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Abstract Solid Earth Physics, including Seismology, Physics of the Earth, Earth
Magnetism to name a few more topical disciplines, strongly relies on mathematical
and numerical possibilities of modeling very complex physical processes ongoing
in the Earth interior. Tremendous progress in geophysical instrumentation and still
increasing quality and quantity of observational data also prompts for advanced
processing methods in order to get more reliable interpretations. The goal of this
chapter is to review some contributions from the Institute of Geophysics, Polish
Academy of Sciences (IGF PAS) to physical and mathematical concepts used in
Solid Earth Physics. We have selected some topics which are general enough to be
interesting for a wide range of readers, leaving many topical issues uncovered in
this review.

Keywords Computational geophysics � Inverse theory � Asymmetric continuum �
Flow in porous media

1 Introduction

The distinguished position of geophysics among other earth sciences comes from
the fact that geophysics attempts to describe the earth system using generally
physical methodologies. It comprises observational techniques of physical
parameters of the earth systems, often based on the very advanced technologies
like satellite telemetry, very sensitive seismometric observations, or technologi-
cally very advanced deep and fast deep crust drilling to name a few techniques
concerning solid earth observations. Moreover, most of observational sites have
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recently been networked together and infrastructures like international data centers
have been created. Thus, nowadays we can talk about the Earth’s global obser-
vational system providing enormous quantity of information on the Earth system
and comparable only to the most advanced physical experimental facilities.
Another particular feature of geophysics is using the physical approach to
understand the natural and anthropogenic-caused processes occurring in the Earth
system starting from the very basic physical principles like energy or momentum
conservation, second thermodynamic law, etc. However, geophysics not only uses
the concepts and methodologies developed by other physical disciplines. It also
significantly contributes to development of various physical observational tech-
nologies, theories and computational techniques. This development was quite
often inspired by pragmatic industrial and/or social requests and needs. For
example, development of the very advanced numerical data processing techniques
was inspired and founded by the prospecting industry, very much interested in
more detailed and efficient mapping of underground structures. On the other hand,
an advanced analysis of earthquake hazard, physics of earthquake sources or
volcanic processes is of the greatest importance for contemporary societies. This
particular demand of a ‘‘practice’’ of geophysical research has formed the third
distinguished feature of geophysics—its pragmatism in formulating and solving
the real scientific tasks.

At the early stage of the development of geophysical research, the most
important research tasks were accumulating an evidence of some natural processes
and linking them as much as possible to known physical principles, models and
ideas. This stage of geophysical qualitative-type research was very soon finished
by formulated demands of a quantitative analysis of gathered evidence and
searching for possible physical description of observed phenomena. This re-
focusing of geophysical thinking from qualitative evidence accumulation to
quantitative description has opened a way for introducing mathematical methods
to generally understood Earth sciences. Many of the analyzed problems have been
found out to be extremely complex so specific scientific methods needed to be
developed. Let us concentrate on some of them.

Geophysical data used to infer the properties of the Earth’s interior and/or
provide information on processes undergoing in its depth are gathered practically
on surface of the Earth or from the space. In such a case, an inference about the
thought properties of the Earth or process in hand become a nontrivial inverse task.
In consequence special data interpretation methods called inverse theory have been
developed by geophysicists. The need for a quantitative estimation of accuracy of
observational data analysis has lead to probabilistic formulation of the inverse
theory.

Another astonishing example of development of general physical theory
inspired by solid Earth problem analysis is the formulation of Asymmetric Con-
tinuum Media theory. This theory appears from very simple observations that
damages of some constructions during earthquakes pointed out on relative rota-
tional movements of different parts of constructions. However, the classical
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continuum elastic mechanics, which is the corner stone of contemporary seis-
mology, predicts no rotational effects. Analysis of this apparent contradiction has
lead to an idea of extending the classical theory of continuum elastic media.

In this chapter we concentrate on the mathematical and data analysis aspects of
the geophysical research connected to the above tasks. This particular choice is by
no means arbitrary. It simply follows from the fact of a significant contribution of
IGF PAS to development of these particular types of geophysical research and
personal authors’ attachments.

2 Probabilistic Inverse Theory

2.1 General Concept

In geophysical investigations, when interpreting observational data we deal with
the forward problem (also called forward modeling), and inverse problems. The
forward problem aims at mathematical, or more often numerical simulations of
given physical processes like energy release from seismic source, propagation of
elastic waves, generation of electromagnetic signals at earthquake preparation
stage, to name a few. On the contrary, the inverse tasks aim at quantitative
description of process in hand. In this section we present the probabilistic approach
to inverse problems, actively developed and promoted by IGF PAS.

While the forward problems intend to explain the nature of phenomena at hand,
the inverse questions concern its precise and quantitative description. The simplest
answer to such tasks would be a direct measurement of a quantity we are interested
in. However, the capacity to carry out direct measurements is very limited in
geophysics (Tarantola 2005). In cases where we cannot directly observe given
parameters m we are interested in, we need to carry out an ‘‘indirect’’ measure-
ment. We measure another parameter d and using the forward modeling relation
(Eq. 1) try to infer information about the sought m.

Contrary to the forward problem, inverse tasks are quite often non-unique,
which happens frequently in the case of nonlinear multi-parameter inverse prob-
lems. Non-uniqueness means that there may be many different sets of parameters
m which will predict the same observational effect (Tarantola 2005). It can hap-
pen, for example, when the observational data contain no information about the
sought parameters or forward modeling results do not depend on the particular
parameters. In any case, some sought parameters remain unresolved by experi-
mental data. In such a situation, to obtain any solution we need to use an additional
piece of information, called a priori information. It allows to choose the desired
solution from the set of equivalent (from the observational point of view) models.

Let us consider the most often met inverse problem: a task of estimating
unknown parameters. To achieve our goal we need:
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• observational data
• a model (theory) which provides a theoretical prediction for any set of model

parameters
• a priori information (expectations) about the sought parameters

All three elements: the data, model and a priori expectations provide us with
some knowledge (information) about the problem. Experimental data tell us what
the ‘‘reality’’ is. The model (theory) is a kind of theoretical knowledge (infor-
mation) which allows us to predict the possible outcome of a given experiment.
Finally, the a priori expectations come from subjective experience, previous
experiments, knowledge accumulated during similar research and so forth. Thus,
solving the parameter estimation task we actually use the above-mentioned three
kinds of information and combine them into final a posteriori knowledge. Thus,
inversion can be regarded not just as a mathematical method of fitting parameters
to data but rather as a process of handling, accumulation and inference of pieces of
information. This generalization which is the corner-stone of the probabilistic
inverse theory (Tarantola 2005) allows to treat a variety of inverse problems like
parameter estimation, error analysis, discrimination among different theories
(models), planning new experiments and so forth in a homogeneous way.

Currently, the inverse theory faces now a new challenge in its development. In
many applications, the classical solution leading to an optimum ‘‘best data fitting’’
model according to a selected optimization criterion is no longer sufficient. We
need to know how plausible the obtained model is or, in other words, how large the
uncertainties are in the final solutions (Malinverno 2002; Debski 2010). Actually,
the necessity of estimating the inversion uncertainties within the parameter esti-
mation class of inverse problems is one of the most important requirements
imposed on any modern inverse theory. It can only partially be fulfilled within the
classical approaches. For example, assuming Gaussian-type inversion errors,
inversion uncertainty analysis can, in principle, be performed for linear inverse
problems (see, e.g., Zhdanov 2002), although in the case of large inverse tasks like
seismic tomography this can be quite difficult (Nolet et al. 1999; Yao et al. 1999).
On the other hand, in the case of non-linear tasks a comprehensive evaluation of
the inversion errors is usually impossible. In such a case, only a linearization of the
inverse problem around the optimum model allows the inversion errors to be
estimated, provided that the original nonlinearity does not lead to multiple solu-
tions, null space, etc. (see, e.g., Debski 2004). The probabilistic technique based on
the information inferring principle offers a very general, flexible and unified
approach outperforms any classical inversion technique in such applications.

2.2 Inverse Problem: A Probabilistic Point of View

As already mentioned, solving the inverse problem can be regarded as an inference
process in which available information is combined into the final, a posteriori
knowledge of the system. The strict mathematical formulation of this inference
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process has been proposed by Tarantola (2005) in terms of the probabilistic
language. The main points are the following.

Following the Bayesian interpretation of mathematical notion of probability, all
available information, including theoretical predictions, priori knowledge, and
posteriori one, can be represented by probability distributions (Tarantola 2005).
According to this reasoning, the solution of the inverse problem is not a single,
optimum model, but rather the a posteriori probability distribution. This makes the
most important difference with respect to the classical approach which casts the
inverse tasks into the optimization, parameter-fitting type problem. The crucial
point of this approach is the proper construction of the a posteriori probability
providing we have all necessary a priori observational and theoretical information.

Let us denote the data and model spaces by (D) and (M), respectively. These
are space of all possible values of the measurements (data space) and possible
values of the model parameters (model space) (Tarantola 2005). Let the forward
(modelling) task be described by the G operator acting between these two spaces
(Eq. 1), allowing calculation of observational effects (d) for a given model m.

d ¼ GðmÞ ð1Þ

Based on the Bayesian paradigm, each of the pieces of information we have in
hand about d, m, and G can be described by an appropriate probability density
functions (Tarantola 2005). We can join them using, for example, the Bayesian
theorem to get the a posteriori probability pðmjdÞ expressing our belief that the
true value of the thought parameters is m provided that we have measured the data
d and the relation between m and q given in Eq. 1 is subjected to some modeling
errors described by a conditional probability pðdjmÞ. It reads (Tarantola 2005)

pðmjdÞ ¼ k paprðmÞ pðdjmÞ ð2Þ

where k is the constant (normalization factor independent of m) and paprðmÞ is the
probability distribution describing the a priori information. The so-called likeli-
hood function pðdjmÞ being the conditional probability of predicting the data d
provided the model parameters are m is often taken in the form (Tarantola 2005;
Debski 2010)

pðdjmÞ ¼ exp �jjdobs � GðmÞjj
� �

ð3Þ

where dobs are data measured in the experiment.
Having defined the a posteriori distribution, the question is how to inspect it to

extract the required information. The point is that in most of practical cases the a
posteriori PDF is a complicated, multi-parameter function. Basically, there are two
different strategies to explore the a posteriori probability density function, either
by the evaluation of some point estimators or by the calculation of the marginal a
posteriori PDF distributions.

Selected Theoretical Methods in Solid Earth Physics 257



The first approach relies on calculation of some integrals, among which the
most popular are the lowest-order moments of the a posteriori PDF (Tarantola
2005; Debski 2010):

1. The maximum likelihood model

mmll ¼ max
m2M

pðdjmÞ; ð4Þ

2. The average model

mavr ¼
Z

M

m pðdjmÞ dm, ð5Þ

3. The covariance matrix

CPO
ij ¼

Z

M

ðmi �mavr
i Þðmj �mavr

j ÞpðdjmÞ dm: ð6Þ

If a more comprehensive description of pðdjmÞ is required, higher-order
moments can also be calculated (Jeffreys 1983).

The exhaustive description of the probabilistic inverse theory can be found, for
example, in an excellent book by Tarantola (2005).

2.3 Practical Applications: Examples

For a long time the probabilistic inverse theory was treated as an interesting
proposition of managing inverse problems but limited computational resources
prevented using it in real geophysical applications. Situation started to change with
a wide availability of high speed computers, and development of the very efficient
numerical techniques of sampling in multidimensional spaces (see, e.g., Debski
2010; Sambridge 1999). Here we describe a few examples of such applications.

One of the first real seismological task which has been addressed by probabi-
listic inverse theory is location of seismic sources (Lomax et al. 2000; Gibowicz
and Kijko 1994). In this problem we try to estimate the coordinates of hypocenter
and rupture time of a seismic source on the basis of the recorded seismic waves.
What probabilistic approach is bringing to the problem is an exhaustive and a
reliable evaluation of location uncertainties (see, e.g., Lomax et al. 2000;
Rudzinski and Debski 2012). It allows also a comprehensive analysis of efficiency
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and accuracy of different location techniques (Rudzinski and Debski 2012) and
seismic network sensitivity (Gibowicz and Kijko 1994). While in first applications
of the Bayesian technique the source location problem was solved by using
observed time onsets of given seismic waves, now it is possible to use the full
seismograms to enhance the location reliability or to locate events like volcanic
tremors, ice-quake tremors etc. (see, e.g., Larmat et al. 2008). The idea behind this
approach relies in two elements: using the time-reversal symmetry of the wave
equation to perform the back-propagation of the recorded signal (the so-called
time-reversal mirroring; (Fink 1997) and performing implicit sampling simulta-
neously with back-propagation of the recorded seismograms.

Another seismological analysis where probabilistic approach has been proved
to be very important is an analysis of kinematics of seismic sources including such
detailed tasks like energy release, rupture duration, static and dynamic stress drop
to name a few (Debski 2008; Kwiatek 2008). This, very fundamental seismolog-
ical task requires a very careful analysis of inversion uncertainties, because the
obtained results are being currently the only available observational information
on rupture physics. Thus, their interpretation in terms of physical models of
material failure is critically dependent on the inversion errors. Again, the proba-
bilistic approach provides tools for the reliable estimation of the final uncertainties
in the solutions found. Debski (2008) has managed to obtain the relative source
time function for mining induced events with magnitude between 2.4 and 3.0. He
has demonstrated that while the obtained source time functions suggested some
complexity of the rupture process and two modal energy releases, the analysis of
the a posteriori errors showed that such an interpretation has no justification.
Kwiatek (2008) performed a similar analysis to check weather the complexity of
calculated source time functions was only a numerical artefact or a reliable sig-
nature of the complexity of the rupture processes.

The maturity of the probabilistic inversion technique allows to apply the
method to large scale inversion problems like tomographic imaging of the velocity
heterogeneities at least in the regional or local scales (Debski 2013). Some first
attempts of the full seismic waveform inversion have also been recently under-
taken (Bodin and Sambridge 2009). In tomographic applications the possibility of
evaluation of the reliability of obtained results is again the biggest advantage of the
method. The fully nonlinear estimation of the a posteriori errors and their spatial
distribution possible in the framework of the approach significantly outperforms
other semi-quantitative methods based on various types of resolution tests (Debski
2013). Moreover, using the advanced techniques of exploring the a posteriori
distribution based on trans-dimensional sampling techniques (Green 1995; Bodin
and Sambridge 2009) allows to optimally adjust achieved spatial resolution to data
at hand.

The applications of the probabilistic inversion, as discussed above, were essen-
tially the classical parameter estimation tasks. What really brings the probabilistic
technique to this problems is the possibility of an exhaustive error analysis. How-
ever, the power of the method is most apparently visible when non-parametric
inversion tasks are concerned. One of such problems is discussed by (Debski and
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Tarantola 1995) in the context of the AVO (Amplitude Vs. Offset) prospecting
techniques. The question which authors posed and answered was whether the AVO
data can distinguish between different sets of physical parameters used equivalently
to describe the elastic medium. If so, which parameters are the best resolved by
seismic data? This is an example of the non-parametric inverse problem, where we
are interested not in an (accurate) estimation of numerical values of some physical
parameters, but we are comparing different relations between physical parameters.
The answer was, that in a wide angle refraction experiment the P-wave impedance
contrast and the Poisson’s ratio are best resolved by the data, while the density
remains unresolved. A similar problem has recently been addressed in the context of
verification of assumptions about characteristics of the a posteriori probability
functions constructed for time-reversal based location algorithm when statistic of
observational or/and modeling errors are unknown. None of these tasks can be easily
treated with the classical approach.

3 Rotational Waves and Asymmetric Theory of Elasticity

Classical theory of elasticity (Aki and Richards 1985) which describes the
behavior of the elastic material under a small external perturbation is the sym-
metric theory in the sense that the strain and stress tensors remain symmetric. Let
us denote by u a displacement field in the body and let xi be a set of Cartesian
coordinates xi = (x, yz). Than, the strain tensor for infinitesimally small defor-
mation u can be written down in the differential form (Aki and Richards 1985)

Ec
ij ¼

1
2

oui

oxj
þ ouj

oxi

� �
: ð7Þ

According to the constitutive relation, the deformation of the body described by
the strain tensor Eij

c is related to stresses acting on/within the body: any defor-
mation rises internal stresses and vice versa any external load causes deformation
of the body. In the case of perfectly elastic, isotropic and homogeneous medium,
this constitutive relation takes the form of Hook’s law

rij ¼ kdijE
c
kk þ 2lEc

jk ð8Þ

where rij is the stress tensor, dij stands for the Kronecker’s symbol, summation
over repeated indexes is assumed and k and l are two Lame’s parameters. This
relation is symmetric with respect to interchange of i and j indexes.

The wave equation describing the propagation of small disturbances can now be
obtained be equaling the total internal forces qrij/ qxi to the derivative of
momentum for infinitesimally small volume of body and reads (Aki and Richards
1985)
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q
o2ui

ot2
¼
X

j

orij

oxj
þ Fiðx; tÞ ð9Þ

where a source term Fi(x, t) describing external forces acting on the medium has
been introduced. The solution of this equation consists of two types of waves
called P and S waves propagating with constant velocities (Aki and Richards 1985;
Gibowicz and Kijko 1994)

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p

vs ¼
ffiffiffiffiffiffiffiffi
l=q

p
:

ð10Þ

These two types of waves differ essentially in the sense of movements of med-
ium’s particle through which waves are passing. In case of P waves, the particles
are moving parallel to wave propagation direction. In case of the S-waves, the
particle’s displacement is perpendicular to the wave propagation direction and the
waves can obviously have two perpendicular polarizations. From mathematical
point of view. the P-wave corresponds to the solution with null rotation, while the
S-wave is the solution with the null divergence. In this classical elastodynamics
any mechanical wave in an infinite elastic body can be described as a superposition
of these two waves.

However, as it has already been mentioned, the observations of damages caused
by earthquakes provide evidence on rotational movements connected with seismic
waves (Trifunac 2009; Zembaty 2009). Being inspired by this observation, Te-
isseyre and Gorski (2009) proposed another way of extending the classical elas-
todynamics towards the theory including rotational effects. The basic idea is to
split the total (observable) rotations and displacements into elastic and ‘‘internal’’
or self-field components connected with existing internal micro-structure of the
medium. This basic idea is implemented in terms of the shearing and rotational
stress tensors rather than the displacements like in the classical approach (Te-
isseyre and Gorski 2007) The idea of using stresses as the ‘‘elementary fields’’
instead of displacements (deformations) comes from observations that in the solid
continuum point transports and point rotations are actually non-important (rota-
tions can even be hardly defined at the continuum level) but an important role is
played by the deformations between neighborhood points, that is, the rotational
and shear stresses. We shall come back to this point latter on.

The main points of the theory are following.
Let us consider waves propagation in solids. The wave motion equations follow

directly from the derivatives of the classic Newton formula. Balancing all acting
forces within the body we obtain the equation of motion similar to those in the
classical elasticity theory. However, the deformation tensor E is now assumed to
have both symmetric and antisymmetric parts and in general can be decomposed
as follows
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Eij ¼ oui
oxj

; Eij ¼ EðijÞ þ E½ij� ¼ dij �E þ ÊðijÞ þ E
^

½ij� ð11Þ

where u is the displacement field, symbols (ij) and [ij] stands for symmetric and
antisymmetric parts of the appropriate tensors, �E ¼ 1

3

P

i
Eii describes the elastic

deformation part while Ê ¼ Eij � dij �E and E
^

are symmetric and antisymmetric
self-field deformations due to an internal micro-structure of the body. Similar
decomposition expressions for stress tensor can be easily obtained assuming linear
Hook’s law (Teisseyre and Gorski 2007). The resulting set of equation describing
propagation of seismic waves in the body reads

ðkþ 2lÞ
P

s

o2E
oxsoxs

� q o2E
ot2 ¼ 0

l
P

s

o2ÊðijÞ
oxsoxs

� q
o2ÊðijÞ

ot2 þ ðkþ lÞ 3 o2 �E
oxioxj
� dij

P

s

o2 �E
oxsoxs

� �
¼ 0

l
P

s

o2 E
^

½ij�
oxsoxs

� q
o2 E

^

½ij�
ot2 ¼ 0

ð12Þ

where the external force term was omitted. When considering only shear and
rotation strains (at constant pressure) we will obtain:

l
P

s

o2ÊðijÞ
oxsoxs

� q
o2ÊðijÞ

ot2 ¼ 0

l
P

s

o2E
^

½ij�
oxsoxs

� q
o2 E

^

½ij�
ot2 ¼ 0

ð13Þ

The interpretation of the above relation is that during an earthquake, or other
fracture process, a few mechanisms are activated. First seismic waves are gener-
ated following the release-rebound mechanism (see, e.g., Teisseyre 2011):
molecular bonds are breaking in the source area which leads to a release of rotation
and shear fields. They are subsequently converting each other: rotation generates a
shear field and vice versa, release of shears are generating rotation strains. Without
such a mutually combined system it is difficult to understand the related propa-
gation motions at least at meter scales (seismological) much larger than typical
scales for molecular dynamics.

A difference between the Classic and Asymmetric theories shortly sketched
above follows from the assumption that we have a simultaneous appearance of a
number of fields independently released; we admit an independent release of some
physical fields, e.g., shear strains or rotation strains, in an earthquake source.
Formally, these released fields might be expressed again by some displacements,
but such displacements do not exist in a continuum—we prefer to treat them as the
potential fields only. In fact the recording of the seismic waves, even very long,
means that we record only the deformation which becomes integrated during an
adequate time by a seismometer to reveal the displacement motion.
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The assumption about symmetricity of the observed tensors leads to the con-
straints on the symmetric and antisymmetric parts of the total stress and strain
tensors. Simplifying the problem one can say that the symmetric parts of tensors
can now be connected mainly to the translational deformations while the anti-
symmetric ones to the rotations of nuclei in the body. From seismological point of
view, the most important conclusion of the theory is that an existence of grains (or
other nuclei) within the crust (more generally some micro-structure) allows
propagation of rotational waves—an additional type of elastic waves not predicted
by the classical theory of elasticity.

The proposed antisymmetric elastodynamics is mathematically a very elegant
theory and it is already supported by seismological observations. However, its
importance goes much beyond seismology and is actually related to a very basic
principles underlying the continuum mechanics. Let us shortly discuss this point. Any
macroscopic, rigid body (when plastic effects, creeping, and similar non-elastic
effects are excluded) has six degrees of freedom: three translations and three rotation.
They are canonically connected to three components of the momentum vector and
moment of momentum, respectively. The continuum mechanics is built under the
assumption that a given medium can be described as a set of infinitesimally small
elements for which all forces can be balanced and this way the equation of dynamic
evolution is constructed. The limit of the infinitesimally small elements is necessary
to describe the medium dynamics in terms of differential equation. However, a way of
approaching this limit is by no means obvious. The classical approach leads to
disregarding the rotation and moment of momentum of such infinitesimally small
elements. In consequence, the strain and stress tensors becomes symmetric. The other
approach leads to micromorphic continuum mechanics (Eringen 1999). The asym-
metric theory discussed here is another attempt of dealing with this ‘‘limit problem’’
which could be applied at the seismological scales (1 m–1 km) without going to
microscopic scale of, for example, the micromorphic model of Eringen (1999).

4 Flow of Incompressible Viscous Fluids in Porous Media

The modeling of porous media and fluid flows through the media has a significant
role in the Earth sciences, i.e., geophysics, seismology, exploration of underground
resources or CO2 sequestration to name a few. The properties of permeability of
porous media and physics of volatile transport through the medium play a crucial
role in building of appropriate mathematical models to be used in practical
applications. For example, in seismology the pore fluids are known to be factor
very important in earthquake triggering. Secondly, exploration of natural resour-
ces, i.e., oil, gases, or geothermal heated water is related to flow through a porous
strata. Contamination transport is another example of an application of porome-
chanics. Last but not least, the underground acoustics describes wave propagating
in the uppermost part of the strongly water-saturated, porous, ocean-bottom sed-
iment layers.
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In continuum mechanics, there are at least two approaches of the description
and modeling of porous media. One approach is the phenomenological one
(Coussy 2004) whereas the other is based on a contemporary continuum micro-
mechanics and mathematical methods, based especially on the theory of asymp-
totic homogenization (see, e.g., Mikelic 2000). We use the second approach which
exploits micro-structure of the medium.

The main task of the description of the porous media is to determine the filtration
law, the classic example of which is the so-called Darcy’s law which states that

v ¼ �Kðrp� f Þ; ð14Þ

where v is the vector of fluid velocity. K is positive permeability coefficient (matrix
for anisotropic flows), p is a pressure and f are forces (gravitational, for example).

The homogenization method is particularly convenient to address this issue,
because it does not require any a priori knowledge of an infiltration mechanisms. It
follows from the suitable assumptions on the micro-structure of a porous skeleton.
Let us shortly discuss this task important for geophysical problems.

In seismology, it is important to study properties of one-phase fluid flow
through a porous medium, linearly deformable, i.e., liable to a small elastic
deformation. The presence of fluid is of importance here because it influences such
characteristics of the medium like seismic wave speed, intrinsic attenuation or
seismic wave anisotropy (see, e.g., Carcione 2001).

The fluid flow is governed by the non-stationary Stokes equation. In typical
geophysical applications the fluid can be assumed incompressible, the Reynolds
number is low and for simplicity the periodic micro-structure of the porous
skeleton can be assumed. In this case, the homogenization can be carried out in the
following way.

Let us denote by u ¼ uðx; tÞ and v ¼ vðx; tÞ the displacement vector of solid phase
and the velocity field offluid phase, respectively; the tensor of elastic properties of the
solid part is referred to as C, and FL and FS are forces of liquid and solid part,
respectively. Tensor e(u) is the symmetric gradient of the vector field u and reads

eðuÞ ¼ 1
2
ðruþruTÞ ð15Þ

or in the index notation

eijðuÞ ¼
1
2
ðoui

oxj
þ ouj

oxi
Þ: ð16Þ

The system of equations for fluid flow through an elastic skeleton now reads:

.S€ue ¼ r � CeðueÞ þ FS; x 2 XS
e ð17Þ

.L _ve ¼ e2gr � eðveÞ � rpe þ FL; x 2 XL
e ð18Þ
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r � ve ¼ 0; x 2 XL
e : ð19Þ

where g is the constant viscosity of the fluid. Here .S and .L are mass densities of
solid and fluid part, respectively. The small parameter e \\ 1 is used to charac-
terize the micro-structure of the reservoir X. In the process of homogenization, the
small parameters tend to zero and the asymptotic solution is obtained.

The reservoir occupied by porous medium X is divided onto two parts, XS
e and

XL
e . The subscripts S and L denote solid and liquid part of the reservoir X,

respectively. Interface between XS
e and Xe

L is denoted by Ce. For the solid part, the
equation of linear theory of elasticity is satisfied and in the liquid part the Stokes
equation of incompressible fluid is valid. The appropriate boundary and initial
conditions must be added according to a physical problem considered; for
example, we can assume that ue ¼ ve on the interface Ce. It means that in this case
the so-called non-slip condition is posed.

Homogenization means passing with parameter e to zero. The small parameter
characterizes the ratio of diameter (d) of periodic cell Y and diameter of reservoir
(D). Usually we set e ¼ d

D \\1. This method requires at least two scales, say
macroscopic denoted traditionally by x 2 X and the microscopic denoted by y ¼
x
e 2 Y ; where Y is the so-called periodicity cell.

Through homogenization of the Stokes equations we can obtain the effective
infiltration law and the dynamic equations for the poroelastic medium. The obtained
equations describing the non-local in time filtration law are much more general than
the Biot model providing important extensions and can be expressed in the form

vrelðx; tÞ ¼
1
qL

Z t

0

Aðt � sÞ FLðs; xÞ � .L€uðs; xÞ � rpðs; xÞ
� �

ds; ð20Þ

where A is the permeability tensor obtained from the solution of an auxiliary local
problem on the periodicity cell Y described by a set of equations:

.L _wðiÞðy; tÞ ¼ gDwðiÞðy; tÞ � ryqðiÞðy; tÞ þ ei in Y ð21Þ

r � wðiÞðy; tÞ ¼ 0 in Y ð22Þ

wðy; tÞ ¼ 0 on oY: ð23Þ

Then, the permeability matrix A(t) given by

AijðtÞ ¼
1
jY j

Z

YL

owðiÞðt; yÞ
ot

� ej dy ð24Þ

is symmetric and positive definite.
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The results of the study on porous media using homogenization theory, are
included in the papers, for example, by Bielski et al. (2001); Bielski (2005);
Bielski and Wojnar (2008); Telega and Bielski (2003).

Another important case is the two-phase fluid flow, i.e., dynamics of two
immiscible fluids in a porous medium. In this case, the flow is significantly
influenced by the presence of capillary forces at the interfaces between two fluids.

Modeling of hierarchical porous media appears to be of significance since over
20 % of the word oil reservoirs are found in rocks with double porosity properties.
Some of the first models were introduced by Warren and Root (1963). The issue of
description of the double-porosity properties can also be conveniently undertaken
using the homogenization method. In this case we assume two scales of rock
porosity. The results of this approach and modeling of double-porosity media may
be found in the paper by Bielski and Wojnar (2008).

Porous media frequently exhibit a random micro-structure. Thus, it is crucial to
derive a stochastic model of the media. The book by Torquato (2002) summarizes
the results of finding effective quantities for the media with random micro-struc-
tures. In the paper Telega and Bielski (2003) various approaches to micro-macro
passage for random porous media were reviewed. The results obtained by stochastic
homogenization are very similar to those obtained for periodic micro-structures and
the macroscopic filtration law (generalized Darcy’s law) is expressed as

EðvFðv� _uÞÞ ¼ 1
.L

Z t

0

Aðt � s;xÞ FLðs; xÞ � .L€uðs; x;xÞ � rxpðs; x;xÞ
� �

ds; ð25Þ

where E() means the expected value over the probabilistic space and x is an
element of this space. The permeability matrix is defined by

Aijðt;xÞ ¼ EðvFðxÞ _wðiÞðt;xÞ � ejÞ; i; j ¼ 1; . . .; n; ð26Þ

where ej denotes the jth standard basis vector in R
n. The matrix Aij is symmetric

and positive definite. The functions wðiÞ; qðiÞ are solutions to the following flow cell
problem:

.L owðiÞ

ot
þrxqðiÞ � grxwðiÞ ¼ ei on ð0; sÞ � F; ð27Þ

rx � wðiÞðt;xÞ ¼ 0 on ð0; sÞ � F ð28Þ

wðiÞðt;xÞ ¼ 0 on ð0; sÞ � CðxÞ: ð29Þ

The details on this stochastic calculus and results obtained are discussed by
Telega and Wojnar (2007). Finally, let us note that the study of porous media has
become an interdisciplinary area and the range of scientific and engineering
applications of the poro-mechanics is still increasing.
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5 Conclusion

In this chapter we have presented some selected elements of theoretical, data
processing, and mathematical tasks which appear in various aspects of the solid
Earth physical analysis emphasizing contributions of authors to their formulation,
development and applications. The selection is by no means complete and many
important elements have been obviously omitted. We made it keeping in mind first
of all our personal competence in their description and secondly trying to make the
review logically consistent and concise. Some of the presented techniques are
further discussed in more depth in other chapters of this book.

The selected topics illustrate the broad range of a scientific activity undertaken
and continuing at the IGF PAS with respect to the solid Earth problems. They
cover advanced mathematical methods, an attempt of building more realistic
physical models of wave propagations, and finally the advanced technique of
observational data analysis. This three elements form a kind of a ‘‘full chain’’ of
methods used for solving problems at hand. Such an approach, always visible in
IGF PAS activity, is motivated by two complementary factors. Firstly, by the fact
that all research activity we undertook in the past and are also addressing today
always refers to real problems met by seismology and physics of the Earth and all
the elements mentioned above are usually necessary. The second factor is con-
nected to different personal attitudes of researchers towards mathematics, theo-
retical physics, observational data analysis, and so on. The topics covered in this
chapter are just illustration of these facts.
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