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Abstract. As many whole genomes are sequenced, comparative ge-
nomics is moving from pairwise comparisons to multiway comparisons
framed within a phylogenetic tree. A central problem in this process is
the inference of data for internal nodes of the tree from data given at the
leaves.When phrased as an optimization problem, this problem reduces to
computing a median of three genomes under the operations (evolutionary
changes) of interest. We focus on the universal rearrangement operation
known as double-cut-and join (DCJ) and present three contributions
to the DCJ median problem. First, we describe a new strategy to find
so-called adequate subgraphs in the multiple breakpoint graph, using a
seed genome. We show how to compute adequate subgraphs w.r.t. this
seed genome using a network flow formulation. Second, we prove that
the upper bound of the median distance computed from the triangle
inequality is tight. Finally, we study the question of whether the median
distance can reach its lower and upper bounds. We derive a necessary
and sufficient condition for the median distance to reach its lower bound
and a necessary condition for it to reach its upper bound and design
algorithms to test for these conditions.
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1 Introduction

The combinatorics and algorithmics of genomic rearrangements have seen much
work since the problem was formulated in the 1990s [1]. Genomic rearrange-
ments include inversions, transpositions, circularizations, and linearizations, all
of which act on a single chromosome, and translocations, fusions, and fissions,
which act on two chromosomes. These operations can all be described in terms
of the single double-cut-and-join (DCJ) operation [2, 3], which has formed the
basis for most algorithmic research on rearrangements since its publication [4–9].
A DCJ operation makes two cuts in the genome, either in the same chromosome
or in two different chromosomes, producing four cut ends that it then rejoins,
giving rise to three possible outcomes.

A basic problem in genome rearrangements is to compute the edit distance
between two genomes, i.e., the minimum number of operations that are needed to
transform one genome into another. Under the inversion model, Hannenhalli and
Pevzner gave the first polynomial-time algorithm to compute the edit distance
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between two unichromosomal genomes [10]; a linear-time algorithm for the same
problem was later designed [11]. Under the DCJ model, the edit distance can also
be computed in linear time, this time for two multichromosomal genomes [2]. The
median problem is a generalization of the edit distance: given three genomes, we
want to construct a fourth genome, the median, that minimizes the sum of the
edit distances between itself and each of the three given genomes. The median
problem is NP-hard for almost all formulations [12, 13]. Under the inversion
model, several exact algorithms [14, 15] and heuristics [16, 17] have been pro-
posed. Under the DCJ model, Zhang et al. presented an exact solver using a
branch-and-bound framework [18]. In [19], Xu et al. proposed a decomposition
scheme that preserves optimality by using adequate subgraphs, particular sub-
structures of the multiple breakpoint graph [20]. Later, Xu produced the ASMe-
dian software to implement a median search based on adequate subgraphs using
an optimistic branch-and-bound search [21]. ASMedian uses a precomputed set
of small adequate subgraphs; at each step, it tests whether the current multiple
breakpoint graph contains a subgraph from that set.

We propose a new strategy to find adequate subgraphs in the multiple break-
point graph, based on a seed genome. We give a polynomial-time algorithm to
decide whether there exists an adequate subgraph w.r.t. this seed genome (and
to identify such a subgraph if one exists) using a network flow formulation.

The DCJ median distance (the sum of the distances of the given genomes
to their median) can be lower- and upper-bounded using the sum of the three
pairwise DCJ edit distances among the three given genomes. The lower bound
was recently proved to be tight [22]. We show that the upper bound is also tight.
Moreover, we give testable characterizations of the equality problem: for a given
instance, is the median distance equal to its upper or lower bound? We give a
necessary and sufficient condition for equality with the lower bound—the nec-
essary condition can be tested using a dynamic programming formulation—and
we give a necessary condition for equality with the upper bound, a condition
that can also be tested effectively.

2 Preliminaries

We assume that each genome consists of the same set of n distinct genes and
that those genes form one or more circular chromosomes in each genome. The
head and tail of a gene g, represented by gh and gt, are called extremities. Two
consecutive genes form one adjacency, represented as the set of its two extrem-
ities. Since all genes are distinct, each genome is uniquely determined by its n
adjacencies. We build a graph (V,E), where V has 2 ·n vertices representing the
extremities and E has n edges representing the adjacencies. Note that a genome
thus corresponds to a perfect matching on V (see Fig. 1).

Given genomes G1 and G2 represented by perfect matchings M1 and M2 on
V , the corresponding breakpoint graph is defined as the multigraph (V,M1,M2).
In the multigraph, two vertices may be connected by two edges, one from M1

and the other from M2. These edges are distinguished by their provenance.
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Fig. 1. Three genomes and the corresponding complete MBG. Genes, adjacencies, and
extremities are represented by arrows, circles, and solid circles, respectively. Adjacencies
in G1, G2, and G3 are represented by solid, dashed and double lines respectively.

Each vertex in this breakpoint graph has degree 2, so that the graph con-
sists of vertex-disjoint cycles; let c(M1,M2) denote the number of these cy-
cles. The DCJ distance between G1 and G2, denoted as d(M1,M2), can be ex-
pressed as d(M1,M2) = n− c(M1,M2) [2]. We can extend this concept to three
given genomes, M1, M2 and M3, yielding a multiple breakpoint graph (MBG for
short, see an example in Fig. 1), denoted by (V,M1,M2,M3). Given a MBG
(V,M1,M2,M3), the DCJ median problem asks for a perfect matching M0 on

V (another genome) that minimizes
∑3

k=1 d(M0,Mk).
We generalize the definition of MBG by allowing nonperfect matchings, dis-

tinguishing MBGs with three perfect matchings as complete MBGs. If M ′
1 and

M ′
2 are not perfect matchings on V ′, then the breakpoint graph (V ′,M ′

1,M
′
2)

consists of isolated vertices, simple paths, and vertex-disjoint cycles; we continue
to use c(M ′

1,M
′
2) to denote the number of cycles.

Let B′ be a MBG and B a complete MBG; B′ is a subgraph of B if we have
V ′ ⊆ V and M ′

k ⊆ Mk, k = 1, 2, 3. A matching M ′
0 on V ′ is a median of B′ if

it maximizes
∑3

k=1 c(M
′
0,M

′
k) over all possible matchings on V ′. B′ is adequate

if, for any median M ′
0 of B′, we have

∑3
k=1 c(M

′
0,M

′
k) ≥ 3 · |V ′|/4.

Theorem 1. [19] If B′ is an adequate subgraph of B, then for any median M ′
0

of B′, there exists one median M0 of B such that M ′
0 ⊂ M0.

This result leads to a decomposition scheme to compute the median by itera-
tively finding adequate subgraphs and resolving each separately; ASMedian uses
a precomputed set containing all adequate subgraphs with size less than 10.

3 Adequate Subgraphs w.r.t. a given Matching

We describe a new algorithm to compute adequate subgraphs in a complete
MBG, based on the use of a “seed” genome—a perfect matching on V . In prac-
tice, this seed genome can be one of the three given matchings. Let M be a
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perfect matching on V . An MBG B′ = (V ′,M ′
1,M

′
2,M

′
3) is adequate w.r.t. M

if there exists a matching M ′ on V ′ satisfying
∑3

k=1 c(M
′,M ′

k) ≥ 3 · |V ′|/4 and
M ′ ⊆ M . If B′ is adequate w.r.t.M , then clearly it is adequate. Given a complete
MBG B = (V,M1,M2,M3) and a perfect matching M on V , let Ck be the set
of cycles in the breakpoint graph (V,Mk,M), k = 1, 2, 3, and write C = ∪3

k=1Ck.
For a cycle C ∈ C, let V (C) be the set of vertices covered by C and E(C) be
the set of edges covered by C. For a subset S ⊆ C, set V (S) = ∪C∈SV (C) and
E(S) = ∪C∈SE(C).

Lemma 1. There exist adequate subgraphs of B w.r.t. M iff there exists a subset
S ⊆ C obeying |S| ≥ 3 · |V (S)|/4.
Proof. If such S exists, we can define the subgraph as (V (S),M1 ∩ E(S),M2 ∩
E(S),M3 ∩ E(S)). Let M ′ = M ∩E(S); then the sum

∑3
k=1 c(M

′,Mk ∩E(S))
is exactly equal to |S|, which is larger than or equal to 3 · |V (S)|/4. Thus,
our subgraph is adequate w.r.t. M . Conversely, suppose that there exists one
adequate subgraph (V ′,M ′

1,M
′
2,M

′
3) of B w.r.t. M and let M ′ ⊆ M be a

matching on V ′ satisfying
∑3

k=1 c(M
′,M ′

k) ≥ 3 · |V ′|/4. Let S be the set of
all cycles in the three breakpoint graphs (V ′,M ′,M ′

k), k = 1, 2, 3. We can write

|S| = ∑3
k=1 c(M

′,M ′
k). Since M ′

1, M
′
2 and M ′

3 are all matchings on V ′, we have
that |V ′| ≥ |V (S)|. Combining these formulas yields |S| ≥ 3 · |V (S)|/4. �	
We use a network flow formulation to compute such S. Fig. 2 illustrates the con-
struction. We add to N one vertex for each extremity in V , one vertex for each
cycle in C, plus a source s and sink t. We add to N directed edges of capacity
3/4 from s to each extremity in V and directed edges of capacity 1 from each
cycle in C to t. For each pair of v ∈ V and C ∈ C with v ∈ V (C), we add one
directed edge of infinite (very large) capacity from v to C. Let f be a maximum
s-t flow of N , Nf the residual network w.r.t. f , S the set of vertices reachable
from s in Nf , and T the set of all other vertices.

s

t

1h 2t 2h 3t 3h 4t 4h 5t 5h 6t 6h 1t

1

3/4

∞

Fig. 2. The network for the complete MBG of Fig. 1 with the seed M = M2
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Lemma 2. A subset S ⊆ C with |S| ≥ 3 · |V (S)|/4 exists iff we have {t} � T .

Proof. By construction of S and T , we must have s ∈ S and t ∈ T ; moreover,
(S, T ) is a minimum s-t cut of N . For any other minimum s-t cut (S′, T ′), we
have |S| ≤ |S′|. The total capacity of cut (S, T ) is at most |C|, since it is a
minimum s-t cut and there is a trivial s-t cut (containing just the sink t on one
side) whose total capacity is |C|.

Assume we have {t} � T . Let S ⊆ C be the set of cycles in T and let V ′ ⊆ V
be the set of extremities that are in T . The edges of infinite capacity cannot
belong to the (S, T ) cut, so that the total capacity of the (S, T ) cut is exactly
3 · |V ′|/4 + |C| − |S|. Since the total capacity of any minimum s-t cut is at most
|C|, we must have |S| ≥ 3·|V ′|/4. Because the edges of infinite capacity are not in
the (S, T ) cut, we also have V (S) ⊆ V ′. Thus, we can conclude |S| ≥ 3·|V (S)|/4.

Now assume there exists a subset S satisfying |S| ≥ 3 · |V (S)|/4. We prove
{t} � T by contradiction. Assume T = {t}; then the total capacity of the cut
(S, T ) is |C|. Now we construct another s-t cut (S′, T ′), where T ′ consists of
the extremities in V (S) and the cycles in S and sink t. The capacity of this
cut (S′, T ′) is 3 · |V (S)|/4 + |C| − |S|, less than or equal to |C| since we have
|S| ≥ 3 · |V (S)|/4. Thus (S′, T ′) is also a minimum s-t cut, but clearly we have
|S′| < |S|, the desired contradiction. �	
Thus, if there exist adequate subgraphs w.r.t. a perfect matching, one such sub-
graph can be found from the residual network.

4 The Upper Bound is Tight

Let M0 be a median of a complete MBG B = (V,M1,M2,M3). We denote by

dm =
∑3

k=1 d(M0,Mk) the median distance of B and by dt = d(M1,M2) +
d(M1,M3) + d(M2,M3) the triangle distance of B. According to the triangle
inequality (the DCJ distance is a metric), we have d(M0,Mi) + d(M0,Mj) ≥
d(Mi,Mj), 1 ≤ i < j ≤ 3, which yields a lower bound for the median dis-
tance, dm ≥ dt/2. However, by using any of M1, M2, and M3 as a possible me-
dian, we get dm ≤ d(M1,M2) + d(M1,M3), dm ≤ d(M2,M1) + d(M2,M3), and
dm ≤ d(M3,M1) + d(M3,M2), which yields an upper bound for the median dis-
tance, dm ≤ 2 ·dt/3. Fig. 3 shows a subgraph where the upper bound is reached.
Notice that this subgraph is also adequate. Thus, the combination of any number
of copies of this subgraph yields a graph that also reaches the upper bound.

5 Deciding Equality to the Bounds

We now study whether the median distance of a complete MBG reaches its lower
or upper bound. Let u, v ∈ V be two distinct vertices. A DCJ operation induced
by (u, v) on M1 removes (u, u1) and (v, v1) from M1 and adds (u, v) and (u1, v1)
to M1, where u1 and v1 are the neighbors of u and v in M1. (If u is matched to
v in M1, then the DCJ operation induced by (u, v) on M1 is an identity.)
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Fig. 3. Tightness of the upper bound.M1, M2, M3 are represented by solid, dashed and
double edges. We have d(M1,M2) = d(M1,M3) = d(M2,M3) = 4 and thus dt = 12.
Any Mk is a median with dm =

∑3
k=1 d(M1,Mk) = 8. Thus we have 3 · dm = 2 · dt.

Property 1. Let M and M1 be two perfect matchings on V and u, v ∈ V two dis-
tinct vertices with (u, v) ∈ M and (u, v) �∈ M1. Then we can write d(M,M ′

1) =
d(M,M1) − 1, where M ′

1 is the perfect matching obtained from M1 after per-
forming the DCJ operation induced by (u, v).

Definition 1. (u, v) is strong w.r.t. M1 and M2 if u and v are in the same cy-
cle of (V,M1,M2) and the distance between them is odd—see Fig. 4. Otherwise,
(u, v) is weak w.r.t. M1 and M2.

Property 2. Let M ′
1 and M ′

2 be the two perfect matchings after performing the
two DCJ operations induced by (u, v) on M1 and M2 respectively. Then (u, v)
is strong w.r.t. M1 and M2 iff we have

d(M ′
1,M

′
2) =

⎧
⎨

⎩

d(M1,M2) if (u, v) ∈ M1 ∩M2;
d(M1,M2)− 1 if (u, v) ∈ (M1 −M2) ∪ (M2 −M1);
d(M1,M2)− 2 if (u, v) �∈ M1 ∪M2.

Two strong edges (u, v) and (u′, v′) w.r.t. M1 and M2 are independent w.r.t.
M1 and M2 if (i) they are in different cycles of (V,M1,M2) or (ii) they do not
“intersect” in the same cycle—where an intersection would mean that u′ and v′

are on the different paths from u to v.

Property 3. Let (u, v) be a strong edge w.r.t. M1 and M2, and M ′
1 and M ′

2 be
the matchings after performing two DCJ operations induced by (u, v) on M1

and M2 respectively.

(a) If (u′, v′) is weak w.r.t. M1 and M2, then (u′, v′) is weak w.r.t. M ′
1 and M ′

2.
(b) If (u′, v′) is strong w.r.t. M1 and M2 and (u, v) and (u′, v′) are independent

w.r.t. M1 and M2, then (u′, v′) is strong w.r.t. M ′
1 and M ′

2.
(c) If (u′, v′) is strong w.r.t. M1 and M2 and (u, v) and (u′, v′) are not indepen-

dent w.r.t. M1 and M2, then (u′, v′) is weak w.r.t. M ′
1 and M ′

2.
(d) If, w.r.t. M1 and M2, (u

′, v′) and (u′′, v′′) are strong, (u, v) and (u′, v′) are
independent, (u, v) and (u′′, v′′) are independent, but (u′, v′) and (u′′, v′′) are
not independent, then (u′, v′) and (u′′, v′′) are (strong but) not independent
w.r.t. M ′

1 and M ′
2.
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Fig. 4. The four cases for two DCJ operations induced by edge (u, v) on M1 and M2

(represented by solid and dashed edges respectively). u1 and v1 (u2 and v2) are the
neighbors of u and v in M1 (M2). (a) u and v are neighbors in M2; (b) u and v are in
the same cycle at odd distance; (c) u and v are in the same cycle at even distance; and
(d) u and v are in different cycles. In (a) ad (b), (u, v) is strong w.r.t. M1 and M2.

Lemma 3. Let M , M1 and M2 be three perfect matchings on V . We have
d(M,M1) + d(M,M2) = d(M1,M2) iff M consists of n mutually independent
strong edges w.r.t. M1 and M2.

Proof. Choose one edge from M that is not in M1 ∪M2 and perform the DCJ
operations induced by this edge on M1 and M2, and repeat until no more such
operations can be performed. Let 2 · o be the number of DCJ operations per-
formed in this process and let M∗

1 and M∗
2 be the final matchings thus obtained.

We must have M = M∗
1 or M = M∗

2 since at the final state we cannot find any
edge in M that is not in M1 ∪M2. Without loss of generality, assume M = M∗

1 .
Using Property 1, we have d(M,M1) = d(M,M∗

1 )+ o = d(M∗
1 ,M

∗
1 )+ o = o and

d(M,M2) = d(M,M∗
2 ) + o = d(M∗

1 ,M
∗
2 ) + o.

Assume M consists of n mutually independent strong edges w.r.t. M1 and M2.
By Property 3(b), all edges used to perform DCJ operations must be strong w.r.t.
their current states. Using Property 2, we get d(M∗

1 ,M
∗
2 ) = d(M1,M2) − 2 · o

and thus also d(M,M1)+d(M,M2) = d(M1,M2). Now suppose that there exists
an edge in M that is weak w.r.t. M1 and M2 or that there exist two edges in M
that are not independent. By the end of the iterative process, all edges in M are
mutually strong w.r.t. M∗

1 and M∗
2 . By Property 3, there exists a weak edge that

is used to perform DCJ operations. Thus, by Property 2, we have d(M∗
1 ,M

∗
2 ) >

d(M1,M2)− 2 · o, which implies d(M,M1) + d(M,M2) > d(M1,M2). �	
(u, v) is strong w.r.t. to B = (V,M1,M2,M3) if (u, v) is strong w.r.t. M1 and
M2, M1 and M3, and M2 and M3. Two strong edges (u1, v1) and (u2, v2) w.r.t.
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B are independent w.r.t. B if they are independent w.r.t. M1 and M2, M1 and
M3, and M2 and M3.

Lemma 4. We have dm = dt/2 iff there are n mutually independent strong
edges w.r.t. B.

Proof. We have dm = dt/2 iff there exists a perfect matching M0 of V satisfying
d(M,Mi) + d(M,Mj) = d(Mi,Mj) for all 1 ≤ i < j ≤ 3. By Lemma 3, such
matching consists exactly of n mutually independent strong edges w.r.t. B. �	
Lemma 5. Assume M1∩M2∩M3 = ∅; then we have dm = 2 ·dt/3 only if there
is no strong edge w.r.t. B.

Proof. Assume edge (u, v) is strong w.r.t. B and let M0 be a median of B. We
have three cases. First, assume (u, v) �∈ M1 ∪ M2 ∪ M3. We perform the DCJ
operations induced by (u, v) on M1, M2 and M3. Let M ′

k, k = 1, 2, 3, be the
corresponding new matchings and denote by B′ = (V,M ′

1,M
′
2,M

′
3) be the new

complete MBG. We have (u, v) ∈ ∩3
k=1M

′
k and the subgraph induced by {u, v} is

clearly adequate, so that there exists a median of B′, call it M ′
0, with (u, v) ∈ M ′

0.

Set d′m =
∑3

k=1 d(M
′
0,M

′
k) and d′t = d(M ′

1,M
′
2)+d(M ′

1,M
′
3)+d(M ′

2,M
′
3). Since

each DCJ operation can increase the DCJ distance by at most one, we have

dm ≤
3∑

k=1

d(M ′
0,Mk) ≤

3∑

k=1

(d(M ′
0,M

′
k) + 1) = d′m + 3.

However, since (u, v) is strong w.r.t. B, by Property 2, we have d(M ′
1,M

′
2) =

d(M1,M2) − 2, d(M ′
1,M

′
3) = d(M1,M3) − 2, and d(M ′

2,M
′
3) = d(M2,M3) − 2,

which gives us d′t = dt−6. Applying the upper bound on B′, we get d′m ≤ 2·d′t/3.
By combining these formulas, we finally get dm ≤ d′m + 3 ≤ 2 · (dt − 6)/3 + 3 =
2 · dt/3− 1, implying that the upper bound cannot be achieved.

Second, assume (u, v) ∈ M1 − (M2 ∪M3). Now we perform the DCJ opera-
tions induced by (u, v) on just M2 and M3. We can thus write dm ≤ d′m +2. By
Property 2 and using the fact that M ′

1 is just M1, we can write d(M ′
1,M

′
2) =

d(M1,M2) − 1, d(M ′
1,M

′
3) = d(M1,M3) − 1, and d(M ′

2,M
′
3) = d(M2,M3) − 2,

which gives us d′t = dt − 4. We thus get dm ≤ d′m + 2 ≤ 2 · (dt − 4)/3 + 2 =
2 · dt/3− 2/3, implying that the upper bound cannot be achieved.

Third, assume (u, v) ∈ (M1 ∩ M2) − M3. Now we perform the DCJ opera-
tion induced by (u, v) on M3 only. By similar reasoning, we get dm ≤ d′m +
1, d(M ′

1,M
′
2) = d(M1,M2), d(M ′

1,M
′
3) = d(M1,M3) − 1, and d(M ′

2,M
′
3) =

d(M2,M3)− 1. Thus, we have dm ≤ d′m + 1 ≤ 2 · (dt − 2)/3+ 1 = 2 · dt/3− 1/3,
implying again that the upper bound cannot be achieved. �	
The necessary condition of Lemma 5 is not sufficient, as illustrated in Fig. 5: the
subgraph shown has no strong edge, but the median distance is not equal to its
upper bound. Since the subgraph is adequate, we can build a general example
by combining an arbitrary number of copies of this subgraph.

By Lemma 4, we can decide whether the median distance reaches its lower
bound by checking whether there exist n mutually independent strong edges
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Fig. 5. A subgraph with no strong edge where the median distance does not reach its
upper bound. Matchings M1, M2, M3, and M0 are represented by solid, dashed, double
and dotted edges respectively. We have d(M1,M2) = d(M1,M3) = d(M2,M3) = 5, yet
d(M0,M1) = 2, d(M0,M2) = d(M0,M3) = 3.

w.r.t. B. We can reduce this question to a maximum independent set problem by
setting a vertex for each strong edge and linking two strong edges if they are not
independent. Clearly, there exist n mutually independent strong edges iff the size
of the maximum independent set is n. The independent set problem is NP-hard,
but we can test in polynomial-time whether there exist n mutually independent
strong edges w.r.t. M1 and M2, a necessary condition. The algorithm enumerates
all possible strong edges w.r.t. M1 and M2; this can be done in O(n3) time. Let
C1, C2, . . . , Cm be the cycles in the breakpoint graph (V,M1,M2). Because each
strong edge must have both endpoints on the same cycle, we can handle each
cycle separately. For cycle Ci with V (Ci) vertices, we use dynamic program-
ming to compute the maximum number of non-crossing edges, taking time in
O(|V (Ci)|3). If this maximum number is less than V (Ci)/2, then we cannot find
enough independent strong edges and thus the algorithm returns false. If the al-
gorithm terminates after examining all cycles, it returns true. The total running
time is O(n3). The necessary condition of Lemma 5 can be tested in O(n3) time
as well, by checking each pair of vertices to see whether it is strong w.r.t. B.
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