

S. Omatu et al. (eds.), Distributed Computing and Artificial Intelligence,
11th International Conference, Advances in Intelligent Systems and Computing 290,

295

DOI: 10.1007/978-3-319-07593-8_35, © Springer International Publishing Switzerland 2014

Building Scalable View Module
of Object-Oriented Database

Haeng-Kon Kim1 and Hyun Yeo2

1 School of Information Technology, Catholic University of Daegu, Kyungbuk, 712-702, Korea
hangkon@cu.ac.kr

2 Dept. of Information and Communication Engineering, Sunchon National University,
Suncheon, Jeollanam-do, Republic of Korea

yhyun@sunchon.ac.kr

Abstract. Many researchers and developers have studied object-oriented
relational database management systems (ORDBMS) in the past ten or so years,
few have published their results that reveal the inside workings of an
ORDBMS. Leading database software companies integrated object-oriented
features in their DBMS products only recently. These companies do not make
the technical core of their products public. Most academic researchers, on the
other hand, have worked on ideas, methodologies and analysis of ORDBMS,
but few have shown the database engine of a working system. This paper
presents a propotype ORDBMS engine that supports objects in databases,
including user-defined types, inheritance, and polymorphous method
invocaiton. Although a prototype, it is implemented in Java, fully functional
and can be extended should additional modules be added in the future. The
system is composed of three major components: the query-command module,
the view module, and the database module.

Keywords: Object-Oriented Relational Database Management, User Friendly
Interface, Inheritance, View Module, Searching Engine, Self-diagnosing,
Agent, Ubiquitous computing, CBE (Common Base Event), Crop Production
Agent Systems.

1 Introduction

Object-oriented database, as one of the latest developments in the database area, has
been widely studied in the past decade [2-16]. One of the primary methods used today
for object-oriented databases is the object relational model, which is an extension of
the relational model. In object relational model, attributes of objects can be of user-
defined types such as chunk/stream, set, nested/reference attributes, as well as the
primitive types. In addition, new data types and tables can be defined and created by
inheriting from existing ones that also supports polymorphous method invocation.
As an example, let's say that we want to create audio and image associated with
person objects in a human resource database. Using the object relational model, the
person table can be defined as

296 H.-K. Kim and H. Yeo

CREATE TYPE media FROM chunk (length: integer);
 CREATE TYPE audio FROM media;
 CREATE METHOD play FROM
 { /home/media/audio/play.class } INTO audio;
 CREATE TYPE image FROM media;
 CREATE METHOD display FROM
 { /home/media/image/display.class } INTO image;
CREATE TABLE person (ssn: text, name: text, salary: num-
ber, face:image, voice: audio);

In this design, chuck is a primitive type (a stream of bytes) and the play/display meth-
ods are Java bytecode in the specified directory. Note that both the types audio and
image inherit from media type, each having its own method for playing the audio or
displaying the image. Now, we can query the database like this:

SELECT name, face.display() FROM person
WHERE salary < 30000 and voice.length < 5K;

This example illustrates some of the important aspects of object relational databases,
such as creation of new types, inheritance, and method calls.

In this paper, we investigate problems in the design of database management sys-
tems in our research endeavor, object-oriented database management systems
(ORDBMS) in particular, and present a database engine that support OO databases.
Object-relational database management system is a database system that extends the
capability of relational database management system (RDBMS) to provide richer data
type system and object orientation. The extension attempts to preserve the relational
foundation of RDBMS while providing more modeling power. During the past sever-
al years we had built some prototypes using C++ as the implementation language but
it appeared that some of the features that were supposed to be supported by ORDBMS
were quite difficult to realize using C++. Problems particularly troublesome were the
handling of pointers in nested and reference attributes as well as methods applied to
multimedia objects in the database. In early 1998, we switched to Java [1] in our im-
plementation. It turns out that Java and ORDBMS fit extremely well. Java provides
straightforward support for multimedia object handling, secure object referencing, and
elegant inheritance mechanism. We have designed an ORDBMS engine and imple-
ment it in Java. A simple user interface was also developed for testing the database
engine.

The architecture of the ORDBMS consists of three major components:

• Database module: providing the main concepts and related object classes needed to
deal with the manipulation of database schema and low-level data storing and
retrieval.

• Query-command module: processing user’s query and other actions, providing
mechanism to support commands at the language level (like “Statement”
and ”ExecuteQuery” in JDBC).

 Building Scalable View Module of Object-Oriented Database 297

• View module: providing the main concepts and related object classes used to sup-
port the mechanism of attribute referencing, expression composition, projection,
filtering, and joining.

The overall architecture is shown in Fig. 1.
We will describe each of the three components in the next sections, along with the

Java API class hierarchies. In this paper, class names are in italic and start with capi-
tal letters.

2 Database Module

This is the lowest level component of the ORDBMS, i.e. it is the module directly
interacts with the database. It processes the database schema and stores the metadata
in internal tables, which are also known as "catalogs". It also manipulates the storage
and retrieval of data in the database. The database module provides the functionality
to support various kinds of data types in a uniform way. These data types include
reference, set, nested field, chunk (raw stream of bytes for image, audio and video
data), and method, in addition to the built-in types such as integer, float, boolean, text,
and chunk. The major object classes in this part of the ORDBMS are: Database,
DataType, MethodInfo, TableDef, FieldDef, Record, Attribute, RecordSet, Table,
TableRecord, and Field. These Java classes (and some classes in other modules) are
organized in several groups whose hierarchies are as shown in Fig. 2 below. These
class hierarchies are only a part of the architecture of our system.

Fig. 1. Overall architecture of the ORDBMS

In the next several subsections, we discuss the major classes of the Database module.

298 H.-K. Kim and H. Yeo

2.1 The Database Class

This is the core class that represents the logical concept of a database system. The
Database object handles the schema; persistently keeps, manipulates, and provides
information about the database, and controls the internal works of the system such as
file access control. For example, when the user adds a new type to a database, the
information of the new type is stored and all of its references are resolved within the
Database object. The main function of the methods in this class includes:

• Create a new or open an existing database. If an existing database is opened, the
Database object loads the schema information (definitions of tables, fields, and
methods).

• Add and drop table/field/method definitions.
• Close a database.
• Read and write database files.

Fig. 2. Class hierarchy

The Database object uses TebleDef and FieldDef objects to maintain the schema
information for object values (expressions, constants, operators, etc.), classes for rec-
ords of database tables, and classes for method attributes. Because a user-defined type
may describe objects with multiple attributes, it is treated the same way as tables in
the database.

Fig. 3. DataType and TableDef objects inside Database

 Building Scalable View Module of Object-Oriented Database 299

2.2 The DataType Class

In our system, all data types (built-in or user-defined) are represented using DataType
objects. A DataType object contains a type name and a reference to the parent type,
which may be null. Treating data types uniformly using the same discipline makes the
design clean and more manageable.

When a Database object is created, it is initially empty. Once the initialization
process is done, a set of DataType objects are created automatically within the Data-
base object to present the built-in data types such as integer, real, text, boolean,
chunk, etc. The parent type of each of the built-in types is null. Later, when a user-
defined type is created, it is processed and maintained by the Database object. There
are two kinds of user-defined data types. One is a stream of chunk type. A DataType
object can directly represent this kind of type because it does not contain more infor-
mation than that in a DataType object. The other kind of data type is structured type,
such as a person or an employee. It should be clear that a structured type is simply a
table definition in a database. An elegant way to support such structured types is to
derive a new class (TableDef) from the DataType class.

2.3 Table Definition and Tables

Whenever the user defines a type, he/she is defining a table structure. A TableDef
object contains more information than its parent DataType. It represents the definition
of a table, which includes the descriptions of all the fields (attributes) of the table.
The field definitions are represented by FieldDef objects, which will be described in
the next section. Additional information stored in a TableDef object includes the loca-
tion on the disk to store the data and a set of field definitions. Conceptually, the user
always define a type by creating a TableDef object and added it to the Database ob-
ject, which maintains the type like any other TableDef objects. Persistence of these
types is also guaranteed by Database. Fig. 3 shows the DataType and TableDef
objects within the Database.

Once a TableDef object and the relevant FieldDef objects are created and added to
Database, actual data can be stored in a Table object according to the definition of the
table. A Table object acts as an agent between the user and the data storage, as shown
in Fig. 2. It handles the overall operations of a table, such as adding or deleting a rec-
ord. It also controls the movement of the current record. Because the complexity of
the kinds of records in tables, storing and retrieval of various kinds of records should
be left to other classes specifically designed to handle records and their fields.

2.4 Field Definition and Fields

When we create a table definition, we must define its field definitions first. A
FieldDef object can be created for this purpose that can be easily added to the
TableDef object. The important information of a field definition includes the name of
the field, its type (reference to a DataType object), size, and kind. In our system, there
are three kinds of fields: a simple type, a nested or a set type. A nested field is very

300 H.-K. Kim and H. Yeo

similar to having a structure variable inside another structure variable in C++ or Java.
When a nested field is accessed, we go though each individual element in the field.
This will lead to accessing to another nested field. This process continues (recursive-
ly) until all elements in the "current working field" are of simple types. For set fields,
it is like a table nested inside another table, because what we obtain for accessing a set
field is a table (set of records). Fig. 4 shows an example of nested and set fields.

Fig. 4. An example of nested and set fields

To keep track of the data type of the fields is the task of FieldDef objects. All built-
in types and user-defined stream/chunk types are simple types; all other user-defined
types are either nested or set fields.

As stated in the previous section, a Table object can be created for storing and re-
trieval of data after TableDef and relevant FieldDef objects are added to the schema.
The Table object only handles the overall operations of a table; it leaves the specific
operations to the records in the table to the classes TableRecord and Field. A
TableRecord object is given the information about the type and size of the record, and
performs the required action to it. Also, it provides a pathway to invoke methods as-
sociated with the record.

When a TableRecord object performs operations to a record, it also relies on an-
other object (the Field object) to deal with individual fields. The Field class defines
the interface for the TableRecord object working with the fields in the table. For ex-
ample, when a TableRecord reads data from storage and brings it to memory, it will
repeatedly call the load() method of each Field object to retrieve and interpret the
data.

Because the fields may be of many different types, we choose to make the Field
class an interface for TableRecord to interact with the fields. The TableRecord object
does not need to care about the field it is dealing with because all fields have the same
interface. For the various kinds of types, we create a set of field derivatives
(TextField, ChunkField, nestedField, SetField, etc., as shown in Fig. 2) that are de-
rived from the Field class. When a new data type is created for a field, the Field and
TableRecord classes need no change.

The ChunkField class represents a chunk of data, normally BLOB (Binary large
Object) or CLOB (Character large Object), as found in many commercial DBMS.
The data of ChunkField is variant in size and generally very large. As do many com-
mercial DBMS, we use external files to store the filed data. Each such file is given a
unique name by combining file name with the table name. It is also given a unique ID
that is stored in the record of the table.

 Building Scalable View Module of Object-Oriented Database 301

The NestedField class represents a field of a structured data type that contains oth-
er types. Because the structured data type is also a TableDef, the NestedField object
maintains an internal Table object for the database table that is automatically opened
for access when the nested field is being accessed. Whenever the value of the table is
accessed, the record (TableRecord object) of the internal table is returned. From then
on, the DBMS programmer can go further to the deeper fields in the same manner. A
nested field maintains a pointer pointing to a record by using the OID (Object Identi-
fier) of the record. The record ID maps to the location of the record in the data stor-
age. Fig. 5 illustrates how NestedField works with OID.

Fig. 5. Access to a nested field using OID

The SetField class is designed to handle a field that may contain a table. That is,
the value of this field is a table (set of records). For example, we may have a table
called Student that contains all students. Then, we can create a table called Class-
Room to keep track of classrooms. This table has a set field called “students” that
contains the set of students who attend the class in the particular classroom. This sub-
table obtained from this field may not contain all the students in the Student table.
Moreover, the sub-tables may have duplicates because a student may attend multiple
classes. For this reason, we maintain a list of pointers pointing to the original data
table. The list of pointers is by itself also a table. So, we create another class called
IndirectTable that is derived from the Table class. An IndirectTable object is treated
just like any other Table object. The only thing special about IndirectTable is that it
handles pointers.

2.5 Method Definition and Method

ODBMS allows users to create and associate methods with user-defined data types.
When a method is created for a type, a method_def object is created, which contains
the name of the method, its return type and kind (nested, set, or simple), and the
method code itself in the form of a Method object. It is then added to a DataType or a
TableDef object the method belongs to. There are two kinds of methods: table method
and chunk method. A table method is a method that works on the record basis, and is
always associated with a TableDef. When such a method is called, there is always a
current table record ready to be accessed for the method. A chunk method works on a
byte stream field. It is associated with a user-defined stream/chunk data type. This
kind of methods interprets the byte stream as the user defines, mostly for images,
audio, or video streams.

302 H.-K. Kim and H. Yeo

Two classes are provided for the two kinds of methods: Tablemethod and
ChunkMethod. They are derived from the Method class. The Method class, which is
an abstract class, defines only the basic interface for a method definition implemented
by the DBMS programmer. TableMethod class defines more specific interface needed
to work on the record basis, whereas ChunkMethod defines an interface for working
with byte stream. With this design, a method_def object can contain (refer to) a
method by having only a reference to a Method object, which is a general form of
both TableMethod and ChunkMethod.

The DBMS programmer can create a method by creating a Java class that inherits
from with TableMethod or Chunkmethod, but not from the Method class (it is ab-
stract). When the Java class file is created, the DBMS programmer can ask the
db_scheme object to associate it with a particular table or a data type. Instantiation of
an object for such a method (so that the method can be called) is done through Java’s
dynamic class loading.

3 View Module

The second layer of the ORDBMS is the View module. It provides all the necessary
classes so that the ORDBMS programmer can create objects corresponding to the
various components in the SQL query issued by the user and constructs an execution
plan.

As we have known in relational databases, a view is a result of an SQL query,
which is also a table. But may DBMS do not store an actual table for the view; rather,
it stores the SQL query itself. When we activate a view, the SQL query is fetched and
executed and the result is returned. In this sense, a view is just an SQL query. The
data source, from which the data is retrieved for an SQL query, can be either tables
(data are actually stored) or other SQL queries (hence nested views).

Fig. 6. The Value class hierarchy for values in SQL queries

 Building Scalable View Module of Object-Oriented Database 303

The View module contains classes that handle "values" in an SQL query, including
expressions (that in turn contains constants, operators, attribute references, methods,
etc. The class hierarchy is shown below in Fig. 6.

3.1 The View Class

The View class is designed to represent an SQL statement, which in general contains
three major parts: an expression list (or field list), a data source list, and a condition.
These three parts correspond to the SELECT, FROM, and WHERE clauses of an SQL
statement. The condition in the WHERE clause is just an expression but it must be a
boolean.

A View object does not have its own data; rather, it relies on the data source that
may be Tables or other Views. It creates a temporary table containing the positions
(or OIDs) of the records in the Table/View data source that satisfy the condition.
These positions are generated by applying the condition to each record while the View
object iterates through the record set. Once the temporary table is generated, the
View object just uses it as the underlying data source. Each View object maintains an
internal “current record pointer” that points to a row in the temporary table. This
row is by itself another pointer. Hence nested views can be easily handled as a
pointer chain. The lowest level of View has pointers pointing to the actual records
in the data source. This implementation of View using pointer chain is called "rec-
ord reflection" mechanism that provides some benefits. First, there is no need for
large storage space to generate a View. Second, it is fast to access the actual data
because only positions belong to the View are kept. Third, any updates made to the
underlying record sets are reflected through the View immediately. For example, if a
underlying record is deleted, we simply break the reflection chain by null the pointers
in the View's temporary table, as shown in Fig. 7.

Fig. 7. Deletion of an underlying record in a View via record reflection

3.2 The ViewRecord and Expr Classes

ViewRecord is designed pretty much similar to TableRecord, they both represent rec-
ords in a table. The difference is that ViewRecord objects do not provide data storing
capability so that view is always read-only because the result of a view can come
from many places (from expressions, join of tables, other views, etc.). The main func-
tion of ViewRecord is to manage the data obtained from "somewhere" to yield results
of the expressions in a list the view is maintaining. In fact, the implementation of

304 H.-K. Kim and H. Yeo

View has an internal Table object to work with the temporary table, whereas the
ViewRecord does not deal with the temporary table at all. The ViewRecord is used
primarily for simplifying the expression validation process to be consistent with the
process handled by TableRecord.

An expression can be anything that yields to a value. It can be a constant, a field, a
method call that returns a result, or a combination of these. The classes in the Value
hierarchy (see Fig. 6) provide all the necessary methods to evaluate an expression in a
uniform way. We will discuss several of these classes that are particularly important
for the object-oriented DBMS, including AttributeReference, MethodReference and
MethodReferenceInvoker.

3.3 The AttributeReference Class

Recall that fields in an expression may come from different data sources. Each of the
data sources has its own internal structure. In order to refer to fields in a uniform way,
we use references. One of the commonly used fields is attribute that is represented by
AttributeReference. Because the object referenced may be some other Attribute Refer-
ence or MethodReference, the getAttribute method of this class recursively calls itself
until an Attribute object is reached. From the user's point of view, there is no need to
go through the reference chain to get the attribute; rather, the user just calls
getAttribute and get the target attribute. Using reference also eliminates the need to
distinguish field and expression that are encapsulated in the AttributeReference object.

3.4 The MethodReference and Method Reference Invoker Classes

MethodReference works in the same ways as AttributeReference in the sense that it
can also go to several levels due to, for example, inheritance. It refers to a record
(Callable record) of which the method is called:

public method MethodReference extends Valuereference {
.....
 public Object call(Object[] args) throws Exception {
 try {
 Callable caller = di-
rect ?((RecordSet)source).getRecord():(Callable)((ExprFac
tor)source).getValue();
 return caller.call(MethodName, args);
 }
 }
}

To certain degree, it is like Class.getMethod() in Java, which gives you a reference
to a method. When actually calling a method (may or may not have parameters), we
use a MethodReferenceInvoker object that encapsulates a MethodReference object
with a set of parameters (maybe an empty set):

 Building Scalable View Module of Object-Oriented Database 305

public method MethodReferenceInvoker extends Exprfactor {
 private MethodReference mref;
 private Object[] realArgs;

 public Object getValue() throw Exception {
 return mref.call(getArgs());
 }

}

The following figure shows the relationships of the classes related to the concept of
reference.

Fig. 8. Attribute and method references

4 Query-Command Module

The highest layer of the database engine is the Query-Command layer that processes
SQL-like commands. Three kinds of user input are allowed:

• DDL (Data Definition Language) commands: These commands involve database
tables at the schema level. The classes that implement these commands return
nothing but will throw an exception if the desired operation fails. These commands
are the CERATE command that defines a schema of a table and the DROP com-
mand that removes a table from the database.

• DML (Data Manipulation Language) commands: These commands are for access-
ing the database, including SELECT, INSERT, UPDATE DELETE, etc. Nested
queries are supported by the mechanism of view.

• System commands: The user can use these commands to find out the metadata
about the database tables. They are the LIST command that displays the types and
tables in the database, and the DISPLAY command that displays the internal cata-
log information about the schema.

This module supports a modified version of the SQL syntax using an LL(1) parser,
which is driven by a set of grammar rules defining the syntax. This part of the
ORDBMS is responsible for processing user’s SQL-like queries and commands. We
designed a CmdProc class to be a center place where all semantic actions for handling
an SQL command are triggered, as shown in Fig. 9.

306 H.-K. Kim and H. Yeo

Fig. 9. The architecture of SQL processing

The SQL-like syntax includes all the CREATE, DROP, SELECT, UPDATE,
DELETE, etc. statements. In addition, it uses the traditional dot-notation to access or
refer to fields and methods of tables. Here are some examples:

supervisor.address.city
emp.IncreaseSalary(0.05)
student.getDepartment().chair.name

The ODBMS allows a nested field to be treated as a whole. For example, it can be
assigned to the field of another object at once. Because we use internal pointers for
nested fields, this task is quite straightforward. We use the reserved word ref to be the
reference operator in the SQL statement. For example, assume that we have a table
called Order that has a field called cust that is of the type Customer. We can write the
following SQL statement to insert into the Order table a record that has order_no
0002 by the customer who has placed an order of order_no 0001:

INSERT INTO Order(order_no, cust)
VALUES (‘0002’, ref(SELECT cust FROM Customer WHERE or-
der_no = ‘0001’);

Moreover, the ref operator can also be used to reference to an object or a record of a
table:

UPDATE Order
SET cust = ref(SELECT * FROM Customer WHERE ssn = ‘123-
45-6789’)
WHERE order_no = ‘0002’;

The only requirement of the ref operator is that the sub-query to must yield one rec-
ord.

Nested tables are handled in a similar way, except that it uses a the operator rather
than ref operator, as shown in the following example:

SELECT *FROM the(SELECT students FROM ClassRoom WHERE in-
structor = ‘Dr. Berry’);

There are some other syntax details for the testing SQL-like query language.

 Building Scalable View Module of Object-Oriented Database 307

The CmdProc class also provides methods to shield the details of processing an
SQL statement so that the DBMS programmer can directly pass the SQL statement as
a string parameter to the method to carry out the execution, very much like the
ExecuteSQLStatement method in Java JDBC.

5 Experimental Examples

To show how the Java ODBMS API works, we creates a "shell" ODBMS with a sim-
ple GUI. The ODBMS and all the Java classes in the API are written for JVM 1.2 or
JVM 1.1.7 with JFC support. This shell ODBMS simply receives an SQL command
from the user and passes it on to the command processor. The result (if any) of the
command is then displayed. In the following Fig. 10, we show a few snapshots to
illustrate user-defined types, table inheritance, and polymorphous method call. The
explanations are given along with the snapshots.

Fig. 10. Three tables: Media, Music, and Video are created. Media is the base class of the
other two. The derived tables just add only additional field(s) they need.

6 Summary

In this paper, we presented a prototype of an ORDBMS database engine that is im-
plemented in Java. The design is a 3-layer architecture composed of the Database,
View, and Query-Command modules. The database engine is totally self-contained,
relying on no other tools except the JDK. An SQL-like query language is formally
defined and the handling of the data in the database tables is at the physical storage
level. The Database module handles the schema and access methods of the data, as
well as user-defined types and methods. The View module is responsible for the anal-
ysis and evaluation of expressions/fields/attributes/methods in the user's query. The
Query-Command module parses and processes user's queries.

The database engine is for object-oriented databases and hence supports objects
(chunk, structured, set, ref, etc.) and methods as attributes in a table. It also supports
inheritance and polymorphism. The prototype contains over 200 Java classes and
interfaces with over 1,000 methods. A media database is used to test the ORDBMS
and it works as expected.

308 H.-K. Kim and H. Yeo

We did not discuss much in detail about the implementation of polymorphism in
method calls, which is basically a chain of references with OIDs associated with the
objects along the chain.

We are currently study some other aspects of ORDBMS, including object indexing
and optimization of query execution.

Fig. 11. Methods are associated with data types and tables. In this screen, method play() is
created for audio and video data types that were created before (not shown), and method
display() is created for Media, Music, and Movie table.

Fig. 12. The method play() is called from the field clip of Music table. And then, the
method display() is also called on Movie. The results are both having music and movie
displayed on the screen.

Acknowledgments. "This research was supported by the MSIP (Ministry of Science,
ICT and Future Planning), Korea, under the CITRC (Convergence Information Tech-
nology Research Center) support program (NIPA-2013-H0401-13-2008) supervised
by the NIPA (National IT Industry Promotion Agency)".

 Building Scalable View Module of Object-Oriented Database 309

“This research was also supported by the International Research & Development
Program of the National Research Foundation of Korea (NRF) funded by the Ministry
of Science, ICT & Future Planning(Grant number: K 2012057499)”.

References

1. Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision sup-
port in the diagnosis of leukemia patients. Artificial Intelligence in Medicine 46(3), 179–
200 (2009)

2. De Paz, J.F., Bajo, J., López, V.F., Corchado, J.M.: Biomedic Organizations: An intelli-
gent dynamicarchitecture for KDD. Information Sciences 224, 49–61 (2013)

3. Rodríguez, S., de Paz, Y., Bajo, J., Corchado, J.M.: Social-based planning model for
multiagent systems. Expert Systems with Applications 38(10), 13005–13023 (2011)

4. Bajo, J., De Paz, J.F., Rodríguez, S., González, A.: Multi-agent system to monitor oceanic
environments. Integrated Computer-Aided Engineering 17(2), 131–144 (2010)

5. De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Mathematical model for dynamic
case-based planning. International Journal of Computer Mathematics 86(10-11), 1719–
1730 (2009)

6. Corchado, J.M., Bajo, J., De Paz, J.F., Rodríguez, S.: An execution time neural-CBR guid-
ance assistant. Neurocomputing 72(13), 2743–2753 (2009)

7. Závodská, A., ŠRamová, V., Aho, A.M.: Knowledge in Value Creation Process for In-
creasing Competitive Advantage. Advances in Distributed Computing and Artificial Intel-
ligence Journal 1(3), 35–47 (2012)

8. Satoh, I.: Bio-inspired Self-Adaptive Agents in Distributed Systems. Advances in Distrib-
uted. Computing and Artificial Intelligence Journal 1(2), 49–56 (2012)

9. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD-Approach for developing Perva-
sive Systems based on Service-Oriented Multi-Agent Systems. Advances in Distributed
Computing and Artificial Intelligence Journal 1(6), 55–64 (2013)

10. Khoshafian, S., Dasananda, S., Minassian, N., Ketabchi, M.: The Jasmine Object Data-
base: Multimedia Applications for the Web. Computer Associates International (1998)

11. Kim, W.: Introduction to Object-Oriented Databases. MIT Press, Cambridge (1990)
12. Larson, J.A.: Database directions: from relational to distributed, multimedia, and object-

oriented database systems. Prentice Hall, Upper Saddle River (1995)
13. Lejter, M., Meyers, S., Peiss, S.P.: Support for maintaining object-oriented programs.

IEEE Transactions on Software Engineering 18, 1045–1052 (1992)
14. Saracco, C.M.: Universal database management: a guide to object/relational technology.

Morgan Kaufmann Publishers, San Francisco (1998)
15. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 3rd edn. McGraw

Hill (1997)
16. Tesler, L.G.: Object-oriented approach. Communication of the ACM 34(8), 13–14 (1991)

	Building Scalable View Module of Object-Oriented Database
	1 Introduction
	2 Database Module
	2.1 The Database Class
	2.2 The DataType Class
	2.3 Table Definition and Tables
	2.4 Field Definition and Fields
	2.5 Method Definition and Method

	3 View Module
	3.1 The View Class
	3.2 The ViewRecord and Expr Classes
	3.3 The AttributeReference Class
	3.4 The MethodReference and Method Reference Invoker Classes

	4 Query-Command Module
	5 Experimental Examples
	6 Summary
	References

