (2008)

6. Tadjouddine, E.M.: Computational complexity of some intelligent computing sys-
tems. Int. J. Intell. Comput. Cybernetics 4(2), 144–159 (2011)

7. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189
(1995)

8. Dolev, S., Panagopoulou, P., Rabie, M., Schiller, E., Spirakis, P.: Rationality
authority for provable rational behavior. In: Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 289–
290. ACM (2011)

9. Lapets, A., Levin, A., Parkes, D.: A typed language for truthful one-dimensional
mechanism design. Technical report, Computer Science Department, Boston Uni-
versity (2008)

10. Sălcianu, A., Arkoudas, K.: Machine-checkable correctness proofs for intra-
procedural dataflow analyses. Electr. Notes Theoret. Comput. Sci. 141(2), 53–68
(2005)

11. Dowek, G., Felty, A., Herbelin, H., Huet, G., Werner, B., Paulin-Mohring, C., et
al.: The coq proof assistant user’s guide: Version 5.6 (1991)

12. Affeldt, R., Kobayashi, N.: Formalization and Verification of a Mail Server in Coq.
In: Okada, M., Pierce, B., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 217–233. Springer, Heidelberg (2003)

13. Affeldt, R., Kobayashi, N., Yonezawa, A.: Verification of concurrent programs using
the coq proof assistant: a case study. IPSJ Digital Courier 1(7), 117–127 (2005)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

15. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

16. Vestergaard, R.: A constructive approach to sequential nash equilibria. Inf. Process.
Lett. 97(2), 46–51 (2006)

17. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Jacquart,
R. (ed.) Building the Information Society. IFIP, vol. 156, pp. 359–366. Springer,
Heidelberg (2004)

18. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. ACM SIGPLAN Not. 37(1), 178–190 (2002)

19. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. ii. Oxford
University Press, Oxford (1992)

20. Appel, A.: Foundational proof-carrying code. In: 16th Annual IEEE Symposium
on Logic in Computer Science, Proceedings, pp. 247–256. IEEE (2001)

21. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)
22. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with

JADE (wiley series in agent technology). Wiley, Chichester (2007)

Towards Verification of Ensemble-Based
Component Systems

Jǐŕı Barnat1, Nikola Beneš1(B), Tomáš Bureš2, Ivana Černá1,
Jaroslav Keznikl2, and Frantǐsek Plášil2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbarnat,xbenes3,cerna}@fi.muni.cz

2 Faculty of Mathematics and Physics, Charles University in Prague,
Praha, Czech Republic

{bures,keznikl,plasil}@d3s.mff.cuni.cz

Abstract. The relatively new domain of Ensemble-Based Component
Systems (EBCS) brings a number of important verification challenges
that stem mainly from the dynamism of EBCS. In this paper, we elab-
orate on our previous work on EBCS verification. In particular, we focus
on verification of applications based on the DEECo component model
– a representative of EBCS – and evaluate it on a real-life case study.
Since our verification technique employs a specialized DEECo semantics
to make the verification problem tractable, our goal is to investigate the
practical relevance of the properties that can be addressed by the verifica-
tion. Specifically, we compare the specialized semantics with the realistic
general semantics of DEECo to identify verification properties that
are preserved by the specialized semantics. We further investigate the
tractability of verification of these properties on a real-life case study from
the domain of electrical vehicle navigation – one of the key case studies
of the EU FP7 project ASCENS.

Keywords: Component-based systems · Component ensembles ·
Formal verification

1 Introduction

Ensemble-Based Component Systems (EBCS) is a new class of component-based
systems, characterized by the fact that the “traditional” component architecture
based on explicit bindings is replaced by a composition of components into so-
called ensembles [6,8]. An ensemble is a first-class concept that addresses the
dynamism in software architecture by declaratively capturing the component
composition and the corresponding interaction. In particular, this is done by
identifying the components to be composed implicitly via a predicate over com-
ponent states, so that each group of components for which the predicate holds
forms an ensemble, and by describing the interaction among the components
via a mapping relation among the states of these components. Furthermore, to

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 41–60, 2014.
DOI: 10.1007/978-3-319-07602-7 5, c© Springer International Publishing Switzerland 2014

42 J. Barnat et al.

compensate for the lack of the global system view, the components in EBCS are
autonomic entities building on agent-oriented concepts [12] and featuring execu-
tion model based on feedback loops (e.g., soft real-time control systems [9]) in
order to achieve (self-) adaptive and resilient operation. As an aside, following
the agent-oriented paradigm, in EBCS the state of a component is called the
component’s knowledge. EBCS are thus very appropriate for design and devel-
opment of highly dynamic autonomous systems that heavily interact with the
physical environment – in literature typically termed Cyber-Physical Systems
(CPS) [10].

In our previous work, we have introduced a representative of EBCS – the
DEECo component model [4,7] (Dependable Emergent Ensembles of Compo-
nents). In addition to reification of EBCS concepts and language mapping to
Java, DEECo comes also with a well-defined semantics [1], which reflects the
need for distributed and fully decentralized operation while specifically dealing
with components, ensembles, and knowledge. DEECo’s semantics is intentionally
very general to allow for a number of compliant realizations (i.e., specializations
generating strict subsets of traces allowed by the general DEECo semantics) by
means of different communication middleware.

The generality of DEECo’s semantics however brings about the problems
of generating an extensive state space, which is intractable for verification of
DEECo-based systems. To alleviate this restriction, we have come up with the
Dynamically Communicating Components Language (DCCL) [3] – a special-
ization of the DEECo’s semantics, which by sacrificing some variability in the
general DEECo’s semantics significantly reduces the state space and thus makes
model-checking of DEECo-based applications tractable. Systems described in
DCCL can be automatically verified using the explicit-state model checking tool
DiVinE [2]. The properties to be verified are to be given as formulae of the Linear
Temporal Logic (LTL) [13].

In this paper we evaluate the possibilities of DCCL verification by comparing
the general DEECo semantics with DCCL and employing DCCL in a real-life
case study from the domain of electrical vehicle navigation which comes from one
of our industrial partners in the EU FP7 project ASCENS [11]. In particular, we
analyze, which verification properties are preserved by the specialization featured
by DCCL and which are not. Thus, we identify classes of properties that may be
verified by model checking DCCL-based models. Furthermore, we demonstrate
how we employed DCCL for verification of the identified property classes on
the case study. Finally, we discuss the scalability limits of the verification by
providing estimates of the state space size based on the size of the case study
problem.

The rest of the paper is organized as follows. In Sect. 2, we describe the case
study and articulate the running example that is used throughout the paper. In
Sect. 3, we introduce the main concepts of DEECo and illustrate them on the
running example. In Sect. 4 we provide a brief overview of the general DEECo
semantics, while describing DCCL in Sect. 5. In Sect. 6, we elaborate on the
relation between the general DEECo semantics and DCCL. Consequently, in

Towards Verification of Ensemble-Based Component Systems 43

A
A

A

B

B
B

A

B

A

A

B

B

A

B

(a) (b)

Fig. 1. E-mobility: potential ensembles and their dynamic changes (available parking
stations close to respective POIs).

Sect. 7 we demonstrate the DCCL verification on the case study. In Sect. 8 we
present a discussion of the experience we have gained while working with the
case study. Finally, in Sect. 9 we provide a brief overview of the related work and
we conclude the paper in Sect. 10.

2 Case Study

We illustrate the main challenges of EBCS with the help of the electrical vehicle
navigation case study – so called e-mobility case study – featured by the ASCENS
project, brought to the project by Volkswagen AG [11].

The objective of the e-mobility case study is to coordinate the planning of
vehicle journeys in compliance with parking and charging strategies in a highly
dynamic and heterogeneous traffic environment, where information is distrib-
uted. The case study comprises electric vehicles that have to reach particular
Points Of Interest (POIs) within given time constraints. These POIs and their
respective constraints are listed in the event calendar of the e-vehicles. E-vehicles
are also equipped with sensors of basic capabilities, e.g., monitoring the battery
level and energy consumption of the vehicle, but also more sophisticated ones,
e.g., monitoring the traffic level along the route. Vehicles can only park and
recharge in designated parking spaces and charging lots, organized into park-
ing/charging stations. Vehicles are capable of communicating with each other,
as well as parking/charging stations. Such communication is necessary, e.g., in
order for a vehicle to obtain the availability of the parking station and potentially
reserve a place there. It is important that in this setting no central coordination
point is assumed; there is no global control or global planning. Instead, every
e-vehicle plans and executes its route individually, based on the data available.

The whole system can be seen as a set of (distributed) nodes, which form
ensembles (dynamic communication groups) in order to cooperate on achieving
their goal – to allow drivers to arrive at their POIs in time while leveraging the
available resources in a close-to-optimal way. This is illustrated in Fig. 1a – each
vehicle forms an ensemble with available parking stations close to their respective

44 J. Barnat et al.

POIs. Figure 1b further shows an evolution of the scenario, where vehicles have
moved along their planned route and a parking station has become unavailable
leading to dynamic changes of the ensembles.

Throughout the paper, we will use a running example that simplifies the
e-mobility case study by making the following assumptions: (i) parking and
charging stations are modeled together as Parking Lot/Charging Station (PLCS)
elements, (ii) vehicles react to changes in the environment only by updating their
reserved PLCSs, (iii) availability of PLCSs changes only as a result of reserving
a parking place, and (iv) a PLCS will be considered by a vehicle for reservation
if it is within a fixed distance to one of the vehicle’s POIs. Although simplified,
the running example still maintains the important characteristics of the general
case study.

We also assume the following conceptual implementation of the running
example: (i) each vehicle recurrently aggregates availability information of the
relevant PLCSs, e.g., the ones within a fixed distance to one of the vehicle’s
POIs; (ii) based on this information the vehicle continuously (re-) plans park-
ing/charging periods on a selection of the relevant PLCSs and issues correspond-
ing reservation requests (in the case of re-planning/changes of the selection issues
also corresponding cancellation requests); (iii) each PLCS processes its requests
and produces confirmations; (iv) having all the reservations confirmed, a vehicle
moves towards it’s closest destination (while repeating the steps i-iii).

3 DEECo: Key Concepts

Designing a navigation system that targets the case study brings a number of
important challenges. In particular: (i) the physical architecture of the system
constantly changes as the vehicles/PLCSs might enter/leave the system at any
point (e.g., due to low connectivity or physical unavailability); (ii) vehicles and
PLCSs have only a partial view over the whole system, according to the informa-
tion they obtain from components they interact with; and (iii) the trip planning
and decision making is decentralized and localized to the vehicles. In this section
we illustrate the key concepts of the DEECo component model – a representative
of EBCS – on the running example and demonstrate how the challenges listed
above are addressed using these concepts. A DEECo-specific implementation of
the running example is outlined in Fig. 2 and Fig. 3.

As illustrated in Fig. 2, a component (e.g., lines 7–20) comprises knowledge
and processes. Knowledge (lines 8–9) represents the internal data of the compo-
nent; it can be exposed to the rest of the system via the component’s interfaces
(e.g., lines 1–2, 7). A process (lines 10–20) is essentially a thread operating upon
the component knowledge in a cyclic manner (similar to a feedback loop). For
example, Vehicle0123 in Fig. 2 is a component, in which the move process updates
the vehicle’s next position based on its current position, the route calendar, and
the current reservation status. The process is executed periodically every 100 ms.
An important restriction of component processes that facilitates autonomy and
resilience, is that there is no direct communication (i.e., remote method invoca-
tion or message exchange) among components in the system. Each component

Towards Verification of Ensemble-Based Component Systems 45

Fig. 2. Example of DEECo components in a DSL

operates solely upon its own knowledge. Nevertheless, a component’s knowledge
may include it’s belief about the knowledge of other components. Updates of this
belief are completely externalized into component ensembles, described below.

As illustrated in Fig. 3, an ensemble (e.g., lines 32–40) is a first-class concept
that enables dynamic grouping of components and interaction between the com-
ponents in the group. A component in an ensemble assumes either the role of the
unique ensemble coordinator, or the role of one of the potentially multiple mem-
bers. The role of a component is determined dynamically by the membership
condition (lines 35–37) over component interfaces (lines 33–34). For example,
PropagateReservationRequests in Fig. 3 is an ensemble, in which a Vehicle and a
PLCS form a coordinator-member pair if the Vehicle’s reservations include the
PLCS. Technically, the run-time platform is responsible for timely evaluation of
the condition. As indicated above, the only mechanism for component interaction
is updating the interacting components’ belief. This is done via the knowledge
exchange of an ensemble (lines 38–40). Similar to component processes, knowl-
edge exchange is a cyclic activity that updates the coordinator’s belief about
the members and vice versa. For example, in PropagateReservationRequests the
knowledge exchange updates every 5000 ms the belief of member PLCSs about
the relevant reservations of the coordinating Vehicle. Again, the run-time plat-
form is responsible for timely knowledge exchange execution among all compo-
nents that are in the same ensemble.

46 J. Barnat et al.

Fig. 3. Example of DEECo ensembles in a DSL

4 General DEECo Semantics

DEECo comes with a well-defined general semantics, which faithfully captures
the operation of a DEECo-based application and its run-time platform in real
environment by accounting for (a) fully asynchronous, distributed, and decen-
tralized operation of components and ensembles, (b) real-time scheduling, and
(c) network specific issues such as communication delays and losses. In this
section we describe the general semantics, because it establishes a baseline for
verification of DEECo-based applications. Other DEECo semantics aimed at ver-
ification (e.g., DCCL) or stemming from implementations of DEECo by employ-
ing different communication middleware are further seen as specializations of
the general semantics – meaning that they generate only a subset of execution
traces permitted by the general semantics.

The general DEECo semantics describes a DEECo-based application as a
finite-state non-deterministic automaton, whose states capture the knowledge of
the system’s components and the transitions correspond to execution of compo-
nent processes or ensemble knowledge exchange. Note, that although the general
DEECo semantics could support infinite knowledge domains, we consider only
finite domains. This poses no real limitation, since typical CPS applications are
limited in terms of available resources. In particular, we construct the automaton
as a Cartesian product of three groups of automata pertaining to: (i) component
processes, (ii) knowledge propagation, and (iii) ensemble knowledge exchange.

4.1 Component Processes

A component process is an activity local to a component that atomically
reads a subset of the component’s knowledge, performs computation on it (possi-
bly performing sensing and actuation), and atomically updates the component’s

Towards Verification of Ensemble-Based Component Systems 47

knowledge with the result of the computation. To model this, we associate each
process p of each component C with an automaton A(p) – depicted in Fig. 4. The
initial state of the automaton is the idle state. The transition p1 corresponds
to reading the component knowledge (denoted VC) into a temporary variable.
The transition p2 reflects both the execution of the process and updating the
component’s knowledge with the outcome. Such semantics allows for concurrent,
asynchronous execution of component processes.

Fig. 4. Component process automaton – A(p)

4.2 Knowledge Propagation

As mentioned earlier, components in a DEECo system can only interact via
knowledge exchange prescribed by ensemble definitions and realized by the run-
time platform. The particulars of distributed communication required to realize
knowledge exchange very much depend on the communication middleware used.
To keep the execution semantics sufficiently general, we model the distributed
communication with relatively few restrictions. In particular, we assume that
each component C is associated with an arbitrarily outdated copy of knowledge
valuation of any other component C ′ in the system – the so called C’s view of C ′

(denoted as V C′
C). Note, that the concept of view is different from belief (the

former being a technical means of defining the semantics, the latter expressing
the application-specific purpose of a part of component knowledge).

To capture knowledge propagation in terms of updates of component views,
we associate a queue Q

Cj

Ci
with each ordered pair of components Ci, Cj , Ci →= Cj ,

which serves as a communication channel for the knowledge valuations of Cj

that are being propagated through the network to become the Ci’s view of Cj

(V Cj

Ci
). We assume the queue to be an unbounded perfect FIFO queue without

errors.
As depicted in Fig. 5, in order to model the actions of knowledge propaga-

tion and propagation delays associated with sending and receiving the knowledge
valuations over the network, we associate with each queue Q

Cj

Ci
an automaton

(A(QCj

Ci
)). The transition q1 of this automaton corresponds to sending the knowl-

edge valuation of Ci to Cj in terms of putting it into the queue. In a similar
manner, the transition q2 corresponds to updating Ci’s view of Cj (V Cj

Ci
) in terms

of retrieving it from the queue.

48 J. Barnat et al.

Fig. 5. Knowledge propagation automaton – A(Q
Cj

Ci
)

Note that the mandatory association of such view with each component is
only needed for the definition of semantics. The DEECo run-time framework
does not provide a corresponding run-time concept – it only provides a gen-
eral contract regarding the general spread of component knowledge valuations
throughout the system, without any specific guarantees.

4.3 Ensemble Knowledge Exchange

In an ensemble the knowledge exchange takes place always between the coor-
dinator and the members. For the sake of simplicity, in the definition of the
semantics, we treat an ensemble as a set of binary relations between a single
coordinator and each of the corresponding members.

Note that while the general propagation of knowledge throughout the (dis-
tributed) system, modeled via queues, concerns the whole knowledge of the
involved components, the ensemble knowledge exchange concerns only certain
knowledge fields, specific for the ensemble.

To capture the asynchrony and dependence on knowledge propagation, the
knowledge exchange is modeled as a set of component-specific automata locally
manipulating the component’s knowledge and views.

In particular, as depicted in Fig. 6a, we associate the role of the coordina-
tor (Ci) of an ensemble with an automaton Ac(E

Cj

Ci
). Similarly to the process

automaton, the process of loading and processing the knowledge is divided
into two states – idle and running, modeling thus asynchronous processing.
The transition c1 corresponds to loading the coordinator’s knowledge and it’s
view of one of the members into temporary variables. The transition c2 then
reflects the storing of the outcome of the knowledge exchange, i.e., the effect
of the knowledge transformation TE associated with the knowledge exchange
applied on the temporary variables, in the case the ensemble membership (ME)
holds.

Similarly, we associate the role of a member Cj of the ensemble with an
automaton Am(ECj

Ci
), as depicted in Fig. 6b. The automaton is very similar to

the one in Fig. 6a, with the difference that the member’s knowledge and view of
the coordinator are interchanged in both TE and ME (i.e., Ci and Cj switched
the roles in the automaton).

Towards Verification of Ensemble-Based Component Systems 49

Fig. 6. Ensemble knowledge exchange automaton

4.4 System Semantics

Building on the previously introduced specific automata, we can now define the
semantics of a system S consisting of a set of components C, each of which
including a set of processes PC , and a set of ensemble definitions E via the
following automaton:

A(S) =
∏

C∈C

∏

p∈PC

A(p)

︸ ︷︷ ︸
processes of all

components

×
∏

Ci,Cj∈C

Ci ∗=Cj

A(Q
Cj

Ci
)

︸ ︷︷ ︸
knowledge propagation

between each two

components

×
∏

E∈E

∏

Ci,Cj∈C

Ci ∗=Cj

(
Ac(E

Cj

Ci
) ×Am(E

Cj

Ci
)
)

︸ ︷︷ ︸
knowledge exchange between each two

components and for each ensemble

As already indicated in the automaton definition, a system automaton aggre-
gates automata for all the processes of all the components. To capture all the
potential ensembles among the components, it also includes a knowledge prop-
agation automaton between each oriented pair of components, as well as both
coordinator and member automata for each ensemble definition and each ori-
ented pair of components; i.e., each two components can potentially form a
coordinator-member pair of an ensemble. Being completely non-deterministic,
the system automaton can also capture system behaviors, that are not realistic
w.r.t. real system execution. Therefore, we impose further restrictions on the
system automaton in terms of limiting its set of valid execution traces. In par-
ticular, as DEECo and EBCS systems in general are soft realtime cyber-physical
systems, we focus on realtime properties of the execution traces.

50 J. Barnat et al.

In principle, we allow only those traces of the system automaton that
are realistic with respect to a soft-realtime periodic scheduling of the included
process/propagation/exchange automata. Namely, we impose the following
restrictions:

– Given the duration of the period of a component process, the process has to
start and end within each period (i.e., each period the corresponding process
automaton has to go from the idle to running state and back).

– Given the duration of the period and the maximum expected network latency,
all knowledge propagation has to be performed within each period with the
maximum delay equal to the latency (i.e., each period the corresponding
knowledge has to be enqueued, while it is dequeued with a delay at most
equal to the latency)

– Similarly to a component process, given the duration of the period, all knowl-
edge exchange has to start and end within each period (i.e., each period all
the corresponding coordinator and member automata have to go from the
idle to running state and back).

In a way, these restrictions impose specific “fairness” constraints on the system
automaton traces that are brought about by the properties of the run-time plat-
form. Since the technical details are beyond the scope of this paper, we refer an
interested reader to [1].

5 DCCL: Semantics Suitable for Verification

Due to the extremely big state space the general DEECo semantics generates,
it is not suitable for verification. To accomplish the verification task, we have
developed DCCL, which acts as a specialization of the general DEECo semantics
that is suitable for LTL model-checking using the model checking tool DiVinE [2].

Compared to the general DEECo semantics, DCCL incorporates certain sim-
plifications to keep the state space reasonably small and the model-checking task
thus tractable. In particular, DCCL specializes the general semantics by omitting
component views and assuming knowledge propagation to be instant. Further-
more, DCCL restricts the syntactic expressiveness of DEECo in the following
way. It allows only one process per component. The set of possible knowledge of
a component has to be finite, i.e., we restrict the data of each component to be
variables over a finite domain. As already mentioned, this restriction poses no
real limitation for typical CPS applications. All processes in the system have to
be periodic, synchronously activated and they strictly alternate with knowledge
exchange, which is also synchronously activated. We outline the DCCL semantics
below, for more details, we refer the reader to [3].

The computation of a DCCL system works in two alternating phases, the
component phase and the ensemble phase. In the component phase, components
perform their computation as prescribed by their process description. After the
component phase, the system switches to ensemble phase, where the ensemble

Towards Verification of Ensemble-Based Component Systems 51

knowledge exchange is performed. In order to capture various kinds of tim-
ing constraints, we provide two different kinds of semantics for the ensemble
phase. The first, fixpoint semantics, represents a situation in which the knowl-
edge exchange is infinitely faster than the progress of the components’ processes,
i.e., it takes negligible time. In this semantics, the ensemble phase proceeds as
long as there is some knowledge exchange to be done. The second semantics,
timeunit semantics, is assigned a single number, a time limit ϕ. The ensemble
phase then proceeds as in the previous, this time respecting the fact that every
component may only take part in as many as ϕ knowledge exchanges.

Formally, we define a labeled transition system (Σ,L,∼), where Σ is a set of
states, L is a set of labels and ∼⊆ Σ×L×Σ is a labeled transition relation. The
definition of states depends on the desired semantics. In the fixpoint semantics,
a state consists of the knowledge of every component and a marker indicating
the current phase.

Σf = KC1 × · · · × KCn
× {C,E}

In the timeunit semantics, each component includes a time counter whose maxi-
mal value is ϕ, the time limit. The ensemble phase marker is also enhanced with
a similar counter, called the round.

ΣΣ = KC1 × {0, . . . , ϕ} × · · · × KCn
× {0, . . . , ϕ} × ({C} ∪ ({E} × {1, . . . , ϕ}))

5.1 Component Phase

The progress of the component phase is very straightforward. Each component
only possesses a single process and the processes are independent, as they may
not touch other components’ knowledge. We may thus perform all processes
synchronously at once. Formally, whenever σ is a state of our transition system
containing the marker C, let σ′ denote its modification as follows: All compo-
nents’ knowledge in σ is changed according to the components’ processes, the
marker is changed to E, and, if the semantics is timeunit, all component time
counters as well as the round counter are set to ϕ. We then have the transition
σ

comp−−−∼ σ′.

5.2 Ensemble Phase

The ensemble phase consists of a number of smaller units, the knowledge
exchange steps. Every such step performs the knowledge exchange between one
coordinator and one member. The number of steps performed in each ensemble
phase depends on the chosen semantics. In a sense, the choice of semantics thus
governs the amount of fairness that is provided in the ensemble phase.

Fixpoint Semantics. In the fixpoint semantics, the ensemble phase runs until
a fixpoint is reached, i.e., until no more knowledge exchange steps can be per-
formed. Formally, let σ be a state of the transition system containing the ensem-
ble phase marker E. Let us consider all possible combinations of an ensemble

52 J. Barnat et al.

E with membership predicate p and knowledge exchange e, and two compo-
nents Ci, Cj such that p(Ci, Cj) holds in σ. This means that Ci is currently
a coordinator of an ensemble and that Cj is one of its members. For every such
triple (E,Ci, Cj), let σ′ be the state that is created from σ by changing the
knowledge of Ci, Cj according to the knowledge exchange e. We then have the

transition σ
ens(E,Ci,Cj)−−−−−−−−∼ σ′. Note that as there might be more triples satisfying

the properties above, the evolution of state σ is possibly non-deterministic.
If there is no possible knowledge exchange in the state σ, i.e., no transition

from σ has been created according to the above rule, the ensemble phase ends.
We represent this by a transition σ

end−−∼ σ′ where σ′ is equal to σ with the phase
marker changed to C.

Timeunit Semantics. In the timeunit semantics, the number of steps of the
ensemble phase is limited with a given number ϕ so that every component takes
part in at most ϕ knowledge exchanges during the phase. At the same time, we
want to perform as many exchanges as possible. We thus divide the ensemble
phase into ϕ rounds, numbered ϕ, ϕ − 1, . . . , 1. In round k, knowledge exchange
only occurs if both participants still have k time units left.

Formally, let σ be a state with phase marker E and its round counter set to
k. Let (E,Ci, Cj) satisfy the same property as in the previous semantics with
the additional constraint that the time counters of both Ci and Cj are set to k.
For every such triple, let σ′ be the state that is created from σ by changing the
knowledge of Ci, Cj and lowering their time counters to k −1. We then have the

transition σ
ensk(E,Ci,Cj)−−−−−−−−−∼ σ′.

Again, if there is no possible exchange in the state σ, the round ends. If
k > 1, the next round starts. The state σ′ is created from σ by changing the
round counter, as well as all time counters that have still k units left, to k − 1
and we have the transition σ

round−−−−∼ σ′. If k = 1, the ensemble phase ends. The
state σ′ is created from σ by changing all time counters to zero and changing
the phase marker to C. We then have σ

end−−∼ σ′.

6 Relation of DCCL to the General DEECo Semantics

Since DCCL is a simplification of the general DEECo semantics (e.g., while in
DEECo processes are fully parallel, in DCCL they are executed synchronously),
it is natural that model-checking of a DCCL-based system cannot verify all
potential properties that could be expressed over the traces of the general seman-
tics. In this section we thus discuss the relation of the general DEECo seman-
tics and DCCL with respect to analyzable properties. In particular, we identify
(i) properties which have equivalent validity under DCCL and general seman-
tics, and (ii) properties which do no have equivalent validity (i.e., they pertain to
aspects of the general semantics that are abstracted away by DCCL).

Note also that DCCL is a specialization of the general semantics, which
means that DCCL semantics cannot introduce a trace the equivalent of which

Towards Verification of Ensemble-Based Component Systems 53

could not be produced by the general DEECo semantics. (Here, we consider
two traces equivalent if they entail the same sequence of knowledge updates.)
This means that violation of a property under DCCL implies violation of an
equivalent property under the general semantics.

6.1 Realistic Properties That Can Be Verified via DCCL

Based on LTL model-checking procedure [13], we can essentially verify the tra-
ditional properties such as safety or liveness for a DCCL-based system, where
we consider the model to be an implementation of the system in the DCCL
language. Specifically, in our approach the atomic propositions of LTL specifica-
tion range over component knowledge valuations. In the following, we discuss in
more details a classification of properties specific to DEECo concepts that can
be verified for DCCL-based models.

Correctness of process execution (P1). Since DCCL explicitly represents the state
of a component’s knowledge before and after process execution, we can effectively
exploit the LTL property checking to verify correctness of the process execution.
This is naturally an important concern in DEECo.

Correctness of component interaction protocols (P2). Building on (P1), we can
also verify execution of a sequence of component processes and knowledge
exchange. This enables us to verify correctness of interaction protocols between
components (embodied by the sequence). In DEECo, due to the specifics of
the development cycle [4], the correctness of interaction is an important con-
cern as both component processes and ensemble knowledge exchange are devel-
oped in isolation and the component interfaces do not provide enough semantic
information.

Resilience w.r.t. knowledge inconsistency (P3). In this case, we want to verify
that a given system is resilient w.r.t. knowledge inconsistency caused by paral-
lelism of knowledge exchange/component processes (i.e., a component receives
up-to-date information from one component while receiving stale information
from another, because at the time the information was sent the other com-
ponent’s process has not yet produced the new information). Also, the incon-
sistencies can be introduced due to variable communication delays. This is an
important concern under the general DEECo semantics, since the semantics
allows complete parallelism of processes and knowledge exchange (limited only
by the realtime constraints) and it imposes little constraints on the commu-
nication delays. Although in general the DCCL semantics does not implicitly
account for such parallelism/delays, in order to reduce the complexity of a model
and its verification, it is possible to capture the parallelism/delays in DCCL
explicitly. Specifically, this is done by enabling an execution of a process/knowl-
edge exchange to be non-deterministically skipped, while enforcing fairness (i.e.,
delayed for a finite number of periods). Technically, this can be done by intro-
ducing a specific flag into the relevant components’ knowledge and defining an
“artificial” ensemble, that manipulates the flag. The other ensembles/processes

54 J. Barnat et al.

have to be then modified in such a way, that they will do nothing if the flag is
set. The non-deterministic interleaving of knowledge exchange during ensemble
phase will then yield two branches (depending, whether the artificial ensemble
was evaluated before the others), one where the flag has been set and the corre-
sponding original ensembles/processes did not have any effect (i.e., was delayed),
and one where the ensembles/processes proceeded as before, thus simulating
non-deterministic delays.

Communication-boundedness of interaction protocols (P4). Building on the
timed semantics of DCCL, we can verify whether a particular interaction is
communication-bounded – i.e., whether its correctness depends on a particular
communication speed. Specifically, we can verify that the system will mani-
fest erroneous behavior if the time limit of the timeunit semantics is too low,
while otherwise behaving correctly. Such a situation is realistic w.r.t. the general
DEECo semantics, since the semantics does not provide any specific guarantees
for the knowledge propagation and network latency. This concern can be critical
for certain application that require a high-level of safety and dependability (i.e.,
some behavior should be correct under arbitrary communication conditions).

6.2 Realistic Properties That Cannot Be Verified via DCCL

Properties related to parallelism of processes and knowledge exchange. Being vir-
tually synchronous, the DCCL semantics does not explicitly allow to verify prop-
erties based on parallelism of processes and knowledge exchange, such as race
conditions (as allowed by the DEECo semantics). To partially remedy this prob-
lem, we can modify the DCCL model so that an execution of a process/knowl-
edge exchange can be non-deterministically skipped, which is the case of (P3).
Nevertheless, this still does not reflect complete parallelism.

Properties related to real time. Expanding on the previous point, the DCCL
semantics does not allow verification of properties related to real time execu-
tion, such as that the periods of processes and knowledge propagation/exchange
that have mutual knowledge dependencies are set up correctly, i.e., so that they
together provide a satisfactory end-to-end response time. Similar to the previous
case, DCCL allows only for a partial solution based on a simple discretization
of time, which is the case of (P4).

7 Modeling the Case Study

In order to evaluate DCCL w.r.t. verification of realistic DEECo properties
(Sect. 6.1), we have fully modeled the running example presented in Sect. 2, while
following the implementation outlined in Sect. 3. Note that the running example
retains many important challenges of the realistic, industry-relevant case study,
rather than being a mere experimental setting.

Naturally, DCCL introduces a large amount of abstraction w.r.t. the orig-
inal system behavior. For instance, the time intervals of parking reservations

Towards Verification of Ensemble-Based Component Systems 55

have been discretized into a finite set of time “slots”. Similarly, we have also
discretized the geographic positions and distance. Moreover, the model includes
only a simple and fully deterministic implementation of algorithms for planning
vehicle routes, deciding PLCSs for parking, as well as for assigning parking places
to vehicles.

To gain a better insight in the impact of concurrency in knowledge exchange,
we have modeled two different variants of knowledge exchange of parking requests
in the corresponding ensembles. Specifically, these variants are concerned with
ordering of the requests coming from multiple parties concurrently. In the first
variant, which we will call “standard”, the requests are ordered based on their
content, thus eliminating the impact of concurrency. In the second variant, which
we will call “first-come-first-served”, the requests are ordered according to the
order in which knowledge exchange was executed, thus emulating the first come
first served semantics of message queues.

Note that although we always select particular components/PLCSs in the
following examples, in our experiments all the vehicles/PLCSs were symmetric
so that the selection of a particular one does not corrupt the generality of the
example.

7.1 Verification of Realistic Properties on the Case Study

To illustrate the potential of verifying realistic properties using DCCL on the
case study, we have formulated and verified at least one property of each class
identified in Sect. 6.1.

Correctness of process execution (P1). As an instance of a (P1) property, we
have checked that the process of PLCS, assigning parking places to vehicles, is
correct. We have done it by verifying that a PLCS never assigns a single parking
space to two vehicles for the same time slot. This property can be expressed
via the following LTL formula: G(!v0 assigned the same place as v1). The atomic
proposition v0 assigned the same place as v1 checks in a straightforward way the
knowledge of each PLCS, its buffer storing the processed reservation requests in
particular, whether the two vehicles (i.e., 0 and 1) have been assigned the same
parking place. As an aside, using this property we have been able to localize
an error in the parking-place-assignment process of PLCS, which was based on
not marking a parking place as occupied after assigning it to a vehicle, and thus
assigning it twice.

Correctness of component interaction protocols (P2). As for the (P2)
property class, we have verified that whenever a vehicle creates a reservation
request, the vehicle gets eventually notified about confirmation or rejection
of the request by the corresponding PLCS. This is expressed by the formula

(again, for
convenience we have used a fixed pair vehicle-PLCS). Here, v0 requests p0 is
true whenever the vehicle 0 contains a new parking request for PLCS 0, while
v0 request to p0 decided is true whenever the vehicle knows the decision of PLCS

56 J. Barnat et al.

0 on its request (be it either confirmation or rejection). Both atomic proposi-
tions are simple checks on the knowledge of vehicle 0. This property was verified
under the assumption that a PLCS’s knowledge can accommodate requests of
all relevant Vehicles. Recall that each Vehicle produces a single request for each
of its calendar events and waits for the decision.
Resilience w.r.t. interaction inconsistency/delays (P3). Using a (P3) property,
we have verified that the system is resilient w.r.t. inconsistency of PLCS-availabi-
lity information in a vehicle. Specifically, we have done it by verifying the prop-
erty that a vehicle’s reservations are always valid even if its PLCS-availability
information is inconsistent due to delays in communication. This is done by ver-
ifying the formula
in a modified model where the exchange of PLCS availability can be non-
deterministically delayed for one ensemble phase. Here, v0 has confirmation
for p0 t0 is true whenever vehicle 0 has a confirmed reservation of a place on
PLCS 0 for the time slot 0, while p0 blocks place for v0 t0 is true whenever
PLCS 0 blocks a parking place for vehicle 0 for the same time slot. Both atomic
propositions are simple checks over the corresponding vehicle/PLCS knowledge.
The non-determinism is implemented as indicated in Sect. 6.

Communication-boundedness of interaction protocols (P4). As to the class (P4),
we have tried to assess the communication-boundedness of the reservation request
interaction protocol. For this, we have exploited the property that we have
used to illustrate

. Under the timeunit semantics, since it limits the number of inter-
actions allowed in a single ensemble phase, the property will not longer hold
(for sufficiently small time limits). Thus the interaction protocol concerned with
exchanging parking reservation requests is communication bounded. Knowing
this, we could improve the design of the vehicle component so that it is resilient
w.r.t. this situation. Technically, we have done it by keeping the vehicle idle
until it receives a confirmed reservation for all its requests. Note that for exam-
ple the PLCS-availability exchange protocol is not communication-bounded, as
the vehicle does not distinguish whether the availability information is missing
because the PLCS is not relevant to any of its POIs or whether it just did not
get through due to slow communication.

7.2 Scalability Evaluation

To evaluate the scalability of DCCL w.r.t. the case study, we have measured the
size of the state space for different configurations of the case study (i.e., different
numbers and initial states of vehicles/PLCSs). Specifically, to obtain comparable
results, the configurations enforce the maximum amount of successful interaction
expected for the given number of components (i.e., without parking request
conflicts).

The scalability of DCCL is illustrated in Fig. 7. As expected, the number of
states grows exponentially w.r.t. the number of components in the system. The
curve of growth is relatively steep, however, this is acceptable given the complex-
ity of the case study and therefore also the corresponding model. Naturally, the

Towards Verification of Ensemble-Based Component Systems 57

1

10

100

1000

10000

100000

1000000

10000000

100000000

1/1 1/2 2/1 1/3 2/2 3/1 1/4 3/2 4/1 2/3 5/1 4/2 6/1 2/4 3/3 5/2 6/2 4/3 3/4 5/3 4/4 6/3 5/4

N
um

be
r o

f s
ta

te
s

Number of components (Vehicles/PLCSs)

Standard model First-come-first-served model

Fig. 7. Scalability of DCCL w.r.t. the case study

first-come-first-served variant of knowledge exchange scales much worse than the
standard variant, since it generates much more states at the end of each ensem-
ble phase (capturing different permutations of requests exchanged during the
phase). In a similar way, the same configurations yielded a much bigger state
space under the timeunit semantics, since the time-constrained prefixes of knowl-
edge exchange sequences produced a lot more different states at the end of each
ensemble phase. Since the size of the state space depends on the time limit in a
complex way, we have not included this variant in the figure.

8 Discussion

8.1 Lessons Learned

A major asset of our approach to verification of DEECo-based applications is
that DCCL is based on the DiVinE model checker, which is a mature, reliable,
and well-performing tool with solid supporting infrastructure. This helped espe-
cially when verifying a large model including non-trivial behavior, such as the
one modeling the case study.

Our experiments show that even after introducing relatively significant
simplifications to the execution model (such as synchronous alternation of com-
ponent/ensemble phases, unlimited time for knowledge exchange under the fix-
point semantics), it is still possible to maintain a rich set of verifiable properties.
Specifically, this observation appears to apply not only to DEECo-based sys-
tems, but also to EBCS and even cyber-physical systems in general, since they
share common basic characteristics. Nevertheless, there are still some aspects of
DCCL, such as no explicit support for non-determinism in component process-
es/knowledge exchange, that introduce unnecessary complexity and thus could
be targeted in the future work.

Finally, we argue that when modeling non-trivial examples, the organiza-
tion of data within the model has a significant impact both on the size of the
state space (e.g., fixed index assignment vs. first-come-first-served), as well as in

58 J. Barnat et al.

terms of complexity (e.g., regarding formulation of atomic propositions and LTL
formulae). However, this issue has been addressed little in the contemporary
model-checking approaches and thus further investigation of this topic would be
beneficial (for instance by providing guidelines).

8.2 Improving Scalability by Ensemble State Reduction

As shown in Sect. 7, DCCL is not yet able to scale to bigger configurations.
This can be partially remedied by employing a specific state-space reduction
during ensemble phase. In particular, since none of the properties that we have
experimented with relied on a valuation of atomic propositions in an internal
ensemble-phase state (i.e., a state that has transitions only from/to states in
the same ensemble phase), it should be possible to reduce the state space by
eliminating these internal ensemble-phase states. Technically, this can be done
by discarding the internal states at the end of each ensemble phase, after all the
final states of the phase have been generated.

Nevertheless, as also shown in Sect. 7, the current level of scale still suffices
to verify important realistic properties of a modeled system. Also, as supported
by our experiments, arguably a large number of important property violations
can be detected early, on a reasonably small configuration.

9 Related Work

As to the general domain of EBCS, we are currently not aware of any other
approach that would be directly related to DEECo and DCCL. However, there
is a number of approaches targeting similar domains; i.e., similar to CPS.

Closest to the area of EBCS, SCEL [8] is targeting a formalization of the
semantics of attribute-based communication (i.e., the key concept behind EBCS
ensembles) in the domain of formal coordination languages, with the future
intention of exploiting the formal semantics for analysis and verification, as well
as evaluation on an extensive case study.

When considering the broader domain of real-time embedded systems, which
share a number of aspects of CPS, there exists a number of approaches for
verification of safety and timing properties. These include well-established lan-
guages such as AADL1, EAST-ADL2, and VERDE/MARTE3, which come with
a number of related tools (e.g., COMPASS4) mainly focusing on timing and
dependability analysis, or CHESS5 methodology and toolset mainly focusing on
timing, failure propagation and dependability analysis. The closest to our model-
checking of EBCS is the approach of OTHELLO/OCRA [5], which allows for

1 http://www.aadl.info
2 http://www.east-adl.info
3 http://www.itea-verde.org
4 http://compass.informatik.rwth-aachen.de
5 http://www.chess-project.org

http://www.aadl.info
http://www.east-adl.info
http://www.itea-verde.org
http://compass.informatik.rwth-aachen.de
http://www.chess-project.org

Towards Verification of Ensemble-Based Component Systems 59

checking of refinement of contracts expressed in a variant of linear-time tempo-
ral logics interpreted over hybrid traces (i.e., traces that contain both discrete
events and continuous-time state evolution). Although all these approaches and
tools target a closely related domain to DCCL, they require a significant shift
from the EBCS concepts, thus increasing the effort required for modeling and
reducing the value of the verification results.

Our technique of model checking DCCL is built on top of the parallel and
distributed explicit-state model checker DiVinE [2]. DiVinE primarily offers the
verification of LTL properties by means of the automata-based LTL model check-
ing [13]. DiVinE accepts various input formats, one of them being the binary
Common Explicit-State Model Interface (CESMI), which we use for DCCL ver-
ification. The translation of a DCCL input file into a CESMI-compliant module
is provided via our tool dccl2cesmi6.

10 Conclusion

In this paper, we have discussed the verification possibilities of the DEECo com-
ponent model, a representative of Ensemble-Based Component Systems (EBCS).
In order to make the verification task feasible, we have designed a syntactic and
semantic specialization of DEECo called DCCL, verification of which is based
on an explicit-state model checker – DiVinE. We have further evaluated the pos-
sibilities of DCCL verification on a real-life case study and we have discussed its
limitations.

In the future, we would like to focus on two areas. One is that of further
extending DCCL to capture more relevant aspects of DEECo, e.g., introducing
specific data structures for knowledge-exchange-related tasks. The other area is
then that of reducing the state space. DiVinE itself performs certain generic
reductions, such as partial order reduction. However, we want to try reductions
that are specific to DCCL, such as some kind of symmetry reduction or the
reduction of the ensemble steps. In a more distant future, we would like to
extend the DCCL verification with quantitative aspect such as probability or
precise timing constraints.

Acknowledgments. This work has been supported by the Czech Science Foundation
grant project no. P202/11/0312.

References

1. Al Ali, R., Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.,
Plasil, F.: DEECo computational model-I., Technical Report D3S-TR-2013-01,
D3S, Charles University in Prague. http://d3s.mff.cuni.cz/publications (2013)

2. Barnat, J., et al.: DiVinE 3.0 – an explicit-state model checker for multithreaded
C & C++ programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 863–868. Springer, Heidelberg (2013)

6 http://paradise.fi.muni.cz/dccl/

http://d3s.mff.cuni.cz/publications
http://paradise.fi.muni.cz/dccl/

60 J. Barnat et al.

3. Barnat, J., Beneš, N., Černá, I., Petruchová, Z.: DCCL: verification of component
systems with ensembles. In: Proceedings of CBSE ’13. pp. 43–52. ACM, New York
(2013)

4. Bures, T., et al.: DEECo - an ensemble-based component system. In: Proceedings
of CBSE ’13. ACM, New York (2013)

5. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: Proceedings of SEAA 2012. IEEE CS, Los Alamitos (2012)

6. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) SoftWare-Intensive Systems. LNCS, vol. 5380,
pp. 1–44. Springer, Heidelberg (2008)

7. Keznikl, J., et al.: Towards dependable emergent ensembles of components: the
DEECo component model. In: Proceedings of WICSA/ECSA’12. IEEE (2012)

8. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A Language-Based Approach
to Autonomic Computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

9. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In:
Proceedings of SEAMS 2012 (2012)

10. Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: Proceedings of DAC’10. pp. 731–736. ACM, New York
(2010)

11. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther,
B.: Requirement specification and scenario description of the ascens case studies
(2011), deliverable D7.1. http://www.ascens-ist.eu/deliverables

12. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-theoretic,
and Logical Foundations. Cambridge University Press, Cambridge (2009)

13. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program ver-
ification (preliminary report). In: Proceedings, Symposium on Logic in Computer
Science (LICS’86), pp. 332–344. IEEE Computer Society (1986)

http://www.ascens-ist.eu/deliverables

Hierarchical Scheduling Framework Based
on Compositional Analysis Using Uppaal

Abdeldjalil Boudjadar(B), Alexandre David, Jin Hyun Kim, Kim G. Larsen,
Marius Mikučionis, Ulrik Nyman, and Arne Skou

Computer Science, Aalborg University, Aalborg, Denmark
jalil@cs.aau.dk

Abstract. This paper introduces a reconfigurable compositional
scheduling framework, in which the hierarchical structure, the schedul-
ing policies, the concrete task behavior and the shared resources can all
be reconfigured. The behavior of each periodic preemptive task is given
as a list of timed actions, which are some of the inputs for the para-
meterized timed automata that make up the framework. Components
may have different scheduling policies, and each component is analyzed
independently using Uppaal. We have applied our framework for the
schedulability analysis of an avionics system.

1 Introduction

Embedded systems are involved in many applications, software systems in cars
and planes, on which our lives depend. Ensuring the continually correct opera-
tion of such systems is an essential task. Avionics and automotive systems consist
of both safety-critical and non safety-critical features, which are implemented in
components that might share resources (e.g. processors). Resource utilization is
still an issue for safety-critical systems, and thus it is important to have both
an efficient and reliable scheduling policy for the individual parts of the system.
Scheduling is a widely used mechanism for guaranteeing that the different com-
ponents of a system will be provided with the correct amount of resources. In
this paper, we propose a model-based approach for analyzing the schedulability
of hierarchical scheduling systems. In fact, our framework is implemented using
parameterized timed automata models.

A hierarchical scheduling system consists of a finite set of components, a
scheduling policy and (global) resources. Each component, in turn, is the parallel
composition of a finite set of entities which are either tasks or other components
together with a scheduling policy to manage the component workload. One can
remark that we do not consider component local resources. System tasks are
instances of the same timed automaton with different input parameters. A special
parameter of the task model is a list of timed actions [5], specifying the concrete

The research presented in this paper has been partially supported by EU Artemis
Projects CRAFTERS and MBAT.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 61–78, 2014.
DOI: 10.1007/978-3-319-07602-7 6, c© Springer International Publishing Switzerland 2014

62 A. Boudjadar et al.

behavior of the given task. This list includes abstract computation steps, locking
and unlocking resources. Thanks to the parameterization, the framework can
easily be instantiated for a specific hierarchical scheduling application. Similarly,
each scheduling policy (e.g. EDF: Earliest Deadline First, FPS: Fixed Priority
Scheduling, RM: Rate Monotonic) is separately modeled and can be instantiated
for any component.

Compositional analysis has been introduced [4,10], as a key model-checking
technology, to deal with state space explosion caused be the parallel composition
of components. We are applying compositional verification to the domain of
schedulability analysis.

We analyze the model in a compositional manner, the schedulability of each
component including the top level, is analyzed together with the interface spec-
ifications of the level directly below it. In this analysis, we non-deterministically
supply the required resources of each component, i.e. each component is guar-
anteed to be provided its required resources for each period. This fact is viewed
by the component entities as a contract by which the component is obliged to
supply the required resources, provided by the component parent level, to its
sub entities for each period. The main contribution of the paper is combining:

– a compositional analysis approach where the schedulability of a system relies
on the recursive schedulability analysis of its individual subsystems.

– a reconfigurable schedulability framework where a system structure can be
instantiated in different configurations to fit different applications.

– modeling of concrete task behavior as a sequence of timed actions requiring
CPU and resources.

The rest of the paper is structured as follows: Sect. 2 introduces related work.
Section 3 is an informal description of the main contribution using a running
example. The section gives an overview of both modeling hierarchical schedul-
ing systems and how we perform the schedulability analysis in a compositional
way. In Sect. 4, we give the Uppaal model of our framework where we consider
concrete behavior of tasks. Moreover, we show how the compositional analysis
can be applied on the model using the Uppaal and Uppaal SMC verification
engines. Section 5 shows the applicability of our framework, where we analyze
the schedulability of an avionics system. Finally, Sect. 6 concludes our paper and
outlines the future work.

2 Related Work

Hierarchical scheduling systems were introduced in [7,9]. An analytical compo-
sitional framework for hierarchical scheduling systems was presented in [12] as a
formal way to elaborate a compositional approach for schedulability analysis of
hierarchical scheduling systems [13]. In the same way, the authors of [11] dealt
with a hierarchical scheduling framework for multiprocessors based on cluster-
based scheduling. They used analytical methods to perform analysis, however
both approaches [11,12] have difficulty in dealing with complicated behavior of
tasks.

Hierarchical Scheduling Framework Based on Compositional Analysis 63

Recent research within schedulability analysis increasingly uses model-based
approaches, because this allows for modeling more complicated behavior of sys-
tems. The rest of the related work presented in this section focuses on model-
based approaches.

In [2], the authors analyzed the schedulability of hierarchical scheduling sys-
tems, using a model-based approach with the TIMES tool [1], and implemented
their model in VxWorks [2]. They constructed an abstract task model as well
as scheduling algorithms, where the schedulability analysis of a component does
not only consider the timing attributes of that component but also the tim-
ing attributes of the other components that can preempt the execution of the
component under analysis.

In [5], the authors introduced a model-based framework using Uppaal for the
schedulability analysis of flat systems. They modeled the concrete task behav-
ior as a sequence of timed actions, each one represents a command that uses
processing and system resources and consumes time.

The authors of [3] provided a compositional framework for the verification
of hierarchical scheduling systems using a model-based approach. They specified
the system behavior in terms of preemptive time Petri nets and analyzed the
system schedulability using different scheduling policies.

We combine and extend these approaches [3,5] by considering hierarchy,
resource sharing and concrete task behavior, while analyzing hierarchical schedul-
ing systems in a compositional way. Moreover, our model can easily be recon-
figured to fit any specific application. Comparing our model-based approach to
analytical ones, our framework enables to describe more complicated and con-
crete systems.

3 Compositional Scheduling Framework

A hierarchical scheduling system consists of multiple scheduling systems in a
hierarchical structure. It can be represented as a tree of nodes, where each node
in the system is equipped with a scheduler for scheduling its child components.

In this paper, we structure our system model as a set of hierarchical com-
ponents. Each component, in turn, is the parallel composition of a set of enti-
ties (components or tasks) together with a local scheduler and possible local
resources. A parent component treats the real-time interface of each one of its
child components as a single task with the given real-time interface. The com-
ponent supplies its child entities with resource allocation according to their real-
time interfaces. Namely, each component is parameterized by a period (prd), a
budget (budget) specifying the execution time that the component should be
provided by its parent level, and a scheduling policy (s) specifying resource allo-
cations that are provided by the component to its child entities. The analysis of
a component (scheduling unit) consists of checking that its child entities can be
scheduled within the component budget according to the component scheduling
policy. A component can be also parameterized by a set of typed resources (R)
which serve as component local resources. An example of a hierarchical schedul-
ing system is depicted in Fig. 1.

64 A. Boudjadar et al.

Tasks represent the concrete behavior of the system. They are parameterized
with period (prd), execution time (e), deadline (d), priority (prio) and preemption
(p). The execution time (e) specifies the CPU usage time required by the task
execution for each period (prd). Deadline parameter (d) represents the latest
point in time that the task execution should be done before. The parameter
prio specifies the user priority associated to the task. Finally, p is a Boolean flag
stating whether or not the task is preemptive.

The task behavior is a sequence of timed actions consuming CPU time and
resources. Moreover, task and component parameters prd, budget and e can be
single values or time intervals.

3.1 Motivating Example

In this section and throughout the paper, we present the running example shown
in Fig. 1 to illustrate our system model of hierarchical scheduling systems, and
show the compositional analysis we claim. For the sake of simplicity, we omit
some parameters like priorities and resources and only consider single parameter
values instead of time intervals.

In this example, the top level System schedules Component1, Component2
with the EDF scheduling algorithm. The components are viewed by the top level
System as tasks having timing requirements. Component1, respectively Compo-
nent2, has the interface (100, 37), respectively (70, 25), as period and execution
time. The system shown through this example is schedulable if each component,
including the top level, is schedulable. Thus, for the given timing requirements
Component1 and Component2 should be schedulable by the top level System
according to the EDF scheduling policy. The tasks task1 and task2 should be
schedulable, with respect to the timing requirement of Component1 (100, 37),
also under the EDF scheduling policy. Similarly, task3, task4 and task5 should
be schedulable, with respect to the timing requirements of Component2, under

System

Component1 Component2

task1 task2 task3 task4 task5

RM

(100,37)

EDF

EDF

(70,25)

(250,40) (400,50) (140,7) (150,7) (300,30)

Fig. 1. Example of hierarchical scheduling system.

Hierarchical Scheduling Framework Based on Compositional Analysis 65

the RM scheduling policy. The next section presents the compositional analysis
of the schedulability of our example.

For a given system structure, we can have many different system configu-
rations. A system configuration consists of an instantiation of the model where
each parameter has a specific value. Figure 1 shows one such instantiation.

3.2 Our Analysis Approach

In order to design a framework that scales well for the analysis of larger hier-
archical scheduling systems, we have decided to use a compositional approach.
Figure 2 shows how the scheduling system, depicted in Fig. 1, is analyzed using
three independent analysis steps. These steps can be performed in any order.

The schedulability of each component, including the top level, is analyzed
together with the interface specifications of the level directly below it. Accord-
ingly, we will never analyze the whole hierarchy at once. In Fig. 2, the analysis
process A consists of checking whether the two components Component1 and
Component2 are schedulable under the scheduling policy EDF. In this analy-
sis step, we only consider the interfaces of components in the form of their
execution-time (budget) and period, so that we consider the component as an
abstract task when performing the schedulability analysis of the level above it.
In this way, we consider the component-composition problem similarly to [13]
but using a non-deterministic supplier model for the interfaces. When perform-
ing an analysis step like A1, the resource supplier is not part of the analysis.
In order to handle this, we add a non-deterministic supplier to the model. The
supplier will guarantee to provide the amount of execution time, specified in the
interface of Component1, before the end of the component period. We check all
possible ways in which the resources can be supplied to the subsystem in A1.
The supplier of each component provides resources to the child entities of that

System
EDF

Component1 Component2

task1 task2 task3 task4

EDF, RM: scheduling policies. A, A1, A2: analysis processes.

A

A1 A2

task5

EDF RM

Fig. 2. Compositional analysis

66 A. Boudjadar et al.

component in a non-deterministic way. During the analysis of A1, the supplier
non-deterministically decides to start or stop supplying, while still guaranteeing
to provide the required amount to its sub entities before the end of the period.
The analysis A2 is performed in the same way as A1.

Our compositional analysis approach results in an over-approximation i.e.
when performing the analysis of a subsystem, we over-approximate the behav-
ior of the rest of the system. This can result in specific hierarchical scheduling
systems that could be schedulable if one considers the entire system at once,
but that is not schedulable using our compositional approach. We consider this
fact as a design choice which ensures separation of concerns, meaning that small
changes to one part of the system does not effect the behavior of other compo-
nents. In this way, the design of the system is more stable which in turn leads to
predictable system behavior. This over-approximation, which is used as a design
choice, should not be confused with the over-approximation used in the verifica-
tion algorithm inside the Uppaal verification engine (Sect. 4.4). The result can
either be true (false) or maybe-not (maybe), in the case of true (false) the result
of the analysis is conclusive and exact.

Thanks to the parameterization of system entities; scheduling policies, pre-
emptiveness, execution times, periods and budgets can all easily be changed. In
order to estimate the performance and schedulability of our running example, we
have evaluated a number of different configurations of the system. This allows
us to choose the best of the evaluated configurations of the system.

4 Modeling and Analysis Using UPPAAL

The purpose of modeling and analyzing hierarchical scheduling systems is to
check whether the tasks nested in each component are schedulable, with respect
to resource constraints given by the component. This means that the minimum
budget of a component supplier, for a specific period, should satisfy the timing
requirements of the child tasks. For this purpose, we consider a scheduling unit
and use symbolic model checking and statistical model checking methods to
check the schedulability, and to find out the minimum budgets of components.
In fact, a scheduling unit [13] consists of a set of tasks, a supplier and a scheduler,
in [13] known by the terms Workloads, Resource model and Scheduling policy.

This section presents our modeling framework that will be used for the
schedulability analysis. We revisit the running example shown in Fig. 1, which is
built on the instances of four different Uppaal timed automata templates: (1)
non-deterministic supplier (2) periodic task (3) CPU scheduler (EDF, RM), and
(4) resource manager. Similarly to [5], we also use broadcast channels where no
sender can be blocked when performing a synchronization. We use stop watches,
writing x′ == e to specify a clock x that can only progress when e evaluates to
1. Uppaal also allows for clocks to progress with other rates but we only use 0
and 1.

Hierarchical Scheduling Framework Based on Compositional Analysis 67

supplying_time[supid]'==0
&& curTime <= sup[supid].prd
 - sup[supid].budget
 + supplying_time[supid]
&& curTime <= sup[supid].prd

stop_supplying[supid]!

replenishment[supid]!

supplying_time[supid]'==1
&& supplying_time[supid]<=sup[supid].budget

curTime <=sup[supid].prd
&& supplying_time[supid]'==0

NotSupplying

curTime ==sup[supid].prd

curTime < sup[supid].prd -sup[supid].budget + supplying_time[supid]
stop_supplying[supid]!

supplying_time[supid]>=sup[supid].budget

start_supplying[supid]!
supplying_time[supid]<=sup[supid].budget

supplying[supid]=1Supplying

supplying[supid]=1

supplying[supid]=0

Done
supplying[supid]=0

curTime=0, supplying_time[supid]=0,
supplying[supid]=0

Fig. 3. Non-deterministic supplier template

4.1 Non-Deterministic Supplier Model

In this section, we present some arguments for why it makes sense to use a
non-deterministic supplier model in our compositional analysis. The hierarchical
scheduling system structure is a set of scheduling components, each one includes
a single specific scheduling algorithm and a set of entities (tasks or compo-
nents). To analyze a single component by means of a compositional manner,
it is necessary to consider the interrupted behavior of that component by the
other concurrent components within the same system. However, it is hard to
capture the interrupting behavior of the other components that influence the
component under analysis. For this reason, we introduced a non-deterministic
supplier to model all scenarios that the component under analysis can run. Such
a non-deterministic fact simulates the influence of the other system components
on the execution of the component under analysis.

As mentioned earlier, the non-deterministic supplier is a resource model that
provides resources to the component. The scheduling policy within the compo-
nent then allocates the resources to tasks. It also abstracts the possibility that
a task from another part of the system (not part of the current analysis step)
could preempt the execution of tasks of the current component.

Figure 3 depicts the Uppaal template model of the non-deterministic sup-
plier. In fact, the non-deterministic supplier assigns a resource, denoted by rid,
to a set of tasks characterized by the timing attributes given in Listing 1.1.

Listing 1.1. Component interface

typede f s t r u c t {
t ime t prd ;
t ime t budget ;
t i d t t a s k a r r [t i d t] ;

} sup t ;

68 A. Boudjadar et al.

Fig. 4. Supplier’s behavior

A resource rid can represent a processing unit (CPU) or a any other system
resource, represented in the model by a semaphore. prd is a period and budget is
the amount of resources to be provided. The supplier assigns the budget amount
of resources to tasks in task arr[tid t]. In this model, supplying time[supid] (supid
is the supplier identifier) represents the duration when the supplier provides a
resource. start supplying[supid] and stop supplying[supid] are broadcast channels
that notify tasks of the beginning and completion of the resource supply. curTime
denotes the time elapsed since the beginning of the supplier’s resource supplying.
supplying[supid] contains the supplier’s status, 0 (not supplying) or 1 (supplying).

Figure 4 shows one particular resource supply pattern of Component1. sup-
plying time[1] is increasing while the supplier is providing resources. supply-
ing time[1] has a long wait while the supplier provides no resource. supplying[1]
indicates whether the supplier provides resources or not. Figure 4 shows a non-
deterministic supply, in which the values of supplying[1] are irregular in behavior.
The amount of resource supplied to tasks can be monitored from the supply-
ing time[1], which for each period supplies the exact amount of resource, 37 time
units, given in the timing interface for Component1.

The supplier provides a resource at the location Supplying (Fig. 3). The tran-
sitions between Supplying and NotSupplying are non-deterministically taken until
the budget is fulfilled (supplying time[supid] <= sup[supid].budget), or the
remaining time is equal to the remaining amount of resource to be provided
(curtime <= sup[supid].prd− sup[supid].budget+ supplying time[supid]). The
supplier stays at the location Supplying to provide the remaining amount of
resource when the budget of the supplier is not fully provided, and the remain-
ing time is equal to the remaining amount of resource to be provided.

4.2 Task Model

We only consider a finite set of tasks and refer to them as T = t1, t2, . . . , tn.
Each task is defined by the timing attributes given in Listing 1.2.

Hierarchical Scheduling Framework Based on Compositional Analysis 69

Listing 1.2. Task data structure

typede f s t r u c t {
p r i t p r i ;
t ime t i n i t i a l o f f s e t ;
t ime t o f f s e t ;
t ime t min period ;
t ime t max period ;
t ime t dead l ine ;
t ime t b c e t ;
t ime t wcet ;
boo l preempt ive ;

} t a s k t ;

pri is a task priority. initial offset is an initial offset for the initial release of
the task, and offset represents the offset time of each period before the task is
released. A task has also best execution time and worst-case execution time.

The timing attributes above are given as a structure associated to a timed
automaton template. The task model is given by the template shown in Fig. 5.

Clock exeTime[tid] denotes the execution time in which the task has executed
with necessary resources. This clock is a stop-watch and its progress depends on
the following condition:

int[0,1] isTaskSched() {return rq[rid].element[0] == tid? 1:0;}

where j is the resource id, contains the task identifier which is scheduled to use
the CPU, and isTaskSched() returns 1 or 0 according to whether the correspond-
ing task is scheduled or not. Thus, exeTime[tid] increases only when isTaskSched()
returns 1. A clock tWECT[tid] measures the worst-case execution time for the
task. curTime[tid] is the time elapsed since the task arrives. The task is sched-
uled, according to its priority, by a specific scheduling algorithm. It can execute
only when the supplier provides it with resources. That is, the supplier pro-
vides a specific resource amount, then a scheduling algorithm assigns the use of
that resource to a specific task. Figure 6 shows the timed behavior of task1 and
task2; exeTime[1] and exeTime[2] are increasing according to the resource supply
from the supplier. They stop increasing when the supplier stops supplying the
resource, or their corresponding tasks complete executing within their periods.
Clock exeTime[2] starts increasing after exeTime[1] finishes its execution during
its period because task2 has a lower priority than task1. running[1] and running[2]
indicate whether the tasks are running or not.

4.3 Resource Model and Scheduling

Figure 7 shows both the resource manager template and one scheduling algorithm
template. These two templates behave like a function. They process and return
data instantaneously after they receive processing requests. Listing 1.3 depicts
the structure (a queue) used by the resource manager.

70 A. Boudjadar et al.

exeTime[tid]'==0
&& x<= task[tid].offset

exeTime[tid]' == 0
&& tWCET[tid]'==0
&& curTime[tid] <= task[tid].max_period

exeTime[tid]'==0
&& curTime[tid]<=initialOffset()

finished[cpu()]!

WaitingOffset

exeTime[tid]'==isTaskSched()
&& exeTime[tid] <=task[tid].wcet
&& curTime[tid]<=deadline()

Idle

exeTime[tid]'==0
&& curTime[tid] <=task[tid].deadline

PeriodDone

curTime[tid]>=task[tid].min_period

exeTime[tid] ==task[tid].bcet

x== offset()

start_supplying[tstat[tid].pid]?

stop_supplying[tstat[tid].pid]?

curTime[tid]>=task[tid].deadline

r_req[cpu()]!

curTime[tid]>=deadline()

x==initialOffset()

Ready

x=0

x=0

enque(tstat[tid].pid,tid),
tstat[tid].status=RUNNING

MissDeadline

Suspended

error=1,RING=10

tstat[tid].status = PENDING_PERIOD,
deque(cpu(),tid), tWCET[tid]=0

curTime[tid]=0, exeTime[tid]=0, tWCET[tid]=0,
x=0

error=1,RING=10

Fig. 5. Task template

Listing 1.3. Resource manager data structure

typede f s t r u c t {
i n t [0 , t i d n] l ength ;
i n t [0 , LastTid] element [t i d n +1] ;

} queue t ;

In fact, the resource manager shown in Fig. 7(a) receives a scheduling request
from a task, and requests a scheduling algorithm to select the highest priority
task. The scheduling model of Fig. 7(b) selects the highest priority task and
places it at the first element of the ready queue. The scheduling model acknowl-
edges the resource manager after the selection of a task. At this time, the resource
manager notifies the selected task that it is scheduled in order to let it start its
execution.

Hierarchical Scheduling Framework Based on Compositional Analysis 71

Fig. 6. Task behaviour

rq[rid].length>0

rq[rid].length<=0

sel_tid()== 0

sel_tid()!=0

rq[rid].length<=0

r_preemptive[rid]=preemptive

finished[rid]? r_req[rid]?

r_sup[rid][rq[rid].element[0]]!

ack_sched[policy][rid]?

r_req[rid]?

run_sched[policy][rid]!
WaitSchedAssign

r_sup[rid][rq[rid].element[0]]!

Idle

ReqSched

InUse

(a) Resource manager model template

i:rid_t

rid=i, policy_FPS(i)
run_sched[FPS][i]?ack_sched[FPS][rid]!

(b) FP scheduler

Fig. 7. Resource and scheduling algorithm templates

72 A. Boudjadar et al.

Thanks to the Uppaal instantiation mechanism, our system structure can
easily be reconfigured. As early mentioned, we have modeled each system entity
(task, resource, supplier, scheduling policy) by a template so that if, for example,
we need to use a scheduling policy instead of another one, we just replace the
scheduling policy name in the system instantiation.

4.4 Symbolic Model Checking

In this section, we explain how to check the schedulability using the symbolic
reachability engine of Uppaal. We consider the system with various configura-
tions in terms of preemptiveness, scheduling policy, etc.

Let us start with an illustration of the schedulability analysis of Component1,
depicted in Fig. 1. The components are verified with respect to the following
safety property:

A[] error !=1

Here, error is a Boolean variable that will be updated to 1 (true) whenever
a task misses its deadline. Thus, this property expresses the absence of dead-
line violation (i.e. all tasks are schedulable). For a given supplier with a timing
requirement (100, 37), the verification results of the component including task1
(250, 40) and task2 (400, 50) are stated below in Table 1.

For the same task set under the EDF scheduling policy, the minimal budget
in our verification framework can be greater than the optimal budget of the
supplier given in [12]. One of the reasons is that the supplier behaves non-
deterministically. The fact that Uppaal uses an over-approximation technique
to analyze models containing stop-watches leads to our framework also being
an over-approximation. This results in the answer maybe-not to some of our
verification attempts. We use the same task set as in [12] where the authors
report that the optimal budget is 31 for the EDF scheduling policy, while the
minimal budget we have computed to satisfy the same task set by symbolic model
checking is 37. The minimal budgets we have computed, for RM scheduling and
the same task set, are the same as the budgets presented in [12].

In order to obtain the upper bound on the WCETs of tasks, with respect
to the EDF policy and a preemptive resource model, we check the following
property:

sup: tWCET[1], tWCET[2]

Table 1. Budget evaluation based on scheduling policy and preemptiveness.

Component1 (100, 31) (100, 37) (100, 44)
Preemptive Preemptive Non-preemptive Preemptive

EDF maybe not Safe maybe not Safe
RM maybe not maybe not maybe not Safe

Hierarchical Scheduling Framework Based on Compositional Analysis 73

where the tWCET[1] and tWCET[2] are stopwatches that are increasing while
the corresponding tasks are running. sup is a Uppaal keyword that refers to
a function returning the supprima of the expressions (maximal values in case
of integers; upper bounds, strict or not, for clocks). The verification results in
tWCET[1] ≤ 196 and tWCET[2] ≤ 196, signifying that the WCETs of each task
is less than or equal to 196. So none of the tasks miss their deadline.

4.5 Statistical Model Checking

As stated in [5], the use of stop-watches in Uppaal leads to an over-approxi-
mation which guarantees that safety properties are valid but reachability proper-
ties could be spurious. Thus, symbolic model checking cannot disprove whether
tasks are schedulable but only prove when they are schedulable. For that reason,
we apply statistical model checking (SMC) to disapprove the schedulability and
estimate the minimum budget of the supplier with respect to a specific period.

SMC is a simulation-based approach which estimates the probability for a
system to satisfy a property by simulating and observing some of its executions,
and then applies statistical algorithms to obtain the result [6]. In this section,
we will show a way not only of checking schedulability but also to reason on the
execution of tasks.

For our running example, Table 2 shows the query used to evaluate the prob-
ability of violating a deadline for runs bounded by 10000 time units regarding
different budgets of the supplier. The SMC computed the mentioned results with
certain level of confidence and precision, i.e. each result is given as an interval.
However, if the lower bound is strictly positive, it guarantees that the checker
found at least one witness trace where a task missed its deadline [5]. One may
remark that the probability of tasks missing their deadline is much higher when
the supplier budget is too small. Note that the possibility that tasks will miss
their deadline is between 0.249 and 0.349 for the supplier timing requirement
(100,31) of our example.

To visualize a witness of the deadline violation, we can request the checker
to generate random simulation runs and show the value of a collection of expres-
sions. For example, run the following query on the system:

simulate 100 [<=3000]{3+running[1], exeTime[1],

4.5+running[2], exeTime[2]}: 1: error==1

This query asks the checker to simulate randomly the system execution until
the condition error == 1 becomes satisfied, and to generate the task status and
the accumulated amount of the resource used by the two tasks.

Table 2. Probability of error estimation with 1 % level of significance.

Component1: EDF (100, 31) (100,32) (100, 33) (100, 34) (100,35)

Pr[<=10000](<>error) [0.249,0.349] [0.0142,0.114] [0,0.0987] [0,0.0987] [0,0.0987]

74 A. Boudjadar et al.

Fig. 8. Unschedulable tasks: task1 misses its deadline at time 1,250.

Fig. 9. Probability distribution of the WCET of tasks for the supplier (100, 33)

Figure 8 shows a case where task1 misses the deadline, visualizing the running
status of tasks (running[1] and running[2]) in a Gantt chart and the accumulated
amount of the resource used by tasks in a period (exeTime[1] and exeTime[2]).
Notice that the flat line at the end of the execution of task1 is one value lower
than all the previous tops of task1, indicating that this task misses the deadline
because of the lack of 1 time unit at time 1,250.

We apply the following queries for different supplier requirements to generate
the probability distribution of the worst-case execution time of tasks:

E[globalTime <= 100000;100] (max: tWCET[1])

E[globalTime <= 100000;100] (max: tWCET[2])

The results are shown in Figs. 9 and 10. In fact, Fig. 9 shows the probability
distribution of the worst-case execution time of tasks for the supplier timing

Hierarchical Scheduling Framework Based on Compositional Analysis 75

Fig. 10. Probability distribution of the WCET of tasks for the supplier (100, 37)

requirement (100, 33), where task1 and task2 have 210.026 and 292.126 as worst-
case execution times. For the supplier timing requirement (100, 37), as shown in
Fig. 10, task1 and task2 have 181.304 and 276.121 as worst-case execution times.
By means of this reasoning, it can be checked that both cases for the supplier
satisfies the task resource requirements and make them schedulable.

5 Case Study

To show the applicability of our compositional framework, we have modeled
the avionics system introduced in [3,8], and analyzed its schedulability. The
application is a flat composition of 15 tasks declared with different priorities
and timing requirements. Depending on the features of tasks, we have struc-
tured this application in 3 components. Component 1 (Weapon control) includes
5 tasks concerning the weapon control like bomb button, weapon release, tar-
get tracking, etc. Component 2 (Navigation) encapsulates 5 tasks concerning the
navigation system whereas component 3 (Controls & displays) includes the basic
5 tasks like display and auto-toggle. Each of the component has a fixed schedul-
ing policy (FPS) and timing requirements (period, budget). The architecture
and interfaces of the components, together with the timing attributes of tasks,
are depicted in Table 3 where pi, ei and di are respectively the period, execution
time and deadline of tasks. We have also considered shared resources to perform
input/output.

In fact, the shared bus for input/output communication is modeled as a
particular instance of the processor model. This can easily be extended to model
multi-core platforms.

Following the analysis method described in Sect. 3, we associate to each com-
ponent a non-deterministic supplier. By holding the same timing requirements
of tasks as [8], our compositional analysis shows that all components, except the
top level one, are schedulable under different scheduling policies with or without
preemptiveness. Component 1 is schedulable with at least 89 % of the system

76 A. Boudjadar et al.

Table 3. Generic avionics components and tasks

Component Period Min budget Tasks pi (µs) ei(µs) di(µs)

Weapon control 100 89 Weapon release 10000 1000 5000
Radar tracking 40000 2000 40000
Target tracking 40000 4000 40000
Target sweetening 40000 2000 40000
Bomb button 40000 1000 40000

Navigation 100 90 Flight data 50000 (55000) 8000 50000
HUD display 50000 (52000) 6000 50000
MPD display 50000 (52000) 8000 50000
Steering 80000 6000 8000
Weapon trajectory 100000 7000 100000

Controls & displays 220 160 Threat display 100000 3000 10000
AUTO toggle 200000 1000 200000
Poll RWR 200000 2000 200000
Reinitiate traject 400000 6000 400000
Periodic bit 1000000 5000 400000

resources. Component 2 could be schedulable if we provide 90 % of the system
resources, whereas Component 3 needs at least 72.7 % of the system resources
to being schedulable.

In the top level analysis process (A in Fig. 2), the top level component which
consists of a scheduling policy together with the interfaces of the 3 compo-
nents cannot be scheduled because the sum of the 3 component supplier budgets
exceeds 100 % of the resource utilization. This non-schedulability is probably due
to the existence of tasks having longer execution time than the deadline of the
lowest priority task. Thus, according to our compositional analysis this avion-
ics system is not schedulable. Our schedulability result of this avionics system
matches perfectly with the schedulability result obtained in a non-compositional
way in [8].

A challenge encountered during this application is the estimation of both
period and budget of each supplier such that:

– each supplier provides enough resources to its child tasks.
– the parallel composition of all suppliers is schedulable according to the system

level scheduling policy.

We have used a binary search approach to estimate the supplier budgets. In
fact, we check the schedulability of a component by giving a supplier budget,
and if the schedulability property is not satisfied we increase the budget value
and rerun the verification process. A perspective of this work is to study the
estimation of time requirements (periods, budgets) of the system intermediate
levels in an automatic way, making then the checking process much faster.

Hierarchical Scheduling Framework Based on Compositional Analysis 77

6 Conclusions

We have defined a compositional framework for the modeling and schedulability
analysis of hierarchical real-time systems. The framework has been instantiated
as reusable models given in terms of timed automata which we analyzed using
Uppaal and Uppaal SMC. The reusable models ensure that when modeling a
hierarchical scheduling application, only the concrete task behavior and the hier-
archical structure need to be specified by the system engineer. The framework
also allows for instant changes of the scheduling policy at each given level in the
hierarchy. Comparing our model-based approach to analytical ones, our frame-
work enables the modeling of more complicated and concrete systems. We have
successfully applied our compositional framework to model an avionics system
and analyze its schedulability. As future work, we plan to study how to estimate
the optimal timing requirements of suppliers in an automatic way. We also plan
to consider multi-core platforms as well as energy efficiency.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times: a tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

2. Behnam, M., Nolte, T., Shin, I., Åsberg, M., Bril, R.: Towards hierarchical schedul-
ing in VxWorks. In: OSPERT 2008, pp. 63–72 (2008)

3. Carnevali, L., Pinzuti, A., Vicario, E.: Compositional verification for hierarchical
scheduling of real-time systems. IEEE Trans. Softw. Eng. 39(5), 638–657 (2013)

4. Clarke, E.M., Long, D.E., Mcmillan, K.L.: Compositional Model Checking. MIT
Press, Cambridge (1999)

5. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-
Planck revisited using statistical model checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg
(2012)

6. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

7. Deng, Z., Liu, J.W.-S.: Scheduling real-time applications in an open environment.
In: RTSS, pp. 308–319. IEEE Computer Society (1997)

8. Dodd, R.: Coloured petri net modelling of a generic avionics missions computer.
Technical report (2006)

9. Feng, X.A., Mok, A.K.: A model of hierarchical real-time virtual resources. In:
Proceedings of the 23rd IEEE Real-Time Systems Symposium, RTSS ’02, pp. 26–
35. IEEE Computer Society, Washington, DC (2002)

10. Lind-Nielsen, J., Andersen, H.R., Hulgaard, H., Behrmann, G., Kristoffersen, K.J.,
Larsen, K.G.: Verification of large state/event systems using compositionality and
dependency analysis. Formal Meth. Syst. Des. 18(1), 5–23 (2001)

11. Shin, I., Easwaran, A., Lee, I.: Hierarchical scheduling framework for virtual clus-
tering of multiprocessors. In: ECRTS, pp. 181–190. IEEE Computer Society (2008)

78 A. Boudjadar et al.

12. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees.
In: RTSS, pp. 2–13. IEEE Computer Society (2003)

13. Shin, I., Lee, I.: Compositional real-time scheduling framework with periodic
model. ACM Trans. Embed. Comput. Syst. 7(3), 30:1–30:39 (2008)

Incremental Modeling of System Architecture
Satisfying SysML Functional Requirements

Oscar Carrillo, Samir Chouali(B), and Hassan Mountassir

FEMTO-ST Institute, University of Franche-Comté, Besançon, France
{ocarrill,schouali,hmountas}@femto-st.fr

Abstract. The aim of this work is to propose a methodological app-
roach to model and verify Component-Based Systems (CBS), directly
from SysML requirement diagrams, and to ensure formally the architec-
ture consistency of the specified systems. The architecture consistency
is guaranteed, when the components that interact in CBS are compat-
ible and all component requirements are preserved by the composition.
We propose to exploit functional requirements of CBS, specified with
SysML diagrams, and the composition of components to specify incre-
mentally system architecture. Component interfaces are specified with
SysML sequence diagrams to capture their behaviors (protocols). From
a requirement diagram, we associate atomic requirements, represented
as LTL properties, to reusable components satisfying them. LTL proper-
ties are verified on the components with SPIN model-checker. Then, we
specify system architecture incrementally, with SysML Block Definition
Diagram (BDD) and Internal Block Diagram (IBD), by treating, one by
one the atomic requirements.

Keywords: System architecture · Requirements · Composition · SysML ·
Interface automata · Model driven architecture · Verification · LTL
properties

1 Introduction

Component-Based Systems (CBS) are widely used in the industrial field, and
they are built by assembling various reusable components (third party compo-
nents), allowing to reduce their development cost. The success of the CBS devel-
opment is related to the development of complex systems by assembling smaller
and simpler components. Generally these systems are made larger because they
are developed with software frameworks. However this development is a hard
task due to two reasons. The first is the difficulty to decide what to build and
how to build it, by considering only system requirements and reusable compo-
nents. So the question is: how to specify a CBS architecture which satisfies all
system requirements? The second reason concerns the compatibility between the
set of reusable components that compose the system, which must be guaranteed.
Indeed, generally, one exploits reusable components from a component library
to construct CBS, so it is necessary to guarantee component compatibility.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 79–99, 2014.
DOI: 10.1007/978-3-319-07602-7 7, c© Springer International Publishing Switzerland 2014

80 O. Carrillo et al.

In this paper we discuss the relationship between system requirements and
CBS architecture specification. Our goal is to guide, by the requirements, the
CBS specifier to build a consistent system architecture that fulfills all require-
ments. To reach this goal, we propose to exploit SysML [1], which is a graphical
modeling language, widely used in the CBS development. It offers a standard for
modeling, specifying and documenting systems. In this work, we exploit SysML
requirement diagram to specify and organize system requirements, Sequence Dia-
gram (SD) to describe behavior of components, and Block Definition Diagram
(BDD) and Internal Block Diagram (IBD) to specify system architecture. In our
previous works [2,3], we exploited BDD, IBD, and SD to verify compatibility
between SysML blocks1. Particularly in [3], we focused on translating SysML SD
to interface automata to verify component compatibility, and in [2] we focused
on analyzing the relation between composite blocks and atomic blocks to verify
the consistency of a SysML composite blocks. In this context, this paper presents
new contributions which are:

– The exploitation of SysML requirement diagram to specify the requirements
of CBS.

– The specification of SysML requirements with LTL (Linear Temporal Logic)
formulae for their verification on components, thanks to their SD which are
translated to Promela by adapting the approach proposed in [4].

– The verification of components compatibility by exploiting the interface
automata formalism [5], obtained from SD of components, thanks to the app-
roach proposed in [3]. In this work we adapted the compatibility verification
algorithm to handle SysML requirements and to verify also their preservation
by the composition.

– The proposition of an incremental approach to construct CBS and to verify
their requirements in order to avoid the problem of the combinatorial explo-
sion of the number of states of the verified components. Indeed, the require-
ment verification is performed on elementary (generally small) components,
so we avoid the verification on composite components thanks to the require-
ments preservation by the composition. This contribution allows to obtain the
CBS architecture that fulfills all the requirements. Indeed, this architecture is
constructed incrementally and also validated incrementally against to SysML
requirements at each step.

Based on SysML requirement diagram and component interfaces, specified
with SD, we propose a formal and methodological approach to specify incremen-
tally the system architecture that preserves all the system requirements. So, we
propose to treat atomic requirements, extracted from the requirement diagram
(provided by the specifier), one by one, to construct a partial architecture, of
the system, composed of atomic components and composite components. At each
step, we propose to select an atomic requirement (more precise) from a SysML
requirement diagram, and choose a component from a library that should satisfy
the selected requirement. Then we verify whether the component satisfies the
1 We note that the term used in SysML for components is blocks.

Incremental Modeling of System Architecture 81

requirement thanks to the LTL formula which specifies the requirement and the
Promela program which specifies the component SD (see Sect. 4.3). After that,
we verify the compatibility between the selected component, and the selected one
in the precedent step, and we verify also the preservation of the requirements
treated in the precedent steps. This process ends when all atomic requirements
are treated, or when we detect incompatibility between components, or the non
preservation of the requirements by component composition. When the process
ends correctly, we guarantee the architecture consistency of the final CBS which
then fulfills all the requirements.

Our paper is organized as follows: Sect. 2 introduces SysML and the inter-
face automata approach. Section 3 describes our case study. Our approach is
presented in Sect. 4, and its illustration on the case study in Sect. 5. In Sect. 6,
we present the related works, and we end with conclusion and future works in
Sect. 7.

2 Preliminaries

In this section, we introduce the SysML language that we will use in our approach
to describe a system, and the interface automata theory that will be used to
verify the compatibility between the components that compose that system.

2.1 The SysML Language

SysML (Systems Modeling Language) [1] is a modeling language dedicated to
system engineering applications. It was designed as a response to the Request
for Proposals (RFP) made in March 2003 by the Object Management Group
(OMG) for using UML in Systems Engineering. It was proposed by the OMG
and the International Council on Systems Engineering (INCOSE), and it was
adopted as standard in May 2006. SysML is a UML 2.0 profile [6] that reuses a
subset of its diagrams and adds new features to better fit the needs of systems
engineering so that it allows the specification, analysis, design, verification, and
validation of a wide range of complex systems.

In this paper we use four of the nine diagrams included in SysML: Block Def-
inition Diagram (BDD): describes the architectural structure of the system as
components with their properties, operations, and relationships, Internal Block
Diagram (IBD): describes the internal structures of the components, adding
parts, and connectors, Requirement Diagram (RD): describes the system require-
ments and their relationships with other elements, and Sequence Diagram (SD):
describes the system behavior as interactions between system components.

2.2 Interface Automata

Interface automata were introduced by Alfaro and Henzinger [5] to specify com-
ponent interfaces and also to verify component assembly. Each component is
described by a single interface automaton. The set of actions is decomposed into

82 O. Carrillo et al.

three groups: input actions, output actions and internal actions. Input actions
allow to model the methods to be called in a component, in which case they
are the offered services in a component. These actions are labeled by the char-
acter “?”. The output actions model the method calls to another component.
Therefore, they represent services required by the component. These actions are
labeled by the character “!”. Internal actions are operations that can be activated
locally and are labeled by the character “;”. In this work, we exploit interface
automata to model interfaces of SysML components (blocks).

Definition 1. Interface Automata An interface automaton A is represented
by the tuple → SA, IA, ΣI

A, ΣO
A , ΣH

A , δA ∼ such that:

– SA is a finite set of states;
– IA ⊆ SA is a subset of initial states;
– ΣI

A, ΣO
A , and ΣH

A , respectively denote the sets of input, output, and internal
actions. The set of actions of A is denoted by ΣA;

– δA ⊆ SA × ΣA × SA is the set of transitions between states.

We define by ΣI
A(s), ΣO

A (s), ΣH
A (s), respectively the set of input, output, and

internal actions at the state s. ΣA(s) represents the set of actions at the state s.
The verification of the assembly of two components (blocks) is obtained by

verifying the compatibility of their interface automata. Before this verification,
it is necessary to ensure that the interface automata are composable.

Two interface automata A1 and A2 are composable if ΣI
A1

∩ΣI
A2

= ΣO
A1

∩ΣO
A2

= ΣH
A1

∩ ΣA2 = ΣA1 ∩ ΣH
A2

= ←. We define by Shared(A1,A2) = (ΣI
A1

∩ ΣO
A2

) ∩
(ΣO

A1
∩ ΣI

A2
) the set of actions shared between A1 and A2. The verification

of the compatibility of two interface automata is based on their synchronized
product, A1 ∅ A2, obtained by synchronizing the interface automata on their
shared actions (see Definition 3.4 in [5]).

Two interface automata may be incompatible due to the existence of illegal
states in their synchronized product. Illegal states are states from which a shared
output action from an automaton can not be synchronized with the same enabled
action as input on the other component.

Definition 2. Illegal States Let A1 and A2 be two composable interface
automata, the set of illegal states Illegal(A1, A2) ⊆ SA1 × SA2 is defined by
{(s1, s2) ⇐ SA1 ×SA2 | ∃a ⇐ Shared(A1, A2).((a ⇐ ΣO

A1
(s1)∧a ∨⇐ ΣI

A2
(s2))⇒(a ⇐

ΣO
A2

(s2) ∧ a ∨⇐ ΣI
A1

(s1)))}.

The interface automata approach is considered an optimistic approach, because
the reachability of states in Illegal (A1, A2) does not guarantee the incompatibil-
ity of A1 and A2. Indeed, in this approach one verifies the existence of an envi-
ronment that provides appropriate actions to the product A1∅A2 to avoid illegal
states. The states in which the environment can avoid the reachability of illegal
states are called compatible states, and are defined by the set Comp(A1, A2).
This set is calculated in A1∅A2 by eliminating illegal states, unreachable states,

Incremental Modeling of System Architecture 83

and states that lead to illegal states through internal actions or output actions,
called also incompatible states. These states are eliminated by providing a legal
environment which steers away from the illegal states by generating appropri-
ate inputs. By eliminating these states in A1 ∅ A2, we obtain the composition
A1 ∃ A2. So the interface automata A1 and A2 are compatible iff A1 ∃ A2 ∨= ← [5].

Definition 3. Composition The composition A1 ∃ A2 of two automata A1

and A2 is defined by: (i) SA1∈A2 = Comp(A1, A2), (ii) IA1∈A2 = IA1∗A2∩ Comp
(A1, A2), (iii) ΣA1∈A2 = ΣA1∗A2 , (iv) δA1∈A2 = δA1∗A2 ∩ (Comp(A1, A2) ×
ΣA1∈A2 × Comp(A1, A2))

We call the automaton A = A1 ∃ A2, the composite automaton.
The verification of the compatibility between a component C1 and a com-

ponent C2 is obtained by verifying the compatibility between their interface
automata A1 and A2. The main steps of the verification algorithm of the com-
patibility between A1 and A2(the complete algorithm in [5]) are listed as follows:
Compatibility verification algorithm: (1) verify that A1 and A2 are com-
posable. (2) compute the product A1 ∅ A2. (3) compute the set of illegal states
in A1 ∅ A2. (4) compute the set of incompatible states in A1 ∅ A2: the states
from which the illegal states are reachable by enabling only internal and output
actions (one supposes the existence of a helpful environment). (5) compute the
composition A1 ∃ A2 by eliminating from the automaton A1 ∅ A2, the illegal
states, the incompatible states, and the unreachable states from the initial states.
(6) if A1 ∃ A2 is empty then A1 and A2 are not compatible, therefore C1 and C2

can not be assembled correctly in any environment. Otherwise, A1 and A2 are
compatible and their corresponding component can be assembled properly.

The complexity of this approach is in time linear on |A1| and |A2| [5]. The
verification steps in this approach can be performed by the tool Ptolemy [7].

3 Case Study

To illustrate our approach, we propose to build the SysML structure that
specifies the implementation of a safety vehicle system (case study inspired from
[8]). A safety system consists of several sensors all around the car that detect
whether a collision occurred. When a car collides with a barrier, there will be a
rapid deceleration. Depending on the deceleration values detected by the sensors,
a central unit must decide whether or not to inflate the airbag and/or lock the
seat-belts.

The associated requirement diagram that specifies the system needs is shown
on Fig. 1. In this diagram, the initial requirement R1 asks for ensuring passen-
gers lives and it is decomposed into two requirements R1.1 and R1.2 that ask
for two safety devices: an airbag system which must be deployed whenever the
car is in a collision, and the seat-belts that must be locked when the sensors
detect strong movements, therefore, this last is an atomic requirement as it is
not decomposed. On the left side, requirement R1.1 is further decomposed into
requirements R1.1.1, R1.1.2, and R1.1.3 which are atomic ones. Requirement

84 O. Carrillo et al.

Fig. 1. Requirements refinement for airbag system

R1.1.1 asks for the capture and sending of sensor values to an Airbag Control
Unit (ACU). Requirement R1.1.2 requests an ACU to decide whether or not
to deploy the airbag and lock the seat-belts as soon as the sensors report new
values. Finally, requirement R1.1.3 demands to deploy an airbag device, once
the signal from the ACU is received.

4 Our Approach

In Sect. 4.1 we present an overview of our approach by listing its main steps.
These steps are then detailed in the following sections.

4.1 Overview

We propose an approach to construct a CBS system and to specify its archi-
tecture directly from SysML requirements. Our goal is to obtain a consistent
architecture which respects all the specified requirements. To specify this archi-
tecture, the software architect exploits a library of reusable components (or
blocks). These components are considered as black boxes and described only
by their interfaces, specified with sequence diagrams. So, we propose to specify
CBS requirements with SysML requirement diagram, then analyze this diagram
in order to associate one by one its atomic requirements (can not be decom-
posed) to software components that satisfy them. The satisfiability is evaluated
by performing a formal verification step with a model-checker. Each verified
component is tested for compatibility with the other components in the compo-
sition and then added to the partial architecture that must preserve the atomic
requirements.

Incremental Modeling of System Architecture 85

In our approach, a CBS is specified with a SysML requirement diagram
that shows the functional requirements, and component interfaces describe com-
ponent protocols by sequence diagrams. The main steps of our approach are
described as follows:

1. start by analyzing the SysML requirement diagram to obtain the atomic
requirements because they are more precise, and it is easier to find compo-
nents that satisfy them (see Sect. 4.2).

2. let Ri be the first atomic requirement, let Ci be a component from the com-
ponent library, described by the sequence diagram SDi. Specify Ri with the
LTL formula Fi and translate SDi to the Promela code PROi, then verify
that Ci satisfies Ri by verifying that PROi satisfies Fi with the model checker
SPIN (see Sect. 4.3). The selection of the component Ci in the library is done
by the software architect. However, it is possible to guide this selection (or to
automate it) because Ri is a functional requirement, and describes constraints
on offered and required services (Input/output actions). These services are
also described in component interfaces. So it is easy to extract these services
from Ri and to match them with those described in the interfaces. If this
step returns false, then Ci does not satisfy Ri, therefore one has to obtain
the appropriate component in other libraries, or to develop it from scratch.

3. let Ai be the interface automaton describing the component protocol and
obtained from the sequence diagram SDi (see Sect. 4.4).

4. identify the input and output actions in Ai related to Ri (Sect. 4.4).
5. repeat until all the requirements are treated.

(a) let Ri+1 be the next atomic requirement, connected to Ri (see Defi-
nition 6), let Ci+1 be a component satisfying Ri+1, thanks to the LTL
formula Fi+1 and the Promela code PROi+1. Let Ai+1 be the interface
automaton describing the component protocol.

(b) identify the set of input and output actions in Ai+1 related to Ri+1.
(c) verify that Ci and Ci+1 are compatible thanks to their interface

automata, so verify that Ai ∃ Ai+1 ∨= ← (Sect. 2.2).
(d) verify that the requirements Ri and Ri+1 are preserved by the composi-

tion, so they are satisfied by the composite C = Ci ∃ Ci+1 (Sect. 4.4).
(e) define the consistent partial architecture of the system by the composite

C = Ci ∃ Ci+1, according to Definition 7.
(f) let Ci = Ci ∃ Ci+1, Ai = Ai ∃ Ai+1, and Ri = {Ri, Ri+1}.

6. end repeat

According to the main steps of our approach, we validate the final architec-
ture of our CBS when all the atomic requirements are analyzed without problems
of component compatibility and/or requirement preservation.

4.2 Analysis of SysML Requirement Diagram

In this section, we specify formally the SysML requirement diagram in order to
analyze it and to extract formally the atomic requirements. Then, we show that

86 O. Carrillo et al.

it is sufficient to a CBS to satisfy only the atomic requirements in order to satisfy
all the requirements specified in the requirement diagram. In the following defi-
nition we consider two relations of SysML requirement diagram. Containment:
exploited to decompose a requirement with other ones more precise. Derivation:
exploited to connect a requirement with other ones which derive from it.

Definition 4. Requirement diagram specification We specify a SysML
requirement diagram by RD = →IR, SR,RelC,RelD∼ such that:

– IR: define the set of initial requirements, the first requirements that the spec-
ifier defines in the requirement diagram. Generally, they are not precise, and
it is necessary to connect them, with the containment relation, to more refined
requirements.

– SR: the set of all requirements.
– RelC ⊆ SR × P (SR) the relation of containment, where P (SR) is the set of

the subsets of SR.
– RelD ⊆ SR × P (SR) the relation of derivation.

For example in our case study, the specification of the requirement diagram
described in Fig. 1 is RD = →IR, SR,RelC,RelD∼, where IR = {R1}, SR =
{R1, R1.1, R1.2, R1.1.1, R1.1.2, R1.1.3}, RelC = {(R1, {R1.1, R1.2}), (R1.1,
{R1.1.1, R1.1.2, R1.1.3})}, and RelD = ←.

Definition 5. Atomic requirements The set of atomic requirements in the
requirement diagram specified by RD = →IR, SR,RelC,RelD∼ is the set AR =
{R|R ⇐ SR, �(R, {Ri, ...Rn}) ⇐ RelC}

An atomic requirement is a requirement which can not be decomposed. It
expresses a constraint on input and output actions which are related to one
component (see Sect. 4.4).

The atomic requirements in our case study are (see Fig. 1): {R1.1.1, R1.1.2,
R1.1.3, R1.2}.

Remark 1. To compute the set of atomic requirements, it is necessary to analyze
the set SR of all requirements and to identify the requirements that are not
related by the relation RelC (containment).

Theorem 1. Let S be a component-based system, let RD = →IR, SR,RelC,RelD∼
be the specification of a requirement diagram, and let AR be the set of atomic
requirements of RD. S satisfies all the requirements in SR iff it satisfies the
atomic requirements AR.

Theorem 1 states that it is sufficient for a system to satisfy the atomic require-
ments, in order to satisfy all requirements represented in a SysML requirement
diagram.

To illustrate the proof of the theorem, we propose a simple requirement
diagram presented in Fig. 2. The requirements are connected with a containment
relation, with continuous arrows, and a derivation relation, with dashed arrows.
So the requirement R0 is decomposed in the requirements R01 and R02. The
requirement R1 derives from R0, and R2 derives from R1.

Incremental Modeling of System Architecture 87

R0

R01 R02

R011 R012

R1

R2

⊕

⊕

<<derive>>

<<derive>>

Fig. 2. A SysML requirement diagram

Proof. Due to the semantic of the relation derive in SysML requirement diagram
(and also the semantic of requirement diagram), it’s obvious to state that a
system satisfies all requirements that are specified by a requirement diagram iff
it satisfies the initial requirements and all the ones that are derived (linked by
the relation derive) directly or indirectly from them. Indeed, the satisfaction of
the derived requirements does not guarantee the satisfaction of the initial ones.
Since the atomic requirements are either derived (directly or indirectly) from
initial requirements, or related by the relation of containment (directly or not) to
initial requirements. And due to the semantic of the containment and the derive
relations, the satisfaction of atomic requirements leads to the satisfaction of the
requirement which are linked to them. Therefore it is sufficient to satisfy atomic
requirements to satisfy all requirements. For example in Fig. 2, the requirements
to satisfy (initial and derived) are {R0, R1, R2}. The derived requirements are
R1 and R2, and the initial requirement is R0. However to satisfy a requirement
composed of other ones, it is sufficient to satisfy the requirements that compose
it. This process is repeated until all the atomic requirements are satisfied. So,
to satisfy R0, it is sufficient to satisfy R01 and R02. And to satisfy R01 it is
sufficient to satisfy R011 and R012. Therefore to satisfy all requirements, it is
necessary to satisfy {R1, R2, R02, R011, R012}, which defines the set of atomic
requirements in our requirement diagram.

4.3 Formal Verification of SysML Requirements on System
Components

This section presents a formal verification technique based on the approach pro-
posed by V. Lima et al. in [4]. This technique proposes to create a Promela-based
model from UML interactions expressed in Sequence Diagrams (SD), and uses
SPIN model checker [9] to simulate the execution and to verify properties written
in Linear Temporal Logic (LTL) [10]. Promela/SPIN was chosen because it pro-
vides important concepts for implementing SD: sending and receiving primitives,
parallel and asynchronous composition of concurrent processes, and communi-
cation channels. Our minor adaptation of the approach proposed by V. Lima et
al. concerns a particular type of sequence diagrams that we exploit to specify
the block behaviors.

We propose to use a particular type of SD with only two lifelines, one for the
block and one for the environment. This way, SD can be further translated into

88 O. Carrillo et al.

interface automata as exposed in [3]. In this diagram the exchanged messages will
be the offered services as calls from the environment and the required services as
calls to the environment. The main advantage of using SD for verification is that
we can verify temporal properties over it. Messages follow a sequence order that
we can trace to detect deadlocks or execution of paths. Figures 3 and 5 show the
SD for the blocks sensors and ACU, these are blocks from our block library. In
these diagrams we notice that there are only two lifelines and messages are sent
to/received from the environment.

Verification with SPIN Model Checker. In this paper we exploit and adapt
the approach proposed in [4] to translate SD to Promela-based model in order
to verify properties with the model-checker SPIN. Table 1 shows the Promela
representation of the main elements in SD. Alternative and loop combined frag-
ments are represented as if condition and do operator in Promela respectively,
guard condition is declared globally and the non-deterministic behavior is imple-
mented at init time by assigning different values to the guards. Figures 4 and
6 show partially the Promela representation for the sensors SD and ACU SD
respectively (due to the lack of space the complete Promela code is not shown
in this paper). In both diagrams, we notice that their two lifelines are trans-
lated as processes in the Promela code, one process for the block and one other
for the environment. Both processes are started at the same time thanks to an
atomic call at the main process init. We can also notice that loop combined
fragments are translated as do statements and that the alt combined fragment in
ACU SD is translated as if statement where the three possible range values for
deceleration are assigned at init time by using an if clause, this way, SPIN will
choose non-deterministically which of the three values will be used to simulate
the system.

Table 1. Mapping of basic concepts from sequence diagrams to Promela

SD element Promela element Promela statement

Lifeline Process proctype{...}
Message Message mtype{m1,...,mn}
Connector Communication

channel for each
message arrow

chan chanName = [1] of {mtype}

Send and receive
events

Send and receive
operations

Send ⇒ ab!m, Receive ⇒ ab?m

Alt combined
fragment

if condition if

::(guard)->ab p?p;

:: else -> ab q?q;

fi;

Loop combined
fragment

do operator do

::ab p?p;

od

Incremental Modeling of System Architecture 89

Fig. 3. SD for sensors block

...
proctype proc sensors(){
do

sensors environment get sensor values?get sensor values;
d step{send=0; receive=1; msg get sensor values=1;

msg sensor values=0; sensors=1; environment=0;};
sensors environment sensor values!sensor values; ...

od
}
proctype proc environment(){
do

sensors environment get sensor values!get sensor values;
...
sensors environment sensor values?sensor values; ...

od
}
init{atomic{run proc sensors();run proc environment();}}

Fig. 4. Promela code for sensors block

Once the sequence diagram is translated, the component can be simulated
as a SPIN system. However, in order to verify whether the component satis-
fies a LTL property, the authors propose to use a series of flags to keep track
of who is sending/receiving what message to/from whom at any time of the
execution. In our approach we verify properties over independent components
with only two lifelines in their SD, one line for the selected component and
the other for the environment. So, we do not use a flag related to to/from
whom is sent a message as it will always be the other lifeline. These flags are
updated together at each send/receive event using a d step statement. The flags
for our example in Fig. 3 will be send and receive to indicate the performed
action, msg get sensor values and msg sensor values to indicate the mes-
sage exchanged, and sensors and environment to indicate who performed the
action.

After defining the flags to track the execution state of the system, LTL prop-
erties can be written as boolean expressions over the flags. In our approach
we propose to translate SysML requirements to LTL properties by respecting
this formalism with flags. So for example requirement R1.1.1 in Fig. 2 can be
expressed as: always after receiving a call to get sensor values, the sensor block
will send a message with the sensor values. The boolean expression, using the
flags described before, will be: �((sensors && receive && msg get sensor
values) ∈ ♦ (sensors && send && msg sensor values)). Similarly, require-
ment R1.1.2 can be expressed as: always after receiving a message with the sen-
sor values, the ACU will send a message deciding to lock the seat-belt, activate
the airbag or wait for another call, and the boolean expression with flags will be:
�((acu && receive && msg sensor values) ∈ ♦ (acu && send && (msg
reset || msg act sb || msg act ab))). These properties are further verified
over their corresponding Promela model by using SPIN model checker, which
indicates that the properties are satisfied by the blocks. Once a corresponding
block is found for a requirement, we continue with another requirement to start
building the system architecture.

90 O. Carrillo et al.

Fig. 5. SD for the ACU block

...
proctype proc acu(){
do

::acu environment sensor values?sensor values;
if

::(val dec>=60)−>{acu environment act sb!act sb; ...
acu environment act ab!act ab;
d step{send=0; receive=1; ...};}

::((val dec<60) && (val dec>=3))−>
acu environment act sb!act sb; ...

::else{acu reset!reset; ...
acu reset?reset; ...}

fi;
od}

proctype proc environment(){
do

::acu environment sensor values!sensor values; ...
if

::((val dec<60) && (val dec>=3))−>
acu environment act sb?act sb; ...

::(val dec>=60)−>{acu environment act sb?act sb; ...
acu environment act ab?act ab; ...}

fi;
od}
init{

if
::(true)−>val dec=0;
::(true)−>val dec=10;
::(true)−>val dec=60;

fi;
atomic{run proc acu();run proc environment();}

}

Fig. 6. Promela code for ACU block

4.4 Component Assembly Preserving SysML Requirements

After the verification of the connected atomic requirements on the components,
in this section, we specify interface automata from sequence diagrams thanks to
the approach proposed in [3], then we propose to compose components and to
verify compatibility between them, using their interface automata, by applying
the algorithm presented in Sect. 2.2. We propose also to verify, at the same time
as the compatibility verification, whether the composition preserves the atomic
SysML requirements. Indeed, this verification allows to avoid the requirement
verification at the level of the obtained composite component, in order to avoid
the state explosion problem for the model checker. Before presenting the algo-
rithm to verify the preservation, we show in the following sections that SysML
requirements are related to Input/Output actions of interface automata, and
their preservation is related to the preservation by the composition of their
related actions.

Relation Between Functional Requirements and Input/Output
Actions. The atomic requirements considered in this work concern the func-
tional properties of a CBS. They are related directly to input and output actions
of components. Therefore, for each atomic requirement we associate the sets of
input and output actions provided by a component.

Let AR be the set of atomic requirements in the specification RD of a require-
ment diagram. Let Ri be an atomic requirement satisfied by the component Ci.
Let Ai be the interface automaton describing the protocol of Ci. So, Ri is associ-
ated to input actions IRi

= {iri1 , ..., irin}, and output ones ORi
= {ori1 , ..., orin}.

For example the first atomic requirement in our case study is R1.1.1: always
get the sensor values and send them to the ACU. It is satisfied by the component

Incremental Modeling of System Architecture 91

Sensor. The interface automaton of this component is described in Fig. 8. The set
of input actions related to R1.1.1 is {get sensor values}, and the set of output
actions is {sensor values}.

The actions related to atomic requirements are formalized by transitions in
the interface automata, labeled with these input/output actions.

Definition 6. Connected requirements Let R and R↑ be two atomic require-
ments specified in a SysML requirement diagram. R and R↑ are related respec-
tively to the set of input actions IR, and I ↑

R, and output ones OR, and O↑
R. R

and R↑ are connected iff IR ∩ O↑
R ∨= ← or I ↑

R ∩ OR ∨= ←.
According to Definition 6 and to the condition of composability of interface

automata (see Sect. 2.2), it is obvious to state that two components satisfying two
connected atomic requirements are composable. We exploit this definition in our
approach: at each iteration i of our approach, we choose an atomic requirement
which is connected with the requirement in the iteration i−1, in order to compose
their components, otherwise the composition is not allowed.

The Interface Automata Composition Does Not Always Guarantee the
Preservation of Their Input/Output Actions. In this section, we show that
the composition of two interface automata does not guarantee the preservation
of their non shared input/output actions in the obtained composite automaton,
despite their compatibility. In fact, in the item (iii) of Definition 3, the authors in
[5] indicate that the set of actions in the composite automaton A = A1 ∃ A2 is the
same as the set of actions in the synchronized product A1 ∅A2, however, the set
of transitions in A is not the same as the one in A1∅A2 (according to Definition
3). Indeed the set of transitions in A is included in the one of A1 ∅A2. So, there
may be input/output actions in ΣA which are not associated to transitions in
A. In fact according to the optimistic approach of interface automata, despite
that A1 and A2 are compatible, and A ∨= ←, there may be shared input/output
actions between A1 and A2 which do not synchronize, but certainly, there are
also shared actions which synchronize (because A ∨= ←). Thus, the transitions
labeled with the shared input/output actions, which do not synchronize, will be
eliminated from A = A1 ∃ A2 because they lead to illegal states. But the related
input/output actions (which label the eliminated transitions) remain in the set
of actions in A, because the composite component described by the composite
automaton A could provide these actions, and with the optimistic approach, one
decides that it is compatible, because one supposes the existence of the helpful
environment which never enables these actions (for more illustration see the
example in [5]).

Verification of the Preservation of the Atomic Requirements by the
Composition. In this section, we show the conditions that the composition
of components should respect to preserve the requirements of the composed
components. And we show also how to verify these conditions by adapting the
compatibility verification algorithm of interface automata (see Sect. 2.2).

92 O. Carrillo et al.

The preservation of the atomic requirements by the composition of compo-
nents is necessarily related to the preservation of the input/output actions, asso-
ciated to these requirements, by the composition of their interface automata. Fur-
thermore, in Sect. 4.4, we indicate that some input/output actions may belong
to the set of actions of a composite automaton, but they do not label transi-
tions in this automaton. So, in this case we state that these actions are not
preserved.

Condition of Input/Output action preservation: An action act (Input or out-
put) is preserved by the composition of two interface automata, A1 and A2, iff
there is at least one transition in the composite automaton, A = A1 ∃ A2, which
is labeled with act. act belongs to the set of Input/Output actions in A, when
act is not shared between A1 and A2, and belongs to the internal actions in A
otherwise.

Verification algorithm overview: To verify the preservation of atomic
requirements by the composition, we propose to adapt the compatibility ver-
ification algorithm [5] (Sect. 2.2). We verify whether the transitions labeled with
input/output actions, related to atomic requirements, are preserved in the tran-
sition set of the obtained composite automaton Ai ∃ Ai+1. This adaptation
consists on: to calculate in the step (2) of the compatibility verification algo-
rithm, the set of transitions in Ai ∅ Ai+1, noted T , related to the requirements.
When we eliminate transitions in the step (5) of the compatibility verification
algorithm, we eliminate also these transitions in T . Finally, we verify that all
the actions related to the requirements, are associated to at least one transition
in T , after the step (6).

We notice that this adaptation does not increase the complexity of the com-
patibility verification algorithm (this can be easily verifiable). So the complexity
of the presented algorithm is O|Ai ∅ Ai+1|. However, in order to calculate the
time complexity of one step in our approach, we have to consider a component
Cc associated to the current requirement to analyze, Rc. This component is
selected from the components library specified by the set C = {C1, C2, ..., Cn}.
We consider also the sequence diagrams SDc that specifies the protocol of Cc.
In each step we have to verify that the current component satisfies the current
requirement thanks to the Promela code of SDc and to the model checker SPIN.
And we verify also the compatibility between the current component and the
composite component, Cp, obtained in a precedent step. So the time complexity
of one step in our approach is analyzed as follows:

– to select a component from the set C that should satisfy an atomic require-
ment, the complexity is: O(|C|)

– to verify that Cc satisfies Rc, the complexity is : O(|TSc|×2|Pc|), where TSc is
the automaton calculated by SPIN from the Promela code associated to SDc

(this is the complexity of the LTL model checking), and Pc the LTL formula
that specifies the requirement Rc.

– After verifying the atomic current requirement on the component, we verify
the compatibility between Cc and Cp and the preservation of the requirements

Incremental Modeling of System Architecture 93

by the composition. The complexity of this step is : O(|Ac ∅ Ap|), where Ac

and Ap are the interface automata associated respectively to Cc and Cp.

So, to calculate the complexity of the whole approach, we have to consider the
complexity of one step and the number of the atomic requirements which defines
the number of steps.

To demonstrate the correctness of our approach, we should prove that the
composition of two components preserves the atomic requirements iff the com-
posed components are compatible and the input and output actions related to
these requirements are preserved according to the condition of preservation of
input/output actions. Indeed, each step in the incremental approach is based
on the compatibility and the preservation of the atomic requirements by
the composition. So, it is sufficient to show the correctness of a step i in our
approach.

Theorem 2. Let Ci be a component satisfying the atomic requirement Ri and
Ai the interface automaton of Ci, let Ii be the set of input actions related to Ri

and Oi the output ones. Let Ci+1 be a component satisfying Ri+1 and Ai+1 the
interface automaton of Ci+1, let Ii+1 be the set of input actions related to Ri+1

and Oi+1 the output ones. The composite component S = Ci ∃ Ci+1 preserves the
requirements {Ri, Ri+1} iff the interface automata Ai, and Ai+1, are compatible,
and the input and output actions, Ii, Ii+1, Oi, and Oi+1 are preserved in S.

Proof. The component Ci satisfies Ri means that the program Promela describ-
ing the component behaviors satisfies the LTL property specifying the require-
ment Ri. In our approach, component behaviors are also described with an inter-
face automaton Ai, and these behaviors are execution paths in the interface
automaton. The functional requirement Ri is related to the sets of input/output
actions, Ii, Oi, and they express constraints and the order of executing these
actions. For example Ri could express: always when Ci enables an input action
i ⇐ Ii then it will inevitably enable the output actions o ⇐ Oi. So Ci satisfies this
requirement iff in all the execution paths in Ai where a transition labeled by i
belongs, it will be followed by a transition labeled with o. Since our composition
approach preserves at least one of these paths, when the compatibility and the
preservation of Input/Output actions hold, then the requirements are preserved.

Indeed, the composite S = Ci ∃ Ci+1 preserves the input/output actions
related to the requirements means that for each input/output actions related to
Ri and Ri+1, the transitions labeled with these actions are preserved, therefore at
least one execution path, in Ai ∃ Ai+1 containing these transitions is preserved in
S. Indeed, we have the following possibilities when Ai and Ai+1 are compatible
and the actions related to Ri and Ri+1 are preserved (illustration concerning
only one action a related to Ri or Ri+1):

– if there are no illegal states the preservation is guaranteed, because all the
paths are preserved. This case (we have two possibilities) is illustrated in the
Fig. 7(a) and (b). In the case (a), we suppose that there is a synchronization
between the two automata on the shared action a (related to a requirement),

94 O. Carrillo et al.

Ai Ai+1 Ai Ai+1

s

s

s1

s1 s , s1

s, s1

a! a? a;

(a)

Ai Ai+1 Ai Ai+1

s

s

s1

s1 s , s1

s, s1

s, s1

a! b? a!
b?

(b)

Ai Ai+1 Ai Ai+1

s

s

s1

s1

s, s1

a! b?

(c)

Fig. 7. Proof 2 illustration

so in the composition we obtain a transition labeled with the internal action a.
Therefore the action a is preserved and becomes internal. And in the second
case (b), we suppose that a is not shared and there is interleaving in the
composite automaton, and a is preserved.

– if there are illegal states (and the automata are compatible due the optimistic
approach): in this case (see Fig. 7(c)), we suppose that the first automaton
provides a shared output action a, in the state s, and the second automaton
does not provide the input action a, in s1. So we obtain an illegal state and the
action a is not enabled in the illegal state (s, s1). In this case we have to verify
that a is preserved in other paths of the composite automaton Ai ∃ Ai+1,
with our approach. So, if we find a transition labeled with a, in Ai ∃ Ai+1,
so it is preserved (according to the condition of preservation), and the associ-
ated requirement also, otherwise the related requirement is not preserved. So
when the preservation of the Input/Output action is verified, then the related
requirements are preserved.

4.5 Specification of System Architecture with BDD and IBD
Diagrams After the Composition

The construction of a CBS with our approach is based on constructing, at each
incremental step, one SysML composite component, which defines a partial archi-
tecture of a CBS. This architecture is based on the interface automata of the
assembled components and particularly on their shared actions. So, in the fol-
lowing definition, we describe the SysML composite by specifying the relation
between SysML BDD and IBD diagrams, and the interface automata describing
the behaviors of the composed components.

Definition 7. SysML Composite component Let C1 and C2 be two compo-
nents, let A1 and A2 be their respective interface automata. When A1 and A2

are compatible, A1||A2 ∨= ←, the composite component C composed of C1 and
C2, is well formed and it is written C = C1 ∃ C2. This composite is described
with the SysML BDD diagram, BDDC , composed of the composite block C, and
the blocks C1 and C2. The interactions between the components C1 and C2 are

Incremental Modeling of System Architecture 95

described with the SysML IBD diagram, IBDC such that, IBDC is composed of
the parts2 C1 and C2 which communicate through internal ports, labeled with the
names of the synchronized input and output actions, which are shared between
A1 and A2. The external ports of IBDC are labeled with the names of actions
which are not shared.

This definition is illustrated in Sect. 5 in Figs. 11 and 12 (BDD and IBD).

5 Illustration on the Case Study

In this section we apply our approach on the case study shown in Sect. 3. As
exposed in the approach, we start by analyzing the SysML requirement dia-
gram to obtain the atomic requirements. These requirements are R1.1.1, R1.1.2,
R1.1.3, and R1.2. Then, we link LTL properties for each of these atomic require-
ments. These properties are used to verify whether a block in a component library
satisfies the requirement in order to match them. For the first requirement R1.1.1
we take a sensor block with its associated SD shown in Fig. 3 respectively. This
sensor block gets information from several sensors (accelerometers, impact sen-
sors,...) all around the car at each call of the service get sensor values, and
sends them through a service sensor values. These services are respectively
the input {get sensor values} and output actions {sensor values} related
to requirement R1.1.1. To validate if the block sensors satisfies requirement
R1.1.1, we first describe the requirement as a LTL property like “always, after
the sensors block receives a call for get sensor values, it sends a message
sensor values to the environment”. Then we translate the associated SD to
a Promela description as exposed in Sect. 4.3, the generated code is not shown
here for lack of space. Following the approach of flags from [4], the LTL property
in Promela language is:

�((sensors && receive && msg get sensor values)
∈ ♦ (sensors && send && msg sensor values))

The next requirement to be analyzed is R1.1.2 which is connected to R1.1.1.
For this requirement, we find the ACU block and its associated SD in Fig. 5, this
block offers an input action {sensor values} and requires the output actions
{act sb,act ab} to lock the seat-belts and deploy an airbag respectively, this
block analyzes each arrival of sensor values and decides whether the seat-belts
must be locked, an airbag must be deployed or wait for another sensor values
arrival (reset action). To verify if this block satisfies requirement R1.1.2, we
express it as a Promela description (the generated code is not shown here for
lack of space) and the requirement is expressed as a LTL property: “always
after receiving a message with the sensor values, the ACU will send a message
deciding to lock the seat-belt (act sb), activate the airbag (act ab) or wait for
another call (reset)”, which expressed in Promela code using flags will be:

�((acu && receive && msg sensor values)
∈ ♦ (acu && send && (msg reset || msg act sb || msg act ab)))

2 Blocks are instantiated as parts in IBD

96 O. Carrillo et al.

These properties are verified using SPIN model-checker which outputs no
errors for both models, therefore the models satisfy the properties.

0 1

get sensor values?

sensor values!get sensor
values

sensor
values

Fig. 8. IA for the sensors block

0 1 2
sensor values? act sb!

reset;
act sb!

act ab!
sensor
values

act sb

act ab

Fig. 9. IA for the ACU

0 1 2

3

get sensor values? sensor values;

reset;

act sb!

act sb!act ab!
get sensor

values

act sb

act ab

Fig. 10. IA for the composition of sensors and ACU blocks

Then, to link the blocks that satisfy requirements R1.1.1 and R1.1.2, we ver-
ify that they are compatible thanks to their interface automata. These interface
automata are generated from SD following the approach in [3], and they are
shown in Figs. 8 and 9. To verify compatibility we compute the composition;
we use Ptolemy Interface Automata tool [7] which computes the composition
of two given interface automata as input. The output composite automaton is
shown in Fig. 10, this automaton is not empty, so the blocks Sensors and ACU
are compatible. This composition had illegal states that were eliminated auto-
matically by Ptolemy tool, so we have to validate that the actions related to the
requirements are still present on the transitions of the composite automaton to
guarantee preservation of the requirements over the composition. Looking at the
transitions in the composite automaton, we find that the set of input/output
actions, related to the requirements, are still present, so the requirements are
still preserved over the composition and we can proceed to define a partial archi-
tecture of the system, by presenting a BDD with the refinement of an abstract
block into the blocks Sensors and ACU, this diagram is presented in Fig. 11.

The interactions between the composed blocks are then described by an IBD
(see Fig. 12) where the ports representing the synchronized input and output
actions are linked with connectors and the unshared actions are exposed as
offered and demanded services of the composition.

Incremental Modeling of System Architecture 97

Fig. 11. BDD for the second iteration

Fig. 12. IBD for the second iteration

Subsequently, we continue adding requirements R1.1.3, with related input
action {act ab}, and R1.2, with related input action {act sb}, to our architec-
ture in the same manner, but for lack of space we can not present here these
further steps.

6 Related Works

In [11], the authors propose a system modeling approach that combines SysML
safety requirements and block diagrams, and the model checking approach to
prove that the local behavior of each component contributes to satisfy system
requirements. In this work the problem of component compatibility and the
preservation of the requirements are not treated.

To construct systems, other approaches take into account all the require-
ments at once. For example, [12], based on KAOS framework, and in [13] the
authors propose an incremental approach by adding structural and behavioral
properties into a software architecture. In [14], the authors propose the rCOS
method to build a system from requirements to implementation. Our approach
is similar to theirs, in the way we use sequence diagrams to express component
interfaces, but it lacks the use of a component library to look for third party com-
ponents and verify their compatibility. The works proposed in [15,16] are based

98 O. Carrillo et al.

on a behavior tree approach and translate atomic requirements into behavior
trees. An interesting approach which inspired our work was proposed in [17],
the authors construct the system starting from raw requirements described in
a natural language. Specifications of requirements are derived from intermedi-
ate requirement models, and these models approximate the raw requirements.
These requirements are then directly mapped into system architecture, with a
view to maximize the match between the final system and the raw requirements.
This approach is based on a component model that supports incremental com-
position. However this model is restrictive and does not consider component
protocols and compatibility verification. Our approach is different and proposes
to map requirements, specified and organized with SysML diagrams, directly
into system architecture, by exploiting the interface automata formalism and
the composition of component interfaces. The construction of system architec-
ture is guided by the requirements, and the preservation of these requirements
in the final system is guaranteed by the compatibility of interface automata and
the preservation of the component actions linked to the requirements.

7 Conclusion

In reliable applications, it is important to specify a system architecture in accord
with the requirement specifications. To achieve this goal, in this paper we pro-
posed an approach to specify system architecture directly from SysML functional
requirements. SysML requirement diagram was analyzed to extract its atomic
requirements. These requirements were then associated, one by one, to reusable
components, and LTL properties representing the requirements were verified on
the components. To verify an LTL property, component behavior represented
in SD is translated into Promela statements and then verified with the SPIN
model-checker. These components were then added to a partial architecture
by the composition of their component interfaces described through interface
automata. Preservation of requirements over the composition was guaranteed
by the conservation of related Input/Output actions on the transitions of the
composite automaton. This approach was illustrated by the case study of a
safety vehicle system. For future research, further relationships between SysML
requirement diagram and formal properties will be investigated, by formalizing
requirements with temporal logic formulas in an extended SysML profile. We
plan also to integrate our approach as an extension to the TopCased environ-
ment [18].

References

1. The Object Management Group (OMG): OMG Systems Modeling Language
(OMG SysML) Specification Version 1.2, June 2010. http://www.omg.org/spec/
SysML/1.2/

2. Carrillo, O., Chouali, S., Mountassir, H.: Formalizing and verifying compatibility
and consistency of sysml blocks. SIGSOFT Softw. Eng. Notes 37(4), 1–8 (2012)

http://www.omg.org/spec/SysML/1.2/
http://www.omg.org/spec/SysML/1.2/

Incremental Modeling of System Architecture 99

3. Chouali, S., Hammad, A.: Formal verification of components assembly based on
sysml and interface automata. ISSE 7(4), 265–274 (2011)

4. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: For-
mal verification and validation of UML 2.0 sequence diagrams using source and
destination of messages. Electron. Notes Theor. Comput. Sci. 254, 143–160 (2009)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pp. 109–120.
ACM Press (2001)

6. Object Management Group: The OMG Unified Modeling Language Specification,
UML 2.0, July 2005

7. Lee, E.A., Xiong, Y.: A behavioral type system and its application in Ptolemy II.
Formal Aspects Comput. 16(3), 210–237 (2004)

8. National Highway Traffic Safety Administration: Federal Motor Vehicle Safety
Standards, September 1998

9. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs (1991)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

11. Pétin, J.F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal methods
for safety requirements verification. In: 22nd International Conference on Software
& Systems Engineering and their Applications, Paris (2010)

12. van Lamsweerde, A.: From system goals to software architecture. In: Bernardo, M.,
Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg
(2003)

13. Barais, O., Duchien, L., Le Meur, A.F.: A framework to specify incremental soft-
ware architecture transformations. In: 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, 2005, pp. 62–69 (2005)

14. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification
in component-based model-driven design. Sci. Comput. Program. 74(4), 168–196
(2009)

15. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: Pro-
ceedings of the First International Conference on Software Engineering and Formal
Methods, 2003, pp. 2–11 (2003)

16. Dromey, R.G.: Engineering large-scale software-intensive systems. In: ASWEC,
pp. 4–6 (2007)

17. Lau, K.-K., Nordin, A., Rana, T., Taweel, F.: Constructing component-based sys-
tems directly from requirements using incremental composition. In: Proceedings of
36th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pp. 85–93. IEEE (2010)

18. Farail, P., Goutillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Cregut,
X., Pantel, M.: The TOPCASED project : a toolkit in open source for critical
aeronautic systems design. Ingénieurs de l’automobile 781, 54–59 (2006)

Formalising Adaptation Patterns
for Autonomic Ensembles

Luca Cesari1,4(B), Rocco De Nicola2, Rosario Pugliese1, Mariachiara Puviani3,
Francesco Tiezzi2, and Franco Zambonelli3

1 Università degli Studi di Firenze, Florence, Italy
luca.cesari@unifi.it

2 IMT Advanced Studies Lucca, Lucca, Italy
3 Università degli Studi di Modena e Reggio Emilia, Modena, Italy

4 Università di Pisa, Pisa, Italy

Abstract. Autonomic behavior and self-adaptation in software can be
supported by several architectural design patterns. In this paper we illus-
trate how some of the component- and ensemble-level adaptation pat-
terns proposed in the literature can be rendered in SCEL, a formalism
devised for modeling autonomic systems. Specifically, we present a com-
positional approach: first we show how a single generic component is
modelled in SCEL, then we show that each pattern is rendered as the
(parallel) composition of the SCEL terms corresponding to the involved
components (and, possibly, to their environment). Notably, the SCEL
terms corresponding to the patterns only differ from each other for the
definition of the predicates identifying the targets of attribute-based com-
munication. This enables autonomic ensembles to dynamically change
the pattern in use by simply updating components’ predicate definitions,
as illustrated by means of a case study from the robotics domain.

1 Introduction

In the era of autonomic computing [1], where computer and software systems
must manage themselves and their components, (self-)adaptation is a key aspect
of software design. Self-adaptation is defined as the ability of a system to
autonomously adapt its behaviour and/or structure to dynamic operating condi-
tions [2], so as to preserve its capability of delivering the necessary services with
acceptable quality levels. It is a key feature for ensembles [3], namely open-ended,
large-scale and highly-parallel distributed systems, exhibiting complex interac-
tions and behaviours. In fact, research on self-adaptive systems is attracting more
and more attention among those interested in complex distributed systems [4].

Developers of autonomic ensembles have to understand and model not only
the functional needs of their systems but also their adaptation needs. In particu-
lar, they have to check whether the provided models do offer the expected behav-
iour or attentively whether they are correct with respect to given specifications.

This work has been partially sponsored by the EU project ASCENS (257414) and
by the Italian MIUR PRIN project CINA (2010LHT4KM).

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 100–118, 2014.
DOI: 10.1007/978-3-319-07602-7 8, c© Springer International Publishing Switzerland 2014

Formalising Adaptation Patterns for Autonomic Ensembles 101

At the same time, they have to identify the appropriate architectural schemes
for modelling individual components and the whole system as an ensemble of
components. The goal of such choice being the guarantee that the adopted archi-
tectural scheme is instrumental for attesting that systems do self-adapt without
severely undermining their intended functional behaviours.

Building on the large body of work in the area and on our own experience
in the engineering of self-adaptive systems [5,6], we have previously identified
and framed a few adaptation patterns, i.e. key architectural patterns that could
be adopted to enforce self-adaptation at the level of individual components and
ensembles. Software adaptation can indeed benefit from reuse in a similar way
that designing software architectures has benefited from the reuse of software
design patterns [7]. We identified context-aware and controllable service com-
ponents (SCs) as the primitive entities to specify self-adaptive systems. In our
view, a SC is a well-delimited piece of software (component) that provides a
well-defined set of functionalities (services). This approach fits properly with all
the software engineering features, namely modularity and reusability, other than
simplicity.

Relying on this primitive entities, we have framed the many schemes by
which feedback loops can be closed around individual SCs or ensembles of SCs,
in order to achieve autonomic self-adaptive behaviours [1]. It is, indeed, widely
recognized [8–10], especially in the MAPE-K architecture, that the capability of
self-adaptation in a system necessarily requires the existence of feedback loops.
This implies that, somehow, there exist means to inspect and analyse what is
happening in the system (at the level of SCs, SC ensembles or the environment in
which they are situated) and have components of the systems react accordingly.
Therefore, looking at how these feedback loops appear implicitly or explicitly
into SCs or into their ensembles, some categories of patterns can be identified.

Such analysis (extensively described in [11,12]) is still affected by two key
limitations. Firstly, the patterns are modelled only in a semi-formal way, via
UML diagrams and via a general description of the classes of self-adaptive goals
that each pattern can satisfy (as from the SOTA goal-oriented requirements
engineering approach [6]). It is then difficult to reason about the exact behav-
iour and properties of such patterns [13]. Secondly, the issue of rendering the
presented patterns in some programming language is simply not considered at
the moment.

In this paper, we address the above limitations by using SCEL [14], a formal-
ism devised for modelling autonomic systems, to formalise both SCs of an auto-
nomic ensemble and the adaptation patterns they use. By exploiting attributes
associated to a component’s interface, we can build patterns of communication
that allow SCs to dynamically organise themselves into ensembles and imple-
ment specific adaptation patterns. Predicates over such attributes are used to
specify the targets of communication actions, thus enabling a sort of attribute-
based communication. In this way, an ensemble is not a rigid fixed network but
rather a highly flexible structure where components linkages are dynamically
established according to the chosen adaptation pattern.

102 L. Cesari et al.

Our aim is thus twofold. On the one hand, we show how SCs can enact
adaptation by exploiting interfaces and attributes associated to them. On the
other hand, we formalise the adaptation patterns via a language with an oper-
ational semantics that paves the way to reasoning about them. Our ultimate
goal is to provide a sound and uniform set of conceptual and practical guidelines
and tools to drive developers of SC ensembles in the engineered exploitation
of such mechanisms at the level of abstract system modelling, verification, and
implementation.

Moreover, in this work we focus on system components’ linkage. These con-
nections can change at run-time, thus e.g. enabling the dynamic transition from
one adaptation pattern to another, and we take advantage from the SCEL lan-
guage for modelling these modifications (as shown in Sect. 6). The components’
internal logic, comprehensive of their behaviour and feedback loops, is not speci-
fied in this work because it plays no role in the modelling of adaptation patterns.

The rest of the paper is organised as follows. In Sect. 2, we introduce some
basic notions about service component interfaces and adaptation patterns, while
in Sect. 3 we review the main ingredients of SCEL. In Sect. 4, we show how SCs
and their environment are rendered in SCEL. These are then exploited in Sect. 5
to express in SCEL the patterns introduced in Sect. 2, and in Sect. 6 to model a
robotics case study. Finally, in Sect. 7 we review some strictly related work and
in Sect. 8 we hint at directions for future work.

2 Service Components and Adaptation Patterns

We base our categorization of adaptation patterns on a very general model for
the interface of the primitive Service Component (SC). Therefore, we begin by
introducing some basic notions about SC interfaces and adaptation patterns.

SC interfaces help to better understand how SCs interact and propagate
adaptation. A generic SC interface has six ports:

– I - Input: for receiving service requests and responses;
– O - Output: for invoking services or replying to service requests;
– S - Sensor: for sensing the status of other components and of the environment;
– F - Effector: for adapting the behaviour of other components, thus acting as an

Autonomic Manager (AM), or for propagating adaptation in the environment;
– E - Emitter: for issuing status information to an AM;
– C - Control: for receiving adaptation orders from an AM.

Notably, the same port may be connected to more than one SC and some
ports of a given SC can be omitted whenever they do not play any role. In this
way, we can characterise families of typical components as exemplified in Fig. 1.

Depending on the SC ports that are enabled and how they are interconnected,
different kinds of adaptation patterns can be obtained.

At the level of individual SCs, the categories of adaptation patterns are:

Formalising Adaptation Patterns for Autonomic Ensembles 103

Fig. 1. Examples of SC interfaces of self-adaptive service components, adaptable ser-
vice components, manager components, and adaptable manager components

– Reactive SC : components able to react to environment’s changes and not
coupled with an explicit feedback loop; instead, such feedback loops exist
only implicitly in the interactions of the components with the environment
(as in reactive agent and component systems [15]).

– Autonomic SC : components explicitly coupled with an external feedback loop
that monitors and directs their behaviour (as in most autonomic computing
architectures [1,16]). This pattern is shown in Fig. 2 (left), where the auto-
nomic manager AM and the service component SC are such that:

• SC has an interface appropriate for an adaptable service component;
• AM has an interface appropriate for an adaptable manager component;
• AM senses (along port S) whatever is emitted by SC (along port E);
• SC obeys (along port C) AM ’s control (along port F).

– Proactive SC : components that have an internal feedback loop to direct their
goal/utility-oriented behaviour (as in intelligent and goal-oriented agents [15]).
This pattern is shown in Fig. 2 (right) and differs from the previous one for
the following points:

• the interfaces between SC and AM are encapsulated;
• AM also monitors SC’s input (along port I).

Instead, at the level of SC ensembles, the categories of patterns are:

– Centralised AM SCs Ensemble: ensembles in which the overall adaptive behav-
iour is explicitly designed by means of specifically conceived interaction pat-
terns between components (e.g., choreographies or negotiations [17,18]), and
in which mutual interactions implies the existence of feedback loops. This
pattern is shown in Fig. 3;

– P2P AMs SCs Ensemble: ensembles in which there exists a set of components
or “coded behaviours” that have the explicit goals of enforcing a global feed-
back loop over the ensembles, i.e., of controlling and directing their overall
behaviour (as in coordinated systems and electronic institutions [19]);

– Reactive Stigmergy SCs Ensemble: ensembles whose overall adaptive activi-
ties are not explicitly engineered by design, but for which adaptiveness (and
feedback loops) emerges from the interaction of the components with a shared
environment (as in pheromone-based [15,20] and field-based [21] approaches).
This pattern is shown in Fig. 4.

104 L. Cesari et al.

Fig. 2. Autonomic SC pattern and proactive SC pattern

3 SCEL: Software Component Ensemble Language

SCEL (Software Component Ensemble Language) [14,22] is a language for pro-
gramming service computing systems in terms of service components aggregated
according to their knowledge and behavioural policies. The basic ingredient of
SCEL is the notion of (service) component I[K,Π, P] that consists of:

1. An interface I publishing and making available structural and behavioural
information about the component itself in the form of attributes, i.e. names
acting as references to information stored the component’s repository. Among
them, attribute id is mandatory and is bound to the name of the component.

2. A knowledge repository K managing both application data and awareness
data, together with the specific handling mechanism. The knowledge repos-
itory of a component stores also the information associated to its interface,
which therefore can be dynamically manipulated by means of the operations
provided by the knowledge repositories’ handling mechanisms.

3. policies Π regulating the interaction between the different internal parts of
the component and the interaction of the component with the others.

4. A process P , together with a set of process definitions that can be dynamically
activated. Processes in P execute local computations, coordinate interaction
with the knowledge repository or perform adaptation and reconfiguration.

The syntax of SCEL is presented in Table 1. Systems aggregate components
through the composition operator → . It is also possible to restrict the scope
of a name, say n, by using the name restriction operator (νn) .

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic choice

Formalising Adaptation Patterns for Autonomic Ensembles 105

Table 1. SCELsyntax (Knowledge K, Policies Π, Templates T , and Items t are
parameters of the language)

Systems S ::= I[K, Π, P]
∣∣ S1 ≤ S2

∣∣ (νn)S
Processes P ::=nil

∣∣ a.P
∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄)
Actions a ::=get(T)@c

∣∣ qry(T)@c
∣∣ put(t)@c

∣∣ fresh(n)
∣∣ new(I, K, Π, P)

Targets c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

(P1 + P2), controlled composition (P1[P2]), process variable (X), and parame-
trized process invocation (A(p̄)). The construct P1[P2] abstracts the various
forms of parallel composition commonly used in process calculi (see [14] for fur-
ther details). Anyway, in this work, controlled composition will be interpreted
as a standard interleaving, which means that in case of parallel processes only
one process at a time can perform an action (the others stay still). Process
variables can support higher-order communication and enable a straightforward
implementation of adaptive behaviours [23]. Indeed, they permit to exchange
(the code of) a process, and possibly execute it, by first adding an item con-
taining the process to a knowledge repository and then retrieving/withdrawing
this item while binding the process to a process variable. We let A to range
over a set of parametrized process identifiers that are used in recursive process
definitions. We assume that each process identifier A has a single definition of
the form A(f̄) � P , with p̄ and f̄ denoting lists of actual and formal parameters,
respectively.

Processes can perform five different kinds of actions. Actions get(T)@c,
qry(T)@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory identified by c. These actions exploit templates T to select knowledge
items t in the repositories. They heavily rely on the used knowledge repository
and are implemented by invoking the handling operations it provides. Action
fresh(n) introduces a scope restriction for the name n so that this name is guar-
anteed to be fresh, i.e. different from any other name previously used. Action
new(I,K,Π, P) creates a new component I[K,Π, P]. Actions get and qry may
cause the process executing them to wait for the wanted element if it is not
(yet) available in the knowledge repository. The two actions differ for the fact
that get removes the found item from the target repository while qry leaves
the repository unchanged. Actions put, fresh and new are instead immediately
executed.

Different entities may be used as the target c of an action. As a matter of nota-
tion, n ranges over component names, while x ranges over variables for names.
The distinguished variable self can be used by processes to refer to the name of
the component hosting them. The target can also be a predicate P or the name
p, exposed as an attribute in the interface of the component, of a predicate that
can be dynamically modified. A predicate is a standard boolean-valued expres-
sion obtained by applying standard boolean operators to the results returned
by the evaluation of relations between component attributes and expressions.
We adopt the following conventions about attribute names within predicates.

106 L. Cesari et al.

If an attribute name occurs in a predicate without specifying (via prefix nota-
tion) the corresponding interface, it is assumed that this name refers to an
attribute within the interface of the object component (i.e., a component that is
a target of the communication action). Instead, if an attribute name occurring
in a predicate is prefixed by the keyword this, then it is assumed that this name
refers to an attribute within the interface of the subject component (i.e., the
component hosting the process performing the communication action). E.g., the
predicate this.status = “sending” ∼ status = “receiving” is satisfied when the
status of the subject component is sending and that of the object is receiving.

In actions using a predicate P to indicate the target (directly or via p),
predicates act as ‘guards’ specifying all components that can be affected by
the execution of the action, i.e. a component must satisfy P to be the target
of the action. Thus, actions put(t)@n and put(t)@P give rise to two different
primitive forms of communication: the former is a point-to-point communication,
while the latter is a sort of group-oriented communication. The set of components
satisfying a given predicate P used as the target of a communication action can be
considered as the ensemble with which the process performing the action intends
to interact. For example, the names of the components that can be members of
an ensemble can be fixed via the predicate id ⊆ {n,m, o}. When an action has
this predicate as target, it will act on all components named n, m or o, if any.
Instead, to dynamically characterize the members of an ensemble that are active
and have a battery whose level is higher than low, by assuming that attributes
active and batteryLevel belong to the interface of any component willing to be
part of the ensemble, one can write active = “yes” ∼ batteryLevel > low.

4 Service Components and their Environment in SCEL

We now show how a generic SC is rendered in SCEL. Moreover, since most
scenarios and patterns involve the environment, we also point out how it can be
modelled in SCEL. Notably, the parallel composition between a generic SC and
the environment gives rise to the Reactive SC pattern introduced in Sect. 2.

Service Components. A generic SC is rendered in SCELas a component
ISC [KSC ,ΠSC , SC] with

ISC � {(id, sc), (role, “component”/“manager”/“environment”),
(controlFlag , “on”/“off ”), (emitterFlag , “on”/“off ”),
(inputFlag , “on”/“off ”), (outputFlag , “on”/“off ”),
(effectorFlag , “on”/“off ”), (sensorFlag , “on”/“off ”),
(pinput , Pinput), (poutput , Poutput), (pemitter , Pemitter),
(peffector , Peffector), . . .}

SC � Control [Sensor [Input [Emitter [Effector [Output [InternalLogic]]]]]]

The component exposes in its interface at least twelve attributes. The attribute id
indicates the name of the component, while role is used to define the role of the SC
in a pattern (it can take one of the values component, manager or environment).

Formalising Adaptation Patterns for Autonomic Ensembles 107

Moreover, for each port, the interface contains a flag attribute used to enable
(value on) or disable (value off) the port. Finally, four attributes, i.e. pinput , poutput ,
pemitter , and peffector , are used to refer the predicates Pinput , Poutput , Pemitter and
Peffector , respectively. These predicates can identify single components or ensem-
bles. Specifically, Pinput and Pemitter identify the component(s) managing the con-
sidered SC, Poutput identifies the addressee(s) of the output messages, and Peffector

identifies the target of management actions (e.g., to enact adaptation), which can
be either components or the environment.

The definition of action targets by means of attributes referring to predi-
cates permits dynamically changing the predicates regulating the communica-
tion among SCEL components, which enables the dynamic transition from one
adaptation pattern to another. We will come back to this point in Sect. 6.

Each port of the SC is then represented in SCEL as a process PortName
that manages the data received or sent through the port and acts as a media-
tor between the external world and the knowledge repository of the component.
These processes are executed in parallel with the process InternalLogic imple-
menting the internal logic. This latter process, as well as the knowledge KSC

and the policy ΠSC , are left unspecified because they do not play any role in the
modelling of adaptation patterns. The processes associated to the component’s
ports follow.

Input. The input data port can receive requests from other components. Its
behaviour is expressed in SCEL as follows:

Input � qry(inputF lag, “on”)@self. get(“inputPort”, ?data, ?replyTo)@self.
put(“input”, data, replyTo)@self.
put(“inputPort”, data, replyTo)@pinput . Input

This process performs recursively the following behaviour. First, it checks the
corresponding flag. If the port is enabled, it retrieves from the knowledge repos-
itory of the component an item (tagged with “inputPort”) containing the input
data and a predicate and sends one copy of such information (tagged with
“input”) to the component’s internal logic and one copy (tagged with
“inputPort”) to the input port of each component acting as a manager. Indeed,
if the SC is self-adaptive (see Fig. 2, right-hand side), its manager(s) must access
the information received in input by the SC and, hence, the data received along
the input port must be replicated to the manager(s) input port; otherwise, the
forwarding of input messages is deactivated by simply setting the predicate
referred by pinput to false. The provided predicate, bound to variable replyTo,
will be used to respond to the requester(s).

Output. The output port is represented in SCEL as a process that fetches mes-
sages (e.g., responses to service requests) and a predicate (identifying, e.g., ser-
vice requesters) generated by the internal logic, sets this predicate as poutput and
sends the messages.

Output � qry(outputF lag, “on”)@self. get(“output”, ?data, ?recipients)@self.
get(poutput , ?oldOut)@self.put(poutput , recipients)@self.
put(“inputPort”, data)@poutput . Output

108 L. Cesari et al.

To guarantee a correct identification of the addressee(s), Output processes an
outgoing response message at a time and we assume that the predicate referred
by poutput can be modified only by this process. Notably, such assumption only
involves processes of the components’ internal logic, because the processes asso-
ciated to the other ports do not modify the predicate, and no adaptation pattern
prescribes a specific configuration for it. It is also worth noticing that, in case
the same requester sends more than one request simultaneously to the compo-
nent, the requester has to specify in the request data a correlation identifier that
will be then inserted into the response data in order to allow the requester to
properly correlate each response to the corresponding request.

Emitter. The emitter port is used to send awareness data to manager(s). The
corresponding process is similar to the previous one, except for the item tags
and the put’s predicate.

Emitter � qry(emitterF lag, “on”)@self. get(“emitter”, ?data)@self.
put(“sensorPort”, data)@pemitter . Emitter

Effector. The effector port is used to enact adaptation on the managed element
or to interact with the environment. The corresponding process is similar to the
emitter one, except for the item tags and the put’s predicate.

Effector � qry(effectorFlag , “on”)@self. get(“effector”, ?data)@self.
put(“controlPort”, data)@peffector . Effector

Sensor. The sensor port is used to sense the status of the component(s) managed
by the considered SC or to retrieve information from the environment. The
corresponding process gets the data coming from the sensor port and sends it to
the component’s internal logic:

Sensor � qry(sensorF lag, “on”)@self. get(“sensorPort”, ?data)@self.
put(“sensor”, data)@self. Sensor

Control. The control port is used to receive adaptation orders from manager(s).
The corresponding process is similar to the sensor one, except for the item tags.

Control � qry(controlFlag , “on”)@self. get(“controlPort”, ?data)@self.
put(“control”, data)@self. Control

Environment. Since many adaptation patterns involve the environment where
SCs are deployed, the environment must be modelled as well in SCEL in order to
get a complete specification of patterns. It can be rendered as one or more compo-
nents, whose precise definition may vary from one scenario to another. A generic
environment could be expressed, e.g., as a component IEnv[KEnv,ΠEnv, Env]
where its interface is defined as

IEnv � {(id, env), (role, “environment”), . . .}

Formalising Adaptation Patterns for Autonomic Ensembles 109

and a possible sketch of the hosted process is

Env � . . . get(“controlPort”, ?data)@self . . .
. . . put(“sensorPort”,newData)@pemitter . . .

The environment component receives awareness data from components of the
system. Such components should be connected to the environment via their
effector and sensor ports, and have to use a predicate definition in their inter-
face such as (peffector , id = env) meaning that name peffector currently refers to
predicate id = env. Moreover, the environment process provides data to compo-
nents through their sensor ports by means of the predicate referred by pemitter ,
which dynamically selects the partner(s) of the communication. E.g., if the envi-
ronment has to communicate with only one component sc, the predicate could be
defined as (pemitter , id = sc). Instead, if the environment needs to communicate
data to all components of the considered system, it could be used the predicate
(pemitter , role = “component”). As another example, if the environment must
interact with a subset of the available components (e.g., those that are currently
active), the predicate becomes:

(pemitter , role = “component” ∼ status = “active”)

Finally, the environment could comprise multiple SCEL components, such
as a room containing various devices (wifi access points, temperature sensors,
motion sensors, etc.). In this scenario, each device is an environment compo-
nent, thus an SC interacting with this ‘smart ambient’ accesses the environment
components appropriate for each specific interaction. For example, the effector
predicate is

(peffector , role = “environment” ∼ distance(this.x, this.y, x, y) <= range)

where (this.x, this.y) identifies the coordinates of the emitting SC, while (x, y)
identifies the coordinates of each environment component within a given range.

5 Adaptation Patterns in SCEL

We show now how the previous concepts can be used to express in SCEL some
of the patterns introduced in Sect. 2, that will be exploited in the case study of
Sect. 6. We refer to [24] for the SCEL models of the remaining patterns.

In SCEL every pattern results from the composition of the SCEL compo-
nents corresponding to the involved SCs, AMs and environment1, and by appro-
priately tuning the predicate definitions and the interface’s attributes. We leave
the predicate referred by poutput unspecified because it is context-dependent.

1 For the sake of presentation, here we model the environment as a single SCEL
component IEnv[KEnv, ΠEnv, Env] (see Sect. 4).

110 L. Cesari et al.

Notably, for any pattern, processes SC and AM running in the SCEL compo-
nents corresponding to SCs and AMs, respectively, have always the following
form:

Control [Sensor [Input [Emitter [Effector [Output [InternalLogic]]]]]]

Centralized AM SCs Ensemble
Intent. Any SC needs an external feedback loop to adapt. All SCs need to share
knowledge and adaptation logic, so they are managed by the same AM.

Context. This pattern can be adopted when:

– an AM is necessary to manage adaptation;
– direct communication between SCs is allowed;
– a centralised feedback loop is more suitable because a single AM has a global

vision on the system;
– the ensemble only includes a few, simple components.

Behaviour. This pattern, shown in Fig. 3, is designed around one feedback loop.
All components are managed by a single AM that “controls” their behaviour
and, by sharing knowledge about them, is able to propagate adaptation.
Consequences. To manage adaptation over the entire system, a single AM is
more efficient than multiple ones because it has a global view and knowledge of
the system, but it can become a single point of failure.
SCEL description. The pattern is rendered in SCEL as the parallel composi-
tion of the components representing the centralized AM, the environment and
the SCs:

IAM [KAM ,ΠAM , AM] → IEnv[KEnv,ΠEnv, Env]
→ ISC1 [KSC1 ,ΠSC1 , SC1] → ISC2 [KSC2 ,ΠSC2 , SC2] → ISC3 [KSC3 ,ΠSC3 , SC3]

Fig. 3. Centralized AM SCs ensemble

Formalising Adaptation Patterns for Autonomic Ensembles 111

where the interfaces of manger and SCs (with i ⊆ {1, 2, 3}) are as follows:

– IAM � {(id, am), (role, “manager”),
(controlFlag , “off ”), (emitterFlag , “off ”),
(inputFlag , “‘on”), (outputFlag , “off ”),
(effectorFlag , “on”), (sensorFlag , “on”),
(pinput , false), (poutput , Poutput), (pemitter , Pemitter),
(peffector , id ⊆ {sc1, sc2, sc3})), . . .}

The AM description, in order to work as desired, needs to:
• activate only the sensor, input and effector ports;
• deactivate the forwarding of input messages to other components, by

setting the predicate referred by pinput to false;
• configure the predicate referred by peffector accordingly to communicate

only with the three managed SCs (i.e., only by components whose iden-
tifier belongs to the set {sc1, sc2, sc3}).

– ISCi
� {(id, sci), (role, “component”),

(controlFlag , “on”), (emitterFlag , “on”),
(inputFlag , “‘on”), (outputFlag , “on”),
(effectorFlag , “on”), (sensorFlag , “on”),
(pinput , id = am), (poutput , Poutput), (pemitter , id = am),
(peffector , role = “environment”), . . .}

The SC description, to be properly controlled by the AM, needs to:
• activate all communication ports;
• configure the predicate referred by pinput in order to properly react to

the received service requests by forwarding them to the manager am;
• configure the predicate referred by pemitter suitably to send the control

data to the manager am;
• configure the predicate referred by peffector so to enable the interaction

with the environment (i.e., all components playing the environment role).

Reactive Stigmergy SCs Ensemble
Intent. There are several SCs that cannot directly interact with each other. The
SCs simply react to the environment and sense the environment changes.

Context. This pattern has to be adopted when:

– the ensemble includes several components;
– the components are very simple, without having a lot of knowledge;
– the environment is frequently changing;
– direct communication between components is disallowed.

Behaviour. This pattern, shown in Fig. 4, has not a direct feedback loop. Each
single component acts like a bioinspired component. To satisfy its goal, the SC
acts in the environment that senses with its “sensors” and reacts to the changes
in it with its “effectors”. The different components are not able to communicate
one with another, but are able to propagate information (and their actions) in
the environment. Hence, they are able to sense the environment changes (e.g.,
other components reactions) and adapt their behaviour due to these changes.

112 L. Cesari et al.

Fig. 4. Reactive Stigmergy SCs ensemble

Consequences. If the component is a proactive one, its behaviour is defined inside
it with its internal goal. The behaviour of the whole system cannot be a priori
defined. It emerges from the collective behaviour of the ensemble. The compo-
nents do not require a large amount of knowledge. The reaction of each com-
ponent is quick and does not need managers since adaptation is propagated via
the environment. The interaction model is an entirely indirect one.
SCEL description. The pattern is rendered in SCEL as the parallel composition
of the components representing the SCs and their environment:

ISC1 [KSC1 ,ΠSC1 , SC1] → ISC2 [KSC2 ,ΠSC2 , SC2] → ISC3 [KSC3 ,ΠSC3 , SC3]
→ IEnv[KEnv,ΠEnv, Env]

where the SCs’ interfaces, with i ⊆ {1, 2, 3}, are as follows:

ISCi
� {(id, sci), (role, “component”),

(controlFlag , “off ”), (effectorFlag , “on”),
(inputFlag , “‘on”), (outputFlag , “on”),
(emitterFlag , “off ”), (sensorFlag , “on”),
(pinput , false), (poutput , Poutput), (pemitter , Pemitter),
(peffector , role = “environment”), . . .}

The differences w.r.t. the SC description of the previous pattern are as follows:

– control and emitter ports are deactivated (hence, the predicate referred by
pemitter is left unspecified because it does not play any role);

– the forwarding of input messages is deactivated by setting the predicate referred
by pinput to false.

6 Adaptation Patterns at Work

A key point about self-adaptation and self-adaptive patterns is the ability of
dynamically changing the adaptation pattern in use if some circumstances occur
during system lifetime. We illustrate this feature by means of a robotic case
study concerning object transportation. For this task, robots need to find out
objects (e.g., people to assist and rescue in case of disaster) and carry them
back to a specific place (e.g., the external of a blazing building). A large number

Formalising Adaptation Patterns for Autonomic Ensembles 113

of robots can be used in the unknown environment in order to rapidly satisfy
the system’s goal. Thus, the most appropriate pattern to be used is the Reactive
Stigmergy SCs Ensemble one red: the number of robots is large with respect to
the size of the area to be explored; danger makes real the necessity to have simple
and not too expensive components; the environment is unknown and frequently
changing due to the disaster. The suitability of this pattern with respect to other
ones, while considering different environment configurations, has been validated
in [25] through some simulations carried out using a multi-robot simulator. It
has been shown that a fully centralised approach (using the Centralized AM SCs
Ensemble pattern) is not effective unless the position of all objects is known in
advance.

Anyway, in realistic situations a single robot could not be able to carry a
victim alone. So, since no pattern can be conveniently adopted for the whole
lifetime of the system, in cases a robot collaboration is needed to manage a
specific task, a new pattern can be temporary applied for the necessary time.
When the satisfaction of the object transportation task must be very short (e.g.,
in case of victims), the Centralized AM SCs Ensemble pattern is the best one.
This is because the time for coordinating a single AM and all the other robots
is shorter than the time for the coordination and negotiation among all robots
(as, e.g., in the P2P AMs SCs Ensemble pattern). Thus, when a robot reaches
an object that is too heavy, it changes its adaptation pattern becoming an AM.
It also contacts other robots (the number that is needed to carry the object)
that will change their pattern in order to behave as managed components. The
AM then shares information about where the object is and how to carry it to
the safe area. Finally, when the task is satisfied, all involved robots change again
their pattern for coming back to the Reactive Stigmergy SCs Ensemble pattern.

This case study can be modelled in SCEL as follows. During the explor-
ing phase all robots follow the Reactive Stigmergy SCs Ensemble pattern, thus
each of them is rendered as a SCEL component with the following (excerpt of)
interface:

{(id, sci), (role, “component”), (pinput , false),
(peffector , role = “environment”), . . .}

According to the separation of concerns design principle, the internal logic of
components here is structured as follows:

InternalLogic � PatternHandler [ApplicationLogic]

where PatternHandler , that is in charge of changing the pattern when an object
is found, is

PatternHandler �
get(“sensor”, “objectFound”, ?objectData)@self.BecomeManager(objectData)
+ get(“input”, “changePattern”, ?manager)@self.BecomeManaged(manager)

while ApplicationLogic, that implements the logic for the progress of the compu-
tation, is left unspecified as here we are not interested in this part of the internal

114 L. Cesari et al.

behaviour of components. Intuitively, if the robot’s sensors detect an object in
the environment, the event is registered in the component’s knowledge and, when
the process above consumes it by means of the first get action, the execution
of process BecomeManager is triggered. Similarly, the second get action is used
to trigger the process BecomeManaged to react to a ‘change pattern’ request
coming from another robot that has found an object.

The process BecomeManager(data) is defined as follows:

get(role, “component”)@self. put(role, “manager”)@self.
get(outputFlag , ?f)@self. put(outputFlag , “off ”)@self.
get(peffector , ?oldEff)@self. put(peffector , id ⊆ Sdata)@self.
put(“inputPort”, “changePattern”, self)@peffector .
get(“sensor”, “taskCompleted”)@self.RestoreReactiveStigmergy

where the set Sdata of managed components, which are identified by peffector ,
depends on some elaborations on the object data. Thus, to become a manager,
first the component changes its role, the output port flag2 and the effector pred-
icate (as defined in Sect. 5). Then, it uses the new definition of this predicate
to contact (via a put action) the appropriate number of robots that will be
managed by it. When the object transportation task is completed, the process
RestoreReactiveStigmergy is executed to reset the initial pattern.

The process BecomeManaged(am), instead, is defined as follows:

get(controlFlag , ?cf)@self. put(controlFlag , “on”)@self.
get(emitterFlag , ?ef)@self. put(emitterFlag , “on”)@self.
get(pinput , ?oldInp)@self. put(pinput , id = am)@self.
get(pemitter , ?oldEmit)@self. put(pemitter , id = am)@self.
get(“sensor”, “taskCompleted”)@self.RestoreReactiveStigmergy

This process enables the control and emitter ports, and modifies the predicates
associated to the input and emitter ports as required by the Centralized AM
SCs Ensemble pattern, by using the manager’s identifier specified in the ‘change
pattern’ request. Then, when the task is completed, it resets the initial pattern.

Finally, the process RestoreReactiveStigmergy , that restores the setting of
the initial pattern and reinstalls the pattern handler process, is as follows:

get(role, ?oldRole)@self. put(role, “component”)@self.
get(outputFlag , ?of)@self. put(outputFlag , “on”)@self.
get(controlFlag , ?cf)@self. put(controlFlag , “off ”)@self.
get(emitterFlag , ?ef)@self. put(emitterFlag , “off ”)@self.
get(pinput , ?oldInp)@self. put(pinput , false)@self.
get(pemitter , ?oldEmit)@self. put(pemitter , false)@self.
get(peffector , ?oldEff)@self. put(peffector , role = “environment”)@self.
PatternHandler

2 Indeed, the only difference about ports in the two patterns concerns the output one.

Formalising Adaptation Patterns for Autonomic Ensembles 115

7 Related Works

The interest in engineering self-adaptive systems is growing, as shown by the
number of recent surveys and overviews on the topic [4,9,26]. However, a com-
prehensive and rationally-organized analysis of architectural patterns for self-
adaptation is still missing, despite the potential advantages of their use. For
example, [27] proposes a classification of modelling dimensions for self-adaptive
systems to provide the engineers with a common vocabulary for specifying
the self-adaptation properties under consideration and select suitable solutions.
However, although this work emphasizes the importance of feedback loops, it
does not consider the patterns by which such feedback loops can be organized
to promote self-adaptation. [7,28] focus on the mechanisms to perform adap-
tation actions, and on the various schemes that should be adopted to perform
such adaptation actions at run-time and in a safe way. However they overlook
the architectural patterns for the feedback loops that can identify and enact
adaptation actions. Also [29] introduces the concept of patterns for self-adaptive
systems based on control loops. It however focuses on how control loops can
enforce adaptivity in a system and does not present a complete set of patterns.

Taking inspiration from control engineering, natural systems and software
engineering, [8] presents some self-adaptive architectures that exhibit feedback
loops. It also identifies the critical challenges that must be addressed to enable
systematic and well-organized engineering of self-adaptive and self-managing
software systems. In our work we aim at going further on and describing our
patterns using a formalism, namely SCEL. Grounded on earlier works on archi-
tectural self-adaptation approaches [2], the FORMS model [30] enables engineers
to describe, study and evaluate alternative design choices for self-adaptive sys-
tems. FORMS defines a shared vocabulary of adaptive primitives that – while
simple and concise – can be used to precisely define arbitrary complex self-
adaptive systems and can support engineers in expressing their design choices.
This vocabulary is close to our choice of using SCEL to describe patterns, but
it is not a formalism and rather has to be considered as a potentially useful
complement to our work.

To the best of our knowledge, ours is the first work that addresses the for-
malisation of adaptation patterns. Rather, a bunch of works in the literature
proposes formalisations of design patterns that, more in general, are devised to
support component-based or object-oriented programming and are not specific
for autonomic computing. We took inspiration from [31] and [32] to describe the
patterns’ template. Two main approaches have been considered: a group of works
uses logics as target formalism (e.g., [33] relies on a temporal logic, while [34] on
a predicate logic), whereas another group relies on new formalisms specifically
devised for modelling design patterns (e.g., [35] uses the design model Abstract
Data Views, while [36] proposes the use of Balanced Pattern Specification Lan-
guage that, anyway, is still based on logics). Other works, as e.g. [37], formalise
patterns in terms of graphs. Besides the fact that the above works do not deal
with adaptation patterns, they differ from our work also because none of them
uses a formalism based on process calculi, like SCEL. An approach using process

116 L. Cesari et al.

calculi-like languages, namely CASPIS and COWS, is presented in [38], but it
considers methodological, rather than architectural patterns.

8 Concluding Remarks

This paper reports on the way adaptation patterns for designing autonomic
ensembles of SCs can be formalised by using the SCEL language. An application
to a robotic case study is also presented, with the twofold aim of demonstrating
the practical usage of the formalised adaptation patterns and of showing how
dynamic change of adaptation patterns takes place.

From a technical point of view, the main challenge is in providing a compo-
sitional formalisation, where each pattern is rendered as the (parallel) composi-
tion of the models of the involved primitive components and where the dynamic
change of pattern is still dealt with in a compositional way. Compositionality is
also the key for allowing heterogeneous patterns to integrate well within the same
system. This motivates our choice of using SCEL for defining such formalisa-
tion, as it features a form of attribute-based communication that easily permits
to express component linkages according to the chosen adaptation pattern and
to dynamically adapt them according to a given pattern change.

The objective of the proposed formalisation is to provide an operational
semantics for adaptation patterns that paves the way to reasoning about them.
This can lead to verifiable development of autonomic SC ensembles from abstract
architectural patterns.

In the near future, in order to provide a more concrete evidence of the bene-
fits brought by the proposed formalisation, we plan to implement the formalised
adaptation patterns considered in this work in jRESP [14], a Java runtime envi-
ronment for developing autonomic and adaptive systems according to the SCEL
paradigm. A long-term goal, instead, is to integrate in this pattern-based devel-
opment approach the formal reasoning tools for SCEL programs that are cur-
rently under construction. Once also the internal logic of the components (e.g.,
behaviour, feedback loops) is modelled, this integration will permit to establish
qualitative and quantitative properties of individual SCs and their ensembles.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)

2. Weyns, D., Holvoet, T.: An architectural strategy for self-adapting systems. In:
SEAMS, p. 3. IEEE (2007)

3. Project InterLink (2007). http://interlink.ics.forth.gr
4. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14 (2009)
5. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive

service ecosystems. J. Pervasive Comp. and Comm. 7, 186–204 (2011)
6. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model

for self-adaptive systems. In: WETICE, pp. 48–53. IEEE (2012)

http://interlink.ics.forth.gr

Formalising Adaptation Patterns for Autonomic Ensembles 117

7. Gomaa, H., Hashimoto, K.: Dynamic self-adaptation for distributed service-
oriented transactions. In: SEAMS, pp. 11–20. IEEE (2012)

8. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., et al. (eds.) Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

9. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., et al. (eds.) Software Engineering for Self-Adaptive
Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

10. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: SEAMS. ACM (2011)

11. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: CTS, pp. 508–
515. IEEE (2011)

12. Puviani, M., Cabri, G., Zambonelli, F.: A taxonomy of architectural patterns for
self-adaptive systems. In: C3S2E. ACM (2013)

13. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

14. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: SCEL: a language for auto-
nomic computing. Technical report, January 2013. http://rap.dsi.unifi.it/scel/pdf/
SCEL-TR.pdf

15. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz,
J.J., Leite, J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming
languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1),
33–44 (2006)

16. Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.:
The autonomic computing paradigm. Clust. Comput. 9(1), 5–17 (2006)

17. Beam, C., Segev, A.: Automated negotiations: a survey of the state of the art.
Wirtschaftsinformatik 39(3), 263–268 (1997)

18. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:
Automated negotiation: prospects, methods and challenges. Group Decis. Negot.
10(2), 199–215 (2001)

19. Esteva, M., Rodŕıguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

20. Kesäniemi, J., Terziyan, V.: Agent-environment interaction in mas-introduction
and survey. In: Alkhateeb, F., Maghayreh, E.A., Doush, I.A. (eds.) Multi-Agent
Systems: Modeling, Interactions, Simulations and Case Studies. InTech, Vienna
(2011)

21. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56
(2009)

22. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based app-
roach to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.)
FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012).
http://rap.dsi.unifi.it/scel/

23. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Modeling adaptation with a
tuple-based coordination language. In: SAC, pp. 1522–1527. ACM (2012)

24. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. Technical report (2013).
http://rap.dsi.unifi.it/scel/pdf/patternsInSCEL-TR.pdf

http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf
http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/pdf/patternsInSCEL-TR.pdf

118 L. Cesari et al.

25. Puviani, M., Pinciroli, C., Cabri, G., Leonardi, L., Zambonelli, F.: Is self-expression
useful? evaluation by a case study. In: WETICE (2013)

26. Weyns, D., Iftikhar, M., Malek, S., Andersson, J.: Claims and supporting evidence
for self-adaptive systems: a literature study. In: SEAMS, pp. 89–98. IEEE (2012)

27. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi,
P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol.
5525, pp. 27–47. Springer, Heidelberg (2009)

28. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A.: Software adapta-
tion patterns for service-oriented architectures. In: SAC, pp. 462–469. ACM (2010)

29. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg (2013)

30. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for formal
specification of distributed self-adaptive systems. ACM TAAS 7(1), 8 (2012)

31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading (1995)

32. Ramirez, A., Cheng, B.: Design patterns for developing dynamically adaptive sys-
tems. In: SEAMS, pp. 49–58. ACM (2010)

33. Mikkonen, T.: Formalizing design patterns. In: ICSE, pp. 115–124. IEEE (1998)
34. Bayley, I.: Formalising design patterns in predicate logic. In: SEFM, pp. 25–36.

IEEE (2007)
35. Alencar, P.S.C., Cowan, D.D., de Lucena, C.J.P.: A formal approach to architec-

tural design patterns. In: Gaudel, M.-C., Wing, Jeannette M. (eds.) FME 1996.
LNCS, vol. 1051, pp. 576–594. Springer, Heidelberg (1996)

36. Taibi, T., Ling, D.N.C.: Formal specification of design patterns - a balanced app-
roach. J. Object Technol. 2(4), 127–140 (2003)

37. Bottoni, P., Guerra, E., de Lara, J.: Formal foundation for pattern-based modelling.
In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 278–293.
Springer, Heidelberg (2009)

38. Wirsing, M., et al.: Sensoria patterns: augmenting service engineering with formal
analysis, transformation and dynamicity. In: Margaria, T., Steffen, B. (eds.) ISoLA
2008. CCIS, vol. 17, pp. 170–190. Springer, Heidelberg (2008)

Towards a Failure Model
of Software Components

Ruzhen Dong1,2(B) and Naijun Zhan3

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
2 UNU-IIST, Macau, China

dong@di.unipi.it
3 State Key Laboratory of Computer Science,

Institute of Software, CAS, Beijing, China
znj@ios.ac.cn

Abstract. We present a failure model for software components that
describe sequences of services that are provided and required by a com-
ponent, which may be blocked and therefore result in failures. For any
automata-based model introduced in our previous work, there is a cor-
responding failure model. We show that the failure model is expressive
enough to describe non-blockable properties defined in the automata-
based models. Plugging operation over failure models is defined and
proved to be consistent with the one over automata-based models. A kind
of specific components, called coordinators, are introduced to coordinate
behaviors of components to avoid failures, and accordingly, coordination
operation is defined. Moreover, an algorithm is proposed to generate a
coordinator which can filter out sequences of provided service invocations
that may cause failures.

Keywords: Component-based design · Interface theory · Failure model ·
Coordination · Composition

1 Introduction

Component-based software development is set to build large software systems
by using existing software components [13,22,28]. In order to facilitate a sound
development process across different development teams exploiting existing soft-
ware components, interface theories [4,5,7,14,18,27] should then define the basic
principles for composing several software components based on their interfaces,
as the details of their implementations are invisible, and therefore these compo-
nents are used as a black-box.

In our previous work [8–10], we developed automata-based models describing
how a component interacts with its environment via providing and requiring
services. We assume run-to-completeness of provided service invocations, which
means that an invocation of a provided service either is not executed at all, or
has to be completed, cannot be interrupted during the execution. The interface

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 119–136, 2014.
DOI: 10.1007/978-3-319-07602-7 9, c© Springer International Publishing Switzerland 2014

120 R. Dong and N. Zhan

model is developed to guarantee that all sequences of services specified should
not be blocked. An algorithm that generates an interface model, whose non-
blockable behaviors are same as the considered component was invented.

A failure model is presented in this paper, inspired by the failure-divergence
semantics of CSP [15,26]. The model explicitly illustrates the sequences of ser-
vices that are provided and required, and the services that are refused/blocked
after some execution paths by the considered component. The non-blockableness
of sequences of service invocations, input-determinism, and plugging operation
that are well handled in automata-based models are reconsidered in this failure
models. The motivation of this paper is to prove that the failure model can serve
as a complete and sound denotational semantic model for component automata.

Two component automata synchronize on the shared events that are provided
by one and required by the other. In this paper, we present a plugging operation
that plugs a service provider (a component which does not require any services)
into the other component. Plugging operation reflects the development process of
software systems in practice that primitive components that only provide services
are implemented first and then plugged into the components that require these
services. A refinement relation based on state simulation [5,23] is given in [10]
and it is suitable for substitution of interface models.

All the provided services specified in the interface of a component should be
always available to its environment without any blocking. To the end, certain
sequences of services need to be filtered out [3]. A coordinator is simply a deter-
ministic labeled transition system, which serves as a wrapper/adapter to control
the sequences of services that are allowed to be called by the environment. The
role of coordinators is demonstrated clearly in the coordination operation. More-
over, an algorithm is invented to produce an interface coordinator that can filter
out all the possible blockable services and keep all the non-blockable provided
traces of the original component.

Related work. The Input/Output(I/O) Automata [20,21] and the Interface
Automata [5–7] are two well known interface theories of components. The com-
patibility checking is addressed in an optimistic way in Interface Automata [5–7],
i.e., two components are compatible if there exists an environment that can
make the composition avoid any error state. This hinders the use of compo-
nents as black-box units in building software components. In contrast, in I/O
Automata [20,21], input-enabledness is required, that is that all input should be
enabled at any state. Thus, compatibility checking is addressed in a pessimistic
way, i.e., the composition should work for any environment. Input-enabbledness
assumption is not applicable to reactive components in which there are guards
to control service invocations.

The interface model we proposed in our previous work [9,10] is input deter-
ministic that all the services provided by the interface can be called without being
blocked if the required services are satisfied. However, all of these are based on
operational semantics or game semantics. In this paper, we try to give a deno-
tational description of software components, called failure model, and get some
primary results. The denotational model provides a new perspective of software

Towards a Failure Model of Software Components 121

components, an easier way for composition, and more intuitive understanding of
input-determinism.

There are some variants of automata based interface theories, e.g., modal
transition systems [17,19,24,25], and the corresponding compatibility checking
in modal transition systems [11,12,16].

Reo [1,2] is a well known channel-based coordination model and focus mainly
on how connectors are composed without considering specific components. In
this paper, we use labeled transition system, which is not new, as coordinator
to coordinate component models. Components are constrained by coordinators
for different uses which shows the flexibility of software components.

Summary of contributions. The contributions of this paper include: (1) a
failure model of components that exhibits sequences of non-blockable provided
services in a more intuitive way; (2) a coordinator model that is used to coor-
dinate service invocations between components; (3) an algorithm producing a
coordinator that filters out all the possible blockable service invocations.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2,
we give a brief view of our previous work [9,10] including component automata,
component interface automata, and refinement relation. In Sect. 3, a failure
model of components is given, related definitions are discussed, e.g., plugging
operation. In Sect. 4, coordinators and coordination are formally defined, and
an algorithm producing a coordinator for the interface model is proposed. In
Sect. 5, we conclude the paper and discuss future work.

2 Component Automata

In this part, we will give a brief description of the automata-based models of
software components introduced in [9,10]. A primitive component consists a pro-
vided and required interface which describes the services provided and required
by the component, respectively.

The automata-based models are operational structure of components, and in
this paper, we present a trace-based model, in which components are modeled
as sets of sequences of pairs of provided and required events (called traces), and
sets of provided events that are refused/blocked after executing the given traces.

2.1 Basic Notions

This part introduces some important notions that will be used throughout this
paper.

For any w1, w2 → L∈, the concatenation of w1 and w2 is denoted as w1 ∼ w2.
Concatenation can be extended to sets of sequences in a standard way, that is,
A ∼B is {w1 ∼w2 | w1 → A, w2 → B}, where A,B ⊆ L∈ are two sets of sequences
of elements from L. Given a → L, we use w1 ∼ a to denote w1 ∼ 〈a←. Given a
sequence of sets of sequences 〈A1, . . . , Ak← with k ∩ 0, we denote A1 ∼ · · · ∼Ak as

122 R. Dong and N. Zhan

conc(〈A1, . . . , Ak←). We use ϕ to stand for empty sequence 〈←. Given a sequence
w, we use last(w) to denote the last element of w.

Let t be a pair (x, y), we denote σ1(t) = x and σ2(t) = y. Given any sequence
of pairs tr = 〈t1, . . . , tk← and a set of sequences of pairs T , it is naturally extended
that σi(tr) = 〈σi(t1), . . . , σi(tk)←, σi(T) = {σi(tr) | tr → T}, where i → {1, 2}.

Let tr → A and η ⊆ L, tr�Σ is a sequence obtained by removing all the
elements that are not in η from tr . And we extend this to a set of sequences
T �Σ = {tr�Σ | tr → T}. Similarly, tr �Σ is a sequence obtained by removing all
elements in η.

Given a sequence of pairs tr , tr�1P is a sequence obtained by removing the ele-
ments whose first entry is not in P . For a sequence of elements α = 〈a1, · · · , ak←,
pair(α) = 〈(a1, {a1}), · · · , (ak, {ak})←.

2.2 Component Automata

In this part, we present our automata-based model describing interaction behav-
iors of components [8–10]. Invocations to provided and required services are mod-
eled as provided and required events, respectively. Internal actions are modeled
as internal events. The invocation of a provided service or an internal action
will trigger invoking services provided by other components, so the label on a
transition step in the formal model consists a provided or internal event and a
set of sequences of required events.

Definition 1. A component automaton is a tuple C = (S, s0, f, P,R,A, δ),
where

– S is a finite set of states, and s0 → S is the initial state, f → S is the error
state;

– P , R, and A are finite sets of provided, required, and internal events, respec-
tively, which are disjoint mutually;

– δ ⊆ (S \ {f}) × η(P,R,A) × S is the transition relation, where η(P,R,A) is
the set of labels, defined as (P ∅ A) × (2R∗ \ ⇐).

Whenever there is (s, Υ, s∗) → δ with Υ = (w, T), we simply write it as

s
w/T−−−→ s∗ and call it a provided transition step if w → P , otherwise internal

transition step. We call s
a/T−−→ f a failure transition. We write s

w/−−→ s∗ for

s
w/{ψ}−−−−→ s∗. Component automaton C is called closed, if all the transitions are

of form s
w/{ψ}−−−−→ s∗, otherwise, open. The internal events are prefixed with ; to

differentiate them from the provided events. β is used to represent any inter-
nal event whenever it does not cause confusions. For a state s we use out(s)

to denote {w → P ∅ A | ∧s∗, w, T.s
w/T−−−→ s∗} and out•(s) = out(s) ∨ P and

out↑(s) = out(s) ∨ A. We write s
w/•−−→ s∗ for s

w/T−−−→ s∗, when T is not essential.
A state s is called stable, if out(s) = out•(s).

Towards a Failure Model of Software Components 123

Regarding component automata, we need the following definitions and
notations,

– a sequence of transitions s
ϕ1−→ s1· · · ϕk−→ s∗ is called an execution sequence,

written as s
ϕ1,...,ϕk=====⇒ s∗ (possible empty transition if k = 0, so s = s∗ and

s
ψ==⇒ s), and 〈Υ1, . . . , Υk← is called a trace from s to s∗. It is also a trace of the

component if s is the initial state;
– for a sequence sq over P ∅ A, we write s

sq
==⇒ s∗ if there is a trace tr such that

s
tr==⇒ s∗ and σ1(tr) = sq;

– a state s∗ is internally reachable from state s, denoted by intR(s, s∗), if there
exists s

tr==⇒ s∗ such that σ1(tr) → A∈. The set of internally reachable states
from state s is denoted as intR↑(s), and defined by {s∗ | intR(s, s∗)}. The set
of internally reachable and stable states from s is denoted as intR•(s) and
defined by {s∗stable | s∗ → intR↑(s)};

– for a trace tr and a state s, target(tr , s) = {s∗ | s
tr==⇒ s∗}, and target(tr) =

target(tr , s0);
– the set of traces from S is denoted as T (s) and defined by {〈Υ1, . . . , Υk← | ∧s∗ •

s
ϕ1,...,ϕk=====⇒ s∗};

– T (s0) is the set of traces of the component automaton C, which is abbreviated
as T (C);

– for a state s, the provided traces from s are given by

Tp(s) = {σ1(tr)�P | tr → T (s)};

– the set Tp(s0) is called the set of provided traces of C, and it is also written
as Tp(C).

2.3 Component Interface Automata

A component automaton describes how the corresponding component interacts
with its environment by provided and required services. However, some transi-
tions or executions may be blocked due to non-determinism caused by required
traces or internal events. The transitions that may lead to the error state or live
lock states should also be forbidden. The non-blockable properties of provided
events and provided traces will be discussed in this part.

To the end, we give some basic definitions first, and more details can be found
in [8–10]. For simplicity, we fix a component automaton C = (S, s0, f, P,R,A, δ)
in what follows.

We call a state s divergent if there exists a sequence of internal transitions
to s from s or s can reach to such kinds of states via a sequence of internal
transitions.

Definition 2 (divergent state). A state s is divergent, if there exists sq with
sq → A+ such that s

sq
==⇒ s or there exists s∗, sq1 → A+ and sq2 → A+ such that

s
sq1==⇒ s∗ and s∗ sq2==⇒ s∗.

124 R. Dong and N. Zhan

Definition 3 (nonrefusal provided event). For any s → S, the set of non-
refusal provided events of s is

N (s) =
⋂

r↓intR•(s)

out•(r) \ {a | s
sq

==⇒ f, sq�P = a}.

Definition 4 (non-blockable traces). A sequence of provided events
〈a1, · · · , ak← with k ∩ 0 is non-blockable at state s, if ai → N (s∗) for any
1 ∃ i ∃ k and s∗ such that s

tr==⇒ s∗ with σ1(tr)�P = 〈a1, · · · , ai−1←. A sequence
of pairs tr is non-blockable at s, if σ1(tr)�P is non-blockable at s.

Tup(s) and Tu(s) are used to denote the set of all non-blockable provided traces
and non-blockable traces at state s, respectively. Tup(s) and Tu(s) are also written
as Tup(C) and Tu(C), respectively, when s is the initial state.

Definition 5 (input-determinism). A component automaton C = (S, s0, f,

P,R,A, δ) is input-deterministic if f is not reachable from s0 and for any s0
tr1==⇒

s1and s0
tr2==⇒ s2 with σ1(tr1)�P = σ1(tr2)�P , implies N (s1) = N (s2).

The following theorem states that all the traces of an input-deterministic
component automaton are non-blockable.

Theorem 1. A component automaton C is input-deterministic iff Tp(C) =
Tup(C).

Hereafter, we simply call C component interface automaton (or interface
automaton) if it is input-deterministic. The following algorithm (see in Algo-
rithm 1), given in [10], can construct an interface automaton I(C) for any given
component automaton C.

Theorem 2 (Correctness of Algorithm 1). The following properties hold
for Algorithm 1, for any component automaton C:

1. The algorithm always terminates and the error state f is not reachable from
the initial state;

2. I(C) is an input deterministic automaton;
3. Tu(C) = Tu(I(C)).

2.4 Plugging Operation

Interaction between components through service invocation is modelled as the
synchronization of the two corresponding component automata on the shared
events that are provided by one and required by the other. The general compo-
sition operation is given in [10]. In this part, we focus on the composition between
open component automata and closed component automata, called plugging.

Definition 6 (plugging). Given a component automaton C1 = (S1, s
1
0, f1, P1,

R1, A1, δ1) and a closed component automaton C2 = (S2, s
2
0, f, P2, R2, A2, δ2),

Towards a Failure Model of Software Components 125

Algorithm 1. Construction of Interface Automaton I(C)
Input: C = (S, s0, f, P, R, A, δ)
Output: I(C) = (SI , (Q0, s0), f, P, R, A, δI), where SI ≤ 2S × S
1: if f ≥ intR∈(s0) then
2: exit with δI = →
3: end if
4: Initialization: SI := {(Q0, s0)} with Q0 = {s∗ | s∗ ≥ intR∈(s0)}; δI := →;

todo := {(Q0, s0)}; done := →
5: while todo �= → do
6: choose (Q, r) ≥ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}
7: for each a ≥ ⋂

s∈Q

N (s) do

8: Q∗ :=
⋃

s∈Q

{s∗ | s
tr
==⇒ s∗, π1(tr)�P = ∩a≡}

9: for each (r
a/T−−→ r∗) ≥ δ do

10: if (Q∗, r∗) /≥ (todo ∪ done) then
11: todo := todo ∪ {(Q∗, r∗)}
12: SI := SI ∪ {(Q∗, r∗)}
13: end if

14: δI := δI ∪ {(Q, r)
a/T−−→ (Q∗, r∗)}

15: end for
16: end for

17: for each r
w/T−−−→ r∗ with r∗ ≥ Q and w ≥ A do

18: δI := δI ∪ {(Q, r)
w/T−−−→ (Q, r∗)}

19: end for
20: end while

C2 is pluggable to C1 if A1 ∨ (P2 ∅ A2) = ⇐, A2 ∨ (P1 ∅ R1) = ⇐, P2 ⊆ R1, and
R2 = ⇐. The plugging is C1 ⊕ C2 = (S, s0, f, P,R,A, δ), where

– S = (S1 \ f1) × (S2 \ f2) ∅ {f}, where f is the error state of C,
– s0 = (s10, s

2
0),

– P = P1,
– R = R1 \ P2,
– A = A1 ∅ A2,

– δ is given by the following rule: for any reachable state (s1, s2), s1
w/T−−−→ s∗

1

• (s1, s2)
w/−−→ f if T �P2

� Tup(s2), otherwise,

• (s1, s2)
w/T ′
−−−→ (s∗

1, s
∗
2), where

T ∗ = {sq�R | sq → T, s2
tr==⇒ s∗

2 and σ1(tr)�P2
= sq�P2

}.

2.5 Refinement

Refinement is one of the key issues in component based development. It is mainly
used for substitution and selection of components at interface level. A refinement

126 R. Dong and N. Zhan

relation by state simulation technique [23] is given. The intuitive idea is that a
state s∗ simulates s, if at state s∗ more provided events are nonrefusal, less
required traces are required and the next states following the transitions keep
the simulation relation, which is similar to alternating simulation in [5]. We give
a brief introduction of simulation and refinement, and more details can be found
in [10].

Definition 7 (simulation). A binary relation R over the set of states of a
component automaton is a simulation iff whenever s1Rs2:

– if s1
w/T−−−→ s∗

1 with w → A ∅ N (s1) and f /→ intR↑(s∗
1), there exists s∗

2 and T ∗

such that s2
w/T ′
−−−→ s∗

2, where T ∗ ⊆ T and s∗
1Rs∗

2,

– for any transitions s2
w/T ′
−−−→ s∗

2 with w → A ∅ N (s1) and f /→ intR↑(s∗
2), then

there exists s∗
1 and T such that s1

w/T−−−→ s∗
1, where T ∗ ⊆ T and s∗

1Rs∗
2,

– N (s1) ⊆ N (s2),

– if s2
w/−−→ f with w → A ∅ P1, then s1

w/−−→ f .

We say that s2 simulates s1, written s1 � s2, if (s1, s2) → R. C2 refines C1,
written C1 ∈alt C2, if there exists a simulation relation R such that s01Rs02 and
P1 ⊆ P2 and R2 ⊆ R1.

The following theorem shows the trace inclusion properties.

Theorem 3. Given two component interface automata C1 and C2, if C1 ∈alt

C2, then Tup(C1) ⊆ Tup(C2), and for any non-blockable provided trace pt →
Tp(C1), T 2

r (pt) ⊆ T 1
r (pt).

The following corollaries can be obtained from Theorem 5 in [10].

Corollary 1. Consider four component interface automata C1, C ∗
1, C2, and C ∗

2

that C2 and C ∗
2 are pluggable to C1 and C ∗

1, respectively, if C1 ∈alt C ∗
1 and

C2 ∈alt C ∗
2, then (C1 ⊕ C2) ∈alt (C ∗

1 ⊕ C ∗
2).

3 Failure Model of Components

The automata-based component model gives the operational descriptions of com-
ponents. In this section, we propose to develop a denotational description of
components. The advantages of denotational models for components are easier
for compatibility checking, plugging, and refinement.

In this part, we will give a semantic model of component automata based
on traces and provided events that may be refused. The component automata
aim at showing interaction behaviors by providing and requiring services with its
environment in an operational way, while the failure model of components focuses
on traces of the component and the set of provided events that may be refused.
The basic idea is inspired by the failure-divergence semantics of CSP [15].

Towards a Failure Model of Software Components 127

Definition 8 (failures sets of component automata). Consider component
automaton C = (S, s0, f, P,R,A, δ), a pair (tr ,X) of a trace and a set of the
events is called a failure of C, if there exists s such that s0

tr==⇒ s and X =
P \ N (s), where s is not divergent nor the failure state f . We use F(C) to
denote the set of failures of C.

We see that provided events which may lead to the error state or div states
are refused by the components. This is because the components we consider here
aim at providing non-blockable provided services.

3.1 Failure Model of Components

Definition 9 (failure model of components). A failure model of component
M is (P,R,A,F) where

– P , R, and A are sets of provided, required, and internal events, respectively;
– F ⊆ η(P,R,A)∈ ×P is the failure set, where η(P,R,A) = (P ∅A)×(2R∗ \⇐).

Each (tr ,X) → F is called a failure, satisfying the following conditions:

• if (tr ,X) → F and X ∗ ⊆ X, then (tr ,X ∗) → F ;
• if (tr ,X) → F with X �= P , there exists T , a → P \ X, and X ∗ that (tr · tr ∗ ·

a/T,X ∗) → F , where σ1(tr ∗) → A∈;
• if (tr ·a/T,X) → F with a → A, then there existsX ∗ such that that (tr ,X ∗) → F .

The failure model of C is written as [[C]]F = (P,R,A,F(C)).
Similarly, we define the sets of traces, provided traces, and required traces of

failure model M as follows:

T (M) = {tr | ∧X • (tr ,X) → F}
Tp(M) = {σ1(tr)�P | tr → T (M)}
Tr(M) = {σ2(tr)�R | tr → T (M)}

We also give the definition of input-determinism and non-blockableness in the
failure model.

Definition 10 (input-determinism). A failure model M is input-determini-
stic, if for any (tr1,X1), (tr2,X2) → F , σ1(tr1)�P = σ1(tr2)�P implies X1 = X2.

Definition 11 (non-blockable traces). Let M be a failure model of compo-
nent, provided trace pt = 〈a0, · · · , ak← → Tp(M) is non-blockable, if there does not
exist 0 ∃ i < k and failure (tr ,X) that σ1(tr)�P = 〈a0, · · · , ai← and ai+1 → X.
The set of non-blockable provided traces of M is written Tup(M).

The following theorem states that the failure model of a component automa-
ton [[C]]F is consistent with component automaton C in the above definition.

128 R. Dong and N. Zhan

Fig. 1. Execution model of internet connection component Cic

Theorem 4. Let C be a component automaton and [[C]]F is the failure model
of C, then the following holds

– T (C) = T ([[C]]F), Tp(C) = Tp([[C]]F), Tup(C) = Tup([[C]]F),
– C is input-deterministic iff [[C]]F is input-deterministic.

Example 1. As a demonstrating example, we consider a simple component pre-
sented in Fig. 1. It provides the services login, print , and read to the environ-
ment, and has an internal service ;wifi . The services model the logging into the
system, invocation of printing a document, an email service, and automatically
connecting the wifi, respectively. The component calls the services unu1 , unu2 ,
cserv , cprint , and senddoc. The first three of them model the searching for a wifi
router nearby, connecting to the unu1 or unu2 wireless network, and connecting
to an application server, respectively. The cprint and senddoc are services that
connect to the printer, sends the document to print and start the printing job.
The print service is only available for the wifi network unu1 and read can be
accessed at both networks.

In Fig. 1, (ϕ, {read , print}), (login/, {login, print}), (〈login/, ;wifi/{unu1}←,
{login}),(〈login/, ;wifi/{unu2}←, {login, print}) are failures.

3.2 Plugging Operation

In this part, we show how two failure models of software components are com-
posed by plugging.

Definition 12 (plugging). Given failure models M1 = (P1, R1, A1,F1) and
M2 = (P2, R2, A2,F2), M2 is pluggable to M1 if A1 ∨ (P2 ∅ A2) = ⇐, A2 ∨ (P1 ∅
R1) = ⇐, P2 ⊆ R1, and R2 = ⇐. The plugging M1 ⊕̃ M2 is a new failure model
(P,R,A,F), where

Towards a Failure Model of Software Components 129

– P = P1,
– R = R1 \ P2,
– A = A1 ∅ A2,
– (tr ,X1 ∅ X2) → F , if

• (tr1,X1) → F1, conc(σ2(tr1))�P2
⊆ Tup(M2), and tr = tr1 �P2 ,

• X2 = {a | ∧X ∗ • (tr1 · a/T,X ∗) → F1, conc(σ2(tr1 · a/T) � Tup(M2)}
The following theorem shows the compositional properties of failure models.

Theorem 5. Given component C1 and C2, if C2 is pluggable to C1, then [[C2]]F
is pluggable to [[C1]]F , and [[C1]]F ⊕̃ [[C2]]F = [[C1 ⊕ C2]]F .

3.3 Refinement

We propose a refinement in failure models. The principle is that a refined model
provides more non-blockable traces while requiring less required services, and
refuses less provided services that are blockable in the provided part.

Definition 13 (failure refinement). Given two failure models M1 = (P1, R1,
A1,F1) and M2 = (P2, R2, A2,F2), M2 is a refinement of M1, if

– P1 ⊆ P2, R2 ⊆ R1;
– Tup(M1) ⊆ Tup(M2);
– given pt → Tup(M1), for any (tr2,X2) → F2, there exists (tr1,X1) → F1

such that σ1(tr1)�P1
= σ1(tr2)�P2

= pt, conc(σ2(tr2)) ⊆ conc(σ2(tr1)), and
X2 ⊆ X1.

4 Coordination

The components we consider so far are the basic units for building software
systems. In some situations, however, certain services provided by a component
need to be restricted due to security polices, budget and so on. In this section,
we will introduce a kind of specific components, called coordinator, to coordinate
services of components.

4.1 Coordinator

We use an online-shopping system shown in Fig. 2 to motivate the need of coor-
dinator.

Example 2. Consider an online marketplace system which provides a consumer-
to-consumer platform for retail stores. It consists of stores and a payment com-
ponent trusted by both stores and clients. The store component, called eStore,
presented in Fig. 2(i). It provides services select , pay ∗, and deliver , which model
selecting items, obtaining the money from payment component, and deliver-
ing the paid items to the clients, respectively. The payment component, called

130 R. Dong and N. Zhan

Fig. 2. Online shopping system

ePay shown in Fig. 2(ii) provides services pay and confirm which model receiv-
ing money from the clients and being confirmed by the client after the items are
received. It requires service pay ∗ that the component will transfer the money to
the store. The composition of eStore and ePay is in Fig. 2(iii).

In the above example, provided trace 〈select · deliver← is allowed, which means
that the store may not get paid even if it delivers the items bought by the clients.
So such online marketplace system is unsafe for the store retailers. We introduce
a kind of specific components, called coordinator, to filter out services provided
by components that should not be allowed. A coordinator is modeled as a labeled
transitions system, the formal definition is given below.

Definition 14 (Coordinator). A coordinator F is a deterministic labeled tran-
sition system (Q, q0, E, κ), where

– Q is the set of states with q0 → Q as the initial state,
– E is the set of active events,
– κ is a set of transition.

Similarly, the set of traces of coordinator F , written as T (F), is {〈a0, a1, · · · , ak← |
q0

a0−→ · · · ak−→ qk+1}.

Example 3. In order to filter out the unexpected provided traces in Fig. 2(iii),
we can exploit coordinator F shown in Fig. 3.

Towards a Failure Model of Software Components 131

Fig. 3. Coordinator F

4.2 Parallel Composition of Coordinators

Now we define the parallel composition of coordinators. Since coordinators only
show the sequences of services that are allowed, two coordinators do not com-
municate directly. Two coordinators are composable, if they do not have active
events in common. Thus, the parallel composition of two coordinators is simply
the interleaving execution of the actions of the individual coordinators.

Definition 15 (Parallel composition of coordinators). Given two coordi-
nators F1 = (Q1, q

1
0 , E1, δ1,) and F1 = (Q2, q

2
0 , E2, δ2,), if E1 ∨ E2 = ⇐, the

parallel composition F1 ∪ F2 results in another coordinate (Q, q0, E, δ), where

– Q = Q1 × Q2 and q0 = (q10 , q
2
0),

– E = E1 ∅ E2,
– δ is given by the rule, (q1, q2)

a−→ (q∗
1, q

∗
2) → δ if either

• q1 = q∗
1 and q2

a−→ q∗
2 is a transition of F2, or

• q2 = q∗
2 and q1

a−→ q∗
1 is a transition of F1.

The following theorem shows that the traces of F1 ∪ F2 can be obtained from
the traces of F1 and F2.

Theorem 6. Given two composable coordinators F1 and F2, T (F1 ∪ F2) =
{sq → E∈ | sq�E1

→ T (F1), sq�E2
→ T (F2)}.

4.3 Coordination Operation

Components are coordinated in the way that all the sequences of services pro-
vided should also obey the constraint of the coordinators. The formal definition
is given below.

Definition 16 (Coordination). Given a component automaton C = (S, s0, P,
R,A, δ) and a coordinator F = (Q, q0, E, κ) such that E ⊆ P , the coordi-
nation of C by F , denoted by C � F , derives another component automaton
(S∗, s∗

0, P
∗, R∗, δ∗), where

– S∗ = S × Q,
– s∗

0 = (s0, q0),
– P ∗ = P ,

132 R. Dong and N. Zhan

Fig. 4. Coordination of (eStore ⊗ ePay) � F

– R∗ = R,
– δ∗ is a set of transitions complying with the following rules:

• if s
w/T−−−→ s∗ and t

w−→ t∗, then (s, t)
w/T−−−→ (s∗, t∗),

• s
w/T−−−→ s∗ with w /→ E, then (s, t)

w/T−−−→ (s∗, t).

Theorem 7. The failures of C � F is F(C � F) = {(tr ,D ∅ D∗) | (tr ,D) →
F(C), σ1(tr)�E → T (F),D∗ = {d | σ1(tr)�E · d /→ T (F)}}.
Example 4. Now, we can see how the component eStore ≤ ePay shown in
Fig. 2(iii) is coordinated by coordinator in Fig. 3. The result is presented in Fig. 4.

4.4 Synthesizing Interface Coordinator for Component Automata

In this part, we will show that given any component automaton C, there exits a
coordinator F such that coordination of C by F is equivalent with the component
interface automaton I(C) constructed by Algorithm 1.

We now present a procedure in Algorithm 2 that, given a component automa-
ton, constructs a coordinator which only records non-blockable provided traces.
The basic idea is similar to the construction of a deterministic automaton from
a non-deterministic one, and the only difference is that in the algorithm only the
deterministic traces are kept.

Three key correctness properties of the algorithm are stated in the following
theorem.

Theorem 8 (Correctness of Algorithm 2). Given any component automa-
ton C, the following properties hold for Algorithm 2:

– the algorithm always terminates,
– G(C) is deterministic,
– T (G(C)) = Tup(C).

Proof. The termination of the algorithm is obtained, because todo will eventually
be empty: the size of power set of state S is bounded, only fresh state is added
to todo, and for each iteration of the loop a state from todo is removed.

Assume that there exists q
a−→ q1 and q

a−→ q1, then from Algorithm 2, we
q1 = q2 = {s∗ | s

tr==⇒ s∗,withs → q, σ1(tr)�P = a}. So G(C) is deterministic.

Towards a Failure Model of Software Components 133

Algorithm 2. Construction of Interface coordinator
Input: C = (S, s0, P, R, A, δ)

Output: G(C) = (Q, q0, E, σ)

1: Initialization: q0 = {s∗ | s∗ ∈ intR∈(s0)}, Q := {q0}, E := P, σ := ∅, todo := {q0}
2: while todo �= ∅ do

3: choose one q ∈ todo and todo := todo \ {q}
4: for each a ∈ ⋂s∈q N (s) do

5: let q∗ be {s∗ | s
tr
==⇒ s∗,with s ∈ q, π1(tr)�P = a}

6: if q∗ /∈ Q then

7: add q∗ to Q and todo

8: end if

9: σ := σ ∪ {q
a−→ q∗}.

10: end for

11: end while

We first prove that, for any non-blockable provided trace pt of C, there exists
q0

pt
==⇒ q in G(C) with q = {s∗ | s0

tr==⇒ s∗, σ1(tr)�P = pt} by induction on the
length of pt . The base case is obvious that q0 = {s∗ | s∗ → intR↑(s0)}. Consider
non-blockable trace sq · a, so there exists q1 that q1 = {s∗ | s0

tr==⇒ s∗, σ1(tr)�P =
sq} and q0

sq
==⇒ q1. Since sq ·a is non-blockable, a → N (s∗) for s∗ → q1. From Loop

(Line 4–10) in Algorithm 2, we see q∗
1 = {s∗ | s

tr==⇒ s∗,withs → q1, σ1(tr)�P = a},
so q0

sq·a
===⇒ q∗

1 and q∗
1 = {s∗ | s0

tr==⇒ s∗, σ1(tr)�P = sq ·a} by hypothesis induction.
From above, we see Tup(C) ⊆ T (G(C)).

Next we prove that sq is non-blockable in C, for any q0
sq

==⇒ q, and q =
{s∗ | s0

tr==⇒ s∗, σ1(tr)�P = sq}. The base case follows that ϕ is non-blockable

in C. Consider q0
sq′·a

===⇒ q2, then, there exists q0
sq′

==⇒ q1 and q1
a−→ q2. By

hypothesis induction, q1 = {s∗ | s0
tr==⇒ s∗, σ1(tr)�P = sq ∗} and sq ∗ is non-

blockable. sq ∗ · a is non-blockable, since a → N (r) for any r → q1. And q2 = {s∗ |
s0

tr==⇒ s∗, σ1(tr)�P = sq ∗ · a}. From above, we see T (G(C)) ⊆ Tup(C).
So, T (G(C)) = Tup(C). ��

We can obtain the following corollary from Theorems 7 and 8.

Corollary 2. Given a component automaton C, Tu(C) = T (C � G(C))

Example 5. The component automaton in Fig. 1 is not input-deterministic. A
coordinator shown in Fig. 5(i) is obtained by Algorithm 2. We use state a as
shorthand for {1, 2, 3}. The coordination of Cic � G(C) is given in Fig. 5(ii).

5 Conclusion and Future Work

In this paper,we proposed adenotational semanticmodel for software components,
called failure model, and discussed how to handle traces, non-blockablness, input-
determinism, plugging operations in a failure model. In particular, we proved that
these notions are consistent with their counterparts in the operational settings.

134 R. Dong and N. Zhan

Fig. 5. Coordination of component Cic by a synthesized coordinator

Future work. There are several open problems left for future work. Firstly,
refinement relation based on failure models and the relation with the refinement
defined on component automata need further studied. Secondly, more general
composition operation instead of plugging needs to be given for failure models.
Thirdly, algebraic properties of composition such as associative, commutative,
distributive of coordination over composition are also important. In addition, it
deserves to extend these untimed theories to timed settings.

Acknowledgments. This work was funded in part by the projects 2014CB340700,
NSFC-61103013 and NSFC-91118007 from the Natural Science Foundation of China,
GAVES and PEARL funded by Macau Science and Technology Development. We thank
Prof. Zhiming liu for his inspiring comments and discussions. We also thank the anony-
mous reviewers for their valuable comments.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14, 329–366 (2004)

2. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in
reo by constraint automata: (extended abstract). Electron. Notes Theor. Comput.
Sci. 97(0), 25–46 (2004)

3. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009)

4. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model-driven design. Science of Computer Programming 74(4),
168–196 (2009). (special Issue on the Grand Challenge)

5. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

Towards a Failure Model of Software Components 135

6. De Alfaro, L., Henzinger, T.: Interface-based design. Eng. Theor. Softw.-Intensive
Syst. 195, 83–104 (2005)

7. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211,
pp. 148–165. Springer, Heidelberg (2001)

8. Dong, R., Faber, J., Ke, W., Liu, Z.: rCOS: defining meanings of component-based
software architectures. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories
of Programming and Formal Engineering Methods. LNCS, vol. 8050, pp. 1–66.
Springer, Heidelberg (2013)

9. Dong, R., Faber, J., Liu, Z., Srba, J., Zhan, N., Zhu, J.: Unblockable compositions
of software components. In: Proceedings of the 15th ACM SIGSOFT Symposium
on Component Based Software Engineering, CBSE ’12, pp. 103–108. ACM, New
York (2012)

10. Dong, R., Zhan, N., Zhao, L.: An interface model of software components. In:
Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 159–176.
Springer, Heidelberg (2013)

11. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-guarantee verification
for interface automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008)

12. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: ASE, pp. 3–12. IEEE Computer Society (2002)

13. Jifeng, H., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidel-
berg (2005)

14. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

15. Hoare, C.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

16. Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

17. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

18. Liu, Z., Morisset, C., Stolz, V.: rCOS: theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010)

19. Lüttgen, G., Vogler, W.: Modal interface automata. In: Baeten, J.C.M., Ball, T.,
de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 265–279. Springer, Heidelberg
(2012)

20. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151 (1987)

21. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

22. Mcilroy, D.: Mass-produced software components. In: Buxton, J.M., Naur, P.,
Randell, B. (eds.) Proceedings of Software Engineering Concepts and Techniques,
pp. 138–155. NATO Science Committee, January 1969

23. Milner, R.: Communication and Concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire (1995)

136 R. Dong and N. Zhan

24. Raclet, J., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: unifying interface automata and modal specifications. In: Pro-
ceedings of the Seventh ACM International Conference on Embedded Software,
pp. 87–96. ACM (2009)

25. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inf. 108(1–2),
119–149 (2011)

26. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle
River (1998)

27. Sifakis, J.: A framework for component-based construction. In: Third IEEE Inter-
national Conference on Software Engineering and Formal Methods, SEFM 2005,
pp. 293–299. IEEE (2005)

28. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Boston (1997)

Formally Reasoning on a Reconfigurable
Component-Based System — A Case Study

for the Industrial World

Nuno Gaspar1,2,3(B), Ludovic Henrio2, and Eric Madelaine1,2

1 INRIA Sophia Antipolis, Valbonne, France
{Nuno.Gaspar,Eric.Madelaine}@inria.fr

2 University of Nice Sophia Antipolis,
CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Ludovic.Henrio@cnrs.fr
3 ActiveEon S.A.S, Sophia Antipolis, France

http://www.activeeon.com/

Abstract. The modularity offered by component-based systems made
it one of the most employed paradigms in software engineering. Precise
structural specification is a key ingredient that enables their verification
and consequently their reliability. This gains special relevance for recon-
figurable component-based systems.

To this end, the Grid Component Model (GCM) provides all the
means to define such reconfigurable component-based applications. In
this paper we report our experience on the formal specification and
verification of a reconfigurable GCM application as an industrial case
study.

Keywords: Component-based systems · Autonomous systems · Formal
methods · Reconfiguration · Model-checking

1 Introduction

Meeting the demands of our modern society requires special care when designing
software. Applications are expected to be full-featured, performant and reliable.
Moreover, for distributed applications high-availability is also cause of concern.
Taming this complexity makes the use of modular techniques mandatory. To
this end, the modularity offered by component-based systems made it one of the
most employed paradigms in software engineering.

Embracing this approach enables structural specifications, thus leveraging
formal verification. This gains special relevance for reconfigurable component-
based systems. Indeed, while offering systems with an higher availability, the
ability to evolve at runtime inherently increases the complexity of an application,
making its formal verification a challenging task.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 137–156, 2014.
DOI: 10.1007/978-3-319-07602-7 10, c© Springer International Publishing Switzerland 2014

138 N. Gaspar et al.

1.1 Context

This work occurs in the context of the Spinnaker project, a French collabora-
tive project between INRIA and several industrial partners, where we intend
to contribute for the widespread adoption of RFID-based technology. To this
end, our contribution comes with the design and implementation of a non-
intrusive, flexible and reliable solution that can integrate itself with other already
deployed systems. Specifically, we developed the HyperManager, a general
purpose monitoring application with autonomic features. This was built using
GCM/ProActive1 — a Java middleware for parallel and distributed program-
ming that follows the principles of the GCM component model. For the purposes
of this project, it had the goal to monitor the E-Connectware2 (ECW) framework
in a loosely coupled manner.

For the sake of clarity let us describe one of the real life scenarios faced in
a industrial context. An hotel needs to keep track of the bed sheets used by
their customers. Every bed sheet used has an embedded RFID sensor chip that
uniquely identifies it. At every shift, the hotel maids go through all the rooms
recovering these bed sheets and putting them in a laundry cart. By reaching the
end of the rooms’ corridor, the laundry cart emits to another physical device
running the ECW Gateway software the bed sheets’ identifiers. For each corridor
there might be several laundry carts and one device running the ECW Gateway.
After receiving the bed sheets’ identifiers the ECW Gateways emit this informa-
tion along with their own identifier to yet another physical device running the
ECW Server. Once the information reaches the top of this hierarchy it can be
used to whatever purpose, namely bed sheets traceability.

Abstracting away this particular scenario, one can see it in a hierarchical
manner as depicted by Fig. 1.

...

HyperManager Server

ECW
Server

HyperManager Gateway

ECW
Gateway

HyperManager Gateway

ECW
Gateway

...

...

Fig. 1. Hierarchical representation of our case study

1 http://proactive.activeeon.com/index.php
2 http://www.tagsysrfid.com/Products-Services/RFID-Middleware

http://proactive.activeeon.com/index.php
http://www.tagsysrfid.com/Products-Services/RFID-Middleware

Formally Reasoning on a Reconfigurable Component-Based System 139

Regarding the previously described scenario, this hierarchical view should
pose no doubt. For each of the n floors of the hotel there are m laundry carts
that communicate in a one-to-one style with a gateway. On the other hand, the
gateways communicate with the server on a n-to-one style. Moreover, there is
also the need to cope for possible maintenance issues. For instance, in the case
of malfunction of some device running the ECW Gateway, it may be required to
replace it or add a new one in order to avoid any overloading.

The architecture depicted by Fig. 1 also includes the HyperManager applica-
tion. Indeed, it is deployed alongside the pre-existent distributed system, per-
forming its monitoring on all ECW components. The careful reader will notice
that the flow of requests go both from the HyperManager Server to the Hyper-
Manager Gateway, and vice-versa. Indeed, these follow the pull and push styles
of communication, respectively. More details regarding these mechanisms will be
discussed at a later stage.

1.2 Contributions

This paper discusses an industrial case study of a reconfigurable monitoring
application. On the one hand, it should be noted that we aim at real-life appli-
cations, indeed, our models go upto the intricacies of the middleware itself. This
has the direct consequence of promoting the use of formal methods within the
industry.

On the other hand, we go beyond previous work [5] by including reconfigu-
ration capabilities. This yields bigger state-spaces and inherently new issues to
deal with. Investigating the feasibility of such undertakings is within the scope
of this paper too. To the best of our knowledge this is the first work address-
ing the challenges of behavioural specification and verification of reconfigurable
component-based applications.

1.3 Organisation of the Paper

The remaining of this paper is organised as follows. Section 2 gives the main
ingredients of our behavioural semantics for specifying GCM applications. Then,
Sect. 3 presents our general purpose monitoring application — The HyperMan-
ager. Section 4 details its simplified behavioural model, i.e. without support for
structural reconfigurations, and its proven properties. The impact of adding
reconfiguration capabilities is discussed in Sect. 5. Related work is discussed in
Sect. 6. For last, Sect. 7 concludes this paper.

2 A Behavioural Semantics for GCM Applications

This section provides a brief overview of the behavioural semantics modelling
GCM/ProActive applications by relying on the pNets formalism. For the sake
of space we omit some of the underlying definitions. For a detailed account of
its intricacies the interested reader is pointed to [1].

140 N. Gaspar et al.

Primitive Component Example

M1 M3

!Recycle m5(p5)
!Recycle m4(p4)

GetValue m4(p4, val)

Serve m*(fid∗, arg)

Queue PM m5

PM m4

Body

...

Call m*(arg)!R m1(fid1, val)
!R m2(fid2, val)
!R m3(fid3, val)

!R m*(fid∗)

!R *(val)

?Q m3(fid3, arg)
?Q m2(fid2, arg)
?Q m1(fid1, arg)

?R m5(p5, val)

?R m4(p4, val)

!Q m5(p5, arg)

!Q m4(p4, arg)

GetValue m5(p5, val)

New m5(p5)

G
e
tP

ro
x
y
m
*

New m4(p4)

Proxy m4[p4]

Proxy m5[p5]

Fig. 2. pNet representing a primitive component

As an illustrative example, the internals of a GCM primitive component
featuring three service methods — m1, m2 and m3 — and two client methods
— m4 and m5 — are depicted by Fig. 2.

Invocation on service methods — Q mi, i∈{1,2,3} — go through a Queue, that
dispatches the request — Serve m* — to the Body. Serving the request consists
in performing a Call m* to the adequate service method, represented by the Mi

boxes in the figure. Once a result is computed, a synchronized R m* action is
emitted. This synchronization occurring between the service method and the
Body stems from the fact that GCM primitive components are mono-threaded.
Moreover, the careful reader will notice the fidi, i∈{1,2,3} in the figure. These
are called futures and act as promises for replies, leveraging asynchrony between
components.

Service methods interact with external components by means of client
interfaces. This requires obtaining a proxy — GetProxy m*, New mi, i∈{4,5} —
in order to be able to invoke client methods — Q mi, i∈{4,5}. The reply —
R mi, i∈{4,5} — goes to the proxy used to call the external component. Then,
a GetValue mi, i∈{4,5} is performed in order to access the result in the method
being served. Finally, Recycle mi, i∈{4,5} actions can be performed in order to
release the proxies.

The behaviour of the Queue and the Body elements should pose no doubt. The
former acts as priority queue with a First in, First Out (FIFO) policy, raising
an exception if its capacity is exceeded. The latter dispatches the requests to the
appropriate method and awaits its return, thus preventing the service of other
requests in parallel.

The handling of proxies however, is not as straightforward and deserves a
closer look. Figures 3 and 4 illustrate the behaviour of the Proxies and Proxy
Managers, respectively. Upon reception of a New mi action, a Proxy waits for
the reply of the method invoked with it — R m —, making thereafter its result

Formally Reasoning on a Reconfigurable Component-Based System 141

Fig. 3. Behaviour of proxy Fig. 4. Behaviour of the proxy man-
ager

available — GetValue m. The proxy becomes then available on the reception of
a Recycle m action.

The behaviour of the Proxy Manager is slightly more elaborated. This main-
tains a pool of proxies, keeping track of those available and those already allo-
cated. On the reception of a GetProxy m action, it activates a new proxy —
New m — if there is one available. Should that not be the case, an
Error(NoMoreProxy) action is emitted. As expected, a Recycle m action frees a
previously allocated proxy.

3 The HyperManager

The HyperManager is a general purpose monitoring application that was
developed in the context of the Spinnaker project3. The goal was to deliver a
modular solution that would be capable of monitoring a distributed application
and react to certain events. As such, the HyperManager is itself a distributed
application, deployed alongside the target application to monitor.

Generally, when performing a monitoring task in an application one may con-
sider two types of events: pull and push. The former stands for the usual commu-
nication scenario where the request comes from the client and then responded
by the server. The latter however, is when the server pushes data to clients inde-
pendently from a client’s request. Both styles of communication are employed
in the HyperManager application.

As illustrated by Fig. 5, the server (composite) component of the Hyper-
Manager application features three primitive components that are responsible
for the application logic. Each possesses one or several service methods that
3 Project OSEO ISIS. http://www.spinnaker-rfid.com/

http://www.spinnaker-rfid.com/

142 N. Gaspar et al.

HyperManager Server

HMStartMonitoringMethod

HMStopMonitoringMethod

HMGatewayMulticastMethod

Pull Component

 JMXIndicatorsMethod

JMX Indicators

Server PrimitiveHMServerMethod

Push Event

HMLoopMethod

Pull Event

Fig. 5. HyperManager server component

stand for their functionalities and are modelled by labelled transition systems
(LTSs).

The JMX Indicators component features only one service method: it accepts
requests about a particular JMX4 indicator and replies its status. This encap-
sulates business code and interacts directly with ECW.

The Pull Component however, includes three service methods and four client
interfaces. As the component’s name indicates, it is responsible for pulling infor-
mation and emitting it as pull events. The service methods HMStartMonitoring-
Method and HMStopMonitoringMethod are responsible for starting and stopping
the pulling activity, respectively. Typically, these are the methods called by the
administrator. The remaining service method, HMLoopMethod, may pose some
doubt. Indeed, it is called from one of its own client’s interface. Being a ProAc-
tive application, it follows the active object paradigm where explicit threading is
discouraged. As such, making a method loop is achieved by making this method
sending itself a request before concluding its execution.

While in the monitoring loop, the HMLoopMethod method pulls information
regarding its own local JMX indicators and those of its gateways via a multi-
cast client interface. The last remaining client interface serves the purpose of
reporting the pulled information as pull events.

Last, the Server Primitive component receives push information from the HM
Gateways — typically to alert the occurrence of some anomaly — and emits it as
push events. In our implementation both push and pull events are then displayed
in some application with a graphical interface for administration purposes.

The description of the HyperManager’s gateway component follow the
same spirit. Figure 6 depicts its constitution.

It is also composed by three primitive components. As expected, the JMX
Indicators component has the same semantics as described above.

The Push Component features the same service methods as the Pull Compo-
nent. Its semantics however, are slightly different. While looping it will check for
4 JMX is the standard protocol used for monitoring Java applications.

Formally Reasoning on a Reconfigurable Component-Based System 143

..
HyperManager Gateway

HMStartMonitoringMethod

HMStopMonitoringMethod

Push Component

 JMXIndicatorsMethod

JMX Indicators

Gateway Primitive
HMGatewayMethod

HMLoopMethod

HMServerMethod

Fig. 6. HyperManager gateway component

the status of its JMX indicators, and communicate with the HyperManager
server if some anomaly is encountered — which will then trigger a push event.

As for the Gateway Primitive component, its sole purpose is to reply to the
pulling requests from HyperManager server.

4 HyperManager’s Behavioural Model

Modelling the HyperManager in the behavioural semantics pNets [1] requires
us to provide a behaviour for each service method. In the following we illustrate
this by providing an user-version LTS for all of them — i.e. we omit all the
machinery involving futures and proxies. Moreover, for more material on this
case study the reader is invited to its companion website5.

Regarding our modelling and verification workflow, we build the behavioural
models by encoding the involved processes in the Fiacre specification language
[3]. Then, the flac compiler translates it to Lotos [4]. From there we can use
the CADP toolbox [9]. Typically, we use bcg open for state-space generation —
in conjunction with distributor if performing it on a distributed setting —, svl
scripts for managing state-space replication, label renaming and build products
of transition systems. For last, evaluator4 for model-checking the state-space
against MCL (Model Checking Language) [13] formulas — an extension of the
alternation-free regular μ-calculus with facilities for manipulating data.

To optimize the size of the model, the composite components have no request
queue and requests are directly forwarded to the targeted primitive component.
This has no influence in the system’s semantics as the primitives’ request queues
are sufficient for dealing with asynchrony and requests from the sub-components
are directly dispatched too. Moreover, we set the primitive components with
re-entrant calls with a queue of size 2, and the remaining of size 1.
5 http://www-sop.inria.fr/members/Nuno.Gaspar/HyperManager.php

http://www-sop.inria.fr/members/Nuno.Gaspar/HyperManager.php

144 N. Gaspar et al.

s_mem

s_init

Call_JMXIndicatorsMethod ?
Memory_Usage

s_dev

Call_JMXIndicatorsMethod ?
DeviceStatus(id)

R_JMXIndicatorsMethod !
 memory_usage(Stable)

R_JMXIndicatorsMethod !
 memory_usage(Unstable)

R_JMXIndicatorsMethod !
 device_status(Available, id)id

R_JMXIndicatorsMethod !
 device_status(Unavailable, id)

Fig. 7. Behaviour of the JMXIndica-
torsMethod

s1s_init

Call_GatewayMethod ? args

s1

Q_JMXIndicatorsMethod ! args

s2

GetValue_JMXIndicatorsMethod ? reply

R_GatewayMethod ! jmx_reply

Fig. 8. Behaviour of the HMGate-
wayMethod

4.1 The HM Gateway

The JMX Indicators primitive component only features one service method:
JMXIndicatorsMethod. Its behaviour is modelled by Fig. 7. For the sake of
simplicity, we only model two types of indicators: MemoryUsage and DeviceSta-
tus. The latter takes into account an identifier, returning its availability status.
This relates to the status of a RFID reader transmitting to the ECW Gateway.
While the former simply returns the stability status of the memory.

The service method offered by the Gateway Primitive component has also a
fairly simple behaviour. It is illustrated by Fig. 8. It acts merely as a request
forwarder for the JMX Indicators component.

Regarding the Push Component, the HMStartMethod and HMStopMethod
methods enable/disable the looping process. This is achieved by a shared variable
among processes that acts as a flag. Invoking HMStartMethod will set the flag
variable started to true and perform an invocation to HMLoopMethod. On the
other hand, HMStopMethod will set the flag to false. Their behaviour is rather
trivial and therefore omitted for the sake of space. In practice, the involved labels
are GuardQuery, GuardReply?b:bool, SetFalse and SetTrue; their meaning should
be obvious from their names.

The last remaining service method to describe is the most interesting one —
the loop method.

As illustrated by Fig. 9, the actual looping only occurs if the flag variable
started is set to true, otherwise a simple return without performing any sig-
nificant action is made.6 While looping, the JMX indicators are checked. Should
an anomaly be detected a report is made to the HM Server. Last, before returning
a request is sent to itself — Q HMLoopMethod — in order to be able to continue
looping while the flag variable evaluates to true.

Model Generation and Proven Properties. Table 1 illustrates the relevant
information concerning the HM Gateway’s state-space built using the CADP
toolbox. The model is generated with two RFID readers.
6 For the sake of clarity, communications actions are written in black, while local

computations are written in blue. Their intended meaning should pose no doubt.

Formally Reasoning on a Reconfigurable Component-Based System 145

s2
s1

s_init

Call_HMLoopMethod ?

R_HMLoopMethod !

[started]

s_stop

not [started]

s3

Q_JMXIndicatorsMethod ? jmx_args

s4

GetValue_JMXIndicatorsMethod ? jmx_reply

s7

R_HMLoopMethod !

[noAnomaly (jmx_reply)]

not [noAnomaly (jmx_reply)]s5
s6

Q_ServerMethod ! jmx_reply

Q_HMLoopMethod !

Fig. 9. Behaviour of the HMLoopMethod at the gateway level

Table 1. Numbers regarding the gateway model

States Transitions File size (mb)

hmgateway.bcg 14.931.628 147.485.103 ∼295
hmgateway-min.bcg 14.931.628 147.485.103 ∼296

The entry suffixed by -min means that minimization by branching bisimu-
lation was applied. We note that the minimization process fails to produce a
reduced transition system. This is due to the fact that we do not hide any com-
munication action and all transitions are visible7. However, there is an increase
in the file size even though the number of states and transitions remained equal.
This is justified by the fact that bcg min inserts information in the produced file
stating that it came from a minimization process. In any case, this overhead is
rather negligible.

Having this state-space generated we can now prove some properties regard-
ing the expected behaviour of the model. Specifying properties of interest in
MCL is a rather intuitive task due to its expressiveness and conciseness. Its main
ingredients include patterns extracting data values from LTS actions, modali-
ties on transition sequences described using extended regular expressions and
programming language constructs.

For instance, one could wonder about this rather unusual looping mechanism.
Once setting the flag to true — accomplished by Q HMStartMethod —, the
looping continues until a request to stop monitoring is received. That is, there
is no path in which the flag evaluates to false without the occurrence of a
Q HMStopMethod.
7 It is worth noticing that the flac compiler translates shared variables and internal

communications into τ -transitions. These will therefore disappear from the LTS if
subject to minimization.

146 N. Gaspar et al.

Property 1. ["Q_HMStartMethod" . "Q_HMLoopMethod" .
(not"Q_HMLoopMethod")* . "GuardReply !FALSE"] false

Naturally, we also want to avoid overloading the HM Server with unnecessary
messages. As such, we want to ensure that we cannot push data if not in the
presence of an anomaly. This can be modelled as follows:

Property 2.

[((not "R_JMXIndicatorsMethod !memory_usage (Unstable)")* .

"Q_ServerMethod.*") |

((not "R_JMXIndicatorsMethod !device_status ((Unavailable, IdTwo))")* .

"Q_ServerMethod.*") |

((not "R_JMXIndicatorsMethod !device_status ((Unavailable, IdOne))")* .

"Q_ServerMethod.*")

] false

Both properties are naturally proved true.

4.2 The HM Server

Similarly as seen for the HM Gateway component, the HM Server component also
features a JMX Indicators primitive component. This however, is naturally not
endowed with indicators for the RFID devices statuses. Technically, we attach to
the LTS modelling its behaviour (Fig. 7) a context that constraints its requests.
Moreover, HMStartMethod and HMStopMethod methods exhibit the same behav-
iour as described above.

As seen above, upon detection of an anomaly, the HM Gateway component
pushes the relevant information to the HM Server. Then, it is emitted as a push
event as depicted by Fig. 10. The careful reader will notice that the emitted event
also contains the information regarding the HM Gateway from which the anomaly
originated. This should come as no surprise as there can be several of them,
and properly identifying the source of an abnormal situation is of paramount
importance.

As depicted by Fig. 11, the looping process for the HM Server proceeds in
a similar fashion as the one from the HM Gateway: the flag variable started’s
valuation determines whether we enter the looping process or if we just return.
While looping we pull information from the local JMX indicators and emit it as
a pull event.

Moreover, via a multicast interface information is pulled from the connected
gateways. This, will emit as many pull events as the number of connected gate-
ways. Last, a request to itself is performed in order to continue looping.

Model Generation and Proven Properties. Table 2 illustrates the relevant
information concerning HM Server’s state-space.

As in the case of the HM Gateway model, the minimization process failed to
produce a smaller state-space. However, this time we get a 9 % increase in the

Formally Reasoning on a Reconfigurable Component-Based System 147

s1

s_init

Call_ServerMethod_i ? server_args

s2

Push_Event !
 From_Gateway_i, server_args

R_ServerMethod_i !

Fig. 10. Behaviour of the
HMServerMethod

s2
s1s_init

Call_HMLoopMethod ?

R_HMLoopMethod !

[started]

s_stop

not [started]

s3

Q_JMXIndicatorsMethod ? jmx_args

s4

GetValue_JMXIndicatorsMethod ? jmx_reply

s5

Pull_Event ! {FromServer, jmx_reply}

s6
Q_GatewayMulticastMethod ? gw_args

GetValue_GatewayMulticastMethod ? gmulti_reply

s7

[i < ACTIVE_Gateways]

Pull_Event ! origin, data
i++

s8

Q_HMLoopMethod !

R_HMLoopMethod !

not [i < ACTIVE_Gateways]

i := 0

origin, data := gmulti_reply[i]

Fig. 11. Behaviour of the HMLoopMethod at the
server level

Table 2. Numbers regarding the server model

States Transitions File size (mb)

hmserver.bcg 12.787.376 187.589.422 ∼363
hmserver-min.bcg 12.787.376 187.589.422 ∼396

file size, not so much negligible as the increase noticed for the HM Gateway’s
state-space.8

A rather trivial property we can expect to hold is that we can reach a state
which explodes one of the request queues. This can be modelled in MCL as
follows:

Property 3. < true* . ’QueueException_ServerPrimitive !.*’> true

As mentioned above, we omitted all the machinery involving proxies while
describing the service methods’ behaviour. However, this is naturally included in
the generated model. For instance, the HMLoopMethod method needs to request
a proxy in order to be able to invoke JMX Indicators’s service method. This is
naturally encoded as follows:

Property 4. [(not "GetProxy_JMXIndicatorsMethod.*")* .
"Q_JMXIndicatorsMethod.*"] false

As expected, both properties hold in the model.

4.3 System Product, Model Generation and Proven Properties

We attempted to generate a system product constituted by two HM Gateways
and one HM Server components. However, even on a machine with 90 GB of
RAM, we experienced the so common state-space explosion phenomena.
8 In fact, we encountered another peculiar situation where minimization

produced a smaller state-space, yet a bigger file size: http://cadp.forumotion.com/
t374-bcg-file-size-after-minimization.

http://cadp.forumotion.com/t374-bcg-file-size-after-minimization
http://cadp.forumotion.com/t374-bcg-file-size-after-minimization

148 N. Gaspar et al.

Table 3. Relevant numbers regarding the generated model

States Transitions File size

hmgateway-min-w-hidden.bcg 14.931.628 147.485.103 ∼287 mb
hmgateway-min-w-hidden-min.bcg 409.374 4.007.232 ∼8.5 mb
hmserver-min-w-hidden.bcg 12.787.376 187.589.422 ∼375 mb
hmserver-min-w-hidden-min.bcg 5.761.504 85.157.420 ∼179 mb
SystemProduct.bcg 342.047.684 3.026.114.393 ∼5.27 gb
SystemProduct-min.bcg 259.340.044 2.396.896.830 ∼4.83 gb

This arises often in the analysis of complex systems. To this end, commu-
nication hiding comes as an efficient and pragmatic approach for tackling this
issue. Indeed, it allows to specify the communication actions that need not to
be observed for verification purposes, thus yielding more tractable state-spaces.

Table 3 illustrates the effects of applying this technique to the model. The
sole communication actions being hidden are the ones involved in (1) the request
transmission from the Queue to the adequate method — Serve and Call —, (2)
the proxy machinery —GetProxy , New and Recycle —, and (3) finally in the
guard of the looping methods — GuardQuery, GuardReply, SetFalse and SetTrue.

The lines suffixed by -hidden indicate the results obtained by hiding the
mentioned communication actions in the minimized HM Gateway and HM server
state-spaces. For both, no effect is noticed on the size of the LTS. However, there
is a decrease in the file size. This is due to the fact that the hiding process yields
several τ -transitions, which facilitates file compression. This has the consequence
of leveraging the subsequent minimization process. Indeed, we even obtain a
reduction by two orders of magnitude (!) for the HM Gateway state-space.

The HyperManager comes as a monitoring application that should be able
to properly trace the origin of an anomaly. As such, one behavioural property
that we expect to hold is that whenever an abnormal situation is detected by a
HM Gateway, it is fairly inevitable to be reported as a push event that correctly
identifies its origin.

First, we shall use MCL’s macro capabilities to help us build the formula:

macro GETVALUE_1_MEMORY () =
"GetValue_JMXIndicatorsMethod_Push_1 !memory_usage (Unstable)"

end_macro

macro PUSH_1_MEMORY () =
("Push_Event (FirstGateway, UnstableMemoryUsage)")

end_macro
...

The above macros should be self-explanatory. The former represents the detection
of an anomaly coming from the firstHMGateway — the model is instantiated with
twoHMGateways, thus we differentiate their actions by suffixing them adequately.
The latter stands for the emission of the push event corresponding to that anom-
aly. The macros for the remaining relevant actions are defined analogously.

Formally Reasoning on a Reconfigurable Component-Based System 149

Moreover, we define the following macro generically encoding the fair
inevitability that after an anomaly the system emits a push.

macro FAIRLY_INEVITABLY_A_PUSH (ANOMALY, PUSH) =
[true* . "ANOMALY" . (not "PUSH")*]

< (not PUSH)* . PUSH > true
end_macro

Having the macros defined, we can now write the formula of interest:

Property 5.

(FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_MEMORY, PUSH_1_MEMORY) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_MEMORY, PUSH_2_MEMORY) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_DEVICE_1, PUSH_1_DEVICE_1) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_DEVICE_2, PUSH_1_DEVICE_2) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_DEVICE_1, PUSH_2_DEVICE_1) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_DEVICE_2, PUSH_2_DEVICE_2)

)

As expected, this property holds for the model.

5 The Case Study Reloaded: On Structural
Reconfigurations

As seen so far, the HyperManager acts as a monitoring application with two styles
of communication: pull and push. However, it also needs to cope with structural
reconfigurations. This means that at runtime the architecture of the application
can evolve by, say, establishing new bindings and/or removing existing ones.

For GCM applications bind and unbind operations are handled by the com-
ponent owning the client interface that is supposed to be reconfigurable. This
should come as no surprise, indeed, it follows the same spirit as in object-oriented
languages: an object holds the reference to a target object; it is this object that
must change the reference it holds.

In our case-study, these reconfigurations can occur both at the server level
— when pulling data from the bound gateways —, and at gateway level —
when pushing data to the server. The difference lies at the fact that the server
communicates via a multicast interface, unlike the gateways that establish a
standard 1-to-1 communication. Therefore, these are dealt in a different manner.

5.1 HM Reconfigurable Gateway

Let us first illustrate how a singleton client reconfigurable interface is modelled
in pNets. As depicted by Fig. 12, for each client reconfigurable interface there
exists a binding controller.

Indeed, we allow for reconfigurations by defining two new request messages
for the binding and unbinding of interfaces. These are delegated to a binding

150 N. Gaspar et al.

Primitive with Binding Controller

M

Queue

!Q m(f, t, arg)

[t=S1.Itf] Q m(f, arg)

[t=S2.Itf´] Q m(f, arg)

Body

!Q m(f, arg)

!Bound(t)

Error(”unbound”)

BCItfj

!Unbound !Bound(t)

?Unbind

Call m*(...)

!Unbound

Bind Itfj(t)

S2

S1

?Q Bind Itfj(t)
?Q Unbind Itfj

!Q m(f, arg)

Serve * Unbind Itfj

?Bind(t)

Fig. 12. Binding controller

Table 4. Gateway with reconfigurable interface

States Transitions File size (gb)

hmgateway-reconfig.bcg 354.252.868 4.178.400.886 ∼8.45
hmgateway-reconfig-min.bcg 354.104.012 4.176.956.686 ∼8.54

controller that upon method invocation over these reconfigurable interfaces will
check if they are indeed bound, emitting an error if it is not the case. Moreover,
the target of the invocation is decided by checking its passed reference. For this
reason one must know statically what are the possible target interfaces that a
reconfigurable interface can be bound too.

In practice, to the HM Gateway model discussed in Subsect. 4.1 we add the
request messages Q Bind ServerMethod and Q Unbind ServerMethod. Since we
only have one reconfigurable interface we can avoid adding an explicit parameter
— unlike shown in Fig. 12, where we demonstrate a more general case. Moreover,
since the gateways can only be bound to one target — the server — the binding
controller only needs to keep a state variable regarding its connectedness.

As expected, these changes have a considerable impact in the size of the
model. This is illustrated by Table 4.

All the properties proven in Subsect. 4.1 still hold for this new HM Gateway
model, with a natural overhead in model-checking them in a much bigger state-
space. However, for this new model we are more interested in addressing the
reconfiguration capabilities. For instance, provided that the interface is bound,
it will not yield an Unbound action upon method invocation.

Property 6.

< true* . "Q_Bind_ServerMethod". (not "Q_Unbind_ServerMethod")* .

"Q_ServerMethod" . (not "Q_Unbind_ServerMethod")* . "Unbound" > true

Formally Reasoning on a Reconfigurable Component-Based System 151

Multicast Example

GrPM m1

GrPM m2

Method m

GrProxy m1[p]

New m1(p)
New m2(p)

!R m(f, val)

GetProxy m1
GetProxy m2

?R m1((p, id), val)

?R m2((p, id), val)

!R m(val)

?Q Unbind Itfj(t)

?Q m(f, arg)
?Q Bind Itfj(t)

Bind Itfj(t)

Unbind Itfj(t)

!Q m1(p, arg)
!Q m2(p, arg)

!Q m1(p,G, arg)
!Q m2(p,G, arg)

GrProxy m2[p]

!MC(G)

New m1(p,G)

New m2(p,G)

Recycle m2(p)
Recycle m1(p)

∀m in {m1,m2}
WaitN m(p, n)
R WaitN m(p, vect)

GetNth m(p, n, val)
GetValue m(p, vect)

Serve unbind Itfj(t)
Serve bind Itfj(t)
Serve m(f, arg)

Itfj Itfj

Body

Queue

!Call m(arg)

Fig. 13. pNet example for reconfigurable multicast interface

Table 5. Server with reconfigurable multicast interface

States Transitions File size (gb)

hmserver-reconfig.bcg 931.640.080 16.435.355.306 ∼32.93

The above property is proved false. This indicates that provided that the inter-
face is bound, a path yielding an Unbound action without the occurrence of a
Q Unbind ServerMethod will not occur.

5.2 HM Reconfigurable Server

As an illustrative example, the pNet of a primitive component featuring a recon-
figurable client multicast interface and two service methods — m1 and m2 — is
depicted by Fig. 13.
In short, the machinery involved for dealing with this kind of interfaces mainly
differs from reconfigurable singleton interfaces in that we must keep track
of the target’s connectedness status. Indeed, the emission of a new proxy —
New mi,i∈{1,2} — is synchronized in a similar manner, however we also transmit
the current status of the multicast interface (i.e. the G variable in the figure).
This status will be taken into account when invoking one of the client methods
— Q mi,i∈{1,2}. In practice, G is a boolean vector whose element’s valuation
determine the interface’s connectedness.

Table 5 demonstrates the impact of adding reconfiguration capabilities to the
HM Server model.

152 N. Gaspar et al.

Table 6. Relevant numbers regarding the generated model with reconfigurable inter-
faces

States Transitions File size

hmgateway-reconfig-min-w-hidden.bcg 354.104.012 4.176.956.686 ∼8.15 gb
hmgateway-reconfig-min-w-hidden-min.bcg 11.090.974 127.799.874 ∼283.5 mb
hmserver-reconfig-min-w-hidden.bcg 931.640.080 16.435.355.306 ∼31.28 gb

The generated state-space for the HM Server model nearly attained 1 billion
states.9 Our attempts to minimize it revealed to be unsuccessful due to the lack
of memory. These were carried out on a workstation with ∼90 GB of RAM.

It is worth noticing that while we were not able to minimize the produced
state-space, we were still able to model-check it against the same properties
discussed in Subsect. 4.2.

5.3 Model Generation and Proven Properties

As seen in Subsect. 4.3, building the product of the system already showed to
be delicate. Abstraction techniques such as communication hiding were already
required to build the system. Thus, it should come as no surprise that we face
the same situation here.

However, it should be noted that the hiding process itself, produced little
effect on the file size, and no effect on the state-spaces. It mainly acted as a means
to leverage the subsequent minimization process, allowing for a very significant
state-space reduction. Table 6 illustrates the results obtained by following the
same approach as above.

We obtained a significant state-space reduction for the HM Gateway model,
but we were unable to minimize the HM Server. Indeed, communication hid-
ing may leverage state-space reduction, but still requires that the minimization
process is able to run, therefore not solving the lack of memory issue. This is
a rather embarrassing situation as we would expect a significant state-space
reduction as well for the HM Server.

While communication hiding revealed to be a valuable tool, minimization is
still a bottleneck if the input state-space is already too big. Thus, we need to
shift this burden to the lower levels of the hierarchy. Indeed, both HM Server
and HM Gateway components are the result of a product between their primitive
components. Moreover, these are themselves the result of a product between
their internals – request queue, body, proxies ...
9 As mentioned in Subsect. 4.2, for the HM Server model, the JMX Indicators component

is generated with a context not including the request of device statuses. Previous
experiments not considering this context produced a HM Server model with the
following characteristics: 4.148.563.680 states, with 74.268.977.628 transitions, on a
154.2 GB file. It is interesting to note the huge impact that (the lack of) a contextual
state-space generation on one of its components can provoke.

Formally Reasoning on a Reconfigurable Component-Based System 153

Table 7. Relevant numbers regarding the generated model with reconfigurable inter-
faces

States Transitions File size

hidden-hmgateway-reconfig.bcg 3.483.000 43.193.346 ∼85.46 mb
hidden-hmgateway-reconfig-min.bcg 3.073.108 39.373.968 ∼83.95 mb
hidden-hmserver-reconfig.bcg 210.121.904 3.890.791.694 ∼7.52 gb
hidden-hmserver-reconfig-min.bcg 177.604.848 3.288.937.718 ∼6.61 gb
SystemProduct-reconfig.bcg 3.054.464.649 38.680.270.695 ∼74.16 gb

Table 7 illustrates the results obtained by hiding the same communication
actions as in the above approaches, but before starting to build any product.

Indeed, following this approach proved to be fruitful as we were able to
generate the system product. Yet, minimization remained still out of reach.
Nevertheless, we are still in a position to model-check some properties of interest.
For instance, pulling information via a multicast emission is now predicated with
a boolean array whose element’s valuation determines its connectedness. As an
example, a rather simple liveness property is the following one:

Property 7.

<true* . "Q_GatewayMulticastMethod !ARRAY(FALSE FALSE) !MemoryUsage"> true

Initially, both HM Gateways are bound, the above property tell us that we can
indeed unbind both of them.

6 Related Work

The maturity attained by the CADP toolbox made it a reference tool among the
formal methods community. Several case studies have been published, namely
industrial ones addressing other goals than verification. For instance, in [8] Coste
et al. discuss performance evaluation for systems and networks on chips. More
closely related with our work we must refer the experiments presented in [7].
A dynamic reconfiguration protocol is specified and model-checked, however
their focus is on the reconfiguration protocol itself rather than reconfigurable
applications.

Indeed, many works can be found in the literature embracing a behavioural
semantics approach for the specification and verification of distributed systems.
Yet, literature addressing the aspects of reconfigurable applications remains
scarce.

Nevertheless, we must cite the work around BIP (Behaviour, Interaction, Pri-
ority) [2] — a framework encompassing rigorous design principles. It allows the
description of the coordination between components in a layered way. Moreover,
it has the particularity of also permitting the generation of code from its models.
Yet, structural reconfigurations are not supported.

154 N. Gaspar et al.

Another rather different approach that we must refer is the one followed by
tools specifically tailored for architectural specifications. For instance, in [11]
Inverardi et al. discusses CHARMY, a framework for designing and validating
architectural specifications. It offers a full featured graphical interface with the
goal of being more user friendly in an industrial context. Still, architectural
specifications remain of static nature.

Looking at the interactive theorem proving arena we can also find some
related material. In [6] Boyer et al. propose a reconfiguration protocol and prove
its correctness in the Coq Proof Assistant [15]. This work however, focuses
on the protocol itself, and not in the behaviour of a reconfigurable applica-
tion. Moreover, in [10] we presented Mefresa — a Mechanized Framework for
Reasoning on Software Architectures. This work discusses a formal specifi-
cation and a (re)configuration language for GCM architectures. All the involved
machinery and underlying formal semantics are mechanized in Coq. However,
at the current stage of development its main focus is on the reasoning at the
architectural level.

7 Final Remarks

In the realm of component-based systems, behavioural specification is among
the most employed approaches for the rigorous design of applications. It lever-
ages the use of model-checking techniques, by far the most widespread formal
method in the industry. Yet, verification in the presence of structural reconfig-
urations remains still a rather unaddressed topic. This can be justified by the
inherent complexity that such systems impose. However, reconfiguration plays
a significant role for the increase in systems availability, and is a key ingredient
in the autonomic computing arena, thus tackling its demands should be seen of
paramount importance.

In this paper we discussed the specification and formal verification of a recon-
figurable monitoring application as an industrial case study. Several lessons can
be drawn from this work.

The Spinnaker project gave us the opportunity to promote the use of formal
methods within the industry. As expected, the interaction with our industrial
partners revealed to be a demanding task. Common budgetary issues (time allo-
cation, hirings, ...) of such projects and lack of prior formal methods’ exposure by
our partners were some of the barriers to overcome. This was further aggravated
by the fact that software development was playing a little part in the overall
project budget, and therefore not a main priority.

Nevertheless our experience revealed to be fruitful. We were able to witness
the general curiosity on the use of formal methods by the industry, and increase
our understanding on the needs and obstacles for its broader adoption. Indeed,
collaborative projects of this nature allow the industry to test the waters and
expose researchers to real-world scenarios. However, bridging the gap between
the industry’s expectation and the current state of the art still remains as a

Formally Reasoning on a Reconfigurable Component-Based System 155

challenge for the research community. To this end, recent work on Vercors [12]
aims at bringing intuitive specification languages and graphical tools for the
non-specialists.

Concerning our task at hand, modelling the HyperManager application
upto the intricacies of the middleware led us to a combinatorial explosion in
the number of states. This, is further exasperated by the inclusion of recon-
figurable interfaces. Even the use of compositional and contextual state-space
generation techniques revealed to be insufficient. While this could be solved by
further increasing the available memory in our workstation, it is worth noticing
that this approach is not always feasible in practice. This bottleneck can be
alleviated by performing the synchronization product in a distributed manner.
Alas, this is not supported by the CADP toolbox. Alternatively, CADP sup-
ports τ -reduction algorithms that reduce on-the-fly the existent τ -transitions.
While this approach was successfully applied in [5], its practical effects for this
case study remain as future work.10 Moreover, handling such big state-spaces
teaches us the importance of automation regarding model generation. Indeed,
debugging can be a daunting task due to the inherent complexity and size of the
involved models. Regarding this issue we must refer that we plan on tackling
behavioural specification concerns within the Mefresa framework as future work.
This will leverage the use of deductive reasoning in a usual model-checking con-
text as demonstrated in [14], and thus relax the burden of dealing with huge
state-spaces.

At last, as usual in the realm of formal verification, we conclude that abstrac-
tion is the key. Taking advantage of CADP’s facilities for communication hiding,
one can specify actions that need not to be observed for the verification purposes,
which further enhances the effects of a subsequent minimization by branching
bisimulation. This illustrates the pragmatic rationale of formal verification by
model-checking — the most likely reason behind its acceptance in the industry.

Acknowledgements. The authors are grateful to Frédéric Lang from the INRIA
Vasy team for troubleshooting with the CADP toolbox and the semantics of the
Fiacre specification language. Moreover, our ingénieur experts Arthur Mbonyinshuti
and Bartlomiej Szejna deserve a mention for technical assistance regarding CADP’s
license management and the implementation of The HyperManager, respectively.

References

1. Ameur-Boulifa, R., Henrio, L., Madelaine, E., Savu, A.: Behavioural semantics for
asynchronous components. RR RR-8167, December 2012

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

10 It is worth mentioning that the immediate concerns and goals for this case study
were more aimed at convincing our industrial partners on the ease of use of our
verification workflow.

156 N. Gaspar et al.

3. Berthomieu, B., Bodeveix, J.P., Filali, M., Garavel, H., Lang, F., Peres, F., Saad,
R., Stoecker, J., Vernadat, F.: The syntax and semantics of FIACRE. RR (2009)

4. Bolognesi, T., Brinksma, E.: Introduction to the iso specification language lotos.
Comput. Netw. ISDN Syst. 14(1), 25–59 (1987)

5. Ameur-Boulifa, R., Halalai, R., Henrio, L., Madelaine, E.: Verifying safety of fault-
tolerant distributed components. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011.
LNCS, vol. 7253, pp. 278–295. Springer, Heidelberg (2012)

6. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assemblies.
In: Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13. IEEE Press (2013)

7. Aguilar Cornejo, M., Garavel, M., Mateescu, R., De Palma, N.: Specification and
verification of a dynamic reconfiguration protocol for agent-based applications. In:
Zielinski, K., Geihs, K., Laurentowski, A. (eds.) New Developments in Distributed
Applications and Interoperable Systems. IFIP. Springer, Heidelberg (2001)

8. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)

9. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

10. Gaspar, N., Henrio, L., Madelaine, E.: Bringing Coq into the world of GCM dis-
tributed applications. Int. J. Parallel Program. (HLPP’2013 Special Issue). doi:10.
1007/s10766-013-0264-7 (2013)

11. Inverardi, P., Muccini, H., Pelliccione, P.: Charmy: an extensible tool for architec-
tural analysis. In: ESEC-FSE’05, ACM SIGSOFT Symposium on the Foundations
of Software Engineering. Research Tool Demos, 5–9 September 2005

12. Kulankhina, O.: A graphical specification environment for GCM component-based
applications. Ubinet master internship report, INRIA (2013)

13. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

14. Sprenger, C.: A verified model checker for the modal mu-calculus in coq. In: Steffen,
B. (ed.) Tools and Algorithms for the Construction and Analysis of Systems. LNCS,
vol. 1384. Springer, Heidelberg (1998)

15. The Coq Development Team. The Coq Proof Assistant Reference Manual (2012)

http://dx.doi.org/10.1007/s10766-013-0264-7
http://dx.doi.org/10.1007/s10766-013-0264-7

A General Trace-Based Framework
of Logical Causality

Gregor Gössler(B) and Daniel Le Métayer

INRIA Grenoble – Rhône-Alpes, Montbonnot-Saint-Martin, France
gregor.goessler@inria.fr

Abstract. In component-based safety-critical embedded systems it is
crucial to determine the cause(s) of the violation of a safety property,
be it to issue a precise alert, to steer the system into a safe state, or
to determine liability of component providers. In this paper we present
an approach to blame components based on a single execution trace
violating a safety property P . The diagnosis relies on counterfactual
reasoning (“what would have been the outcome if component C had
behaved correctly?”) to distinguish component failures that actually con-
tributed to the outcome from failures that had little or no impact on the
violation of P .

1 Introduction

In a concurrent, possibly embedded and distributed system, it is often crucial
to determine which component(s) caused an observed failure. Understanding
causality relationships between component failures and the violation of system-
level properties can be especially useful to understand the occurrence of errors
in execution traces, to allocate responsibilities, or to try to prevent errors (by
limiting error propagation or the potential damages caused by an error).

The notion of causality inherently relies on a form of counterfactual reason-
ing: basically the goal is to try to answer questions such as “would event e2 have
occurred if e1 had not occurred?” to decide if e1 can be seen as a cause of e2
(assuming that e1 and e2 have both occurred, or could both occur in a given
context). But this question is not as simple as it may look:

1. First, we have to define what could have happened if e1 had not occurred, in
other words what are the alternative worlds.

2. In general, the set of alternative worlds is not a singleton and it is possible
that in some of these worlds e2 would occur while in others e2 would not
occur.

3. We also have to make clear what we call an event and when two events
in two different traces can be considered as similar. For example, if e1 had
not occurred, even if an event potentially corresponding to e2 might have
occurred, it would probably not have occurred at the same time as e2 in the
original sequence of events; it could also possibly have occurred in a slightly
different way (for example with different parameters, because of the potential
effect of the occurrence of e1 on the value of some variables).

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 157–173, 2014.
DOI: 10.1007/978-3-319-07602-7 11, c© Springer International Publishing Switzerland 2014

158 G. Gössler and D. Le Métayer

Causality has been studied in many disciplines (philosophy, mathematical
logic, physics, law, etc.) and from different points of view. In this paper, we are
interested in causality for the analysis of execution traces in order to establish
the origin of a system-level failure. The main trend in the use of causality in
computer science consists in mapping the abstract notion of event in the general
definition of causality proposed by Halpern and Pearl in their seminal contribu-
tion [12] to properties of execution traces. Halpern and Pearl’s model of causality
relies on a counterfactual condition mitigated by subtle contingency properties
to improve the accurateness of the definition and alleviate the limitations of the
counterfactual reasoning in the occurrence of multiple causes. While Halpern
and Pearl’s model is a very precious contribution to the analysis of the notion of
causality, we believe that a fundamentally different approach considering traces
as first-class citizens is required in the computer science context considered here:
The model proposed by Halpern and Pearl is based on an abstract notion of event
defined in terms of propositional variables and causal models expressed as sets
of equations between these variables. The equations define the basic causality
dependencies between variables (such as F = L1 or L2 if F is a variable denoting
the occurrence of a fire and L1 and L2 two lightning events that can cause the
fire). In order to apply this model to execution traces, it is necessary to map
the abstract notion of event onto properties of execution traces. But these prop-
erties and their causality dependencies are not given a priori, they should be
derived from the system under study. In addition, a key feature of trace prop-
erties is the temporal ordering of events which is also intimately related to the
idea of causality but is not an explicit notion in Halpern and Pearl’s framework
(even if notions of time can be encoded within events). Even though this appli-
cation is not impossible, as shown by [4], we believe that definitions in terms
of execution traces are preferable because (a) in order to determine the respon-
sibility of components for an observed outcome, component traces provide the
relevant granularity, and (b) they can lead to more direct and clearer definitions
of causality.

As suggested above, many variants of causality have been proposed in the
literature and used in different disciplines. It is questionable that one single
definition of causality could fit all purposes. For example, when using causality
relationships to establish liabilities, it may be useful to ask different questions,
such as: “could event e2 have occurred in some cases if e1 had not occurred?” or
“would event e2 have occurred if e1 had occurred but not e∈

1?”. These questions
correspond to different variants of causality which can be perfectly legitimate and
useful in different situations. To address this need, we propose two definition of
causality relationships that can express these kinds of variants, called necessary
and sufficient causality.

The framework introduced here distinguishes a set of black-box components,
each equipped with a specification. On a given execution trace, the causality
of the components is analyzed with respect to the violation of a system-level
property. In order to keep the definitions as simple as possible without los-
ing generality — that is, applicability to various models of computation and

A General Trace-Based Framework of Logical Causality 159

communication —, we provide a language-based formalization of the framework.
We believe that our general, trace-based definitions are unique features of our
framework.

Traces can be obtained from an execution of the actual system, but also
as counter-examples from model-checking. For instance, we can model-check
whether a behavioral model satisfies a property; causality on the counter-example
can then be established against the component specifications.

2 Modeling Framework

In order to focus on the fundamental issues in defining causality on execution
traces we introduce a simple, language-based modeling framework.

Definition 1 (Component signature). A component signature Ci is a tuple
(ϕi,Si) where ϕi is an alphabet and Si → ϕ∗

i is a prefix-closed specification (set
of allowed behaviors) over ϕi.

A component signature is the abstraction of an actual component that is
needed to apply the causality analysis introduced here. Similarly, a system signa-
ture is the abstraction of a system composed of a set of interacting components.

Definition 2 (System signature). A system signature is a tuple (C,ϕ,B, σ)
where

– C = {C1, ..., Cn} is a finite set of component signatures Ci = (ϕi,Si) with
pairwise disjoint alphabets;

– ϕ → ϕ∈
1 × ... × ϕ∈

n is a system alphabet with ϕ∈
i = ϕi ∼ {η} is a distinct

element denoting that Ci does not participate in an interaction α ⊆ ϕ;
– B → ϕ∗ ∼ ϕω is a prefix-closed behavioral model;
– σ → ⎡ ⎢

i ϕi

⎣ × ⎡ ⎢
i ϕi

⎣
is a relation modeling information flow among

components.

The behavioral model B is used to express assumptions and constraints on
the possible (correct and incorrect) behaviors. The relation σ models possible
information flow among components. Intuitively, (a, b) ⊆ σ means that any occur-
rence of a may influence the next occurrence of b (possibly in the same interac-
tion), e.g., by triggering or constraining the occurrence of b, or by transmitting
information.

Notations. Given a trace tr = α1 · α2 · · · ⊆ ϕ ∗ and an index i ⊆ N let tr[1..i] =
α1 · · · αi, let tr[i] = αi, and tr[i...] = αiαi+1 · · · . Let |tr| denote the length of tr.
For α = (a1, ..., an) ⊆ ϕ let α[k] = ak denote the action of component k in α
(ak = η if k does not participate in α); for w = α1 · · · αk ⊆ ϕ∗ and i ⊆ {1, ..., n}
let πi(w) = α1[i] · · · αk[i] (where η letters are removed from the resulting word).

For the sake of compactness of notations we define composition ‖ : ϕ∗
1 × ...×

ϕ∗
n ← ϕ∗ such that w1‖...‖wn = {w ⊆ ϕ∗ | ∩i = 1, ..., n : πi(w) = wi}, and

extend ‖ to languages.

160 G. Gössler and D. Le Métayer

2.1 Logs

A (possibly faulty) execution of a system may not be fully observable; therefore
we base our analysis on logs. A log of a system S = (C,ϕ,B, σ) with components
C = {C1, ..., Cn} of alphabets ϕi is a vector tr = (tr1, ..., trn) ⊆ ϕ∗

1 × ... × ϕ∗
n

of component traces such that there exists a trace tr ⊆ ϕ∗ with ∩i = 1, ..., n :
tri = πi(tr). A log tr ⊆ L is thus the projection of an actual system-level trace
tr ⊆ B. This relation between the actual execution and the log on which causality
analysis will be performed allows us to model the fact that only a partial order
between the events in tr may be observable rather than their exact precedence.1

Let L(S) denote the set of logs of S. Given a log tr = (tr1, ..., trn) ⊆ L(S)
let tr↑ = {tr ⊆ B | ∩i = 1, ..., n : πi(tr) = tri} be the set of behaviors resulting
in tr.

Definition 3 (Consistent specification). A consistently specified system is a
tuple (S,P) where S = (C,ϕ,B, σ) is a system signature with C = {C1, ..., Cn}
and Ci = (ϕi,Si), and P → B is a prefix-closed property such that for all traces
tr ⊆ B,

(∩i = 1, ..., n : πi(tr) ⊆ Si) =∅ tr ⊆ P
Under a consistent specification, property P may be violated only if at least

one of the components violates its specification. Throughout this paper we focus
on consistent specifications.

3 Motivating Example

Consider a database system consisting of three components communicating by
message passing over point-to-point FIFO buffers. Component C1 is a client,
C2 the database server, and C3 is a journaling system. The specifications of the
three components are as follows:

S1: sends a lock request lock to C2, followed by a request m to modify the locked
data.

S2: receives a write request m, possibly preceded by a lock request lock. Access
control is optimistic in the sense that the server accepts write requests
without checking whether a lock request has been received before; however,
in case of a missing lock request, a conflict may be detected later on and
signaled by an event x. After the write, a message journ is sent to C3.

S3: keeps receiving journ events from C2 for journaling.

The system is modeled by the system signature (C,ϕ,B, σ) where C =
{C1, C2, C3} with component signatures Ci = (ϕi,Si), and

1 It is straight-forward to allow for additional information in traces tr ∈ B that is not
observable in the log, by adding to the cartesian product of Σ another alphabet that
does not appear in the projections. For instance, events may be recorded with some
timing uncertainty rather than precise time stamps [23].

A General Trace-Based Framework of Logical Causality 161

– ϕ1 = {a,m!, lock!}, ϕ2 = {m?, journ!, x, lock?}, and ϕ3 = {b, journ?}, where
m! and m? stand for the emission and reception of a message m, respectively,
and a, b, and x are internal events;

– S1 = {lock!.m!}2, S2 = {lock?.m?.journ!, m?.journ!.x}, and S3 = {journ?i |
i ⊆ N};

– ϕ = (ϕ1 ×{η}×{η})∼ ({η}×ϕ2 ×{η})∼ ({η}×{η}×ϕ3): component actions
interleave;

– B =
⎤
w ⊆ ϕ∗ ∼ ϕω | ∩u, v : w = u.v =∅ (|u|m? ⇐ |u|m! ∧ |u|journ? ⇐

|u|journ! ∧ |u|lock? ⇐ |u|lock! ∧ w respects lossless FIFO semantics)
⎥

(where |u|a
stands for the number of occurrences of a in w): communication buffers are
point-to-point FIFO queues;

– σ = {(m!,m?), (journ!, journ?), (lock!, lock?)}: any component may influence
another component’s state only by sending a message that is received by the
latter.

We are interested in the global safety property P = ϕ∗
ok ∼ ϕω

ok with ϕok =
ϕ\{(η, x, η)} modeling the absence of a conflict event x. It can be seen that if all
three components satisfy their specifications, x will not occur.

Figure 1 shows the log tr = (tr1, tr2, tr3). In the log, tr1 violates S1 at event
a and tr3 violates S3 at b. The dashed lines between m! and m?, and between
journ! and journ? stand for communications.

a

b

m!

m?

!nruoj x

journ?

tr1

tr2

tr3

Fig. 1. A scenario with three component logs.

In order to analyze which component(s) caused the violation of P we can use
an approach based on counterfactual reasoning. Informally speaking,

– Ci is a necessary cause for the violation of P if in all executions where Ci

behaves correctly and all other components behave as observed, P is satisfied.
– Conversely, Ci is a sufficient cause for the violation of P if in all executions

where all incorrect traces of components other than Ci are replaced with
correct traces, and the remaining traces (i.e., correct traces and the trace of
Ci) are as observed, P is still violated.

2 For the sake of readability we omit the prefix closure of the specifications in the
examples.

162 G. Gössler and D. Le Métayer

Applying these criteria to our example we obtain the following results:
If C1 had worked correctly, it would have produced the trace tr∈

1 = lock! . m!.
This gives us the counterfactual scenario consisting of the traces tr′ = (tr∈

1, tr2,
tr3). However, this scenario is not consistent as C1 now emits lock, which is not
received by C2 in tr2. According to B, the FIFO buffers are not lossy, such that
lock would have been received before m if it had been sent before m. By vacuity
(as no execution yielding the traces tr′ exists), C1 is a necessary cause and C3

is a sufficient cause according to our definitions above. While the first result
matches our intuition, the second result is not what we would expect. As far as
C2 is concerned, it is not a cause since its trace satisfies S2.

Why do the above definitions fail to capture causality? It turns out that our
definition of counterfactual scenarios is too narrow, as we substitute the behavior
of one component (e.g., tr1 to analyze sufficient causality of C3) without taking
into account the impact of the new trace on the remainder of the system. When
analyzing causality “by hand”, one would try to evaluate the effect of the altered
behavior of the first component on the other components. This is what we will
formalize in the next section.

4 Causality Analysis

In this section we improve our definition of causality of component traces for
the violation of a system-level property. We suppose the following inputs to be
available:

– A system signature (C,ϕ) with components Ci = (Ci, ϕi).
– A log tr = (tr1, ..., trn). In the case where the behavior of two or more com-

ponents is logged into a common trace, the trace of each component can be
obtained by projection.

– A set I → {1, ..., n} of component indices, indicating the set of components to
be jointly analyzed for causality. Being able to reason about group causality
is useful, for instance, to determine liability of software vendors that have
provided several components.

4.1 Temporal Causality

As stated in the introduction, the temporal order of the events has an obvious
impact on causality relations. We use Lamport’s temporal causality [17] to over-
approximate the parts of a log that are impacted by component failures. This
technique will allow us, in the next section, to give counterfactual definitions of
causality addressing the question of “what would have been the outcome if the
failure of component C had not occurred?”.

Given a trace tr ⊆ B let tri = πi(tr). The trace tr is analyzed as follows, for
a fixed set I of components to be checked.

Definition 4 (Cone of influence, C(tr, I)). Given a consistently specified sys-
tem (S,P) with S = (C,ϕ,B, σ), C = {C1, ..., Cn}, and Ci = (ϕi,Si), a log

A General Trace-Based Framework of Logical Causality 163

tr ⊆ L(S), and a set of component indices I → {1, ..., n}, let gi : N ← {∧,∨}
be a function associating with the length of each prefix of tri a value in {∧,∨}
(with ∧ < ∨). Let (g∗

1 , ..., g
∗
n) be the least fixpoint of

gi(Υ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∨ if
⎡
Υ = min{k | tri[1..k] /⊆ Si} ∧ i ⊆ I⎣ ⇒⎡∃k < Υ : gi(k) = ∨⎣ ⇒⎡∃tr∈ ⊆ tr↑ ∃j, k,m, n : m ⇐ n ∧ k = |πj(tr∈[1..m])| ∧

Υ = |πi(tr∈[1..n])| ∧ gj(k) = ∨ ∧ (tr∈[m][j], tr∈[n][i]) ⊆ σ ∧
tri[1..Υ − 1] ⊆ Si

⎣

∧ otherwise

for i ⊆ {1, ..., n} and 1 ⇐ Υ ⇐ |tri|. Let C(tr, I) = (c1, ..., cn) such that

∩i = 1, ..., n : ci = min
⎡{|tri| + 1} ∼ {Υ | g∗

i (Υ) = ∨}⎣

The cone of influence spanned by the components I is the vector of suffixes
tri[ci...] of the component traces.

That is, as soon as a component i ⊆ I violates Si on a prefix tri[1..Υ], gi is
set to ∨ (first line). Once gi(k) = ∨, it remains ∨ for all larger indices (second
line). Each time a component i participates in an interaction β = tr∈[n] for some
possible trace tr∈ on which another component j has previously participated in
an interaction α = tr∈[m] after a prefix of length k such that gj(k) = ∨ and
(α[j], β[i]) ⊆ σ, then gi is set to ∨, provided that the prefix of tri satisfied Si

before (third line). The last condition tri[1..Υ − 1] ⊆ Si means that a possibly
incorrect behavior of Ci following an endogenous violation of Si is blamed on Ci

rather than on the components in I.
The cone of influence spanned by the components I is the vector of suffixes

of the component traces starting with the first component action that may have
been impacted by the behavior of the components I starting in one of their
failures. For the sake of simplicity we will refer to C(tr, I) as the cone.

Example 1. Figure 2 shows the cones C(tr, {1}) = (1, 1, 3) and C(tr, {2, 3}) =
(3, 4, 1) for the example of Sect. 3 and Fig. 1.

a

b

m!

m?

!nruoj x

journ?

tr1

tr2

tr3

C(tr, {1})

C(tr, {2, 3})

Fig. 2. The scenario with the cones C(tr, {1}) and C(tr, {2, 3}), respectively.

164 G. Gössler and D. Le Métayer

4.2 Logical Causality

Using the cone of influence defined above we are able to define, for a given log
tr and set of component indices I, the set of counterfactual traces modeling
alternative worlds in which the failures FI of components in I do not happen,
and the behavior of the remaining components is as observed in tr up to the
part lying inside the cone spanned by FI .

Definition 5 (Counterfactuals). Let tr = (tr1, ..., trn) ⊆ L, C = (c1, ..., cn)
be a cone of influence, and S = (S1, ...,Sn).

κ
⎡
tr,C,S⎣

=
⎤
tr∈ ⊆ B | ∩i : pri is a prefix of πi(tr∈) ∧ (1)

(pri ⊆ Si =∅ πi(tr∈) ⊆ Si) ∧ (2)
(pri /⊆ Si =∅ πi(tr∈) = pri) ∧ (3)

(ci = |tri| + 1 =∅ πi(tr∈) = pri)
⎥

(4)

where pri = tri[1..ci − 1].

Intuitively, κ returns the set of alternative behaviors tr∈ ⊆ B where for each
component i, the prefix pri before entering ci matches its logged behavior in
tri (line 1), and if the prefix is correct and a strict prefix of tri then the suffix
is substituted such that the whole behavior of i in trace tr∈ is correct (line 2);
otherwise pri is not extended in the alternative behavior (lines 3 and 4). The
rationale behind Definition 5 is to compute the set of alternative worlds where
the failures spanning C do not occur. To this end we have to prune out their
possible impact on the logged behavior, and substitute with correct behaviors.
Prefixes violating their specifications (line 3) and component traces that never
enter the cone (line 4) are not extended since we want to determine causes for
system-level failures observed in the log, rather than exhibiting causality chains
that are not complete yet and whose consequence would have shown only in the
future.

Definition 6 (Necessary cause). Given

– a consistently specified system (S,P) with S = (C,ϕ,B, σ), C = {C1, ..., Cn},
and Ci = (ϕi,Si),

– a log tr ⊆ L such that tr↑ ⊕ P = ∈, and
– an index set I,

let C = C(tr, I). The set of traces indexed by I is a necessary cause for the
violation of P by tr if κ(tr,C,S) → P.

That is, the set of logs indexed by I is a necessary cause for the violation of
P if in the observed behavior where the cone spanned by the incorrect behaviors
of I is replaced by a correct behavior, P is satisfied. In other words, if the com-
ponents in I had satisfied their specifications, and all components had behaved
as in the logs before entering the cone, then P would have been satisfied.

A General Trace-Based Framework of Logical Causality 165

Fig. 3. The scenario where the cone (a) C(tr, {1}) and (b) C(tr, {2, 3}) is substituted
with suffixes satisfying the component specifications.

According to the construction of the cone of influence, this definition of nec-
essary causality makes the assumption that the violation of a component speci-
fication Sj within the cone of other components I, j /⊆ I, cannot be blamed for
certain on component j.

Example 2. Coming back to Example 1, let C = C⎡
tr, {1}⎣. We have κ(tr,C,

S) = S1‖S2‖{tr3}, as shown in Fig. 3(a). According to Definition 6, tr1 is a
necessary cause for the violation of P since P is satisfied in κ(tr,C,S). It can
be shown that tr3 is not a necessary cause.

The definition of sufficient causality is dual to necessary causality, where in
the alternative worlds we remove the failures of components not in I and verify
whether P is still violated.

For a set of traces S, let supS = {s ⊆ S | ∩t ⊆ S : s is not a strict prefix of t}.

Definition 7 (Sufficient cause). Given

– a consistently specified system (S,P) with S = (C,ϕ,B, σ), C = {C1, ..., Cn},
and Ci = (ϕi,Si),

– a log tr ⊆ L with tr↑ ⊕ P = ∈, and
– an index set I,

let I = {1, ..., n}\I and C = C(tr, I). The set of traces indexed by I is a sufficient
cause for the violation of P by tr if

⎡
sup κ(tr,C,S)

⎣ ⊕ P = ∈
That is, the set of logs indexed by I is a sufficient cause for the violation

of P if in the observed behavior where the cone spanned by the violations of
specifications by the complement of I is replaced by a correct behavior, the
violation of P is inevitable (even though P may still be satisfied for non-maximal
counterfactual traces). In other words, even if the components in the complement
I of I had satisfied their specifications and no component had failed in the cone
spanned by the failures of I, then P would still have been violated. The inclusion
of infinite traces in the behavioral model B (Definition 2) ensures the least upper
bound of the set of counterfactual traces to be included in B.

166 G. Gössler and D. Le Métayer

In Definitions 6 and 7 the use of temporal causality helps in constructing
alternative scenarios in B where the components indexed by I (resp. I) behave
correctly while keeping the behaviors of all other components close to their
observed behaviors.

Example 3. In Example 2 let C = C⎡
tr, {2, 3}⎣. We obtain κ

⎡
tr,C,S⎣

= {tr1}
‖{tr2}‖S3, as shown in Fig. 3(b). By Definition 7, tr1 is a sufficient cause for the
violation of P since P is still violated in κ

⎡
tr,C,S⎣

. It can be shown that tr3 is
not a sufficient cause.

Properties. The following results show that our analysis does not blame any
set of innocent components, and that it finds a necessary and a sufficient cause
for every system-level failure.

Theorem 1 (Soundness). Each cause contains an incorrect trace.

Proof (sketch). Consider a set I → {i | tri ⊆ Si}. We show that the set of traces
indexed by I is not a necessary, nor sufficient cause for the violation of P by
tr = (tr1, ..., trn).

For necessary causality, counterfactuals are computed by substituting the
cone C = C(tr, I) spanned by the failures of components in I. If all of them
satisfy their specifications, then the cone is empty, so κ(tr,C,S) = tr↑, and I
is not a necessary cause according to Definition 6.

For sufficient causality, counterfactuals are computed by substituting the
cone C = C(tr, I) = (c1, ..., cn) spanned by the failures of components in I. If all
components in I satisfy their specifications, then κ(tr,C,S) → P since σ — and
thus, C(tr, I) — captures the possible impact of failures by components in I,
and (S,P) is a consistently specified system. Moreover, C is constructed as a cut
of the global execution, such that there exists a system-level trace tr ⊆ B with
∩i : πi(tr) = tri[1..ci − 1]. Therefore, κ(tr,C,S) �= ∈. Thus, I is not a sufficient
cause according to Definition 7. ∪≤
Theorem 2 (Completeness). Each violation of P has a necessary and a suf-
ficient cause.

Proof (sketch). Consider a log tr = (tr1, ..., trn) and let I = {i | tri /⊆ Si}. Due
to the duality of necessary and sufficient causality, the proof of completeness
for necessary (resp. sufficient) causality is similar to the proof of soundness for
sufficient (resp. necessary) causality:

For necessary causality, let C = C(tr, I). We have κ(tr,C,S) → P, thus I is
a necessary cause for the violation of P by tr.

For sufficient causality, let C = C(tr, I). By the choice of I this cone is empty.
We thus have κ(tr,C,S) = tr↑, thus κ(tr,C,S) ⊕ P = ∈. It follows that I is a
sufficient cause for the violation of P in tr. ∪≤

A General Trace-Based Framework of Logical Causality 167

5 Application to Synchronous Data Flow

In this section we use the general framework to model a synchronous data flow
example, and illustrate a set of well-known phenomena studied in the literature.

Consider a simple filter that propagates, at each clock tick, the input when
it is stable in the sense that it has not changed since the last tick, and holds the
output when the input is unstable. Using Lustre [11]-like syntax the filter can
be written as follows:

change = false ← in �= pre(in)
h = pre(out)

out =
{

in if ¬change
h otherwise

That is, component change is initially false, and subsequently true if and only
if the input in has changed between the last and the current tick. h latches the
previous value of out; its value is ∧ (“undefined”) at the first instant. out is
equal to the input if change is false, and equal to h otherwise. Thus, each signal
consists of an infinite sequence of values, e.g., change = 〈change1, change2, ...〉.
A log of a valid execution is for instance

in 0 0 3 2 2

change false false true true false

h ⊥ 0 0 0 0

out 0 0 0 0 2

We formalize the system as follows.

– ϕch = R × B × N × {ch} where the first two components stand for the value
of the input to and output from change, the third component is the index
of the clock tick, and ch is a tag we will use to distinguish the alphabets
of different components. Similarly, let ϕh = R × (R ∼ {∧}) × N × {h} and
ϕout = R × R × B × R × N × {out}.

– Sch = {(r1, r2, ...) ⊆ ϕ∗
ch | ri = (ini, changei, i, ch) ∧ change1 = false ∧ (i ≥

2 =∅ changei = ini−1 �= ini)} is the specification of change. Similarly,
Sh = {(r1, r2, ...) ⊆ ϕ∗

h | ri = (outi, hi, i, h) ∧ (i ≥ 2 =∅ hi = outi−1)} and

Sout =
{

(r1, r2, ...) ⊆ ϕ∗
out | ri = (ini, hi, changei, outi, i, out) ∧

outi =
{

ini if ¬changei

hi otherwise

}

– ϕ = {(rch, rh, rout) ⊆ ϕch × ϕh × ϕout | rch = (inch, change, i1, ch) ∧ rh =
(outh, h, i2, h) ∧ rout = (inout, hout, chout, out, i3, out) | i1 = i2 = i3} is the
system alphabet (where all components react synchronously).

168 G. Gössler and D. Le Métayer

in 0 0 1 2

change false false false false

h ⊥ 0 -1 -3

out 0 0 1 2

(a) tr1: early preemption.

in 0 0 0 0

change false false true true

h ⊥ 0 -1 1

out 0 0 -1 1

(b) tr2: joint causation.

Fig. 4. Two logs of faulty executions.

– B = {(r1, r2, ...) ⊆ ϕ∗ ∼ ϕω | ∩i : ri =
⎡
(inch

i , changei, i1, ch), (outhi , hi, i2, h),
(inout

i , hout
i , chout

i , outi, i3, out)
⎣ ∧ inch

i = inout
i ∧ changei = chout

i ∧ outhi =
outi ∧ hi = hout

i } is the set of possible behaviors, meaning that connected
flows are equal.

– σ =
⎤⎡

(·, ·, i, in), (·, ·, i, ch)
⎣
,

⎡
(·, ·, i, in), (·, ·, i, out)

⎣
,

⎡
(·, ·, i, ch), (·, ·, i, out)

⎣
,⎡

(·, ·, i, h), (·, ·, i, out)
⎣
,

⎡
(·, ·, i, out), (·, ·, i + 1, h)

⎣ | i ≥ 1
⎥

models the data
dependencies.

– P = {(r1, r2, ...) ⊆ B | ∩i : ri =
⎡
..., (..., outi, ...)

⎣ ∧ outi = outi+1 ⇒ outi+1 =
outi+2} is the stability property, meaning that there are no two consecutive
changes in output.

Figure 4 shows four logs of faulty executions (where connected signals only
appear once, and the tick number and identity tags are omitted).

Consider Fig. 4a. Two components violate their specifications (incorrect val-
ues are underlined): change and h, both at the third instant. The stability prop-
erty P is violated at the fourth output. Let us apply our definitions to analyze
causality of each of the two faulty components.

1. In order to check whether change is a necessary cause, we first compute the
cone spanned by the violation by change as C(tr1, {change}) = (3, 5, 3).
Thus, the prefixes of the component traces before entering the cone are as
shown in Fig. 5a. Next we compute the set of counterfactuals, according to
Definition 5, as (tr′)↑, where tr′ is shown in Fig. 5b. P is still violated by the
(unique) counterfactual trace, hence change is not a necessary cause.
We can show, using the same construction, that h is a sufficient cause for the
violation of P.

2. In order to check whether change is a sufficient cause, we first compute the
cone spanned by the violation by h as C(tr1, {h}) = (5, 3, 3). That is, the
cone encompasses the last two values of h and out. Due to change being
(incorrectly) false, the only possible counterfactual trace according to Defini-
tion 5 is κ(tr1,C,S) = (trchange, tr

∈
h, trout)↑ where trchange is as observed in

tr2, tr∈
h = (∧, 0, 0, 1), and tr∈

out = (0, 0, 1, 2). P is still violated by the unique
counterfactual trace, hence change is a sufficient cause.
We can show, using the same construction, that h is not a necessary cause
for the violation of P.

A General Trace-Based Framework of Logical Causality 169

in 0 0 1 2

change false false

h ⊥ 0 -1 -3

out 0 0

(a) tr1 after removing
C(tr1, {change}).

in 0 0 1 2

change false false true true

h ⊥ 0 -1 -3

out 0 0 -1 -3

(b) tr such that (tr)↑ =
σ(tr1,C,S)

Fig. 5. Computing necessary causality of change for the violation of P in tr1.

The example of log tr1 shows two phenomena called over-determination
(there are two sufficient causes, one of which would have sufficed to violate P)
and early preemption: the causal chain from the violation of Sh to the violation of
P is interrupted by the causal chain from the violation of Schange to the violation
of P, since due to change being false, the incorrect value of h is discarded in the
computation of out in log tr1.

Figure 4b shows a case of joint causation: both change and h are neces-
sary causes for the violation of P in tr2, but none of them alone is a sufficient
cause.

6 Related Work

Causality has been studied for a long time in different disciplines (philosophy,
mathematical logic, physics, law, etc.) before receiving an increasing attention in
computer science during the last decade. Hume discusses definitions of causality
in [13]:

Suitably to this experience, therefore, we may define a cause to be an
object, followed by another, and where all the objects similar to the first
are followed by objects similar to the second. Or in other words where,
if the first object had not been, the second never had existed.

In computer science, various approaches to causality analysis have been devel-
oped recently. They differ in their assumptions on what pieces of information
are available for causality analysis: a model of causal dependencies, a program
as a black-box that can be used to replay different scenarios, the observed actual
behavior (e.g. execution traces, or inputs and outputs), and/or the expected
behavior (that is, component specifications). Existing frameworks consider differ-
ent subsets of these entities. We cite the most significant settings and approaches
for these settings.

A Specification and an Observation. In the preliminary work of [8], causality of
components for the violation of a system-level property under the BIP interaction
model [2,9] has been defined using a rudimentary definition of counterfactuals
where only faulty traces are substituted but not the parts of other component
traces impacted by the former. This definition suffered from the conditions for

170 G. Gössler and D. Le Métayer

causality being true by vacuity when no consistent counterfactuals exist. A sim-
ilar approach is used in [22] for causality analysis in real-time systems.

With a similar aim of independence from a specific model of computation as
in our work, [21] formalizes a theory of diagnosis in first-order logic. A diagnosis
for an observed incorrect behavior is essentially defined as a minimal set of
components forming a sufficient cause.

A Causal Model. Reference [12] proposes what has become the most influential
definition of causality for computer science so far, based on a model over a set of
propositional variables partitioned into exogenous variables U and endogenous
variables V. A function FX associated with each variable X ⊆ V uniquely deter-
mines the value of X depending on the value of all variables in (U ∼ V)\{X}.
These functions define a set of structural equations relating the values of the
variables. The equations are required to be recursive, that is, the dependencies
form an acyclic graph whose nodes are the variables. The observed values of a
set X of variables is an actual cause for an observed property Φ if with different
values of X, Φ would not hold, and there exists a context (a contingency) in
which the observed values of X entail Φ. With the objective of better represent-
ing causality in processes evolving over time, CP-logic defines actual causation
based on probability trees [3].

In [14], fault localization and repair in a circuit with respect to an LTL
property are formulated as a game between the environment choosing inputs
and the system choosing a fix for a faulty component.

A Model and a Trace. In several applications of Halpern and Pearl’s SEM, the
model is used to encode and analyze one or more execution traces, rather than
a behavioral model.

The definition of actual cause from [12] is used in [4] to determine potential
causes for the first violation of an LTL formula by a trace. As [12] only considers
a propositional setting without any temporal connectors, the trace is modeled
as a matrix of propositional variables. In order to make the approach feasible in
practice, an over-approximation is proposed. In this approach, the structure of
the LTL formula is used as a model to determine which events may have caused
the violation of the property.

Given a counter-example in model-checking, [10] uses a distance metric to
determine a cause of the property violation as the difference between the error
trace and a closest correct trace.

An approach to fault localization in a sequential circuit with respect to a
safety specification in LTL is presented in [6]: given a counter-example trace, a
propositional formula is generated that holds if a different behavior of a subset
of gates entails the satisfaction of the specification.

A Set of Traces. Reference [15] extends the definition of actual causality of [12] to
totally ordered sequences of events, and uses this definition to construct from a
set of traces a fault tree. Using a probabilistic model, the fault tree is annotated
with probabilities. The accuracy of the diagnostic depends on the number of

A General Trace-Based Framework of Logical Causality 171

traces used to construct the model. An approach for on-the-fly causality
checking is presented in [19].

An Input and a Black Box. Delta debugging [24] is an efficient technique for
automatically isolating a cause of some error. Starting from a failing input and
a passing input, delta debugging finds a pair of a failing and a passing input
with minimal distance. The approach is syntactical and has been applied to
program code, configuration files, and context switching in schedules. By apply-
ing delta debugging to program states represented as memory graphs, analysis
has been further refined to program semantics. Delta debugging isolates failure-
inducing causes in the input of a program, and thus requires the program to be
available.

7 Conclusion

We have presented a general approach for causality analysis of system failures
based on component specifications and observed component traces. Applications
include identification of faulty components in black-box testing, recovery of criti-
cal systems at runtime, and determination of the liability of component providers
in the aftermath of a system failure.

This article opens a number of directions for future work. First of all, we
will instantiate and implement the framework for specific models of computa-
tion and communication, such as Timed Automata [1] and functional programs.
The tagged signal model [18] provides a formal basis for representing such mod-
els in our framework. In order to make the definitions of causality effectively
verifiable, we will reformulate them as operations on symbolic models, and use
efficient data structures such as the event structures used in [5] for distributed
diagnosis.

At design time, the code of the components can be instrumented so as to log
relevant information for analyzing causality with respect to a set of properties
to be monitored. For instance, precise information on the actual (partial) order
of execution can be preserved by tagging the logged events with vector clocks [7,
20]. Generally speaking, appropriate instrumentation of the code enables more
precise causality analysis. We intend to further investigate this aspect of ensuring
accountability [16] by design in future fork.

In this paper we assume only the logs to be available. However, in some
situations such as post-mortem analysis the (black-box) components may be
available, in which case counterfactual scenarios could be replayed on the sys-
tem to evaluate their outcome more precisely. In the same vein, an alternative
behavior of the control part of a closed-loop systems is likely to impact the physi-
cal process, as in our cruise control example: a counterfactual trace with different
brake or throttle control will impact the speed of the car. This change should be
propagated through a model of the physical process to make the counterfactual
scenario as realistic as possible.

172 G. Gössler and D. Le Métayer

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

3. Beckers, S., Vennekens, J.: Counterfactual dependency and actual causation in cp-
logic and structural models: a comparison. In: Kersting, K., Toussaint, M. (eds.)
STAIRS. Frontiers in Artificial Intelligence and Applications, vol. 241, pp. 35–46.
IOS Press (2012)

4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)

5. Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent
and asynchronous systems. Discrete Event Dyn. Syst. 15(1), 33–84 (2005)

6. Fey, G., Staber, S., Bloem, R., Drechsler, R.: Automatic fault localization for prop-
erty checking. IEEE Trans. CAD Integr. Circ. Syst. 27(6), 1138–1149 (2008)

7. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. In: Raymond, K. (ed.) Proceedings of the ACSC’88, pp. 56–66 (1988)

8. Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis in contract violation.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–
284. Springer, Heidelberg (2010)

9. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Prog. 55(1–3), 161–183 (2005)

10. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

12. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
part I: Causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

13. Hume, D.: An Enquiry Concerning Human Understanding (1748)
14. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults.

J. Comput. Syst. Sci. 78(2), 441–460 (2012)
15. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via

causality to fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFE-
COMP 2011. LNCS, vol. 6894, pp. 71–84. Springer, Heidelberg (2011)

16. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: ACM Conference on Computer and Communications Security,
pp. 526–535 (2010)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
CACM 21(7), 558–565 (1978)

18. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(12), 1217–
1229 (1998)

19. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 248–267. Springer, Heidelberg (2013)

20. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard,
M. (ed.) Proceedings of the Workshop on Parallel and Distributed Algorithms, pp.
215–226. Elsevier (1988)

A General Trace-Based Framework of Logical Causality 173

21. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

22. Wang, S., Ayoub, A., Kim, B.G., Gössler, G., Sokolsky, O., Lee, I.: A causality
analysis framework for component-based real-time systems. In: Legay, A., Ben-
salem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 285–303. Springer, Heidelberg
(2013)

23. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under
recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 442–456. Springer, Heidelberg (2012)

24. Zeller, A.: Why Programs Fail. Elsevier, Amsterdam (2009)

Axioms and Abstract Predicates on Interfaces
in Specifying/Verifying OO Components

Ali Hong(B), Yijing Liu, and Zongyan Qiu(B)

LMAM and Department of Informatics, School of Mathematics,
Peking University, Beijing, China

{hongali,liuyijing,qzy}@math.pku.edu.cn

Abstract. Abstraction is essential in component-based design and
implementation of systems, however, it brings also challenges to the formal
specification and verification. In this paper we develop a framework to sup-
port the abstract specification for the interfaces of components and their
interactions, and the related verification. We show also that the abstract
specification on the interface-level can be used to enforce correct imple-
mentations of the components. We take one practical application of the
well-known MVC architecture as a case study. Although our work focuses
on the OO based programs, some concepts and techniques developed in
the work might be useful more broadly.

Keywords: Component · Specification · Verification · Abstract
predicate · Axiom · MVC

1 Introduction

Component-based design and composition have been widely respected and used
in implementing large-scale software systems. The related methodologies empha-
size abstraction, interaction based on clear and abstract interfaces, separation
of interfaces from implementations, interchangeability of components, etc. The
main ideas of these techniques are information hiding, modularity, insulation,
and so on, to support more flexible and robust development and integration of
complex systems.

Separation of interfaces from concrete components is one of the most impor-
tant techniques in component-based system (CBS) development. Interfaces serve
as a layer to insulate components and a media to connect them, and provide
enough information to the clients. This separation makes twofold benefits: on
one hand, clients are designed only based on interfaces of the components which
they use, that make them independent of details of the components. On the
other hand, the components to be used need only to implement the interfaces
that may provide wider design choices.

Supported by NNSF of China, Grant No. 61272160, 61100061, and 61202069.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 174–195, 2014.
DOI: 10.1007/978-3-319-07602-7 12, c© Springer International Publishing Switzerland 2014

Axioms and Abstract Predicates in Spec./Verif. OO 175

However, although the interface-based techniques are very useful and effective
in supporting good component design and flexible integration, they bring also
challenges to formal specification and verification. In common practice, interface
declarations provide only syntactic and typing information. For verifying behav-
iors of systems, we must include semantic specifications for interfaces. How and
in which form the specifications are provided becomes a new problem, due to
an obvious quandary: for one thing, we need to protect the abstraction provided
by the component interfaces, thus the specification should not leak details of
the implementation. For another, we need the specifications to provide enough
information for the behaviors of the components, to support the reasoning of
their clients. Obviously, if the specification involves real implementation details,
it will block the modification and replacement of the components, or ask for re-
specifying/re-verifying large portion of the system on account of modification,
either in the development or in the maintenance.

In this paper, we present an approach for specifying a group of co-related
OO components abstractly by giving the specifications for their interfaces. The
specifications consist of two aspects: a pair of abstract pre/post conditions which
is expressed upon abstract predicates (named specification predicates) for each
method, and a group of axioms over the predicates which describes relations over
different predicates thus gives constraints on the implementations over methods
and classes.

Based on our previous work [20], we build the theoretical foundation and
define how a program with these specifications is correct. We give some new
rules to form a more complete inference system for reasoning OO programs, then
whether a group of classes forms a correct implementation of a group of relative
interfaces can be proved. Also, we support the proof for client codes based only
on the interfaces. As the proof involves no information from the implementation,
modular verification is well achieved. We illustrate our approach by specifying
and verifying a simple multiplication calculator designed following the MVC
architecture and built upon closely co-related interfaces and classes. Due to the
page limit, we leave some details in our report [9].

In the rest of the paper, we will analyze the problems with a MVC calculator
in more details in Sect. 2, and introduce the concept axioms and basic languages
in Sect. 3. We build the formal framework in Sect. 4, and then show the case
study in Sect. 5. At last, we discuss some related work and conclude in Sect. 6.
The basic inference rules of the framework are given in Appendix A.

2 Abstractly Specify/Verify Co-related Components:
Problem

To give an intuition for the problem of this study, we use a simple MVC (Model-
View-Controller) architecture design for an integer-multiplication calculator dis-
played in Fig. 1. This MVC calculator consists of three components. A model
component which is independent of views, encapsulates the application logic
(such as multiplying and reset algorithms, and so on) of the calculator. A view

176 A. Hong et al.

Fig. 1. An execution of the MVC multiplication calculator

component requests the product value from the model and represents it in a
certain style. And a controller component listens to user actions on the view and
passes it to the model. Here the view is designed as a user interface with two
buttons for detecting user requests to the model by the controller, where “Multi-
ply” for multiplication and “Clear” for reset; and two textboxes for representing
user-input integer in “Input” and the product value (also as one multiplier for
the next multiplying) in “Total”.

We show an execution of this calculator by several steps as in Fig. 1 (the right
side). First, we run the program and get an initial frame with a default value
1 for “Total” and blank “Input”. Second, we input an integer 3 for “Input”
and click the “Multiply” button to call the model to multiply 3 and 1, and
immediately the “Total” value becomes 3. Third, we input another integer 2
and click “Multiply” again, and this time the “Total” becomes 6 (that is 2 ϕ 3).
Then, we click “Clear” button to reset “Total” to its initial value 1. Noninteger
inputs like char ‘a’ would be catched as exceptions by reporting a message like
in the lower right corner of Fig. 1.

As the view styles of a model could be various (e.g., text-based, graphical,
or web interface) and would not affect the intrinsic properties (e.g., separating
model from its views, interactions among three components) of MVC archi-
tecture, we simplify the user-interface view in Fig. 1 and let the views output
total values textually in our case. Further, to make this MVC calculator more
extensible, modular and reusable, we abstract it with interfaces as depicted in
Fig. 2. Three interface declarations with method signatures (the right part) are
respectively given for the components. For example, MI is the interface of model,

Axioms and Abstract Predicates in Spec./Verif. OO 177

Fig. 2. MVC architecture and component interfaces for multiplication calculator

having a method Multiply(i) for multiplying input i1 and a certain integer (e.g.,
the current value displaying in “Total” textbox when inputting i), a method
Reset() for resetting total value, addView(v) adding a view onto the model,
getState() returning the current state value, etc. Three components here are
closely related: views register on some model, the controller deals with user
inputs and asks its model to update the state (i.e., total value), the model then
notifies all registered views for its state change, and the views need to get model’s
state after notified, etc. But, how can we specify these independent of the imple-
mentations?

We follow the ideas of abstract predicates [4,16,18] and Separation Logic,
and introduce predicate model(m, vs, st) to assert that model m has a registered
view set vs and a state st, view(v,m, st) to assert view v has registered on m
and its state is st, and controller(c,m, st) to assert controller c monitors m and
its state is st. We specify the MVC interfaces as given in Fig. 3 according to the
(informal) requirements, where we have some additional predicates which will
be explained below. Here we use a brief form “→pre∼→post∼” after each method
signature to represent the pre/post conditions instead of more common pair
“requires pre; ensures post;”. In addition, the types for predicate parameters
are omitted, which can be added in real implementations.

The specification of addView in MI says that the calling view will be added
into the view set of the model, and its state will be updated following the model.
The specification of getState means that it simply returns the state of the model.
For methods Multiply and Reset , things become more complex, because the
methods will not only affect the model, but also its related views. We introduce
a predicate MVs(m, vs, st) to assert the state of a bundle of one model and its

1 Here we assume that, all inputs i and return values which are declared as primitive
Int in our case are actually of BigInteger type in Java. Because as defined in Java
Language Specification, semantics of arithmetic operations in BigInteger exactly
mimic those of Java’s integer arithmetic operators. We simply use Int type to declare
and operate big integers, while the overflow error by multiplying two big integers
can be eliminated.

178 A. Hong et al.

Fig. 3. Interfaces with formal specifications for MVC arch.

related views, thus Multiply and Reset modify this state as desired. Predicate
product(st, i) encapsulates the algorithm of multiplying st and i. Method update
in VI is called by a model that will flush the view’s state and cause some other
related actions (e.g., the view painting by method paint). At last we consider
multiplyPerformed and resetPerformed in CI which can be called by clients of
the MVC components. They brings also problems, because both will affect all
components here. To specify states of this bundle of components, we introduce
another predicate MVC (c,m, vs, st) to assert that we have a bundle of a con-
troller c, a model m, a set of views vs with internal state st. These specifications
go the similar way as shown in literature, e.g. [6], and ours [20].

Having the interface declarations, we can go ahead to define classes to imple-
ment them, and then build concrete MVC instance(s), and write client codes to
use the implementation. We postpone the implementation for a moment, and
first consider some client codes and their verifications. Because interfaces should
be fences for hiding implementation details, on the semantic side, we should sup-
port verifying client codes without knowing the implementation details of the
interfaces.

Figure 4 gives a client method, where we assume some implementing classes
have been built. From its formal parameters, we get a pair of connected model
and controller objects, and require the result state satisfies assertion ⊆r1, r2 ·
MVC (c,m, {r1, r2}, 1). View and View2 are classes implementing VI . For
the constructor of View , we assume it satisfies a specification {model(m, vs, st)}
View(m){model(m, vs ∪ {this}, st) ← view(this,m, st)}. Here this refers to the
new created object which is assigned to variable v by “v = new View(m);”. It
is similar for View2.

For verifying the client method, we list a part of reasoning in Fig. 5. The con-
structions go well, then we meet problems in line (5’). To step into the while loop
and verify the first command c.multiplyPerformed() according to the specifica-
tion of multiplyPerformed() in interface CI , we need to check whether
the current program state specified in line (5”) not only satisfies the loop

Axioms and Abstract Predicates in Spec./Verif. OO 179

Fig. 4. A client procedure using the MVC architecture

Fig. 5. Verification of the client code

condition but also assertions like MVC (. . .) with some parameters. Moreover,
a loop invariant containing MVC (. . .) should be inferred in line (7). However,
with the abstract specifications, we cannot deduce out a MVC (. . .) assertion from
an assertion building of predicate symbols model(. . .), view(. . .), controller(. . .).
Neither can we know what are the things to fill segments [1]. . ., [2]. . ., [1′]. . . and [2′]. . .,
then we cannot go ahead. This means clearly that something is missed in our
specifications.

In reasoning component-based programs, such problems are common. Because
we want to have interfaces independent of implementations to support flexible sys-
tem designs and replaceable components, the specifications on the interface-level
can be written only in terms of some abstract symbols, here the predicate names
and parameters. Although we have some intentions for each symbol, abstract
expressions cannot reveal them in the method specifications. Besides, verifying
client codes based on the specifications asks for more information about the com-
ponents, but we cannot expose the predicate definitions which are closely related
to the implementations that have not presented yet or may be multiple ones for a
given interface.

180 A. Hong et al.

To solve the problem here, adding an assertion like “(model(m, vs, st) ←
(�v∈vsview(v,m, st)) ← controller(c,m, st)) ∩ MVC (c,m, vs, st)” to the spec-
ifications seems helpful. By applying it on (5’) with parameter substitutions
({r1}, i/vs, st), we can easily infer the desired assertion in (5”) to be like ⊆i, r1, n1·
v1 = r1 ∅ n = 1 ∅ n = n1 ∅ n1 < 4 ∅ MVC (c,m, {r1}, i) and the loop invariant
⊆i∗, r1, n∗

1 · v1 = r1 ∅ n = n∗
1 ∅ n∗

1 < 4 ∅ MVC (c,m, {r1}, i∗) in line (7). Then
the following proof can go on. However, to ensure the soundness of our proof,
we should prove such added assertion is true with regard to the given imple-
mentation before using it in code reasoning. In the following, we will call these
assertions axioms, and present a framework on how to specify them, how to ver-
ify programs with specification predicates and axioms, and how to apply them
in proving implementations and client codes.

3 Axioms and Languages

In our framework, a specification predicate is abstract on the interface level,
which may have a definition in each class that implements the interface. On the
other hand, an axiom is a logic statement expressed based on constants, logical
variables, and predicates combined by logic connectors and quantifiers. It gives
restrictions and/or relations over abstract predicates. Similar to the situation
in the First-Order Logic, a set of axioms defines what is its “model”. Here a
“model” should be a set of class definitions with specifications, where relative
predicates get their definitions.

As in other logic, to have a model, a set of axioms should be consistent.

Definition 1 (Consistency of Axioms). Assume AG is the set of axioms of
program G. AG is consistency, if AG � false.

An inconsistent set of axioms cannot have any implementation. However, due to
the incompleteness of the inference system for our logic (similar to the classical
Separation Logic), the inconsistency is generally undecidable. We can also define
non-redundancy for a set of axioms, however, that is not important and thus
omitted.

To conduct the design for components, we declare a set of interfaces to out-
line the system, and specify methods using pre/post conditions based on abstract
predicates. Then we use axioms to restrict/relate the predicates, which put fur-
ther restrictions on implementations. How to choose predicates and axioms is the
matter of the designers’ thoughts about the requirements. The axioms describe
general properties of the later-coming implementations. Another important role
of axioms is to support abstract-level reasoning for client codes. In this aspect,
two forms of axioms are most important: implications and equivalences, because
they support the substitution rule in reasoning.

Now we give a brief introduction to our assertion and programming language
VeriJ. More details about it can be found in our report [9].

The assertion language in VeriJ is a Separation Logic (SL) revised to fit the
needs of OO programs, as given in Fig. 6 (upper part). Here are variables (v),

Axioms and Abstract Predicates in Spec./Verif. OO 181

Fig. 6. VeriJ assertion and programming language with specification annotations

constants, numeric and boolean expressions. σ denotes pure (heap-free) asser-
tions and η the heap assertions, where r denotes references which serve as logical
variables here. We have classical SL connectors, where α1 ← α2 asserts that the
current heap (satisfying α1 ← α2) can be split into two parts, while one satisfies
α1 and the other satisfies α2; and α1 —← α2 asserts that if any heap satisfying α1

is added to current heap, the combined heap would satisfy α2. �i is the iterative
version of ←. There are some OO specific assertion forms: r : T and r <: T assert
the object which r refers to is exactly of the type T or a subtype of T ; and
obj(r, T) asserts the heap contains exactly an object of type T and r refers to it.
We use over-lined form to represent sequences, as in predicate application p(r).
We may extend it with set or other mathematical notations as needed.

VeriJ is a subset of sequential Java (μJava [21]) with specifications as annota-
tions, especially predicate definitions, method specifications and axioms (lower
part of Fig. 6). Here C denotes class name, I for interface name, a and m for
field and method names respectively. We omit Java access control issues. Here
are some explanations:

– def p(this, r) declares a specification predicate with signature p(this, r), whose
body α in a class may be directly defined or inherited from the superclass. this is
always explicitly written as the first parameter of predicates to denote the cur-
rent object. Sub-interfaces inherit predicate declarations. Predicates are used
in method specifications and axioms to provide abstraction.

– axiom α introduces an axiom α into the global scope, while all variables are
implicitly universal-quantified, and can be instantiated in axiom application.
No program variables are allowed in axioms. We will give more details in
Sect. 4.

– π is a pair of specification for constructors or methods in the form of →pre∼→post∼.
Specifications in a supertype can be inherited or overridden in subtypes. When
a method does not have an explicit specification, it may inherit several spec-
ification pairs from the supertypes of its class. If a non-overriding method is
not explicitly specified, the default specification “→true∼→true∼” is assumed. In
addition, we assume sub-interface will not redeclare the same methods as in its
super-interfaces.

182 A. Hong et al.

– As in Java, each class has a superclass, possibly Object, but may implement
zero or more interfaces. A class can define some specification predicates and
if it implements an interface which declares some predicates, it must directly
define each predicate with a body or inherit one from its superclass. We assume
all methods are public. For simplicity method overloading is omitted here.

– A program G consists of a sequence of axiom definitions, and then a sequence
of class and interface declarations, where at least one class presents.

For typing and reasoning a program G, a static environment ΥG, or simply Υ
without ambiguity, is built to record useful information in G. We need also
type-checking specification parts in programs, e.g., a predicate definition body
involves only its parameters; each predicate in an axiom is an application of
some declared predicate in some interfaces; the pre/post conditions of a method
are well-formed; predicates declared in an interface must be realized in its imple-
mentation classes, etc. For these, we may introduce types into specifications. The
environment construction and type-checking are routine and are ignored here.
We will only consider well-typed programs below, and assume some components
of Υ are usable: β(C.m) fetches the body of method m in class C, κ(T.m)
gives the method specification(s) of m in type T ; Φ(C.p(this, r)) gets the body
assertion of p in class C; and A is the set of all axioms in G.

We assume that in a program, each predicate is uniquely named (this can
be achieved by suitable renaming). Thus, if several definitions for one predicate
name p appear in different classes, they are local definitions for p fitting the
needs of each individual class. We assume all definitions for p have the same
signature, that is, no overloading.

4 Verifying Programs wrt Axioms and Method
Specifications

In this section, we develop the framework for reasoning VeriJ programs with spec-
ifications, especially interface-based design and axioms. We extend the inference
rule set developed in our previous work [17,20] (Ref. Appendix A).

4.1 Verifying Implementations wrt Axioms

Because of the possible existence of subclass overriding and multi-implementing
classes for one interface, multiple definitions for the same predicate are common
in programs. On the other hand, axioms are global properties/requirements over
a program. To judge whether a group of classes obeys a set of axioms, we should
define clearly what the predicate applications denote in axioms. We can obtain
predicate definitions from Υ . However, as a predicate may have multiple defin-
itions, we must determine which of them is used to unfold a specific predicate
application. Thus we define a substitution for a predicate application in a pro-
gram as follows:

Axioms and Abstract Predicates in Spec./Verif. OO 183

Definition 2 (Predicate Application Substitution). Suppose p is a spec-
ification predicate, and {Cj}k

j=1 is the set of classes in program G where p is
defined. We define the expansion for the application p(r, r∗) in axioms as a
substitution:

δp,Γ ⎡= [
⎢

j(r : Cj ∅ fix(Cj , p(r, r∗))) / p(r, r∗)] (1)

where:

fix(D,α) =

⎣
⎤⎤⎤⎤⎥

⎤⎤⎤⎤⎧

¬fix(D,α∗), if α is ¬α∗;
fix(D,α1) ⇐ fix(D,α2), if α is α1 ⇐ α2,where⇐ ∈ {∧, ←,—←};
⊆r · fix(D,α∗), if α is ⊆r · α∗;
D.q(r0, r), if α is q(r0, r);
α, otherwise.

(2)

We substitute application p(r, r∗) in axioms by a disjunction, while each element
consists of a type assertion (r : Cj) and a type fixed body generated by fix.
Because the body may contain applications of other predicate(s) or recursive
application(s) of the same predicate, we need to fix their meaning by type and
also avoid infinite expansion. Here fix carries on type D down over the formula.
The special D.q form is used to suspend the unfolding thus prevent infinite
expansion. We introduce the following rule to enable further unfolding and a
new round of the fixing:

Φ(D.q(this, r)) = α

Υ ∨ D.q(r0, r∗) ∩ fix(D,α)[r0, r∗/this, r]
(EXPAND)

For a predicate set Ψ , we define the substitution for Ψ based on all the sub-
stitutions for p ∈ Ψ . Based on Definition 2, we have the following definition to
connect axioms with interface and class declarations in a program.

Definition 3 (Well-Supported Axiom). Suppose N is a sequence of class/
interface declarations, and α is an axiom mentioning only types and relative
predicates defined in N . We say α is well supported by N , if ΥN |= αδpreds(ψ),ΓN

.

Here ΥN provides predicate definitions, and δpreds(ψ),ΓN
is the substitution built

from preds(α) (a subset2 of predicates occurring in α,) according to Definition 2,
and used to obtain the assertion to be validated. Because δpreds(ψ),ΓN

is com-
pletely determined by ΥN , we will write the fact simply as ΥN |= α. Generally,
for a set of axioms A, we say A is well supported by N and write ΥN |= A, if
ΥN |= α for every α ∈ A.

Now we define whether a program G with its axiom set A is well-axiom-
constrained :
2 We can obtain it from the complete set of predicates in the axiom by analyzing the

axiom formula based on the given implementation. Not all predicates need to be
unfolded in constructing the substitution for proving the axiom.

184 A. Hong et al.

Definition 4 (Well-Axiom-Constrained Program). A program G = (A;N)
is a well-axiom-constrained program, if ΥN |= A, where A is built from A.

Note that both well-supported and well-axiom-constrained are semantic con-
cepts. As a version of separation logic, we have given a set of inference rules
for our logic and proven its soundness result in [17], which contains the basic
inference rules for FOL and SL (of course, it is incomplete as the classical SL).
Because of the soundness, we can use the rules to prove the well-supported (and
well-axiom-constrained) property by a two-step procedure:

1. Construct a substitution for each axiom in the program according to Defini-
tion 2, and use it to obtain a logic formula to be proven;

2. Try to use the inference rules to prove the formulas obtained in Step-1.

If we can prove an axiom α under environment ΥN by the above procedure, we
know that α is well-supported by N , and will write this fact as ΥN ∨ α. We take
it similar for ΥN ∨ Ψ . Due to the soundness result, if ΥN ∨ Ψ , then ΥN |= Ψ .

Because axioms are state-independent assertions (i.e., free of program vari-
ables), to prove whether an axiom is supported by a program, we need at most
consulting predicate definitions. After the proving, we know that the axioms are
globally true over the implementation, thus can safely apply them in reasoning
client programs which utilize the objects via the interfaces. We will demonstrate
this in next section.

Now we give some properties that might facilitate the verification of axioms.
First, we can verify axioms one by one, or in groups:

Lemma 1. Assume ΥN ∨ Ψ and ΥN ∨ Ψ ∗, then ΥN ∨ Ψ ∪ Ψ ∗. ⇒∃
Then we give some cases of program extension with unchanged axiom set. We

will use N � Ψ to mean N contains no declaration/definition of predicates in Ψ .

Lemma 2. Assume ΥN ∨ Ψ , and N ∗ is a sequence of interface declarations. If
NN ∗ is still a well-typed declaration sequence, then ΥNN ′ ∨ Ψ .

If ΥN ∨ Ψ , for a sequence of interface/class declarations N ∗ where N ∗ � Ψ
and N N ∗ is still a well-typed declaration sequence, then ΥNN ′ ∨ Ψ .

If ΥN ∨ Ψ and ΥN ′ ∨ Ψ ∗, where N � Ψ ∗ and N ∗ � Ψ , and N N ∗ is still a
well-typed declaration sequence, then ΥNN ′ ∨ Ψ ∪ Ψ ∗. ⇒∃
If some client classes use existing classes and support another set of axioms, they
fall into the last case, and can be directly combined with the existing classes (and
axioms), because their verifications do not touch other implementation details.

However, in general case, adding a new class onto existing class/interface
sequence may bring proof obligations wrt some related axioms. If this new comer
also supports these related axioms (if any), we call it “a proper extension class”
wrt existing components. Here we use proper instead of correct because we have
not verified the methods in the classes according to their specifications yet.We
can check whether an extension class is proper by the following definition:

Axioms and Abstract Predicates in Spec./Verif. OO 185

Definition 5 (Proper Extension Class). If ΥN ∨ Ψ , K is a class decla-
ration, and N K is still well-typed. We say K is a proper extension class wrt
(Ψ,N), if

(1) K � Ψ ; or
(2) K provides a definition(s) for one (or more) predicate(s) appearing in an

axiom subset Ψ1 in Ψ , and ΥNK ∨ Ψ1.

Then for the well-supported axioms Ψ in existing components (Ψ,N), we
have,

Lemma 3. If ΥN ∨ Ψ and K is a proper extension class wrt (Ψ,N), then
ΥNK ∨ Ψ .

If ΥN ∨ Ψ , N ∗ is a sequence of class/interface declarations, and for any class
declaration K in N ∗ such that N ∗ = N ∗

1 K N ∗
2, K is a proper extension class with

respect to (Ψ,N N ∗
1), then ΥNN ′ ∨ Ψ . ⇒∃

These Lemmas are simple, and we leave their proofs in our report [9].

4.2 Verifying Methods and Behavioral Subtyping

The second part of verification is relatively common: to verify that each method
satisfies its specifications, i.e., the components are correctly implemented. We
have given a set of rules for method verification, and list them in Appendix A
with brief explanations.

Because of the existence of interfaces, multi-implementation, and inheritance,
a class definition takes generally the form:

classC : B � I1, . . . , Ik {. . . T m(. . .)[→P ∼→Q∼]{. . .} . . .} (3)

where class C inherits B as its superclass and implements interfaces I1, . . . , Ik.
For the m, it can be a new one, or one overriding another definition for m
accessible in B; and it can be defined with an explicit specification →P ∼→Q∼, or
inherit its specifications from B, or even from the interfaces. In addition, the
definition should implement specification(s) for m in the interfaces, if exist(s).
Also, C may inherit a method from B (but not define it) to implement a declared
method in some interface(s) (Ii(s)).

An available method in class C may have a definition with explicit specifica-
tion in C, or only a definition and inherited specifications from C’s supertypes,
or an inherited definition with also inherited specification from its superclass.
These facts tell us that two interrelated problems must be resolved in verifying a
method: (1) determining a specification and using it to verify the method body;
(2) verifying that the method fits the need of both the superclass and the imple-
mented interfaces. We consider them in the following, and first introduce some
notations and definitions.

We think an interface defines a type, and a class defines a type with imple-
mentation. We will use C,B, . . . for class names, I for interface names, T for
type names, to avoid simple conditions. We use (T, T ∗) ∈ super to mean that

186 A. Hong et al.

T ∗ is a direct supertype of T , and T <: T ∗ as the transitive and reflective clo-
sure of super. We use super(C) to get all supertypes of C, thus for example (3),
super(C) = {I1, . . . , Ik, B}. When C implements I1, I2, . . ., and defines method
m without giving a specification, m in C may have multiple specifications if
more than one of the Ii has specifications for m. We write →ϕ∼→α∼ ∈ κ(T.m)
in semantic rules to mean that →ϕ∼→α∼ is one specification of m in T , and write
κ(T.m) = →ϕ∼→α∼ when →ϕ∼→α∼ is the only specification.

In semantics, we use Υ,C,m ∨ α to state that α holds in method m of class C
under Υ . Clearly, here α must be a state-independent formula. We use Υ,C,m ∨
{ϕ}c{α} to say that command c in m of C satisfies the pair of precondition ϕ
and postcondition α. We write Υ ∨ {ϕ}C.m{α} (or Υ ∨ {ϕ}C.C{α}) to state
that C.m (or the constructor of C) is correct wrt →ϕ∼→α∼ under Υ . For methods
with multiple specifications, we use Υ ∨ C.m�κ(C.m) to say that C.m is correct
wrt its every specification.

For OO programs, behavioral subtyping is crucial in verification. To introduce
it here, we define a refinement relation between method specifications.

Definition 6 (Refinement of Specification). Given two specifications
→ϕ1∼→α1∼ and →ϕ2∼→α2∼, we say that the latter refines the former in context Υ,C,
iff there exists an assertion R which is free of program variables, such that Υ,C ∨
(ϕ1 ⊕ ϕ2 ← R) ∅ (α2 ← R ⊕ α1). We use Υ,C ∨ →ϕ1∼→α1∼ ∈ →ϕ2∼→α2∼ to denote
this fact. For multiple specifications {πi}i and {π∗

j}j, we say {πi}i ∈ {π∗
j}j iff

∀i ⊆j · πi ∈ π∗
j.

Liskov and Wing [15] defined the condition for specification refinement as ϕ1 ⊕
ϕ2∅α2 ⊕ α1. We extend it by considering the storage extension (specified in R)
and multiple specifications as above. It follows also the nature refinement order
proposed by Leavens and Naumann [13].

The behavioral subtyping relation should also be verified for interfaces with
inheritance relations. Assume I has a super-interface I ∗, and method m in I
has a new specification →ϕ∼→α∼ overriding its counterpart →ϕ∗∼→α∗∼ in I ∗, we must
verify Υ, I ∨ →ϕ∗∼→α∗∼ ∈ →ϕ∼→α∼ holds on the logic level, because of no method
body involved.

Now we can define a class to be correct with two aspects of proof obligations
wrt given specifications. That is, every defined method meets its specifications,
and each subclass is a behavioral subtype of its superclass. We will use the
inference rules listed in Appendix A to prove these. Note that in the rules for
methods, we include premises for verifying the behavioral subtyping relation.

Definition 7 (Correct Class). A class C defined in program G is correct, iff,

– for each method m defined in C, we have ΥG ∨ C.m � κ(C.m), and for the
constructor of C with κG(C.C) = →ϕ∼→α∼, we have ΥG ∨ {ϕ}C.C{α};

– if C is defined as a subclass of class D in G, then C is a behavioral subtype of D.

Then, we define a program with axioms to be correct as follows:

Definition 8 (Correct Program). Program G is correct, iff,

Axioms and Abstract Predicates in Spec./Verif. OO 187

(1) G is well-axiom-constrained according to Definition 4.
(2) Each class C defined in G is correct according to Definition 7.

It is easy to conclude, our extended verification framework with axioms of
VeriJ is sound because the assertion logic used and all inference rules have been
proven sound.

5 Case Study

Having the enriched specification and verification framework, in this section we
will reexamine the MVC example discussed in Sect. 2, to see how the problems
mentioned there can be tackled naturally and the two roles of axioms.

5.1 Specifying the MVC Architecture

Following the guideline in Fig. 2, we have declared interfaces MI ,CI ,VI in Fig. 3
to embody the calculator design. Some specification predicates with respective
purposes as we explained have been introduced to form a foundation for for-
mal method specification. Each predicate should have a declaration, as “def
model(this, vs, st);” in the interface, but we omit them here to save space. These
declarations introduce predicate names with parameters, all as abstract symbols,
and their concrete meaning (possibly multiple) will be defined later in imple-
menting class(es) of the interfaces.

However, not any definition for the predicates is acceptable, and some predi-
cates may have interconnections with others. In order to reflect our anticipation
in correctly specifying the calculator requirements, preventing wrong implemen-
tations, and providing enough information for client verifications, we need to
constrain definitions of the predicates in later implementations and their correct
uses in specifications by revealing their relations or properties. Applying our
approach in Sect. 4, we specify a set of axioms labeled as [a1–a3] according to
the requirements in Fig. 2:

axiom MVC (c,m, vs, st) ∩ model(m, vs, st) ← (�v∈vsview(v,m, st)) [a1]
← controller(c,m, st);

axiom MVs(m, vs, st) ∩ model(m, vs, st) ← (�v∈vsview(v,m, st)); [a2]
axiom MVC (c,m, vs, st) ∩ MVs(m, vs, st) ← controller(c,m, st); [a3]

The axioms form a part of specifications to capture important interactions or
properties of the MVC architecture, and constrain the forthcoming implementa-
tions. Semantically, any implementation should fulfill them, and the definitions
for the methods declared in the interfaces must obey these constraints which
will generate proof obligations. In this way, although the interfaces provide no
behavior definitions, their implementations have been connected formally by the
predicates and axioms.

In Fig. 7, we give four classes Model , Controller , View and View2 which
implement the interfaces and form an implementation of the MVC calculator. We

188 A. Hong et al.

Fig. 7. An implementation of the MVC calculator interfaces

use class Scanner in package “java.util.Scanner” and call its method nextInt()
to get an integer from the input stream for multiplying. Abstractly, we specify
method Scanner .nextInt() as “→true∼→⊆n · res = n∼”. All predicates declared in
the interfaces are defined with bodies in relative classes that give also specific
meaning for the axioms. For example, axiom [a1] tells the whole MVC can be
divided into a model object, its controller object and its view-object set; Impor-
tantly, [a1] requires the states of these interactive objects must be synchronous
to be the abstract state st as in the whole case. [a2] means the model-views
aggregate structure consists of a model object and its view-object set with a syn-
chronous state; and [a3] says the whole MVC can also be viewed as consisting of
a model-views aggregate structure with a controller object with a synchronized
state.

5.2 Verifying Implementations with Axioms
and Method Specifications

Now we consider verifying the implementation before reasoning client codes.
Definition 8 lists two parts of work for concluding the correctness of the imple-
mentation: (1) checking it supports axioms [a1-a3] by applying the two-step

Axioms and Abstract Predicates in Spec./Verif. OO 189

Fig. 8. The verification of three methods

procedure given in Sect. 4; (2) checking each declared method satisfies its spec-
ifications. Due to limited space, we only give detailed proofs of axiom [a1] and
called methods by client here, and leave other proofs in our report [9], where we
give also some discussions about the proof steps which may be deduced interac-
tively or automatically in a proof assistant.

For axiom [a1], we construct a substitution under Υ of the implementation:

δ{MVC ,controller},Γ ⎡= [
c : Controller ∅ fix(Controller ,MVC (c,m, vs, st))/MVC (c,m, vs, st),
c : Controller ∅ fix(Controller , controller(c,m, st))/controller(c,m, st)]

That is because only class Controller defines predicates MVC (. . .) and
controller(. . .). By applying this substitution on the assertion of [a1] (simply
denoted as α), we get the following logic formula (4) to prove,

αδ{MVC ,controller},Γ = c : Controller ∅ fix(Controller ,MVC (c,m, vs, st))
∩ model(m, vs, st) ← (�v∈vsview(v,m, st))←

c : Controller ∅ fix(Controller , controller(c,m, st))
(4)

Using the definition of fix and inference rules, we know

c : Controller∅fix(Controller ,MVC (c,m, vs, st)) ∩ Controller .MVC (c,m, vs, st)

190 A. Hong et al.

and similar for fix(Controller , controller(. . .)). Thus we can reduce (4) to:

Controller .MVC (c,m, vs, st) ∩ model(m, vs, st) ← (�v∈vsview(v,m, st))←
Controller .controller(c,m, st) (5)

Then, from Υ , we have Φ(Controller .MVC (this,m, vs, st)) = model(m, vs, st) ←
controller(this,m, st) ← (�v∈vsview(v,m, st)). Using rule [EXPAND], we get

Controller .MVC (c,m, vs, st) ∩ fix(Controller ,model(m, vs, st)←
(�v∈vsview(v,m, st)) ← controller(this,m, st))[c/this]

∩ (fix(Controller ,model(m, vs, st)) ← fix(Controller ,�v∈vsview(v,m, st))←
fix(Controller , controller(this,m, st)))[c/this]

∩ model(m, vs, st) ← (�v∈vsview(v,m, st))←
Controller .controller(this,m, st)[c/this]

∩ model(m, vs, st) ← (�v∈vsview(v,m, st)) ← Controller .controller(c,m, st)

Thus, we have proven that [a1] is well supported. With similar proofs for other
axioms in our report [9], we conclude all the axioms are well-supported by the
implementation, then the axioms can be used in verifying the implementation
and client codes.

We give detail proofs of methodsView .View(m),Controller .resetPerformed()
and Controller .multiplyPerformed() in Fig. 8, because they are called in the illus-
trating client method. In the proof, labels like “[Rule [H-DPRE](View .view(. . .))]”
mean applying the inference rule [H-DPRE] (listed in Fig. 10 in Appendix A) on
predicate view(. . .) to unfold/fold its definition in class View ; and “[Axiom [a3]
[this/c] (R/L)]” means using axiom [a3] from its left side (L) to right side (R)
by substituting parameter c to this. Steps without explicit labels normally use
simple inference rules. Finally, we conclude these three methods are correct.

Having proven that all axioms are well-supported and all methods satisfy
their specifications, we know the implementation is correct for the MVC archi-
tecture.

5.3 Verifying Client Methods

At last, we resolve the verification of the client method in Fig. 9, by using the
above extended specifications on interfaces including axioms [a1-a3] and similar
labels as in method verifications. It shows that, we can finish the verification of
the client now, thus it makes a correct application of the MVC calculator.

6 Related Work and Conclusion

In this paper, we focus on specifying and verifying OO programs which are
built on interactive components through clearly defined interfaces. We pro-
pose the axioms to relate abstract predicates for the specification of interfaces.
These axioms semantically constrain the implementations and interactions in
component-based systems (CBSs), and support the verification of clients which

Axioms and Abstract Predicates in Spec./Verif. OO 191

Fig. 9. The correct proof of the client method

are defined based on interfaces abstractly (i.e., without consulting the concrete
implementations nor the hidden predicate definitions) and modularly (i.e., avoid-
ing reverification).

In the enriched foundation of framework VeriJ, we require checking each sys-
tem implementation in two aspects: first the well-supportedness of each axiom,
and then the correctness of each method with its specifications. Behavioral sub-
typing property is also ensured by checking specification refinement relations.
Further we well support information hiding and extensibility in specifying and
verifying OO programs.

To our limited knowledge, there exist some works on specifying and reason-
ing CBSs in different ways. Leavens et al. [11] combined model variables [3] and
model programs to specify interfaces of CBSs, and extended the behavioral sub-
typing concept for CBSs. However, they only pointed out subtypes should obey
the specifications of instance methods, no formalization details for the modu-
lar reasoning was given. Henzinger et al. [5] gave a type system for component
interaction by checking component compatibility with some interface automata
but touched no real semantics. Our idea requires compatible components to
meet both method specifications and global axioms specified in/on interfaces.
Their refinement is only from the interface designs to implementations, without
behavioral subtyping as what we consider. Aguirre and Maibaum [1] used alge-
braic specification of Guttag et al. [8] with temporal logic to define the ADTs
of components, and specified interactions of components in special specifica-
tion modules. Except the axioms relating actions of components in the ADTs,
they also gave some axioms independent of particular subsystem declarations to

192 A. Hong et al.

express properties of their class instances and associations. Poetzsch-Heffter and
Schäfer [19] adopted model variables and pure methods in specifying interfaces
of encapsulated components too. They specified invariants expressing properties
of components but the behavioral subtype relation for components was absent.

On the other side, object invariants in JML [10] and Spec# [2], and axioms
in MultiStar [22] are also specified to constrain subclasses through specification
inheritance as ours act. However, compared with axioms, object invariants are
less abstract and less powerful because: (1) they only hold at particular program
points in operations while axioms hold always; (2) they constrain operations but
axioms constrain logical data abstractions; (3) verifications for axioms which are
done ahead of method verifications do not involve methods, but invariants do;
(4) axioms are expressed as logical predicates, but invariants are in term of fields
and pure methods in implementation; etc. Moreover, Dafny, an automatic pro-
gram verifier for functional correctness developed by Leino [14], uses invariants
in terms of valid mathematical functions and ghost variables, but it supports
neither subtyping nor interface-based design.

Using the technique of abstract predicate family of Parkinson and Bierman
[18], Van Staden and Calcagno [22] expressed separately properties for individual
classes and entire multiple hierarchies correspondingly in exports and axioms in
MultiStar. We uniform their two kinds into our axioms, where each predicate
application encapsulates all its polymorphic definitions in implementations and
its meaning can be determined by applying fix function and inference rules. Dif-
fering from exports in MultiStar, we can inherit individual properties to restrict
subclasses. As we can inherit and reuse predicate definitions from superclass,
our specification and verification is less complex but more modular. Still, we
avoid infinite expansion of recursive predicate definitions in proving axioms and
method specifications which is not considered in MultiStar. Exports in jStar [6]
expressed interactive objects from different classes and enabling client verifica-
tions, however, it cannot restrict subclasses.

As future work, we would investigate more challenges [12] such as object
invariant, frame problem in specifying and verifying OO programs. We attempt
to apply our approach for more interactive programs like design patterns [7], web
applications, etc. Meanwhile, we are working on implementing our theoretical
framework using Coq.

A Inference Rules of VeriJ Framework

In this appendix, we give a brief introduction on the inference rules for verifying
VeriJ programs. More details can be found in [16,20].

Basic inference rules are given in Fig. 10. We skip explaining many simple
rules here. Rules [H-DPRE], [H-SPRE] are key to show our idea that specifica-
tion predicates have scopes, thus may have multi-definitions crossing the class
hierarchy for the polymorphism. If a predicate invoked is in scope (in its class
or the subclasses), it can be unfolded to its definition. These rules support hid-
ing implementation details in predicate definition. However, these two rules are

Axioms and Abstract Predicates in Spec./Verif. OO 193

Fig. 10. Basic inference rules

different. [H-DPRE] says if r is of type D, then in any subclass of D, p(r, r∗) can
be unfolded to the body of p in D. [H-SPRE] is for the static binding, where
fix(D,α) (in combine with D.p(r, r∗)) gives the instantiation of α in D (seeing
Sect. 4), and provides a static explanation for α. In fact, [H-SPRE] is the typed
version of [EXPAND] given in Sect. 4; [H-DPRE] and [H-PDPRE] are similar but
deal with dynamic binding.

Rules related to methods and constructors are given in Fig. 11, where we
assume a default side-condition that local variables y are not free in ϕ,α, that
can be provided by renaming. The rules reflect our idea in Sect. 4.2 and divide
three cases in verifying methods. They ensure the behavioral subtyping property
in a program.

[H-MTHD1] is for verifying methods with a specification (and a definition). It
demands that C.m’s body meets its specification, and asks to check the refine-
ment between specification of m in C with each of C’s supertypes, if exist.
Here we promote κ to type set, thus κ(super(C))(m) gives specifications for
m in C’s supertypes. If there is no, this check is true by default. [H-MTHD2] is
for verifying methods defined in classes without specifications. [H-MINH] is for
verifying inherited methods. [H-CONSTR] for constructors is similar. However,
a constructor cannot have multi-specifications. Here raw(this, C) specifies this
refers to a newly created raw object of type C, and then c modifies its state,
where raw(r, C) has a definition:

raw(r, C) ⎡=
⎪
obj(r, C), N has no field
r : C ∅ (r.a1 ∪≤ nil) ← · · · ← (r.ak ∪≤ nil), fields of C is a1, . . . , ak

Last two rules are for method invocation and object creation. Note that T.n
may have multiple specifications, and we can use any of them in proving client
code. Due to the behavioral subtyping, it is enough to do the verification by

194 A. Hong et al.

Fig. 11. Inference rules related to methods and constructors

the declared type of variable v. Because [H-INV] refers to only specifications,
recursive methods are supported.

Here we see how the information given by the developers affects verification.
A method specification is a specific requirement and induces some special proof
obligations. It connects the implementation with surrounding world: the imple-
mented interfaces, the superclass, and the client codes. When no specification is
given, we need to verify more by considering all the possibilities.

References

1. Aguirre, N., Maibaum, T.: A temporal logic approach to component-based sys-
tem specification and reasoning. In: Proceedings of the 5th ICSE Workshop on
Component-Based Software Engineering. Citeseer (2002)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly sup-
porting abstraction in design by contract. Softw. Pract. Experience 35(6), 583–599
(2005)

4. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verification
with separation logic. In: POPL’08, pp. 87–99. ACM (2008)

5. De Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE’01, vol. 26, pp.
109–120. ACM (2001)

6. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for java. In:
OOPSLA’08, pp. 213–226. ACM (2008)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

8. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software vali-
dation. Commun. ACM 21(12), 1048–1064 (1978)

Axioms and Abstract Predicates in Spec./Verif. OO 195

9. Hong, A., Liu, Y., Qiu, Z.: Axioms and abstract predicates on inter-
faces in specifying/verifying OO components. Technical report, School of
Mathamatics, Peking University (2013). https://github.com/zyqiu/tr/blob/
master/OO-components-rep.pdf

10. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

11. Leavens, G.T., Dhara, K.K.: Concepts of behavioral subtyping and a sketch of
their extension to component-based systems. In: Leavens, G.T., Sitaraman, M.
(eds.) Foundations of Component-Based Systems, Chap. 6, pp. 113–135. Cam-
bridge University Press, Cambridge (2000)

12. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects Comput. 19, 159–189
(2007)

13. Leavens, G.T., Naumann, D.A.: Behavioral subtyping is equivalent to modular rea-
soning for object-oriented programs. Technical Report, Department of Computer
Science, Iowa State University (2006)

14. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010)

15. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

16. Liu, Y., Hong, A., Qiu, Z.: Inheritance and modularity in specification and verifi-
cation of OO programs. In: TASE’11, pp. 19–26. IEEE Computer Society (2011)

17. Yijing, L., Zongyan, Q.: A separation logic for OO programs. In: Barbosa, L.S.,
Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 88–105. Springer, Heidelberg
(2012)

18. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
POPL’08, pp. 75–86. ACM (2008)

19. Poetzsch-Heffter, A., Schäfer, J.: Modular specification of encapsulated object-
oriented components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 313–341. Springer, Heidelberg
(2006)

20. Zongyan, Q., Ali, H., Yijing, L.: Modular verification of OO programs with inter-
faces. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 151–166.
Springer, Heidelberg (2012)

21. Qiu, Z., Wang, S., Long, Q.: Sequential µJava: Formal foundations. Technical
Report 2007–35, School of Mathamatics, Peking University (2007). http://www.
mathinst.pku.edu.cn/index.php?styleid=2

22. Van Staden, S., Calcagno, C.: Reasoning about multiple related abstractions with
multistar. In: OOPSLA’10, pp. 504–519. ACM (2010)

https://github.com/zyqiu/tr/blob/master/OO-components-rep.pdf
https://github.com/zyqiu/tr/blob/master/OO-components-rep.pdf
http://www.mathinst.pku.edu.cn/index.php?styleid=2
http://www.mathinst.pku.edu.cn/index.php?styleid=2

A Framework for Handling
Non-functional Properties

Within a Component-Based Approach

Jean-Michel Hufflen(B)

FEMTO-ST (UMR CNRS 6174) & University of Franche-Comté,
16, Route de Gray, 25030 Besançon Cedex, France

jmhuffle@femto-st.fr

Abstract. We describe a framework that allows us to manage evolu-
tion of software assembled by means of a component-based approach.
We start from information about the components of a software archi-
tecture, written using an adl. Several versions of the same component
may coexist within a kind of repository, we show how such a reposi-
tory is organised. Then we explain how our framework allows us to help
designers when they have to choose among several versions of a compo-
nent, regarding non-functional properties. We can also deal with some
replacement operations when such software is reconfigured dynamically.

Keywords: Component-based approach · Model transformations · Non-
functional properties · Configuration family · Design time vs run time ·
Dynamic reconfiguration

1 Introduction

Component-based approaches have reached some maturity since they have been
shown successful for the development of large software systems, especially embed-
ded systems. In particular, this approach seems to be suitable for systems with
high-safety requirements, such as time-constrained response or availability of
requested services. If we consider ‘practical’ results, this approach has led to
the implementation of many toolboxes, encompassing tools assisting develop-
ers for the conception of different parts at design time, tools for deriving pro-
grams and assembling them, tools allowing dynamic reconfiguration at run time.
Some examples are UniFrame [18], Fractal [1], sofa1 2 [2], sca2 [19,20]. Each of
these tools is based on a component model and the architecture of a component
system is described by means of an adl3, most often using xml4-like syntax.

This work has been partially funded by the Labex action, anr-11-labx-01-01.
1 SOFtware Appliances.
2 Service Component Architecture.
3 Architecture Definition Language.
4 eXtensible Markup Language.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 196–214, 2014.
DOI: 10.1007/978-3-319-07602-7 13, c© Springer International Publishing Switzerland 2014

A Framework for Handling Non-functional Properties 197

As shown in [7], these component models have many similarities but also princi-
pal differences. In addition, they have been developed with different aims. Among
these principal differences, we can notice the specification and processing of non-
functional properties5. As examples, sca uses annotations referring to policy sets
[21], Fractal allows some non-functional properties to be handled at run time in
order for a system’s components to be reconfigured dynamically—an example
using a component’s electrical power is given in [9]—but such properties cannot
be specified at design time within the configuration files handled by Fractal/adl.

The problems addressed in this article are related to the management of
configuration families. We build such a family by starting from specifications
of architectures, each describing a component system. Such specifications are
written using an adl such as Fractal. These descriptions are supposed to be
alternatives implementing the same service. They are merged in order to share
common subparts as far as possible and build relationships among subcompo-
nents of such alternatives as precisely as possible. Within our framework, we are
able to deal with non-functional properties, we can use them to build a ‘best’
architecture of components and export it using an adl such as Fractal or sca.

In Sect. 2, we precisely explain why our approach is original and why it
complements existing approaches and tools. Then we introduce our component
model and our notion of repository after a short example motivating them. We
also express the requirements and the implementation of our tools. Then Sect. 3
describes the successive stages of our approach, with particular focus on our
merge operation and our management of non-functional properties. Then Sect. 4
discusses some points about our framework. Last, we mention our future plans
in Sect. 5.

2 Our Framework

2.1 Motivation

The toolboxes mentioned above—UniFrame, Fractal, sofa, sca—use configu-
ration files that describe one architecture of one component system. In fact,
some tools—e.g., Fractal or sofa—allow a component to be derived from a more
abstract one, so we could express that several components are derived from
a common basis and are implementations of the same service. Such a modus
operandi is related to a top-down approach: a common abstract interface is
developed, and there may be several ways to refine it. Our approach proceeds
from another starting point: we are given several versions of a component archi-
tecture, possibly developed by different teams. These versions are supposed to
implement the same service and we have to choose one of them. Maybe a configu-
ration is better; another possible solution is that the best architecture is achieved
5 Some authors [5,15] use the term extra-functional properties instead. Let us recall

that functional requirements specify what a system is supposed to do whereas non-
functional properties express what a system is supposed to be.

198 J.-M. Hufflen

Fig. 1. Architecture of the location component.

by replacing some subcomponents of an architecture by subcomponents origi-
nating from another architecture. Such replacement can be done at design time,
it also be performed at run time, in case of a dynamic reconfiguration, if a
subcomponent fails and must be replaced by another.

An example motivating this approach has been provided by the tacos6

project. This project concerned the development of urban vehicles with new
functionalities and services, following the CyCab concept. In this framework, a
location composite component—a composite component consists of assembling
sub-components into a kind of black box—has been designed as part of this
land transportation system. This complete composite component uses two posi-
tioning systems—gps7 and Wifi—a controller and a merger. Each positioning
system is composed of an atomic positioning component and a software compo-
nent to validate perceived data. The validation components transfer the posi-
tioning data to the merger if they are precise enough. The merger applies a
particular algorithm to merge data obtained from positioning systems. Roughly
speaking, the goal of this algorithm is to ensure that the level of reliability must
not decrease between two locations unless the operation updating the context
is called. Finally, the controller’s purpose is to request and to acknowledge the
receipt of positioning data. In fact, several versions of this location component
were designed within the tacos project. The first version, described above, is
pictured in Fig. 1. A second version, given in Fig. 2, uses another gps compo-
nent, a gsm8 positioning system, and a wifi comparable with Fig. 1’s. No version
appeared undoubtedly better than the other, and there was much debate inside
the working group in charge of this component in order to choose among these
versions. From a technical point of view, these versions were designed in Frac-
tal/adl9, which does not allow non-functional properties to be handled at design
time. But studying such properties could be useful for this choice.
6 Trustworthy Assembling of Components: frOm requirements to Specification. More

details about this project can be found in [3] or at http://tacos.loria.fr.
7 Global Positioning System.
8 Global System for Mobile communications.
9 Fractal was used within the tacos project.

http://tacos.loria.fr

A Framework for Handling Non-functional Properties 199

Fig. 2. Alternative architecture of Fig. 1.

2.2 A Tool Complementing Other Services

To help designers to perform the choice between the two versions of the location
component, a first idea was to translate Fractal/adl specifications into descrip-
tions of component architectures suitable for sca. This task would have been
quite easy by means of an xslt10 stylesheet. That would have been a kind of
transformation model, which would have allowed us to study some non-functional
properties. But in sca, some non-functional properties are predefined, some are
not handled. Even if it quite illusory to handle any non-functional property—
they are so diverse—we aimed to study these properties without giving any
privilege to particular ones a priori. The same criticism holds for other tools
such as UniFrame or sofa 2, so using them seemed to us to be too restrictive
and we plan to design our own architecture description language.

However we did not aim to put into action a new toolbox which would be
comparable with Fractal or sca. We just aimed to provide additional services
to users of such a toolbox. That is why we designed a new adl, tacos+/xml,
allowing us to express component architectures originally designed with tools
such as Fractal, such a description being enriched with additional annotations
in our language. We start from descriptions written using an adl, translate
them into our language, merge them into a kind of repository, and can export
an description usable by the original toolbox. Since building the final architec-
ture description from several versions can result from examining non-functional
properties, our language allows us to deal with such properties when a final
configuration is built. In addition, we can perform some mixing: importing a
description from an adl and exporting it using another adl, merging several
descriptions written using different adls, etc.

tacos+/xml has been designed in order to be able to specify any non-
functional property a priori, with its possible associated values. Our goal is not
to measure such properties: we do not handle components themselves and our
10 eXtensible Stylesheet Language Transformations, the language of transformations

used for xml documents [24].

200 J.-M. Hufflen

approach is static. Our goal is to organise and use such information—computed
by tools or filled in by end-users—about components to compute globally such
properties and help designers when they have to choose among alternatives.
Minimising such a property may cause another property to be maximised, it is
up to developers to express strategies, we just provide tools in order to validate
such strategies. Let us go back to these non-functional properties, these may:

– supplied by developers, an example is the complexity property, expressed by
means of expressions such that O(n2) or O(log n);

– result from measurement performed at run-time, e.g., the electrical power,
– be constraints that an implementation must fulfill, an example is the time-

constrained response.

Of course, our approach is mainly accurate for non-functional properties that
result from measurements. But if a constraint has not been fulfilled at run time,
we can report that and use our system to find possible replacement.

2.3 Repository of Components

Hereafter we explain how our component model is organised. Let S be a set of
class names11, a component C is defined by:

– there pairwise-disjoint sets of parameters12 PC , input port names IC , and out-
put port names OC ;

– the class tC of the service implemented by the component;
– additional functions which allow us to get access to the class of a parameter

or port (τC : PC →IC →OC ∼ S), or to a parameter’s value (vC : PC ∼ ⋃
s∈S s);

– the set sub-cC of its subcomponents if the C component is composite.

A composite component cannot have parameters13. Of course, the binary relation
‘is a subcomponent of’ must be a dag14.

The components of an architecture are elements of a set CP . The bindings
of ports are couples of output and input port names, being the same type. In
addition, we also handle an is-alt-of binary relation: if C0 and C1 are components,
C0 is-alt-of C1 means that C0 can be replaced by C1; in addition to this intuitive
definition, we will show at Sect. 3.1 how this relation is built; of course, it is an
equivalence relation.

Non-functional properties are modelled by a nfp set of partial functions start-
ing from CP . For example, the non-functional property related to electrical
power is a partial function from CP to R

+ (the set of non-negative real numbers).
The range of such a function must be totally ordered.
11 In the sense used in object-oriented programming.
12 Some authors use the term ‘attributes’ instead. A parameter is related to an internal

feature, e.g., the maximum number of messages a component can process.
13 ... but its simple subcomponents can.
14 Direct Acyclic Graph.

A Framework for Handling Non-functional Properties 201

Fig. 3. Example of tacos+/xml specification.

An example of specification using our tacos+/xml language is given in
Fig. 3. We can see that this description is organised into a repository of com-
ponents. The name of the components at the top level is given by the roots
attribute of the tacos:general-metadata element. We can also remark that
this specification has been derived from a Fractal/adl specification: this infor-
mation has been put by means of the tacos:imported element (cf. line 34). The
original specification is pictured in Fig. 4. It is easy to see that Fig. 3’s text—
except for the tacos:nonfunctional-properties element (lines 24–32)—has
been got from Fig. 4’s text by means of a tree transformation. Such a trans-
formation is clearly syntactic, but we put a constraint into action. Informally,
given an import to tacos+/xml, we must be able to restore the original text.
Formally, let Ladl be the set of texts expressed using the adl language, and
Ltacos+/xml be the set of texts expressed using the tacos+/xml language, the

202 J.-M. Hufflen

Fig. 4. Fractal/adl specification Localisation.fractal (excerpt).

transformation f : Ladl ∼ Ltacos+/xml is valid if there exists a left inverse
transformation g : Ltacos+/xml ∼ Ladl such that g ⊆ f = idLadl

.
Practically, we implement these transformation functions in xslt. In fact,

xml/xslt techniques have been recognised as not providing adequate mecha-
nisms to support model transformation problems: when there is loss of informa-
tion due to the expressive power of the source and target languages, the mech-
anism has to store in an ad hoc structure, as mentioned in [22, Ch. 16]. This ad
hoc structure is modelled by the tacos:imported element. In practice, this ele-
ment is empty for specifications originating from Fractal/adl, and contains the
specification of policy sets for specifications originating from sca. Measurements
of non-functional properties included into the original specification—as allowed
by UniFrame—are put under the tacos:nonfunctional-properties element.

Let us remark that the existence of a right inverse f holds only for the
tacos+/xml texts without tacos:nonfunctional-properties elements. In
addition, this composition property holds up to a bijective renaming of com-
ponent names. If we consider Fig. 3’s text, we can see that the transformation
function puts new names for components—as an example, cf.lines 7 and 14, the
id attribute, the original name used by the Fractal/adl specification, is retained
by means of a path information: the value attribute of the tacos:path element,
see lines 8 and 15—: that allows us to merge specifications even if the same name
is used for different components, as we will show in Sect. 3.1. In other words, there
exists a right inverse g0 of f , that is, such that f ⊆ g0 � idL

tacos+/xmlnfp=∅
, where

‘�’ means ‘equals up to a bijective renaming of port names’ and Ltacos+/xmlnfp=∅

is the set of texts expressed using the tacos+/xml language, without any
occurrence of the tacos:nonfunctional-properties element. If the target adl
allows some non-functional properties to be expressed, the properties it knows
are specified into the result after a transformation of a tacos+/xml text.

tacos+/xml uses four namespaces, here are the prefixes we use:

– tacos is for tacos+/xml’s main namespace: in particular, the elements spec-
ifying components belong to it;

A Framework for Handling Non-functional Properties 203

– nfp is for the namespace devoted to non-functional properties;
– dc and dcterms are for metadata belonging to the Dublin Core [11]; the
dc prefix is for basic elements: we use these Dublin Core elements as sons
of the tacos:general-metadata element: dc:title for the study’s title,
dc:creator for the user performing this study, dc:date, . . . the dcterms
prefix introduces elements of the Qualified Dublin Core: we use these elements
for relationships among component specifications. Originally, the Dublin Core
aims to provide interoperable metadata standards that support a broad range
of purposes and business models. In particular, some elements of the Qualified
Dublin Core are very suitable for relationships among component specifica-
tions:

dcterms:hasVersion dcterms:isReplacedBy
dcterms:isFormatOf dcterms:isRequiredBy
dcterms:isPartOf dcterms:isVersionOf
dcterms:isReferencedBy . . .

3 The Different Stages of Our Approach

The modus operandi we put into action is pictured in Fig. 5. We explain it by
starting from Fractal/adl specifications, but it is the same for texts originating
from other adls. At Step (1), an xslt stylesheet is applied to a component spec-
ification written using Fractal/adl and results in a text in tacos+/xml. Let us
mention that this tree transformation flattens out a composite component’s spec-
ification15. A second version—or alternative—of the software may be designed
using Fractal/adl and converted into a tacos+/xml file. More versions may be
processed, as pictured by dashed boxes. At Step (2), all the tacos+/xml files
built during the previous step are merged into one family. This merge operation
is described in Sect. 3.1.

Step (3) consists in adding information about non-functional properties, more
precisely about the properties that can be determined statically or filled in by
end-users (for example, the complexity property). At Step (4), we choose the
‘best’ component, regarding non-functional properties—we explain our modus
operandi in Sect. 3.2—and the result is a tacos+/xml specification describing
this ‘best’ configuration. At Step (5), this ‘best’ configuration can be expressed
in Fractal/adl by using another xslt stylesheet. That is, the specification of
this configuration is exported using the Fractal/adl format.

Fractal is now ready to assemble the parts of the ‘best’ component, and run
a simulation of it. This simulation may enrich the knowledge about the non-
functional properties that evolve whilst the program is running. That causes the
master tacos+/xml file to be updated, this is Step (6). Step (7) allows users
to perform dynamic replacement of a component by another, regarding non-
functional properties again. Our framework does not perform such replacement
15 In Fractal/adl, a composite component is described by a tree of descriptions of its

subcomponents, whereas a tacos+/xml text is a set of component descriptions, a
composite component referring to its subcomponents, as shown in Fig. 3.

204 J.-M. Hufflen

Fig. 5. Modus operandi.

A Framework for Handling Non-functional Properties 205

Fig. 6. Customising the merge function.

directly since it only can be made by the tool in charge of assembling and running
the system—e.g., Fractal or sca—but our framework may help developers to
choose which replacements have to be performed.

Of course, let us assume that we would like to interface tacos+/xml with
a new environment, the component specification of this environment being writ-
ten in an L language, which is an adl. Then we have to write two programs—
using xslt or another language—: one from L to tacos+/xml and another
from tacos+/xml to L, with the constraint mentioned in Sect. 2 about the left
inverse of the transformation from L to tacos+/xml. Our approach is gen-
eral. . . provided that we are able to program some connection with particular
environments. But, in practice, these environments handle the same kind of infor-
mation: input and output ports, service names, bindings between ports, etc. So
these programs are quite easy to write, as we experienced them with Fractal and
sca. Besides, the goal is to be able to deal with some non-functional properties
not handled by the environment we start from. As abovementioned, sca allows
the specification of constraints related to time constraints and security, but many
other non-functional properties are not handled.

3.1 The Merge Operation

Roughly speaking, our merge operation aims to share the common subparts of
some configuration families, as far as possible. In addition, components that are
supposed to implement the same functionality but are not identical are bound
each together, that is, we express that such a component can be replaced by
another. In other words, this merge operation aims to share common tacos+/
xml specifications as far as possible, and also to extend the relation is-alt-of
as far as possible. Let us recall that when a component is imported into a
tacos+/xml repository, this component is given a unique name, the original
name being accessible as the path information (cf. Fig. 3). So several components
having the same original name can coexist in a tacos+/xml configuration fam-
ily. During the merge operation, such namesake components are supposed to
implement the same functionality, but end-users can redefine that as shown in
Fig. 6. In other words, our merge operation can be customised, its default behav-
iour being intuitive. When the merge operation is launched, it aims to merge
the components that are roots—given by the roots attribute (cf. Sect. 2)—and
the components that are supposed to implement the same service. The modus
operandi is given in Fig. 7 using a pseudo-algorithmic language. We use:

206 J.-M. Hufflen

– ‘x ←→ y’ for ‘x ← x → y’;
– ‘update-bindings(C0, C1)’ causes all the bindings from or to the C0 com-

ponent and recursively from or to its subcomponents to be substituted by
bindings from or to the C1 component and its subcomponents;

– ‘find-same-service-as(C, C-set)’—where C is a component and C-set a set
of components—which returns a component of C-set supposed to implement
the same service as C if such a component exists16, the value null otherwise.

Fig. 7. Merging specifications of components.

As an example, if this merge operation is applied to the configurations
depicted in Figs. 1 and 2, it results in the repository consisting of:

– the simple components Controller, Merger, GPS 1, GPS 2, Wifi, GSM.;
– Figs. 1’s and 2’s composite components, as roots of this family;
– metadata expressing that the last two composite components—known as
d2e15 and d2e16 within tacos+/xml specifications (cf. Fig. 3)—are
alternatives, e.g.:

16 That is, having the same original name as C w.r.t. the default behaviour, as explained
above.

A Framework for Handling Non-functional Properties 207

<tacos:component id="d2e15">
...
<tacos:technical-metadata>

<dcterms:alternative>d2e16</dcterms:alternative> ...
</tacos:technical-metadata>
...

</tacos:component>

In fact, this merge operation is quite close to what is done by means of rules in
the eml17 language [14], but ours returns two results: a set of components and
an update of the is-alt-of ∗ relation and of the bindings.

3.2 Using Information About Non-functional Properties

As abovementioned, non-functional properties are very diverse. Some must be
checked at run time, for example, time-constrained responses related to real-time
systems. Some result from measurement performed at run-time, for example,
the reliability property, which may be defined as the mean time between fail-
ures, or the speed’s performance, which often results from an average of measure-
ments when this component is in service. Some can be determined statically—for
example, the complexity of a program—or may be predictible—for example, the
energy consumption of a gps. If we consider the types of the possible values
for non-functional properties, they are very diverse, too: let us recall that the
complexity is usually expressed by means of symbolic expressions such as O(n2)
or O(n log n) whereas the other properties we have just mentioned above can
be expressed using decimal numbers. As another difficulty, there is no universal
evaluation function for all kinds of non-functional properties, as mentioned in
[27]. Some non-functional properties may apply for simple components, or can be
aggregated in the case of composite components, in which case the aggregation
function takes results for subcomponents and computes a global value for the
composite component. There is also a notion of dynamic aggregation, studied in
[27], in the sense that some properties may vary dynamically, for example, the
speed’s performance. In such a case, the dynamic aggregation method aims to
return a final score from individual successive ones.

In our framework, we assume the existence of a function summarising the
non-functional properties of interest for the current project. The range of this
function must be a totally ordered set and we try to maximise this function.
For example, let us assume that we are only interested in the reliability of a
component, this property being measured by a positive decimal number, so the
range is R

+ and the order used may be ‘∩’ since we are obviously interested in
maximising this property’s value. As a second example, the values of the power
property used by [9] are low, medium and high. In such a case, if we are interested
to minimize this power, the order ∅p used must be the reflexive and transitive
closure of high ∅p medium ∅p low. As a third example, more ambitious, let us

17 Epsilon Merging Language.

208 J.-M. Hufflen

assume that we are interested first in reliability, second in complexity. That is,
if the reliability of two versions of a component are equivalent, we choose the
component with the minimal complexity. Let C be the set of expressions denoting
algorithm complexity—e.g., O(n2), O(n log n), see above—C being ordered by a
relation ∅C such that O(n2) ∅C O(n log n), i.e., O(n log n) is a better value for
complexity than O(n2). In this second case, the range is the cartesian product
R

+ × C and the global order relation ∅g is a variant of the lexicographic order,
used within dictionaries:

(r1, c1) ∅g (r2, c2)
def⇐⇒ (r1 < r2) ∧ (r1 = r2 ∨ c1 ∅C c2)

for r1, r2 ⇒ R
+, c1, c2 ⇒ C.

Within our terminology, the function summarising non-functional properties
is called a digest. A digest is not a policy model because a policy model defines
both some situations and the actions to be performed in such cases. A digest
expresses a strategy to choose ‘better’ components. If trying to improve a prop-
erty causes another property to get more bad, it is up to the digest to manage
such situations. Of course, digests are user-defined, that is, each project has its
own digest. Syntactically, a digest is a function that can be used by an xslt 2.0
stylesheet, under the name tacos:le-digest and has the following look:

<xsl:function name="tacos:le-digest"as="xsd:boolean">
<xsl:param name="c0"as="element(tacos:composite-component)"/>
<xsl:param name="c1"as="element(tacos:composite-component)"/>
<!-- First computes the digests of c0 and c1, then compares them. -->
...

</xsl:function>

This function should implement a total and strict18 order. More precisely, when
this program is called, the users must make precise the components for which
the digest is applied. For example, if you want to organise the best configuration
around several versions of the Merger component, just make precise:

... basename="Merger"

—according to our terminology, a basename is a common name used by several
versions of Fractal for alternative components, it is distinct from a tacos+/xml
identifier—and the program will look for the best value about a Merger com-
ponent, provided that a complete composite component—whose root belongs to
the value associated with the roots attribute of a family—can be build around
this ‘best’ component. This basename parameter can be dropped out if only
global non-functional properties for the complete roots are of in interest.

If there is a list of several alternative components for which the digest is to
be applied, we sort this list according to this digest. Then we go to a possible
root (a composite component’s top), step by step, and repeat this operation.

18 That is, an irreflexive, antisymmetric, and transitive relation, e.g. ‘<’ for natural
numbers.

A Framework for Handling Non-functional Properties 209

Fig. 8. xslt functions for the electric power of a component and using that as a digest.

It may lead to ruling out some impossible associations of components. Finally,
we go to the descendants not yet explored and repeat this operation again. At
the last step, we return the first element of the list we have just got, this first
element has the ‘better’ value for the digest. This modus operandi cannot fail
since any component belongs to a realisable configuration19, before it was merged
with others. In fact, the answer may be an ‘original’ configuration or may mix
components belonging to several original configurations. This procedure may
lead to combinatorial explosion, but we confess that we have experienced it on
small- and medium-sized systems, leaving this problem for a future revision.

As a more complete example, let us assume that among several versions of
a component, we aim to minimise the electrical power. In this case, we express
that a C1 version is better than a C0 version if the electrical power of C0 is greater
than C1’s. That is shown in Fig. 8, lines 28–32.

Within tacos+/xml texts, the whole information concerning non-functional
properties is grouped under the tacos:nonfunctional-properties element.
The values associated with some properties have to be filled in by users, in
which case this is the contents of the corresponding element: an example is
given by the complexity property, modelled by the nfp:complexity element.
19 This is a strong hypothesis, but realistic, since such ‘original’ configurations have

been designed by means of tools such as Fractal or sca.

210 J.-M. Hufflen

If the value can be computed by a program at design time, we use the compute
attribute, as shown for the energy-consumption property. If the value results
from benchmarks done at run time, we use the check-up attribute. In these last
two cases:

– the values associated with attributes compute or check-up are uris20 identi-
fying the program;

– the result of such a program is stored into a file whose pathname is given by
the href attribute.

If the value associated with attributes compute or check-up is an xslt stylesheet,
it is applied to the complete tacos+/xml text, and the args attribute gives
additional information to supply; as an example, the electric power of a compo-
nent pictured in Fig. 3 can be computed by an xslt function as shown in Fig. 8:
this function—which can be viewed as an aggregation function—uses a look-up
table for the electric power of simple components, and the electric power of a
composite component is supposed to be the sum of the electric power of every
subcomponent. This scheme is frequent for the evaluation of some non-functional
properties. An aggregation function is superseded by values given by means of
a look-up table.

Considering the classification given in [7], our management of non-functional
properties is related to exogeneous management since we do not handle compo-
nents themselves, we just refer to a specification of knowledge about them. Let us
look at Fig. 8: if there is no information associated with a component specifica-
tion under the tacos:nonfunctional-properties element—that is, the whole
knowledge about electrical power is included into the variable the-table and
the function nfp:get-power—an exogeneous system-wide management is imple-
mented. This modus operandi is supersed by a non-empty content under the
tacos:nonfunctional-properties element, in which case an exogeneous man-
agement per collaboration is put into action. Using both tables and information
associated with component specifications allow some refinement to be imple-
mented: by default, values associated with component specifications are used,
but within particular contexts, these values may be refined by using tables or
other structures; even if the implementation is not the same, the approach is
close to what is shown in [15].

4 Discussion

At first glance, what has been done with tacos+/xml may seem to be worth-
while exercises using xml. Anyway, we use xml in an accurate way, that is, as
a central formalism for information interchange. We could have built databases
of component specifications and dealt with them using a language like sql21 in
order to select ‘better’ components, but it would have been more complicated
20 Uniform Resource Identifier.
21 Structured Query Language.

A Framework for Handling Non-functional Properties 211

for designers to specify digests in order to compare components regarding non-
functional properties. The same, the specification of possible values associated
with non-functional properties by XML Schema [25] may be viewed as a worth-
while exercise. However, as far as we know, that is the most advanced attempt of
specifying non-functional properties, in the sense that we have specified a precise
taxonomy that may be checked by means of a validator.

A merge operation working on component models has been studied in [4]
about the evolution of component-based software. This operation is related to
versioning software, it pursues the same goals than our merge operation in the
sense that it aims to share common subparts, but does not deal with alternatives
as done by our relation is-alt-of .

Considering the diversity of non-functional properties, it seems to be impossi-
ble to put a universal scheme into action. Moreover, articles and reports studying
these properties in general—e.g., [6,12,23]—do not agree about a common clas-
sification. We do not pretend to propose such a solution, but we have defined a
framework that allows knowledge about the non-functional properties of compo-
nents to be organised—provided that the values of a property belong to a totally
ordered set—and to put into action the two ways to implement exogeneous man-
agement, as defined in [15]. Some non-functional properties have been studied
within this framework: reliability, and efficiency regarding the result of profiling
tools such as the gprof analysis tool of gnu22 for programs written in C++ or
JRat for classes developed in Java. These non-functional properties, based on
simulations, are evaluated at run time, so we are able to analyse programs in
order to influence the choice of better components if the system has to evolve.
This direction seems to us to be very promising. Other tools, more specialised
in handling non-functional properties are presently in β-test and will be avail-
able soon. They include simple examples of properties computed statically, for
example, the xslt function calculating the electric power of a component and
given in Fig. 8 and some examples of order relations among digests.

If we see non-functional properties as annotations, comparable work has been
done as part of [16] or about the UniFrame toolbox. But if such annotations have
to be updated whilst the program is running, only predefined properties can be
handled. Our system requires intervention from designers but allows them to put
into action their own non-functional properties, their own criteria. Of course, it
may be difficult to express a digest, especially if several properties are combined,
but until now we have succeeded in doing that for our examples.

5 Conclusion and Future Work

The schemas defining the tacos+/xml language are available in [13], with all
our xslt stylesheets, in particular, those allowing Fractal/adl and sca texts to
be imported and exported. In addition, we could also import a specification using
Fractal/adl and export it using sca, or vice versa; we have just tried this fea-
ture, but it seems to us to be promising. In such a case, the fact that information
22 Recursive acronym: Gnu’s Not Unix.

212 J.-M. Hufflen

is not lost is ensured by our first transformation into tacos+/xml, as explained
in Sect. 2. We plan to replace some xslt stylesheets by more efficient implemen-
tations using algorithmic languages: for example, the merge operation, and a
revised version of our selection operation, that would use heuristics related to
NP problems if the number of components is high. Since starting configurations
are actual implementations of a service, our selection of the ‘best’ configuration
w.r.t. a digest may return a starting configuration or a mixing of components
belonging to several configurations. This implies that any component belonging
to a configuration family may work without additional constraint about hard-
ware or components accompanying it. A next version of our selection procedure
could take into account such constraints.

It can be viewed that we have focused on flexibility at design time mainly.
We plan to study how our tools may be usable for flexibility at run time, as
mentioned at the end of Sect. 3. Besides, we have implemented the checking of
the structural refinement relation defined in [8,10], we plan to add this rela-
tion to our metadata. We will have to extend the definition of these metadata,
since the Dublin Core is unable to model refinement relations. This refinement
relation may be viewed as a possible replacement relation, but not as an alterna-
tive because such refinement is not symmetric: we can only replace an abstract
specification by a more refined one. Last but not least, some recent works use
languages and tools related to the Semantic Web in order to model services,
including the description of non-functional properties. Examples are owl-s23

[17] and wsmo24 [26], a survey can be found in [28]. An interesting way could
be the integration of uch tools based on the Semantic Web to our framework.

Acknowledgements. Many thanks to the first version’s referees, who suggested me
constructive improvement. I also thank Olga Kouchnarenko, who encouraged me for
this work.

References

1. Bruneton, É., Coupaye, T., Stefani, J.-B.: The Fractal Component Model (2004).
http://fractal.objectweb.org/specification/index.html

2. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing advanced features in a
hierarchical component model. In: Proceedings of SERA 2006, pp. 40–48, Aug 2006

3. Chouali, S., Dormoy, J., Hammad, A., Hufflen, J.-M., Mouelhi, S., Kouchnarenko,
O., Mountassir, H., Tatibouët, B., et al.: Assemblage des composants digne de
confiance : de l’ingénierie des besoins aux spécifications formelles. Génie Logiciel
95, 13–18 (2010)

4. Cicchetti, A., Ciccozzi, F., Lévêque, T., Pierantonio, A.: On the concurrent version-
ing of metamodels and models: challenges and possible solutions. In: Proceedings
of IWMCP’11, pp. 16–25. ACM, New York (2011)

23 Ontology Web Language—Semantics.
24 Web Service Modelling Ontology.

http://fractal.objectweb.org/specification/index.html

A Framework for Handling Non-functional Properties 213

5. Cicchetti, A., Ciccozzi, F., Lévêque, T., Sentilles, S.: Evolution management of
extra-functional properties in component-based embedded systems. In: Proceed-
ings of CBSE, pp. 93–102 (2011)

6. Colin, S., Maskoor, A., Lanoix, A., Souquières J., Hammad, A., Dormoy, J.,
Hufflen, J.-M., Kouchnarenko, O., Mountassir, H., Lecomte, S., Petit, D., Poir-
riez, V.: A synthesis of existing approaches to specify non-functional properties.
Deliverable L2 1.1, tacos project (ANR-06-SETI-017) (2008)

7. Crnković, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2011)

8. Dormoy, J.: Contributions à la spécification et à la vérification des reconfigurations
dynamiques dans les systèmes à composants. Ph.D. thesis, Université de Franche-
Comté (2011)

9. Dormoy J., Koucharenko, O.: Event-based adaptation policies for Fractal compo-
nents. In: Proceedings of AICSSA (2010)

10. Dormoy, J., Kouchnarenko, O., Lanoix, A.: When structural refinement of com-
ponents keeps temporal properties over reconfigurations. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 171–186. Springer, Heidelberg
(2012)

11. Dublin Core Metadata Initiative (2008). http://dublincore.org
12. Glinz, M.: On non-functional requirements. In: Proceedings of RE 07, New-Delhi,

India, Oct 2007
13. Hufflen, J.-M.:TACOS+/XML and its toolbox (2011). http://lifc.univ-fcomte.fr/

home/∼jmhufflen/texts/tacos-plus/
14. Kolovos, D.M., Paige, R.F., Polack, F.A.C.: Model comparison: a foundation for

model composition and model transformation testing. In: Proceedings of GaMMa
’06, Shangai, China, May 2006

15. Lévêque, T., Sentilles, S.: Refining extra-functional property values in hierarchical
component models. In: Proceedings of CBSE 2011, pp. 83–92 (2011)

16. OMG. UML Profile for marte (2008) http://www.omgmarte.org/Documents/
Specifications/08-06-09.pdf

17. OWL-S: Semantic markup for web services (2005) http://www.daml.org/services/
owl-s/1.1/overview/

18. Raje, R.R., Bryant, B.R., Auguston, M., Olson, A.M., Burt, C.C.: A unified app-
roach for integration of distributed heterogeneous software components. In: Pro-
ceedings of the 2001 Monterey Workshop Engineering Automation for Software
Intensive System, Integration, pp. 109–119 (2001)

19. Service Component Architecture: Java component implementation spec-
ification (2007). http://www.osoa.org/download/attachments/35/SCA
JavaComponentImplementation V100.pdf?version=1

20. Service Component Architecture: Assembly model specificiation
(2007). http://www.osoa.org/download/attachments/35/SCA AssemblyModel
V100.pdf?version=1

21. Service Component Architecture: Policy framework (2007). http://www.osoa.org/
download/attachments/35/SCA Policy Framework V100.pdf?version=1

22. van Bommel, P. (ed.): Transformation of Knowledge, Information and Data: The-
ory and Applications. Idea Group Inc, Hershey (2007)

23. van Eenoo, C., Hylooz, O., Khan, K.M.: Addressing non-functional properties in
software architecture using ADL. In: Proceedings of the Sixth Australasian Work-
shop on Software System Architectures (2005)

http://dublincore.org
http://lifc.univ-fcomte.fr/home/~jmhufflen/texts/tacos-plus/
http://lifc.univ-fcomte.fr/home/~jmhufflen/texts/tacos-plus/
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.daml.org/services/owl-s/1.1/overview/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1

214 J.-M. Hufflen

24. Kay, M.H.: W3C. xsl Transformations (xslt). Version 2.0. w3c Recommendation
(2007). http://www.w3.org/TR/2007/WD-xslt20-20070123

25. W3C: XML Schema (2008). http://www.w3.org/XML/Schema
26. Roman, D., Lausen, H., Keller, U.: WSMO: Web Service Modelling Ontology

(2006). http://www.wsmo.org/TR/d2/v1.3/
27. Yu, H.Q., Reiff-Marganiec, S.: Non-functional property based service selection: a

survey and classification of approaches. In: Non-Functional Properties and Service
Level Agreements in Service-Oriented Computing Workshop, Dublin (2008)

28. Yu, L.: Semantic Web and Semantic Web Services. Chapman & Hall, Boca Raton
(2007)

http://www.w3.org/TR/2007/WD-xslt20-20070123
http://www.w3.org/XML/Schema
http://www.wsmo.org/TR/d2/v1.3/

Using Daikon to Prioritize and Group Unit Bugs

Nehul Jain1, Saikat Dutta2, Ansuman Banerjee1(B), Anil K. Ghosh1,
Lihua Xu3, and Huibiao Zhu4

1 Indian Statistical Institute, Kolkata 700108, India
{ansuman,akghosh}@isical.ac.in

2 Jadavpur University, Kolkata 700032, India
3 Department of Computer Science and Technology,

East China Normal University, Shanghai 200241, China
lhxu@cs.ecnu.edu.cn

4 Software Engineering Institute, East China Normal University,
Shanghai 200241, China
hbzhu@sei.ecnu.edu.cn

Abstract. Unit testing and verification constitute an important step in
the validation life cycle of large and complex multi-component software
code bases. Many unit validation methods often suffer from the problem
of false failure alarms, when they analyse a component in isolation and
look for errors. It often turns out that some of the reported unit failures
are infeasible, i.e. the valuations of the component input parameters that
trigger the failure, though feasible on the unit module in isolation, cannot
occur in practice considering the integrated code, in which the unit-
under-test is instantiated. In this paper, we consider this problem in the
context of a multi-function software code base, with a set of unit level
failures reported on a specific function. We present here an automated
two-stage failure classification and prioritization strategy that can filter
out false alarms and classify them accordingly. Early experiments show
interesting results.

1 Introduction

Professional coding practices advocate the development of a large complex soft-
ware code base as a collection of components, instead of a single monolithic
piece. Each component is developed to support a specific functionality and is
expected to be instantiated in different contexts inside the integrated software.
Each component typically has a set of input parameters, appropriate valuations
to which determine the context in which it is to be instantiated. The execution
of the entire software is the organized orchestration of the control and data flow
induced by the top level code, with inline component instantiations in between
to implement the top level design objective. Such modular design styles not only
facilitate development but also diagnosis and debug.

Verifying correctness of a software code at a large scale has always been a
grand challenge. Traditional test methods typically run out of steam, considering

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 215–233, 2014.
DOI: 10.1007/978-3-319-07602-7 14, c© Springer International Publishing Switzerland 2014

216 N. Jain et al.

the fact that the number of test cases arising out of the possible orchestrations
of the different components and their instantiations, is beyond the limit of what
they can achieve in reasonable time. Formal verification methods, on the other
hand, attempt at exhaustive verification of abstractions of the underlying infinite
software state space, with limits on the amount of promise they can deliver. The
complex state space arising out of the possible interleavings and instantiations,
typically give rise to an enormous analysis space, traversal of which is infeasible
in practice.

A popular approach often found to be successful in practice is modular testing
or verification. A modular approach essentially treats each module in isolation and
tries to come up with an exhaustive guarantee on its functional correctness. Unit
testers typically target some coverage criterion and generate test cases to achieve
a reasonable proportion of them within the testing duration. A number of unit
bugs are expected to be revealed as an outcome of this exercise, leading to pos-
sible refinements of the buggy modules. Formal approaches for modular analysis
essentially attempt to analyze (either symbolically or explicitly) every possibil-
ity of the presence of a bug inside the unit, and attempt to prove their presence,
usually guided by an assertion violation or reachability of error labels. This can
possibly lead to some quick unit level violations, which can be diagnosed and fixed.

Fig. 1. Infeasible failure

While modular approaches are quick and scalable in finding unit bugs, they
often suffer from the problem of false failure alarms. A failure reported by a
unit tester may actually be infeasible, that is, the test data that triggered the
failure, although reasonable when looking at the unit-under-test in isolation,
are outside of their boundaries when considering the integrated software code.
Similarly, failures received from a formal verifier analyzing an unit in isolation,
may actually be spurious, considering the fact that the state pointed to may
be unreachable in the integrated code base, or the failure run may not actually
occur. In both the cases, these false alarms received from a unit level verifier,

Using Daikon to Prioritize and Group Unit Bugs 217

need to be diagnosed and analyzed for correctness. False alarms may lead to
needless fixes, which has to be avoided.

In this paper, we consider this problem in the context of a multi-function
software code base, with a set of unit level failures reported on a specific function.
Figure 1 shows one such infeasible failure. The function f (intx, inty) may report
failures for unit tests which drive input values such that the condition (x+y > 10)
is met at point r. However, when put in the context of main, it is called at
program points p and q, where the input sets (m, n) and (a, b) have their value
constraints. It is clearly evident that due to the guard conditions at the points
from which f is called, the error triggering condition can actually never happen
in practice. Therefore, this failure is spurious and needs to be filtered out.

To get around this problem, a number of approaches propose to enrich the
unit level verifier with more knowledge about the calling environment [6]. It is
acknowledged that an exhaustive scalable verification solution at the integrated
system level is not easy to achieve, and unit validation is a much needed step
before attempting to scale up to the system level. Researchers have suggested
enriching the unit verifier with as much knowledge about the unit’s instantiat-
ing environment as possible to get around the false alarms. On one extreme,
several researchers have looked at the possibility of unit verification in universal
environments, assuming all valuations and combinations of the unit parameters
in all scenarios. While this leads to better theoretical guarantees, this is not a
viable option, considering the complexity of the associated verification problems.
On the other extreme, several articles report the possibility of refinement style
of reasoning, which may start with zero knowledge about the instantiating envi-
ronment, and incrementally add as much revealed in the false verification steps.
None of these approaches have been reported to be successful at the large scale.

A viable alternative to get around the problem of false alarms, is to possibly
analyze and rule out the failures which exhibit call sequences/valuations, which
will never occur in the integrated code. While it is possible for the developer to
actually achieve this in practice, the number of such scenarios may be overwhelm-
ing and end up in a needlessly painstaking exercise. Moreover, in a distributed
development environment, and a concurrent code base, it may actually be an
infeasible proposition to do this.

The motivation of our work is as follows. Each reported failure can be best
analyzed from the perspective of the information about the calling environment
that the failure assumes. Failures which depict scenarios that are in more con-
formance to the calling environment, should be examined with more priority,
since they possibly depict true bugs. The ones, which assume calling valuations
that contradict common knowledge about the function’s environment, are more
likely to be spurious. Moreover, many of the failures may actually relate to sim-
ilar flows in the code, and need not be separately examined. Intuitively, the
infeasible failures tend to be similar and can be grouped together because they
are relatively likely to relate to similar input constraint violations. Inspecting
one failure within the group yields information about the others. For example, if
the failures in one group are perfectly correlated, then classifying one effectively

218 N. Jain et al.

Fig. 2. The overall architecture of our framework

classifies them all. If one failure is identified as infeasible, so are the others and
can be skipped. If one failure relates to a true bug, so may be the others and
need to be examined. The objective of this work is to assign ranks to a given set
of failures based on their likelihood of being true. We present in this work, an
automated framework for classification and prioritization of unit failures. Our
proposed methodology has two main steps.

– In the first stage, we use Daikon [9] to identify input constraints on the function
under test, by mining invariants on the function boundary. Each invariant thus
generated is assigned a confidence.

– In the second stage, we associate a belief value to each failure by analyzing the
invariants the failures are in conflict with, and the respective confidence values.
Failures with similar characteristics are put into the same classification group
and assigned the same belief value. The idea behind this is motivated by the
fact that failures conflicting with the same invariants might be manifestations
of similar errors. The belief values enable us assign priorities to the failures
and help us prioritize the bug fixing activity.

Figure 2 shows an overview of the overall architecture of our framework. This
work is inspired by a similar article on ranking and classifying counterexam-
ples produced for hardware logic code bugs in [14]. We performed an empirical
evaluation of our framework on the replace program, which is a part of Siemens
Benchmark Suite [3]. early experiments demonstrate that our proposed method
works well in practice.

The rest of this paper is organized as follows. In Sect. 2, we illustrate our over-
all approach on a motivating example. Section 3 presents the detailed method-
ology. Section 4 presents our implementation, while Sect. 5 is a discussion on
our evaluation results. Section 6 presents a review of related work. Section 7
concludes the paper.

2 Overview

In this section, we present an overview of our approach using an illustrative
example, as shown in Figs. 3 and 4. The example consists of the main routine,
along with two functions, namely, div by f and gcd.

Using Daikon to Prioritize and Group Unit Bugs 219

Fig. 3. main Fig. 4. function-under-test

We consider the case when the function div by f is being verified in isolation.
This function is expected to compute a function of the input parameters c and
f and return a non-zero value. We wish to verify whether the function code
guarantees that the value returned is always non-zero. A scenario in which this
function returns zero is considered a failure and needs to be examined.

If we look at div by f in isolation, it is evident that there are multiple ways in
which this function can end up returning a value 0. A unit validation tool (a unit
tester like CUTE/CREST [16,17] or a model checker like BLAST [11]), working
on div by f in isolation, can end up generating scenarios (valuations of c and f),
which induce a flow of control in div by f that reach the return 0 statements.
Following are some valuations generated, all of which lead to failures.

- c = 11, f = 2
- c = -189, f = 9
- c = 10, f = 0

The unit verifier, having no knowledge of the conditions under which a call to
div by f() is made, looks at all the above as valid failures. Let us now look

220 N. Jain et al.

1 =====================================
2 ..div_by_f():::ENTER
3
4 f >= 1 confidence = 0.9
5
6 c % f == 0 confidence = 0.7
7 ======================================

Fig. 5. Invariants generated by Daikon

closely at the failures, and examine if these valuations are at all possible, when
the function is considered as part of main, and not an isolated piece of code.
Indeed, each program point in main, from where this function is called, may
present different valuations and contexts, which in turn may induce different
flows inside div by f . A close examination of main, reveals that there are some
invariants which are guaranteed to hold whenever div by f is called, no matter
from which point in main. This immediately allows us to analyze the earlier
reported failures in a more informed setting. Consider failure 1 for example.
This is never possible in the current piece of code, since at all invocation points
of div by f inside main, the condition c%f == 0 is ensured since either f is the
gcd of c and some other number or f is a factor of c.

Our Strategy: Our objective is to classify the failures as real or spurious. We
use two main steps to do this, namely (a) Invariant Mining and (b) Failure Belief
assignment and classification. Below, we explain briefly how this works on the
above example.

Invariant Mining: A program invariant is a property that is true at a particular
program point or points [9]. Despite their advantages, invariants are usually miss-
ing from programs. An alternative to expecting programmers to fully annotate
code with invariants is to automatically infer likely invariants from the program
itself. Invariant detection recovers a hidden part of the design space: the invari-
ants that hold over all possible executions. This can be done either statically
or dynamically. Static analysis examines the program text and reasons over the
possible executions and runtime states. Static approaches are not scalable and
hence not used widely in practice. A dynamic invariant detector runs a program,
observes the values that the program computes, and then reports properties that
were true over the observed executions. It does not suffer from the scalability
drawbacks faced by static analysis and so complements static analysis. Our work,
in this paper, uses Daikon [9], a dynamic invariant miner.

Invariants at the interface of div by f() are mined using Daikon. Invariants
capture conditions on inputs fed to div by f() by main, and thus give the details
of the environment for div by f() provided by main. Since the invariants are
mined dynamically from execution traces of the program, each invariant has an
associated confidence. The confidence assignment method is discussed in detail
in the following section. Dynamic invariants, as mined on the example on inputs
c, f of function div by f(int c, int f) are given in Fig. 5.

Using Daikon to Prioritize and Group Unit Bugs 221

Failure Belief assignment and classification: Based on the dynamic invariants
and their confidence values, we associate a belief value to each failure, based on
their conflicts with the invariant set. The intuition behind this measure will be
explained in the following section. Failures which contradict invariants of high
confidence are given lower belief values. Also, failures which conflict with exactly
the same set of invariants are put into one classification group.

We now consider each failure for div by f(int c, int f) and illustrate the
belief assignment step.

Failure 1: [c = 11, f = 2]
When div by f() is called with this valuation, the inputs contradict the input
constraints imposed by the invariant c % f == 0. We want to associate a
belief to this failure based on what we know of the environment. If this failure
has to be true, then the high confidence invariant (reported with confidence
0.7) from Daikon has to be false. Hence, the belief of this failure to be real
is calculated to be 0.3 using the following expression:

[1 − confidence(c % f == 0)]

Failure 2: [c = −189, f = 9]
The input valuation does not contradict any of the input constraints imposed
by the invariants and is likely to be real. We give a belief of 1.0 to failures
that do not contradict any of the invariants.

Failure 3: [c = 10, f = 0]
This input valuation contradicts both the invariants c % f == 0 and
f >= 1. This failure can be true only when both the invariants are false
in the same execution. We thus combine the likelihood of both the invariants
to be false in the expression below. In this case, the belief evaluates to .03
using the following expression:

[1 − confidence(c % f == 0)] → [1 − confidence(f >= 1))]

Thus, when presenting these failures to a developer for debugging, they will be
presented in the following order:

unit-under-test:div_by_f()
[c = -189, f = 9]: belief = 1.0 rank = 1
[c = 11, f = 2]: belief = 0.3 rank = 2
[c = 10, f = 0]: belief = 0.03 rank = 3

The first failure is presented as the most promising one since it does not contra-
dict any invariant known from the function environment, and hence has a high
likelihood to be a real failure. The third failure, on the other hand, contradicts
two high confidence invariants, and is less likely to be real.

222 N. Jain et al.

3 Detailed Methodology

This section presents the proposed formal approach behind our methodology.
Given:

1. A software code-base B
2. A function G invoked from different points in B
3. A set of unit failures F = {Fi} reported on G when examined in isolation

Our objective:

– To group failures into families
– To associate a belief metric with each failure, and order these families based

on the belief measure.

Our methodology has three main steps:

– Invariant Mining
– Confidence Assignment to Invariants
– Failure classification and belief assignment

In the following subsections, we describe each of the above steps in detail.

3.1 Invariant Mining

We use Daikon, a dynamic invariant miner to mine dynamic invariants on the
interface of G. B interacts with G by passing variables as input to G. By mining
invariants on this interface, we get a summary of the environment provided by
B to G. We consider multiple test cases on B, and collect the corresponding
execution traces of B. These traces are used as input to Daikon to get invariants
on inputs of G.

3.2 Confidence Assignment to Invariants

Given a set of dynamic invariants reported by Daikon, we now need to assign a
confidence measure to each invariant, which expresses the likelihood of it being
true in the actual code. Since the invariants are based on observed patterns
in the execution dump, the confidence should be based on the extent of the
different program control and data flow exercised by the tests used for collect-
ing program executions on which Daikon works. If the proportion of program
possibilities explored is low, the invariants should be assigned low confidence
values, since any unexplored program path may render the invariant false. Also,
the confidence assignment measure needs to take into account the number of
ways an invariant can be satisfied in reality, and the proportion of the satisfying

Using Daikon to Prioritize and Group Unit Bugs 223

valuations encountered in the executions. It is worthwhile to note an important
guarantee that Daikon gives: for a reported invariant I, no instance satisfying
the negation of I has been observed. As noted in [1], Daikon has a metric for con-
fidence assignment, which has some inherent weaknesses. We therefore, devised
our own confidence assignment metric, as explained below.

We want to associate a confidence measure to each of the mined invariants.
As noted above, these reported invariants do not have a single evidence of their
violation in our execution traces. Given a reported invariant I, there are multiple
ways of satisfying I, some (but may not be all) of which have been observed on
the execution traces. Consider, for example, the invariant x > 5, where x is an
integer, which can take any integral value between -8 and 8. There are 3 values of
x which satisfy this invariant, namely, 6, 7, and 8. Hence, the number of distinct
satisfying valuations we can witness on the execution traces is 3. However, it
may be the case that we actually encounter multiple occurrences of some of the
satisfying valuations, which should ideally boost our confidence. Also, we would
like to see occurrences of all the 3 satisfying scenarios in the execution runs.
Hence, a good confidence measure ϕ should consider the following factors:

– ϕ should increase with the number of instances of a satisfying valuation
– ϕ should also increase with the diversity of the observed valuations that

satisfy the invariant.

We first define a confidence measure for each of the satisfying scenarios and
then we aggregate the coefficients corresponding to all the satisfying scenarios
that satisfy the invariant. Our confidence measure for a particular scenario is
similar to the idea of Bayesian strength function proposed in [10]. Let p be
the probability that when a particular scenario is observed, there will be no
violation in the execution traces. In Bayesian analysis, instead of considering p
to be fixed and non-random, one considers a prior distribution σ(p) for p. As in
[10], we consider this prior to be uniform over the (0,1) interval, i.e. σ(p) = 1 for
p ∼ [0, 1]. Note that this prior is non-informative, and it gives no preference to
any particular value of p. Now, let us define a random variable X that denotes
the number of times the scenario is observed. Suppose that, we have observed
this scenario n times, and in none of these cases, any violation is reported.
Given a value of p, the probability of this event is given by P (X = n | p) = pn.
Now, given that event, we compute the posterior distribution of p and calculate
P (p > η | X = n), the conditional probability that p exceeds a threshold η
(typically η lies in the (0.5,1) interval), which is given by

ϕα(n) = P (p > η | X = n) =
∫ 1

α

pndp/

∫ 1

0

pndp = 1 − ηn+1.

It is clear from the above definition that ϕα(n) takes values in the [1 − η, 1]
interval. It takes the minimum value 1−η when n = 0, gradually increases with

224 N. Jain et al.

n, and takes a value close to 1 when n is large. If there are k such scenarios that
satisfy the invariant and the i-th (i =, 2, . . . , k) scenario is observed ni times,
the belief coefficient for the invariant is given by

ϕα(n1, n2, . . . , nk) =
k∑

i=1

ϕα(ni)/k =
1
k

k∑

i=1

(1 − ηni+1).

Note that k is finite, since we are dealing with invariants over finite domain
data types. Like ϕα(n), ϕα(n1, n2, . . . , nk) also takes values in the [1 − η, 1]
interval, and it is strictly monotonically increasing function of its arguments.
Since ϕα(n1, n2, . . . , nk) is symmetric in its arguments, it gives equal importance
to all satisfying scenarios. Also note that ϕα(n1, n2) > ϕα(0, n1 +n2) = ϕα(n1 +
n2, 0), which indicates that instead of observing the same scenario repeatedly, we
prefer to observe different scenarios relatively less of number of times. Therefore,
this confidence measure also takes care of the coverage of the scenarios satisfying
the invariant.

For a reported invariant I, we enumerate the number of satisfying scenarios
possible, and count the actual number of occurrences of each of these scenarios.
The expression above allows us to assign a confidence to I, as a function of η.

3.3 Failure Classification and Belief Assignment

For each failure Fi, we now examine the invariants to assign a belief measure to it.
A failure in conflict with a large set of invariants is less likely to be real. The idea
behind this is that invariants serve as our eyesight to the environment provided
by the entire code base. If a failure is not in agreement with this environment,
then it is possibly a false failure which is not feasible. The additional issue to be
addressed when using dynamic invariants instead of static is, although dynamic
invariants hold across all the traces from which they are mined, a dynamic
invariant may not hold across an execution which is not yet seen. To address this
issue, we use the confidence measure associated with each dynamic invariant (as
explained above), to compute the belief measure (i.e. the likelihood) of a failure.

Assigning a Belief Measure to a Failure: Given a failure Fi and a set of
dynamic invariants I = Ij , each associated with a confidence ϕ(Ii), we compute
the belief of Fi in two steps, as below.

– Identify the invariants which are in conflict with Fi: If the failure is true, then
the conflicting invariants must all be untrue. Let CIFi

be the set of invariants
in I which are in conflict with Fi.

– Calculate the belief of Fi: If CIFi
is empty, then we associate a belief measure

of 1.0 to the failure, as in Failure 2 in our example in Sect. 2. Otherwise, the
belief on Fi is computed as:

σ(Fi) = αIj∈CIFi
(1 − ϕ(Ij))

Using Daikon to Prioritize and Group Unit Bugs 225

The intuitive meaning of this metric is as follows. If any of the invariants in
CIFi

is valid, then Fi, which contradicts it, cannot be a real failure. Therefore,
based on available evidence, Fi can be a real failure, if each invariant in CIFi

is not valid. ϕ(Ij) models the likelihood that Ij is valid based on available
evidence, and hence σ(Fi) computes the joint probability that all invariants
in CIFi

are invalid. α denotes the product operation.

In the approach proposed in this paper, we assume that the invariants are inde-
pendent of each other, and hence the joint probability distribution is as given
above.

Failure Classification Groups: All failures in conflict with exactly the same
set of invariants are put together in a classification group. In other words, two
failures Fi and Fj with CIFi

= CIFj
are put into the same classification group.

Each member in the same group has the same belief measure, and therefore, the
group is assigned the same measure.

The groups are ranked according to their belief measures and presented
arranged in priority order. The highest belief failure group is assigned the rank 1.

4 Implementation

Our framework includes the following steps: invariant mining, confidence assign-
ment, failure grouping and ranking. In addition, we also used unit testing tools
(CREST [16] and KLEE [2]) to generate the unit failures. If the unit failures are
already available, this step is not needed. We explain the detail of the failure
generation step below, followed by a detailed discussion of the rest.

4.1 Failure Extraction

We explain here our experience with CREST. The steps with KLEE are some-
what different and excluded here due to lack of space. Crest [5] is an open source
Concolic Testing Engine for C, a reimplementation of CUTE (Concolic Unit Test-
ing Engine) [16]. It uses CIL (C Intermediate Language written in Ocaml) to
insert instrumentation code into a given program and perform symbolic execu-
tion in parallel with concrete execution to explore all feasible program paths.
It uses Yices [4] to solve symbolic constraints and generate inputs which enable
CREST to explore unique paths. At present, it supports only linear and integer
arithmetic and has no support for pointers/dereferences and bitwise operators.

For testing with CREST, we need to include crest.h in the target program and
use CREST type(x) to mark symbolic variables, where type can be int, short,
char, unsigned int, unsigned char or unsigned short. Then crestc (crest compiler)
is to be run on the target source code to enable CREST perform instrumenta-
tion. Once this is done, run crest (which performs the symbolic execution for
crest based on the provided parameters) will run the program executable with a

226 N. Jain et al.

search strategy. CREST provides 5 search strategies, namely, depth first search,
nearest uncovered branch first, random-negated branch randomly selected, uni-
form random and random input.

By default CREST produces one input file and one coverage file which con-
tains the last input and branch coverage information. We tweaked the source code
of CREST in our work to make CREST output multiple input combinations and
coverage information for all runs in a separate file.

4.2 Invariant Mining

Daikon [9] is a dynamic invariant detector which reports likely program invari-
ants in C, C++, Java, and Perl programs, and in record-structured data sources.
It is easy to extend Daikon to other applications. It generates only those invari-
ants whose confidence is above the threshold value set (we set it to 0 to get all
invariants) and outputs the confidence associated with each invariant so pro-
duced. Examples of invariants include being constant (x = a), non-zero (x ⊆= 0),
being in a range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering
(x ≤ y), functions from a library (x = fn(y)), containment (x ε y), sorted-
ness (x is sorted), and many more.

For each test case for B, we first run the kvasir front-end tool (also known as
instrumenter or tracer) on the software B which results in production of separate
.dtrace and .decls files corresponding to the execution trace for each test case.
Before using kvasir, the software has to be compiled with the gdwarf − 2 flag
enabled to produce DWARF − 2 format debugging information along with the
program. A .dtrace file contains information about a particular execution of the
program, the values of the program variables at each program point. A .decls
file consists of the information about what variables and functions exist in a
program, along with information grouping the variables into abstract types.

Next we use java daikon.Daikon to produce a single .inv file which contains
all invariants found over all the execution traces in binary format. There are
numerous control, optimization and debugging options available with Daikon
that have been used to produce suitable invariants for our purpose. The confi-
dence threshold was set to 0 so that we can work with all kinds of invariants. For
our program, we focused on only a targeted unit module and mined invariants
over the module interface.

4.3 Confidence Assignment, Failure Grouping and Ranking

Once the invariants are obtained, we also collect the different scenarios encoun-
tered in support of each invariant in the execution run. We also compute the
number of satisfying scenarios possible for each invariant, and hence, we have all
the information to compute our confidence measure. We do this using a simple
Java routine.

For the purpose of grouping and ranking, we designed a simple Java program
which takes the failures, the invariants along with the confidence values as input,
and produces the set of failure groups arranged in decreasing order of belief values.

Using Daikon to Prioritize and Group Unit Bugs 227

5 Evaluation

We now report our experience in using our method for grouping and ranking
failures on the replace program (written in C) from the Siemens Benchmark
Suite [3].

Generating Unit Failures with CREST: We considered replace as the top
level code B. The replace program searches for the occurrence of a given string in
a file and replaces it by another given string and displays the result to standard
output. We tested the function dodash() (unit function G) in the replace program
and found that it contains some stack smashing errors and a few memory out
of bound errors for particular combination of inputs. The function dodash() has
6 parameters: two integer pointers, two character arrays, one character and one
integer. For testing with CREST, we declare all these variables as symbolic using
CREST type(x) where type is the variable data type. We fix the length of two
character arrays at 5 for this setup as CREST cannot symbolically create arrays
of arbitrary length. Also it must be remembered that CREST cannot support
pointers/dereferences. So we created two integers and made them symbolic using
CREST. Then we used the address of those integers as inputs to dodash(). Given
below is the instrumented code for running CREST. This will further clarify our
methodology.

main()
{

char delim;
char src[5];
int i;
char dest[5];
int j;
int maxset;

CREST_char(delim);
CREST_char(src[0]);
CREST_char(src[1]);
CREST_char(src[2]);
CREST_char(src[3]);
CREST_char(src[4]);
CREST_int(i);
CREST_char(dest[0]);
CREST_char(dest[1]);
CREST_char(dest[2]);
CREST_char(dest[3]);
CREST_char(dest[4]);
CREST_int(j);
CREST_int(maxset);
dodash(delim, src, &i, dest, &j, maxset);

}

228 N. Jain et al.

We compiled the code using CREST using crestc (crest compiler).

crestc replace.c -o replace

The next step was to run crest over the executable file thus produced.

run crest ./replace 1000 -dfs

Here 1000 refers to the maximum number of iterations that CREST must use
during path exploration using the depth first search strategy (specified here by
dfs flag). CREST, by default, produces a single input and coverage file with the
information about the last iteration only. We edited the source code of CREST to
make it produce input and coverage information for input valuations and branch
coverage information produced during each iteration of CREST, corresponding
to multiple executions. In 58 of these executions (produced by CREST and
KLEE), the program produced stack smashing and memory out-of-bound errors
and the program was terminated. We extracted these 58 test cases from the
inputs file and used them as failures for our work.

Invariant Mining with Daikon: The next step was to mine invariants over
the interface of the function dodash() using Daikon. We used the test cases pro-
vided by the Siemens benchmark suite to train Daikon. We used the kvasir
front end tool to produce .decls and .dtrace files for each run of the pro-
gram. Invariants were mined from the generated trace and declaration files com-
bined. We set the confidence threshold to 0, so that Daikon reports back all
kinds of invariants found. In addition, we used the option -ppt-select-pattern =
“dodash*” to force Daikon report only the invariants found over the program
points corresponding to our target function dodash(). An additional option,
config option daikon.Daikon.print sample totals = true was enabled to print
the total number of all kinds of samples (variable values) found during the oper-
ation. All invariants found at the entry and exit points of the function dodash()
over all executions were reported.

It is quite expected that the nature and number of the invariants will vary
with increase in the number of executions. The number of invariants drops as
more executions are encountered, since many of them encounter refutations with
new program paths and valuations being explored. Figure 6 shows the results of
our invariant mining exercise. The vertical axis plots the number of invariants,
while the horizontal axis shows the number of Daikon runs used for mining. As
shown in the figure, Daikon reported 13 invariants when 100 executions were
considered, but the number dropped gradually and finally reached 6 when 5000
program executions were considered.

Confidence Measures of Invariants: Not only does the number of invari-
ants vary, the confidence measures vary as well with the number of Daikon
runs. Figure 7 shows the confidence plot for the 6 invariants surviving after 5000
Daikon runs (as shown in Fig. 6). The confidence values for the invariants delim
== 93 and maxset == 100 are same, hence, they are indistinguishable in the
plot. For this experiment, we scaled up the confidence values for the first four

Using Daikon to Prioritize and Group Unit Bugs 229

Fig. 6. Number of invariants reported by Daikon

Fig. 7. Confidence Plot

invariants (as per Table 1) to demonstrate how the confidence values change with
increasing runs.

The exact confidence values found for each of the 6 invariants is shown in
Table 1. In the program being tested, i and j are pointers to integers. Daikon
represents the values pointed to by i and j as i[0] and j[0] respectively. Also
Daikon, being based on Java platform, represents the two character arrays ‘src’
and ‘dest’ as two strings and reports an invariant (src < dest) based on the
lexicographical comparison of the two strings, ‘src’ and ‘dest’ are therefore, not
positions of char arrays in memory as is the usual case in the C language.

It may be noted that the confidence measures were calculated only for invari-
ants involving variables with finite domains. For example, in C, integers are
allotted a size of 32 bits. Invariants involving pointers were not considered in
this work.

230 N. Jain et al.

Table 1. Confidence values

Inv no. Invariant Confidence

1 i[0] ≤= 0 0.0100000064206967
2 i[0] ≥ 2 0.0100000128413934
3 j[0] ≤= 0 0.0100000059285127
4 src < dest 0.0102976672794117
5 delim == 93 1.0
6 maxset == 100 1.0

Failure Grouping and Belief Assignment: We now report on the failure
grouping and belief assignment activity for the 58 failures considered by us.
Figure 8 shows the number of groups formed with increasing number of Daikon
runs. Each group consists of 1 or more of the 58 failures. It is interesting to
note that initially, 10 groups were formed by collecting failures in conflict with
exactly the same set of invariants. The number of groups remains same for less
than 1000 runs (though a few invariants get dropped). As the number of runs
increases, beyond 1000, the number of groups formed drops to 9 (due to some
invariants being falsified leading to groups getting merged) and remains so till
5000 runs.

Table 2 shows the details of the 9 groups formed, considering all the 5000
executions. Column 1 of the table reports the group number, while the next
column reports the set of invariants (out of the 6 reported at the end of 5000
executions as in Table 1) that this group is in conflict with. The third column
shows the number of failures belonging to the group, while the final column is
the belief value assigned to it by our method.

Out of the 58 failures considered, 15 were actually real failures (verified by
us). All these 15 failures were in group 6, which was assigned a likelihood measure

Fig. 8. Classification grouping plot

Using Daikon to Prioritize and Group Unit Bugs 231

Table 2. Failure Group details

Group no. Inv. contradicted by the group/(inv no.) Group size Belief

1 3, 6, 4, 5 1 0.0
2 4, 5, 6 6 0.0
3 1, 2, 4, 5, 6 5 0.0
4 1, 2, 3, 4, 5 4 0.0
5 5, 6 1 0.0
6 4 15 0.99
7 1, 2, 4, 5 3 0.0
8 1, 2, 3, 4, 5, 6 12 0.0
9 1, 2, 4, 6 11 0.0

of 0.99. All the other groups (containing the remaining 43 failures) were assigned
the likelihood value 0 by our method, which were actually spurious.

6 Related Work

There has been quite a number of research attempts towards test case prioritiza-
tion and clustering. Test case prioritization techniques are typically heuristics as
it may be a difficult objective, with the goal to optimize rate of fault detection.
Various heuristics that have already been explored for a specific objective func-
tion [15] are randomized ordering, prioritizing in order of coverage of branches,
prioritizing in order of coverage of branches not yet covered, prioritizing in order
of total probability of exposing faults, prioritizing in order of total probability of
exposing faults adjusted to consider effects of previous tests prioritizing in order
of coverage of statements, prioritizing in order of coverage of statements not yet
covered. Many more have been suggested in [8].

Since a large number of reported bugs or crashes tend to be false alarms,
prioritizing reported bugs has also been extensively discussed. Often, many fac-
tors are considered to indicate the importance of a bug to be diagnosed, such as
the complexity of the method the bug relates to, the correlations among certain
bugs, the frequency of certain bug patterns, the feedback from inspectors. A lot
of research articles propose to learn from historical results, such as techniques
reported in [12,13,19]. EFindBugs [19] clusters bug reports based on identified
bug patterns, whereas Feedback-Ranking [13] utilizes code locality to infer cor-
relations among reported bugs. On the other hand, researchers in [12] predict
correlations from method calls. Both ReBucket [7] and the technique reported by
Seo and Kim [18] analyze crash stack traces and call stacks to identify whether
certain crash reports are related to the same bug. Crash reports are then clus-
tered based on their related bugs.

Our work has notable differences with those proposed in literature. Our app-
roach dynamically groups and orders unit bugs based on their trigger inputs,
and utilize the collected information to cluster and prioritize test data. The idea

232 N. Jain et al.

of ranking counterexamples has been proposed in [14] for ranking counterexam-
ples produced in a module checking flow. The overall approach presented in this
work is closely similar, with a different ranking metric used by us. In addition, we
address the problem in a generic software validation framework and our results
are inspired by unit testing in software.

7 Conclusion

This paper presents a grouping and prioritization framework for unit failures
produced on a program module. We use the knowledge obtained from a dynamic
invariant miner to assign a belied measure to each failure, and group similar
failures. Finally, we order the failure groups according to their likelihood values.
Experimental results are promising on one benchmark that we used for this work.
We are currently evaluating our method on more benchmarks. We believe that
our method will have good benefits in filtering spurious failure alarms in a unit
validation environment.

Acknowledgement. This work was partially supported by The Open Project of
Shanghai Key Laboratory of Trustworthy Computing (No. 07dz22304201201).

References

1. Daikon Invariant Detector. http://groups.csail.mit.edu/pag/daikon/download/
doc/daikon.html

2. Klee. http://klee.llvm.org/
3. Siemens Benchmarks. http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/
4. The yices smt solver. http://yices.csl.sri.com/
5. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE,

pp. 443–446 (2008)
6. Chaki, S., Clarke, E., Giannakopoulou, D., Psreanu, C.S.: Abstraction and assume-

guarantee reasoning for automated software verification. Technical report (2004)
7. Dang, Y., Wu, R., Zhang, H., Zhang, D., Nobel, P.: Rebucket: a method for cluster-

ing duplicate crash reports based on call stack similarity. In: ICSE, pp. 1084–1093
(2012)

8. Elbaum, S.G., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

9. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

10. Ghosh, A.K., Chaudhuri, P., Murthy, C.A.: On visualization and aggregation
of nearest neighbor classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 27(10),
1592–1602 (2005)

11. Henzinger, T.A., Jhala, R., MAjumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

12. Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.C., Park, S.: Which crashes
should I fix first?: predicting top crashes at an early stage to prioritize debugging
efforts. IEEE Trans. Softw. Eng. 37(3), 430–447 (2011)

http://groups.csail.mit.edu/pag/daikon/download/doc/daikon.html
http://groups.csail.mit.edu/pag/daikon/download/doc/daikon.html
http://klee.llvm.org/
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/
http://yices.csl.sri.com/

Using Daikon to Prioritize and Group Unit Bugs 233

13. Kremenek, T., Ashcraft, K., Yang, J., Engler, D.R.: Correlation exploitation in
error ranking. In: SIGSOFT FSE, pp. 83–93 (2004)

14. Mitra, S., Banerjee, A., Dasgupta, P.: Formal methods for ranking counterexamples
through assumption mining. In: DATE, pp. 911–916 (2012)

15. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an
empirical study. In: ICSM, pp. 179–188 (1999)

16. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

17. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In:
ESEC/SIGSOFT FSE, pp. 263–272 (2005)

18. Seo, H., Kim, S.: Predicting recurring crash stacks. In: ASE, pp. 180–189 (2012)
19. Shen, H., Fang, J., Zhao, J.: Efindbugs: effective error ranking for findbugs. In:

ICST, pp. 299–308 (2011)

Adapting Component-Based Systems
at Runtime via Policies with Temporal Patterns

Olga Kouchnarenko1,2 and Jean-François Weber1(B)

1 FEMTO-ST CNRS and University of Franche-Comté, Besançon, France
{okouchnarenko,jfweber}@femto-st.fr

2 Inria/Nancy-Grand Est, Villers-les-Nancy, France

Abstract. Dynamic reconfiguration allows adding or removing compo-
nents of component-based systems without incurring any system down-
time. To satisfy specific requirements, adaptation policies provide the
means to dynamically reconfigure the systems in relation to (events in)
their environment. This paper extends event-based adaptation policies by
integrating temporal requirements into them. The challenge is to recon-
figure component-based systems at runtime while considering both their
functional and non-functional requirements. We illustrate our theoretical
contributions with an example of an autonomous vehicle location sys-
tem. An implementation using the Fractal component model constitutes
a practical contribution. It enables dynamic reconfigurations guided by
either enforcement or reflection adaptation policies.

1 Introduction

Dynamic reconfiguration is a mechanism that allows components of component-
based systems to be added to or removed without incurring any system down-
time. The challenge is to build or maintain trustworthy systems which satisfy
both functional and non-functional requirements.

Let us illustrate the adaptation and reconfiguration needs on a characteristic
example inspired from a real case study in the land transportation domain.
The example concerns the Cybercar concept, a public transport system with
automated driving capabilities. Within the autonomous vehicle case study, a
location composite component — a critical part of land transportation systems
— is made up of different positioning systems, like GPS or Wi-Fi. Thanks to
adaptation policies, the location composite component architecture can be mo-
dified to use either GPS, Wi-Fi, or GPS+Wi-Fi positioning systems, depending
on some non-functional properties, such as available energy.

Recent implementations to support the development of component-based sys-
tems, like those for the Fractal reference implementation Julia1 or for GCM2,
tend to provide mechanisms for the execution of high-level adaptation policies.

This work has been partially funded by the Labex ACTION, ANR-11-LABX-01-01.
1 http://fractal.objectweb.org/julia/index.html
2 http://gridcomp.ercim.org/

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 234–253, 2014.
DOI: 10.1007/978-3-319-07602-7 15, c© Springer International Publishing Switzerland 2014

http://fractal.objectweb.org/julia/index.html
http://gridcomp.ercim.org/

Dynamic Adaptations Component-Based Systems 235

Adaptation polices implemented in Tangram4Fractal [1], triggered by qualitative
expressions of fuzzy logic (e.g., “power is low”), do not allow expressing tempo-
ral constraints. In [2,3], the authors have introduced a component-based system
model equipped with either (a) adaptation policies using qMEDL3 logic [4] or
(b) a linear temporal logic, called FTPL4, expressing architectural constraints,
events, and temporal patterns [3]. FTPL, based on Dwyer’s work on patterns
and scopes [5], and being more expressive than qMDEL at providing temporal
schemas, this paper proposes to bridge the gap between [2] and [3].

Our main contribution is the use of FTPL logic for triggering adaptation
policies and specifying behaviours of the system under scrutiny. As a practical
contribution, we have implemented these more expressive adaptation policies
to guide and control dynamic reconfigurations via enforcement and reflection
adaptation policies. When a violation of a property is detected, the reflection’s
purpose is to reconfigure the system to mitigate, if possible, the failure, whereas
the enforcement aims to circumvent property violations.

Furthermore, as temporal properties often cannot be evaluated to true or false
during the system execution, and so cannot, a fortiori, the extended policies, this
paper addresses this question by evaluating at runtime, in a progressive manner,
both temporal properties and extended policies. To this end, like in RV-LTL [6],
in addition to true and false values, potential true and potential false values
are used whenever an observed behaviour has not yet led to an acceptance or a
violation of the property under consideration.

Layout of the paper. Section 2 introduces our motivating example, a compo-
nent model, and its operational semantics, while Sect. 3 covers a temporal pat-
tern logic over reconfiguration sequences. In Sect. 4, linear temporal patterns are
integrated into adaptation policies. The evaluation at runtime of both tempo-
ral properties and extended—reflection and enforcement—adaptation policies is
presented in Sect. 5. We show that these mechanisms guarantee a system’s behav-
iour allowed by the initial system specification (correctness result). Finally, an
implementation allowing the user to deal with the Fractal component model is
described in Sect. 6. Section 7 presents our conclusion.

2 Motivating Example and Background

Component models can be very heterogeneous. Most of them consider software
components that can be seen as black boxes (or grey boxes if some of their inner
features are visible) having fully described interfaces. Behaviours and interac-
tions are specified using components’ definitions and their interfaces. In this
section, after introducing a motivating example, we revisit the architectural
reconfiguration model introduced in [3,7]. In general, the system configuration
is the specific definition of the elements that define or prescribe what a system
3 qMEDL is a flavor of MEDL used to express quantity of resource properties.
4 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its
relation to Fractal-like components and to first-order integrity constraints over them.

236 O. Kouchnarenko and J.-F. Weber

Fig. 1. The location component in Fractal

is composed of, while a reconfiguration can be seen a transition from a configu-
ration to another.

Motivating Example. The development, validation, and certification of a new
type of urban vehicles with fully or partially automated driving capabilities, like
CyCab [8] or Cristal5 aimed at replacing the private car, are a challenging issue.
These distributed and embedded systems require the expression of functional as
well as non-functional properties, for example time-constrained response, QoS,
and availability of required services.

A positioning system is a critical part of a land transportation system. Many
positioning systems have been proposed over the past few years. Among them,
we can mention GPS, GALILEO or GLONASS positioning systems which belong
to the Global Navigation Satellite Systems (GNSS, for short). Other localisation
systems have been designed using various technologies, like Wireless personal
networks such as Bluetooth, sensors, GNSS repeaters, or visual landmarks.

Figure 1 gives an abstract view of a composite location component developed
within the Fractal component framework. This component includes several posi-
tioning systems, like GPS or Wi-Fi, a controller, and a merger. Each positioning
system is composed of an atomic positioning component and a software compo-
nent to validate perceived data. The validation components transfer the posi-
tioning data to the merger if they are precise enough. The merger applies a
particular algorithm to merge data obtained from positioning systems. Finally,
the controller’s purpose is to request and to acknowledge the receipt of position-
ing data.

Moreover, there is a need to make the system’s architecture evolve at runtime.
Reconfigurations, however, must not happen at any but suitable circumstances.
The location composite component architecture can be modified to use, e.g.,
either GPS, or Wi-Fi, or GPS+Wi-Fi positioning systems, depending on some
non-functional properties, such as available energy, and the events from the cur-
rent indoor/outdoor environment. For example, the following requirement “After
the GPS component has been removed, the level of energy has to be greater than
33% before this component is added back” makes use of temporal and archi-
tectural constraints to allow the “with GPS” reconfiguration. Then, thanks to
adaptation policies, several possible reconfigurations can be determined, and
the most suitable reconfiguration can be chosen. For example, when the avail-
able energy makes both reconfigurations “with GPS” and “with GPS+Wi-Fi”
5 http://www.projet-cristal.net/

http://www.projet-cristal.net/

Dynamic Adaptations Component-Based Systems 237

possible within an adaptation policy, this policy can be used to put system’s
priorities to the “with GPS+Wi-Fi” reconfiguration, for more reliability.

Configurations. Following [3], we define a configuration to be a set of architec-
tural elements (components, required or provided interfaces, and parameters)
together with relations to structure and to link them.

Definition 1 (Configuration). A configuration c is a tuple →Elem,Rel∼ where

– Elem = Components ⊆ Interfaces ⊆ Parameters ⊆ Types is a set of
architectural elements, such that
• Components is a non-empty set of the core entities, i.e., components;
• Interfaces = RequiredInts ⊆ ProvidedInts is a finite set of the (required

and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes ⊆ PTypes is a finite set of the interface types and the

parameter data types;

– Rel =
{

Container ⊆ ContainerType ⊆ Contingency
⊆ Parent ⊆ Binding ⊆ Delegate ⊆ State ⊆ V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces ⊆ Parameters → Components is a total func-

tion giving the component which supplies the considered interface or the
component of a considered parameter;

• ContainerType : Interfaces ⊆ Parameters → Types is a total function
that associates a type to each (required or provided) interface and to each
parameter;

• Contingency : RequiredInts → {mandatory, optional} is a total function
indicating whether each required interface is mandatory or optional;

• Parent ← Components×Components is a relation linking a sub-component
to the corresponding composite component6;

• Binding : ProvidedInts → RequiredInts is a partial function which
binds together a provided interface and a required one;

• Delegate : Interfaces → Interfaces is a partial function to express del-
egation links;

• State : Components → {started, stopped} is a total function giving the
status of instantiated components;

• V alue : Parameters → {t|t ∩ PType} is a total function which gives the
current value of each parameter.

Example 1. To illustrate our model, the example of Fig. 1 is described in Fig. 2.

We also introduce a set CP of configuration propositions on the architectural
elements and the relations between them. These properties are specified using
first-order logic formulae [9]. The interpretation of functions, relations, and pred-
icates over Elem is done according to basic definitions in [9] and Definition 1.
6 For any (p, q) ≤ Parent, we say that q has a sub-component p, i.e., p is a child of q.
Shared components (sub-components of multiple enclosing composite components)
can have more than one parent.

238 O. Kouchnarenko and J.-F. Weber

Fig. 2. Configuration of the example of Fig. 1

Let C = {c, c1, c2, . . .} be a set of configurations. We introduce an interpre-
tation function l : C → CP which gives the largest conjunction of cp ∩ CP
evaluated to true on c ∩ C. We say that a configuration c = →Elem,Rel∼ satisfies
cp ∩ CP , written [[c |= cp]] = ∅, when l(c) ⇐ cp. In this case, cp is valid on
c. Otherwise, c does not satisfy cp, written [[c |= cp]] = ⊥.

Among all the configuration propositions, there are constraints common to all
the component-based system architectures. They define consistent configurations.
For example, two bound interfaces must have the same interface type and their
suppliers must be sub-components of the same composite. These consistency con-
straints are respectively expressed by ∧ ip ∩ ProvidedInts, ir ∩ RequiredInts.
(Binding(ip) = ir ⇐ ContainerType(ip) = ContainerType(ir)), and ∧ ip ∩
ProvidedInts, ir ∩ RequiredInts.(
Binding(ip) = ir ⇐

(
∨ c ∩ Components.

(
(Container(ip), c) ∈ Parent

∗(Container(ir), c) ∈ Parent

)))

The reader interested in consistency constraints is referred to [7].

Reconfigurations. Reconfigurations make the component-based architecture
evolve dynamically. They are combinations of primitive operations such as instan-
tiation/destruction of components; addition/removal of components; binding/
unbinding of component interfaces; starting/stopping components; setting para-
meter values of components. The normal running of different components also
changes the architecture, e.g., by modifying parameter values or stopping com-
ponents. Let Rrun = R ⇒ {run} be a set of evolution operations, where R is a
finite set of reconfiguration operations, and run is the name of a generic action
used to represent all the running operations of the component-based system.

Dynamic Adaptations Component-Based Systems 239

Definition 2 (Reconfiguration model). The operational semantics of
component-based systems with reconfigurations is defined by the labelled tran-
sition system S = →C, C0,Rrun ,→, l∼ where C = {c, c1, c2, . . .} is a set of con-
figurations, C0 ← C is a set of initial configurations, → ← C × Rrun × C is the
reconfiguration relation, and l : C → CP is a total interpretation function.

Let us note c
ope→ c↑ for (c, ope, c↑) ∩→, and c

ope→ when there is a target configu-
ration c↑ such that c

ope→ c↑. Given the model S = →C, C0,Rrun ,→, l∼, an evolution
path (or a path for short) ϕ of S is a sequence of configurations c0, c1, c2, . . . such
that ∧i ∃ 0. ∨ opei ∩ Rrun.(ci

opei→ ci+1). We write ϕ(i) to denote the i-th con-
figuration of ϕ. The notation ϕi denotes the suffix path ϕ(i), ϕ(i+1), . . ., and ϕj

i

denotes the segment path ϕ(i), ϕ(i + 1), . . . , ϕ(j − 1), ϕ(j). Let σ denote the set
of paths, and σf (← σ) the set of finite paths. A configuration c↑ is reachable
from c when there is a path ϕ = c0, c1, . . . , cn in σf s.t. c = c0 and c↑ = cn. An
execution is a path ϕ in σ s.t. ϕ(0) ∩ C0.

3 FTPL: A Temporal Logic for Dynamic Reconfigurations

In this section, we briefly recall the FTPL logic introduced in [3]. Inspired by
[10,11], we present a new progressive semantics for FTPL properties evaluation
at runtime, where, unlike [12], the evaluation of a trace or temporal property at
any given state of a path ϕ is based on its evaluation at the previous state.

3.1 Syntax and Notations

Basically, constraints on the architectural elements and the relations between
them are specified as configuration propositions defined in Sect. 2. In addition,
the proposed logic contains external events, as well as events from reconfiguration
operations, temporal properties, and, finally, trace properties embedded into
temporal properties. Let PropFTPL denote the set of the FTPL formulae obeying
the FTPL grammar given below. Let us first give the FTPL syntax.

<FTPL> ::= <tpp> | <events> | cp

<tpp> ::= after <events> <tpp> | before <events> <trp> | <trp> until <events> | <trp>

<trp> ::= always cp | eventually cp | <trp> ∧ <trp> | <trp> ∨ <trp>

<events> ::= <event>,<events> | <event>

<event> ::= ope normal | ope exceptional | ope terminates | ext

In order to give the semantics for these formulae, we introduce the set
B4 = {⊥,⊥p,∅p,∅}, where ⊥,∅ stand resp. for false and true values, and ⊥p,∅p

for potential false and potential true values. As in [6], we consider B4 together
with the truth non-strict ordering relation ⊕ satisfying ⊥ ⊕ ⊥p ⊕ ∅p ⊕ ∅. On
B4 we define the unary operation ¬ as ¬⊥ = ∅, ¬⊥p = ∅p, ¬∅p = ⊥p, ¬∅ = ⊥,
and we define two binary operations ∈, � resp. as the minimum and maximum
interpreted wrt. ⊕. Thus, (B4,⊕) is a finite de Morgan lattice but not a Boolean
lattice.

240 O. Kouchnarenko and J.-F. Weber

3.2 FTPL Basic Semantics

FTPL semantics is basic for events and configuration propositions, and runtime-
oriented for other properties. We write [[ϕ(i) |= cp]] to denote the evaluation of
the configuration proposition cp in B4

7 at the i-th configuration of the path ϕ.
External events (like events in [13]) occur instantaneously and can be seen

as invocations of methods performed by (external) sensors when a change is
detected in their environment. For each external event ext that may occur on a
given execution path ϕ, we define (a) a guard cpext, which is a first-order logic
formula over the parameters specified in the invocation of the method ext, and
(b) an assertion evalσ, valued in B2. Intuitively, if, at or before the i-th and after
the i − 1-th state (or, if i = 0, at the first state) of an execution path ϕ, there is
at least one occurrence of ext s.t. cpext = ∅ then evalσ(cpext, i) = ∅, otherwise
evalσ(cpext, i) = ⊥.

The following definition present FTPL semantics for (a) reconfiguration events
—“ope normal” (resp. “ope exceptional”) when a reconfiguration ope termi-
nates normally (resp. abnormally) or “ope terminates” when ope terminates
regardless of its result—, (b) external events, and (c) lists of events. We write
[[ϕ(i) |= e]] to denote the evaluation of the event (resp. list of events) e in B4 at the
i-th configuration of the path ϕ.

Definition 3 (FTPL Events Semantics). Let ope be a reconfiguration ope-
ration, ext an external event, e an event, and events a list of events.

The interpretation of the events at the i-th state of the path ϕ is defined by:

[[σ(i) |= ope normal]] =

{
↓ if i > 0 ∗ σ(i − 1) ∅= σ(i) ∗ σ(i − 1)

ope→ σ(i)

⊥ otherwise.

[[σ(i) |= ope exceptional]] =

{
↓ if i > 0 ∗ σ(i − 1) = σ(i) ∗ σ(i − 1)

ope→ σ(i)

⊥ otherwise.

[[σ(i) |= ope terminates]] = [[σ(i) |= ope normal]]
 [[σ(i) |= ope exceptional]]

[[σ(i) |= ext]] = evalσ(cpext, i)

[[σ(i) |= e, events]] = [[σ(i) |= e]]
 [[σ(i) |= events]]

3.3 FTPL Progressive Semantics

Let ϕ ∩ σ be a path. Given an FTPL property from PropFTPL, its value on ϕ
is given by the interpretation function [[|=]] : σ × PropFTPL → B4 defined
below by induction. In order to evaluate, in a progressive fashion, FTPL expres-
sions at runtime, without consulting a complete history of FTPL properties’
evaluation (like in [12]), we introduce the following notations. Let ησ = [[ϕ |= η]]
be the evaluation of an FTPL formula where η is a list of events, a trace pro-
perty, or a temporal property. We denote ησ(i) the evaluation of η on ϕ, at the
i-th state of the path.

Furthermore, following [5], if the scope of an FTPL property η is restricted
to the suffix path ϕk, k ∃ 0, we write ησk

= [[ϕk |= η]] for such a restriction, and
7 Since B2 ≥ B4, the evaluation [[c |= cp]] of the configuration proposition cp ≤ CP on
the configuration c detailed on p. 5 is considered to be valued in B4.

Dynamic Adaptations Component-Based Systems 241

ησk
(i) for the evaluation in B4 of this restriction at the i-th state of ϕ, where

i ∃ k. Then, the evaluation of η on the path ϕ (ησ = [[ϕ |= η]]), is similar to the
evaluation of η on the suffix path ϕ0 starting at the first configuration, wich is
ησ0 = [[ϕ0 |= η]]. For the sake of simplicity, we also write cpσk

(i) = [[ϕk(i) |= cp]].

Definition 4 (FTPL Runtime Progressive Trace Properties Seman-
tics). Let cp be a configuration proposition, η (resp. α) a trace property of
the form η = always cp (resp. α = eventually cp). We define ησk

(i) (resp.
ασk

(i)), the evaluation in B4 of [[ϕk |= η]] (resp. [[ϕk |= α]]) at the i-th state of ϕ
when the scope is restricted to ϕk, by:

− for i = k, ησk
(k) = ∅p � cpσ(k) ; ασk

(k) = ⊥p ∈ cpσ(k)
− for i > k, ησk

(i) = ησk
(i − 1) � cpσ(i) ; ασk

(i) = ασk
(i − 1) ∈ cpσ(i)

Furthermore, let ψ1 and ψ2 be two trace properties, then:
[[σk |= ψ1 → ψ2]] = [[σk |= ψ1]] � [[σk |= ψ2]] ; [[σk |= ψ1 ∪ ψ2]] = [[σk |= ψ1]] � [[σk |= ψ2]]

On the scope starting at the k-th state of ϕ, if at state k one has cpσ(k) =
∅ (resp. cpσ(k) = ⊥), the trace property always cp (resp. eventually cp) is
evaluated to ∅p (resp. ⊥p); otherwise, it is evaluated to ⊥ (resp. ∅). Then, for
i > k, at the i-th state of ϕ, always cp (resp. eventually cp) is evaluated to
the minimum (resp. maximum), interpreted wrt. ⊕, of (a) its evaluation at the
previous state and (b) cpσ(i). Table 1 shows an example of the evaluation of such
trace properties.

Table 1. Evaluation of trace properties

Definition 5 (FTPL Runtime Progressive Lists of Events Semantics).
Let e be a list of events. We define eσk

(i), the evaluation in B4 of [[ϕk |= e]] at
the i-th state of ϕ when the scope is restricted to ϕk, by:

− for i = k, eσk
(k) = [[ϕk(k) |= e]]

− for i > k, eσk
(i) = [[ϕk(i) |= e]] ∈ (∅p � eσk

(i − 1))

Intuitively, the expression [[ϕ(i) |= e]] ∈ (∅p � eσk
(i − 1)) evaluates to ∅ if

there is an occurrence of e at configuration i, and to ⊥ (resp. ∅p) if there is
no occurrence of e at configuration i and no (resp. at least one) occurrence of e
happening before configuration i on the scope starting at configuration k.

Definition 6 (FTPL Runtime Progressive Temporal Properties Seman-
tics). Let tpp be a temporal property, trp a trace property, e a list of events,

242 O. Kouchnarenko and J.-F. Weber

η (resp. α, ψ) a temporal property of the form η = after e tpp (resp. α =
before e trp, ψ = trp until e). We define ησk

(i) (resp. ασk
(i), ψσk

(i)), the
evaluation in B4 of [[ϕk |= η]] (resp. [[ϕk |= α]], [[ϕk |= ψ]]) at the i-th state of ϕ
when the scope is restricted to ϕk, by: for i ∃ k,

φσk
(i) =

(�

j∈I
σi

k
(e)

tppσj
(i)

)
� ↓p where I

σi
k
(e) = {j|k ≤ j ≤ i ∗ [[σ(j) |= e]] = ↓}

represents the set of indexes for an occurrence of e.

ϕσk
(i) =

⎧⎪⎨
⎪⎩

↓p if eσk
(i) = ⊥ ∨ i = k

⊥ if eσk
(i) = ↓ ∗ trpσk

(i − 1) ∈ {⊥, ⊥p}
ϕσk

(i − 1) otherwise

ψσk
(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

↓p if trpσk
(i) ∅= ⊥ ∗ eσk

(i) = ↓ ∗ eσk
(i − 1) = ⊥ ∗ trpσk

(i − 1) ∈ {↓p, ↓}
⊥p if trpσk

(i) ∅= ⊥ ∗ (eσk
(i) = ⊥ ∨ i = k)

⊥ if trpσk
(i) = ⊥ ∨ (eσk

(i) = ↓ ∗ trpσk
(i − 1) ∈ {⊥, ⊥p})

ψσk
(i − 1) otherwise

By definition, the evaluation of η = after e tpp is either (a) ∅p as long as e does
not occur or if tpp is evaluated to ∅p or ∅ on each suffix of the path starting at
an occurrence of e, or (b) ⊥ if on any of these suffixes tpp is evaluated to ⊥, or
(c) ⊥p, otherwise.

For α = before e trp, its evaluation is either (a) ∅p if e has not occurred yet,
or (b) ⊥ if for each occurrence of e, trp is evaluated to ⊥ or ⊥p on the segment
starting at the beginning of the considered scope and ending at the previous
i − 1-th configuration on the ϕ path. Otherwise, η at the i-th configuration is
evaluated to its value at the previous i − 1-th configuration.

Intuitively, the ψ = trp until e property can be seen as being evaluated
similarly to before e trp, but with the two following exceptions: (a) when trp
is evaluated to ⊥, ψ is evaluated to ⊥; otherwise, (a) on the beginning part of
the scope and as long as e has not occurred, ψ is evaluated to ⊥p.

Finally, we say that a reconfiguration model S = →C, C0,Rrun ,→, l∼ satisfies a
property η ∩ PropFTPL, written S |= η, if ∧ϕ.(ϕ ∩ σ(S)∪ϕ(0) ∩ C0 ⇐ ησ =∅).

Table 2 shows the evaluation of the temporal property η which is always
⊥p except on and after the configuration when the event entry occurs until the
configuration preceding the occurrence of the event exit where it is ∅p. Note that
the event entry occurs at both the j-th and the l-th configurations whereas the
evaluation of e = start, exit is ∅ at configurations 0 and k, hence ησ0(i) = ασ0(i)
for i < k, and ησ0(i) = ασ0(i) � ασk

(i) for i ∃ k.

3.4 FTPL Expressiveness

We should note that FTPL trace properties are either (a) a subset of safety
properties, as always cp, or, (b) a subset of guarantee properties, as even-
tually cp, or (c) conjunctions and disjunctions of properties from these subsets
(safety and guarantee properties). Consequently, according to the safety-progress
hierarchy [14,15], they are included in obligation properties which represent a
subset of response properties. In [16] the issue of enforceable properties, originally

Dynamic Adaptations Component-Based Systems 243

Table 2. Detail of the evaluation of “after start, exit (∩p until entry)”

addressed because of infinite sequences, is extended to finite and infinite proper-
ties at runtime. It is then established that enforceable properties are exactly
response properties. Hence, FTPL trace properties, as a subset of obligation
properties, are enforceable as well.

Before ending this section, let us mention (infinite) renewal properties [17],
a superset of safety properties also containing some liveness properties, that
can be enforced by edit-automata as runtime monitors. Intuitively, a property
is a renewal property if every valid infinite sequence of actions has infinitely
many valid prefixes. This is exactly the case of response properties [15]. FTPL
trace properties being, as established above, response properties, they are also
renewal properties and can then be enforced by edit-automata. Consequently,
FTPL temporal properties, acting as scopes [5] of trace properties, can also be
enforced in the same way.

4 Integrating Temporal Properties into Adaptation
Policies

Although one of the main advantages of reconfigurable component-based systems
is the ability of the system’s architecture to evolve at runtime, reconfigurations
must not happen at any but in suitable circumstances. In order to supervise and
to dynamically influence component-based systems reconfigurations, this section
introduces adaptation policies indicating reconfigurations suitable to perform,
and rules that can impact on the architecture of the component-based system
model.

To take into account some resource constraints, events in the system envi-
ronment, or even properties over sequences of reconfigurations, we propose to
extend adaptation policies by integrating FTPL properties into them. For that,
adaptation policies exploit the above-mentioned properties and their domains.
Each domain defines its specific vocabulary to qualify associated properties,
based on the evaluation of the architectural or temporal constraints. Adaptation
policies are defined by: (a) architectural reconfiguration operations to specify the

244 O. Kouchnarenko and J.-F. Weber

possible modifications of the architecture; and (a) adaptation rules to link the
properties concerning the component-based system and the need8 to activate a
reconfiguration. We adapt definitions in [1,2] to fit in with our component-based
system model semantics, when extending them with temporal properties.

Definition 7 (Adaptation Policies). Let S be a reconfiguration model, and
Ftype a set of fuzzy types. Given ϕ(i) ∩ C, a finite set AP of adaptation policies
for ϕ(i) is composed of elements A = →RN , RR∼, where:

– RN ← R is a finite (non-empty) set of architectural reconfiguration names,
– RR = {→F,B,G, I∼} is a finite (non-empty) set of adaptation rules, where

• F ∩ Ftype is a fuzzy type,
• B ← {ησ(i) = value | η ∩ PropFTPL ∪ value ∩ B4} is a set of properties in

PropFTPL evaluated in B4 on ϕ(i),
• G ← {cpσ(i) = value | cp ∩ CP ∪ value ∩ B2} is a set of configuration

propositions in CP evaluated in B2 on ϕ(i),
• I ← RN × F is a relation between reconfigurations and fuzzy values.

Let us denote Bσ(i) (resp. Gσ(i)) the conjunction of the properties evaluations
in B (resp. guards evaluations in G) on ϕ(i).

To illustrate adaptation policies with events, let us suppose that the system
where the location component is running can dynamically support the removal
or the addition of either the GPS and the Wi-Fi components. Of course, at any
given time there should be at least one of these components present. In certain
cases, however, it can be beneficial to remove one of these components.

For example, when the energy level of the vehicle is low, the Wi-Fi component
can be removed, and then added back when the internal batteries are recharged.
Furthermore, when the vehicle enters a “Wi-Fi area” where there is no GPS
signal available, it is suitable to remove the GPS component, which can be added
back after exiting such an area. Figure 3 displays the cycabgps adaptation policy,
which is written using a syntax inspired by Tangram4Fractal [1] adaptation
policies. This policy influences the addgps and removegps reconfigurations to
respectively add or remove the GPS component. It uses three events (lines 3–5):
start (that occurs only when the adaptation policy becomes effective) and entry
(resp. exit) that occurs when the vehicle enters (resp. exits) a “Wi-Fi area”.

Example 2. For the adaptation policy in Fig. 3, we have the architectural recon-
figurations set RN = {addgps, removegps} and Ftype = {{low, medium, high}}
which contains all the fuzzy types used in this policy. For the adaptation rule
spanning lines 23–25, we have, using the notation of Definition 7, F = {low,
medium, high}, B = {after start, exit (∅p until entry) = ∅p}, G = {gps ∩
Components∪wifi ∩ Components = ∅}, and finally I = {(removegps, high)}.
This adaptation rule expresses that when the expression in B holds (i.e., the
vehicle is within a “Wi-Fi area” - cf. Table 2 for details of the evaluation), if
both the GPS and the Wi-Fi components are present, then the utility of remov-
ing the GPS component, by invoking the removegps reconfiguration, is high.
8 As in [1,2], we use a fuzzy value (e.g., in {low, medium, high}) to express this need.

Dynamic Adaptations Component-Based Systems 245

Fig. 3. cycabgps adaptation policy

Let S = →C, C0,Rrun ,→, l∼ be a reconfiguration model and APS a finite set
of adaptation policies for S. We now define how the adaptation policies affect
the behaviour of the component-based system model.

Definition 8 (Restriction by Adaptation Policies). The restriction of S by
adaptation policies in APS is defined as SΥAPS = →CΥAPS , C0ΥAPS ,Rrun,→, l∼,
where C Υ APS is the least set s.t. if c ∩ C and A ∩ APS then c Υ A ∩ C Υ APS,
Rrun ≤ (⇒A∈APS

RN) �= ∅, l : C Υ APS → CP is a total interpretation function,
and for every ope ∩ Rrun, the transition relation →∩ C Υ APS × Rrun × C Υ APS

is the least set of triples (c Υ A, ope, c↑ Υ A) satisfying the following rules:

[ACT1] c
ope→ c↑

c Υ A
ope→ c↑ Υ A

(ope ≤ ⋃A∈APS
RN) → Bc → Gc

[ACT2] c
ope→ c↑

c Υ A
ope→ c↑ Υ A

ope /≤ ⋃A∈APS
RN

This definition means that all the configurations in C Υ APS are reachable from
initial configurations by either reconfiguration operations obeying adaptation
policies (Rule [ACT1]), or by normal reconfigurations which are not involved in
the adaptation policy (Rule [ACT2]).

5 Runtime Policy Evaluation

Given a component-based system and a set of adaptation policies, a problem
occurring while applying adaptation policies is to ensure that the reconfigura-
tions (of a component-based system obeying the policies) conform to the specified
reconfigurations. More formally, for two component-based systems modelled by
S and S Υ APS , the problem is to decide whether the behaviour of S obeying its
adaptation policies in APS is also a behaviour of S. To address this problem, we
propose to use the ready simulation notion [18].

246 O. Kouchnarenko and J.-F. Weber

Definition 9 (Ready Simulation). Let S1 and S2 be two reconfiguration mo-
dels over Rrun. A binary relation �← C1 × C2 is a ready simulation iff, for all
ope in Rrun, (c1, c2) ∩� implies

(i) Whenever (c1, ope, c↑
1) ∩→1, then there exists c↑

2 ∩ C2 such that (c2, ope, c↑
2)

∩→2 and (c↑
1, c

↑
2) ∩�.

(ii) Whenever c1
ope

�→ , then c2
ope

�→ .

We say that S1 and S2 are ready-similar, written S1 � S2, if ∧c01 ∩ C0
1∨c02 ∩

C0
2 .(c01, c

0
2) ∩�. Following [18], we keep the ready-set definition for S as readies

(c) = {ope | ope ∩ Rrun ∪ c
ope→}. A useful fact follows immediately from Defin-

ition 9: (c1, c2) ∩� implies readies(c1) = readies(c2). Consequently, it is enough
to show the disequality of the ready-sets to show that the ready simulation does
not hold between two configurations.

To be able to establish whether S Υ APS � S or not, and thus to provide a
correctness result concerning the restriction by adaptation policies, we consider
the following decision problem.

Adaptation Problem
Input: Component-based system modelled by S = →C, C0,Rrun,→, l∼, c ∩ C,
and the set AP ← APS of adaptation policies for c.
Output: true if ∧A ∩ AP, c Υ A � c, and false otherwise.

For the component-based system under its adaptation policies, we define the
ready set wrt. Definition 8 by: readies(c Υ A) = {ope | ope ∩ Rrun \ ⇒A∈AP RN ∪
c

ope→} ⇒ {ope | (ope ∩ ⋃
A∈AP RN) ∪ Bc ∪ Gc ∪ c

ope→}. Then, again, it is easy to
see that c Υ A � c implies readies(c Υ A) = readies(c). Both S and S Υ APS being
infinite state systems, the simulation problem is undecidable in general. However,
when the ready sets are different, we can reach a conclusion. Consequently,

Proposition 1. The adaptation problem is semi-decidable.

The adaptation policies can be used for specifying reflection or enforcement
mechanisms. The notion of reflection means that any unwanted behaviour trig-
gers a corrective reconfiguration through an adaptation policy. The notion of
enforcement, exposed in the AdaptEnfor algorithm in Fig. 4, means that no
reconfiguration that would lead the system to behave in an unwanted way is
allowed. This algorithm uses as inputs (1) a generic component-based system
gcbs—an object used to manage a component-based system regardless of the
design/development framework, and, (2) an array, v, containing candidate recon-
figurations ordered by priority. Each of the variables currentConf , targetConf ,
and endConf represents a configuration while the variable r designates a recon-
figuration9.

This algorithm contains five functions: (a) retrieveConf(s) returns the con-
figuration of the generic component-based system s; (b) size(v) returns the size
9 In AdaptEnfor Algorithm, ≡ can be implemented by various (pre-)congruence
relations—set equality for Elem and Rel in Definition 1, structural refinement in [19],
or other relations compatible with the reconfiguration relation.

Dynamic Adaptations Component-Based Systems 247

Fig. 4. Algorithm AdaptEnfor

of the array v; (c) getNextElement(v) returns the next element of the array
v; (d) applyReconf(c, r) returns the resulting configuration when the reconfig-
uration r is applied to the configuration c; (e) preserveEnforProps(c) returns
∅ if every enforcement property loaded holds on the configuration c, ⊥ oth-
erwise. Finally, there are also five procedures used within this algorithm: (a)
remove(v, e) removes the element e of the array v; (b) applyToSystem(c, s) initi-
ates a reconfiguration of the system s to reach a configuration c; (c) sendEvent
(r, arg) sends the event “r normal” or “r exceptional”, where r is a reconfigu-
ration, and arg stands for “normal” or “exceptional”; (d) break exits the current
“while” loop; (e) systemExit terminates the current run of the program.

Let us add that the way we enforce properties on adaptation policies supports
the soundness and transparency principles [20]. Given a set of properties to
enforce at runtime, the mechanism we use is (a) sound because it prevents (by
not entering in the IF statement’s body at line 16) the occurrence of reconfi-
gurations that would lead the system to violate, at the next state of execution,
the properties to enforce, (b) transparent because it allows (by entering in the
IF statement’s body at line 16) the occurrence of reconfigurations (if any) that
put the system in a state complying with these properties.

248 O. Kouchnarenko and J.-F. Weber

The “while” loop starting at line 12 in Fig. 4 ends when the size of the
array v becomes equal to 0. Since, on every loop iteration, the size of v is only
decremented (line 14), this algorithm always terminates.

Proposition 2. The AdaptEnfor algorithm always terminates.

When the AdaptEnfor algorithm terminates with no reconfiguration opera-
tion available to be applied to the current configuration, i.e., when the v size
becomes equal to 0 in the “while” loop, it means that the set {ope | (ope ∩
⋃

A∈AP RN) ∪ Bc ∪ Gc ∪ c
ope→}(← readies(c Υ A)) is empty. In this case, as every

adaptation policy for c specifies at least one adaptation rule for a reconfiguration
operation, the ready sets of c and c Υ A are different. This way the AdaptEnfor
algorithm allows answering the adaptation problem with false. Moreover,

Theorem 1 (Correctness). If a configuration c is not reachable in S then, for
any APS, it is not reachable in S Υ APS.

Correctness is clear because when we forget the B and G parts of an adaptation
policy A from APS restricting a behaviour of S Υ APS , we get a behaviour of S.

Reflection can be applied in a way similar to the enforcement mechanism
presented above. The main difference is that, whereas enforcement prevents the
occurrence of specific reconfigurations to avoid unwanted behaviours before they
actually happen, reflection allows the detection of such behaviours and triggers
corrective actions in the form of reconfigurations performed through adaptation
policies. Such actions can range up to the total stop of the system in case of the
detection of behaviours that would justify it.

6 Implementation and Case Study

This section describes an implementation developed in Java for the dynamic
reconfiguration of component-based systems guided by adaptation policies. A
case study shows the result of our experiment on the location component of the
CyCab given in Fig. 1.

As shown in Fig. 5, in a nutshell, our implementation uses three controllers:
(a) the event controller receives events, stores them, and flushes then after they
have been sent to a requester, (b) the reflection controller sends events to the
event controller when a property of a reflection policy is violated, and (a) the
adaptation policy controller manages reconfigurations, as well as, adaptation and
enforcement policies as in the AdaptEnfor algorithm displayed in Fig. 4.

In addition, an event handler is used to receive events from an external source
and to send them to the event controller. All interactions with the component-
based system (implemented using Fractal in our case) take place through the
generic component-based system manager, a set of Java classes developed in
such a way that they can be used regardless of the framework used to design the
component-based system without modifying its code.

Dynamic Adaptations Component-Based Systems 249

Fig. 5. Implementation architecture

Since we want our imple-
mentation to be independent
of a particular component-
based framework, only a few
classes implementing Java
interfaces of the generic
component-based system
manager use API specific
to the component-based sys-
tem framework. This way,
the controllers of Fig. 5 not
being Fractal-based, our
implementation can mana-
ge various component-based
frameworks. The synchro-
nization between adaptation
policy and reflection con-

trollers coupled with the way events are managed allows the controllers to oper-
ate together under the perfect synchrony hypothesis [21].

When running the implementation, each reconfiguration is simulated (cf. line
15 of the AdaptEnfor algorithm, Fig. 4), starting with the ones with higher priori-
ty. The first one which does not violate any property from an enforcement policy
is applied (lines 16 and 17). If the reconfiguration ends normally the event “r
normal” (line 20), where r is the name of the above-mentioned reconfiguration,
is sent to the event controller. If the reconfiguration ends with an error, the
previous configuration is rolled back and the event “r exceptional” (line 26) is
sent to the event controller. Events sent by the reflection controller to the event
controller are caught by the adaptation policy controller that apply corrective
actions using appropriate adaptation policies.

Figure 6 provides the results obtained by running our implementation with
the location component of the CyCab given in Fig. 1. The top chart illustrates
the evolution of the energy level, while the middle (resp. bottom) chart shows the
presence (value 1) or the absence (value 0) of the GPS (resp. Wi-Fi) components.
Note that the rate of energy consumption is related to the presence or absence of
the GPS and Wi-Fi component. When the vehicle enters (resp. exits) a “Wi-Fi
area”, the event entry (resp. exit) is sent to the event controller, as shown by
vertical segments on Fig. 6 at configurations 66 and 134 (resp. 78 and 147).

When the energy level goes below 10, a reflection policy triggers a reconfi-
guration (chargeBattery) that has the effect to update the energy level to 100.
Just before configuration 100, a Fractal API has been used to artificially set
the energy level to a negative value, this triggers (through a reflection policy)
the reconfigurations stopCycab and chargeBattery that respectively stop the
location composite component and update the energy level to 100. The location
composite component being stopped, the energy level does not decrease until
configuration 116 when it is restarted.

250 O. Kouchnarenko and J.-F. Weber

Fig. 6. Experiment with the location component

The cycabgps (Fig. 3) (resp. cycabwifi) adaptation policy, favours the
removal of the GPS (resp. Wi-Fi) component when the energy is low, and favours
its addition when the energy level is medium to high. Furthermore, when the
CyCab is in a “Wi-Fi area”, cycabgps (resp. cycabwifi) favours the removal of
the GPS (resp. addition of the Wi-Fi) component.

At configuration 66, the CyCab enters a “Wi-Fi area” having only the GPS
component present. The reflection controller, detecting that the vehicle is within
a “Wi-Fi area” without the Wi-Fi component, sends, to the event controller,
the reflectionNoWifiInWifiArea event. At the next configuration, as a con-
sequence of the retrieval of this event the adaptation policy controller initiates
the addwifi reconfiguration which adds and starts the Wi-Fi component. Then,
at the following configuration, the application of the cycabgps adaptation po-
licy (Fig. 3) by the adaptation policy controller causes the removal of the GPS
component through the removegps reconfiguration. At configuration 134, the
CyCab enters a “Wi-Fi area” having only the Wi-Fi component present. When
the level of energy becomes high (configuration 142), in application of cycabgps,
the GPS component is not added. As soon as the vehicle exits the “Wi-Fi area”
(configuration 79 and 148), since the level of energy is high, the GPS component
is added back.

Outside of a “Wi-Fi area”, the Wi-Fi (resp. GPS) component is removed at
configurations 15, 64, 89, and 159 (resp. 37 and 130), as a result of the application
of adaptation policies, because the level of energy becomes low. Still outside of
a “Wi-Fi area”, when there is only one component present (among the Wi-Fi
and GPS components), the other is added when the level of energy is medium
to high (configurations 24, 50, 79, 99, 148, and 167).

These experimental results show that extending adaptation policies with tem-
poral patterns provides the specifier with means allowing to better — in com-
parison with [1,2,4] — comprehend and control the component-based system’s

Dynamic Adaptations Component-Based Systems 251

behaviour. Because the frequency at which adaptation occurs depends on the
system under scrutiny, this parameter must be specified as a user-defined para-
meter. In a future development it will be possible to specify that adaptation
needs to happen in some bounded time.

Of course, it should be possible to come up with a finite encoding of the
bounded version of our example to use techniques for finite state systems. Our
point, however, is to evaluate temporal and architectural constraints over change-
able architectures at runtime. One can imagine new components, not even imple-
mented at the beginning of the run, to be added at execution time. This, indeed,
can lead to infinite behaviours.

7 Related Work and Conclusion

7.1 Related Work

The analysis of systems whose topology evolves over time is a challenging topic.
Tangram4Fractal [1] presents a qualitative approach of adaptation policies, but
disallow the use of temporal properties. The work in [2] shows an evolution of
Tangram4Fractal that permits adaptation policies based on a qMEDL logic [4]
to use external events. Architectural constraints, however, cannot be expressed
with qMEDL.

The FTPL logic, expressing temporal and architectural constraints, is intro-
duced in [3]. It is based on Dwyer’s work on patterns and scopes [5] and uses
specifications inspired by [22]. Nevertheless, this version of FTPL does not sup-
port external events and cannot always be evaluated at runtime.

Like Bounded Model Checking [23] (BMC for short), our approach may pro-
duce counterexamples when detecting property violation. Moreover, when no
violation is detected, both approaches are incomplete for the safety properties.
However, for some liveness properties, for example eventually, the satisfaction
can be established. It is also possible to establish the satisfaction of some safety
properties within the appropriate scope [5,22]. Similar to [7] using BMC, we can
validate architectural or temporal properties over instantiated reconfigurable
systems; this validation is size-bounded and partial.

Evaluation of FTPL properties at runtime is detailed in [12]. This version
of FTPL, however, does not support the use of external events. Furthermore,
to allow easier runtime evaluation, we use a progressive semantics inspired by
[10,11]. This semantics, unlike the one in [12], takes fully into account the usage
of scopes [5,22]

Our implementation for handling reflection is somehow similar to the steering
performed with the MaCS framework in [13]. The coupled PEDL and MEDL
scripts act as the event and adaptation controllers in our implementation while
the SADL script acts as our reflection controller. No enforcement is provided in
MaCS.

In [24], only runtime verification is performed; there is no adaptation mecha-
nism. Nevertheless, by using locations spanning over several components, the

252 O. Kouchnarenko and J.-F. Weber

specifications considered for BIP systems allow, similar to our approach, descri-
bing global behaviours of the system. Dissimilar to our approach where the code
of the component-based system under scrutiny is not modified, RV-BIP slightly
modifies components and thus may not allow the component reusability; in this
case, the separation of concerns principle would not be respected.

The work in [25] allows runtime monitoring of temporal properties for com-
ponent interfaces. When components come with an abstract behavioural model,
they can be considered as grey boxes rather than black boxes. Our approach,
not limited to monitoring interactions of component interfaces with an external
application, works in both cases.

7.2 Conclusion

As component-based systems evolve at runtime, and as a behaviour in which the
runtime temporal property evaluation becomes false might be not acceptable,
this paper has proposed to integrate temporal properties into adaptation poli-
cies, and to supervise—at runtime—the reconfiguration execution allowed by the
adaptation policies. Inspired by proposals in [6], this paper continues with a four-
valued logic allowing to characterize the “potential” properties (un)satisfiability.
In addition, the four-valued logic helps in guiding the reconfiguration process,
namely in choosing the next reconfiguration operation to be applied. A proto-
type Java implementation of the algorithm for verifying and enforcing FTPL
properties integrated into the adaptation policies has been developed, as a proof
of concept.

As a future work, we plan to investigate a decentralized method to evaluate
adaptation policies and temporal formulae by progression, as in [10]. On the
implementation side, a future direction is to handle component-based systems
using the FraSCAti [26] framework.

References

1. Chauvel, F., Barais, O., Plouzeau, N., Borne, I., Jézéquel, J.: Composition et
expression qualitative de politiques d’adaptation pour les composants Fractal. In:
Actes des Journées nationales du GDR GPL 2009 (2009)

2. Dormoy, J., Kouchnarenko, O.: Event-based adaptation policies for fractal compo-
nents. In: IEEE/ACS International Conference on Computer Systems and Appli-
cations 2010, AICCSA 2010, pp. 1–8. IEEE (2010)

3. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic recon-
figurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS,
vol. 6921, pp. 200–217. Springer, Heidelberg (2012)

4. Gonnord, L., Babau, J.P.: Quantity of resource properties expression and runtime
assurance for embedded systems. In: IEEE/ACS International Conference on Com-
puter Systems and Applications 2009, AICCSA 2009, pp. 428–435. IEEE (2009)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420 (1999)

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20, 651–674 (2010)

Dynamic Adaptations Component-Based Systems 253

7. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking
to validate reconfigurable architectures. ENTCS 279, 43–57 (2011)

8. Baille, G., Garnier, P., Mathieu, H., Pissard-Gibollet, R.: The INRIA Rhône-Alpes
CyCab. Technical Report RT-0229, INRIA (1999)

9. Hamilton, A.G.: Logic for Mathematicians. Cambridge University Press, Cam-
bridge (1978)

10. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)

11. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math.
Artif. Intell. 22, 5–27 (1998)

12. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal pat-
terns for dynamic reconfigurations of components. In: Arbab, F., Ölveczky, P.C.
(eds.) FACS 2011. LNCS, vol. 7253, pp. 115–132. Springer, Heidelberg (2012)

13. Kim, M., Lee, I., Shin, J., Sokolsky, O., et al.: Monitoring, checking, and steering
of real-time systems. ENTCS 70, 95–111 (2002)

14. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989). In:
Proceedings of the 9th ACM Symposium on Principles of Distributed Computing,
pp. 377–410. ACM (1990)

15. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) Automata, Languages and Programming. LNCS, vol. 623,
pp. 474–486. Springer, Heidelberg (1992)

16. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779,
pp. 40–59. Springer, Heidelberg (2009)

17. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM TISSEC 12, 19:1–19:41 (2009)

18. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. In: Ferrante, J.,
Mager, P. (eds.) POPL, pp. 229–239. ACM Press (1988)

19. Dormoy, J., Kouchnarenko, O., Lanoix, A.: When structural refinement of com-
ponents keeps temporal properties over reconfigurations. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 171–186. Springer, Heidelberg
(2012)

20. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4, 2–16 (2005)

21. Jantsch, A.: Modeling Embedded Systems and SoC’s: Concurrency and Time in
Models of Computation. Morgan Kaufmann, San Francisco (2004)

22. Trentelman, K., Huisman, M.: Extending JML specifications with temporal
logic. In: Kirchner, H., Ringeissen, Ch. (eds.) AMAST 2002. LNCS, vol. 2422,
pp. 334–348. Springer, Heidelberg (2002)

23. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

24. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verifica-
tion of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

25. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface speci-
fication language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.)
RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009)

26. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Softw. Pract. Exper. 42, 559–583 (2012)

Automatic Component Deployment
in the Presence of Circular Dependencies

Tudor A. Lascu, Jacopo Mauro(B), and Gianluigi Zavattaro

FOCUS team, Department of Computer Science/INRIA,
University of Bologna, Bologna, Italy

{lascu,jmauro,zavattar}@cs.unibo.it

Abstract. In distributed systems like clouds or service oriented frame-
works, applications are typically assembled by deploying and connecting
a large number of heterogeneous software components, spanning from
fine-grained packages to coarse-grained complex services. The complex-
ity of such systems requires a rich set of techniques and tools to sup-
port the automation of their deployment process. By relying on a formal
model of components, we describe a sound and complete algorithm for
computing the sequence of actions allowing the deployment of a desired
configuration. Moreover, differently from other proposals in the litera-
ture, our technique works even in the presence of circular dependencies
among components. We give a proof for the polynomiality of the devised
algorithm, thus guaranteeing efficiency and effectiveness of automatic
tools for component deployment based on our algorithm.

1 Introduction

Deploying software component systems is becoming a critical challenge, espe-
cially due to the advent of Cloud Computing technologies that make it possible
to quickly run complex distributed software systems on-demand on a virtualized
infrastructure, at a fraction of the cost which was necessary just a few years ago.
When the number of software components needed to run the application grows,
and their interdependencies become too complex to be manually managed, it
is necessary for the system administrator to use high-level languages for spec-
ifying the expected minimal system requirements, and then rely on tools that
automatically synthesize the low-level deployment actions necessary to actually
realize a correct and complete system configuration that satisfies such requests.

Recent works have introduced formalisms which focus on this automation
aspect of the deployment process, like the Juju initiative within Ubuntu [15] or
the Engage system [13]. According to the Juju approach, the system adminis-
trator decides which are the high-level services needed in the system and how
they should be reciprocal connected, and then the actual deployment is realized
by low-level scripts. Similarly, in Engage it is possible to indicate only the rele-
vant services which are needed and their interdependencies, and then the entire
system is automatically completed and the actual deployment is synthesized.

Work partially supported by Aeolus project, ANR-2010-SEGI-013-01.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 254–272, 2014.
DOI: 10.1007/978-3-319-07602-7 16, c© Springer International Publishing Switzerland 2014

Automatic Component Deployment in the Presence of Circular Dependencies 255

One of the limitations of the Engage system is that component interdepen-
dencies cannot be circular. This limitation follows from the fact that Engage
synthesizes the deployment plan by performing a topological visit of a graph
representing the component dependencies: the presence of cycles would forbid to
complete such visit. Nevertheless, in many cases, the assumption on the absence
of circular dependencies is not admissible. As a first example, we can mention
package-based software distributions where circularities are frequent (see [9] for
a list of circular dependencies among packages in Debian). Another example of
circularity is between replicated database services. For instance, in order to real-
ize a MySQL master-slave replication [4], the master needs from the slave some
authentication information (like the IP address), while the slave needs to receive
from the master a dump of the database.

In this paper, we address the problem of automatic synthesis of deployment
plans in the presence of component circular dependencies. To study the problem
we consider the Aeolus component model [12], that enriches traditional com-
ponent models, based on require/provide ports, with an internal state machine
that describes the component life-cycle. Each internal state can activate only
some of the ports at the component interface. Automatizing a deployment plan
consists in specifying a sequence of low-level actions like creation/deletion of
components, port binding/unbinding, and internal state changes, that reaches
a configuration with at least one component in a specific target internal state.
The Aeolus model has been introduced to study the computational boundaries
of deployment automation. In the full Aeolus model it is possible to specify con-
flicts among components and also capacity constraints, i.e. for each provided
port how many requirements it can satisfy, and for each require port how many
different instances of a complementary provide port are needed. In [12] we have
proved that the deployment problem is undecidable for the full Aeolus model. On
the contrary, if capacity constraints are not considered, we have proved in [11]
that the problem turns out to be decidable, but it is Exp-Space hard. In order
to allow efficient algorithms for automatic deployment, in this paper we further
simplify the Aeolus model by removing also conflicts. Juju and Engage also,
abstract away from conflicts and this is useful, for instance in Engage, to com-
plete partial configurations simply by adding new components without having
to check whether these are incompatible with already present components.

Paper contribution. The novel solution for automatic component deployment
that we propose in this paper is based on an algorithm divided in three distinct
phases. In a first phase the existence of a plan is checked by performing a forward
symbolic reachability analysis of all possible reachable states of the components.
If the target state is reachable, a second phase of abstract planning generates
a graph that indicates the kinds of internal state change actions that are nec-
essary, and the causal dependencies among them. Causal dependencies reflect,
for instance, the fact that a component should enter a state enacting a provide
port before another component enters a state requiring that port. In the third
phase of plan generation an adaptive topological sort of the abstract plan is per-
formed. By adaptive, we mean that the abstract plan could be rearranged during

256 T.A. Lascu et al.

the topological sort if component duplication is needed. Component duplication
is used to deal with those cases in which more instances of the same kind of
component must be contemporaneously deployed, in different states, in order to
enact different ports at the same time.

The algorithm is described in detail, and its correctness and completeness is
proved. By correctness we mean that in all the system configurations traversed
during the execution of the deployment plan, each active require port is guaran-
teed to be connected to a corresponding active provide port. By completeness we
mean that if it is possible to reach the required final configuration, our algorithm
is guaranteed to return a corresponding deployment plan. Finally, we show the
polynomial complexity of our algorithm.

In this paper we present the formalization of our algorithm, the correctness
and completeness proof, and the complexity analysis; in a related paper [18] we
present a proof of concept implementation.

Paper structure. In Sect. 2 we report the Aeolus component model and the for-
malization of the component deployment problem. In Sect. 3 we present our novel
solution to this problem, and in Sect. 4 we provide the correctness, completeness
and computational complexity results for the given algorithm. Finally, in Sect. 5
we discuss related work and draw some concluding remarks.

2 The Aeolus Component Model

In this section we introduce the fragment of the Aeolus model used to frame
the problem addressed. The Aeolus model, defined in [12], is a formal model
of components, specifically tailored to describe both fine grained software com-
ponents, like packages to be installed on a single (virtual) machine, and coarse
grained ones, like services, obtained as composition of distributed and properly
connected sub-services. The problem that we address in this paper is finding a
plan, i.e. a correct sequence of actions, that, given a universe of components,
leads to a configuration where a target component is in a given state.

A component is a grey-box showing relevant internal states and the actions
that can be acted on the component to change state during deployment. Each
state activates provide and require ports representing resources that the compo-
nent provides and needs. Active require ports must be bound to active provide
ports of other components.

As an example consider, for instance, the task of configuring a master-
slave replication, typically used to scale a MySQL deployment over two servers.
The master node must be created, installed and configured, and put in running
mode to start serving external requests. To activate the slave, an initial dump of
the data stored in the master is needed. Moreover, the master has to authorize
the slave. This is a circular dependency between master and slave, since the
latter requires the dump of the former that, on its turn, requires the IP address
of the slave to grant its authorization. The Aeolus model for the master and
slave component is shown in Fig. 1.

Automatic Component Deployment in the Presence of Circular Dependencies 257

Fig. 1. MySQL master-slave components according to the Aeolus model

The master component has 5 states, an initial uninst state followed by inst
and serving. In serving state, it activates the provide port mysql. When replication
is needed, in order to enter the final master serving state, it first traverses the
state auth that requires the IP address from the slave, and the state dump to
provide the dump to the slave. The slave component has instead 4 states, an
initial uninst state and 3 states which complement those of the master during
the replication process.

We now move to the formal definition of the Aeolus component model. It
is based on the notion of component type, used to specify the behaviour of a
particular kind of component. In the following, I denotes the set of port names
and Z the set of components.

Definition 1 (Component type). The set Tflat of component types ranged
over by T , T1, T2, . . . contains 4-ples →Q, q0, T,D∼ where:

– Q is a finite set of states containing the initial state q0;
– T ⊆ Q × Q is the set of transitions;
– D is a function from Q to a pair →P,R∼ of port names (i.e. P,R ⊆ I)

indicating the provide and require ports that each state activates. We assume
that the initial state q0 has no requirements (i.e. D(q0) = →P, ∅∼).

We now define configurations that describe systems composed by components
and their bindings. Each component has a unique identifier, taken from the set
Z. A configuration, ranged over by C1, C2, . . ., is given by a set of component
types, a set of components in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a 4-ple →U,Z, S,B∼ where:
– U ⊆ Tflat is the finite universe of the available component types;

258 T.A. Lascu et al.

– Z ⊆ Z is the set of the currently deployed components;
– S is the component state description, i.e. a function that associates to com-

ponents in Z a pair →T , q∼ where T ← U is a component type →Q, q0, T,D∼,
and q ← Q is the current component state;

– B ⊆ I × Z × Z is the set of bindings, namely 3-ple composed by a port,
the component that provides that port, and the component that requires it; we
assume that the two components are distinct.

Notation. We write C[z] as a lookup operation that retrieves the pair →T , q∼ =
S(z), where C = →U,Z, S,B∼. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given
a component type →Q, q0, T,D∼, we use projections to decompose it: .states,
.init, and .trans return the first three elements; .P(q) and .R(q) return the
two elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to denote the
union of all the provide ports (resp. require ports) of the states in Q. When there
is no ambiguity we take the liberty to apply the component type projections to
→T , q∼ pairs. Example: C[z].R(q) stands for the require ports of component z in
configuration C when it is in state q.

A configuration is correct if all the active require ports are bound to active
provide ports.

Definition 3 (Correctness). Let us consider the configuration C = ≤U,Z, S,B≥.
We write C |=req (z, r) to indicate that the require port of component z,

with port r, is bound to an active port providing r, i.e. there exists a component
z∈ ← Z \ {z} such that →r, z∈, z∼ ← B, C[z∈] = →T ∈, q∈∼ and r is in T ∈.P(q∈).

The configuration C is correct if for every component z ← Z with S(z) =
→T , q∼ we have that C |=req (z, r) for every r ← T .R(q).

We now formalize how configurations evolve by means of actions.

Definition 4 (Actions). The set A contains the following actions:

– stateChange(z, q, q∈) changes the state of the component z ← Z from q to q∈

– bind(r, z1, z2) creates a binding between the provide port r ← I of the compo-
nent z1 and the require port r of z2 (z1, z2 ← Z);

– unbind(r, z1, z2) deletes the binding between the provide port r ← I of the
component z1 and the require port r of z2 (z1, z2 ← Z);

– new(z : T) creates a new component of type T in its initial state. The new
component is identified by a unique and fresh identifier z ← Z;

– del(z) deletes the component z ← Z.

The execution of actions is formalized by means of a labeled transition system
on configurations, which uses actions as labels.

Definition 5 (Reconfigurations). Reconfigurations are denoted by transitions
C α−∩ C∈ meaning that the execution of α ← A on the configuration C produces a new
configuration C∈. The transitions from a configuration C = →U,Z, S,B∼ are defined
as follows:

Automatic Component Deployment in the Presence of Circular Dependencies 259

C stateChange(z,q,q∗)−−−−−−−−−−−−→ ≤U,Z, S∈, B≥
if C[z].state = q and
(q, q∈) ∈ C[z].trans and

S∈(z∈) =

{ ≤C[z].type, q∈≥ if z∈ = z
C[z∈] otherwise

C bind(r,z1,z2)−−−−−−−−→ ≤U,Z, S,B ∪ ≤r, z1, z2≥≥
if ≤r, z1, z2≥ �∈ B
and r ∈ C[z1].prov ∩ C[z2].req

C unbind(r,z1,z2)−−−−−−−−−−→ ≤U,Z, S,B \ ≤r, z1, z2≥≥
if ≤r, z1, z2≥ ∈ B

C new(z:T)−−−−−−→ ≤U,Z ∪ {z}, S∈, B≥
if z �∈ Z, T ∈ U and

S∈(z∈) =

{ ≤T , T .init≥ if z∈ = z
C[z∈] otherwise

C del(z)−−−−→ ≤U,Z \ {z}, S∈, B∈≥
if S∈(z∈) =

{≡ if z∈ = z
C[z∈] otherwise

and

B∈ = {≤r, z1, z2≥ ∈ B | z �∈ {z1, z2}}

We can now define a deployment plan as a sequence of actions that transform
a correct configuration without violating correctness along the way.

Definition 6 (Deployment plan). A deployment plan P is a sequence of
reconfigurations C0

α1−∩ C1
α2−∩ · · · αm−−∩ Cm such that Ci is correct, for 0 ∅ i ∅ m.

As an example of a deployment plan let us consider the configuration depicted
in Fig. 1. If we want to activate the slave, a possible deployment plan that allows
to do so requires to perform two consecutive state changes in the master to reach
the dump state. At this point, the slave component can reach the serving state
performing first the state change into the dump state and then into the serving
state. Note that every action in the deployment plan will correspond to one or
more concrete instructions. For instance, the state change from the serving to the
auth state in the master corresponds to issue the command grant replication

slave on *.* to user@’slave ip’.
We now have all the ingredients to define the deployment problem, that is our

main concern: given an universe of component types, we want to know whether
and how it is possible to deploy at least one component of a given component
type T in a given state q.

Definition 7 (Deployment problem). The deployment problem has as input
an universe U of component types, a component type Tt, and a target state qt.
The output is a deployment plan P = C0

α1−∩ C1
α2−∩ · · · αm−−∩ Cm such that

C0 = →U, ∅, ∅, ∅∼ and Cm[z] = →Tt, qt∼, for some component z in Cm, if there exists
one. Otherwise, it returns a negative answer, stating that no such a plan exists.

Fig. 2. Target

Notice that the restriction to consider one component in
a given state is not limiting: one can easily encode any given
final configuration by adding dummy provide ports enabled
only by the required final states and a dummy component
that requires all such provides. For instance, Fig. 2 depicts
the dummy target component that in inst state requires the
presence of both an active master and an active slave.

260 T.A. Lascu et al.

3 Solving the Deployment Problem

The algorithm that we present for solving the deployment problem is a chain of
three phases: reachability analysis, abstract planning and plan generation. Each
phase works on a representation of the meaningful information output by the
previous one. Namely, the reachability analysis produces a reachability graph
where the component types to be used in the deployment plan are selected in
combination with their internal states and the necessary bindings that will have
to be established between the activated provide and require ports. If the target is
reachable, the subsequent abstract planning phase produces a graph where nodes
represent deployment actions and arcs denote precedence constraints among
them. Finally, the plan generation phase synthesizes the deployment plan.

3.1 Reachability Analysis

The aim of the first phase is to check if the target can be obtained starting
from an initial empty configuration. This is achieved through a forward symbolic
reachability analysis that relies on an abstract representation of components. For
each component its individual identity as well as the number of its instances are
ignored, keeping only its component type and its state →T , q∼. Also, we abstract
away from individual bindings without considering delete actions. The abstrac-
tion on the bindings is possible since we can safely assume that, given a set of
components, all complementary ports on two distinct components are bound.
Delete actions are superfluous since the presence of one component does not
hinder the reachability of a state in another component.

Algorithm 1. Reachability graph construction
1: Nodes0 = {∗T , T .init↑ | T ↓ U}; provPort =

⋃
〈T ,q〉∈Nodes0

{T .P(q)}; i = 0;

2: repeat
3: i = i + 1;
4: Arcsi, Nodesi = ∅;
5: for all ∗T , q↑ ↓ Nodesi−1 do
6: for all (q, q∗) ↓ T .trans do
7: if T .R(q∗) → provPort then
8: Nodesi .add(∗T , q∗↑);
9: for all ∗T , q↑ ↓ Nodesi do
10: provPort.add(T .P(q));

11: Nodesi = Nodesi−1 ⊥ Nodesi
12: for all ∗T , q↑ ↓ Nodesi−1, ∗T , q∗↑ ↓ Nodesi do
13: if (q, q∗) ↓ T .trans then
14: Arcsi.add(∗T , q∗↑ −→ ∗T , q↑);
15: if q == q∗ then
16: Arcsi.add(∗T , q∗↑ ∗T , q↑);
17: until Nodesi−1 == Nodesi

Algorithm 1 creates a reachability graph that visually could be seen as a
pyramid where the top level contains all the component types in their initial state
and, at every step, a new level is produced by adding new component type-state

Automatic Component Deployment in the Presence of Circular Dependencies 261

pairs, reachable from the ones at the previous level (see the grey part of Fig. 3).
Nodesi is the set of the type-state pairs at level i, while Arcsi represents the
possible ways a type-state pair can be obtained; x −∩ y means that component
state y, at level i+1, is obtained from x at level i by a state change, otherwise y is
a copy of x (denoted as x y). ProvPort is a set containing the ports provided
by the components. Initially, it contains the ports provided by all components in
their initial state (line 1) and then it is incrementally augmented with the ports
provided by the newly added components (lines 9–10). The new type-state pairs
to be added are computed by checking if all their requirements are satisfied by
at least one component state at the previous level (lines 5–8). Finally, variable
Arcsi is updated (lines 13–16), listing all the possible ways a type-state pair
can be obtained. The generation of levels proceeds until a fix-point is reached
(line 17). Termination is guaranteed by the fact that the number of possible
type-state pairs is finite and at every cycle at least a new pair is added to the
Nodei set. When the fix-point is reached, if the last set does not contain the
target component type-state pair, a plan to achieve the goal does not exist and
we do not execute the subsequent phases of the algorithm.

Once all pairs have been generated, starting from the target pair at the
bottom of the pyramid, a selection procedure is carried out in order to pick
the pairs to be employed in the deployment plan. The selection is performed by
means of a bottom-up visit of the reachability graph as described in Algorithm2.

Algorithm 2. Component Selection
1: SNodesn = {∗Ttarget, qtarget↑};
2: for i = n downto 1 do
3: SNodesi−1 = SArcsi−1 = ∅;
4: for all ∗T , q↑ ↓ SNodesi do
5: ∗T ∗, q∗↑ = heuristic parent(∗T , q↑, i);
6: SNodesi−1.add(∗T ∗, q∗↑);
7: SArcsi−1.add(∗∗T ∗, q∗↑, ∗T , q↑↑);
8: for all r ↓ T .R(q) do
9: ∗T ∗, q∗↑ = heuristic prov(∗T , q↑, r, i);
10: SNodesi−1.add(∗T ∗, q∗↑);
11: SReq.add(∗T ∗, q∗↑ r�∗T , q↑);

From the bottom level (that we denote with n) we proceed upward selecting
the pairs used to deploy the pairs at the lower level. Variables SNodesi and
SArcsi denote, respectively, the selected components state pairs at level i and
how these pairs are obtained. From the last level only the target pair is selected
(line 1). For every selected component at level i + 1, we select at level i one of
its predecessors and we store this choice in variables SNodesi−1 and SArcsi−1

(lines 5–7). Since there may be more than one possible choice, we rely for the
decision on heuristics, here abstracted by function heuristic parent. The deci-
sion at this point could affect the length of the deployment plan. A study of the
best heuristics is out of the scope of this paper; we leave this task for future
work. For an example of a possible heuristic we refer to [18].

262 T.A. Lascu et al.

For every require port needed by the selected pairs of level i+1 that are not
copies, we select a pair at level i that is able to activate a complementary provide
port. This choice is recorded in SNodesi−1 and SReq (lines 10–11). In partic-
ular, SReq maintains the indication of the kinds of binding between provide
and require ports of components that will be used in the plan to be subse-
quently synthesized; these dependencies are represented by arcs →T ∈, q∈∼ r

�→T , q∼
where →T ∈, q∈∼ is the component type-state pair that activates the provide port
r, while→T , q∼ activates the complementary require port. Even in this case there
is usually more than one possible alternative in the selection of the type-pair
that can provide the requested port. As before, we rely on an heuristics, dubbed
heuristic prov, to decide which pair is used as a provider.

Figure 3 depicts the output of this first phase for the MySQL master-slave
example. The grey and black part is the reachability graph generated by Algo-
rithm1, while the part only in black is a possible selection done by Algorithm2.
For space reasons, master, slave and application are denoted by M, S and A respec-
tively, and each state is referred by its initial upper-case letter: U for uninst, I
for inst, S for serving, A for auth, D for dump and MS for master serving.

The first level of Fig. 3 contains components M, S and A in their initial states.
At the second level, two pairs are added: component M in I and component S in
I, derived respectively from M in U and S in U. At level 3, pair →M, S∼ is added.
At next step, pair →M, A∼ can also be added since it derives from →M, S∼ and its
requirement on the interface slave ip is fulfilled by →S, I∼, appearing at previous
level. The generation of the reachability graph proceeds as depicted until the pair
→A, I∼ is added: this is the last level as no new type-state pairs can be generated.

The selection procedure starts from the target node, →A, I∼ in the last level.
There is only one possible derivation for →A, I∼ and so →A, U∼ is selected as its
origin. Since →A, I∼ requires two interfaces, r mysql and s mysql , provided by
→M, RS∼ and →S, S∼, these providers are also selected. The selection process con-
tinues until components at the top level are selected.

Fig. 3. Reachability graph and component selection for the running example.

Automatic Component Deployment in the Presence of Circular Dependencies 263

3.2 Abstract Planning

The abstract plan specifies the life-cycle of all component types employed in
the deployment of the target state. It can be seen as a directed graph where
nodes represent either a new, del, or stateChange action, and arcs represent
action precedence constraints. Every node is tagged by a triple denoting an
action: →z, q, q∈∼ for a stateChange from state q to q∈ of instance z; →z, ε, q0∼
for a new action of instance z (in state q0), and →z, q, ε∼ for del action on the
instance z (in state q). Precedence arcs are of three kinds: (i) −∩: precedence
of stateChange actions on the same instance; (ii)

r�: precedence of instances
that provide a resource r w.r.t instances requiring it; (iii)

r���: precedence of an
instance requiring a port r w.r.t. actions that deactivate it.

Algorithm 3. Abstract Plan Generation
1: Paths = getMaxPaths(Nodes0, . . . , Nodesn);
2: Act = ∅; InstMap = { };
3: for all

(∗T , q0↑, . . . , ∗T , qh↑) ↓ Paths do

4: inst = getFreshName();
5: InstMap[inst] = T ;
6: Act.add(∗inst, ε, q0↑); Act.add(∗inst, qh, ε↑);
7: for all i ↓ [0..h − 1] do
8: Act.add(∗inst, qi, qi+1↑)
9: Prec.add(∗∗inst, ε, q0↑ −→ ∗inst, q0, q1↑↑);
10: Prec.add(∗∗inst, qh−1qh↑ −→ ∗inst, qh, ε↑↑);
11: for all i ↓ [0..h − 2] do
12: Prec.add(∗∗inst, qi, qi+1↑ −→ ∗inst, qi+1, qi+2↑↑);
13: for all ∗∗T , q∗↑ r�∗T ∗, s∗↑↑ ↓ SReq do
14: for all n1 == ∗i1, s, s∗↑ ↓ Act . InstMap[i1] == T ∗ do
15: let n2 = ∗i2, q, q∗↑ ↓ Act where InstMap[i2] == T in

16: Prec.add(n2
r�n1)

17: let n∗
1 where n1 −→ n∗

1 in
18: repeat
19: let n∗

2 = ∗i2, q∗, q∗∗↑ where n2 −→ n∗
2 in

20: if q∗ �= ε ≤ r ↓ T .P(q∗) then
21: n2 = n∗

2

22: until q∗∗ == ε ∨ r �↓ T .P(q∗)
23: Prec.add(n∗

1
r���n2)

Algorithm 3 is used to derive the abstract plan. To generate an abstract plan
we consider an instance for every maximal path that starts from a type-state
pair in the top level and reaches a type-state that is not a copy. For instance,
as shown in Fig. 3, for the master-slave example there are three maximal paths:
one for the master (starting from →M, U∼ and ending in →M,MS∼), one for the
dummy component and one for the slave (starting from →S, U∼ and ending in
→S, S∼). The computation of the maximal paths is performed by the function
getMaxPaths (line 1). Variables Act and Prec are used to store the actions of
the abstract plan and the precedence constraints, respectively.

The first loop (lines 3–12) is used to generate the nodes of the abstract plan
and the precedence constraints −∩ among them. First of all, a new fresh name
for the instance is generated (line 4) and is associated to the component type

264 T.A. Lascu et al.

Fig. 4. Abstract plan for the running example.

of the instance using the map InstMap (line 5). After that, nodes correspond-
ing to the creation and deletion of the instance are added (line 6), as well as
nodes representing intermediate state changes (line 8). The last part of the loop
(lines 9–12) is used to generate the precedence arcs −∩.

The second loop, starting at line 13, adds for every dependency arc, selected
in the reachability graph, a pair of � and ��� arcs. In particular, lines 17–23
apply a relaxation of the

r��� arc, since if a port r is provided also by successor
states, then we can relax the constraint imposed by the

r��� arc by setting its
destination to the last successor node that still provides r.

Figure 4 displays the abstract plan for the running example. The rows rep-

resent the life-cycles of master, slave and application, respectively. The
slave ip

�
from →s, U, I∼ to →m,S,A∼ expresses the fact that the stateChange of slave from
uninstalled to installed must precede the stateChange of master from serving to
auth because state auth of server requires interface slave ip, provided by slave
in state installed. The twin ��� arc states that master must switch from auth to
dump before slave switches from installed to dump, as this state ceases providing
interface slave ip, otherwise its requirement would become unfulfilled. Following
the same principle we can interpret the pair of arcs →m,A,D∼�→s, I,D∼ and
→s,D, S∼���→m,D,MS∼ for interface dump. Finally, the target is represented by
node →a, U, I∼, namely application entering state installed. This state requires two
interfaces, mysql and s mysql provided respectively by master in state master
serving and slave in state serving. Two � arcs (together with their ��� counter-
parts) are thus added with destination →a, U, I∼, one from →s,D, S∼ and the other
one from →m,D,MS∼.

3.3 Plan Generation

The main idea for the synthesis of a concrete deployment plan is to visit the
nodes of the abstract plan in topological order until the target component is
reached. Visiting a node consists of performing that action. Moreover, in order
to properly satisfy component requirements, when an incoming � is encountered
a, new binding should be created, and when an outgoing ��� is encountered, the
corresponding binding should be deleted.

Automatic Component Deployment in the Presence of Circular Dependencies 265

Algorithm 4. Plan synthesis
1: Plan = []; ToV isit = []; finished = false;
2: for all n = ∗i, x, y↑ ↓ Act do
3: if no incoming edges(n) then
4: Plan.append(new(i : InstMap[i]));
5: ToV isit.push(n);

6: repeat
7: repeat
8: ∗i, x, y↑ = ToV isit.pop();
9: if x == ε then
10: processInstanceEdge(∗i, x, y↑)
11: else if y == ε then
12: processRedEdges(∗i, x, y↑)
13: Plan.append(del(i));
14: else
15: Plan.append(stateChange(∗i, x, y↑));
16: processRedEdges(∗i, x, y↑)
17: processBlueEdges(∗i, x, y↑)
18: processInstanceEdge(∗i, x, y↑)
19: if InstMap[i] == Ttarget ≤ y == qtarget then finished = true;

20: Act.remove(∗i, x, y↑);
21: until ToV isit == [] ∨ finished
22: if ¬finished then
23: n = Duplicate();
24: ToV isit.push(n);

25: until finished
26:
27: procedure processInstanceEdge(∗i, x, y↑)
28: let n ↓ Act where ∗i, x, y↑ −→ n ↓ Prec in
29: Prec.remove(∗i, x, y↑ −→ n);
30: if no incoming edges(n) then ToV isit.push(n);

31: procedure processBlueEdges(∗i, x, y↑)
32: for all ∗i, x, y↑ r�∗i∗, x∗, y∗↑ ↓ Prec do

33: Plan.append(bind(r, i, i∗)); Prec.remove(∗i, x, y↑ r�∗i∗, x∗, y∗↑);
34: if no incoming edges(∗i∗, x∗, y∗↑) then ToV isit.push(∗i∗, x∗, y∗↑);
35: procedure processRedEdges(∗i, x, y↑)
36: for all ∗i, x, y↑ r���∗i∗, x∗, y∗↑ ↓ Prec do

37: Plan.append(unbind(r, i∗, i)); Prec.remove(∗i, x, y↑ r���∗i∗, x∗, y∗↑);
38: if no incoming edges(∗i∗, x∗, y∗↑) then ToV isit.push(∗i∗, x∗, y∗↑);

Algorithm 4 builds the plan adding actions to a list called Plan. Nodes can
be visited if they do not have precedence constraints, i.e. incoming arcs. Function
no incoming edges is used to check this condition. Visitable nodes are stored in
a stack, named ToV isit. As soon as a node becomes visitable it is pushed onto
ToV isit in order to be later processed.

The algorithm relies on three auxiliary procedures, ProcessInstanceEdge,
ProcessBlueEdges and ProcessRedEdges, aimed at dealing respectively with −∩,
� and ��� edges, the three kinds of edges present in the abstract plan. Given a
node of the abstract plan, procedures ProcessRedEdges and processBlueEdges
deal with its outgoing ��� and � arcs. They add unbind and bind actions to the
Plan list and remove the corresponding arcs from the abstract plan. Moreover, if
the removal of an arc makes a node visitable, they add it to the ToV isit stack. Sim-
ilarly, procedure processInstanceEdge removes the precedence arc −∩, adding
its target node to the ToV isit stack if it has no incoming arcs.

266 T.A. Lascu et al.

At the beginning, all initial nodes are pushed on ToV isit (lines 2–5) and a
new action is added to the plan for every initial node (line 4). The algorithm then
proceeds considering one action a = →i, x, y∼ at a time in ToV isit until the target
node is encountered or ToV isit becomes empty. If a is an initial node its out-
going precedence arcs are removed by calling procedure processInstanceEdge
(line 10). If, instead, a is a final node its outgoing red arcs are first transformed
into unbind actions, via procedure processRedEdges (line 12), and then the
corresponding del action is added to the plan (line 13). Finally, if a is an inter-
mediate node, a stateChange action is added to the plan (line 15). The a outgoing
red, blue and precedence arcs are then removed from the abstract plan by call-
ing in sequence the auxiliary procedures ProcessRedEdges, ProcessBlueEdges,
and ProcessInstanceEdge (lines 16–18). At the end of the inner loop, variable
finished is set to true if the target node is encountered (line 19) and the node
a is removed from the abstract plan (line 20).

Note that the topological visit could not reach the target if a cycle is present
in the abstract plan. This happens when an instance is required to perform a
state change as well as provide a port that the state change deactivates. In these
cases, it is necessary to duplicate the instance: one new copy remains in the
state, thus keeping the provide port active, and in this way the original instance
is allowed to perform the state change. Lines 22–24 deal with the duplication
process, calling function Duplicate in Algorithm 5.

Algorithm 5. Duplicate
1: function Duplicate

2: let n = ∗i, x, y↑ ↓ Act where y �= ε ≤ � ∃n∗ ↓ Act . (n∗ −→ n ↓ Prec ∨ n∗ r�n ↓ Prec) in
3: i∗ = getFreshName(); InstMap[i∗] = InstMap[i]; Act.add(∗i∗, x, ε↑);
4: for all n∗ r���∗i, x, y↑ ↓ Prec do

5: Prec.remove(n∗ r���∗i, x, y↑); Prec.add(n∗ r���∗i∗, x, ε↑);
6: for (j = Plan.size() − 1; j ≥ 0; j = j − 1) do
7: if Plan[j] == bind(r, i, z) then Plan[j] = bind(r, i∗, z);
8: else if Plan[j] == bind(r, z, i) then Plan.insert(bind(r, z, i∗), j);
9: else if Plan[j] == unbind(r, i, z) then Plan[j] = unbind(r, i∗, z);
10: else if Plan[j] == unbind(r, z, i) then Plan.insert(unbind(r, z, i∗), j);
11: else if Plan[j] == new(i : T) then Plan.insert(new(i : T), j);
12: else if Plan[j] == stateChange(∗i, x, y↑) then
13: Plan.insert(stateChange(∗i∗, x, y↑, j);

14: return ∗i, x, y↑;

The Duplicate function first identifies a state change node →i, x, y∼ with only
incoming ��� arcs (line 2). i is the instance to duplicate until the node preced-
ing →i, x, y∼. A fresh name i∈ is assigned to identify the new instance and the
delete node of i∈ is added to the set of actions (line 3). All ��� arcs incoming
into →i, x, y∼ are redirected towards the new node →i∈, x, ε∼ (lines 4–5). Then,
the actions already performed on i are duplicated in order to perform them
also on the new instance i∈ (lines 6–13). The actions new and stateChange of
i∈ are added to the plan immediately after the new and stateChange actions of
i (lines 11, 13). Similarly, bind and unbind actions where i requires something

Automatic Component Deployment in the Presence of Circular Dependencies 267

from another instance, are replicated (lines 8, 10). The bind and unbind actions
where i instead provides something for other instances, are replaced with bind
and unbind actions involving i∈ instead of i (lines 7, 9).

The Duplicate function returns the node →i, x, y∼; notice that this node is
immediately added to the ToV isit stack since, after the duplication procedure,
it has no precedence constraints. Algorithm 4 eventually terminates since the
number of duplications needed to reach the target component is bound by the
number of actions in the original abstract plan.

As an example, starting from the abstract plan of Fig. 4, the tool exploiting
the previously described algorithms generates the following deployment plan1.

Plan[1] = [Create instance slave:Slave]

Plan[2] = [Create instance master:Master]

Plan[3] = [Create instance application :Application]

Plan[4] = [master : change state from uninst to inst]

Plan[5] = [master : change state from inst to serving]

Plan[6] = [slave : change state from uninst to inst]

Plan[7] = [slave : bind port slave_ip to master]

Plan[8] = [master : change state from serving to auth]

Plan[9] = [master : change state from auth to dump]

Plan[10] = [master : unbind port slave_ip from slave]

Plan[11] = [master : bind port dump to slave]

Plan[12] = [slave : change state from inst to dump]

Plan[13] = [slave : change state from dump to serving]

Plan[14] = [slave : unbind port dump from master]

Plan[15] = [slave : bind port s_mysql to application]

Plan[16] = [master : change state from dump to master serv.]

Plan[17] = [master : bind port mysql to application]

Plan[18] = [application : change state from uninst to inst]

4 Formal Analysis of the Algorithm

In this section we prove that the proposed algorithm, called DeploymentPlanner
in the following, is sound and complete, i.e. it produces a correct deployment
plan if and only if it exists. Moreover, we prove that it runs in polynomial time
w.r.t. the size of the problem.

Theorem 1 (Soundness). Given a universe of components U , a component
type Tt, and a target state qt, if the DeploymentPlanner algorithm computes a
sequence of actions α1, . . . , αm, then →U, ∅, ∅, ∅∼ α1−∩ C1

α2−∩ . . .
αm−−∩ Cm is a

deployment plan for Tt in state qt.
1 For more information related to the developed tool and use cases involving also

duplication we defer the interested reader to [18].

268 T.A. Lascu et al.

Proof. →U, ∅, ∅, ∅∼ is the empty configuration and therefore it is correct by def-
inition. →Tt, qt∼ is contained in Cm since Algorithm 4 terminates when the state
change to obtain →Tt, qt∼ is added to the plan. To prove the thesis we have to
show that every reconfiguration action preserves correctness. This can be proven
by cases on the kind of αj action. If αj is a bind or new action, correctness is
preserved since these two actions do not violate any requirement.

If αj = stateChange(i, x, y) then αj may invalidate correctness in two ways:
either i stops providing a port p, needed by someone else or state y of i requires
a port r, not provided in Cj . In the first case, if i∈ is the component requiring p,

by Algorithm 3 there is an arc
p
� from i to i∈, that goes from a predecessor of

→i, x, y∼ to a node of i∈. Together with it, a twin
p��� arc, from i∈ to i, is added,

that has →i, x, y∼ as destination. This guarantees that an unbind action is added
to the plan before the stateChange(i, x, y), thus i∈ does not require p any longer,
and so correctness is ensured. For the second case, if i in y requires a port r,
then, for the same reason as above, there exists an

r��� arc from a successor of
→i, x, y∼ in i, to one node of i∈. Thus a twin

r� arc exists, from i∈ to a predecessor
of →i, x, y∼ in i, meaning that the corresponding bind action is added to the plan
before the stateChange(i, x, y) action, and correctness is not violated.

Let us consider the case αj = unbind(r, i∈, i). It does not violate correctness
since by Algorithm 4 we add an unbind action for every →i, x, y∼ r���→i∈, x∈, y∈∼ arc.
This ensures that instance i, that required r, has already stopped requiring it.

Similarly, if αj = del(i), it may violate correctness by deleting a component
that still provides a needed port. This, however, is never the case because delete
actions have just

r��� incoming arcs. Therefore, by Algorithm 4, this action is
performed only after all instances requiring r have stopped requiring it. ⇐

The second result shows that the algorithm is complete, i.e. if a deployment
plan exists, then the algorithm will eventually find one. To prove completeness
we rely on the following lemma, stating that all circularities in the abstract
plan contain at least an ��� arc. This key property guarantees, in presence of
circularities, the existence of a node that has as only ��� incoming arcs. This is
the node chosen by Algorithm 5 for duplication, to eliminate a cycle and proceed
with the topological visit.

Lemma 1. Every cycle in the abstract plan contains at least an ��� arc.

Proof. (By contradiction). Assume that the cycle contains just � and −∩. If
an −∩ arc belongs to the cycle this means that during the reachability analysis
a component type-state pair of a higher level required a port from a type-state
pair in a lower level. This is impossible by construction. Hence the cycle contains
only � arrows. This means that the actions involved in the cycle are just state
changes. Moreover the type-state pairs obtained with these state changes are
mutually dependent, i.e. the component z1 to reach a state q1 needs something
provided by z2 in state q2 and, vice versa, the component z2 to reach q2 needs
something provided by z1 in q1. By Algorithm 1 mutually dependent type-state
cannot be obtained. ⇐

Automatic Component Deployment in the Presence of Circular Dependencies 269

Theorem 2 (Completeness). Given an universe of components U , a compo-
nent type Tt, and a target state qt, if a solution exists to the deployment problem
on input I = (U, Tt, qt), then algorithm DeploymentPlanner returns a deploy-
ment plan for I.

Proof. Since by hypothesis there is a sequence of create and state change actions
that allow the deployment of Tt in state qt, during the reachability analysis
the component state pair →Tt, qt∼ is obtained. A correct plan will be produced
(Thm. 1) assuming that the abstract plan and plan generation phases terminate.
The former terminates because given the reachability graph, the maximal num-
ber of maximal paths is finite. The latter terminates because duplication will be
needed at most k2 times, where k is the number of component type-state pairs
in the last level of the reachability graph. Indeed, to reach the target component
state pair, potentially all the state changes and create actions of the abstract plan
could be visited. When there is a cycle that forbids the visit of a state change
action, as a direct consequence of Lemma 1, there is at least a state change
action that has only ��� incoming arcs. The duplication procedure removes all
the cycles involving that action without creating new ones. The topological visit
can therefore proceed and it eventually terminates since at every duplication at
least a state change could be performed and the number of state change actions
in the abstract plan is finite and fixed. ⇐

As a final result we prove that DeploymentPlanner runs in polynomial time.

Theorem 3 (Complexity). The DeploymentPlanner algorithm runs in poly-
nomial time.

Proof. Let us denote with k the total number of possible component type-state
pairs, with b the maximal number of predecessors of a type-state pair, and with
h the maximal number of ports. Every level of the reachability graph has no
more than k type-state pairs. At every level one or more type-state pairs are
added, hence the reachability analysis terminates and in the pyramid there are
at most k + 1 levels. To build a new level from a previous one it is necessary
to filter the successors of the components in the previous level by checking if
their requirements are satisfied. Since a component has at most k successors and
requires at most h ports, the cost of building a level is O(hk2). The pyramid has
at most k + 1 levels, hence Algorithm 1 runs in O(hk3) time.

To select the bindings and the components (Algorithm 2), for every type-
state pair at most h ports and b parent pairs need to be considered. Since in
every level there could be potentially k pairs and the total number of pairs in
the reachability graph is O(k2), Algorithm 2 takes O(bhk3) time.

The computation of the maximal paths in Algorithm3 can be performed in
O(k3) since there are at most k2 maximal paths of length k. The generation of
the abstract plan can be done in O(hk2) since there could be at most k2 actions,
each of them having no more than h + 1 outgoing precedence constraints.

Algorithm 4 relies on duplicating an instance whenever the topological visit
gets stuck, due to precedence constraint cycles. In the worst case, a duplication is

270 T.A. Lascu et al.

needed for every node of every instance and to detect which node to duplicate all
the nodes could be visited. Since every node has at most 2hk2 +1 incoming arcs,
detecting the node to duplicate has a worst case cost of O(hk4). The duplication
procedure may update the plan adding or modifying at most an action for every
node and binding involving the instance to duplicate. Since an instance could
be involved in k actions and every action has up to 2hk2 + 1 + h (incoming and
outgoing) arcs, the cost to perform a duplication is O(hk3). Therefore, in the
worst case, the cost of all duplications is O(hk4).

The topological visit of the abstract plan is linear w.r.t. the number of nodes
and thus requires O(k3) steps.

Summing up, the DeploymentPlanner algorithm has a total complexity of
O(bhk3) + O(hk4), which considering b bound by k, amounts to O(hk4). ⇐

5 Related Work and Conclusions

In this work we address the problem of finding a suitable technique to autom-
atize the deployment of complex systems assembled from a large number of
interconnected components. We propose an algorithm that computes in polyno-
mial time the actions needed to deploy such a system and prove soundness and
completeness of this novel approach.

To describe a system we adopt the Aeolus component model [12]. According
to it, components are grey-boxes with provide and require ports and with an
associated automaton, describing the component life-cycle, and expressing for
each internal state the corresponding ports that are (de)activated. The idea to
specify a component by means of a black-box with an interface that exhibits
to the (outside) environment its behavior is widely adopted. For instance, the
standard definition of component in the UML specification [1] sees components
as black-boxes that may provide and require certain interfaces. This sometimes
is not enough and the inner structure of a component must be also considered.
The use of automata as a formal model is a natural choice as testified, for
instance, by interface automata [8,17]. These models allow to develop formal
verification methods for properties of interest but, differently from our approach,
they focus on checking component compatibility and behavior refinement. The
FraSCAti [23] platform, by leveraging on a concise and expressive description of a
complex software system, defined by the Fractal component model [5], develops
a framework for managing the deployment of applications in the cloud. It is
up to the system designer, however, to select the components and to realize
their interconnection. Process calculi approaches are also used to model software
components, e.g. [3,6,19,22]. The focus of these approaches, however, is not
on deployment but rather on modeling interaction and communication between
components.

Industrial tools such as [7,15,16,20,21,24] are available to ease the deploy-
ment of software. They allow to automatize the process of carrying out the
deployment of components on a pool of machines, provided a deployment plan
is known in advance.

Automatic Component Deployment in the Presence of Circular Dependencies 271

Related to our work are [10,14] that compute final configurations solving a
Constraint Satisfaction Problem. Both these works however do not provide a
sequence of actions to reach the desired configuration.

Engage [13] uses automata to specify a component’s behaviour and it is able
to deploy the resources completing a target partial configuration. However, it
relies on the assumption that the dependency graph is acyclic, meaning that
circular dependencies among components are not admitted.

Closely related is [2] that proposes an heuristic-based algorithm to remove
build dependency cycles for bootstrapping a Linux software distribution. The
building order of the packages is generated using a topological sort of a graph.
However, differently from our work, one of the assumptions is that once a package
is recompiled, its older version is no longer required.

A proof of concept implementation of the DeploymentPlanner algorithm has
been developed and described in [18] with some preliminary validation modeling
more complex use cases. Results are encouraging as the tool is able to produce
plans in less than a minute, for scenarios involving hundreds of components.
As future work we intend to study the impact of the selection heuristics on
the length of the deployment plan. We deem that with the right heuristics the
number of components involved in the plan could be greatly reduced. We aim
to further refine the current technique by considering also reconfiguration plans,
dealing with cases in which the initial configuration has already some deployed
components. Finally, we would like to take into account conflicts, producing in a
reasonable amount of time plans that do not violate them or minimize the time
windows where a system is inconsistent.

References

1. OMG Unified Modeling Language (UML), Superstructure, V2.4.1
2. Abate, P., Johannes, S.: Bootstrapping software distributions. In: CBSE’13,

pp. 131–142. ACM (2013)
3. Achermann, F., Nierstrasz, O.: A calculus for reasoning about software composi-

tion. Theor. Comput. Sci. 331(2–3), 367–396 (2005)
4. Baron, S., Peter, Z., Vadim, T., Jeremy, Z.D., Arjen, L., Balling, D.J.: High Per-

formance MySQL, 2nd edn. O’Reilly, Sebastopol (2008)
5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The FRAC-

TAL component model and its support in Java. Softw. Pract. Exper. 36(11–12),
1257–1284 (2006)

6. Bundgaard, M., Hildebrandt, T.T., Godskesen, J.C.: A CPS encoding of name-
passing in higher-order mobile embedded resources. Theor. Comput. Sci. 356(3),
422–439 (2006)

7. Burgess, M.: A site configuration engine. Comput. Syst. 8(2), 309–337 (1995)
8. De Alfaro, L., Henzinger, T.A.: Interface automata. In: ACM SIGSOFT Software

Engineering Notes, vol. 26, pp. 109–120. ACM (2001)
9. Circular Build Dependencies: http://wiki.debian.org/CircularBuildDependencies

(2013). Accessed June 2013
10. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J.: Optimal

provisioning in the cloud. Technical report, Aeolus project, June 2013. http://hal.
archives-ouvertes.fr/hal-00831455

http://wiki.debian.org/CircularBuildDependencies
http://hal.archives-ouvertes.fr/hal-00831455
http://hal.archives-ouvertes.fr/hal-00831455

272 T.A. Lascu et al.

11. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Component reconfigura-
tion in the presence of conflicts. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 187–198. Springer,
Heidelberg (2013)

12. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012)

13. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment manage-
ment system. In: PLDI’12: Programming Language Design and Implementation,
pp. 263–274. ACM (2012)

14. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated
configuration. In: LISA ’12: Large Installation System Administration Conference,
pp. 51–66 (2012)

15. Juju, devops distilled. https://juju.ubuntu.com/ (2013). Accessed June 2013
16. Kanies, L.: Puppet: next-generation configuration management. login: USENIX

Mag. 31(1), 19–25 (2006)
17. Larsen, K.G., Nyman, U., W ↪asowski, A.: Interface input/output automata. In:

Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

18. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment
of cloud applications. In: ICTAI 2013, pp. 213–220. IEEE (2013)

19. Montesi, F., Sangiorgi, D.: A model of evolvable components. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084, pp. 153–171.
Springer, Heidelberg (2010)

20. Opscode: Chef. http://www.opscode.com/chef/ (2013). Accessed June 2013
21. Puppet Labs: Marionette Collective. http://docs.puppetlabs.com/mcollective/

(2013). Accessed June 2013
22. Schmitt, A., Stefani, J.-B.: The kell calculus: a family of higher-order distrib-

uted process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267,
pp. 146–178. Springer, Heidelberg (2005)

23. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.-B.:
Reconfigurable SCA Applications with the FraSCAti Platform. In: IEEE SCC,
pp. 268–275. IEEE (2009)

24. VMWare: Cloud Foundry, deploy & scale your applications in seconds.
http://www.cloudfoundry.com/ (2013). Accessed June 2013

https://juju.ubuntu.com/
http://www.opscode.com/chef/
http://docs.puppetlabs.com/mcollective/
http://www.cloudfoundry.com/

Modeling and Analysis of Component
Connectors in Coq

Yi Li and Meng Sun(B)

LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

waircorner@pku.edu.cn, sunmeng@math.pku.edu.cn

Abstract. Connectors have emerged as a powerful concept for com-
position and coordination of concurrent activities encapsulated as com-
ponents and services. Compositional coordination languages, like Reo,
serve as a means to formally specify and implement connectors. They
support large-scale distributed applications by allowing construction of
complex component connectors out of simpler ones. In this paper, we
present a new approach to modeling and analysis of Reo connectors via
Coq, a proof assistant based on high-order logic and λ-calculus. Basic
notions in Reo, like nodes and channels, are defined by inductive types.
By tracing the data streams, we can simulate the behavior and output of
a given Reo connector. Besides, with prerequisite axioms given, we can
automatically prove connectors’ properties using the Coq proof assistant.

Keywords: Coordination · Reo · Connector · Coq · Analysis

1 Introduction

Nowadays, due to the increasing size and complexity of software systems,
component-based development has become a prominent paradigm in software
engineering, where components are designed to work independently. Necessary
interfaces are provided, by which we can organize these components as a whole
system [22]. Typically, complex component-based systems are heterogeneous and
geographically distributed, usually exploit communication infrastructures. Their
topology varies and components can, at any moment, connect to or detach from
them. The development of such systems requires a coordination model that for-
malizes the orchestration among the components. Coordination models are used
to describe software middleware, which combines independent components into
an organic whole [12]. Compositional coordination models and languages pro-
vide a “glue code” that interconnects the constituent components and organizes
the mutual interactions among them in a distributed processing environment.
They support large-scale distributed systems by allowing construction of com-
plex component connectors out of simpler ones. As an example, Reo [2,10] offers
a powerful glue language for implementation of coordinating component con-
nectors. Primitive connectors called channels in Reo, such as synchronous chan-
nels and FIFO channels, can be composed to build circuit-like connectors which

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 273–290, 2014.
DOI: 10.1007/978-3-319-07602-7 17, c© Springer International Publishing Switzerland 2014

274 Y. Li and M. Sun

serve as the glue code to exogenously coordinate the behavior of components in
component-based systems.

The importance of formal verification for connectors is more and more preva-
lent in recent years. The rapid growth in terms of complexity of the computing
infrastructures that underly and accompany the evolution of complex systems
has made it harder to have confidence on their correctness. Being able to estab-
lish that a system behaves as it is supposed to is now more delicate than ever. In
this paper, we aim to provide an approach to formally model and analyze Reo
connectors using Coq, a proof assistant based on high-order logic and λ-calculus
[11]. The proof assistant makes it possible to simulate the behavior of a given
connector, and prove its properties automatically. The basic idea of our approach
is to model the behavior of a Reo connector by the set of input data streams
and output data streams on every node of the connector, and to prove the con-
nector’s properties by the help of the Coq proof assistant with some prerequisite
axioms provided.

With the help of interaction pattern and automatic searching, Coq is able
to decrease the workload of proving process to a pretty low level. Now it has
been widely used in various fields, such as logic, automata theory and algorithm.
Comparing with existing works, modeling Reo via the Coq proof assistant has
the following advantages:

Higher Abstract Level. We can describe Reo connectors more abstractly and
symbolically simulate their behavior in Coq environment, through their
properties instead of exact concrete values. For example, in simulation of a
system’s operational state, concrete data is indispensable in traditional lan-
guages. However, we can define abstract input data in Coq and describe them
via mathematical properties, through which we can prove properties of corre-
sponding output data.

Complete Proof System. In many existing works, the correct-checking process
is realized as a step-limited simulation. An approximating conclusion is given
by comparison between standard answer and simulation result [16]. This can
be improved by using the Coq proof assistant, where we can describe the cor-
rectness of our system by a theorem, and finally give it a complete proof pre-
cisely.

Powerful Tool Support. Coq has a rich set of tactics which can provide help to
verify properties of component connectors efficiently.

The paper is structured as follows. After this general introduction, we briefly
summarize the coordination language Reo in Sect. 2. Section 3 presents our mod-
eling approach briefly. Section 4 shows some examples of modeling Reo connec-
tors and proving their properties in Coq. In Sect. 5, we present some related
works and compare them with our approach. Finally, Sect. 6 concludes with
some further research directions.

The source code of the connector model in Coq can be found online [23].

Modeling and Analysis of Component Connectors in Coq 275

Fig. 1. Some basic channels in Reo

2 Reo Coordination Model

In this section we provide a brief introduction to Reo [2]. Reo is a channel-based
exogenous coordination model wherein complex coordinators, called connectors,
are compositionally built out of simpler ones. Exogenous coordination imposes
a purely local interpretation on each inter-components communication, engaged
in as a pure I/O operation on each side, that allows components to communicate
anonymously, through the exchange of untargeted passive data. We summarize
only the main concepts in Reo here. Further details about Reo and its semantics
can be found elsewhere [2,8,10].

Connectors serve to provide the protocol that controls and organizes the
communication, synchronization and cooperation among the components that
they interconnect. Each connector consists of one or more primitive connectors,
called channels, through which data items flow. Each channel has two channel
ends. Channels ends of different channels are glued together on nodes to compose
the channels to construct complex connectors. There are two types of channel
ends defined in Reo: source end and sink end. A source channel end accepts data
into its channel, and a sink channel end dispenses data out of its channel. It is
noteworthy that both channel ends for one channel can be of the same type (both
are sink ends or both are source ends, see SyncDrain in Fig. 1 as an example).
Figure 1 shows the graphical representation of some simple channel types that
are often used.

The behavior of these Reo channels are listed as follows:

FIFO1. Asynchronous channel with a source end, a sink end and a buffer.
When the buffer is empty and a data item is written to its source end,
FIFO1 can save data item in the buffer and the write operation will be
executed successfully. Then a take operation will be performed on its sink
end later. When the buffer is full, any write operation to its source end will
be suspended until the date item in the buffer is taken out from its sink end.

Sync. Synchronous channel with a source end and a sink end. A write operation
to the source end can be performed when it is ready for a take operation on its
sink end and the data item being accepted on its source end is immediately
dispensed on its sink end. The write operation will be suspended if the sink
end is not ready for the take operation.

LossySync. Synchronous channel similar to Sync but not reliable. A write
operation is always executed successfully once the data item arrives at its

276 Y. Li and M. Sun

source end. If it is possible for the channel to simultaneously dispense the
data item through its sink end, the channel transfers the data item. Other-
wise the data item is lost.

SyncDrain. Synchronous channel with two source ends and no sink end. The
pair of write operations on its two ends can succeed only simultaneously. If
there are two data items arrive at both source ends, they will be accepted
and lost simultaneously. Otherwise one write operation will be suspended
until the other one arrives.

Filter. Synchronous channel with a filter pattern p which is a set of data values.
It transfers only those data items that match with the pattern p and loses
the rest. A write operation on the source end succeeds only if either the
data item to be written does not match with the pattern p or the data item
matches the pattern p and it can be taken synchronously via the sink end of
the channel.

Transformer. Synchronous channel with a function f which is a mapping from
the set of data items to the set itself. A write operation to the source end
can be performed when the channel is ready for a take operation on its sink
end. Then the data item d being accepted on its source end is immediately
transformed to a new data item f(d) which is dispensed on its sink end. The
write operation will be suspended if the sink end is not ready for the take
operation.

There are some more exotic channels permitted in Reo. For example, the
P -producer is a variant of a synchronous channel whose source end accepts any
data item, but the value dispensed through its sink end is always a data element
d ∈ P . An asynchronous drain accepts data items through its source ends and
loses them, but never simultaneously. The synchronous and asynchronous spouts
are duals to the drain channels, as they have two sink ends and no source ends.
Note that Reo places no restriction on the behavior of a channel and thus allows
an open-ended set of different channel types to be used simultaneously together.
This allows engineers to define their own channels with custom semantics.

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Channels are joined together in nodes. The set of channel
ends coincident on a node is disjointly partitioned into the sets of source and
sink channel ends that coincide on the node, respectively. Nodes are categorized
into source, sink and mixed nodes, depending on whether all channel ends that
coincide on a node are source ends, sink ends or a combination of the two. The
hiding operation is used to hide the internal topology of a component connector.
The hidden nodes can no longer be accessed or observed from outside. A complex
connector has a graphical representation which is a finite graph where the nodes
are labeled with pair-wise disjoint, non-empty sets of channel ends, and the edges
represent the connecting channels. The behavior of a Reo connector is formalized
by means of the data-flow at its sink and source nodes. Intuitively, the source
nodes of a connector are analogous to the input ports, and the sink nodes to
the output ports of a component, while mixed nodes are its hidden internal
details. Components cannot connect to, read from, or write to mixed nodes.

Modeling and Analysis of Component Connectors in Coq 277

Fig. 2. Examples of connectors with multiple channels

Instead, data-flow through mixed nodes is totally specified by the connectors
they belong to.

Figure 2 shows some examples for constructing complex connectors from basic
channels. Figure 2(a) describes an alternator connector, which consists of 3 basic
channels: a SyncDrain, a synchronous channel and a FIFO1 channel. There are
two source nodes for input operations and one sink node which can only be
used for output in the connector. An input on either of the two source nodes
will remain pending at least until there is one input on both of the two source
nodes; it is only then that both of the input operations can succeed simultane-
ously (because of the SyncDrain between the two source nodes). For an input
to the synchronous channel to succeed, there must be a matching output on the
sink node, at which time the data item input to the channel is transferred and
consumed at the sink node. Simultaneously, the data item received by input to
the FIFO1 channel is transferred into the buffer of the FIFO1 channel which is
initially empty. As long as this data item remains in the buffer, no other data
items can be input to either of the two source nodes. The only possible behavior
for the connector at this moment is to consume the contents in the buffer of the
FIFO1 channel and output it on the sink node. Once this happens, the connector
returns back to its initial state and the cycle can repeat itself. Thus the behaviour
of this connector can be seen as imposing an order on the flow of the data items
written to the two source nodes through the sink node. The sequence of data
items that appear through the sink node consists of zero or more repetitions of
the pairs of data items that are input to the two source nodes, in an alternating
order. Figure 2(b) describes a FIFO2 connector, whose behavior is identical to
a FIFO1 channel, except that it will be prevented from accepting data items
from input when its bounded capacity is full (the two buffers are both occupied
by some data items). We can build a general FIFOn connector similarly, which
keeps a n-capacity buffer while the data items follow the first-in-first-out rule.
Figure 2(c) describes a 3-dispatcher that will distribute copies of the data item
being received from input to the three sink nodes, with a buffer for every output.

3 Modeling Reo in Coq

In this section, we show how connectors in Reo are modeled in Coq. In most
of existing works, primitive notions, such as channel or node, are regarded as
the core concepts. What we adopt here is a data-centered modeling designation

278 Y. Li and M. Sun

Application Layer

Component Layer

Definition Layer

Coq Proof Assistant

Calculation Proof

DataInput Simulate DataOutput

Environment Basic Data Type (e.g. Channel)

Fig. 3. System framework

where the concept ‘data packet’ in network protocol plays a key role and will
be introduced in more detail later. In our approach, a table is created to record
all data items’ positions and targets, by changing of which the system’s state is
updated. The new method, on one hand, is more consistent with Reo’s design
purpose, describing the data-flow relationship between inputs and outputs. On
the other hand, it provides more convenience for theorem proving.

3.1 System Framework

The system consists of four layers, as shown in Fig. 3:

1. Coq proof Assistant: the bottom layer where all codes are written in Coq
system;

2. Definition Layer: all data structures and abstract data types are described in
this layer;

3. Component Layer: a series of functions is provided in this layer, such as data
input and output, state transition, etc.;

4. Application Layer: several interfaces are provided here, by which users can
define their own connector and prove its properties.

3.2 Modeling of Basic Notions

Basic Data Type: Reo aims to formalize the notion of connectors that coordi-
nates the interactions and communications among components. The basic con-
cepts in Reo, such as node, channel, data, etc., are defined here and form the
basis of our system.
1. Node: A node is an atomic concept. It is not necessary to describe its details but

declare it as an inductive type.Besides,wemake anone-to-onemappingbetween
nodes and natural numbers to check whether two nodes are same or not.

Inductive Node : Set := CreateNode : nat -> Node.

Modeling and Analysis of Component Connectors in Coq 279

2. Data: It can be defined as either a new abstract type or a pre-defined type
in Coq. In our approach we use the inductive type to describe data items.
Multiple constructors are permitted in inductive types, thus we can have
different data types in our model. If a new data type is needed, we just
need to add corresponding constructors and axioms for making proofs. This
approach makes the system more flexible and extensible.

Inductive Data : Set :=
| NatData : nat -> Data
| Empty : Data.

3. Channel: Channel is a basic concept in Reo, the simplest form of connectors.
Each channel has a ChannelType, which is an inductive type describing the
type of the channel. Here we only provide a list of some basic channel types.
This list is extensible according to user’s requirement. Once a new channel
type is needed, we can add corresponding constructors and axioms to the
system. A natural number is used to denote the index of the channel, which
is unique. One channel has two ports, each of them is a reference to a single
node.

Inductive ChannelType : Set :=
| Sync
| Fifo
| SyncDrain
| LossySync
| Filter : Pattern -> ChannelType
| Transformer : DataFunc -> ChannelType.

Definition Channel : Set :=
ChannelType * nat * Node * Node.

4. Time: There are two kinds of time models: continuous model and discrete
model. Usually the measurement of time is actually a discrete process with
accuracy limitation, and in our approach time is just a logic concept. Therefore
we adopt the discrete model which is easier for implementation: In state list
Si, the index i means that this state is presented in time i. No particular data
structure is necessary to describe this.

Position: Position is a notion different from Location defined in Reo, which is
just a physical concept and has no effect on the computation [2]. Here position
refers to the point where data items exist (node or buffer in specific channel).
We use an inductive type to describe positions:

Inductive Position : Set :=
| NODE_POS : Node -> Position
| BUFF_POS : Channel -> Position.

280 Y. Li and M. Sun

Note that from the coding perspective, every channel c has its BUFF POSc.
However, each of the basic channels except the FIFO1 channel has no buffer.

Data Packet: Data Packets are basic units of data items. A data packet refers
to a data item that actually exists in some place and is described as a pair, which
consists of the content and position of the data item.

Inductive DataPack : Set :=
RealDP: Data -> Position -> DataPack.

Command: External interventions to a running connectors are defined as com-
mands. An external intervention is an instruction given by some actor from
outside of the connector to change the connector’s state. For example, to input
some data to a specific node. In our current system model, the only available
command is data-input. A command is described by an inductive type. There-
fore, it is easy to be expanded without large-scale modification to the source
code.

Inductive Command : Set :=
| Push : Data -> Node -> Command.

Timed Data Streams: Every timed data stream is described by a stream
(defined in Coq.Lists.Stream) of data items. If the index of an element in the
stream is i, then the data item appears at time i. In our system, the input and
output data on every node are given by timed data streams. And a series of nodes’
data together are described as a list of data streams (defined as DStreams). When
we describe a connector, it is enough to represent all nodes’ input and output
contents in the whole process.

Definition DStream : Set := Stream Data.
Definition DStreams : Set := list DStream.

Environment: Environment is the core concept in our system. An environment
refers to the runtime environment of a data flow including the data flow itself.
In other words, an environment is a complete description of a connector and it’s
running state. The definition of an environment is as follows:

Definition Environment : Set :=
(list Channel) * (list Node) * (list DataPack) *
(list Node).

In this definition, the first part ‘list Channel’ is a list of channels. All the channels
in the connector are stored here. The second part ‘list Node’ is a list describing
all the nodes in the connector. The third part ‘list DataPack’ is a list of data
packets, being used to describe every data packet that exists in the current
environment. Finally, the last ‘list Node’ is a list representing the output nodes
of a connector. In every round of simulation, data items in output nodes will be
taken away and sent to the list of output data streams. Then the output nodes
will be set to empty, preparing for new data arriving.

Modeling and Analysis of Component Connectors in Coq 281

3.3 Description of System’s Behaviour

Here we first show the behavior of basic channels in the model, and then describe
the behavior of our system in a top-down logical order.

Simulating Channel Behavior: For the synchronous channel, the system first
checks the target position. If it is empty, then the data packet will be put into
the position. Otherwise, the original data packet will be kept in the queue. The
behavior for lossy synchronous channel is similar. When the target position is
empty then the data packet is put into the position. But the data packet will
be discarded if the position is not available. For the FIFO1 channel, the buffer
is first checked. If the buffer is empty, then the data packet is put into the
buffer. Otherwise, the original data packet will be kept in the queue. For the
SyncDrain channel, If the target position is empty, the data packet is thrown
away. Otherwise, it will be kept in the original place.

For a certain data packet d staying in the node n. Suppose l is a set of
adjacency channels:

l = {c ∈ Channels |n = source(l) ∨ (n = sink(l) ∧ l = SyncDrain)}
A test will be executed on channels in l by the function isAbleIterate. A data
item d will be dispatched to every channel c ∈ l only when write operations can
be applied on all these channels. Otherwise d will be kept in the data packet list.

State Migration: The computation process is shown in Fig. 4. When every
round starts, we get the input data at that time and normalize them as com-
mands. Then the commands are sent to data packet list. After that, a standard
dispatching process will be executed on all data packets in the connector.

Definition SubFuncSim (env:Environment)
(dsm:DataStreamMatrix)(s:nat) :=

GainOutput (NextDPList (ApplyCommands env
(GetCommandList dsm s))).

Generation and Application of Data Commands: In the computation
process, a list of data streams (with type DStreams) should be provided by

Get Environment
Data

Get Data Packet
List

Get Input Matrix

Get Channel and
Node List

Calculate Data
Command

Merge into New
Data Packet List

Dispatch
Data Packet

Gain Output List

Fig. 4. Simulation of environment state migration

282 Y. Li and M. Sun

users, which keeps the information of all nodes’ input data flows. In this step,
we check every node ni under certain environment. If ni is empty, we grab the
corresponding data stream’s head element, otherwise the data stream won’t be
changed. These grabbed data items, together with their target positions, are
normalized as data commands and then be executed uniformly.

Fixpoint GetCommands (e:Environment)(ds:DStreams)(n:nat):=
match ds with
| nil => (nil, nil)
| l::r =>

if (isEmpty e (CreateNode n)) then
match (GetCommands e r (n + 1)) with
| (cl,dl)=>((Push(hd l)(CreateNode n))::cl,(tl l)::dl)
end

else
match (GetCommands e r (n + 1)) with
| (cl, dl) => (cl, l :: dl)
end

end.

Obviously if there are n positions in the connector, then the length of command
list, thanks to the inserted Empty data, must be n. So we have to create a
function CommandFilter for filtering the command list.

Fixpoint CommandFilter (cl:CommandList) : CommandList :=
match cl with
| nil => nil
| l::r => match l with

| Push Empty _ => CommandFilter r
| Push (NatData _) _ => l::(CommandFilter r)
| Push (BoolData _) _ => l::(CommandFilter r)
end

end.

After being filtered, the commands are directly applied to the data packet list.
Further operations will be performed when the data packets are dispatched.

Definition ApplyCommand (e:Environment)(c:Command) :=
match c with
| Push dt nd => if (isEmpty e nd) then

AddData e (RealDP dt (NODE_POS nd))
else e

end.

Data Packets Dispatching Process: The basic flow graph of data packets
dispatching is shown in Fig. 5. The key points of this process are listed as follows:

– In the dispatching process of a data packet (data, position), first we get the
adjacency channel list of position and check if write operations succeed on

Modeling and Analysis of Component Connectors in Coq 283

Get Data Packet
Get Adjacent
Channel List

Dispatch
Availablity

Dispatch the data
packet to all

adjacent channels

Write operation succeeded
On all adjacent channels

Keep the origin data
packet in the list

Failed on some channel

Finished.

Fig. 5. The iterate process of data packet dispatching

every channel in the list (The checking function is defined as isAbleIterate).
If passed, the data packet will be dispatched, otherwise the data packet will
be kept in the data packet list.

– A write operation on Sync channel s succeeds only if the sink node of s is
empty.

– Similarly, a write operation on Fifo succeeds only if the buffer is empty.
Besides, if the data packet is in some buffer, its adjacent channel list con-
tains only the Fifo channel itself.

– A write operation on SyncDrain channel will succeed under two conditions:
a data packet exists in another end of this channel; the data packet is able to
be dispatched.

– While dispatching a data packet, if the channel is SyncDrain and there is a
data packet existing at another port, then the data packet will be dropped
directly. Or if the channel is LossySync, then we check if the target node is
empty or not. If it is empty then a data packet will be sent to the target,
otherwise the data packet will be dropped.

– For a Filter channel with pattern p, writing operations (with data d) succeed
if p(d) = false or the sink node is empty.

– Transformer channel’s writable prerequisites is exactly same as Sync.
– For node N , if there exists a data packet in the data packet list with position

denoted by N , this means that the last dispatching job on node N hasn’t
been finished yet. Obviously some writing operation is suspended and N is
still in the state of being occupied, and any writing operation to N won’t be
executed successfully.

– If node N is an output node, there is no channel whose source end coincides
with N , then any data packet on N can’t be dispatched. The data packet is
kept until being grabbed to the output streams. If N is an output node but
not in the OutputList of its environment, then the data packet transferred to
this node will be blocked.

284 Y. Li and M. Sun

4 Case Studies

4.1 Alternator

In our approach, the alternator connector as shown in Fig. 2(a) is described as
follows:

Definiton of Nodes:

(* Definitions of Nodes’ List *)
Definition nodeList_1 := createNodeSq 3.

Definition of Channels:

Definition channelList_1 := getChannels (
(Sync, 0, 1) ::
(SyncDrain, 0, 2) ::
(Fifo, 2, 1) ::
nil

).

Definition of Output List:

Definition outpList_1 := createNodeLst (1::nil).

Now we can define the environment as follows:

Definition ENV_1 := (channelList_1 , nodeList_1,
nil: list DataPack, outpList_1).

Assume that dataflows on the two source nodes are (A,B,C) and (D,E, F),
respectively. Then the state list of this connector can be described as in Fig. 6.
After input to the system being provided, we can get the following result in 10
units of time:

NatData a :: NatData d ::
NatData b :: NatData c ::
NatData e :: NatData f :: nil

4.2 Distributor Connector

For the distributor as shown in Fig. 2(c), we will prove its isotonicity while
distributing data items. The connector construction process is similarly to the
previous example and will be omitted here.

First we give the input streams and define some axioms:

Parameters a b : nat.
Definition inputStream_2 : DStreams :=
((NatData a) ::: ((NatData b) ::: Nil)) ::
nil.

Axiom Condition : a > b.

Modeling and Analysis of Component Connectors in Coq 285

Fig. 6. States of the alternator connector

Then we define the ordered property of stream and relevant axioms:

Parameter Ordered : Stream Data -> Prop.
Axiom Order_Basic :
forall (d:Data)(s:Stream Data),

(Larger d (hd s) /\ Ordered s) -> Ordered (d ::: s).
Axiom Order_Nil : Ordered Nil.

Besides, for convenience we defined another lemma EmptyLem, which is used
to remove the empty data items in the stream. Now we’ll prove that the output
stream is ordered.

Definition Run_2 (t:nat) :=
getOutput (Simulate ENV_2 inputStream_2 t).

Definition Str := nth 1 (Run_2 10) Nil.

Theorem Example : Ordered Str.
Proof.
repeat (

repeat (apply EmptyLem);

286 Y. Li and M. Sun

Fig. 7. Task transaction connector

apply Order_Basic;
simpl; split; auto

).
repeat (apply EmptyLem).
apply Order_Nil.

Qed.

4.3 Task Transaction Connector

A task transaction connector1 is shown in Fig. 7. Task sequences are pushed in
node 0 and user actions are changed via node 6 and node 11. Every task will
be send to node 13 after they are performed and if there is confirm or abandon
signal (data flow in relevant nodes), another copy of the task will be sent to the
connector again.

Definiton of Nodes:
(* Definitions of Nodes’ List *)
Definition nodeList_3 := createNodeSq 16.

Definition of Channels:
Definition channelList_3 := getChannels (
(Sync, 0, 1) :: (Sync, 1, 2) ::
(Fifo, 2, 3) :: (Sync, 3, 4) ::
(SyncDrain, 4, 5) :: (Sync, 6, 5) ::
(Sync, 4, 7) :: (Sync, 7, 8) ::
(Sync, 3, 9) :: (Sync, 2, 12) ::
(Sync, 12, 13) :: (SyncDrain, 9, 10) ::
(Sync, 11, 10) :: (Sync, 9, 14) ::
(Sync, 14, 15) :: nil).

1 This connector is a simplification of one example provided in [17].

Modeling and Analysis of Component Connectors in Coq 287

Definition of Output List:

Definition outpList_3 := createNodeLst (8::13::15::nil).

Now we can define the environment as follows:

Definition ENV_3 := (channelList_3 , nodeList_3,
nil: list DataPack,
outpList_3).

To prove properties of this connector, first we define and abstract type
TimeProp : nat → Prop. It is used to describe properties about time. For
example, the following definition is used to describe if the task has been con-
firmed on some time. Besides, we define TimeBefore to describe if a property
is satisfied before a certain time.

Definition Confirmed : TimeProp := fun (n:nat) =>
match nth 1 (SingleOutp n) Empty with
| Empty => False
| _ => True
end.

With a confirm action given in input stream, we can prove that Confirmed
will be satisfied in 5 time units.

Definition ConfirmedBefore := TimeBeforeProp Confirmed.
Goal (TimeBeforeProp Confirmed 5).
Proof.
apply TimeBefore.
try (exists 1; right; compute; auto; fail).
try (exists 2; right; compute; auto; fail).
try (exists 3; right; compute; auto; fail).
try (exists 4; right; compute; auto; fail).

Qed.

5 Related Work

There are a plethora of formal models for Reo. For example, a coalgebraic seman-
tics for Reo in terms of relations on infinite Timed Data Streams (TDS) has been
developed by Arbab and Rutten [8], TDS model the possible flows of data on
connector nodes, assigning a time to each interaction (input or output of one
data element). The causality between input and output is not clear in this app-
roach, and there is no tool support for simulation or verification. An operational
semantics for Reo using Constraint Automata (CA) is provided by Baier et al.
[10], and later the symbolic model checker Vereofy is developed [9] which can
be used to check CTL-like properties. However, modeling unbounded primitives
or even bounded primitives with unbounded data domains is impossible with
finite constraint automata. Bounded large data domains cause an explosion in

288 Y. Li and M. Sun

the constraint automata model which becomes problematic. A model for Reo
connectors based on the idea of coloring a connector with possible data flows to
resolve synchronization and exclusion constraints is presented by Clarke et al.
[13]. Unlike the coalgebraic and operational semantics, data sensitive behavior,
which is supported by filters in Reo, are not captured by the coloring approach.

Series of research have been made on translation from Reo to other formal
models, such as Alloy [16], Maude [21], mCRL2 [18], UTP [1,20], etc. The trans-
lation from Reo to Alloy in [16] is rather simple and no working tool is provided.
The work in [21] provides an operational semantics for Reo using Maude rewrit-
ing logic. Later in [1] the UTP model is implemented also using Maude. One
of the main advantages of Maude is that it provides a single framework that
facilitates the use of a wide range of formal methods. Furthermore, one can
experiment with the “search” facility of Maude, or with its LTL model-checker
in order to perform verification. However, by using Coq, we can simply take
advantage of already existing efficient implementations of data structures like
streams and lists (which are the basic ingredients in the theory of connectors
as shown in [8]) and the corresponding functions to manipulate them. While
working with Maude one needs to adapt to the basic constructions provided by
the system or implement new ones.

6 Conclusion and Future Work

In this paper, we described the approach of formalizing the coordination model
Reo in the proof assistant Coq. We implement a set of basic channels in Reo,
which can be used to construct complex connectors. With the system, we can
describe connectors consists of basic channels and nodes, simulate the connector’s
behavior, i.e., the transformation sequence between its states. Besides, when
related axioms are given, we can prove the properties of a connector via the Coq
Proof Assistant. Properties of connectors are defined as Goals in Coq and by
applying axioms provided by users, the Coq proof assistant can make it easy to
derive the goals from the axioms. The system can be easily reused and extended
for more channel types in Reo and open to user-defined channels with custom
semantics.

In the current system, we describe the channels’ action patterns directly
instead of describing its properties, thus we cannot give proof for some universal
properties. To solve this problem, we can replace the descriptions of channels’
action patterns (Definition) by description of channels’ property (Axiom), and
add a series of tactics to make proofs automatically. However, this will make it
rather difficult to compute detailed result. So we should judge the comparative
usage occasion and user’s requirement to choose how to implement the system.

A family of tools for Reo have been developed under the Eclipse platform,
which is called the Eclipse Coordination Tools (ECT) [6,14]. Integrating our
system with the Eclipse Coordination Tools is of special interest and in our scope.
The main task is to make a transformation of the graphical representation of
connectors in ECT to our formalization of connectors in Coq. Incorporating real-
time (and other QoS) constraints on connectors [3–5,7,19] into the Coq model

Modeling and Analysis of Component Connectors in Coq 289

is another interesting topic in our future work as well. What is very interesting
for us is the complementary nature of theorem provers and other verification
approaches like model checking. Although this is not a completely new topic
[15], we need to explore the relationship between our work and model checking
approaches like [18].

Acknowledgement. The work was partially supported by the National Natural
Science Foundation of China under grant no. 61202069 and 61272160, and Research
Fund for the Doctoral Program of Higher Education of China under grant no. 201200011
20103.

References

1. Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Meng, S., Rutten,
J.J.M.M.: Fault-based test case generation for component connectors. In: Pro-
ceedings of TASE 2009, pp. 147–154. IEEE Computer Society (2009)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logical specifi-
cations for timed component connectors. Softw. Syst. Model. 6(1), 59–82 (2007)

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol.
4467, pp. 286–304. Springer, Heidelberg (2007)

5. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.:
From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidel-
berg (2009)

6. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.-J., Proença, J.: Modeling, testing
and executing Reo connectors with the eclipse coordination tools. In: Preliminary
proceedings of FACS 2008 (2008)

7. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M., Qu, H.: Reo2mc: a tool chain
for performance analysis of coordination models. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, pp. 287–288. ACM
(2009)

8. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

9. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer,
Heidelberg (2010)

10. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)

11. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin (2004)

12. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Comput. Surv. (CSUR) 28(2), 300–302 (1996)

290 Y. Li and M. Sun

13. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: synchronisation and con-
text dependency. Sci. Comput. Program. 66, 205–225 (2007)

14. Eclipse Coordination Tools. http://reo.project.cwi.nl/
15. Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto.

In: Artificial intelligence and mathematical theory of computation, pp. 151–176.
Academic Press Professional, San Diego (1991)

16. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and
analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDI-
NATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008)

17. Kokash, N., Arbab, F.: Formal design and verification of long-running transactions
with eclipse coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200 (2013)

18. Kokash, N., Krause, Ch., de Vink, E.: Reo + mCRL2: a framework for model-
checking dataflow in service compositions. Formal Aspects Comput. 24(2), 187–216
(2012)

19. Meng, S.: Connectors as designs: the time dimension. In: Proceedings of TASE
2012, pp. 201–208. IEEE Computer Society (2012)

20. Meng, S., Arbab, F., Aichernig, B.K., Aştefănoaei, L., de Boer, F.S., Rutten, J.:
Connectors as designs: modeling, refinement and test case generation. Sci. Comput.
Program. 77(7), 799–822 (2012)

21. Mousavi, M.R., Sirjani, M., Arbab, F.: Formal semantics and analysis of component
connectors in Reo. Electron. Notes Theor. Comput. Sci. 154(1), 83–99 (2006)

22. Ramasubbu, N., Balan, R.K.: Globally distributed software development project
performance: an empirical analysis. In: Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, pp. 125–134. ACM (2007)

23. Source code of the Coq development. http://www.math.pku.edu.cn/teachers/
sunm/rc/Main.v

http://reo.project.cwi.nl/
http://www.math.pku.edu.cn/teachers/sunm/rc/Main.v
http://www.math.pku.edu.cn/teachers/sunm/rc/Main.v

On the Complexity of Input Output
Conformance Testing

Neda Noroozi1(B), Mohammad Reza Mousavi2, and Tim A.C. Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Center for Research on Embedded Systems, Halmstad University,

Halmstad, Sweden
n.noroozi@tue.nl, m.r.mousavi@hh.se, t.a.c.willemse@tue.nl

Abstract. Input-output conformance (ioco) testing is a well-known app-
roach to model-based testing. In this paper, we study the complexity of
checking ioco. We show that the problem of checking ioco is PSPACE-
complete. To provide a more efficient algorithm, we propose a more
restricted setting for checking ioco, namely with deterministic models
and show that in this restricted setting ioco checking can be performed
in polynomial time.

1 Introduction

Motivation. Testing is a major part of the software development process and,
together with debugging, accounts for more than half of the development cost
and effort [14]. Model-based testing is a structured and rigorous discipline of
testing, which is likely to improve the current practice of testing [17,23,24].
Input-output conformance (ioco) testing is a well-known formal approach to
model-based testing, which is used extensively in various practical applications,
see [5,13] and the references therein, and which has been the subject of much
theoretical research, see [21] and the references therein.

In this paper, we study the complexity of checking ioco, a topic which—as
far as we could trace—has not been addressed in the literature. Our study sheds
some light on the theoretical boundaries for this popular notion and possible
enhancements in its efficiency and efficacy by considering restricted forms of
specifications and implementations.

We first show that the upper bound on the complexity of checking ioco is
exponential in the size of the model. This is as expected due to the trace-based
nature of (the intensional definition of) ioco. We show that this exponential com-
plexity bound is indeed tight, by proving that the problem is PSPACE-complete.
This means that, unless the complexity class hierarchy from P to PSPACE col-
lapses, the exponential time complexity in deciding ioco is unavoidable in the
worst case. Next, we identify a more restricted setting for checking ioco which
still admits a polynomial time algorithm. In this restricted setting, implemen-
tations are still permitted to behave non-deterministically, but specifications

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 291–309, 2014.
DOI: 10.1007/978-3-319-07602-7 18, c© Springer International Publishing Switzerland 2014

292 N. Noroozi et al.

must be deterministic. In order to obtain this result, we first give a coinduc-
tive (simulation-like) definition of ioco for deterministic specifications and we
subsequently show that it can be decided in polynomial time.

Our study is based on the intensional representation of ioco, which allows
for defining exact complexity bounds on checking conformance. The complexity
bounds for the intensional representation also hold for the extensional represen-
tation, but it remains to be checked under which conditions these bounds can
be realized in the practical setting by using test-cases.

Compositional testing concerns about testing of composite systems consisting
of communication components which can be separately tested. Though ioco
lacks the compositionality property in general, several researches were conducted
to adapt ioco for compositional testing. In [6,9,15] some variants of ioco have
been introduced for testing of component-based systems. Our results in this
paper can be easily adapted and applied for those relations as well. For instance,
in [6], a variant of ioco for testing components is introduced such that the
correctness of the integration of the conformed components is guaranteed. That
aforementioned relation coincides with the standard ioco for a restricted class
of specification, namely deterministic models.

Related work. Our polynomial time algorithm for checking ioco (for determinis-
tic models) is inspired by [18], which is based on the reduction of checking ioco
into the NHORNSAT problem [8]. The coinductive definition of ioco, which
is an important means for this result, is akin to the alternating refinement [4] of
Interface Automata [3] (see also [1,10]). In [22], it is shown that for determin-
istic models and implementations, alternating refinement coincides with ioco.
In this paper, we show that our coinductive definition of ioco coincides with
ioco for deterministic models (and possibly nondeterministic implementations).
In a recent paper [10], a simulation-like relation, called iocos, is presented. It is
shown that iocos is finer than ioco.

In [11], the author proves that testing conformance under asynchronous com-
munication is in general EXPTIME-hard. Then, by restricting to a particular
class of models, called observable IOTSs, the author gives a polynomial time
algorithm for checking conformance under asynchronous FIFO communication.
(The problem remains equally hard for observable models under arbitrary asyn-
chronous communication.) Apart from being in the asynchronous setting, the
notion of conformance used in [11] differs from ioco (e.g., its theory does not
treat quiescence).

Structure of the Paper. In Sect. 2, we recall some basic definitions regarding
labeled transition systems and the input-output conformance relation. In Sect. 3,
we study the complexity of checking ioco. In order to obtain more efficient
bounds for checking conformance of deterministic models, we first give a coin-
ductive definition of ioco in Sect. 4 and use this definition in Sect. 5 to show that
in this restricted setting, conformance checking is indeed possible in polynomial
time. We conclude the paper in Sect. 6.

On the Complexity of Input Output Conformance Testing 293

2 Preliminaries

In this section, we briefly repeat the definitions of the formal models used in our
context for specifying system behavior, as well as the notion of input-output con-
formance testing. Throughout this paper, we use variants of Labeled Transition
Systems (LTSs) for modeling the behavior of specifications and implementa-
tions. The LTS model assumes that systems can be represented using a set of
states and transitions, labeled with events or actions, between such states. The
events leading to new states can be observed by the tester, but the states cannot
be inspected. We assume the presence of a special action, denoted by ϕ , which
models an event that is unobservable to the tester.

Definition 1 (LTS). A labeled transition system (LTS) is a 4-tuple →S,L,∼, s̄⊆,
where S is a set of states, L is a finite alphabet of actions that does not contain
the internal action ϕ , ∼⊆ S × (L←{ϕ})×S is the transition relation, and s̄ ∩ S
is the initial state.

Throughout this section, we assume a fixed yet arbitrary LTS →S,L,∼, s̄⊆.
We tend to refer to LTSs by referring to their initial state, i.e., s̄ in the case of
the above mentioned LTS. Let s, s∈ ∩ S and x ∩ L ← {ϕ}. In line with common
practice, we write s

x−∼ s∈ rather than (s, x, s∈) ∩∼. Furthermore, we write s
x−∼

whenever s
x−∼ s∈ for some s∈ ∩ S, and s ∅ x−∼ when not s

x−∼. The transition
relation is generalized to a relation over a sequence of actions by the following
deduction rules:

s
Σ−−∼∗s

s
ψ−−∼∗s∈∈ s∈∈ x−−∼ s∈ x ∅= ϕ

s
ψx−−−∼∗s∈

s
ψ−−∼∗s∈∈ s∈∈ ϕ−−∼ s∈

s
ψ−∼∗s∈

We tacitly adopt the same notational conventions both for ∼ and ∼∗.
An LTS s̄ is said to be deterministic if the set of states reached after executing

any sequence of actions is always a singleton set; that is, for all s, s∈, s∈∈ ∩ S and
all σ ∩ L∗, if s

ψ∼∗s∈ and s
ψ∼∗s∈∈ then s∈ = s∈∈.

A state in the LTS s̄ is said to diverge if it is the source of an infinite sequence
of ϕ -labeled transitions. The LTS s̄ is divergent if one of its reachable states
diverges. Throughout this paper, we confine ourselves to non-divergent LTSs.

Definition 2. Let s∈ ∩ S and S∈ ⊆ S. The set of traces, enabled actions and
weakly enabled actions for s and S∈ are defined as follows:

– traces(s) = {σ ∩ L∗ | s
ψ∼∗}, and traces(S∈) =

⋃

s′↑S′
traces(s∈).

– init(s) = {x ∩ L ← {ϕ} | s
x−∼}, and init(S∈) =

⋃

s′↑S′
init(s∈).

– Sinit(s) = {x ∩ L | s
x∼∗}, and Sinit(S∈) =

⋃

s′↑S′
Sinit(s∈).

Input, output, Quiescence and Suspension Traces. When engaging in interaction
with another system, the actions of an LTS are often assumed to be partitioned

294 N. Noroozi et al.

into two subcategories, reflecting which of the systems has the initiative in exe-
cuting the action. Output actions are under the control of the system, whereas
input actions are under the control of the environment of the system. We refine
the LTS model to reflect this distinction in initiative.

Definition 3 (IOLTS). An input-output labeled transition system (IOLTS) is
a tuple →S, I, U,∼, s̄⊆ such that the tuple →S,L,∼, s̄⊆ is an LTS in which the
alphabet L is partitioned into a set I of inputs and a set U of outputs, i.e.
L = I ← U .

Testers often not only have the power to observe the events produced by an
implementation, but also can observe the absence of events, or quiescence [21].
A state s ∩ S is said to be quiescent if it does not produce outputs and it
is stable, that is, it cannot, through internal computations, evolve to a state
that is capable of producing outputs. Formally, state s is quiescent, denoted
η(s), whenever init(s) ⊆ I. In order to formally reason about the observations
of inputs, outputs and quiescence, we introduce the set of suspension traces. To
this end, we first generalize the transition over a sequence of input, output and
quiescence actions. Let Lδ denote the set L ← {η}.

s
ψ−−∼∗s∈

s
ψ=⇐ s∈

η(s)

s
δ=⇐ s

s
ψ=⇐ s∈∈ s∈∈ ρ

=⇐ s∈

s
ψρ

=⇐ s∈

The following definition formalizes the set of suspension traces.

Definition 4. Let s ∩ S and S∈ ⊆ S. The set of suspension traces for s,
denoted by Straces(s) is defined as the set {σ ∩ L∗

δ | s
ψ⇐}; we set Straces(S∈) =⋃

s′↑S′
Straces(s∈).

Input-Output Conformance Testing with Quiescence. Tretmans’ ioco testing the-
ory [21] is a formal approach to conformance testing. It assumes that the behav-
ior of implementations can be described adequately using a class of IOLTSs,
called input output transition systems; this assumption is the so-called testing
hypothesis. Input output transition systems are essentially plain IOLTSs with
the additional assumption that inputs can always be accepted.

Definition 5 (IOTS). Let →S, I, U,∼, s̄⊆ be an IOLTS. A state s ∩ S is input-
enabled iff I ⊆ Sinit(s); the IOLTS s̄ is an input output transition system
(IOTS) iff every state s ∩ S is input-enabled. The class of input output transition
systems ranging over inputs I and outputs U is denoted IOTS(I, U).

While the ioco testing theory assumes input-enabled implementations, it does
not impose this requirement on specifications. This facilitates testing using par-
tial specifications, i.e., specifications that are under-specified. To simplify pre-
senting the input-output conformance relation (ioco), we first introduce the
formal definitions below.

On the Complexity of Input Output Conformance Testing 295

s̄

s1

s2s3

coin

refund

tea

(a) IOLTS s̄

r̄

r1r2

r3r4

coin
coin

tea

coin

refund

coin

coincoin

(b) IOTS r̄

ī

i1

i2i3

coin

refund

tea

τ

coincoin

(c) IOTS ī

Fig. 1. A specification s̄ of a tea vending machine, a correct implementation r̄ and an
incorrect implementation ī.

Definition 6. Let →S, I, U,∼, s̄⊆ be an IOLTS. Let s ∩ S, S∈ ⊆ S and let σ ∩ L∗
δ .

– s after σ = {s∈ ∩ S | s
ψ⇐ s∈}, and S∈ after σ =

⋃

s′↑S′
s∈ after σ.

– out(s) = {x ∩ Lδ \ I | s
x⇐}, and out(S∈) =

⋃

s′↑S′
out(s∈).

The ioco conformance relation [21] is then defined as follows.

Definition 7 (ioco). Let →Q, I, U,∼, r̄⊆ be an IOTS representing a realization
of a system, and let IOLTS →S, I, U,∼, s̄⊆ be a specification. We say that r̄ is
input output conform with specification s̄, denoted by r̄ ioco s̄, iff

∀σ ∩ Straces(s̄) : out(r̄ after σ) ⊆ out(s̄ after σ)

Example 1. Consider the IOLTSs pictured in Fig. 1. The IOLTS s̄ is a speci-
fication of a vending machine which sells tea. After receiving a coin, it either
delivers tea or refunds the coin. The IOLTS r̄ is a formal model of a possible
implementation of this vending machine. Upon receiving a coin, the machine r̄
chooses non-deterministically between serving tea or refunding the coin. Note
that IOLTS r̄ is input-enabled, because it accepts input action coin (as the only
input action) at every state. The set Straces(s̄) is given by the regular expres-
sion (η∗) | (η∗coin) | (η∗coin(tea|refund)η∗). Clearly, for all σ ∩ Straces(s̄), we have
out(r̄ after σ) ⊆ out(s̄ after σ). Thus, r̄ ioco s̄.

The IOLTS ī is a formal model of an implementation of a malfunction vending
machine. After receiving a coin, it either delivers tea, refunds the coin or does
nothing. Similar to IOTS r̄, it accepts input action coin at every state. Thus,
the IOLTS ī is input-enabled. Consider the trace coin after which out(s̄) =
{refund, tea} while out(̄i) = {refund, tea, η}. As a result, we find that ī ∅ioco s̄.

3 Conformance Checking for Nondeterministic Models

In this section, we study the complexity of input-output conformance checking
in full generality. We prove that, in the general case, checking ioco is PSPACE-
complete. To this end, we first show that checking ioco is in PSPACE. Sub-
sequently, we show that checking ioco is at least as hard as other canonical

296 N. Noroozi et al.

PSPACE-complete problems and hence, is also PSPACE-complete. We prove
these results by means of two polynomial time reductions, respectively, to and
from the language inclusion problem for regular expressions (or NFAs); the latter
problem is well-known to be PSPACE-complete; see [19] for the classical result
and [2,16] for some recent developments.

Theorem 1. The problem of checking ioco is in PSPACE.

Proof. We prove the thesis by showing that the problem of checking ioco for
input-enabled specifications is reducible to the language inclusion problem of
NFAs with α-moves (hereafter simply referred to as NFAs) in polynomial time.
Observe that without loss of generality we can restrict our attention to the prob-
lem of checking ioco for input-enabled specifications. Indeed, for a non input-
enabled specification A2, we can construct an input-enabled specification Ā2 in
polynomial time such that for any implementation A1, we have A1 iocoA2 iff
A1 ioco Ā2. The construction uses a standard angelic completion, adding miss-
ing input transitions to A2 that lead to fresh input-enabled states that accept
all outputs and quiescence.

Assume that, for i ∩ {1, 2}, we have IOTSs Ai of the form →Si, I, U,∼i, s̄i⊆. Our
reduction proceeds as follows. We define NFAs A∈

i = →Qi, Σ,Υi, qi, F ⊆ as follows:

– Qi = Si is the set of states,
– Σ = Lδ ← {α} where Lδ = I ← U ← {η} is the common alphabet,
– Υi = {(q, a, q∈) | q

a−∼ q∈∧a ∩ L}←{(q, α, q∈) | q, q∈ ∩ Si∧q
ϕ−∼ q∈}←{(q, η, q) | q ∩

Si ∧ η(q)} is the transition relation, which is that of the corresponding IOTS
union with η-labeled self-loop for single and each quiescent state.

– qi = s̄i is the initial state, and
– F = Qi is the set of final states.

Note that the above reduction is carried out linearly in the size of the transi-
tion relations of A1 and A2. Moreover, observe that L(A∈

1) = Straces(A1) and
L(A∈

1) = Straces(A2). We next proceed by showing that A1 iocoA2 if and only
if L(A∈

1) ⊆ L(A∈
2). We prove the contraposition of both implications separately.

– Assume that A1 ∅iocoA2. By definition of ioco there is a suspension trace
σ in specification A2 such that for some output x, σx ∩ Straces(A1), but
σx ∅∩ Straces(A2). Since L(A∈

1) = Straces(A1) and L(A∈
2) = Straces(A2) we

find L(A∈
1) ∅⊆ L(A∈

2).
– Assume L(A∈

1) ∅⊆ L(A∈
2). Then there is a word σ ∩ L(A∈

1) \ L(A∈
2). Without

loss of generality, assume σ = βx for some β ∩ L(A∈
1)∨L(A∈

2) and x ∩ Σ. Since
L(A∈

1) = Straces(A1) and L(A∈
2) = Straces(A2), we have βx ∩ Straces(A1) \

Straces(A2). We distinguish two cases:

• Suppose x ∩ I. Since, A2 is input-enabled, we know that βa ∩ Straces(A2)
for all a ∩ I. In particular, βx ∩ Straces(A2), contradicting βx ∅∩ Straces(A2).
Therefore, x ∩ I cannot be the case.

• Suppose x ∩ U←{η}. Therefore, x ∩ out(s̄1 after β) but x ∅∩ out(s̄2 after β).
By definition of ioco relation we have A1 ∅iocoA2.

On the Complexity of Input Output Conformance Testing 297

We next establish that the problem of checking ioco is in fact PSPACE-complete.

Theorem 2. The problem of checking ioco is PSPACE-complete.

Proof. We prove the thesis by providing a linear reduction of the PSPACE-
complete language inclusion problem for regular expressions to checking ioco.
Every regular expression can be translated linearly to a language equivalent NFA,
following Kleene’s theorem. In particular, we may assume that the language-
equivalent NFA of a regular expression has one initial and one final state, all
states are reachable from the initial state and can reach the final state, there
is no incoming transition to the initial state and no outgoing transition from
the final state (e.g., by applying Thompson’s algorithm for converting regular
expressions to NFAs [20]).

Formally, let RE1 and RE2 be two regular expressions over alphabet Σ and
assume A1 and A2 are the language-equivalent NFAs for RE1 and RE2. The
inclusion problem of regular expressions of RE1 and RE2 is equivalent to the
problem whether L(A1) ⊆ L(A2). As stated above, we may assume that NFA Ai

is of the form →Qi, Σ ← {α},Υi, qi, {fi}⊆. We define IOTSs A∈
i = →Si, I, U,∼i, s̄i⊆

as follows:

– Si = Qi,
– I = {i}, where i /∩ Σ is a fresh symbol,
– U = Σ,
– ∼i= {(q, a, q∈) | (q, a, q∈) ∩ Υi∧a ∩ Σ}←{(q, ϕ, q∈) | (q, α, q∈) ∩ Υi}←{(q, i, q) |

q ∩ Qi}, i.e., the transition relation is that of the corresponding automaton
union with i-labeled self-loops for each and every state,

– s̄i = qi.

Note that the two IOLTSs A∈
1 and A∈

2 obtained from the above reduction are
input-enabled, because {i} ⊆ Sinit(s) for all s in both A∈

1 and A∈
2. Moreover,

the accepting states in A1 and A2 are the only quiescent states in A∈
1 and A∈

2.
We proceed to show that language inclusion of A1 in A2 can be decided by
checking for ioco; that is, we prove L(A1) ⊆ L(A2) if and only if A∈

1 iocoA∈
2.

The contraposition of each implication is again proved separately.

– Assume that L(A1) ∅⊆ L(A2). Thus, there is a word σ ∩ Σ∗ such that σ ∩
L(A1) but σ ∅∩ L(A2). Therefore, the accepting state f1 in NFA A1 is reachable
after σ. By construction, the state f1 state in A∈

1 is quiescent. Thus, η ∩
out(A∈

1 after σ). We distinguish two cases.
• Suppose there is a state in automaton A2 which is reachable after σ.

Thus, σ ∩ Straces(A∈
2). Since σ ∅∩ L(A2), we know that A2 does not

reach its accepting state f2 after σ. Therefore, η ∅∩ out(A∈
2 after σ). Since

η ∩ out(A∈
1 after σ) and σ ∩ Straces(A∈

2), we find that A∈
1 ∅iocoA∈

2, which
was to be shown.

• Assume there is no state in automaton A2 that is reachable after σ. Then
also σ ∅∩ Straces(A∈

2). Let βx ∩ Σ+ be a prefix of σ such that β ∩ Straces(A∈
2)

but βx /∩ Straces(A∈
2). Note that such a prefix must exist. Since σ ∩

Straces(A∈
1), we find that βx ∩ Straces(A∈

1). Therefore A∈
1 ∅iocoA∈

2, which
was to be shown.

298 N. Noroozi et al.

– Assume that A∈
1 ∅iocoA∈

2. Thus, there is a σ ∩ Straces(A∈
1) ∨ Straces(A∈

2) and
an output x ∩ Σ ← {η} such that σx ∩ Straces(A∈

1) but σx ∅∩ Straces(A∈
2).

We first define the projection operator ↓ over the sequences in Σ ←{i, η}. Let
κ ∩ (Σ ← {i, η})∗ and a ∩ Σ ← {i, η}. Then (κa)↓ = (κ)↓a when a ∩ Σ, and
(κa)↓ = (κ)↓ otherwise.

Since, by construction, only transitions labeled with an action in Σ invoke
state changes in IOLTS A∈

1, for all κ we have (A∈
1 after κ) = (A∈

1 after κ↓),
and, similarly for A∈

2. Therefore, without loss of generality we may assume
that σx = (σx)↓; i.e., σx ∩ (Σ ← {η})∗. We distinguish two cases, based on
the type of x.
• Assume that x ∩ Σ. Since σx ∩ Straces(A∈

1) ∨ Σ∗, there is a state in A1

that is reachable after σx. Since the accepting state f1 in A1 is reachable
from every all states in A1, there must be a β ∩ Σ∗ such that σxβ ∩ L(A1).
From σx ∅∩ Straces(A∈

2) and σx ∩ Σ∗ we can deduce that no state in A2 can
be reached via the word σx. Consequently, the extended word σxβ is also
not accepted by A2; i.e., σxβ ∅∩ L(A2). Since σxβ ∩ L(A1), we conclude
that L(A1) ∅⊆ L(A2).

• Assume that x ∅∩ Σ; it then follows that x = η. Thus, η ∩ out(A∈
1 after σ).

By our construction, a η-labeled transition is enabled only at state f1 in
A∈

1 and state f2 in A∈
2. From this, it follows that word σ is accepted by

A1, i.e., σ ∩ L(A1). Following a similar line of reasoning, we conclude from
η ∅∩ out(A∈

2 after σ) that the word σ is not accepted by A2, i.e., σ /∩ L(A2).
But then L(A1) ∅⊆ L(A2), which we needed to show.

Since the reduction we used is linear in the size of A1 and A2 and since checking
ioco conformance is in PSPACE (Theorem 1), it follows that checking ioco
conformance is PSPACE-complete.

Example 2. Consider automata A1 and A2 over Σ = {a} depicted in Fig. 2.
Automata A1 and A2 accept regular languages a and aa∗, respectively. Thus,
L(A1) ⇒ L(A2). Now consider the IOLTS’s A∈

1 and A∈
2 in Fig. 2 with {a} as

the output alphabets and {i} as the set of inputs. Observe that IOLTS’s A∈
1

and A∈
2 can be obtained from A1 and A2 according to the reduction algorithm

presented in the proof of Theorem 2. Both models are input-enabled because
they have a transition labeled with i as the only input action at every state.

0 1
a

(a) A1

0 1 2
a

a

ε

(b) A2

0 1
a

i i

(c) A∈
1

0 1 2
a

i a, i

τ

i

(d) A∈
2

Fig. 2. NFA’s A1 and A2 represents the regular expression a and aa∗ respectively.
IOLTS’s A∈

1 and A∈
2 depicts two input-enabled IOLTS’s over the language L = I ≤ U ,

where I = {i} and U = {a}

On the Complexity of Input Output Conformance Testing 299

The set Straces(A∈
2) is given by the regular expression (i∗) | (i∗a (a|i)∗(η|i)∗).

It is clear that A∈
1 iocoA∈

2, because for all σ ∩ Straces(A∈
2), out(A

∈
1 after σ) ⊆

out(A∈
2 after σ).

4 Coinductive Definition of IOCO

In the previous section, we showed that checking ioco is in general inefficient
and requires exponential time and space (in the size of the specification). In the
next section, we show that checking ioco can be performed in polynomial time
when specifications are deterministic. To accommodate proving this result, we
first show that checking ioco for deterministic specifications reduces to checking
a simulation-like preorder which we call coinductive ioco in this section. This
preorder closely resembles alternating refinement [4] for Interface Automata [3].

Definition 8 (Coinductive ioco). Let deterministic IOLTS →S, I, U,∼s, s̄⊆ be
a specification, and let IOTS →Q, I, U,∼, r̄⊆ be an implementation. A binary
relation R ⊆ Q × S is called a coinductive ioco relation from r̄ to s̄ when
(r̄, s̄) ∩ R and for each (q, p) ∩ R, then

– (Input simulation) if p
a−∼s p∈, for a ∩ I, then (q after a) ∅= ∃ and for all

q∈ ∩ q after a, we have (q∈, p∈) ∩ R
– (Output simulation) if q

a⇐ q∈, and a ∩ U ← {η}, then a ∩ out(p) and for all
p∈ ∩ p after a, we have (q∈, p∈) ∩ R.

We write q ⊕ p, when there exists a coinductive ioco relation relating q to p.

If the intent is clear from the context, we will simply say that a relation is a
coinductive ioco relation rather than a coinductive ioco relation from r̄ to s̄.

The following theorem is the main result of this section.

Theorem 3. For deterministic specifications, coinductive ioco and ioco coin-
cide.

Before giving the proof of the theorem, we need to show the correctness of the
lemma given below.

Lemma 1. Let deterministic IOLTS →S, I, U, s̄,∼s⊆ be a specification, and let
IOTS →Q, I, U, r̄,∼⊆ be an implementation. Let R ⊆ S ×Q be a coinductive ioco
relation, and let σ ∩ Straces(s̄) ∨ Straces(r̄) with length n ∈ 1. Then, (q, p) ∩ R
for all p ∩ (s̄ after σ) and q ∩ (r̄ after σ).

Proof. Because R is a coinductive ioco relation, we have (r̄, s̄) ∩ R. We proceed
with an induction on the length of σ.

– For the base case, assume that σ ∩ Lδ is a suspension trace of length 1. We
distinguish two cases. Suppose that σ ∩ I. Following the input simulation con-
dition with (r̄, s̄) ∩ R, we immediately find that (q, p) ∩ R for p ∩ (s̄ after σ)
and q ∩ (r̄ after σ). Suppose σ ∩ U ← {η}. It follows from the output simu-
lation condition together with (r̄, s̄) ∩ R and the fact that s̄ is deterministic
that (q, p) ∩ R for all p ∩ (s̄ after σ) and q ∩ (r̄ after σ). Both cases lead to
the desired result.

300 N. Noroozi et al.

– Assume that the induction hypothesis holds for all sequences of length n − 1
and consider a sequence σ ∩ Straces(s̄) ∨ Straces(r̄) with length n ∈ 2. We
may assume that σ is of the form βa. Let q, q∈ ∩ Q be arbitrary states such
that r̄

ρ⇐ q∈ a⇐ q (we know these exist since σ ∩ Straces(r̄)). Likewise, there
are unique p, p∈ ∩ S such that s̄

ρ⇐ s p∈ a⇐ s p (note that unicity follows from
the fact that s̄ is deterministic). Following the induction hypothesis, we have
that (q∈, p∈) ∩ R. Therefore, the pair (q∈, p∈) satisfies the input and output
simulation conditions. We distinguish two cases. Suppose that a ∩ I. Due
to the input simulation condition, we find that (q, p) ∩ R. Suppose that
a ∩ U ← {η}; then (q, p) ∩ R follows from the output simulation condition.
Therefore, (q, p) ∩ R for arbitrary p ∩ (s̄ after σ) and q ∩ (r̄ after σ).

Now, we are in the position to give the proof of Theorem 3.

Proof (Theorem 3). The proof of each implication is given separately.

– We suppose that r̄ ∅ioco s̄, then we show that there is no binary relation R
such that (r̄, s̄) ∩ R and R is such that the input and output simulation
conditions hold for all pairs (q, p) ∩ R. By definition of ioco, we know that
there exists a sequence σ ∩ Straces(r̄) ∨ Straces(s̄) and there exits an output
x such that σx ∩ Straces(r̄) but σx ∅∩ Straces(s̄). We distinguish two cases;
σ = α and σ ∩ L+

δ .
• Suppose that σ = α. Clearly, the pair (r̄, s̄) violates the output simulation

condition, because r̄
x⇐, whereas s̄ /

x⇐ s. Therefore, there can be no relation R
that simultaneously satisfies the required simulation properties and (r̄, s̄) ∩
R.

• Suppose σ ∩ L+
δ . Towards a contradiction, assume that there is a coinduc-

tive ioco relation R. Thus, (r̄, s̄) ∩ R. It follows from σx ∩ Straces(r̄) that
there is some q ∩ (r̄ after σ) such that x ∩ out(q). Since s̄ is deterministic,
from σ ∩ Straces(s̄) we find that there is some unique p ∩ S such that
s̄

ψ⇐s p. Because σx ∅∩ Straces(s̄), we find that x ∅∩ out(p). From Lemma 1,
we obtain that (q, p) ∩ R. However, the pair (q, p) violates the output simu-
lation condition since q

x⇐ but p /
x⇐ s. This contradicts the assumption that

there is a coinductive ioco relation R.
– We suppose that r̄ ioco s̄. We construct the relation R = {(r̄, s̄)} ← {(q, p) |

∃σ ∩ L+
δ • r̄

ψ⇐ q ∧ s̄
ψ⇐s p}. We proceed to show that R is a coinductive

ioco relation. Clearly, (r̄, s̄) ∩ R. So it suffices to show that for arbitrary pair
(q, p) ∩ R the input and output simulation conditions are met. We assume
arbitrary pair (q, p) ∩ R. Thus, there exists σ ∩ L∗

δ such that r̄
ψ⇐ q and s̄

ψ⇐ p.
Because r̄ is input-enabled, q has a matching (weak) transition for any input
action performed by p, i.e., for all a ∩ I such that p

a⇐s, q after a ∅= ∃. By
definition of R, we find that (q∈, p∈) ∩ R for an action a ∩ I such that p

a⇐s p∈

and any q
a⇐ q∈. Thus, (q, p) satisfies the input simulation condition. Using

r̄ ioco s̄, by construction of R, we know that out(q) ⊆ out(p). Combining
this observation with the definition of R results in (q∈, p∈) ∩ R for all actions
a ∩ U ←{η} for which p

a⇐s p∈ and q
a⇐ q∈. Thus, (q, p) also satisfies the output

On the Complexity of Input Output Conformance Testing 301

simulation condition. Hence, the pair (q, p) fulfills both input and output
simulation conditions which was to be shown.

Since R satisfies both simulation conditions and (r̄, s̄) ∩ R, we find that R
is a coinductive ioco relation.

Following Theorem 3, we say that a coinductive ioco relation R is a witness for
r̄ ioco s̄.

Example 3. Consider the IOLTS’s s̄ and r̄ presented in Fig. 1 on p. 295. We
define the binary relation R = {(r̄, s̄), (r1, s1), (r2, s1), (r3, s2), (r4, s3)}. Clearly,
for all pair of states (q, p) ∩ R, the two input and output simulation conditions
presented in Definition 8 are satisfied. Thus, the relation R is an ioco coinductive
relation and it is also a witness for r̄ ioco s̄.

Now, consider the IOLTS ī depicted in Fig. 1. Because out(̄i after coin) ∅⊆
out(s̄ after coin), it is clearly obtained that ī ∅ioco s̄. Therefore, we find that
there is no binary relation from ī to s̄ such that (̄i, s̄) ∩ R and the two input
and output simulation conditions hold for any pair (q, p) ∩ R. However, we for
the sake of contradiction assume that there is a relation R∈ such that (̄i, s̄) ∩ R∈

and R∈ is such that for any (q, p) ∩ R∈, the two conditions in Definition 8 holds.
Regarding the input simulation condition, (̄i, s̄) ∩ R∈ implies that (i1, s1) ∩ R∈ as
well. We know from the properties of R∈, that s1 has to simulate all the outputs
produced by i1. While observation of quiescence is not possible at s1, via an
internal transition i1 can reach to a quiescent state. Therefore, (i1, s1) violates
the output simulation condition which contradicts with the assumption that all
pairs in R∈ respect the output simulation condition.

5 Conformance Checking of Deterministic Specifications

In this section, we give a polynomial-time algorithm for deciding the coinduc-
tive ioco relation defined in the previous section. The results obtained in the
remainder of this section can be adapted in a straightforward manner to some
other conformance relations in the ioco family, such as uioco [6]. Our algo-
rithm is inspired by [18] and is based on the reduction of checking ioco into the
NHORNSAT problem [8].

5.1 NHORNSAT Problem

The satisfiability problem for Boolean formulas is a typical (in fact, the first
identified) NP-complete problem. In a restricted setting, however, the problem
becomes decidable in polynomial time.

Definition 9 ((N)HORNSAT). A boolean clause (a disjunction of literals)
containing of at most one positive literal is called a Horn clause. We call the
conjunction of Horn clauses a Horn formula. The satisfiability of a Horn formula
is known as HORNSAT. Similarly, checking the satisfiability of a conjunction
of clauses containing of at most one negative literal is called NHORNSAT.

302 N. Noroozi et al.

The size of a (N)HORNSAT instance is defined as the total number of occur-
rences of literals in the given formula. It is well-known that (N)HORNSAT is
decidable in polynomial time in the size of the (N)HORNSAT instance [8].

5.2 Reducing IOCO to NHORNSAT

Throughout this section, we assume that we have an IOTS →Q, I, U, r̄,∼⊆ and
a deterministic IOLTS →S, I, U, s̄,∼s⊆. We assume p, p∈, p∈∈ are states in S and
q, q∈, q∈∈ are states in Q. The algorithm, which we will present shortly, intuitively
uses the following encoding:

1. positive literals Xqp model that q is (purportedly) related to p by a coinductive
ioco relation,

2. negative literals Xqp model that the pair (p, q) cannot be in a coinductive
ioco relation, and

3. implication clauses Xqp ⇐ Xq′p′ , which are shorthand for Xqp ∪ Xq′p′ , model
that the pair (p, q) can be in a coinductive ioco relation only if (q∈, p∈) is in
the same relation.

The reduction of checking for a coinductive ioco relation to NHORNSAT
is presented in Algorithm 1: this algorithm constructs a negative Horn formula
F such that F is satisfiable if and only if there exists a coinductive ioco relation
R from r̄ to s̄.

The algorithm takes an implementation r̄ and a deterministic specification
s̄ as input. We assume that for r̄, the generalized transition relation ⇐ from
∼ of r̄ has been computed. This requires a pre-processing step of r̄, involving
a transitive closure computation, see e.g. [12]. Computing ⇐ can be done in
polynomial time.

It is easy to see that the algorithm terminates. In each iteration, of the
outer loop, the set V ⊆ {Xqp | q ∩ Q, p ∩ S} strictly increases and C ⊆
{Xqp | q ∩ Q, p ∩ S}\V is a loop invariant. The algorithm thus terminates after
at most |Q|× |S| iterations of the outer loop. Since the set of actions Lδ is finite,
termination of the two inner loops is also guaranteed. It is equally easy to see
that the formula that is constructed is a NHORNSAT formula.

Example 4. Reconsider IOLTSs s̄ and ī in Fig. 1 on p. 295. As we concluded in
Example 1, ī ∅ioco s̄ because, e.g. out(̄i after coin) ∅⊆ out(s̄ after coin). Therefore,
the NHORNSAT instance obtained from Algorithm 1 must be unsatisfiable.
The formula F generated by Algorithm 1 is the following:

Xīs̄ ∧ (Xīs̄ ⇐ Xīs̄) ∧ (Xīs̄ ⇐ Xi1s1) ∧ (Xīs̄ ⇐ Xīs1
) ∧ (Xi1s1 ⇐ Xi2s2)

∧(Xi1s1 ⇐ Xi3s3) ∧ Xi1s1 ∧ Xīs1
∧ (Xi2s2 ⇐ Xi2s2) ∧ (Xi3s3 ⇐ Xi3s3)

Indeed, it is easily seen that the obtained formula F is unsatisfiable: for F to be
satisfiable, Xīs̄ must be True, which means that Xi1s1 must be True, but that
means that Xi1s1 is False.

On the Complexity of Input Output Conformance Testing 303

Algorithm 1. ioco-NHORN
1: procedure ioco-NHORN(s̄, r̄)
2: F ≥ Xr̄s̄ Π Positive literal Xr̄s̄ is added to Formula F .
3: C ≥ {Xr̄s̄} Π Set of unprocessed variables
4: V ≥ → Π Set of processed variables
5: while C �= → do
6: Choose Xqp ∪ C
7: V ≥ V ≤ {Xqp}
8: C∈ ≥ →
9: for a ∪ init(p) ∩I do

10: if (q after a) �= → then
11: Choose p∈ ∪ p after a Π Due to determinism, |p after a| = 1
12: F ≥ F ∩∧q′∈(q after a)(Xqp ≡ Xq′p′) Π Input simulation condition

13: C∈ ≥ C∈ ≤ {Xq′p′ | q∈ ∪ q after a} Π Add unprocessed variables
14: else
15: F ≥ F ∩ Xqp Π Violation of input simulation
16: end if
17: end for
18:
19: for a ∪ out(q) do
20: if a ∪ out(p) then
21: Choose p∈ ∪ p after a Π Due to determinism, |p after a| = 1
22: F ≥ F ∩∧q′∈(q after a)(Xqp ≡ Xq′p′) Π Output simulation condition

23: C∈ ≥ C∈ ≤ {Xq′p′ | q∈ ∪ q after a} Π Add unprocessed variables
24: else
25: F ≥ F ∩ Xqp Π Violation of output simulation
26: end if
27: end for
28: C ≥ C ≤ (C∈ \ V);
29: end while
30:
31: return F Π The final negative HORN formula
32: end procedure

Next, reconsider IOLTS r̄ of Fig. 1. We know from Example 1 that r̄ ioco s̄.
The formula F generated by Algorithm 1 is the following:

Xr̄s̄ ∧ (Xr̄s̄ ⇐ Xr̄s̄) ∧ (Xr̄s̄ ⇐ Xr1s1) ∧ (Xr̄s̄ ⇐ Xr2s1) ∧ (Xr1s1 ⇐ Xr3s2)
∧(Xr2s1 ⇐ Xr4s3) ∧ (Xr3s2 ⇐ Xr3s2) ∧ (Xr4s3 ⇐ Xr4s3)

Clearly, the constructed formula is satisfiable: assigning True to all literals is a
satisfying assignment.

5.3 Correctness of the Reduction Algorithm

The constructed formula F by Algorithm 1 has two key properties that together
ensure the correctness of our algorithm. First, the existence of a coinductive

304 N. Noroozi et al.

ioco relation R implies satisfiability of F . This follows from the observation
that from any coinductive ioco relation R the truth assignment Φ for F defined
by assigning True to every variable Xqp appearing in F for which (q, p) ∩ R, and
assigning False to all remaining variables in F is a witness to the satisfiability of
F . Second, satisfiability of F implies the existence of a coinductive ioco relation
R. In a nutshell, this follows from the observation that for any given satisfying
assignment Φ of F , the binary relation R ⊆ Q × S defined by (p, q) ∩ R iff
variable Xqp appears in F and Xpq = True in Φ, is a coinductive ioco relation.
We first prove these two properties, and then state our main theorem claiming
correctness of the algorithm.

Proposition 1. Let →S, I, U,∼s, s̄⊆ be a deterministic IOLTS and let →Q, I, U,∼
, r̄⊆ be an arbitrary IOTS. Let F be the NHORNSAT instance from Algo-
rithm 1. If r̄ ⊕ s̄ then F is satisfiable.

The correctness of the above-given proposition results from the following lemma.
This lemma essentially states that the presence of a negative literal Xqp in for-
mula F indicates the pair (q, p) can never be related by a coinductive ioco
relation.

Lemma 2. Let F be the formula obtained from Algorithm 1, and let Xpq be
an arbitrary variable. If F contains the literal Xpq, then no coinductive ioco
relation R for which (q, p) ∩ R exists.

Proof. Towards a contradiction, assume there is a coinductive ioco relation R
such that (q, p) ∩ R. In our algorithm, the literal Xqp is only added to F under
one of the following two conditions:

1. there is an input action a ∩ init(p) while q after a = ∃,
2. there is an output action a ∩ out(q) while a /∩ out(p).

We first assume that Xqp is generated because of the first case, i.e., there is an
input a ∩ init(p) for which q after a = ∃. Then the pair (q, p) ∩ R does not
meet the input simulation condition of Definition 8, contradicting the fact that
the pair (q, p) can be in a coinductive ioco relation R. Next, assume that Xqp is
generated because of the second case. Following the same line of reasoning, the
presence of (q, p) ∩ R violates the output simulation condition, contradicting
that R is a coinductive ioco relation.

Next, we return to proving Proposition 1.

Proof (Proposition 1). Consider a coinductive ioco relation R ⊆ Q × S. Let Φ
be a truth assignment for the variables in F defined as follows:

Φ(Xqp) =
{
True if (q, p) ∩ R
False otherwise

Since (r̄, s̄) ∩ R, we know that the single literal clause Xr̄s̄ evaluates to True.
Next, consider the other two types of clauses that are introduced in formula F :
single negative literal clauses and implication clauses.

On the Complexity of Input Output Conformance Testing 305

– Clauses of the form Xqp. Due to Lemma 2 we have (q, p) /∩ R whenever the
negative literal clause Xqp is added to F in line 15 or line 25. By definition
we then have Φ(Xqp) = False. Consequently, a negative literal clause Xqp in
F evaluates to True.

– Clauses of the form Xqp ⇐ Xq′p′ . We distinguish the cases when (q, p) /∩ R
and (q, p) ∩ R.
• Assume that (q, p) ∅∩ R. By definition of Φ, we have Φ(Xqp) = False. Then

the clause Xqp ⇐ Xq′p′ immediately evaluates to True under Φ.
• Suppose that (q, p) ∩ R. Thus Φ(Xqp) = True. Therefore the clause Xqp ⇐

Xq′p′ evaluates to True only if Φ(Xq′p′) = True. The implication clause
Xqp ⇐ Xq′p′ in Algorithm 1 is added to F in line 12 when there is some
input a ∩ init(p) or in line 22 when there is some output a ∩ out(q) for
which q∈ ∩ q after a and p∈ ∩ p after a. From these observations, and the
fact that R is a coinductive ioco relation it follows that (q∈, p∈) ∩ R. But
then, by definition of Φ, we have Φ(Xq′p′) = True, which was to be shown.

As a result, implication clauses in F of the form Xqp ⇐ Xq′p′ evaluate to
True.

Since there are no other types of clauses in F , formula F evaluates to True
under Φ.

The proposition below formalizes the second property of algorithm ioco-NHORN.

Proposition 2. Let →S, I, U,∼s, s̄⊆ be a deterministic IOLTS and let →Q, I, U,∼
, r̄⊆ be an arbitrary IOTS. Let F be the NHORNSAT instance from Algo-
rithm 1. If F is satisfiable, then r̄ ⊕ s̄.

Proof. Let Φ be a truth assignment such that formula F evaluates to True. We
construct a binary relation R ⊆ S × Q as follows:

R = {(q, p) | variable Xqp occurs in F and Φ(Xqp) = True}

We proceed by showing that R is a coinductive ioco relation. Clearly, since the
single literal Xr̄s̄ occurs in F and F is satisfiable, we have Φ(Xr̄s̄) = True. By
definition, we then have (r̄, s̄) ∩ R.

Let (q, p) ∩ R be an arbitrary pair. By definition, this means that Φ(Xpq) =
True. Observe that this means that formula F cannot contain the single negative
literal Xqp. We next show that the pair (q, p) ∩ R meets both the input and
output simulation conditions:

– Ad input simulation. Suppose that p
a−∼s p∈ for some a ∩ I. Since F does

not contain the negative literal Xqp, we know that q after a ∅= ∃ (line 10).
Therefore, F contains implication clauses of the form Xqp ⇐ Xq′p′ where
q∈ ∩ q after a and p∈ ∩ p after a. Since, F evaluates to True under Φ,
also Xqp ⇐ Xq′p′ evaluates to True under Φ. Since q∈ ∩ q after a is chosen
arbitrarily, we find that Φ(Xq′p′) = True for all q∈ ∩ q after a. Then by
construction, (q∈, p∈) ∩ R for all q∈ ∩ q after a.

306 N. Noroozi et al.

– Ad output simulation. Suppose that q
a⇐ q∈ for some a ∩ U ← {η}. Following

the same line of reasoning as in the above case, we find that the pair (q, p)
meets the output simulation condition.

An immediate consequence of the preceding two propositions is the following
theorem, stating that our reduction algorithm for checking ioco is sound.

Theorem 4. Let →S, I, U,∼s, s̄⊆ be a deterministic IOLTS and let →Q, I, U,∼, r̄⊆
be an arbitrary IOTS. Let F be the NHORNSAT instance from Algorithm 1.
Then F is satisfiable if and only if r̄ ioco s̄.

Proof. Following Propositions 1 and 2, we know that the formula F obtained
from Algorithm 1 is satisfiable if and only if there is a coinductive ioco relation.
Combined with Theorem 3 we find that formula F is satisfiable if and only if
r̄ ioco s̄.

5.4 Complexity Analysis

We next analyze the complexity of Algorithm 1. Since NHORNSAT is
decidable in linear time [8], proving that we can decide that a possibly non-
deterministic implementation conforms to a deterministic specification in poly-
nomial time only requires showing that the Negative Horn formula F can be
constructed in polynomial time.

Theorem 5. Let →S, I, U,∼s, s̄⊆ be a deterministic IOLTS and let →Q, I, U,∼, r̄⊆
be an arbitrary IOTS for which ⇐ has been computed. Algorithm 1 constructs
formula F , which is of size O(|S| × |Q|2 × |Lδ|) in time O(|S| × |Q|2 × |Lδ|).
Proof. To facilitate writing the proof, we first introduce some auxiliary notation.
Let ds

a denote the cardinality of the set of states reachable from a state t after
executing an a-labeled transition, i.e., dt

a = |t after a|.
The main loop of Algorithm 1 iterates over the set of variables of the form

Xqp, for q ∩ Q and p ∩ S. This means there are at most |Q|× |S| iterations. The
complexity of a single iteration is given by the sum of the complexity of the two
inner loops (lines 9–17 and lines 19–27).

Since the size of a clause Xqp is smaller than the size of an implication clause
introduced in line 12 or line 22, the size of the constructed clause in each iteration
of one of the inner loops is bounded from above by 2 × dq

a for each a ∩ I for
the first inner loop, and 2 × dq

a for each a ∩ U ← {η}. The cumulative size of
the generated clauses in the first inner loop is therefore bounded from above by
2×∑

a↑I dq
a and the cumulative size of the generated clauses in the second inner

loop is bounded from above by 2 × ∑
a↑U∅{δ} dq

a.
Thus, the cumulative size of the clauses added in each iteration of the outer

loop is at most 2 × (
∑

a↑I dq
a +

∑
a↑U∅{δ} dq

a) = 2 × ∑
a↑Lδ

dq
a. Assuming that

for all q ∩ Q and all p ∩ S, all variables Xqp are inspected, the total size of the
NHORNSAT instance is bound from above as follows:

∑
p↑S

∑
q↑Q(2 × ∑

a↑Lδ
dq

a)
≤† ∑

p↑S

∑
q↑Q(2 × ∑

a↑Lδ
|Q|)

= 2 × |S| × |Q|2 × |Lδ|

On the Complexity of Input Output Conformance Testing 307

Observe that at †, we used the fact that dq
a is bounded from above by the size of

the state space of r̄, i.e., |Q|. Hence, the size of formula F is O(|S|× |Q|2 ×|Lδ|).
Since we assume that ⇐ has been computed, all operations involving ⇐, such as
after and out() require constant time. Constructing formula F can therefore

also be done in time O(|S| × |Q|2 × |Lδ|).
The theorem below states the complexity of deciding ioco for deterministic
specifications and possibly non-deterministic implementations.

Theorem 6. Let →S, I, U,∼s, s̄⊆ be a deterministic IOLTS and let →Q, I, U,∼, r̄⊆
be an arbitrary IOTS. Deciding whether r̄ ioco s̄ for deterministic specifications
s̄ and possibly non-deterministic implementations r̄ can be done in O(|Lδ| ×
|Q|2.3727) + O(|S| × |Q|2 × |Lδ|).
Proof. Generating and solving the NHORN formula F obtained from Algo-
rithm 1 requires O(|S| × |Q|2 × |Lδ|), see Theorem 6 combined with the fact
that F can be solved in time linear in the size of F . A precondition to the algo-
rithm is that ⇐ has been computed from ∼. Following [12], this can be done in
O(|Lδ| × |Q|2.3727).

When both implementation and specification are deterministic, the time com-
plexity of our algorithm reduces to O(|S| × |∼|). Note that in this case, the
computation of ⇐ only requires augmenting the transition relation with η tran-
sitions, which can be done in O(|∼|).

6 Conclusion

In this paper, we studied the complexity of checking input-output conformance
(ioco). We proved that the problem of checking conformance is PSPACE-
complete. Then, we presented a coinductive definition of ioco in the restricted
setting of deterministic models and through a reduction to NHORNSAT, pre-
sented a polynomial-time algorithm for checking ioco in this setting.

We plan to investigate the application of our algorithm in Sect. 5 to checking
alternating simulation. Currently, the best known algorithm for this purpose is
proposed in [7], which is a game-based algorithm for deterministic models. The
solution provided in this paper may offer an alternative for the existing algo-
rithms for checking alternating refinement relation, but it must be checked to
see whether the runtime complexity of the resulting algorithm would be compa-
rable to that of existing algorithms.

Acknowledgments. We thank Sarmen Keshishzadeh and Jeroen Keiren (both TU/e)
for feedback on earlier drafts of this paper.

308 N. Noroozi et al.

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

2. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation
meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 158–174. Springer, Heidelberg (2010)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of
FSE/ESEC’01, pp. 109–120. ACM (2001)

4. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

5. Asaadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards model-based
testing of electronic funds transfer systems. In: Arbab, F., Sirjani, M. (eds.) FSEN
2011. LNCS, vol. 7141, pp. 253–267. Springer, Heidelberg (2012)

6. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

7. Chatterjee, K., Chaubal, S., Kamath, P.: Faster algorithms for alternating refine-
ment relations. In: Proceedings of the CSL’12. LIPIcs, vol. 16, pp. 167–182.
Dagstuhl (2012)

8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. JLAP 1(3), 267–284 (1984)

9. Frantzen, L., Tretmans, J.: Model-based testing of environmental conformance of
components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 1–25. Springer, Heidelberg (2007)

10. Gregorio-Rodŕıguez, C., Llana, L., Mart́ınez-Torres, R.: Input-Output Confor-
mance Simulation (iocos) for Model Based Testing. In: Beyer, D., Boreale, M.
(eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 114–129. Springer,
Heidelberg (2013)

11. Hierons, R.M.: The complexity of asynchronous model based testing. TCS 451,
70–82 (2012)

12. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

13. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-
based testing of electronic passports. In: Alpuente, M., Cook, B., Joubert, Ch.
(eds.) FMICS 2009. LNCS, vol. 5825, pp. 207–209. Springer, Heidelberg (2009)

14. Myers, G.J., Badgett, T., Sandler, C.: The Art of Software Testing, 3rd edn. Wiley,
New York (2011)

15. Noroozi, N., Mousavi, M.R., Willemse, T.A.C.: Decomposability in input output
conformance testing. In: Proceedings of MBT’13. EPTCS, vol. 111, pp. 51–66
(2013)

16. Ploeger, B.: Improved verification methods for concurrent systems. Ph.D. thesis,
TU/Eindhoven (2009)

17. Pretschner, A.: One evaluation of model-based testing and its automation. In:
Proceedings of ICSE’05, pp. 722–723. ACM (2005)

18. Shukla, S.K., Hunt III, H.B., Rosenkrantz, D.J., Stearns, R.E.: On the complexity
of relational problems for finite state processes (extended abstract). In: Meyer
auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 466–477.
Springer, Heidelberg (1996)

On the Complexity of Input Output Conformance Testing 309

19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: Proceedings STOC’73, pp. 1–9. ACM (1973)

20. Thompson, K.: Regular expression search algorithms. CACM 11(6), 419–422
(1968)

21. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

22. Veanes, M., Bjorner, N.: Alternating simulation and ioco. STTT 14(4), 387–405
(2012)

23. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

24. Vishal, V., Kovacioglu, M., Kherazi, R., Mousavi, M.R.: Integrating model-
based and constraint-based testing using SpecExplorer. In: Proceedings MoTiP’12,
pp. 219–224. IEEE (2012)

Compatibility Checking
for Asynchronously Communicating Software

Meriem Ouederni1(B), Gwen Salaün2, and Tevfik Bultan3

1 Toulouse INP, IRIT, Toulouse, France
meriem.ouederni@irit.fr

2 LIG, Grenoble INP, Inria, Montbonnot Saint-Martin, France
gwen.salaun@inria.fr

3 UCSB, Santa Barbara, USA
bultan@cs.ucsb.edu

Abstract. Compatibility is a crucial problem that is encountered while
constructing new software by reusing and composing existing components.
A set of software components is called compatible if their composition pre-
serves certain properties, such as deadlock freedom. However, checking
compatibility for systems communicating asynchronously is an undecid-
able problem, and asynchronous communication is a common interaction
mechanism used in building software systems. A typical approach in ana-
lyzing such systems is to bound the state space. In this paper, we take a
different approach and do not impose any bounds on the number of partic-
ipants or the sizes of the message buffers. Instead, we present a sufficient
condition for checking compatibility of a set of asynchronously communi-
cating components. Our approach relies on the synchronizability property
which identifies systems for which interaction behavior remains the same
when asynchronous communication is replaced with synchronous commu-
nication. Using the synchronizability property, we can check the compat-
ibility of systems with unbounded message buffers by analyzing only a
finite part of their behavior. We have implemented a prototype tool to
automate our approach and we have applied it to many examples.

1 Introduction

Awidely accepted view in software development is that the software systems should
be built by reusing and composing existing pieces of code. Moreover, recent trends
in computing technology promote development of software applications that are
intrinsically concurrent and distributed. For example, service-oriented computing
promotes development of Web-accessible software systems that are composed of
distributed services that interact with each other by exchanging messages over the
Internet. Cyber-physical systems, on the other hand, involve integration of phys-
ical and computational components that interact in a variety of ways to imple-
ment a common functionality. Finally, pervasive systems combine large numbers
of sensors and computational elements integrated into everyday environment and
require their coordination in a dynamic setting. All these computing paradigms

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 310–328, 2014.
DOI: 10.1007/978-3-319-07602-7 19, c© Springer International Publishing Switzerland 2014

Compatibility Checking for Asynchronously Communicating Software 311

involve concurrent execution of distributed components that are required to inter-
act with each other to achieve a shared goal.

A central problem in composing distributed components is checking their
compatibility. Compatibility checking is used to identify if composed components
can interoperate without errors. This verification is crucial for ensuring correct
execution of a distributed system at runtime. Compatibility errors that are not
identified during the design phase can make a distributed system malfunction
or deadlock during its execution, which can result in delays, financial loss, and
even physical damage in the case of cyber-physical systems.

In this paper, we focus on the compatibility checking problem for closed sys-
tems involving composition of distributed components. We call the components
that participate in a composed system peers. A set of peers is compatible if,
when they are composed, they satisfy a certain property. We call such a prop-
erty a compatibility notion. It is worth observing that the compatibility prob-
lem depends on several parameters: the behavioral model used to describe the
peers (finite state machines, Petri nets, etc.), the communication model (synchro-
nous vs. asynchronous, pairwise vs. broadcast/multicast, ordered vs. unordered
buffers, lossy channels, etc.), and the compatibility notion. In this paper, we
use Labeled Transition Systems (LTSs) to describe peer behaviors. We focus on
pairwise asynchronous communication model (which corresponds to message-
based communication via FIFO buffers). Pairwise communication means that
each individual message is exchanged between two peers (no broadcast commu-
nication). As for compatibility, there are several compatibility notions existing
in the literature. Here, we focus on two widely used notions, namely deadlock-
freedom (DF) [15] and unspecified receptions (UR) [11,34]. A set of peers is
DF compatible if their composition does not contain any deadlock, i.e., start-
ing from their initial states peers can either progress by following transitions in
their respective LTSs or terminate if they are in final states. A set of peers is
UR compatible if they do not deadlock and for each message that is sent there
is a peer that can receive that message.

Most results in the literature for verifying the compatibility of behavioral
models assume two interacting peers and synchronous communication, e.g.,
[9,13,15,34]. However, asynchronous communication is more suitable than syn-
chronous communication in a distributed setting, since asynchronous commu-
nication is non-blocking. In asynchronous communication the sender does not
have to wait for the receiver when it needs to emit a message. Analyzing asyn-
chronously communicating systems is more complicated than synchronously
communicating systems since it is necessary to represent the contents of the
message buffers during analysis of a system that uses asynchronous communica-
tion. Moreover, asynchronous communication with unbounded message buffers
leads to infinite state spaces. This means that, in general, verification tech-
niques based on explicit state space exploration will not be sound for such sys-
tems. Analysis of asynchronously communicating systems has been investigated
extensively during the last 30 years, e.g., [11,14,24,26,31]. A common approach
used in analyzing asynchronously communicating systems is to bound the state

312 M. Ouederni et al.

space by bounding the number of cycles, peers, or buffers. Bounding buffers to
an arbitrary size during its execution is not a satisfactory solution since, if at
some point buffers’ sizes change (due to changes in memory requirements for
example), it is not possible to know how the system would behave compared
to its former version and new unexpected errors can show up. This is the case
for instance of the simplified news server protocol shown in Fig. 1. Transitions
are labeled with either emissions (exclamation marks) or receptions (question
marks). Initial states are marked with incoming half-arrow and final states have
no outgoing transitions. With buffer size 1, the system executes correctly (no
deadlock). However, if we increase the buffer size to 2, a deadlock appears when
the news server sends message sendnews! followed by stop!. In that situation, the
news server is in a final state, but the reader is not able to read the stop message
from its buffer and cannot interact properly with the news server.

Fig. 1. Motivating example (1)

Figure 2 shows another simple example involving three peers: a client (cl), a
server (sv), and a database (db), which exchange three messages request, result,
and log. Peer sv receives a request, sends a result, and loops. Peer cl sends a
request, receives a result, sends a log message, and loops. Peer db receives log
messages. If we try to generate the LTS corresponding to the composition of
these three peers interacting asynchronously through unbounded buffers, this
results in an infinite state system. Indeed, the peers sv and cl can loop infinitely,
and the peer db can consume from its input buffer whenever it wants, meaning
that its buffer can grow arbitrarily large. Analyzing such system is therefore a
complicated task (undecidable in general [11]), and to the best of our knowledge,
existing approaches cannot analyze compatibility of such systems, because they
cannot handle systems that communicate with asynchronous communication via
unbounded buffers.

It was recently shown that it is decidable to check certain properties of dis-
tributed systems interacting asynchronously through unbounded buffers using
the synchronizability property [3,4]. A set of peers is synchronizable if and only
if the system generates the same sequences of messages under synchronous and
unbounded asynchronous communication (considering only the ordering of the
send actions and ignoring the ordering of receive actions). It was shown that
synchronizability can be verified by checking the equivalence of synchronous

Compatibility Checking for Asynchronously Communicating Software 313

Fig. 2. Motivating example (2)

and 1-bounded asynchronous (where buffer sizes are bounded to be 1) versions
of the given system [3,4]. Hence, synchronizability checking can be achieved
using equivalence checking techniques for finite state spaces, although the sys-
tem consisting of peers interacting asynchronously can result in infinite state
spaces. For example, the system described in Fig. 2 is synchronizable because
the synchronous system consists of sequences of interactions on request, result,
and log, and this order is the same in the 1-bounded asynchronous system con-
sidering only send actions. Focusing only on send actions and ignoring receive
actions makes sense for checking synchronizability because: (i) send actions are
the actions that transfer messages to the network and are therefore observable,
(ii) receive actions correspond to local consumptions by peers from their buffers
and can therefore be considered to be local and private information.

In this paper, we propose a new approach for checking the compatibility of a
set of peers interacting asynchronously through unbounded FIFO buffers. Peers
are described using LTSs and exhibit their internal behaviors in these models
(e.g., replacing conditional constructs with non-deterministic choices of internal
actions). Compatibility checking relies on synchronizability, which ensures that
the synchronous system behaves like the asynchronous one for any buffer size.
Thus, we can check the compatibility on the synchronous version of the system
and the results hold for the asynchronous versions. We propose a branching
notion of synchronizability to take internal actions present in the peer models
into account. We also need to check that the system is well-formed, meaning
that every message sent to a buffer will be eventually consumed. We show that
our approach can be used to check DF and UR compatibility. Many systems
involving loops do respect the synchronizability property. Thus, these systems
can be analyzed using the approach proposed in this paper, whereas they could
not be analyzed using existing approaches. This is the case for the example
given in Fig. 2. This set of peers is synchronizable and the synchronous system
is deadlock-free for instance. Therefore, we can conclude using our result that
the asynchronous version of this system is also deadlock-free compatible even if
buffers are unbounded.

Our approach is fully automated through an encoding of the peer model into
the process algebra LOTOS [23], one of the input languages of the CADP verifica-
tion toolbox [19]. By doing so, we can reuse all CADP tools and particularly state
space exploration tools for generating synchronous and asynchronous systems,

314 M. Ouederni et al.

equivalence checking techniques for verifying synchronizability, and model check-
ing techniques for searching deadlocks. We have validated our approach on many
case studies, most of them borrowed from real-world scenarios found in the lit-
erature. The evaluation shows that (i) most systems are synchronizable and can
be analyzed using our approach, and (ii) this check is achieved in a reasonable
time (seconds for examples involving up to ten peers, and minutes for systems
up to 18 peers).

Our contributions with respect to earlier results on formal analysis of behav-
ioral models for synchronizability and compatibility checking are the following:

– A general framework for verifying the compatibility of synchronizable
systems interacting asynchronously through unbounded buffers;

– A generalization of synchronizability and well-formedness results to branching
time equivalences for peer models involving internal actions;

– A fully automated tool support that implements the presented approach for
checking asynchronous compatibility.

The organization of the rest of this paper is as follows. Section 2 defines our
models for peers and their composition. Section 3 presents a branching notion
of synchronizability. In Sect. 4, we present our solution for checking asynchro-
nous compatibility. Section 5 illustrates our approach on a case study. Section 6
describes our tool support and experiments we carried out to evaluate our
approach. Finally, Sect. 7 reviews related work and Sect. 8 concludes.

2 Behavioral Models

2.1 Peer Model

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral
model defines the order in which a peer executes the send and receive actions.

Definition 1 (Peer). A peer is an LTS P = (S, s0, ϕ, T) where S is a finite
set of states, s0 → S is the initial state, ϕ = ϕ! ∼ ϕ? ∼ {σ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S × ϕ × S is a transition relation.

We write m! for a send message m → ϕ! and m? for a receive message
m → ϕ?. We use the symbol σ (tau in figures) for representing internal activities.
A transition is represented as (s, l, s′) → T where l → ϕ.

Finally, we assume that peers are deterministic on observable messages mean-
ing that if there are several transitions going out from one peer state, and if all
the transition labels are observable, then they are all different from one another.
However, nondeterminism can result from internal actions when several transi-
tions (at least two) outgoing from a same state are labeled with σ .

Compatibility Checking for Asynchronously Communicating Software 315

Fig. 3. p1 and p2 are deadlock-free; p1’ and p2 deadlock

It is crucial to represent internal activities in the peer model using σ
actions, particularly when we reason in terms of synchronous communication.
These internal actions are used to model internal choices, that is, if/while con-
structs in programming languages for instance. Figure 3 shows a simple example
where we see that two peers p1 and p2 are deadlock-free if we do not explic-
itly show the internal actions. If we consider an abstraction closer to reality by
modeling the internal actions, we observe that the peers (p1’ and p2) actually
deadlock.

2.2 Synchronous Composition

The synchronous composition of a set of peers corresponds to the system in which
the peer LTSs communicate using synchronous communication. In this context,
a communication between two peers occurs if both agree on a synchronization
label, i.e., if one peer is in a state in which a message can be sent, then the other
peer must be in a state in which that message can be received. One peer can
evolve independently from the others through an internal action.

Definition 2 (Synchronous Composition). Given a set of peers {P1, . . . ,Pn}
with Pi = (Si, s

0
i , ϕi, Ti), the synchronous composition (P1 | . . . | Pn) is the

labeled transition system LTSs = (Ss, s
0
s, ϕs, Ts) where:

– Ss = S1 × . . . × Sn

– s0s → Ss such that s0s = (s01, . . . , s
0
n)

– ϕs = ∼iϕi

– Ts ⊆ Ss × ϕs × Ss, and for s = (s1, . . . , sn) → Ss and s′ = (s′
1, . . . , s

′
n) → Ss

(interact) s
m−→ s′ → Tsif ←i, j → {1, . . . , n} where i ∩= j : m → ϕ!

i ∅ ϕ?
j where

← si
m!−−→ s′

i → Ti, and sj
m?−−→ s′

j → Tj such that ⇐k → {1, . . . , n}, k ∩=
i ∧ k ∩= j ∧ s′

k = sk

(internal) s
τ−→ s′ → Tsif ←i → {1, . . . , n}, ← si

τ−→ s′
i → Ti such that ⇐k →

{1, . . . , n}, k ∩= i ∧ s′
k = sk

316 M. Ouederni et al.

2.3 Asynchronous Composition

In the asynchronous composition, the peers communicate with each other asyn-
chronously through FIFO buffers. Each peer Pi is equipped with an unbounded
message buffer Qi. A peer can either send a message m → ϕ! to the tail of the
receiver buffer Qj at any state where this send message is available, read a mes-
sage m → ϕ? from its buffer Qi if the message is available at the buffer head, or
evolve independently through an internal action. Since reading from the buffer
is not considered as an observable action, it is encoded as an internal action in
the asynchronous system.

Definition 3 (Asynchronous Composition). Given a set of peers {P1, . . . ,
Pn} with Pi = (Si, s

0
i , ϕi, Ti), and Qi being its associated buffer, the asynchro-

nous composition ((P1, Q1) || . . . || (Pn, Qn)) is the labeled transition system
LTSa = (Sa, s0a, ϕa, Ta) where:

– Sa ⊆ S1 × Q1 × . . . × Sn × Qn where ⇐i → {1, . . . , n}, Qi ⊆ (ϕ?
i)∨

– s0a → Sa such that s0a = (s01, η, . . . , s
0
n, η) (where η denotes an empty buffer)

– ϕa = ∼iϕi

– Ta ⊆ Sa ×ϕa ×Sa, and for s = (s1, Q1, . . . , sn, Qn) → Sa and s′ = (s′
1, Q

′
1, . . .

s′
n, Q′

n) → Sa

(send) s
m!−−→ s′ → Taif ←i, j → {1, . . . , n} where i ∩= j : m → ϕ!

i∅ϕ?
j , (i) si

m!−−→
s′

i → Ti, (ii) Q′
j = Qjm, (iii) ⇐k → {1, . . . , n} : k ∩= j ∧ Q′

k = Qk,
and (iv) ⇐k → {1, . . . , n} : k ∩= i ∧ s′

k = sk

(consume) s
τ−→ s′ → Taif ←i → {1, . . . , n} : m → ϕ?

i , (i) si
m?−−→ s′

i → Ti,
(ii) mQ′

i = Qi, (iii) ⇐k → {1, . . . , n} : k ∩= i ∧ Q′
k = Qk, and

(iv) ⇐k → {1, . . . , n} : k ∩= i ∧ s′
k = sk

(internal) s
τ−→ s′ → Taif ←i → {1, . . . , n}, (i) si

τ−→ s′
i → Ti, (ii) ⇐k → {1, . . . , n} :

Q′
k = Qk, and (iii) ⇐k → {1, . . . , n} : k ∩= i ∧ s′

k = sk

We use LTSk
a to define the bounded asynchronous composition, where each

message buffer is bounded to size k. The definition of LTSk
a can be obtained

from Definition 3 by allowing send transitions only if the message buffer that
the message is being written to has less than k messages in it.

3 Branching Synchronizability and Well-Formedness

Although peers are represented with finite models, their parallel execution could
be an infinite state system due to the communication over unbounded buffers. This
makes the exhaustive analysis of all executed communication traces impossible
and most verification tasks in this setting are undecidable [11]. However, this issue
can be avoided for systems that are synchronizable, i.e., if the sequences of send
actions generated by the peer composition remains the same under synchronous
and asynchronous communication semantics. Thus, the synchronizability condi-
tion [4] enables us to analyze asynchronous systems, even those generating an infi-
nite state space, using the synchronous version of the given system (which has a

Compatibility Checking for Asynchronously Communicating Software 317

finite state space). The results presented below show that synchronizability can
be checked by bounding buffers to k = 1 and comparing interactions in the syn-
chronous system with the interactions in the asynchronous system.

In this paper, the peer model and corresponding compositions take inter-
nal behaviors into account. Therefore, we need to extend synchronizability to
branching time semantics [32]1. This is crucial for considering models closer to
reality (see Fig. 3) and for analyzing the internal structure to detect possible
issues at this level. In this paper, we refer to branching equivalence as ⇒br.

Definition 4 (Branching Synchronizability). Given a set of peers {P1, . . . ,
Pn}, their synchronous composition LTSs = (Ss, s

0
s, Ls, Ts), and their asyn-

chronous composition LTSa = (Sa, s0a, La, Ta), we say that LTSa is branching
synchronizable, SYNCbr(LTSa), if and only if LTSs ⇒br LTSa.

Theorem 1. A LTSa defined over a set of peers {P1, . . . ,Pn} is branching syn-
chronizable if and only if LTSs ⇒br LTS1

a. In other words: LTSs ⇒br LTS1
a ∃

LTSs ⇒br LTSa

Proofs of the theorems from this section are available on the first author
Webpage.

Below we define the well-formedness property and present two theorems
related to well-formedness.

Definition 5. An asynchronous system is well-formed if and only if every mes-
sage that is sent is eventually consumed.

Givena labeled transition systemLTSa definedover a set of peers {P1, . . . ,Pn},
we use WF(LTSa) to denote that LTSa is well-formed.

Theorem 2. A synchronizable system LTSa is well-formed if and only if LTS1
a

is well-formed, i.e., WF(LTS1
a) ∃ WF(LTSa).

Theorem 3. Every asynchronous system LTSa that is branching synchronizable
and composed of observationally deterministic peers is always well-formed.

4 Compatibility

In this section, we present how to check the compatibility of a set of peers com-
municating asynchronously over unbounded FIFO buffers. This problem is unde-
cidable in the general case [11] since unbounded buffers may lead to infinite state
spaces. We present the compatibility checking for synchronous communication,
and then show how we extend these results to asynchronous communication. We
first focus on DF and UR compatibility notions. We use DF to detect blocking
1 We assume that the reader is familiar with branching time bisimulations, refer to [32]

otherwise.

318 M. Ouederni et al.

behaviors where system remains infinitely in a pending state with no further exe-
cution. We use UR to detect cases where some emissions are never received. As
a second step, we show how other compatibility notions can also be considered
such as bidirectional complementarity and goal oriented compatibility (BC and
GOC for short, respectively). BC requires that every emission must be received
and every message that is expected to be received must be sent during peer com-
munication. GOC describes a temporal logic-based compatibility (expressed in
Linear Time Logic for example), that must be respected by the peers. It is worth
noting that here we focus on checking properties related to ordering of message
exchanges among peers, leaving properties such as state reachability out of the
scope of this paper.

4.1 Synchronous Compatibility

Given n communicating peers described using LTSs (Si, s
0
i , ϕi, Ti), we define a

global state as a tuple of states (s1, . . . , sn) where si is the current state of LTS i.
We refer to a label l as a message in ϕ together with its direction (d → {!, ?}),
i.e., l = m!|m?. Two labels l1 = m1d1 and l2 = m2d2 are considered compatible,
lab-comp(l1, l2), if and only if m1 = m2 and d1 = d2 where ! =? and ? =!.

Compatibility checking requires to verify the interaction at every global state
reachable during system execution. Reachability returns the set of global states
that n interoperating peers can reach from a current global state (s1, . . . , sn)
through independent evolutions (internal behaviors) or synchronizations.

The DF compatibility is defined as follows. Given a set of peers, we call them
DF compatible if and only if, starting from their initial global state, they can
always evolve until reaching a global state where every peer state has no outgoing
transition (correct termination).

The UR compatibility is defined as follows. Given a set of peers, we call them
UR compatible if, when one peer can send a message at a reachable state, there
is another peer which must eventually receive that emission, and the system is
deadlock-free. A set of peers can be compatible even if one peer is able to receive
a message that cannot be sent by any of the other peers, i.e., there might be
additional receptions. It is also possible that one peer holds an emission that
will not be received by its partners as long as the state from which this emission
goes out is unreachable when those peers interact together.

More details about these compatibility notions (DF and UR but also BC and
GOC) as well as their formal definitions can be found in [17].

4.2 Asynchronous Compatibility

In this section we present sufficient conditions for checking asynchronous compat-
ibility. The behaviors of synchronizable systems remain identical for any buffer
size, therefore, we can check compatibility of synchronizable systems using exist-
ing techniques for checking synchronous compatibility. A set of communicating
peers {P1, . . . , Pn} is asynchronous compatible if the following conditions hold:

Compatibility Checking for Asynchronously Communicating Software 319

– Synchronizability. Peer composition LTSs are branching synchronizable
(Theorem 1).

– Well-formedness. Every message sent to a buffer is eventually consumed
(Theorems 2 and 3).

– Compatibility. The set of peers is compatible under synchronous communi-
cation semantics (Sect. 4.1).

In the rest of this section, we define the asynchronous DF and UR compati-
bility (DFa and URa for short, resp.) and we finally show how our asynchronous
checking can be generalized to check other notions, e.g., BCa and OGCa.

Deadlock-Freedom. An asynchronous system LTSa defined over a set of peers
{P1, . . . , Pn}, is DFa compatible if SYNCbr(LTSa) and WF(LTSa), and the
corresponding LTSs is DF (referred to as DF (LTSs)).

Theorem 4. (SYNC(LTSa) ∧ WF(LTSa) ∧ DF (LTSs)) ∧ DFa(LTSa)

Proof. LTSs ⇒br LTSa follows from SYNC(LTSa) (Theorem 1). Then, we have
DF (LTSs) ∧ DFa(LTSa). �

Unspecified Receptions. Although both DF and UR compatibility are dif-
ferent under the synchronous communication semantics, in the asynchronous
setting, they can be checked similarly. Recall that UR compatibility requires
us to check that (i) every reachable sent message must be received (i.e., con-
sumed from the buffer where it has been stored), and (ii) the system must be
deadlock-free.

Theorem 5. (SYNC(LTSa) ∧ WF(LTSa) ∧ DF (LTSs)) ∧ URa(LTSa)

Proof. Condition (i) for UR compatibility is ensured by well-formedness. Thus,
this claim follows directly from UR compatibility definition and Theorem 1. �

Property 1. Our condition for checking DFa and URa is not a necessary condition.

Proof. Let us consider the example given in Fig. 4. The asynchronous system
starts with an interleaving of both emissions that can be executed in peer 1 and
peer 2, whereas no synchronization is possible under synchronous communica-
tion. Thus, this example is not synchronizable and we cannot conclude anything
about its compatibility. Yet the asynchronous version of this system is deadlock-
free compatible. As a result, our condition for asynchronous compatibility is
sufficient but not necessary. �

Note that finding a necessary and sufficient condition for asynchronous com-
patibility of behavioral peers is still an open problem.

Generalization. The former results can be generalized to define a sufficient
condition for verifying any notion of compatibility CNa on synchronizable sys-
tems. Examples of other notions that can be derived are BCa and OGCa. For
instance, OGCa can be formalized in terms of liveness and safety properties,
e.g., G(α ∧ Fψ) and G(¬α) in LTL, resp.

320 M. Ouederni et al.

Fig. 4. Asynchronous but not synchronous DF compatible example

Theorem 6. (SYNC(LTSa) ∧ WF(LTSa) ∧ CN(LTSs)) ∧ CNa(LTSa)

Proof. The claim follows from Theorems 1 and 3. �

Complexity. The complexity of our asynchronous compatibility checking lies on
the cost of checking the synchronizability and the compatibility on the synchro-
nous composition. Branching bisimulation complexity is O(S′×T ′) [20] where S′

and T ′ are the total number of states and transitions in LTSs and LTS1
a. As for

compatibility checking, given n LTSs (S, s0, ϕ, T), S =
∏n

i=1 |Si| represents an
upper bound of the number of possible global states, and T =

∑n
i=1 |Ti| repre-

sents an upper bound for the number of transitions available from any particular
global state. S and T are greater than or equal to the number of states reachable
from (I1, . . . , In). Both URa and DFa compatibilities have a time complexity of
O(S × T) and BCa has a time complexity of O(S2 × T 2).

5 Illustrative Example

We consider a simplified version of a Web application involving four peers: a
client, a Web interface, a Web server, and a database. Figure 5 shows the peer
LTSs. The client starts with a request (request!), and expects an acknowledg-
ment (ack?). Then, the client either interacts with the Web server as long as it
needs (access!), or decides to terminate its processing (terminate!). This internal
choice is modeled using a branching of internal actions. Finally, the client waits
for an invoice (invoice?). The server first receives a setup request (setup?). Then,
the server is accessed by the client (access?) and it expects to either be released
(free?) or receive an alarm if an error occurs (alarm?). Finally, the server submits
information to be stored (log!), e.g., start/end time and used resources. Every
time a client request is received (request?), the interface triggers a setup request
(setup!) and sends back an acknowledgment (ack!) to the client. Then, if a ter-
mination message is received (terminate?), the interface asks the Web server to
be freed (free!). If an error occurs (error?), the interface sends an alarm message
(alarm!). Finally, the database waits for some information to be stored (log?).

Compatibility Checking for Asynchronously Communicating Software 321

Fig. 5. Peer LTSs

Fig. 6. Synchronous peer composition, V1 (left), Web server peer, V2 (right)

Synchronizability. LTSs and LTS1
a are branching equivalent and therefore

SYNCbr(LTSa). Figure 6 (left) shows LTSs, where transitions are labeled with
the messages on which the peers can synchronize as presented in Definition 2.

Well-Formedness. The set of peers are observationally deterministic and
SYNCbr(LTSa), hence WF(LTSa).

Synchronous Compatibility. This system cannot be compatible wrt.DF, UR,
and BC notions since the peers deadlock at the last state in Fig. 6 (left). In that
situation, all peers are in their initial states and may continue interacting with
each other, except the client, which is expecting an invoice that is not provided
by any of the partners.

Asynchronous Compatibility. Since LTSa is branching synchronizable and
well-formed, we can use results for synchronous compatibility for this system.
The system is not DFa and URa compatible because there is a deadlock in LTSs.
We can fix this issue by, e.g., adding the missing invoice! message to the server
peer (Fig. 6, right). Thus, the new system is branching synchronizable (see the
resulting synchronous composition in Fig. 7), well-formed, and LTSs is deadlock-
free, so it is DFa and URa compatible. However, LTSa is still not compatible
wrt.BCa, because there are still messages, e.g., error? in the interface peer, that
have no counterpart in any other peer. This issue could also be detected using
GOC compatibility and checking the following LTL formula: LTSs |= ♦�error.

322 M. Ouederni et al.

Fig. 7. Synchronous peer composition, V2

Note that the second version of our example with peers communicating over
unbounded buffers has an infinite state space since the client, the server, and the
interface peers can loop arbitrary many times while the database peer does never
consume the log? messages from its buffer. Although this is not a finite state
system, we can analyze it using the techniques we propose in this paper.

6 Tool Support and Evaluation

Our approach for checking the asynchronous compatibility is fully automated.
This is achieved by a translation we implemented from peer models to the
LOTOS process algebra. The CADP verification toolbox [19] accepts LOTOS as
input and provides efficient tools for generating LTSs from LOTOS specifications
and for analyzing these LTSs using equivalence and model checking techniques,
which enable us to check all the notions of compatibility presented in this paper.

6.1 LOTOS Encoding

LOTOS [23] is an abstract formal language for specifying concurrent processes,
communicating via messages. We chose LOTOS because (i) it provides expres-
sive operators for encoding LTSs and generating their compositions, and (ii) it is
supported by state-of-the-art verification tools (CADP) that can be used for ana-
lyzing LOTOS specifications. With regards to compatibility checking, we first
encode peer LTSs into LOTOS processes following the state machine pattern
(one process is generated per state in the LTS). Each peer comes with an input
buffer. Buffers are processes, which interact with the peers and store/handle mes-
sages using classic structures (lists) and operations on them (add, remove, etc.).
Finally, we use the LOTOS parallel composition for specifying the synchronous
and asynchronous composition of peers.

Based on this encoding, we first use state space exploration tools to generate
LTSs corresponding to the LOTOS specification, in particular for synchronous
and 1-bounded asynchronous system. Then, we check the synchronizability con-
dition using branching equivalence checking, and finally we check compatibility
conditions using the deadlock-freedom check or model checking of properties
written in MCL [29], which subsumes both LTL and CTL.

Compatibility Checking for Asynchronously Communicating Software 323

6.2 Experiments

We carried out experiments on a Mac OS machine running on a 2.53 GHz Intel
dual core processor with 4 GB of RAM. Our database of examples includes 160
examples of communicating systems: 10 case studies taken from the literature
(Web services, cloud computing, e-commerce, etc.), 86 examples of Singularity
channel contracts [1], which is a contract notation for Microsoft’s Singularity
operating system, and 64 hand-crafted examples. We emphasize that out of the
96 real-world examples, only 5 are not branching synchronizable and well-formed.
Thus, 91 examples out of 96 can be analyzed using our approach.

Tables 1, 2, and 3 present experiments for some examples from our database.
Each table considersDFa compatibility for illustration purposes, butwe recall that
DFa is equivalent to URa for asynchronous systems. Each table shows, for each
example, the number of peers, the total number of transitions and states involved
in these peers, the size of the synchronous system, the size of the 1-bounded asyn-
chronous system, the compatibility result (“

⊕
” denotes that the system is com-

patible, “×” denotes that the system is not compatible, and “-” denotes that the
system does not satisfy the sufficient condition, i.e., it is not synchronizable), the
successive time for computing the synchronous and 1-bounded asynchronous sys-
tem, and for checking synchronizability and deadlock-freedom, respectively.

We can see that analyzing the examples given in Tables 1 and 2 only takes
a few seconds. This is due to systems involving a reasonable number of peers
(up to 6 in Table 1), which results in quite small LTSs, even for the 1-bounded
asynchronous composition (up to 100 states and 200 transitions in Table 1).

Table 3 presents a few examples with more than 10 peers. The number of
interacting peers is the main factor of state space explosion, because it induces
more parallelism in the corresponding composition. The cost in terms of com-
putation time mainly lies on the generation of the 1-bounded asynchronous sys-
tem, that is compiling LOTOS code into LTSs by enumerating all the possible
behaviors (interleavings of concurrent emissions/receptions) and minimizing the
resulting LTS using CADP tools. In particular, reducing LTSs with respect to
a branching relation needs a certain amount of time (see examples 0115, 0153,
and 0159). In contrast, checking synchronizability and deadlock-freedom using
equivalence and model checking techniques takes only few seconds because LTSs
obtained after reduction are much smaller.

We have also made a few experiments, increasing the buffer size (k = 5, k = 10,
etc.). We have observed that the resulting, reduced LTS remains the same due to
the synchronizability property, but the generation time increases because there
are more possibilities of adding/removing messages from buffers. Consequently,
computation time for our solution is much lower than approaches using arbitrary
bounds for buffers.

7 Related Work

One of the first approaches on compatibility checking is proposed by Brand
and Zafiropulo [11]. It defines the unspecified receptions compatibility notion

324 M. Ouederni et al.

Table 1. Case studies from the literature

Example |peers| |T |/|S| LTSs LTS1
a DF Analysis time

|T |/|S| |T |/|S| Comp. Gen. (s) Sync. (s) DF (s)

Supply Chain
Management
Application [7]

6 20/25 20/17 216/97 × 5.05 0.35 0.15

Health
System [12]

6 21/20 10/11 22/21 × 4.48 1.99 2.26

Cloud System [21] 4 19/15 10/9 29/22 × 4.65 2.25 1.88
Cloud System

(V2) [21]
4 20/16 12/10 78/43

√
4.44 1.96 1.60

Sanitary
Agency [30]

4 37/27 26/21 159/100 - 4.76 2.28 -

E-Marketplace [18] 3 8/11 6/7 15/14
√

4.35 1.96 1.49
Filter Collabora-

tion [34]
2 10/11 10/10 14/14

√
4.18 2.22 1.51

Car Rental [8] 4 17/17 9/9 59/44 - 4.99 2.04 -
Client/Server [11] 2 10/6 9/6 19/14 - 4.68 2.09 -
Airline Ticket

Reservation [33]
2 9/9 7/7 15/13 × 4.30 2.01 1.49

Table 2. Singularity channels contracts [1]

Example |peers| |T |/|S| LTSs LTS1
a DF Analysis time

|T |/|S| |T |/|S| Comp. Gen. Sync. (s) DF (s)

Smb Client Manager 2 40/18 21/10 41/30
√

6.83 s 3.30 2.53

Calculator 2 12/10 7/6 13/12
√

6.89 s 2.40 2.51

File System Controller 2 16/10 9/6 17/14
√

6.87 s 2.21 2.30

Tcp Contract 2 8/8 5/5 9/9
√

6.61 2.55 2.26

Pipe Multiplex Control 2 4/4 2/2 5/5
√

6.44 s 2.10 2.27

Udp Connection Contract 2 134/60 69/32 136/99
√

7.26 s 2.52 2.14

IP Contract 2 64/28 33/15 65/47
√

7.07 2.30 2.23

Routing Contract 2 44/20 23/11 45/33
√

6.65 s 2.10 2.27

Reservation Session 2 16/12 9/7 23/19 - 6.66 s 2.37 -

Tpm Contract 2 38/24 20/13 44/35 - 6.80 2.36 -

Table 3. Hand-crafted examples

Example |peers| |T |/|S| LTSs LTS1
a LTSa red. DF Analysis Time

|T |/|S| |T |/|S| |T |/|S| Comp. Gen. Red. Sync. DF

(s) (s)

0097 9 19/19 103/27 1,543/387 98/26
√

4.59 s 2.2 s 2.45 1.43
0101 14 42/29 4,277/649 334,379/54,433 3,402/486

√
1min 15 s 4min 2 s 2.46 1.80

0115 16 48/41 14,754/1,945 2,332,812/326,593 11,664/1,458
√

3min 34 s 11min 33 s 2.44 1.45
0153 18 38/38 4,616/577 1,179,656/147,457 4,608/576

√
7.51 s 18min 52 s 2.60 1.43

0159 20 45/43 15,561/1,729 7,962,633/884,737 15,552/1,728
√

24.28 s 5 h 58min 2.62 1.64

Compatibility Checking for Asynchronously Communicating Software 325

for interaction protocols described using Communicating Finite State Machines
(CFSMs). This work focuses on the compatibility of n interacting processes exe-
cuted in parallel and exchanging messages via FIFO buffers. When considering
unbounded buffers, the authors show that the resulting state spaces may be
infinite, and the problem becomes undecidable.

The approaches used in [6,15] deal with two kinds of processes compatibility,
namely optimistic and pessimistic notions. De Alfaro and Henzinger [15] argue
for the use of the optimistic notion that considers two processes P1 and P2 (I/O
automata) as compatible if there is an environment that can properly communi-
cate with their composite process. Note that an environment is also composed
of one or more processes. A proper communication holds if the composition of
the interface product P1 ∈ P2 with its environment is deadlock-free. The app-
roach introduced in [6] addresses the pessimistic notion which states that two
processes P1 and P2 are compatible if no deadlock occurs between P1 and P2, in
any environment of P1∈P2. Bauer et al. [5] defines an asynchronous compatibil-
ity for modal I/O transition systems. The authors do not propose any decision
criterion but they claim that this verification is undecidable in the general case
due to the buffering mechanism which may lead to infinite state spaces.

Haddad et al. [22] treats different compatibility problems for non-ordered
buffers and for open systems using Petri nets. References [25,27,28,31] rely on
an extension of Petri nets, namely open nets to model and verify behavioral
interfaces of processes described as workflows, assuming asynchronous commu-
nication over message buffers. This model provides a graphical representation,
and can be computed from existing programming languages. Martens et al. [28]
rely on the usability concept to analyze the compatibility of processes represented
as workflows. This compatibility notion is an environment-aware compatibility
where two processes A and B are considered compatible if there is an envi-
ronment E, which uses the composed system A ∈ B. In such a case, A ∈ B is
considered usable, meaning that its composition with E is deadlock-free. The
condition, yet necessary, is not sufficient in the case of n processes. A similar
compatibility definition used in the literature is that of controllability [25,27,31].
A process A is controllable if it has a compatible partner B in the sense that
the composite process A ∈ B is deadlock-free. As far as asynchronous semantics
is considered, controllability has proven to be undecidable for unbounded open
nets. For implementing controllability, the authors require that open nets are
bounded and satisfy k-limited communication, for some given k. Consequently,
using a Petri net-based model requires a much higher computational and space
complexity than our approach.

Darondeau et al. [14] identify a decidable class of systems consisting of non-
deterministic communicating processes that can be scheduled while ensuring
boundedness of buffers. Abdulla et al. [2] propose some verification techniques
for CFSMs. They present a method for performing symbolic forward analysis
of unbounded lossy channel systems. Jeron and Jard [24] propose a sufficient
condition for testing unboundedness, which can be used as a decision procedure
for checking reachability for CFSMs. In [26], the authors present an incomplete

326 M. Ouederni et al.

boundedness test for communication channels in Promela and UML RT models.
They also provide a method to derive upper bound estimates for the maximal
occupancy of each individual message buffer. More recently, [16] proposed a
causal chain analysis to determine upper bounds on buffer sizes for multi-party
sessions with asynchronous communication. Recently, Bouajjani and Emmi [10]
consider a bounded analysis for message-passing programs, which does not limit
the number of communicating processes nor the buffers’ size. However, they
limit the number of communication cycles. They propose a decision procedure for
reachability analysis when programs can be sequentialized. By doing so, program
analysis can easily scale while previous related techniques quickly explode.

8 Conclusion

In this paper, we have presented results that go beyond all existing works on
checking the compatibility of systems communicating asynchronously by mes-
sage exchange over unbounded buffers. In our approach, we do not have any
restrictions on the number of participants, on the presence of communication
cycles in behavioral models, or on the buffer sizes. Instead, we focus on the
class of synchronizable systems and propose a sufficient condition for analyz-
ing asynchronous compatibility. This results in a generic framework for verify-
ing whether a set of peers respect some property such as deadlock-freedom or
unspecified receptions. In order to obtain these results for peer models involv-
ing internal behaviors, we have extended synchronizability results to branching
time. Finally, we have implemented a prototype tool which enables us to auto-
matically check the asynchronous compatibility using the CADP toolbox, and we
have conducted experiments on many examples. In the future we plan to develop
techniques for enforcing the asynchronous compatibility of a set of peers when
the compatibility check fails, by automatically generating a set of distributed
controllers as advocated in [21] for enforcing choreography realizability.

References

1. Singularity Design Note 5: Channel Contracts. Singularity RDK Documentation
(v1.1) (2004). http://www.codeplex.com/singularity

2. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.) CAV1998. LNCS,
vol. 1427, pp. 305–318. Springer, Heidelberg (1998)

3. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of WWW’11, pp. 795–804. ACM Press (2011)

4. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL’12, pp. 191–202. ACM (2012)

5. Bauer, S.S., Hennicker, R., Janisch, S.: Interface theories for (A)synchronously
communicating modal I/O-transition systems. In: Proceedings of FIT’10, EPTCS,
vol. 46, pp. 1–8 (2010)

6. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

http://www.codeplex.com/singularity

Compatibility Checking for Asynchronously Communicating Software 327

7. Beyer, D., Chakrabarti, A., Henzinger, T.: Web service interfaces. In: Proceedings
of WWW’05, pp. 148–159. ACM (2005)

8. Bianculli, D., Giannakopoulou, D., Pasareanu, C.S.: Interface decomposition for
service compositions. In: Proceedings of ICSE’11, pp. 501–510. ACM (2011)

9. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

10. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012)

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

12. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Pro-
ceedings of ASSE’07 (2007)

13. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Sci. Comput. Program. 41(2), 105–138 (2001)

14. Darondeau, P., Genest, B., Thiagarajan, P.S., Yang, S.: Quasi-static scheduling
of communicating tasks. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 310–324. Springer, Heidelberg (2008)

15. de Alfaro, L., Henzinger, T.: Interface automata. In: Proceedings of ESEC/FSE’01,
pp. 109–120. ACM Press (2001)

16. Deniélou, P.-M., Yoshida, N.: Buffered communication analysis in distributed mul-
tiparty sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 343–357. Springer, Heidelberg (2010)

17. Durán, F., Ouederni, M., Salaün, G.: A generic framework for N-protocol compat-
ibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012)

18. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Compatibility verification for web
service choreography. In: Proceedings of ICWS’04. IEEE Computer Society (2004)

19. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

20. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Michael, S.P. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990)

21. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012)

22. Haddad, S., Hennicker, R., Møller, M.H.: Channel properties of asynchronously
composed Petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS,
vol. 7927, pp. 369–388. Springer, Heidelberg (2013)

23. ISO/IEC. LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, ISO (1989)

24. Jéron, T., Jard, C.: Testing for unboundedness of FIFO channels. Theor. Comput.
Sci. 113(1), 93–117 (1993)

25. Kaschner, K., Wolf, K.: Set algebra for service behavior: applications and construc-
tions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 193–210. Springer, Heidelberg (2009)

26. Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for message buffer overflow
in Promela models. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989,
pp. 216–233. Springer, Heidelberg (2004)

328 M. Ouederni et al.

27. Lohmann, N.: Why does my service have no partners? In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 191–206. Springer, Heidelberg (2009)

28. Martens, A., Moser, S. Gerhardt, A., Funk, K.: Analyzing compatibility of BPEL
processes. In: Proceedings of AICT/ICIW’06, pp. 147–156. IEEE Computer Society
(2006)

29. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

30. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. Int. J. Bus. Process. Integr. Manage. 1(2), 116–128 (2006)

31. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: pat-
terns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

32. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

33. Wong, P., Gibbons, J.: Verifying business process compatibility. In: Proceedings of
QSIC’08, pp. 126–131. IEEE Computer Society (2008)

34. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Layered Reduction for Modal
Specification Theories

Arpit Sharma(B) and Joost-Pieter Katoen(B)

Software Modeling and Verification Group,
RWTH Aachen University, Aachen, Germany
{arpit.sharma,katoen}@cs.rwth-aachen.de

Abstract. Modal transition systems (MTSs) are a well-known formalism
used as an abstraction theory for labeled transition systems (LTSs). MTS
specifications support compositionality together with a step-wise refine-
ment methodology, and thus are useful for component-oriented design and
analysis of distributed systems. This paper proposes a state-space reduc-
tion technique for such systems that are modeled as a network of acyclic
MTSs. Our technique is based on the notion of layered transformation.
We propose a layered composition operator for acyclic MTSs, and prove
the communication closed layer (CCL) laws. Next, we define a partial order
(po) equivalence between acyclic MTSs, and show that it enables perform-
ing layered transformation within the framework of CCL laws. We also
show the preservation of existential (∃) and universal (∀) reachability prop-
erties under this transformation.

Keywords: Modal transition system · Layering · Distributed system ·
Existential reachability · Universal reachability · CCL laws · Partial
order equivalence · Refinement

1 Introduction

Modal transition systems (MTSs) [17,20] are labeled transition systems (LTSs)
[1,23] equipped with two types of transitions: may transitions that any imple-
mentation (LTS) may (or may not) have and must transitions that any imple-
mentation must have. An LTS is an MTS where all the transitions are must
transitions. MTSs were originally introduced by Larsen and Thomsen almost
25 years ago [17,20], and have been successfully applied in program analysis
[10,29], model checking [5,19], equation solving [21], interface theories [28,31],
component-based software development [27] and software product lines [9,18].
The theory of MTS is equipped with parallel and conjunction operators, and
allows comparing two MTSs using a refinement relation. A satisfaction relation
is used to check whether an LTS is an implementation of a given MTS. MTS spec-
ifications are useful for component-oriented design and analysis of distributed

This work is supported by the European Commission SENSATION project.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 329–347, 2014.
DOI: 10.1007/978-3-319-07602-7 20, c© Springer International Publishing Switzerland 2014

330 A. Sharma and J.-P. Katoen

systems. In this setting, a high-level model of the system which abstracts from
the implementation details is constructed and used for the verification of inter-
esting properties. A correct implementation can be obtained by applying a series
of refinement steps. Model construction involves composing several components
in parallel, where each component usually has multiple sub-components that are
executed in a sequential manner. Components cooperate through their synchro-
nization over common actions and through their respective action dependencies.
Action dependencies between sub-components can be either explicitly stated
or derived from the operations performed on data variables that are updated
during an action execution (in case of MTS with data [2]). Some example sys-
tems that have this structure are distributed algorithms such as the distributed
minimum weight spanning tree algorithm [7], the two phase commit protocol
[4], Fischer’s real-time mutual exclusion protocol, and the randomized mutual
exclusion algorithm by Kushilevitz and Rabin [15]. Composing several compo-
nents using parallel composition naturally leads to the problem of state-space
explosion [1], where the number of states grows exponentially in the number of
parallel components.

In [30], a layered analysis of Kushilevitz and Rabin’s randomized mutual
exclusion algorithm [15] has been carried out. The underlying model on which
layered transformations have been applied is a probabilistic automaton. We mod-
eled and analysed this case study using the PRISM model checker [16]. The
obtained results for 3 processes and 5 rounds are summarised in the Table 1.
These results clearly indicate that layered reasoning can significantly reduce the
state space of system models capturing the behavior of distributed algorithms.
In addition, layering has been successfully applied to obtain easier correctness
proofs for various distributed systems [11–14]. Motivated by this, we propose
a state-space reduction technique for a network of acyclic MTSs based on the
notion of layering. The main principle is illustrated in Fig. 1. Here two MTS
components M and N are composed in parallel (left), where each component
consists of n sub-components which are executed in a sequential manner. The sys-
tem obtained after performing layered transformation is shown in Fig. 1 (right).
Note that all the sub-components of M and N need to be acyclic, but we do
allow outermost level of recursion in M and N . In other words, every compo-
nent can have multiple rounds of execution, where a new round is started only
when the last sub-component of the previous round has been executed. This is
important as deadlock states are usually considered to be undesirable for MTSs
modeling distributed algorithms. Roughly speaking, layering exploits the inde-

Table 1. Parallel vs. layered composition

Parallel Layered

Build time (s) 898.70 90.39
States 198063 71619
Transitions 351432 128920

Layered Reduction for Modal Specification Theories 331

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1

;
M2

;
...
;

Mn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎧

∗ ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N1

;
N2

;
...
;

Nn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎧

∗

Layered
======⇒
transformation

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1 1

;
M2 2

;
...
;

Mn n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎧

∗

Fig. 1. Layered reduction

pendence between sub-components to transform the system under consideration
from a distributed representation to a layered representation. A layered compo-
sition operator “•” is used to denote the layered representation of the system.
Informally, M1•M2 allows synchronization on common actions and interleaving
on disjoint actions, except when some action a of M2 depends on one or more
actions of M1; in this case, a can be executed only after all the actions of M1 on
which it depends have been executed. This new composition operator allows for-
mulating Communication Closed Layer (CCL) laws [11], which are required to
carry out the structural transformations and establish an equivalence between
the two systems. Since the sub-components within a component are executed
sequentially, a partial order relation is proposed to relate the • and ; (sequential)
operator. The reduced system obtained as a result of applying layered transfor-
mation can be used for analysis, provided it preserves a rich class of properties
of interest. Reachability is one of the most important properties in the area of
model checking. Therefore, we focus on proving that the reduced system pre-
serves existential (→) and universal (∼) reachability properties to reach its set of
final states.
Contributions. The main contributions of this paper are as follows:

– We define the notions of abstract execution and realisation, which are subse-
quently used to compare the behaviour of acyclic MTSs.

– We define the layered (•) and sequential (;) composition operator, and for-
mulate communication closed layer (CCL) laws for acyclic MTSs.

– We define the partial order (po) equivalence between acyclic MTSs, show that
• is po-equivalent to ;, and prove that po-equivalence between • and ; preserves
existential (→) and universal (∼) reachability properties.

– Finally, we show how state space reduction can be achieved by replacing •
with ; within the framework of CCL laws.

Related Work

Layering. The decomposition of a distributed program into communication
closed layers to simplify its analysis was originally proposed in [6]. In [13], a

332 A. Sharma and J.-P. Katoen

layered composition operator and various algebraic transformation rules have
been introduced to simplify the analysis of distributed database systems. Some
other examples where layering techniques have been applied for the analysis of
distributed systems can be found in [11,12,14]. An extension of layering operator
and CCL laws to the real-time setting has been proposed in [12]. Layered com-
position for timed automata has been investigated in [25]. In the probabilistic
context, layering has been applied to the consensus problem to prove the lower
bounds [24]. A probabilistic Kleene Algebra (pKA), for simplifying the reason-
ing of randomized distributed algorithms has been recently proposed in [22].
Most recently, the layered composition operator and probabilistic counterparts
of the CCL laws have been defined for the PA model [30]. The feasibility of this
approach has been demonstrated on a randomized mutual exclusion algorithm.

Organisation of the paper. Section 2 briefly recalls the basic concepts of
LTSs and MTSs. Section 3 presents the satisfaction and refinement relations
for MTSs. Section 4 discusses the composition operators for MTSs, and intro-
duces CCL laws. Section 5 defines po-equivalence between MTSs, and proves
that po-equivalence between • and ; preserves existential (→) and universal (∼)
reachability properties. Finally, Sect. 6 concludes the paper. All the proofs are
contained in the appendix.

2 Preliminaries

This section recalls the basic concepts of labeled transition systems and modal
transition systems with a finite state space.

Definition 1. A labeled transition system (LTS) is a tuple T =(S,Act, s0, Sf , V)
where:

– S is a finite, non-empty set of states,
– Act is a finite set of actions,
– s0 ⊆ S is the initial state,
– Sf ⊂ S is the set of final states where s0 /⊆ Sf ,
– V : S \ Sf × Act × S ← B2 is a two-valued transition function.

Here B2 = {∩,∅}, with ∩ < ∅. V (s, a, s∈) identifies the transition of the
transition system: ∅ indicates its presence and ∩ indicates its absence. We
write s a−← s∈ whenever V (s, a, s∈) = ∅. Labeled transition systems are basi-
cally directed graphs where nodes represent states, and edges model transitions,
i.e., state changes. Transitions specify how the system can evolve from one state
to another. In case a state has more than one outgoing transition, the next tran-
sition is chosen in a purely non-deterministic fashion. A possible behaviour in
an LTS is obtained from the resolution of non-deterministic choices, described in
terms of paths. A path π of LTS T is a (possibly infinite) sequence of the form
π = s0a1s1a2s2a3 . . . where ∼n : sn

an+1−−−−← sn+1. Let last(π) denote the last state
of π (if π is finite). Let |π| be the length (number of actions) of a finite path π.
For infinite path π and any i ⊆ N, let π[i] = si, the (i+1)-st state of π. For finite

Layered Reduction for Modal Specification Theories 333

s0

s1 s2

sf

a, d,

c,

b,

b, ?

c, ?

s0

s1 s2

a d

c

sf

b

Fig. 2. An MTS M (left) and an LTS T (right) that satisfies M

path π of length n, π[i] is only defined for i ⇐ n and defined as for infinite paths.
Let Pathsfin(T) be the set of all finite paths in LTS T , and Pathsinf (T) the
set of all infinite paths of T that start in state s0. Let Paths

Sf

fin(T) be the set
of all finite paths of T that start in state s0 and end in some state s ⊆ Sf .

Definition 2. LTS T = (S,Act, s0, Sf , V) is deterministic, if ∼s ⊆ S.∼a ⊆
Act.|{s∈ ⊆ S | V (s, a, s∈)
= ∩}| ⇐ 1

Example 1. Consider the LTS T in Fig. 2 (right), where S = {s0, s1, s2, sf},
Act = {a, b, c, d}, s0 is the initial state, and Sf = {sf}. It is easy to check that
T is deterministic. An example finite path π is s0as1cs2bsf . We have |π| = 3,
and π[1] = s1.

Definition 3. A modal transition system (MTS) is a tuple M = (S,Act, s0, Sf , V)
where:

– S is a finite, non-empty set of states,
– Act is a finite set of actions,
– s0 ⊆ S is the initial state,
– Sf ⊂ S is the set of final states where s0 /⊆ Sf ,
– V : S \ Sf × Act × S ← B3 is a three-valued transition function.

Here B3 = {∩, ?,∅} denotes a complete lattice with the following ordering
∩ < ? < ∅ and meet ∧ and join ∨ operators. V (s, a, s∈) identifies the transition
of the automaton: ∅, ? and ∩ indicate a must, a may and absence of transition
respectively. For simplicity we write s a−← ∗s∈ instead of V (s, a, s∈) = ∅. Sim-
ilarly, we write s a−← ?s

∈ instead of V (s, a, s∈) =?. Let act(s) denote the set of
enabled actions from state s, i.e., act(s) = {a ⊆ Act | →s∈ : V (s, a, s∈)
= ∩}. By
definition, it follows ∼s ⊆ Sf : act(s) = ∅.

Remark 1. An LTS is an MTS in which every transition is a must-transition.
Thus, every LTS is an MTS.

Definition 4. MTS M = (S,Act, s0, Sf , V) is deterministic, if ∼s ⊆ S.∼a ⊆
Act.|{s∈ ⊆ S | V (s, a, s∈)
= ∩}| ⇐ 1.

334 A. Sharma and J.-P. Katoen

In this paper we only consider deterministic MTSs, as they are sufficient for
modeling the behavior of typical distributed algorithms. An abstract execution
ρ of an MTS M is a (possibly infinite) sequence of the form ρ = s0a1s1a2s2a3 . . .,
where ∼n : sn

an+1−−−−← ∗sn+1 or sn
an+1−−−−← ?sn+1. Let Execfin(M) be the set of

all finite abstract executions, and Execinf (M) the set of all infinite abstract
executions of M that start in state s0. Let Exec

Sf

fin(M) be the set of all finite
abstract executions of M that start in state s0, and end in some state s ⊆
Sf . Let |ρ| be the length (number of actions) of a finite abstract execution ρ.
For infinite abstract execution ρ and any i ⊆ N, let ρ[i] = si, the (i + 1)-st state
of ρ. For finite abstract execution ρ of length n, ρ[i] is only defined for i ⇐ n and
defined as for infinite abstract executions. Let last(ρ) denote the last state of ρ
(if ρ is finite). Similarly, let first(ρ) denote the first state of ρ.

Example 2. Consider the MTS M in Fig. 2 (left), where S = {s0, s1, s2, sf},
Act = {a, b, c, d}, s0 is the initial state, and Sf = {sf}. Here, state s2 has two
outgoing transitions: a must b-transition moving to sf and a may c-transition
moving to s2. Similarly, state s1 has two outgoing transitions: a must c-transition
moving to s2 and a may b-transition moving to s1. Note that M is deterministic.
An example finite abstract execution ρ is s0as1cs2bsf with |ρ| = 3, and ρ[1] = s1.

3 Satisfaction and Refinement

This section presents the notions of satisfaction and refinement originally intro-
duced in [20]. A satisfaction relation allows to relate an LTS (implementation)
with an MTS (specification). A refinement relation is used to compare MTSs
w.r.t. their sets of implementations. We also define the notions of realisation,
existential (→) and universal (∼) reachability properties of reaching the set of
final states computed over the implementations of MTS M.

Definition 5 (Satisfaction). Let T = (S,Act, s0, Sf , V) be an LTS and
M = (S∈, Act, s∈

0, S
∈
f , V ∈) be an MTS. R ⇒ S × S∈ is a satisfaction relation

iff, for any (s, s∈) ⊆ R, the following conditions hold:

– ∼a ⊆ Act,∼u∈ ⊆ S∈ : V ∈(s∈, a, u∈) = ∅ ∃ (→u ⊆ S : V (s, a, u) = ∅ ⊕ uRu∈),
– ∼a ⊆ Act,∼u ⊆ S : V (s, a, u) = ∅ ∃ (→u∈ ⊆ S∈ : V ∈(s∈, a, u∈)
= ∩ ⊕ uRu∈),
– s ⊆ Sf ∈ s∈ ⊆ S∈

f .

We say that T satisfies M, denoted T |= M, iff there exists a satisfaction
relation relating s0 and s∈

0. If T |= M, T is called an implementation of M.

Intuitively, a state s satisfies state s∈ iff any must transition of s∈ is matched by a
transition of s, s does not contain any transitions that do not have a correspond-
ing transition (may or must) in s∈, and the final states of two systems are always
related. Let [[M]] = {T | T |= M}, i.e., [[M]] is the set of all implementations
of MTS M. Let T ⊆ [[M]], and π = s0a1s1a2s2 . . . sn be a finite path of T , i.e.,
π ⊆ Pathsfin(T). π is said to be a realisation of ρ = s0a

∈
1s1a

∈
2s2 . . . sn where

ρ ⊆ Execfin(M), denoted π |= ρ, if ∼i < n : ai+1 = a∈
i+1.

Layered Reduction for Modal Specification Theories 335

Example 3. The LTS T in Fig. 2 (right) is an implementation of the MTS M in
Fig. 2 (left). It is easy to check that there exists a satisfaction relation relating the
initial states of T and M. Note that in this example, for every implementation
T of M, Sf
= ∅ (since there exists a finite abstract execution from s0 to sf with
only must transitions). Finite path π = s0as1cs2bsf of LTS T is a realisation of
finite abstract execution ρ = s0as1cs2bsf of M.

Note that for a deterministic MTS M and T |= M, if a path π ⊆ Pathsfin(T)
is a realisation of some finite abstract execution ρ ⊆ Execfin(M), then it cannot
be a realisation of another finite abstract execution of M.

Definition 6 (Refinement). Let M = (S,Act, s0, Sf , V) and M∈=(S∈, Act, s∈
0,

S∈
f , V ∈) be MTSs. R ⇒ S×S∈ is a strong refinement relation iff, for all (s, s∈) ⊆ R,

the following conditions hold:

– ∼a ⊆ Act,∼u∈ ⊆ S∈ : V ∈(s∈, a, u∈) = ∅ ∃ (→u ⊆ S : V (s, a, u) = ∅ ⊕ uRu∈),
– ∼a ⊆ Act,∼u ⊆ S : V (s, a, u)
= ∩ ∃ (→u∈ ⊆ S∈ : V ∈(s∈, a, u∈)
= ∩ ⊕ uRu∈),
– s ⊆ Sf ∈ s∈ ⊆ S∈

f .

M strongly refines M∈, denoted M �S M∈, iff there exists a strong refinement
relation relating s0 and s∈

0.

Intuitively, a state s strongly refines state s∈ iff any must transition of s∈ is
matched by a must transition of s, s does not contain any transitions (may or
must) that do not have a corresponding transition (may or must) in s∈, and the
final states of two systems are always related.

Remark 2. A satisfaction relation is a special type of refinement relation. In
simple words, if T satisfies M, then T also strongly refines M (since every LTS
is an MTS and all the three conditions of refinement are satisfied).

Definition 7 (Refinement equivalence). We say that M and M∈ are refine-
ment equivalent, denoted M ∪ M∈, iff M �S M∈ and M∈ �S M.

Since strong refinement implies inclusion of sets of implementations, it follows
that refinement equivalent MTSs M and M∈ have the same set of implementa-
tions, i.e., [[M]] = [[M∈]].

Assumptions. For the rest of the paper we assume the following:

– Every MTS is acyclic.
– Every MTS has a single final state, i.e., |Sf | = 1, and all its states (except

the final state) have at least one outgoing transition.
– Dependencies between actions of different components are known in advance.

In this paper we focus on reachability properties, i.e., is it possible to reach the
set of final states from the initial state in an LTS T . More formally it is defined
as follows:

Definition 8 (LTS reachability). Let T = (S,Act, s0, Sf , V) be an LTS.
Then T reaches Sf , denoted T |= ♦Sf , iff ∼π ⊆ Pathsfin(T)→π∈ ⊆ Paths

Sf

fin(T) :
π is a prefix of π∈.

336 A. Sharma and J.-P. Katoen

In simple words, all the finite paths starting from the initial state of T should
be extendable s.t. the last state of the new path obtained belongs to Sf .

Example 4. Consider the LTS T in Fig. 2 (right) where s0 is the initial state,
and sf is the only final state. Here, T |= ♦Sf since every finite path of T can
be extended s.t. it reaches sf .

Next, we define two reachability properties of reaching the set of final states
determined over the implementations of an MTS M. The first property requires
that for an MTS M there exists at least one implementation T s.t. T |= ♦Sf .
The second property requires that all the implementations of M should be able
to reach the set of final states. Formally, these properties are defined as follows:

Definition 9 (Existential reachability). Let M = (S,Act, s0, Sf , V) be an
MTS. Then M possibly reaches Sf , denoted M |=↑ ♦Sf , iff → T ⊆ [[M]] :
T |= ♦Sf .

Definition 10 (Universal reachability). Let M = (S,Act, s0, Sf , V) be an
MTS. Then M inevitably reaches Sf , denoted M |=↓ ♦Sf , iff ∼T ⊆ [[M]] :
T |= ♦Sf .

Remark 3. The problem of deciding M |=↑ ♦Sf is PSPACE-complete [3]. The
same applies to universal reachability.

4 Composition and CCL Laws

In this section we define composition operators for MTSs. We propose sequential,
and layered composition operators, and recall parallel composition from [20]. The
framework of CCL laws is also formulated, which is required for carrying out the
layered transformations.

Definition 11 (Sequential composition). Given MTSs Mi = (Si, Acti, s0i,
{sfi}, Vi), where i ⊆ {1, 2} with S1 ≤S2 = ∅. The sequential composition of M1

and M2, denoted M1;M2, is the MTS (S,Act1 ∪ Act2, s01, {sf2}, V), where
S = S1 \ {sf1} ∪ S2 and V = V ∈

1 ∪ V2. Here V ∈
1 = V1[s02 ← sf1] is defined by

V ∈
1(s, a, s∈) = V1(s, a, s∈) if s∈
= sf1, and

V ∈
1(s, a, s02) = V1(s, a, sf1) otherwise.

Intuitively, sequential composition of two MTSs M1 and M2 requires executing
the actions of M1 followed by actions of M2. Note that all the incoming tran-
sitions to state sf1 are redirected to s02. Here, s01, sf2 are the new initial and
final states in the resulting MTS, respectively.

Example 5. The sequential composition of two MTSs M1,M2 (Fig. 3 (left)) is
shown in Fig. 3 (right).

Layered Reduction for Modal Specification Theories 337

M1

s0

s1 sf

a, b,

c,

M2

s0

sf

d,

M1; M2

s0

s1 s0

sf

a, b,

d,

c,

Fig. 3. MTSs M1 and M2 (left) and their sequential composition (right)

Definition 12 (Parallel composition). Given MTSs Mi = (Si, Acti, s0i,
{sfi}, Vi), where i ⊆ {1, 2} with S1≤S2 = ∅. The parallel composition of M1 and
M2, denoted M1||M2, is the MTS (S1×S2, Act1∪Act2, (s01, s02), {(sf1, sf2)}, V)
where V is defined by:

– For all (s, s∈) ⊆ S1 × S2, a ⊆ Act1 ≤ Act2, if there exists u ⊆ S1 and u∈ ⊆ S2,
such that V1(s, a, u)
= ∩ and V2(s∈, a, u∈)
= ∩, define V ((s, s∈), a, (u, u∈)) =
V1(s, a, u) ∧ V2(s∈, a, u∈). If either ∼u ⊆ S1, we have V1(s, a, u) = ∩, or ∼u∈ ⊆
S2, we have V2(s∈, a, u∈) = ∩ then ∼(u, u∈) ⊆ S1 ×S2, V ((s, s∈), a, (u, u∈)) = ∩.

– For all (s, s∈), (u, u∈) ⊆ S1 × S2, a ⊆ Act1 \ Act2, define V ((s, s∈), a, (u, u∈)) =
V1(s, a, u) if s∈ = u∈, V ((s, s∈), a, (u, u∈)) = ∩ otherwise.

– For all (s, s∈), (u, u∈) ⊆ S1 × S2, a ⊆ Act2 \ Act1, define V ((s, s∈), a, (u, u∈)) =
V2(s∈, a, u∈) if s = u, V ((s, s∈), a, (u, u∈)) = ∩ otherwise.

Parallel composition forces synchronization on common actions and interleav-
ing on disjoint actions. Note that the synchronization of two must transitions
results in a must transition, and composing may-must, must-may and may-may
transitions results in a may transition.

Example 6. The parallel composition of two MTSs M1,M2 (Fig. 3 (left)) is
shown in Fig. 4 (left).

Next, we introduce the notion of action independence which is subsequently
used to define layered composition. Let a(s) denote the unique state that can be

M1||M2

s0s0

s1s0 sfs0 s0sf

s1sf sfsf

a,
b,

d,

c,

d,

d,

c,

a,

b,

M1 • M2

s0s0

s1s0 sfs0

s1sf sfsf

a,
b,

c,

d,

d,

c,

Fig. 4. Parallel composition M1||M2 (left) and layered composition M1 • M2 (right)
where a † d

338 A. Sharma and J.-P. Katoen

reached from state s in one step (may or must) by performing action a ⊆ act(s)
in a deterministic MTS M. The dependency between two actions a and b is
denoted a † b. Two additional requirements for the dependency relation are that
it is reflexive and symmetric. Two distinct actions that are not dependent are
said to be independent, where independence is defined as follows:

Definition 13 (Action independence). For an MTS M = (S,Act, s0, {sf},
V), actions a, b ⊆ Act are said to be independent, denoted by a ‡ b, iff for all
states s ⊆ S with a, b ⊆ act(s) we have:

– b ⊆ act(a(s)), a ⊆ act(b(s)), and a(b(s)) = b(a(s)).

The first two conditions assert that a and b should not disable each other. The
last condition asserts that the same state should be reached from s by either
performing a followed by b, or by performing b followed by a. This notion of action
independence originates from the partial-order reduction techniques [8,26].

Definition 14. MTSs M1 and M2 are independent, denoted M1‡M2, iff every
action of M1 is independent of every action of M2 in M1||M2.

Let s ∅−← s∈ denote that state s∈ is reachable from s through an arbitrary finite
sequence of transitions in MTS M. In other words, s ∅−← s∈ means that there
exists a finite abstract execution ρ in M that start in state s s.t. last(ρ) = s∈.

Definition 15 (Layered composition). Given MTSs Mi = (Si, Acti, s0i,
{sfi}, Vi), where i ⊆ {1, 2} with S1≤S2 = ∅. The layered composition of M1 and
M2, denoted M1•M2, is the MTS (S1×S2, Act1∪Act2, (s01, s02), {(sf1, sf2)}, V)
where V is defined by:

– For all (s, s∈) ⊆ S1 × S2, a ⊆ Act1 ≤ Act2, if there exists u ⊆ S1 and u∈ ⊆ S2,
such that V1(s, a, u)
= ∩ and V2(s∈, a, u∈)
= ∩, define V ((s, s∈), a, (u, u∈)) =
V1(s, a, u)∧V2(s∈, a, u∈). If either ∼u ⊆ S1, we have V1(s, a, u) = ∩, or ∼u∈ ⊆ S2,
we have V2(s∈, a, u∈) = ∩ then ∼(u, u∈) ⊆ S1 × S2, V ((s, s∈), a, (u, u∈)) = ∩.

– For all (s, s∈), (u, u∈) ⊆ S1 × S2, a ⊆ Act1 \ Act2, define V ((s, s∈), a, (u, u∈)) =
V1(s, a, u) if s∈ = u∈, V ((s, s∈), a, (u, u∈)) = ∩ otherwise.

– For all (s, s∈), (u, u∈) ⊆ S1 × S2, a ⊆ Act2 \ Act1, define V ((s, s∈), a, (u, u∈)) =
V2(s∈, a, u∈) if s = u ⊕ ∼s∅ : s ∅−← s∅ : act(s∅) ‡ a, V ((s, s∈), a, (u, u∈)) = ∩
otherwise.

Note that the first two clauses of Definition 15 are the same as for Definition 12.
Layered composition does not allow an action say d in M2 to be executed until
all the actions in M1 (on which it is dependent) have been executed. In other
words, all finite abstract executions, in which d is executed before any action
say a, s.t. a † d will not be part of Execfin(M1 •M2) (this is guaranteed by the
last clause of Definition 15).

Example 7. The layered composition of two MTSs M1,M2 (Fig. 3 (left)) is
shown in Fig. 4 (right). Note that actions a, d are dependent, and therefore d
cannot be executed before a in M1 • M2.

Layered Reduction for Modal Specification Theories 339

Next, we use the above mentioned composition operators for formulating the
communication closed layer (CCL) laws as follows:

Theorem 1 (CCL laws). For MTSs N1, N2, M1, and M2, with N1 ‡M2 and
M1 ‡ N2, the following communication closed layer (CCL) equivalences hold:

– N1 • M2 ∪ N1||M2 (IND)
– (N1 • N2)||M2 ∪ N1 • (N2||M2) (CCL-L)
– (N1 • N2)||M1 ∪ (N1||M1) • N2 (CCL-R)
– (N1 • N2)||(M1 • M2) ∪ (N1||M1) • (N2||M2) (CCL)

5 Partial Order Equivalence and Property Preservation

This section defines the notion of partial order equivalence (∪∅
po) between MTSs

which is used to prove that sequential and layered composition of MTSs sat-
isfy the same existential (→) and universal (∼) reachability properties. For MTSs
M1, and M2, let M = M1 •M2. Then we define M\sync as the MTS obtained
from M s.t. it does not have any synchronized transitions (which are present in
M as a result of synchronization over common actions). Intuitively, this means
that abstract executions in M with synchronized transitions can be rewritten
in M\sync such that for every synchronized transition there is a corresponding
sequence of transitions in M\sync obtained by allowing interleaving on common
actions. For example, let M have a may a-transition which is a result of syn-
chronization of a must a-transition (from M1), and a may a- transition (from
M2). In this case M\sync will have a corresponding1 sequence of transitions,
i.e., a must a-transition (from M1) followed by a may a-transition (from M2).
This transformation is required as we want to establish the result that layered
composition is po-equivalent to sequential composition. Note that sequential
composition of two MTSs does not have synchronized transitions. This means
that for any M = M1;M2, M\sync = M.

Example 8. Consider the MTSs M1 and M2 shown in Fig. 5 (left). The layered
composition of M1,M2, i.e., M1•M2 is shown in the middle, where M1 and M2

synchronize on common action a. A may transition is obtained in M1•M2 (since
composing must-may results in a may transition). The MTS (M1 • M2)\sync

without synchronized transitions is shown in Fig. 5 (right). Here the common
action of M1 is executed before the common action of M2.

Theorem 2. For MTSs M1 and M2, let M = M1 • M2, and Sf be the set of
final states in M. Then the following holds:

M |=↑ ♦Sf ∈ M\sync |=↑ ♦Sf

M |=↓ ♦Sf ∈ M\sync |=↓ ♦Sf

1 In fact, if M would not be deterministic, then two corresponding transition sequences
making a diamond shape would be obtained in M\sync.

340 A. Sharma and J.-P. Katoen

s0
M1

sf

s0
M2

sf

(M1 • M2)
\sync

s0s0

sfs0

sfsf

a, a, ? a,

a, ?

M1 • M2
s0s0

sfsf

a, ?

Fig. 5. MTS without synchronized transitions

In simple words this theorem says that reasoning about M\sync in place of M
is not a restriction, as the behaviour of M (w.r.t. reachability properties) is
mimicked by M\sync. Next, we define the notion of partial order equivalence
between two finite abstract executions.

Definition 16 (po-equivalence). Let M1 and M2 be two MTSs with tran-
sition functions V1, and V2 respectively. Let ρ1 ⊆ Execfin(M\sync

1) and ρ2 ⊆
Execfin(M\sync

2). Then ρ1 ∪po ρ2 iff there exist finite abstract executions ρ∈, ρ∈∈

and →a1, b1 with a1
= b1 s.t. the following holds:

– ρ∈ represents the same sequence of transitions in ρ1, ρ2, and ρ∈∈ represents the
same sequence of transitions in ρ1, ρ2.

– ρ1 = ρ∈a1sb1ρ
∈∈ ⊕ ρ2 = ρ∈b1s∈a1ρ

∈∈, where a1 ‡ b1.
– V1(last(ρ∈), a1, s) = V2(s∈, a1, first(ρ∈∈)) ⊕ V1(s, b1, first(ρ∈∈)) = V2(last(ρ∈),

b1, s
∈).

Let ∪∅
po, called po-equivalence, denote the reflexive, transitive closure of ∪po.

Stated in words, if two finite abstract executions ρ1, ρ2 are po-equivalent, then
ρ1 can be obtained from ρ2 by repeated permutation of adjacent independent
actions. Note that the first condition of Definition 16 is required to ensure that
if for example ρ∈ = s0c1s1d1s2 where c1 is a must transition and d1 is a may
transition in M\sync

1 , then c1, d1 are also must and may transitions in M\sync
2 .

Definition 17 (Layered normal form). Let Sf be the set of final states in
(M1 •M2)\sync. Then ρ ⊆ Exec

Sf

fin((M1 •M2)\sync) is in layered normal form
(LNF) iff it involves the consecutive execution of actions of M1, followed by the
consecutive execution of actions of M2.

Let ExecLNF
fin ((M1 • M2)\sync) denote the set of all finite abstract executions

in Exec
Sf

fin((M1 • M2)\sync) that are in LNF.

Next we show that for each finite abstract execution of Exec
Sf

fin((M1 •
M2)\sync), a po-equivalent abstract exceution in LNF does exist.

Layered Reduction for Modal Specification Theories 341

Lemma 1 (LNF existence). Let M1,M2 be two MTSs. Then we have ∼ρ ⊆
Exec

Sf

fin((M1 • M2)\sync)→ρ∈ ⊆ ExecLNF
fin ((M1 • M2)\sync) s.t. ρ ∪∅

po ρ∈.

Definition 18 (po-equivalence for MTSs). Two MTSs M1,M2 are said to
be po-equivalent, denoted M1 ∪∅

po M2, iff for i ⊆ {1, 2}: ∼ρi ⊆ Exec
Sfi

fin(M\sync
i)

→ρ3−i ⊆ Exec
Sf3−i

fin (M\sync
3−i) s.t. ρi ∪∅

po ρ3−i.

Theorem 3. For every MTSs M1,M2, we have M1 • M2 ∪∅
po M1;M2.

Example 9. It is easy to check that MTS M1;M2 given in Fig. 3 (right) is po-
equivalent to MTS M1 • M2 given in Fig. 4 (right).

Theorem 4 (Property preservation). For MTSs M1,M2, let M = M1 •
M2, M∈ = M1;M2 with set of final states Sf , and S∈

f respectively. If M ∪∅
po M∈

then we have:

M |=↑ ♦Sf iffM∈ |=↑ ♦S∈
f

M |=↓ ♦Sf iffM∈ |=↓ ♦S∈
f

This theorem asserts that po-equivalence between layered and sequential com-
position operators satisfies the same reachability properties.

Corollary 1. Replacing • by ; in the CCL laws yields the po-equivalence which
satisfies the same → and ∼ reachability properties.

Corollary 1 enable us to replace ; with • and vice versa. This replacement along
with CCL laws (Theorem 1) can be used for state space reduction as follows:

State space reduction. Let N1,N2 and M1 be three MTSs, and N = (N1;N2)||
M1. Let us say we want to check whether N |=↑ ♦Sf or N |=↓ ♦Sf . Here, Sf

is set of final states in N . Assume M1 ‡ N2, and N1,N2,M1 each consist of 20
states. In this case N1;N2 has 39 states which combined with the 20 states of
M1 gives 780 states. We can transform N in the following way:

(N1;N2)||M1

∪∅
po Corollary 1

(N1 • N2)||M1

∪ CCL-R
(N1||M1) • N2

∪∅
po Corollary 1

(N1||M1);N2

Note that the transformed system, i.e., (N1||M1);N2 has 419 states.

342 A. Sharma and J.-P. Katoen

6 Conclusion

This paper presented a state-space reduction technique for a network of acyclic
MTSs, based on the notion of layering. We proposed a layered composition oper-
ator, and formulated communication closed layer (CCL) laws. Next, we define
the partial order (po) equivalence between acyclic MTSs, show that layered
and sequential composition operators are po-equivalent and satisfy the same
existential (→) and universal (∼) reachability properties. As implementations of
distributed systems typically are in terms of layers, we believe that enabling
transforming system MTS specifications into layered form will substantially ease
the proof of correct implementation. The theory of layering proposed in this
paper can be extended to acyclic MTSs equipped with data variables. An MTS
M can be extended with data variables such that whenever an action is executed
its associated data variables are updated according to an arithmetic expression.
These data variables can take values in some finite range D. The definitions of
satisfaction, and refinement can be slightly modified by placing an extra condi-
tion that ensures that related states have the same valuations. For an MTS with
data, two actions are said to be dependent if one of the two writes a variable
that is read or written by the other action. More formally, two actions a and b
are dependent, denoted a † b, if any one of the following holds:

Write(b) ≤ Read(a)
= ∅,

Write(a) ≤ Read(b)
= ∅,

Write(a) ≤ Write(b)
= ∅.

Here, Write(a) denotes the set of data variables written by the action a. Simi-
larly, Read(a) denotes the set of data variables read by the action a. Using this
dependency relation, our theory can be applied to MTSs with data. We do not go
into details on these matters here, however, refer interested reader to [2,11,30].
Future work includes the application of this technique to practical case studies
which involve modeling distributed systems using MTSs.

Acknowledgements. The authors thank Ian Larson for modeling the randomized
mutual exclusion algorithm case study in PRISM and conducting the experiments.

Appendix

Proof of Theorem 1

Proof. We provide the proof of the law CCL-L. The proofs of the other CCL
laws are similar. Let T = (N1 • N2)||M2 and U = N1 • (N2||M2). In order
to prove that T ∪ U , we have to show T �S U and U �S T . Let ((x, y), z)
and (x, (y, z)) denote states of MTSs T and U , respectively. Here x, y, z rep-
resent the state components of N1,N2 and M2, respectively. We only prove
T �S U , the proof of U �S T is very similar. To show T �S U , we have

Layered Reduction for Modal Specification Theories 343

to prove that T strongly refines U according to Definition 6. Let S∅ and S be
the state space of T and U , respectively. Let R ⇒ S∅ ×S be a binary relation s.t.
R ={⎪((x, y), z), (x, (y, z))

⎨
,
⎪
((x∈, y), z), (x∈, (y, z))

⎨
,
⎪
((x, y∈), z∈), (x, (y∈, z∈))

⎨
. . .}.

Intuitively R relates states of S∅ to those states in S that have the same individ-
ual state components from N1,N2 and M2. Let us consider a state s = (x, (y, z))
from U and s∅ = ((x, y), z) from T . From the definition of R, we know that
(s∅, s) ⊆ R. A transition from s in U or s∅ in T can be performed by 1) N1

individually, or 2) N2 individually, or 3) M2 individually, or 4) N1 and N2

simultaneously, or 5) N2 and M2 simultaneously. We show that for every case2

the conditions of Definition 6 are satisfied, and thus R is a strong refinement
relation between T and U . It is easy to check that condition 3 which requires
final states to be related is satisfied. This is because R relates states that have
the same individual state components from N1,N2 and M2.

(1) N1 individually: Let s a−← ∗s∈ (resp. s a−← ?s
∈) be a transition of N1 taken

in U , where s∈ = (x∈, (y, z)). Since N1 is the left operand of layering in U
such a transition is also possible from the related state s∅ = ((x, y), z), i.e.,
s∅ a−← ∗s∅∅ (resp. s∅ a−← ?s

∅∅), where s∅∅ = ((x∈, y), z). From the definition
of R we know that (s∅∅, s∈) ⊆ R. Similarly, it can be shown that for every
transition s∅ a−← ∗s∅∅∅ (resp. s∅ a−← ?s

∅∅∅), there exists a corresponding tran-
sition, s a−← ∗s∈∈ (resp. s a−← ?s

∈∈) s.t. (s∅∅∅, s∈∈) ⊆ R.
(2) N2 individually: Similar to case 1 above.
(3) M2 individually: Let s a−← ∗s∈ (resp. s a−← ?s

∈) be a transition of M2 taken
in U , where s∈ = (x, (y, z∈)). Since this transition is possible after layering
operator in U , it is also possible in T from the state related to s, i.e., s∅ as
this action is not waiting for some action of N1 to be executed, and U induces
fewer interleavings due to dominance of layered composition operator. Next,
we consider a transition of M2 taken in T from state s∅. Since N1 ‡ M2, a
similar transition exists in U from the state related to s∅, i.e., s as putting
M2 after the layering operator is not a problem as it is independent from
N1.

(4) N1 and N2 simultaneously: Let s a−← ∗s∈ (resp. s a−← ?s
∈) be a transition

in U as a result of a synchronization of N1 and N2 on action a, where
s∈ = (x∈, (y∈, z)). Again as U induces fewer interleavings due to dominance
of layered operator, a similar transition is possible in T from state related
to s, i.e., s∅. Similarly, for any transition in T from s∅, a corresponding
transition is enabled in U as N2||M2 will not block it (due to the fact that
the synchronizing action is not waiting for an action from M2 to be executed
since parallel composition does not respect dependencies).

(5) N2 and M2 simultaneously: Let s a−← ∗s∈ (resp. s a−← ?s
∈) be a transition

in U as a result of a synchronization of N2 and M2 on action a, where
s∈ = (x, (y∈, z∈)). As this action is possible in N2||M2, it means that this
action is not waiting for the execution of some actions from N1. It is therefore

2 Note that we do not consider the case where N1 and M2 move simultaneously. This
is due to the fact that N1 ‡ M2, and therefore they cannot have common actions
(since the dependency relation is reflexive).

344 A. Sharma and J.-P. Katoen

possible to take the same transition in T from s∅ as N1 • N2 will not block
it. Similarly, for any transition in T from s∅, there will be a corresponding
transition in U . This is due to the fact this action is not waiting for actions
of N1 to be executed as N1 ‡ M2. ∧∨

Proof of Theorem 2

Proof. (→ reachability): We provide the proof of M |=↑ ♦Sf ∃ M\sync |=↑ ♦Sf .
The proof of M\sync |=↑ ♦Sf ∃ M |=↑ ♦Sf is similar. Let T ⊆ [[M]] be
an LTS s.t. T |= ♦Sf . We know that every finite path π ⊆ Paths

Sf

fin(T) is a

realisation of some finite abstract execution ρ ⊆ Exec
Sf

fin(M), and no finite path
can be a realisation of more than one finite abstract execution in M (since M
is deterministic). Let η be the set of all such finite abstract executions where
η ⇒ Exec

Sf

fin(M). From the definition of M\sync we know that for each finite
abstract execution ρ ⊆ η there exists a corresponding finite abstract execution in
Exec

Sf

fin(M\sync) obtained by allowing interleaving on common actions s.t. the
common action of M1 is executed followed by execution of the common action of
M2. Let η∈ ⇒ Exec

Sf

fin(M\sync) be the set of all such finite abstract executions.
Let T ∈ ⊆ [[M\sync]] be an LTS s.t. for every finite abstract execution ρ∈ ⊆ η∈ there
exists a finite path π∈ in T ∈ that is a realisation of ρ∈ and T ∈ does not contain
any path π∈ ⊆ Paths

Sf

fin(T ∈) which is not a realisation of some finite abstract
execution ρ∈ ⊆ η∈. In other words we have constructed an implementation T ∈

corresponding to T s.t. T ∈ |= ♦Sf .
(∼ reachability): We provide the proof of M |=↓ ♦Sf ∃ M\sync |=↓ ♦Sf .

The proof of M\sync |=↓ ♦Sf ∃ M |=↓ ♦Sf is similar. From the definition
of ∼ reachability (Definition 10) we know that M reaches Sf if and only if all
the implementations of M are able to reach Sf . This intuitively means that
M does not have those may transitions that block any of its implementations
from reaching the final state. Since M\sync is obtained from M by allowing
interleaving on common actions, such may transitions (or equivalent transition
sequences) are also absent in M\sync. In other words, every implementation
T ∈ ⊆ [[M\sync]] reaches Sf , i.e., T ∈ |= ♦Sf . ∧∨
Proof of Lemma 1

Proof. From the definition of layered normal form (LNF) we know that all finite
abstract executions that are in LNF consists of the consecutive execution of
actions of M1, followed by the consecutive execution of actions of M2. We know
that in ((M1 • M2)\sync), an action of M2 occurs only when all the actions
in M1 on which it is dependent have been executed. This intuitively means
that all the actions of M2 that occur in a finite abstract execution before any
action of M1 are independent of this action and thus by repeated permutation
of these actions any finite abstract execution ρ ⊆ Exec

Sf

fin((M1 • M2)\sync) can
be converted to a finite abstract execution that is in LNF. ∧∨

Layered Reduction for Modal Specification Theories 345

Proof of Theorem 3

Proof. Let M1,M2 be MTSs. From the definition of LNF (Definition 17), we
know that a finite abstract execution in LNF involves the consecutive execution
of actions of M1, followed by the consecutive execution of actions of M2. This
means that for every finite abstract execution ρ ⊆ ExecLNF

fin ((M1 • M2)\sync)
there exists a finite abstract execution ρ∈ in ((M1;M2)\sync) that ends in
the final state and where: ∼n ≥ 0 : ρ[n] ≈ ρ∈[n] ⊕ ρ[n] an+1−−−−← ∗ρ[n + 1] ∃
ρ∈[n] an+1−−−−← ∗ρ∈[n + 1](resp.ρ[n] an+1−−−−← ?ρ[n + 1] ∃ ρ∈[n] an+1−−−−← ?ρ

∈[n + 1]). The
relation ≈ between states of ((M1 • M2)\sync) and ((M1;M2)\sync) is defined
as follows: S1 ×S2 is the state space of ((M1 •M2)\sync) and (S1 \{sf1}∪S2) is
the state space of ((M1;M2)\sync) then ∼s1 ⊆ S1 where s1
= sf1 : (s1, s02) ≈ s1
and ∼s2 ⊆ S2 : (sf1, s2) ≈ s2.

In other words we have related every finite abstract execution of ((M1 •
M2)\sync) that is in LNF to some finite abstract execution in ((M1;M2)\sync)
that ends in the final state and vice-versa. It is also clear from Lemma 1 that
for every finite abstract execution ρ in ((M1 • M2)\sync) that ends in the final
state, there exists a finite abstract execution ρ∈ in ((M1 •M2)\sync) that is LNF
s.t. ρ ∪∅

po ρ∈. ∧∨
Proof of Theorem 4

Proof. (→ reachability): We provide the proof of M |=↑ ♦Sf ∃ M∈ |=↑ ♦S∈
f .

The proof of M∈ |=↑ ♦S∈
f ∃ M |=↑ ♦Sf is similar. Let T ⊆ [[M\sync]] be an LTS

s.t. T |= ♦Sf . We know that every finite path π ⊆ Paths
Sf

fin(T) is a realisation

of some finite abstract execution ρ ⊆ Exec
Sf

fin(M\sync), and no finite path can
be a realisation of more than one finite abstract execution in M\sync (since
M\sync is deterministic). Let η be the set of all such finite abstract executions
where η ⇒ Exec

Sf

fin(M\sync). From the definition of po-equivalence for MTSs

(Definition 18) we know that for set η there exists a set η∈ ⇒ Exec
S∗
f

fin(M∈\sync) :

∼ρ ⊆ η→ρ∈ ⊆ η∈ : ρ ∪∅
po ρ∈ and vice versa. Since both M\sync and M∈\sync are

deterministic, this intuitively means that |η| = |η∈|. Let T ∈ ⊆ [[M∈\sync]] be an
LTS s.t. for every finite abstract execution ρ∈ ⊆ η∈ there exists a finite path in T ∈

that is a realisation of ρ∈ and T ∈ does not contain any path π∈ ⊆ Paths
S∗
f

fin(T ∈)
which is not a realisation of some finite abstract execution ρ∈ ⊆ η∈. In other words
we have constructed an implementation T ∈ corresponding to T s.t. T ∈ |= ♦S∈

f .

(∼ reachability): We provide the proof of M |=↓ ♦Sf ∃ M∈ |=↓ ♦S∈
f . The proof

of M∈ |=↓ ♦S∈
f ∃ M |=↓ ♦Sf is similar. From the definition of ∼ reachability

(Definition 10) we know that M reaches Sf if and only if all the implementations
of M are able to reach Sf . This intuitively means that M\sync does not have
those may transitions that block any of its implementations from reaching the
final state. Since M∈ is po-equivalent to M and M∈ involves the consecutive
execution of actions of M1, followed by the consecutive execution of actions of

346 A. Sharma and J.-P. Katoen

M2 before reaching S∈
f , such may transitions are also absent in M∈\sync. In

other words, every implementation T ∈ ⊆ [[M∈\sync]] reaches S∈
f , i.e.T ∈ |= ♦S∈

f . ∧∨

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Bauer, S.S., Guldstrand Larsen, K., Legay, A., Nyman, U., W ↪asowski, A.: A modal
specification theory for components with data. In: Arbab, F., Ölveczky, P.C. (eds.)
FACS 2011. LNCS, vol. 7253, pp. 61–78. Springer, Heidelberg (2012)

3. Beneš, N., Černá, I., Křet́ınský, J.: Modal transition systems: composition and
LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 228–242. Springer, Heidelberg (2011)

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Boston (1986)

5. Bruns, G.: An industrial application of modal process logic. Sci. Comput. Program.
29(1–2), 3–22 (1997)

6. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

7. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

8. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: ISTCS, pp. 130–139 (1995)

9. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008)

10. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: a foundation
for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001)

11. Janssen, W.: Layered design of parallel systems. Ph.D. dissertation, Universiteit
Twente (1994)

12. Janssen, W., Poel, M., Xu, Q., Zwiers, J.: Layering of real-time distributed
processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994
and ProCoS 1994. LNCS, vol. 863, pp. 393–417. Springer, Heidelberg (1994)

13. Janssen, W., Poel, M., Zwiers, J.: Action systems and action refinement in the
development of parallel systems - an algebraic approach. In: Groote, J.F., Baeten,
J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 298–316. Springer, Heidelberg
(1991)

14. Janssen, W., Zwiers, J.: From sequential layers to distributed processes: Deriving
a distributed minimum weight spanning tree algorithm (extended anstract). In:
PODC, pp. 215–227. ACM (1992)

15. Kushilevitz, E., Rabin, M.O.: Randomized mutual exclusion algorithms revisited.
In : PODC, pp. 275–283 (1992)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

17. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

Layered Reduction for Modal Specification Theories 347

18. Larsen, K.G., Nyman, U., W ↪asowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

19. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology
based on modal transition systems. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 17–40.
Springer, Heidelberg (1995)

20. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
21. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:

LICS, pp. 108–117 (1990)
22. McIver, A.K., Gonzalia, C., Cohen, E., Morgan, C.C.: Using probabilistic Kleene

algebra pKA for protocol verification. J. Log. Algebr. Program. 76(1), 90–111
(2008)

23. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

24. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4),
989–1021 (2002)

25. Olderog, E.-R., Swaminathan, M.: Layered composition for timed automata.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246,
pp. 228–242. Springer, Heidelberg (2010)

26. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

27. Raclet, J.-B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93–110 (2008)

28. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD, pp. 119–127 (2009)

29. Schmidt, D.A.: From trace sets to modal-transition systems by stepwise abstract
interpretation. Theoria 33, 53–71 (2001)

30. Swaminathan, M., Katoen, J.-P., Olderog, E.-R.: Layered reasoning for randomized
distributed algorithms. Formal Asp. Comput. 24(4–6), 477–496 (2012)

31. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: SIGSOFT FSE,
pp. 43–52 (2004)

Define, Verify, Refine: Correct Composition and
Transformation of Concurrent System Semantics

Anton Wijs(B)

Department of Mathematics and Computer Science, Eindhoven University
of Technology, 513, 5600 MB Eindhoven, The Netherlands

A.J.Wijs@tue.nl

Abstract. We present a technique to verify user-defined model trans-
formations, in order to step-wise develop formal models of concurrent
systems. The main benefit is that the changes applied to a model can be
verified in isolation. In particular, the preservation of safety and liveness
properties of such a modification can be determined independent of the
input model. This is particularly useful for model-driven development
approaches, where systems are designed and created by first developing
an abstract model, and iteratively modifying this model until it is con-
crete enough to automatically generate source code from it. Properties
that already hold on the initial model and should remain valid through-
out the development in later models can be maintained with our tool
Refiner, by which the effort of verifying those properties over and over
again can be avoided. This paper generalises our earlier results in various
ways, removing several restrictions, improving the focus of the verifica-
tion method on transformations, and introducing the possibility to add
completely new components at any time during the development.

1 Introduction

Concurrent systems tend to be very complex, and therefore very hard to develop
correctly, i.e. bug-free. One approach to restrict the potential for introducing
errors is by step-wise constructing the model of a concurrent system via model
transformations. In that way, a model can be made more and more detailed, ulti-
mately describing the system in full detail, which has the potential of allowing
automatic source code generation. Such an approach can be made more robust
by incorporating efficient verification techniques to determine that each inter-
mediate model is correct, i.e. that desired functional properties are preserved.
In [28,29], we presented a new technique to verify that formal definitions of trans-
formations preserve desired functional properties, independent of the model they
are applied on. Models, in this context, are action-based specifications of con-
current systems. Such specifications can be written in action-based modelling
languages, such as process algebras. The definitions of transformations corre-
spond with model transformations, as used in software engineering. The main
benefit is that after application of a verified transformation, a model does not
need to be rechecked, thereby avoiding state space explosion.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 348–368, 2014.
DOI: 10.1007/978-3-319-07602-7 21, c© Springer International Publishing Switzerland 2014

Define, Verify, Refine: Correct Composition and Transformation 349

ϕ

M1
Apply

Model Checking
or

ϕ

Σ

M1

Perform
Preservation Check

or

Σ

M1

Transform M2

Adapt
M1 or ϕ

Adapt
Σ

Fig. 1. Schematic depiction of the typical use of Refiner

The new verification technique has been implemented in a prototype tool
called Refiner1, by which a designer can, through a command-line interface,
step-wise transform the semantics of processes in concurrent system designs.
The designer does this by constructing transformation rule systems, which are
formalisations of model transformations that can be analysed efficiently to deter-
mine whether they preserve safety or liveness properties in general, i.e. indepen-
dent of the input model. Typically, Refiner is used as in Fig. 1. First, existing
action-based model checking toolsets such as Cadp [8] and mCRL2 [5] can
be applied to verify whether a given property ϕ, usually written in the modal
μ-calculus [17], holds for model M1. If the property holds, Refiner is used to
determine whether the property is preserved by rule system σ. There are two
supported techniques for this: one for determining model-independent property
preservation, independent of input models, and one for determining property
preservation for a particular input model. The latter involves M1 in the analysis,
therefore it is not general, since it does not allow reusing the verification results
for transformations of other models. But it may lead to a positive result in cases
where the model-independent one does not. The model-independent property
preservation check considers all the possibilities for σ to match on input mod-
els. If ϕ is not preserved, σ must be adapted and the last step repeated. If ϕ
is preserved, Refiner can be used to transform model M1 into a model M2

satisfying ϕ.
Refiner is primarily a testbed to investigate the possibilities for verifying

model transformations that exist, like models, as primary artifacts. This support
should be non-intrusive, i.e. verification should be done in the background, hid-
den from the designer, in order to not burden him or her with the verification
task.

Through experimentation, several limitations of the method from [29] have
been identified. One is that the approach does not yet support compositional
development of systems. Existing components can be transformed, but new
1 Available for download at http://www.win.tue.nl/∼awijs/refiner.

http://www.win.tue.nl/~awijs/refiner

350 A. Wijs

components cannot be introduced. Another is that a designer can sometimes
be confronted by the limitations of the technique; in order for a rule system
to be verifiable, it must be complete w.r.t. the behaviour it transforms. If two
components can communicate, and one party is modified, then also the other
party must be modified. This is not always desired, and requiring this makes the
verification intrusive, and threatens scalability, because it may demand a large
chain of additional modifications. Finally, we observe that in some cases, rule
systems are constructed with particular models in mind. In such cases, checking
property preserving for all imaginable models may be too restrictive.

Contribution. We build on the results of [29] to address the issues mentioned here.
We enrich our transformation formalism with the ability to add new processes,
and improve property preservation checking of rule systems. The latter is done
by introducing a new construct for transformations, and by defining so-called
non-interface hiding, which allows analysing the semantics of a subsystem w.r.t.
the remainder of the system it is part of. Finally, Refiner exploits multi-core
architectures through parallel property preservation checking, and we explain
how this is achieved.

Roadmap. Section 2 discusses related work, and Sect. 3 introduces the notions
used in this paper. In Sect. 4, property preservation checking from [29] is
explained, and this is extended in various ways in Sect. 5. Our implementa-
tion and experimental results are shown in Sect. 6, and finally, Sect. 7 contains
our conclusions and pointers to future work.

2 Related Work

Property preservation checking of changes applied on a model is most closely
related to incremental model checking [23,24]. In that work, information about
the verification computation is updated to reflect changes applied to the model.
Most approaches are limited to checking safety properties, and all of them require
at least as much computer memory as straight-forward model checking. Our
technique, though, is also suitable for liveness properties and requires far less
memory, since no information about the state space is maintained.

In refinement checking [1,18], supported by tools such as Rodin [2], FDR2 2

and Csp-Casl-Prover [16], it is usually checked that one model refines another.
This is very similar to our approach, but refinements are defined in terms of what
the new model will be, as opposed to how the new model can be obtained from
the old one, i.e. model transformations are not represented as artifacts indepen-
dent of the models they can be applied on. This makes it not directly suitable
to investigate the feasibility to verify definitions of model transformations, as
opposed to the models they produce.

The Bart tool3 allows automatically refining B components to B0 imple-
mentations. Similar to our setting, it treats refinement rules as user-definable
2 http://www.fsel.com/documentation/fdr2/html/index.html
3 http://www.tools.clearsy.com/tools/bart

http://www.fsel.com/documentation/fdr2/html/index.html
http://www.tools.clearsy.com/tools/bart

Define, Verify, Refine: Correct Composition and Transformation 351

artifacts and performs pattern matching to do the refining. Constraints are
checked to ensure that the resulting system will be correct. Approaches described
in, e.g., [4,9,10,15] prove that a transformation preserves the semantics of any
input model, by showing that the transformed model will be bisimilar to the orig-
inal. Contrary to our work, in all these approaches, no form of automatic hiding
of behaviour irrelevant for a desired system property is used, therefore they can-
not handle cases where transformations alter the semantics in a way that does
not invalidate that property. Others, such as [22,25], perform individual checks
for each concrete model.

Finally, incremental system composition, as used by the tools Exp.Open [20]
and Bip [3], focusses on incrementally combining processes into a full system,
and the latter also provides a fixed number of correct-by-construction model
transformations. With Refiner, one can define incremental process adding in
terms of transformations, and it can verify transformations provided by the user.
It will be interesting to see in how far results on compositional model checking
can be reused, to further improve verification of such transformations.

3 Background

In this paper, the semantics of concurrent systems are defined in a composi-
tional, action-based way. This means that the semantics of individual, finite-
state processes are captured using Labelled Transition Systems (LTSs), and that
these can be combined using synchronous composition, to obtain the semantics
of a concurrent system as a whole. LTSs are action-based descriptions, indicating
how a process can change state by performing particular actions.

An LTS G is a tuple →SG ,AG , TG , IG∼, where SG is a (finite) set of states,
AG is a set of actions (including the invisible action η), TG ⊆ SG × AG × SG is
a transition relation, and IG ⊆ SG is a set of initial states. Actions in AG are
denoted by a, b, c, etc. We use s1

a−→G s2 to denote →s1, a, s2∼ ← TG . If s1
a−→G s2,

this means that in G, an action a can be performed in state s1, leading to state s2.
Note that a state s can be interpreted as an LTS →{s}, ∩, ∩, {s}∼, and a

transition s1
a−→ s2 as an LTS →{s1, s2}, {a}, s1

a−→ s2, {s1}∼. We use under-
lining of states to indicate which states are initial, so, e.g., s1

a−→ s2 repre-
sents →{s1, s2}, {a}, s1

a−→ s2, {s1, s2}∼.
Network of LTSs. We represent models consisting of a finite number of finite-

state concurrent processes by a number of LTSs and a set of synchronisation
laws, or laws for short, defining how these LTSs interact. Together, these form a
network of LTSs [20].4 The process LTSs and laws imply a system LTS, repre-
senting the state space, which can be obtained by combining the LTSs using the
laws. Given an integer n > 0, 1..n is the set of integers ranging from 1 to n. A
vector v of size n contains n elements indexed by 1..n. For i ← 1..n, v[i] denotes
element i in v.
4 In [20], synchronisation laws are referred to as rules, but here, one may confuse these

with transformation rules, that are introduced later in this section.

352 A. Wijs

Definition 1 (Network of LTSs). A network of LTSs M of size n is a
pair →α,V∼, where

– α is a vector of n (process) LTSs. For each i ← 1..n, we write α[i] =
→Si,Ai, Ti, Ii∼, and s1

b−→i s2 is shorthand for s1
b−→Π[i] s2;

– V is a finite set of synchronisation laws. A synchronisation law is a tuple →t̄, a∼,
where a is an action label, and t is a vector of size n called a synchronisation
vector, in which for all i ← 1..n, t[i] ← Ai ∅ {•}, where • is a special symbol
denoting that α[i] performs no action.

At times, we use a set-notation for synchronisation vectors when the involved
actions may appear in any order; e.g., for n = 2, {a} denotes the set of vectors
{→a, •∼, →•, a∼}. Furthermore, for →t̄, a∼, Ac(t) = {i | i ← 1..n ⇐ t[i]
= •} refers to
the set of processes active for →t̄, a∼, and A(t) = {t[i] | i ← 1..n} \ {•} refers to
the set of actions participating in →t̄, a∼.

The synchronous composition of the LTSs in M, i.e. the system LTS LTS(M),
is the explicit description of the state space of the model. This LTS can be
obtained by combining the behaviour of the α[i] according to the laws in V:

– I = {→s1, . . . , sn∼ | ∧i ← 1..n.si ← Ii}, i.e. vectors of process initial states;
– A = {a | →t, a∼ ← V}, i.e. all actions that can result from synchronisation;
– S = S1 × . . . × Sn, i.e. all possible combinations of process states;
– T is the smallest transition relation satisfying:

→t, a∼ ← V ⇐ (∧i ← 1..n)

(
(t[i] = • ⇐ s∈[i] = s[i])

∨ (t[i]
= • ⇐ s[i]
t[i]−−→i s∈[i])

)

=⇒ s
a−→ s∈.

Example 1. Consider the two LTSs on the left in Fig. 2, in which the initial
states are indicated by incoming arrowheads. We combine these in a network
M = →α,V∼, with α containing those LTSs in order of appearance, and V =
{(→a, a∼, a∈), (→b, b∼, b∈), (→c, •∼, c)}. The synchronous composition LTS(M) is dis-
played on the right in Fig. 2, where for each state, the ID pair in it indicates
which combination of process LTS states it corresponds with. If both process
LTS states have an outgoing a-transition, then so will the corresponding state in
the synchronous composition. This also holds for b-transitions, but since b has
data parameters, this only works if both occurrences have the same parameters
d1, d2, which is the case here. This demonstrates how data can be used in tran-
sition labels, and how synchronisation works with it. Finally, the c-action can
be fired independently, meaning that the first process LTS can move from state
2 to 3 without synchronisation.

Divergence-Sensitive Branching Bisimilarity. As equivalence relation between
LTSs, we consider divergence-sensitive branching bisimilarity (DSBB) [11,12],
which is sensitive to hidden behaviour and the branching structure of an LTS,
including η -cycles. Hence, it supports not only safety, but also liveness prop-
erty preservation. For liveness properties, the notion of diverging behaviour is

Define, Verify, Refine: Correct Composition and Transformation 353

0 1

23

a

b(d1, d2)

c

a

0 1

2

a

b(d1, d2)a

0,0 1,1
a

2,2

b (d1, d2)

3,2
c

a

Fig. 2. Two LTSs and their synchronous composition (Example 1)

important. A state s is diverging iff an infinite sequence of internal actions can
be performed, i.e. there exists an infinite η -path from s, which for finite LTSs
means that a η -cycle is reachable via η -transitions. We denote by →+ the tran-
sitive closure of τ−→.

Definition 2 (Divergence-Sensitive Branching Bisimulation). A binary
relation B between two sets of states SG1 , SG2 of LTSs G1, G2 is a divergence-
sensitive branching bisimulation if B is symmetric and s B t with s ← SG1 ,
t ← SG2 implies that

– if s
a−→G1 s∈ then

• either a = η with s∈ B t;
• or t =⇒ G2 t̂

a−→G2 t∈ with s B t̂ and s∈ B t∈.
– if there is an infinite sequence of states s0, s1, s2, . . . ← SG1 such that s0 = s,

s0
τ−→G1 s1

τ−→G1 s2
τ−→G1 . . . and si B t for all i ∃ 0, then there exists a

t∈ ← SG2 such that t →+ t∈ and sk B t∈ for some k ∃ 0.

Two states s and t are divergence-sensitive branching bisimilar, noted s ⊕Δ
b t,

if there is a divergence-sensitive branching bisimulation B with s B t.

Two sets of states S, S∈ are DSBB, i.e. S ⊕Δ
b S∈, iff ∧s ← S.∈s∈ ← S∈.s ⊕Δ

b s∈

and vice versa. Two LTSs G1,G2 are DSBB, i.e. G1 ⊕Δ
b G2, iff IG1

⊕Δ
b IG2 .

In [21], DSBB is related to a fragment of the modal μ-calculus, called Ldsbr
μ :

if a model M1 satisfies an Ldsbr
μ -property ϕ, denoted by M1 |= ϕ, then a second

model M2 satisfies ϕ iff M1 ⊕Δ
b M2. A similar result relates branching bisimi-

larity (BB) [12], i.e. DSBB without the divergence condition in Definition 2, and
Ldsbr

μ safety properties, in which diverging behaviour is not relevant. In Sect. 4,
we use this as follows: if we can determine that a transformation does not alter
the system LTS structure, then we can conclude that ϕ will be preserved.

In [21,29], we actually also involve a hiding mechanism called maximal hiding,
allowing to move LTSs to the highest possible level of abstraction w.r.t. a Ldsbr

μ -
property ϕ. It involves rewriting transition labels not relevant for ϕ to η , which
roughly corresponds with hiding all labels not mentioned in ϕ. Incorporating
this in property preservation checking makes the technique much more powerful,
since it allows altering the semantics of a model through transformation, in ways
not relevant for a given property. Given a network M1, let Hϕ(LTS(M1)) be
the maximally hidden synchronous composition of M1 w.r.t. property ϕ. Then,
first of all, LTS(M1) |= ϕ iff Hϕ(LTS(M1)) |= ϕ, by maximal hiding [21].
Furthermore, by the relation between DSBB and Ldsbr

μ , if we can establish that

354 A. Wijs

Hϕ(LTS(M1)) ⊕Δ
b Hϕ(LTS(M2)), then we can conclude that Hϕ(LTS(M2)) |=

ϕ, and hence, that LTS(M2) |= ϕ. In other words, it suffices to establish that
the maximally hidden synchronous compositions are DSBB. For clarity, we only
refer to hiding informally in some of the examples. It suffices to keep in mind
that all labels not mentioned in the given property are hidden. For the specifics
about Ldsbr

μ , the reader is referred to [21].

Transformation. In our setting, changes applied on a concurrent system model
are represented by LTS transformation rules applied on the semantics of the
processes of that model, i.e. on its network of LTSs. To reason about these
changes, we define the notions of a rule, and matches of rules on process LTSs.

Definition 3 (Transformation Rule). A transformation rule r = →Lr,Rr∼
consists of a left pattern LTS Lr = →SLr ,ALr , TLr , ILr ∼ and a right pattern
LTS Rr = →SRr ,ARr , TRr , IRr ∼, with ILr = IRr = (SLr ∩ SRr).

The states ILr (and IRr) are called the glue-states, and they are all initial.
They form the interface between behaviour subjected to transformation and the
other behaviour. Process LTS states matched by glue-states will not be removed,
but their incoming and outgoing transitions may be affected.

Definition 4 (Rule Match). A transformation rule r = →Lr,Rr∼ has a match
mr : SLr ↪→ SG on an LTS G = →SG ,AG , TG , IG∼ iff mr is injective and

1. ∧s1
a−→Lr s2.mr(s1)

a−→G mr(s2);
2. ∧s ← SLr \ ILr , p ← SG :

– mr(s)
a−→G p =⇒ ∈s∈ ← SLr .s

a−→ s∈ ⇐ mr(s∈) = p;
– p

a−→G mr(s) =⇒ ∈s∈ ← SLr .s∈ a−→ s ⇐ mr(s∈) = p;
– mr(s) = p =⇒ p
← IG;

Note the conditions in the second clause of Definition 4. The first two are
the gluing conditions of the double-pushout (DPO) method [14] for graph trans-
formation, preventing conflicts when matching. They prevent so-called dangling
transitions, which are transitions where only the source or target state will be
removed, but not both. The final condition states that no initial state of G may
be removed through transformation, ruling out the possibility of obtaining an
LTS without an initial state.

When a left pattern is matched on part of a process LTS, transformation is
performed by means of DPO. The result is that each state matched by a glue-
state still exists after transformation, each state matched by a non-glue-state is
removed, and each non-glue-state in a right pattern has resulted in appropriate
representatives for each match of the left pattern.

In Sect. 5, we will introduce a form of Negative Application Conditions (Nacs)
[13]. The Nacs of a rule express additional patterns that should not be match-
able; a match can only be valid if the Nac patterns cannot be matched.

To facilitate explanation, we introduce a simplification without loss of gen-
erality. We assume that the Ai of the α[i] in M are disjoint. Any network for

Define, Verify, Refine: Correct Composition and Transformation 355

which this is not the case, e.g. the one given in Fig. 3, can be rewritten to one for
which this holds. The simplification implies that for a rule system σ, each rule
r ← R can only be applied on at most one process LTS. We use the convention
that rule ri can only be applied on process LTS α[i].

Sets of rules together make up a rule system σ = →R, V̂∼, with R a set of rules
and V̂ a set of new synchronisation laws to be introduced when transforming.
Transformation of a network of LTSs M according to a rule system σ involves
identifying all possible matches for each r ← R on M, and applying transforma-
tion on those matches. We say that IΣ = {i | ri ← R}. It represents the so-called
subsystem under transformation; all α[i] with i ← IΣ are transformed by σ.

V = ({a,b,c},com), . . .

init1

a(1)

init2

b(1)

init3

c(1)

init4

a(2)

init5

b(2)

init6

c(2)

V̂ = ({tryx,tryx},tryx), ({backx,backx},backx), (x ← {1, 2})
({move1,move1},com), ({move2,move2},move2), . . .

0

1
a#1

0

2

1

try1#1

move1#1

back1#1

0

1
b#1

0

2

3

4

1

try1#1

try2#1

move2#1

move1#1

back1#1

back2#1

0

1
c#1

0

2

1

try2#1

move2#1

back2#1

V ∅ V̂

init1

try1(1)

move1(1)

back1(1)

init2

try1(1)

try2(1)

move2(1)

move1(1)

back1(1)

back2(1)

init3

try2(1)

move2(1)

back2(1)
· · ·

Fig. 3. Transforming multi- to two-party communica-
tion in a distributed system

Figure 3 shows an exam-
ple of applying a rule sys-
tem on a network of LTSs
belonging to a distributed
system design consisting of
six processes. The behav-
iour of these processes rel-
evant for our example is
displayed at the top of the
figure. After an initialisa-
tion step, each process can
perform internal computa-
tions, represented by the
unlabelled dashed transi-
tions. At regular intervals,
each process must synchro-
nise with two others before
commencing its computa-
tion. This is defined in the
network by a law in V:
({a,b,c},com). Actions a,
b and c must have the same
data parameter values for
successful synchronisation,
so only the first and the last
three processes can poten-
tially synchronise.

In the middle of Fig. 3,
the definition of a rule sys-

tem with three rules is displayed, and the glue-states are coloured black. Each
rule is a pair of LTSs: the top one is the left pattern, and the bottom one is the
right pattern.

The rule system of Fig. 3 defines how to break down the three-party synchro-
nisation into a series of two-party synchronisations. To make rules more general,
we use place-holders #1,#2, A place-holder in a left pattern represents that

356 A. Wijs

the parameters of a transition label can have any value, and the presence of the
same place-holder in the corresponding right pattern indicates which transition
labels should incorporate those values after transformation. In Fig. 3, the use
of placeholders allows the rule system to be applicable on both the first three
process LTSs and the last three. Additional laws in V̂ define the new synchro-
nisation possibilities. This rule system is very practical if the system should
eventually be able to run on hardware that does not support multi-party com-
munication. Finally, part of the transformed network is displayed at the bottom
of Fig. 3.

In the context of model transformations, it is crucial that a rule system is
terminating and confluent, i.e. that the transformation is guaranteed to finish,
and that it always leads to the same solution, independent of the order in which
matches are processed. This is important, since a user defining how a particular
model should be transformed typically has a specific resulting model in mind.
Therefore, if a rule system is not confluent, it usually means that the user made
some mistake. There are techniques to detect confluence, e.g. [19], which we have
implemented. Here, we assume that a given rule system is confluent. Termination
is achieved by the way in which we define transformation: first, all matches for all
rules in the rule system are determined, and then, the rules are applied without
looking for new matches. The process LTSs are finite, hence there will always be
a finite number of matches.

4 Property Preservation Checking

The main contribution of our approach is the ability to efficiently check whether a
rule system preserves desired functional properties, without analysing the poten-
tial behaviour of the input model. The verification techniques exploit the rela-
tions between DSBB and Ldsbr

μ properties, and BB and Ldsbr
μ safety properties

on the one hand, and DSBB, BB, and maximal hiding on the other (see Sect. 3).
Our techniques determine whether a rule system is guaranteed to preserve the
structure of the synchronous composition of networks w.r.t. a property ϕ. This
involves taking into account how the rule system can possibly be applied on
networks, and checking for bisimilarities between combinations of dependent
rule patterns, in which the possible synchronisation, and failure to synchronise,
between rule patterns before and after transformation is analysed. The potential
for synchronisation is derived from the laws and the ri ← R, leading to sets of
dependent rules, here referred to as checks. In general, a rule system can imply
multiple checks. We say that Υ is the set containing all those checks. In order to
compute Υ , we need a notion of direct dependency between rules. Behaviour in
the rule patterns of ri can directly depend on the behaviour of other rules. This
is captured by the set β(ri). It is defined as:

β(ri) =
⋃

∗t̄,a↑↓V∅V̂
{rj ← R | (t[i] ← ALri ⇐t[j] ← ALrj)∨(t[i] ← ARri ⇐t[j] ← ARrj)}

Dependency is determined by the actions of the rule patterns, and the old
and new laws. The transitive closure β+(ri) contains all the rules on which ri

Define, Verify, Refine: Correct Composition and Transformation 357

depends, directly and indirectly. Essentially, a check consists of a set of dependent
rules. Finally, we compute Υ as the set containing the β+(ri) of all rules ri ← σ.

Example 2. In Fig. 3, let α[1], . . . , α[3] be the first three process LTSs at the
top in order of appearance, and r1, . . . , r3 be the rules in the middle in order of
appearance. First of all, note that rule ri is applicable on α[i], for i ← {1, 2, 3}.
The relevant dependencies are β+(r1) = β+(r2) = β+(r3) = {r1, r2, r3}. The
same can be done concerning the other three process LTSs, by which we obtain
the same set.

Before we formalise property preservation, we need to discuss one more issue.
In order to correctly determine that a rule system preserves a given property,
based on bisimilarities between vectors of left and right rule patterns, the rule
patterns should be extended for analysis to make explicit which states are glue.

For example, consider a rule r that swaps two action labels a and b between
two transitions, with Lr = s0

a−→ s1, s0
b−→ s2, and Rr = s0

b−→ s1, s0
a−→ s2.

The two LTSs are DSBB, but only because s1 of Lr (and of Rr) can be related
to s2 of Rr (and of Lr). However, both these states are glue, and hence can
match on states of process LTSs that have in- and/or outgoing transitions that
are not present in the patterns, and therefore may not be DSBB. This means
that we are actually not interested in any DSBB, but a DSBB in which all
glue-states in the left pattern are related to themselves in the right pattern. To
express this, we add a self-loop with a unique action label to each glue-state
in both patterns. Formally, for each glue-state s, we add a transition s

κs−→ s,
with κs the unique label. Since with this extension, each glue-state has at least
one outgoing transition that no other state has, it has to be relatable to itself
when trying to construct a DSBB. For the aforementioned example, the extended
patterns, called Lr

κ and Rr
κ, are not DSBB.

Adding κ-loops solves the problem of relating glue-states, but in practice, it
turns out that it can be too restrictive. We return to this in Sect. 5, and introduce
an improved way to extend patterns.

Each set D ← Υ defines two κ-extended vectors of LTSs LD

κ , RD

κ , where
for G ← {L,R} and all i ← 1..n, we have GD

κ [i] = Gri
κ if ri ← D. In case ri
←

D, we use a place-holder state in GD

κ at position i to indicate inactivity of ri.
The pairs →LD

κ ,RD

κ ∼ are used to check for property preservation. Together with
the appropriate laws,5 these vectors are interpreted as networks of LTSs, which
therefore are implicit descriptions of system LTSs in which the synchronisation
of process behaviour under transformation is described.

Finally, the property preservation check can be defined as follows.

Definition 5 (Property Preservation). Given a network of LTSs M, an
Ldsbr

μ -property ϕ, and a rule system σ, let σ imply a set of rule sets Υ w.r.t. V
5 Technically, the κ-actions require laws to produce κ-transitions in the synchronous

composition of a network. For clarity, we do not include them in the formalisation.

358 A. Wijs

and V̂. We say that σ is ϕ-preserving if for all D ← Υ , D∈ ⊆ D, we have

Hϕ(LTS(→LD′

κ ,V∼)) ⊕Δ
b Hϕ(LTS(→RD′

κ ,V ∅ V̂∼))
In [6], a correctness proof is provided, i.e. that indeed, σ is ϕ-preserving if

the DSBB conditions hold.
Note that according to Definition 5, DSBB checks are required for all subsets

D∈ of all D ← Υ . Strict subsets of D represent situations where some processes are
able to synchronise, but others are not. All these situations need to be checked,
since they may occur in the system LTS of an input network.

Example 3. Say we want to check the preservation of deadlock freedom for the
modification step defined in Fig. 3. In [21], it is explained that this allows to
abstract from all transition labels, i.e. all can be rewritten to η . Therefore, we can
restrict checks to the (internal actions) branching structure of the rule patterns.

From Example 2, we know that the only relevant dependency is {r1, r2, r3}.
It implies two κ-extended vectors, containing the corresponding behaviour in the
left and right rule patterns, respectively. Placing the vectors in two networks,
combined with V and V ∅ V̂, we can compute two system LTSs. For the first
(left patterns) network, we get the system LTS L1 = s0

com#1−−−−−→ s1 (ignoring the

κ-loops), and for the second, we get LTS L2 = t0
try1#1−−−−−→ t1

try2#1−−−−−→ t2
move2#1−−−−−−→

t3
com#1−−−−−→ t4, t1

back1#1−−−−−−→ t0, and t2
back2#1−−−−−−→ t1 (again, ignoring the κ-loops).

After hiding all transition labels, we find that L1
⊕Δ
b L2, since L2 contains

η -cycles and L1 does not, but they are BB, hence deadlock freedom is preserved.

Definition 5 can be used to efficiently check for the property preservation
by a rule system, thereby avoiding verification from scratch of the transformed
model. However, a number of conditions regarding the applicability of a rule
system were identified in [29].

1. Universal applicability: A rule system must be universally applicable w.r.t.
actions subjected to synchronisation of at least two parties; if such an action
a appears in the left pattern of some rule ri, then all occurrences of a in α[i]
must be matched on by that rule, i.e. all occurrences will be transformed.
Without universal applicability, it is very hard to reason about the ability
for the new network to synchronise, since the original and the transformed
synchronising behaviour may coexist.

2. Completeness: A rule system must be complete, i.e. if one synchronising action
is transformed, then all actions that it depends on must be transformed.

3. Synchronisation: Laws introduced through transformation can only involve
new actions that were not present in the input model:

∧→t̄, a∼ ← V̂, i ← 1..n.t[i]
←
⋃

i↓1..n

Ai

The reason for this is that otherwise, new laws can alter the semantics of a
model in a way not expressed by the rules.

Define, Verify, Refine: Correct Composition and Transformation 359

One contribution of this paper is a proposal how to remove the completeness
condition entirely and relax the synchronisation condition. In addition, we intro-
duce a mechanism to compositionally extend a network through transformation,
a new hiding technique called non-interface hiding, allowing to focus the analy-
sis on interfaces between subsystems, and the notion of an exclusive glue-state,
which allows more expressiveness for defining rules.

5 Compositional Reasoning and Exclusivity NACs

Compositional Development. One major limitation of the setup in Sects. 3 and
4 is that it does not support adding new processes. This can be solved by inter-
preting network vectors as infinite vectors. Each vector can be considered to be
infinite, with a finite number of process LTSs and an infinite number of ‘place-
holder’ single states. For this, we define that for all i > n, α[i] = si. Likewise,
we interpret synchronisation vectors as being extended with an infinite number
of •-elements. Note that interpreting a network vector as being infinite does not
affect its system LTS, as the additional processes never change state.

The extension allows the introduction of new process LTSs; a rule ri =
→s,Rri∼, with i > n, effectively introduces a new process LTS isomorphic to
Rri at position i in the network vector, since the single-state left pattern is
applicable on the place-holder state at position i in the infinite vector. Note that
a rule →Lri , s∼ can be used to effectively remove a process LTS isomorphic to Lri .

Removing the Completeness Condition. Another major limitation is the com-
pleteness condition of Sect. 4. Consider, for example, an input network with law
(→a, b∼, c), and we wish to transform transitions labelled b to transitions labelled
b∈. By the completeness condition, we would be forced to define a rule for a-
transitions, even if we wish to keep these unchanged. This is not desired, since
the verification technique is dictating how we should define a rule system.

Instead, we would like to be able to reason about behaviour subjected to
transformation completely independent of behaviour that is not transformed. In
the example, we would like to analyse a rule system applicable on b-transitions,
without having to address the a-transitions. For this, we need to be able to
focus our analysis entirely on the subsystem under transformation, and explicitly
involve the potential for synchronisation with processes outside the subsystem,
but not involve those processes themselves. Since synchronisation potential is
represented by the synchronisation laws, this can be achieved by adding altered
versions of laws that define synchronisation between the subsystem and the
remainder of the system. The altered versions no longer require the remainder
to be involved, thereby we detach the subsystem from the remainder of the
system.

Definition 6 (Detaching Laws). Given a network of LTSs M = →α,V∼ and
a rule system σ = →R, V̂∼. We define the set of detaching laws Vdet as follows:

Vdet = {→t∈, ă∼ | →t̄, a∼ ← V ⇐ (Ac(t) ∩ IΣ)
= ∩ ⇐ (Ac(t) \ IΣ)
= ∩},

with t
∈[i] = t[i] for all i ← IΣ, and t

∈[i] = •, otherwise, and ă the action a
annotated with the fact that it is the result of a detaching law.

360 A. Wijs

For each law →t̄, a∼ where some of the participating process LTSs α[i] will
be transformed, i.e. i ← Ac(t) ∩ IΣ , and some will not be, i.e. i ← Ac(t) \ IΣ ,
Vdet contains a new law based on →t̄, a∼, where behaviour of the latter process
LTSs is ignored, and the behaviour of the former is kept. The set V̂det for the
transformed network is defined in a similar way.

It is important to note that the actions resulting from laws in Vdet (and V̂det)
should be excluded from maximal hiding. For this reason, those actions (the
ă’s) have been annotated in Definition 6. When analysing the behaviour in the
transformation rules, the potential for synchronisation between the subsystem
under transformation, and thereby indirectly under analysis, and the remainder
of the system, should be taken into account. We refer to this potential as the
interface of the subsystem. The structure of the interface can be observed by
hiding all actions except those that are the result of applying a detaching law.
We refer to this as non-interface hiding, in which we move an LTS to a level of
abstraction where we completely focus on the synchronisation with other LTSs.

Definition 7 (Non-Interface Hiding). Given an LTS G, the non-interface
hidden LTS Hdet(G) is defined as follows:

– SHdet (G) = SG;
– AHdet (G) = {ă | →s, ă, s∈∼ ← TG} ∅ {η};
– THdet (G) = {→s, ă, s∈∼ | →s, ă, s∈∼ ← TG} ∅ {→s, η, s∈∼ | →s, a, s∈∼ ← TG};
– IHdet (G) = IG.

Maximal hiding based on a property ϕ and non-interface hiding based on
detaching laws can be combined into a general hiding technique that hides all
actions except those that are relevant for the interface and/or the property. We
denote this hiding by Hdet

ϕ . Now, we redefine property preservation, taking the
new notions into account.

Definition 8 (Improved Property Preservation). Given a network of LTSs
M, an Ldsbr

μ -property ϕ, and a rule system σ, let σ imply a set of rule sets Υ

w.r.t. V and V̂. We say that σ is ϕ-preserving if for all D ← Υ , D∈ ⊆ D, we
have

Hdet
ϕ (LTS(→LD′

κ ,V ∅ Vdet∼)) ⊕Δ
b Hdet

ϕ (LTS(→RD′

κ ,V ∅ V̂ ∅ Vdet ∅ V̂det∼))

Compared to Definition 5, the rule networks incorporate Vdet and V̂det , which
allows for subsystems under transformation to be analysed in isolation.

For this new definition, the completeness condition can be dropped. However,
for that to be useful, we need to relax the synchronisation condition. Otherwise,
we would not be able to express new laws involving non-transformed behaviour.

The new condition is as follows: for all →t̄, a∼ ← V̂, there must exist a →t∈, a∈∼ ←
V such that for all i ← 1..n \ IΣ , t[i] = t

∈[i], and for all i ← IΣ , both t
∈[i] ←

ALri ∅ {•} and t[i] ← ARri ∅ {•}. This expresses formally that the remainder
of the system involved in the synchronisation was also allowed to synchronise in
that setup in the original network, while the subsystem is allowed to be altered.

Define, Verify, Refine: Correct Composition and Transformation 361

0

1

send

0

1

2

τ

send

0

1

mŏc

κ0

κ1

↔Δ
b

0

1

2

τ

mŏc

κ0

κ1

⊥

0

1

mŏc

κ0

κ1
κ1

↔Δ
b ⊥

0

1

2

τ

mŏc

κ0

κ1
κ1

Fig. 4. κ-extension without and with exclusive glue-states

Example 4. Say we have a single rule r2 with Lr2 = s0
b−→ s1, Rr2 = s0

b′
−→ s1

in a rule system with V̂ = {(→a, b∈∼, c)}, that we wish to apply on a network
M with V = {(→a, b∼, c)}. By our convention, r2 matches on α[2]. Further-
more, by Definition 6, we have Vdet = {(→•, b∼, c̆)} and V̂det = {(→•, b∈∼, c̆)}. Since
there is only one rule, we can only construct check {r2}. From this, by Defi-
nition 8, we obtain two networks (→s,Lr2

κ ∼, {(→a, b∼, c), (→•, b), c̆∼}) and (→s,Rr2
κ ∼,

{(→a, b∼, c), (→•, b∼, c̆), (→•, b∈∼, c̆)}), with s a placeholder state. For both networks,
the synchronous composition after Hdet

ϕ -hiding is the LTS s0
c̆−→ s1 with κ-loops

for s0 and s1. The fact that the networks are DSBB indicates that both net-
works have the same potential for synchronisation with other system parts. This
ensures that for a given Ldsbr

μ -property ϕ satisfied by M, the transformed M
satisfies ϕ as well.

Exclusivity Nacs. Consider an LTS L = s0
compute−−−−−→ s1

send−−−→ s0, in which
some computation is performed and the result is sent to another process using a
law ({send, rec}, com). Furthermore, consider that we wish to transform the send -
transition through a rule system σ containing a single rule with Lr = 0 send−−−→ 1
and Rr = 0 τ−→ 2 send−−−→ 1. This rule is displayed on the left in Fig. 4. When
analysing the rule patterns in isolation, which can be achieved by determining
the sets of detaching laws, σ turns out not to be property preserving for any
ϕ, since added κ-loops prevent that, which is shown in the middle of Fig. 4. In
particular, state 2 in the right LTS is not DSBB to state 0 on the left, due to
the absence of an outgoing κ0-transition. However, for our LTS L, the κ-loops
do not truly represent the situation, since from state s1, one can only perform a
send action, but in the comparison, state 0, directly resulting from the glue-state
matched on s1, has other options, represented by the κ0-transition.

To remove this limitation, we extend the notion of a rule further with exclu-
sive out and exclusive in/out glue-states. Exclusive out glue-states are glue-states
with the condition that they can only be matched on process LTS states for which
all outgoing transitions are matched by the rule left pattern, i.e. they have no
outgoing transition with a target state that is not matched. With exclusive out
glue-states, a user can express that from particular states, one can only engage
in matched behaviour, and not leave the pattern. In addition to this, exclusive
in/out glue-states also have a similar condition for incoming transitions.

We extend the definition of a rule r with a set of exclusive out glue-states Er
out ,

and a set of exclusive in/out glue-states Er
in/out , with Er

in/out ⊆ Er
out ⊆ ILr (and

therefore, they are also subsets of IRr). We define Er = Er
out ∅ Er

in/out .

362 A. Wijs

These glue-states can be formalised usingNacs. For a given rule r = →Lr,Rr, Er
out ,

Er
in/out∼, we add for each glue-state s ← Er a Nac s
 →−→ s∈ to a set of Nacs N r, with

s∈ a new state and ∪ a label place-holder indicating ‘any label’, and for each glue-
state s ← Er

in/out , we add a Nac s∈
 →−→ s, again with s∈ a new state and ∪ a label
place-holder.

The patterns can be extended, taking exclusive glue-states into account.

Definition 9. Given rule r = →Lr,Rr, Er
out , Er

in/out∼, the κ-extended rκ = →Lr
κ,

Rr
κ, Er

out,κ, Er
in/out,κ∼ is (re-)defined as follows:

– For G = {L,R}, Gr
κ = →SGr

κ
,AGr

κ
, TGr

κ
, IGr

κ
∼, where:

• SGr
κ

= SGr ∅ {≤}
• AGr

κ
= AGr ∅ {κs | s ← IGr \ Er

in/out} ∅ {κ∈
s | s ← IGr \ Er}

• TGr
κ

= TGr ∅ {→≤, κs, s∼ | s ← IGr \ Er
in/out} ∅ {→s, κ∈

s,≤∼ | s ← IGr \ Er}
• IGr

κ
= Er

in/out ∅ {≤}
– Er

out,κ = Er
out

– Er
in/out,κ = Er

in/out

with ≤ a new initial state.

The new situation for our example is displayed on the right in Fig. 4, given
that state 0 in the rule is an exclusive out glue-state (indicated by the fact that
it is square in the rule on the left). The new state ≤ represents all the states in
an LTS outside of a pattern match, and is used to formalise how a match of a
pattern can relate to those states.

From ≤, the pattern can be entered via glue-states, and exited via non-
exclusive glue-states. From state 0, one no longer has an alternative to performing
the cŏm (or η)-transition, leading to the two LTSs being DSBB. In the next
section, an example of using exclusive in/out glue-states is presented.

Correctness. The extensions presented in this section do not break the correct-
ness of property preservation checking. First of all, exclusive glue-states can be
handled in the proof by using the fact that such states do not have unmatched
outgoing transitions (and incoming transitions, in the case of exclusive in/out
glue-states). Second of all, the extensions concerning the detaching laws and the
new synchronisation condition requires a more involved change to the proof.

Essentially, the extensions allow to determine that the LTS described by a
subsystem under transformation in isolation is DSBB to the LTS described by
the transformed subsystem. Since synchronisation with the remainder of the
system can only be done via detaching laws, we know that both the original and
the transformed subsystem will interact in the system in bisimilar ways, hence
the overall system LTS maintains its structure.

An Example: Developing a Distributed System Finally, we demonstrate the
use of the improvements presented in this section as part of our system devel-
opment technique. We do this by means of an example of a producer-consumer
system.

Define, Verify, Refine: Correct Composition and Transformation 363

Produce Consume Produce Consume

Ch1

Ch2

{({s1, r1}, c1), ({r2, s2}, c2)}

c0

c1c2

produce

s1

r2
s0

s1s2

r1

s2

consume

{({s1,1, r1,1}, c1,1), ({s1,2, r1,2}, c1,2), ({s2,1, r2,1}, c2,1),

({s2,2, r2,2}, c2,2)}

0

{3} 0

1

r1,1s1,2 0

{4} 0

1

r2,1s2,2

0 1 2
s1 r2

0 1 2
s1,1 r2,2

0 1 2
r1 s2

0 1 2
r1,2 s2,1

Fig. 5. Introducing channel components in a distributed system

Produce Consume

Ch1,1 Ch1,2

L1

K1

Ch2,1 Ch2,2
L2

K2

{({s1,1,1, r1,1,1}, c1,1,1), . . .

0
{5}

3

4

1

5

6

20
r1,1,1(T)

τ

τ r1,1,1(F)

τ

τ

s1,1,2(T)

s1,1,2(e)

s1,1,2(F)

s1,1,2(e)

0

1

r1,1
s1,2

0 1 2

345

r1,1 s1,1,1(T)

r1,1,4(F/e)
r1,1,4(T)

r1,1s1,1,1(F)

r1,1,4(T/e)
r1,1,4(F)

0
{6}

3 0

1 2

4

56

7

r1,1,2(F/e)

s1,1,3(F) r1,1,2(T) s1,2

s1,1,3(T)

r1,1,2(T/e)

s1,1,3(T)r1,1,2(F)s1,2

s1,1,3(F)

Fig. 6. Introducing ABP

In the left upper corner of Fig. 5,
a schematic overview is given of a
system in which the first compo-
nent produces and sends a message,
and the second one consumes that
and sends a report back. We capture
the semantics as displayed below the
overview; two LTSs describe the com-
ponents, in which the initial states
are indicated by an incoming arrow-
head, and two laws establish their
synchronisation (the laws for produce
and consume are not displayed).

In order to capture the use of
channels more explicitly, we intro-
duce two new components Ch1, Ch2
through a rule system σ1. The new
system is presented schematically to
the right of the initial model, and rule
system σ1 is displayed below that.

The extension to introduce new
processes is crucial; the numbers
above the transformation arrows

indicate the IDs of the newly introduced process LTSs within the new net-
work. Exclusive in/out glue-states are displayed as black, square states with
an incoming arrowhead. They can accurately represent the initial states of
newly introduced process LTSs, since those states neither have incoming,

364 A. Wijs

nor outgoing transitions that are not present in the pattern introducing the
process LTS. Say we want to check the preservation of an Ldsbr

μ -property
ϕ = [true→] [produce] ([(¬consume)→] ¬deadlock ⇐ [¬consume] �), with dead-
lock = [true→][¬η]false ⇐ [η] � expressing the presence of a deadlock. This
expresses the inevitable reachability of a consume action after a produce
action. After hiding all actions except for produce and consume [21], σ1 passes
the check, i.e. relevant combinations of rule patterns lead to DSBB LTSs
w.r.t. ϕ.

In the final step in Fig. 6, we introduce the Alternating Bit Protocol (ABP)
for both channels, to reflect that in the final implementation, these channels will
be lossy. Rule system σ2 consists of several rules, all of one of the three types
that are displayed; the first one introduces a lossy channel, in this case L1, but
K1, L2, and K2 are introduced in a similar way. The second rule is used to
transform Ch1 into Ch1,1, which sends messages with an alternating bit to one
lossy channel, and receives acknowledgements over the other channel.

Component Ch2 is transformed similarly to Ch2,2. Finally, components Ch1,2
and Ch2,1 are introduced, which receive the messages, and, depending on the
alternating bit, requests them to be resent, or forwards them to the other party.
After hiding w.r.t. ϕ and detaching laws related to actions s1,2, r1,1, s2,2, and
r2,1, i.e. the actions of the original channels that need to synchronise with the
producer and consumer, σ2 does not preserve DSBB, since it introduces diver-
gence, but it preserves BB, hence ϕ is preserved under the fairness condition
that sending a message cannot fail infinitely often.

Note that in the final step, we do not have rules for the Consume and Pro-
duce components. Thanks to the detaching laws technique, we can analyse the
introduction of ABP in isolation, without incorporating the remainder of the sys-
tem. Without it, we would have to resort to analysing the whole system again,
since all components are (indirectly) dependent on each other. Now, the largest
LTS analysed contains 38 states, as opposed to an LTS of 1,720 states when
performing the check without the detaching laws.

Finally, the use of exclusive glue-states is crucial. They accurately reflect the
possible relation between matches of rule systems and the remaining states of
process LTSs in general. This provides us with more potential to define trans-
formations that can be verified in a model-independent way.

6 Implementation and Benchmark Results

Refiner is implemented in Python and can be run from the command-line.
It is platform-independent, and allows performing behavioural transformations
of networks of LTSs, and checking property preservation. It integrates with the
action-based, explicit-state model checking toolsets Cadp [8] and mCRL2 [5].
These tools can be used to specify and verify concurrent systems. Refiner uses
the mCRL2 tool LtsCompare to perform bisimilarity comparisons.

Definitions 5 and 8 indicate how property preservation checking could be
performed in parallel; once the set of rule vectors Υ has been derived, system

Define, Verify, Refine: Correct Composition and Transformation 365

Fig. 7. Runtime comparisons (in seconds) of verification and property preservation
checking. (re)MC = Model Checking (after transformation). PP = prop. pres. PP+ =
improved prop. pres. PP+ 4 = 4-threaded PP+

LTSs must be constructed and compared for each (non-empty) subset of each
D ← Υ . The individual comparisons can be done independently of each other.
Refiner can launch multiple comparison threads, thereby exploiting multi-core
architectures.

We ran Refiner on a machine with a quad-core intel xeon E5520 2.27 GHz
processor, 1 TB RAM, running Fedora 12. As test input, we selected nine case
studies, two newly created ones, three from the set of mCRL2 models distributed
with its toolset, and four from the set of Cadp models.6 Each model was sub-
jected to one or two transformations, of the following types: (1) adding internal
computations, (2) adding support for lossy channels by introducing the Alter-
nating Bit Protocol (the ABP case), and (3) breaking down broadcast synchroni-
sations as in Fig. 3 (the broadcast and the HAVi leader election case). To give an
indication of the state spaces sizes: the ACS case state space after transformation
consists of about 22 thousand states, while after the second transformation, the
HAVi-LE state space consists of 3 billion states. Relative to that, the verification
runtimes are indicative of the sizes of the other state spaces.

Figure 7 compares runtimes for each model of verifying a property using the
Cadp 2011-b tools Generator and Evaluator (this involves system LTS
generation), and checking property preservation of the transformation using
Refiner. Note the logarithmic scale. We performed one transformation per
model for the experiments on the left, and two for those on the right (‘[2]’ indi-
cates the runtimes after the second transformation).

The experiments demonstrate that preservation checking with Refiner is
several orders of magnitude faster compared to verifying the property again,
if the state space is of reasonable size. This is not surprising, as the check only
focusses on the applied change, not the resulting state space. Comparing the run-
times with those of other model checkers therefore leads to the same conclusion.
6 The required files are available at http://www.win.tue.nl/∼awijs/refiner.

http://www.win.tue.nl/~awijs/refiner

366 A. Wijs

Furthermore, the results demonstrate that the check with the improvements of
Sect. 5 is often about 4 times faster than the original check, and linear speedups
can be obtained on top of that with parallel checking. The parallel checks were
performed using the four cores available on the test machine (PP+ 4), and fur-
ther parallelisation is trivial. To give an indication of the number of bisimilarity
checks performed, the largest number was 315 checks, for the first transformation
in the ABP case.

7 Conclusions and Future Work

We presented a number of improvements of our property preservation checking
technique for step-wise system development. Now, we are able to compositionally
add new components and we have improved the ability to verify rule systems.
With the new features, verification is made less intrusive to the designer, and
she has more possibilities to step-wise construct her system through verified
transformation steps.

As future work, we will continue to determine through experimentation
whether there are more limitations in our technique that should be removed.
Our final goal is to have a mature theory for verifying rule systems, and based
on that, construct a model transformation language suitable for expressing ver-
ifiable transformation steps at the level of action-based modelling languages.
This theory should also support timed behaviour, either using a timed version of
bisimilarity, e.g. [7], or by modelling time in an untimed setting, e.g. [26]. Finally,
possible applications of directed search techniques [27,30] will be investigated.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82, 253–284 (1991)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the Bip framework. IEEE Softw.
28(3), 41–48 (2011)

4. Blech, J.O., Glesner, S., Leitner, J.: Formal verification of Java code generation
from UML models. In: Fujaba Days 2005, pp. 49–56 (2005)

5. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013).
LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

6. Engelen, L.J.P., Wijs, A.J.: Checking property preservation of refining transforma-
tions for model-driven development. CS-Report 12–08, TU Eindhoven (2012)

7. Fokkink, W.J., Pang, J., Wijs, A.J.: Is timed branching bisimilarity an equivalence
indeed? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp.
258–272. Springer, Heidelberg (2005)

Define, Verify, Refine: Correct Composition and Transformation 367

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

9. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model
transformations. In: 3rd International Workshop on Model Development, Valida-
tion and Verification (MoDeVVa 2006), pp. 78–93. IEEE Press, New York (2006)

10. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for
model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer,
Heidelberg (2012)

11. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

12. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

13. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3–4), 287–313 (1996)

14. Heckel, R.: Graph transformation in a nutshell. Electron. Notes Theor. Comput.
Sci. 148, 187–198 (2006)

15. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, Ch., Wehrheim,
H.: Showing full semantics preservation in model transformation - a comparison of
techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198.
Springer, Heidelberg (2010)

16. Kahsai, T., Roggenbach, M.: Property preserving refinement for Csp-Casl. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220.
Springer, Heidelberg (2009)

17. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

18. Kundu, S., Lerner S., Gupta, R.: Automated refinement checking of concurrent
systems. In: 26th International Conference on Computer-Aided Design (ICCAD
2007), pp. 318–325. IEEE Press, New York (2007)

19. Lambers, L., Ehrig, H.: Efficient conflict detection in graph transformation systems
by essential critical pairs. Electron. Notes Theor. Comput. Sci. 211, 17–26 (2008)

20. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

21. Mateescu, R., Wijs, A.: Property-dependent reductions for the modal mu-calculus.
In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp.
2–19. Springer, Heidelberg (2011)

22. Narayanan, A., Karsai, G.: Towards verifying model transformations. Electron.
Notes Theor. Comput. Sci. 211, 191–200 (2008)

23. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-
calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994)

24. Swamy, G.M.: Incremental methods for formal verification and logic synthesis.
Ph.D. thesis, University of California (1996)

25. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In: Critical Systems Development with UML (CSDUML 2003), pp. 63–78 (2003)

26. Wijs, A.J.: Achieving Discrete relative timing with untimed process algebra. In:
12th International Conference on Engineering of Complex Computer Systems
(ICECCS 2007), pp. 35–44. IEEE Press, New York (2007)

368 A. Wijs

27. Wijs, A.J.: What to do next?: analysing and optimising system behaviour in time.
Ph.D. thesis, VU University, Amsterdam (2007)

28. Wijs, A.J., Engelen, L.J.P.: Incremental formal verification for model refining. In:
9th International Workshop on Model Development, Validation and Verification
(MoDeVVa 2012), pp. 29–34. ACM Press, New York (2012)

29. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 565–579. Springer, Heidelberg (2013)

30. Wijs, A.J., Lisser, B.: Distributed extended beam search for quantitative model
checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol.
4428, pp. 166–184. Springer, Heidelberg (2007)

A Formal Model for Service-Based Behavior
Specification Using Stream-Based I/O Tables

Xiuna Zhu(B)

Institut Für Informatik, Technische Universität München,
Boltzmannstr. 3, 85748 Garching Bei München, Germany

zhux@in.tum.de

Abstract. The increasing complexity of embedded systems makes the
formal specification of requirements both more important and more dif-
ficult. Services can help provide a foundation for model-driven require-
ments engineering for multi-functional embedded systems. This paper
provides a conceptual framework that applies a novel modeling approach
to the development of embedded systems. We suggest tables as pragmatic
specification formalism for a both precise and readable specification of
systems, their interfaces, and their functional properties. By translating
tables into logical formulas, which define precise semantics for them, the
structure specification and refinement of system can be contained. The
approach is illustrated by a case study – a tabular specification of a
SwStore system.

1 Introduction

Over the years, a number of description techniques and models have been pro-
posed to enhance the development process of embedded systems. Tabular nota-
tion for state machines may greatly facilitate the specification and analysis of
the system in specific domains. Tabular notation seems to be explicitly useful
for systems with a large number of transitions between states or rather for those
with complex enabling conditions [1]. Using the tabular specification technique
for interactive and embedded systems can quickly and smoothly translate the
textual requirements to formal specification, which can be easily understood
and used by domain experts. Existing approaches using tabular notation in
model-driven requirements engineering have been demonstrated by a number of
projects (e.g., Darlington Nuclear Power Plants Shutdown System [2]) and tools
[3]. Examples of those approaches include Software Cost Reduction (SCR) [4],
AND/OR tables in Requirements State Machine Language (RSML) [5], Parnas
Tables [6]. Additionally, most of those methods have well-defined semantics [7].

However, because of the high degree of dependency between functional units,
effective and pragmatic formal specification of the behavior of components is still
a challenge. Furthermore, the structure specification of multi-functional systems
is a domain of requirements engineering that is not sufficiently understood so
far. In complex embedded systems, such as large-scale heterogeneous embedded

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 369–383, 2014.
DOI: 10.1007/978-3-319-07602-7 22, c© Springer International Publishing Switzerland 2014

370 X. Zhu

ones, software interacts with other systems, devices, sensors, and actuators. Their
complexity increases due to the large number of functionalities and components,
and due to the dependence relationship between them. Thus, those systems must
be decomposed into several smaller components in order to manage complexity
and facilitate their implementation and verification.

Behavior model compositionality, therefore, remains a difficult, labor-
intensive task. In this paper, we work with the tabular specification method
as a description technique for specifying I/O machines, especially stream-based
I/O tables [8]. We address the lack of a comprehensive integrated approach to the
structured modeling of functional requirements by introducing a tabular speci-
fication method based on (de)composition of the tabular behavior specification.
We use the Focus framework (see [10–12]) as a semantic and methodological
basis, which provides an extremely powerful mathematical model for distrib-
uted, concurrent, and interactive systems. It furthermore provides a comprehen-
sive class of concepts for the logical specification, refinement, and verification of
interactive and reactive systems.

This paper introduces a formal model for system behavior specification and
software architectures using stream-based I/O tables. The basic building block
of models is a service-based formal representation of the functionality. In order to
deal with the complex dependencies and interrelations between system function-
alities, we discuss the question of how services can be combined into service-based
specifications and composed as component-based architectures. The present work
explores an integrated method to specify the behavior formally and generate from
these logical formulas specification that allow us to perform logical manipula-
tions and to prove properties of the specified components. The SwStore system
using tabular specification is illustrated by this approach.

2 Tabular Specification

2.1 Syntactic Interface

A component can be implemented by many independent services. The overall
functionality of an embedded system actually can be structured into a hierarchy
of its sub-services. We may decompose each component into a family of sub-
services and each of these services again and again into families of their sub-
service. Understanding the functionality of a system requires us not only to
understand its single service in families of sub-service, but also to figure out the
relations between them.

The syntactic interface of a system or component can be defined as follows:

Definition 1 (Syntactic interface). The syntactic interface of a system or com-
ponent is denoted by (I � O). Let I be a set of typed input channels and O be a
set of typed output channels, the pair (I,O) characterizes the syntactic interface
of a system. →∼

A Formal Model for Service-Based Behavior Specification 371

Table 1. Schematic form of an stream-based I/O table with input and output channels

preCond State I1 I2 . . . In O1 O2 . . . Om State’ postCond

p1 s1 i11 i12 . . . i1n o1
1 o1

2 . . . o1
m s ′

1 q1

p2 s2 i21 i22 . . . i2n o2
1 o2

2 . . . o2
m s ′

2 q2

. .

pk sk ik1 ik2 . . . ikn ok
1 ok

2 . . . ok
m s ′

k qk

A component with the syntactic interface (I � O) is given by the function
F :

−⊆
I ⊆ ℘(

−⊆
O), which fulfills the timing property only for the input histories

with nonempty output set (let x, z ∈ −⊆
I , y ∈ −⊆

O, t ∈ N):

F.x ←= ∅ ∩ F.z ←= ∅ ∩ x∅t = z∅t ⇐ {y∅t+1 : y ∈ F (x)} = {y∅t+1 : y ∈ F (z)}. (1)

The set Dom(F) = {x : F (x) ←= ∅} is called the service domain. The set
Ran(F) = {y ∈ F.x : x ∈ Dom(F)} is called the service range. By F [I � O]
we denote the set of all service interfaces with input channels I and output
channels O.

Theorem 1 (partial service). An I/O-function F :
−⊆
I ⊆ ℘(

−⊆
O) is called

partial if F (x) = ∅ for some x ∈ −⊆
I . →∼

A component is total, while a service may be partial. For a component there
are nonempty sets of behavior for each input. The concept of “service” is close
to the idea of a use case in object-oriented analysis. It can be seen as the for-
malization of this idea. A service provides a partial view of a component, and
a service has similar syntactic interface as a component. However, its behavior
is “partial” in contrast to the totality of a component interface. Partiality here
means that a service is defined only for a subset of its input histories. A service
output contrasts to that of a component, in which the causality requirement
implies that for a component F either output set F.x are empty for all x or
none. A service, instead, may be a partial function.

2.2 Properties of Tabular Specifications

In [1] we have argued that the formal specification of the distributed reactive
systems can be written in an easily readable and understandable but still precise
manner by tables. In this section we describe how we use the tables in our
specifications and which entries we allow in the tables.

The following scheme (Table 1) is provided for the I/O table introduced
above. The column blocks are distinguished by this scheme. The I/O table has
two blocks of columns with a vertical double line which separates premises (left)
from conclusions (right).

372 X. Zhu

The actions of the state transition diagram can be specified as the state
transition rules in Table 1. If overlapping conditions trigger different behavior,
the specification is inconsistent or nondeterministic. Nondeterminism can be
resolved by transition priorities. Transitions with high priority are preferred to
those with low priority. But in our method nondeterminism is considered invalid.

The structure of the tables offers a natural way of checking their soundness.
Analyzing the coverage of each header helps to determine if the specification is
complete, and analyzing the disjointness of each header helps to determine if the
specification is consistent in the sense that there is no unwanted nondeterminism
[9]. The safety and causality properties have been discussed in [10]. In this paper
we will explain a way to analyze the consistency and completeness properties
of specification by analyzing the semantic interpretation of the tables using the
following logical formula.

The I/O table can be converted to the formal specification of an abstract
I/O table T ∈, as shown below.

T ∈ =

p1
p2
. . .
pk

Theorem 2 (Domain and range). Let F (T) be a function that is speci-
fied by an I/O table T . Let dom(F (T)) and let range(F (T)) denote domain
and range respectively. Here, dom(F (T)) ⊆ I1 × · · · × In and range(F (T)) ⊆
O1 × · · · × Om. →∼
Theorem 3 (Consistency and completeness). Let x1, . . . , xm be a list of
all free variables that appear on at least one of the predicates: p1, . . . , pk.

A tuple (p1, . . . , pk) is called consistent if

(∧x1, . . . , xm.∨1∗i<j∗k(pi↑pj)). (2)

A tuple (p1, . . . , pk) is called complete if

⇒x1, . . . , xm.p1 ∨ · · · ∨ pk. (3)

→∼
In order to specify a component, we have to specify possible observations of
the behavior of the component from the viewpoint of the environment. Given
a component with signature (I � O), the environment of the component is
able to send an input stream Iω to the component and receive a message Oω

produced by the component. Patterns for multiple input and output ports are
just conjunctions of patterns for single ports – that is, predicate expression of
the form p1 ∩ p2 ∩ · · · ∩ pn.

A Formal Model for Service-Based Behavior Specification 373

2.3 Motivating Example

Our work studies the questions of how to represent a given and specified service
by a set of sub-services, how to understand the overall functionality of multi-
functional systems, and how to analyze the relationships as well as dependencies
between sub-services.

A system called SwStore allows us to store, read and update numbers, with
two input channels cx and cz and two output channels cy and cr. The storing and
updating service can be switched off and on. As long as the “mode” is switched
off, input cz to the system is ignored. The service communicates messages that
are listed in the Table 2. Here set(n) is the message for setting the channel cz to
n(n ∈ N). The type of each channel is defined as follows:

type Switch = {switch}
type AccData = {read} ∃ {set(n) : n ∈ N}

type OnOff = {on, off} (4)
type Ack = {done} ∃ N

The behavior of the service SwStore is described by the specifications in the
Focus framework as follows:

Service:SwStore(constant j ∈ N) timed

in cx : Switch; cz : AccData

out cy : OnOff ; cr : Ack

loc m : OnOff ; v : N

init m = Off ; v = 0

⇒ v ∈ N,m ∈ OnOff ↓ :
TiTableSwStore

In the specification of Service SwStore, we define the names and data types of the
channels, including each input, output, and local channel, and the initial value
of each local channel. As shown in Table 2, the description of the behavior of the
service SwStore is specified by a stream-based I/O table named tiTableSwStore.
In Table 2, m∈ and v∈ denote the values of the state attributes after a state
transition. By “-” we denote an empty sequence of the message. By “?” we
denote an arbitrary value (includes the empty sequences).

3 Tabular Specification of Services

The service-based specification defines the functional viewpoint of the system
and structures the user functionality into services without any architectural
details. The specification consists of a set of services and a set of dependency

374 X. Zhu

Table 2. Service SwStore as a state transition table

tiTable ServiceSwStore :≤ t , j ≥ N

m v cx cz m ′ v ′ cy cr

off j - ? off j - -

off j switch - on j on -

off j switch read on j on j

off j switch set(k) on j on k

on j - read on j - j

on j - set(n) on n - done

on j switch ? off j off -

on j - - on j - -

relationships between them. A service specifies a partial and non-deterministic
relation between certain inputs and outputs of the system, which interact with
their environment within a number of scenarios. In other words, a service is a
fragmented aspect of the system behavior. Every service obtains inputs from and
sends outputs directly to the environment, so the specification does not define
the internal data flow of a system. Usually, services describe system reactions
of only a certain subset of the inputs. This partial description allows the sys-
tem functionality to be distributed of over different services while leaving the
reaction to certain inputs unspecified.

3.1 Syntactic Interface of Services

A service has a syntactic interface consisting of the sets of typed input and
output ports, which represent the system’s I/O devices (sensors and actuators)
according to [6].

In this paper, the semantics of a service are described by an I/O automaton.
In a timed stream x ∈ (M↓)∅ we express which messages are transmitted in
which time slots. As we have explained, a service is a set of interaction pat-
terns with strong causality. In this section, we show how to specify services and
demonstrate them with a set of basic definitions. We start with a formal model of
a service, and then present the simple operations of the service and its behavior
specification.

Definition 2 (Port Signature). Let V be a set of local variables and I, O, and
H be pairwise disjoint sets of input, output, and hidden or internal ports, respec-
tively. A port signature is a tuple (V, I,O,H). →∼
Given a port signature Σ = (V, I,O,H), we denote C = I ∃ O ∃ H as all of the
internal or/and external channels in Σ.

A Formal Model for Service-Based Behavior Specification 375

3.2 Table-Specified System Model

Definition 3 (Table-Specified System Model). A table-specified system model
M can be described by a tuple: M = (T, R, Σ,Σ0), where

– T is a finite set of I/O tables which describe the behavior of the service,
– R is a set of relations between the tables (R : T × T ⊆ Boolean),
– Σ is a port signature,
– and Σ0 is the initial port signature that defines the initial state of the machine,

where T ∈ T mainly means I/O tables. →∼

3.3 Refinement of Behaviors

We use refinement to capture the notion of elaboration of a partial description
into a more comprehensive one. Refinement can be seen as a ‘more defined than’
relation between two partial models. Intuitively, a table-specified model N refines
M if N preserves all of the required and all of the proscribed behavior of M .
Alternatively, and the table-specified model N refines M if N has the required
behavior of M , and M can have the possible behavior of N .

Theorem 4 (Refinement). Let MS = (TS , RS , ΣS , Σ0
S) and MS′ = (TS′ , RS′ ,

ΣS′ , Σ0
S′) be two table-specified system models of systems S and S∈. Here, S∈ is a

behavioral refinement of S, i.e., MS′ � MS. Thus, the I/O tabular specification
TS′ of the corresponding system models M ∈

S is a behavioral refinement of tabular
specification TS of MS, written TS � TS′ . →∼
Here, if there exists a refinement relation between two tabular specification TS

and TS′ , i.e., TS � TS′ , such that there must exist a parent/child relation
between two signal I/O table, written (TS , TS′) ∈�.

�⊕ T × T ⊆ ∧((TS , TS′) ∈�) (5)

3.4 Relations Between Tables

Definition 4 (Relations). A set of relations between tables can be described by
a tuple: R = (�,∈,=).

– � is a parent/child relation, which is a tree-like partial ordering.
– ∈ is a siblings relation.
– = is an equivalence relation. →∼

The parent/child relations between tables depend on the refinement of the
behavior of the service.

Here, T1 � T2 meaning that T1 is a descendant of T2, or T1 and T2 are equal
in an abstract sense. Tree-like means that � has the following property:

T1 � T2 ∩ T2 � T3 ⇐ T1 � T3, (6)
T1 � T2 ∩ T2 � T1 ⇐ T1 = T2. (7)

376 X. Zhu

If table T1 is a descendant of T2, i.e., T1 � T2, and there is no T3 such that
T1 � T3 � T2, we say that the table T1 is a subtable of T2, i.e., T1 subtable T2.

Furthermore, we define σ(Tparent) as the set of all children of the table
Tparent, that is

σ(Tparent) = {T | T, Tparent ∈ T ∩ T subtable Tparent} (8)

Here, ∈ is a siblings relation to the tables in T. And the following equation
holds

T1 ∈ T2 ⇐ ∧T ∈ T : T1, T2 ∈ σ(T) (9)

The equivalence relation ∈ is used to partition the children of a table into disjoint
sets.

3.5 Projection of Behaviors

By the sub-type relation between sets of channels we define the concept of projec-
tion of behaviors and projection operation on tables. It is the basis for specifying
the sub-service relation.

Definition 5 (History Projection). Let C and G be two sets of typed channels
with CsubtypeG. We define for history x ∈ −⊆

G its projection x |C ∈ −⊆
C to the

channels in the set C and to the messages of their types. For channel c ∈ C with
type T specify the projection by the equation:

(10)

where for a stream s and a set M we denote by the stream derived from s
by deleting all messages in the s that are not in set M . x |C is called projection
of history x to channel set C. →∼
To obtain the sub-history of x |C of x by projection, we keep only those channels
and types of messages in the history x that belong to the channels and their types
in C.

Definition 6 (Projection of Behaviors). Given syntactic interfaces (I � O)
and (I ∈ � O∈) where (I ∈ � O∈) subtype (I � O) holds, we define for a behavior
function F ∈ F[I � O] its projection F †(I ∈ � O∈) ∈ F[I ∈ � O∈] to the syntactic
interface (I ∈ � O∈) by the following equation (for all input histories x∈ ∈ −⊆

I ∈):

F †(I ∈ � O∈)(x) = {y | O∈ : ∧x ∈ −⊆
I : x∈ = x |I′ ∩ y ∈ F (x)}. (11)

→∼
In a projection, we concentrate on the subset of the input and output mes-

sages of a system in its syntactic sub-interface (I ∈ � O∈). In the projection
operation on tables, we delete all input and output columns (channels) that are
not part of the syntactic interface (I ∈ � O∈) to derive less complex sub-behaviors
that allow us to include the properties of the original system.

A Formal Model for Service-Based Behavior Specification 377

Fig. 1. Dependency graph of system SwStore

4 Service Granularity Refinement

This section clarifies the structural modeling of the functional requirements of
embedded systems by introducing a visual and mathematical method based on
following steps: decomposition disassembles an existing tabular behavior specifi-
cation into individual or atomic services that can be further recomposed together;
composition assembles individual and composite elements to form a new ser-
vice that has the same input channels and is inactively independent; refinement
assembles individual and composite elements to form a new service that has no
dependence relationship or explicit dependence relationship.

4.1 Dependency Graphs

Definition of structured relations between services, refinement of services, refine-
ment multiplexing of services and the structure of related families of services
are the main questions which have to be solved. But there are three different
dependency relationships concepts which have to be explained at first.

– If a service s1 outputs a data item with a certain type and service s2 takes
this output as an input, then s2 depends on s1.

– If two services s1 and s2 both take a typed channel c as an input, then there
is a dependency relation between s1 and s2.

– Given a service s1 has output channel o and input channel i, and a service
s2 is a new service generated from service s1 by deleting input i. If service
s2 is non-deterministic, then there is a dependency relationship between the
output channel o and the input channel i, or we can say that output channel
o depends on input channel i.

Besides the dependencies between a set of services, here we also consider the
dependency graphs to be a description of the dependencies between input/output
channels based on the behavior of each service. We capture dependencies between
input/output channels of System SwStore in Fig. 1.

Definition 7 (Dependency Relation between Outputs and Inputs). Given table
T be a behavior specification of service s with syntactic interfaces (I � O), let

378 X. Zhu

PD(T) be the disjointness of the table T , the dependency relation between output
om and input in is defined as follows:

⊆Dep (om, in) = (PD(T |C/(on→in))) (12)

where
PD(T) = (∧x1, . . . , xm.

∨

1∗i<j∗n

(pi ∩ pj)). (13)

→∼
4.2 Atomic Services

In this section, (de)composition operations are defined based on the concepts
of dependency relationship. For each output channel, we choose the whole set
of input channels that have a dependency relationship with this output. These
services are called atomic services which can be generated by the projection
operation on tables.

Theorem 5 (Projection Operation on Tables). Projection of behavior T =
(I,O,H, V) is

T |C = (I |C , O |C ,H |C , V |C) (14)

where

F (T) =
m∨

i=1

(F (T |oi
)) (15)

holds. →∼
The following definition characterizes projections that do not introduce addi-

tional nondeterminism, since the input deleted by the projection does not
influence the output. Let SwStore be the system behavior described above by
TSwStore. We get the following atomic services a, b, c, d by the faithful projec-
tion on TSwStore. Since some of the output channels are without influence on
the input channels, those columns can be deleted. In so doing, we can get four
atomic services a, b, c, d; specified by I/O table Ta, Tb, Tc, Td, the following
holds true:

TSwStore = Ta ‖ Tb ‖ Tc ‖ Td (16)

where

Ta = TSwStore |m→cx→m′

Tb = TSwStore |v→cz→v′

Tc = TSwStore |cy→m→cx (17)
Td = TSwStore |cr→m→cx→cz

We consider the following syntactic interfaces for the four atomic services:

IF[{m : OnOff; cx : Switch} � {m∈ : OnOff}]
IF[{cz : AccData; v : N} � {v∈ : N}]
IF[{m : OnOff; cx : Switch} � {cy : OnOff}] (18)
IF[{m : OnOff; cx : Switch; cz : AccData} � {cr : Ack}]

A Formal Model for Service-Based Behavior Specification 379

Table 3. The tabular specification of service Access′ and service Switch′

(a) I/O Table TSwitch

tiTable ServiceSwitch :≤ t ≥ N

m cx m ′ cy

off - off -

off switch on on

on switch off off

on - on -

(b) I/O Table TAccess

tiTable ServiceAccess :≤ t ≥ N

m v cx cz v’ cr

off j - ? j -

off j switch - j -

off j switch read j j

off j switch set(n) n done

on j - read j j

on j - set(n) n done

on j switch ? j -

on j - - j -

4.3 Composition

In the architectural view, a system is usually described by a network of com-
municating components. The service composition is similar to those introduced
in [17–19]. The internal component communication is not supported by the com-
bination operators. Consequently, we defined the composition operator by ser-
vices and integrated the architectural view for our framework. The composition
permits two services to communicate directly via homonymous input/output
port pairs.

Composition is a partial function of the set of all system behaviors and the
set of all services. It is defined only if the syntactic interfaces match, which means
there are no contradictions or conflicts in their channel types. In our running
example, according to atomic services, we consider two sub-interfaces for the
system SwStore: interface ({cx : Switch} � {cy : OnOff}) for service Switch
and interface ({cz : AccData} � {cr : Ack}) for service Access.

Furthermore, let ‖, ∪, and ; denote three composition operators for the par-
allel, alternative, and sequential composition of services.

Fig. 2. MSwitch = Ma → Mc Fig. 3. MAccess = Mb → Md

By parallel composition operation on the atomic services a, b, c, d, we can
build service Switch and service Access, as shown in Figs. 2 and 3.

380 X. Zhu

Fig. 4. Alternative composition of services MSwStore = M ′
Switch ⊗ M ′

Access

I/O Table TSwitch is the tabular specification of a parallel composition of
atomic services a and c, which is presented in Table 3(a). Here, TSwitch =
TSwStore |cx→cy→m→m′ , Ta � TSwitch and Tc � TSwitch holds.

Similarly, I/O Table TAccess is parallel composition of atomic services b and
d, which is specified in Table 3(b). Here, TAccess = TSwStore |cx→cz→v→v′→m→cr,
Tb � TSwitch and Td � TSwitch holds.

4.4 Service Granularity Refinement

The service granularity refinement allows replacing channels by several chan-
nels and messages by several messages and vice versa. The main advantage of
service granularity refinement arises when we can explicit the relation between
the service by composition the atomic services or decomposition into the atomic
services.

To describe services of a system in a modular way and to delete the depen-
dency relations between services, we need to capture the dependencies between
the inputs that influence the behavior of services. By using mode channel cm to
transmit message mode, we get service Access∈ and service Switch∈ (see Fig. 4).

Modes are a generally useful way to structure service behavior and specify
dependencies between services. Modes are used to discriminate different forms
of operations for a service. A mode type can be used for attributes of the state
space as well as for input or output channels.

As shown in Table 4(a), I/O Table TAccess′ is the tabular specification of
service Access∈, which is a refinement of service Access. Meanwhile, I/O Table
TSwitch′ (see Table 4(b)) is the tabular specification of service Switch∈, which is
a refinement of service Switch. Here,

MSwStore = M ∈
Switch ∪ M ∈

Access = MSwitch ‖ MAccess (19)

holds.
In Fig. 5, red dotted line denote the dependence relationship between the

services, i.e. they have the same input channel. As shown in Fig. 5, this type of
dependency relationship has a transitivity character by the composition oper-
ation of the services. For example the dependence between service Switch and
service Access. Service Switch is parallel composition of atomic services a and

A Formal Model for Service-Based Behavior Specification 381

Table 4. The tabular specification of service Access′ and service Switch′

(a) I/O Table TAccess′

tiTable ServiceAccess′ :≤ t ≥ N

v cm cz v’ cr

j off ? j -

j on - j -

j on read j j

j on set(n) n done

(b) I/O Table TSwitch′

tiTable ServiceSwitch′ :≤ t ≥ N

m cx m’ cm cy

off - off off -

off switch on on on

on switch off off off

on - on on -

Fig. 5. Dependency relationships between services (Color figure online)

c and service Access is parallel composition of atomic services b and d. By com-
posing the sub-services, the dependence relationships between the sub-services
are transitived to the parent-service after composition.

5 Related Work

The work presented in this paper is the extension of the Mode-annotated Ser-
vice Hierarchy H = (((K,V), ϕ,D), ψ) that was presented in [19]. Prior work to
specify a system of textural requirements to formal specification using tabular
notation exists in software engineering, but the application of semantic technolo-
gies to pragmatically visualize the specification process and combining tabular
methodology with diagrams is unique.

Soares and Vrancken propose a model-driven approach to requirements engi-
neering based on SysML requirements and Use Case Diagrams [13]. The main
advantages are that user requirements are graphically modeled, and requirements
traceability is enhanced using the SysML requirements tables.

As stated in [14], the tabular expression and total function programming
approach is able to specify the real-time behavior, which has been success-
fully implemented in industrial projects although not very often. In contrast
to our work, this approach can offer a method to specify single requirements

382 X. Zhu

modularly, but neither to refine, nor compose or decompose them, and there-
fore the method is not able to support the scalability necessary for systems
architecture.

The SCR method and tool set [15] can be seen as a variant of the 4-variable
model. It proposes to model the system specification as an automaton which
reads and writes variables of the four types identified in [6]. The deficits of
SCR are its priori discretization and a rather coarse-grained modularity concept:
every subsystem has to be completely described by three tables: condition table,
event table, and mode transition table. It addresses the time requirements as
annotations or as a temporal logic formula, operating in terms of logical system
step. A-priori discretization cannot be justified offhand in the early requirements
engineering phases. In [16], SCR was extended by the notion of real-time. The
system is described as a timed automat in an ad-hoc manner by associating
every event with a time stamp. No concepts for the reasoning about durations
or non-instantaneous composite observations were provided.

6 Conclusions and Future Work

This method can easily integrate states and modes in tables by taking them
as additional input and output channels. Each table represents a finite set of
relations between terms (states/modes) which can support a quick understanding
of large specifications.

The proposed tabular specification method supports a piece-wise formaliza-
tion. This can help handle potentially inconsistent requirements. Analyzing and
checking the system properties can be obtained by checking the properties of the
tables. The relationship between families of the services defined above can help
structure the system not only from a theoretical point of view but also from
a very practical point of view, for instance the equivalence of services. When
comparing multi-functional systems it is a practical question, whether or not
two systems offer the same services.

The present work is still in progress. Additional tabular specification patterns
as well as the improvement of the existing ones are the next goals for future
work. The mathematical and logical style of the syntax of Focus is not always
very well-suited for the practical user, however, a CASE tool AutoFOCUS [20],
which is a tool based on Focus framework for the model-based development of
embedded systems, is provided.

More experienced users may develop their own model patterns using con-
straints tables. This requires some basic understanding of the data types of the
channels and properties of the used services, but no detailed knowledge of the
implementation of the involved services. Patterns can be extracted out of existing
service compositions or built from scratch by linking together services.

A Formal Model for Service-Based Behavior Specification 383

References

1. Broy, M.: Pragmatic and formal specification of system properties by tables. TUM-
I9802 (1998)

2. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the spec-
ification and verification of a nuclear reactor shutdown system. Formal Methods
Syst. Des.

3. Bourguiba, I., Janicki, R.: Table-based specification techniques. ICCIE 2009, pp.
1520–1525 (2009)

4. Heitmeyer, C., Bharadwaj, R.: Applying the SCR requirements method to the light
control case study. J. Univers. Comput. Sci. 6, 650–678 (2000)

5. Heimdahl, M.P.E., Leveson, N.G., Reese, J.D.: Experiences from specifying the
TCAS II requirements using RSML. 17th Digital Avionics Systems Conference,
Nov 1998

6. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25, 41–61 (1995). ISSN: 0167-6423

7. Janicki, R.: On a formal semantics of tabular expressions. Sci. Comput. Program.
(1997)

8. Hummel, B., Thyssen, J.: Behavioral specification of reactive systems using stream-
based I/O tables. In: Proceedings of the 2009 Seventh IEEE International Con-
ference on Software Engineering and Formal Methods. SEFM ’09, pp. 137–146
(2009)

9. Janicki, R., Wassyng, A.: Tabular expressions and their relational semantics. Fun-
dam. Inf. 67(4), 343–370 (2005)

10. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2001)

11. Home Page of Focus framework: http://focus.in.tum.de
12. Broy, M., Dederich, F., Dendorfer, C., Fuchs, M., Gritzner, T., Weber, R.: The

design of distributed systems - an introduction to FOCUS. TUM-I9202 (1992)
13. dos Santos Soares, M., Vrancken, J.: Model-driven user requirements specification

using SysML. J. Softw. 3, 57–68 (2008). ISSN: 1796-217X
14. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of

formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

15. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*: a toolset for specifying
and analyzing software requirements. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 526–531. Springer, Heidelberg (1998)

16. Heitmeyer, C.: Requirements specifications for hybrid systems. Hybrid Systems III,
pp. 304–314 (1996)

17. de Alfaro, L., Henzinger, T.A.: Interface automata. ACM SIGSOFT Softw. Eng.
Notes 26, 109–120 (2001)

18. Botaschanjan, J., Harhurin, A.: Integrating functional and architectural views of
reactive systems. In: Lewis, G.A., Poernomo, I., Hofmeister, C. (eds.) CBSE 2009.
LNCS, vol. 5582, pp. 156–172. Springer, Heidelberg (2009)

19. Broy, M.: Multifunctional software systems: structured modeling and specification
of functional requirements. Sci. Comput. Program. 75, 1193–1214 (2010)

20. Home Page of AUTOFOCUS: http://af3.fortiss.org

http://focus.in.tum.de
http://af3.fortiss.org

Author Index

Bai, W. 23
Banerjee, Ansuman 215
Barnat, Jiří 41
Beneš, Nikola 41
Boudjadar, Abdeldjalil 61
Bultan, Tevfik 310
Bureš, Tomáš 41

Carrillo, Oscar 79
Černá, Ivana 41
Cesari, Luca 100
Chouali, Samir 79

David, Alexandre 61
De Nicola, Rocco 100
Dong, Ruzhen 119
Dutta, Saikat 215

Gaspar, Nuno 137
Ghosh, Anil K. 215
Gössler, Gregor 157
Guan, S.U. 23
Guelev, Dimitar P. 13

Henrio, Ludovic 137
Hong, Ali 174
Hufflen, Jean-Michel 196

Jain, Nehul 215

Katoen, Joost-Pieter 329
Keznikl, Jaroslav 41
Kim, Jin Hyun 61
Kouchnarenko, Olga 234

Larsen, Kim G. 1, 61
Lascu, Tudor A. 254
Legay, Axel 1
Le Métayer, Daniel 157
Li, Yi 273
Liu, Yijing 174

Madelaine, Eric 137
Mauro, Jacopo 254
Mikučionis, Marius 61
Misra, Jayadev 5
Mountassir, Hassan 79
Mousavi, Mohammad Reza 291

Noroozi, Neda 291
Nyman, Ulrik 61

Ouederni, Meriem 310

Payne, T.R. 23
Plášil, František 41
Pugliese, Rosario 100
Puviani, Mariachiara 100

Qiu, Zongyan 174

Salaün, Gwen 310
Sharma, Arpit 329
Skou, Arne 61
Sun, Meng 273

Tadjouddine, E.M. 23
Tiezzi, Francesco 100

Wang, Shuling 13
Weber, Jean-François 234
Wijs, Anton 348
Willemse, Tim A.C. 291

Xu, Lihau 215

Zambonelli, Franco 100
Zavattaro, Gianluigi 254
Zhan, Naijun 13, 119
Zhou, Chaochen 13
Zhu, Huibiao 215
Zhu, Xiuna 369

	Preface
	Organization
	Contents
	Probabilistic Modal Specifications (Invited Extended Abstract)
	1 Modal Transition Systems: The Origines
	2 Probabilistic Modal Specifications
	3 Future Work
	References

	Orchestration
	1 On Building Large Software Systems
	2 Structure of Orc
	2.1 Components, Also Known as Sites
	2.2 Combinators
	2.3 Consequences of Pure Composition

	3 Concluding Remarks
	References

	Super-Dense Computation in Verification of Hybrid CSP Processes
	1 Introduction
	2 Hybrid CSP
	3 Hoare Triple
	4 Axioms and Rules
	5 Discussion
	References

	A Proof-Carrying Code Approach to Certificate Auction Mechanisms
	1 Introduction
	2 Our Certification Framework
	3 Formalization of Auction Mechanisms Within Coq
	3.1 Specifying Single Item Auction
	3.2 The English Auction Case
	3.3 The Vickrey Auction Case

	4 Certifying Desirable Properties
	4.1 Certification of Dominant Strategy in the English Auction
	4.2 Certification of the Dominant Strategy in Vickrey Auction

	5 Discussion
	6 Conclusion and Future Work
	References

	Towards Verification of Ensemble-Based Component Systems
	1 Introduction
	2 Case Study
	3 DEECo: Key Concepts
	4 General DEECo Semantics
	4.1 Component Processes
	4.2 Knowledge Propagation
	4.3 Ensemble Knowledge Exchange
	4.4 System Semantics

	5 DCCL: Semantics Suitable for Verification
	5.1 Component Phase
	5.2 Ensemble Phase

	6 Relation of DCCL to the General DEECo Semantics
	6.1 Realistic Properties That Can Be Verified via DCCL
	6.2 Realistic Properties That Cannot Be Verified via DCCL

	7 Modeling the Case Study
	7.1 Verification of Realistic Properties on the Case Study
	7.2 Scalability Evaluation

	8 Discussion
	8.1 Lessons Learned
	8.2 Improving Scalability by Ensemble State Reduction

	9 Related Work
	10 Conclusion
	References

	Hierarchical Scheduling Framework Based on Compositional Analysis Using Uppaal
	1 Introduction
	2 Related Work
	3 Compositional Scheduling Framework
	3.1 Motivating Example
	3.2 Our Analysis Approach

	4 Modeling and Analysis Using UPPAAL
	4.1 Non-Deterministic Supplier Model
	4.2 Task Model
	4.3 Resource Model and Scheduling
	4.4 Symbolic Model Checking
	4.5 Statistical Model Checking

	5 Case Study
	6 Conclusions
	References

	Incremental Modeling of System Architecture Satisfying SysML Functional Requirements
	1 Introduction
	2 Preliminaries
	2.1 The SysML Language
	2.2 Interface Automata

	3 Case Study
	4 Our Approach
	4.1 Overview
	4.2 Analysis of SysML Requirement Diagram
	4.3 Formal Verification of SysML Requirements on System Components
	4.4 Component Assembly Preserving SysML Requirements
	4.5 Specification of System Architecture with BDD and IBD Diagrams After the Composition

	5 Illustration on the Case Study
	6 Related Works
	7 Conclusion
	References

	Formalising Adaptation Patterns for Autonomic Ensembles
	1 Introduction
	2 Service Components and Adaptation Patterns
	3 SCEL: Software Component Ensemble Language
	4 Service Components and their Environment in SCEL
	5 Adaptation Patterns in SCEL
	6 Adaptation Patterns at Work
	7 Related Works
	8 Concluding Remarks
	References

	Towards a Failure Model of Software Components
	1 Introduction
	2 Component Automata
	2.1 Basic Notions
	2.2 Component Automata
	2.3 Component Interface Automata
	2.4 Plugging Operation
	2.5 Refinement

	3 Failure Model of Components
	3.1 Failure Model of Components
	3.2 Plugging Operation
	3.3 Refinement

	4 Coordination
	4.1 Coordinator
	4.2 Parallel Composition of Coordinators
	4.3 Coordination Operation
	4.4 Synthesizing Interface Coordinator for Component Automata

	5 Conclusion and Future Work
	References

	Formally Reasoning on a Reconfigurable Component-Based System --- A Case Study for the Industrial World
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Organisation of the Paper

	2 A Behavioural Semantics for GCM Applications
	3 The HyperManager
	4 HyperManager's Behavioural Model
	4.1 The HM Gateway
	4.2 The HM Server
	4.3 System Product, Model Generation and Proven Properties

	5 The Case Study Reloaded: On Structural Reconfigurations
	5.1 HM Reconfigurable Gateway
	5.2 HM Reconfigurable Server
	5.3 Model Generation and Proven Properties

	6 Related Work
	7 Final Remarks
	References

	A General Trace-Based Framework of Logical Causality
	1 Introduction
	2 Modeling Framework
	2.1 Logs

	3 Motivating Example
	4 Causality Analysis
	4.1 Temporal Causality
	4.2 Logical Causality

	5 Application to Synchronous Data Flow
	6 Related Work
	7 Conclusion
	References

	Axioms and Abstract Predicates on Interfaces in Specifying/Verifying OO Components
	1 Introduction
	2 Abstractly Specify/Verify Co-related Components: Problem
	3 Axioms and Languages
	4 Verifying Programs wrt Axioms and Method Specifications
	4.1 Verifying Implementations wrt Axioms
	4.2 Verifying Methods and Behavioral Subtyping

	5 Case Study
	5.1 Specifying the MVC Architecture
	5.2 Verifying Implementations with Axioms and Method Specifications
	5.3 Verifying Client Methods

	6 Related Work and Conclusion
	A Inference Rules of VeriJ Framework
	References

	A Framework for Handling Non-functional Properties Within a Component-Based Approach
	1 Introduction
	2 Our Framework
	2.1 Motivation
	2.2 A Tool Complementing Other Services
	2.3 Repository of Components

	3 The Different Stages of Our Approach
	3.1 The Merge Operation
	3.2 Using Information About Non-functional Properties

	4 Discussion
	5 Conclusion and Future Work
	References

	Using Daikon to Prioritize and Group Unit Bugs
	1 Introduction
	2 Overview
	3 Detailed Methodology
	3.1 Invariant Mining
	3.2 Confidence Assignment to Invariants
	3.3 Failure Classification and Belief Assignment

	4 Implementation
	4.1 Failure Extraction
	4.2 Invariant Mining
	4.3 Confidence Assignment, Failure Grouping and Ranking

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Adapting Component-Based Systems at Runtime via Policies with Temporal Patterns
	1 Introduction
	2 Motivating Example and Background
	3 FTPL: A Temporal Logic for Dynamic Reconfigurations
	3.1 Syntax and Notations
	3.2 FTPL Basic Semantics
	3.3 FTPL Progressive Semantics
	3.4 FTPL Expressiveness

	4 Integrating Temporal Properties into Adaptation Policies
	5 Runtime Policy Evaluation
	6 Implementation and Case Study
	7 Related Work and Conclusion
	7.1 Related Work
	7.2 Conclusion

	References

	Automatic Component Deployment in the Presence of Circular Dependencies
	1 Introduction
	2 The Aeolus Component Model
	3 Solving the Deployment Problem
	3.1 Reachability Analysis
	3.2 Abstract Planning
	3.3 Plan Generation

	4 Formal Analysis of the Algorithm
	5 Related Work and Conclusions
	References

	Modeling and Analysis of Component Connectors in Coq
	1 Introduction
	2 Reo Coordination Model
	3 Modeling Reo in Coq
	3.1 System Framework
	3.2 Modeling of Basic Notions
	3.3 Description of System's Behaviour

	4 Case Studies
	4.1 Alternator
	4.2 Distributor Connector
	4.3 Task Transaction Connector

	5 Related Work
	6 Conclusion and Future Work
	References

	On the Complexity of Input Output Conformance Testing
	1 Introduction
	2 Preliminaries
	3 Conformance Checking for Nondeterministic Models
	4 Coinductive Definition of IOCO
	5 Conformance Checking of Deterministic Specifications
	5.1 NHORNSAT Problem
	5.2 Reducing IOCO to NHORNSAT
	5.3 Correctness of the Reduction Algorithm
	5.4 Complexity Analysis

	6 Conclusion
	References

	Compatibility Checking for Asynchronously Communicating Software
	1 Introduction
	2 Behavioral Models
	2.1 Peer Model
	2.2 Synchronous Composition
	2.3 Asynchronous Composition

	3 Branching Synchronizability and Well-Formedness
	4 Compatibility
	4.1 Synchronous Compatibility
	4.2 Asynchronous Compatibility

	5 Illustrative Example
	6 Tool Support and Evaluation
	6.1 LOTOS Encoding
	6.2 Experiments

	7 Related Work
	8 Conclusion
	References

	Layered Reduction for Modal Specification Theories
	1 Introduction
	2 Preliminaries
	3 Satisfaction and Refinement
	4 Composition and CCL Laws
	5 Partial Order Equivalence and Property Preservation
	6 Conclusion
	References

	Define, Verify, Refine: Correct Composition and Transformation of Concurrent System Semantics
	1 Introduction
	2 Related Work
	3 Background
	4 Property Preservation Checking
	5 Compositional Reasoning and Exclusivity NACs
	6 Implementation and Benchmark Results
	7 Conclusions and Future Work
	References

	A Formal Model for Service-Based Behavior Specification Using Stream-Based I/O Tables
	1 Introduction
	2 Tabular Specification
	2.1 Syntactic Interface
	2.2 Properties of Tabular Specifications
	2.3 Motivating Example

	3 Tabular Specification of Services
	3.1 Syntactic Interface of Services
	3.2 Table-Specified System Model
	3.3 Refinement of Behaviors
	3.4 Relations Between Tables
	3.5 Projection of Behaviors

	4 Service Granularity Refinement
	4.1 Dependency Graphs
	4.2 Atomic Services
	4.3 Composition
	4.4 Service Granularity Refinement

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

