
Order-Preserving Pattern Matching

with k Mismatches

Pawe�l Gawrychowski1 and Przemys�law Uznański2,�

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 LIF, CNRS and Aix-Marseille Université, Marseille, France

Abstract. We study a generalization of the order-preserving pattern
matching recently introduced by Kubica et al. (Inf. Process. Let., 2013)
and Kim et al. (submitted to Theor. Comp. Sci.), where instead of look-
ing for an exact copy of the pattern, we only require that the relative
order between the elements is the same. In our variant, we additionally
allow up to k mismatches between the pattern of length m and the text
of length n, and the goal is to construct an efficient algorithm for small
values of k. Our solution detects an order-preserving occurrence with up
to k mismatches in O(n(log logm+ k log log k)) time.

1 Introduction

Order-preserving pattern matching, recently introduced in [9] and [10], and fur-
ther considered in [4], is a variant of the well-known pattern matching problem,
where instead of looking for a fragment of the text which is identical to the given
pattern, we are interested in locating a fragment which is order-isomorphic with
the pattern. Two sequences over integer alphabet are order-isomorphic if the
relative order between any two elements at the same positions in both sequences
is the same. Similar problems have been extensively studied in a slightly differ-
ent setting, where instead of a fragment, we are interested in a (not necessarily
contiguous) subsequence. For instance, pattern avoidance in permutations was
of much interest.

For the order-preserving pattern matching, both [9] and [10] present an O(n+
m logm) time algorithm, where n is the length of the text, and m is the length
of the pattern. Actually, the solution given by [10] works in O(n+sort(m)) time,
where sort(m) is the time required to sort a sequence of m numbers. Further-
more, efficient algorithms for the version with multiple patterns are known [4].
Also, a generalization of suffix trees in the order-preserving setting was recently
considered [4], and the question of constructing a forward automaton allow-
ing efficient pattern matching and developing an average-case optimal pattern
matching algorithm was studied [1].

Given that the complexity of the exact order-preservingpatternmatching seems
to be already settled, a natural direction is to consider its approximate version.

� This work was started while the author was a PhD student at Inria Bordeaux Sud-
Ouest, France.

A.S. Kulikov, S.O. Kuznetsov, and P. Pevzner (Eds.): CPM 2014, LNCS 8486, pp. 130–139, 2014.
c© Springer International Publishing Switzerland 2014

Order-Preserving Pattern Matching with k Mismatches 131

Such direction was successfully investigated for the related case of parametrized
pattern matching in [6], where an O(nk1.5 +mk logm) time algorithm was given
for parametrized matching with k mismatches.

We consider a relaxation of order-preserving pattern matching, which we
call order-preserving pattern matching with k mismatches. Instead of requir-
ing that the fragment we seek is order-isomorphic with the pattern, we are
allowed to first remove k elements at the corresponding positions from the frag-
ment and the pattern, and then check if the remaining two sequences are order-
isomorphic. In such setting, it is relatively straightforward to achieve running
time of O(nm log logm), where n is the length of the text, and m is the length of
the pattern. Such complexity might be unacceptable for long patterns, though,
and we aim to achieve complexity of the form O(nf(k)). In other words, we
would like our running time to be close to linear if the bound on the num-
ber of mismatches is very small. We construct a deterministic algorithm with
O(n(log logm + k log log k)) running time. At a very high level, our solution is
similar to the one given in [6]. We show how to filter the possible starting po-
sitions so that a position is either eliminated in O(f(k)) time, or the structure
of the fragment starting there is simple, and we can verify the occurrence in
O(f(k)) time. The details are quite different in our setting, though.

A different variant of approximate order-preserving pattern matching could
be that we allow to remove k elements from the fragment, and k elements from
the pattern, but don’t require that they are at the same positions. Then we get
order-preserving pattern matching with k errors. Unfortunately, such modifica-
tion seems difficult to solve in polynomial time: even if the only allowed operation
is removing k elements from the fragment, the problem becomes NP-complete [3].

2 Overview of the Algorithm

Given a text (t1, . . . , tn) and a pattern (p1, . . . , pm), we want to locate an order-
preserving occurrence with at most k mismatches of the pattern in the text. Such
occurrence is a fragment (ti, . . . , ti+m−1) with the property that if we ignore
the elements at some up to corresponding k positions in the fragment and the
pattern, the relative order of the remaining elements is the same in both of them.

The above definition of the problem is not very convenient to work with,
hence we start with characterising k-isomorphic sequences using the language of
subsequences in Lemma 1. This will be useful in some of the further proofs and
also gives us a polynomial time solution for the problem, which simply considers
every possible i separately. To improve on this naive solution, we need a way of
quickly eliminating some of these starting positions. For this we define the sig-
nature S(a1, . . . , am) of a sequence (a1, . . . , am), and show in Lemma 3 that the
Hamming distance between the signatures of two k-isomorphic sequences cannot
be too large. Hence such distance between S(ti, . . . , ti+m−1) and S(p1, . . . , pm)
can be used to filter some starting positions where a match cannot happen.

In order to make the filtering efficient, we need to maintain S(ti, . . . , ti+m−1)
as we increase i, i.e., move a window of length m through the text. For this we

132 P. Gawrychowski and P. Uznański

first provide in Lemma 4 a data structure which, for a fixed word, allows us to
maintain a word of a similar length under changing the letters, so that we can
quickly generate the first k mismatches between subwords of the current and
the fixed word. The structure is based on representing the current word as a
concatenation of subwords of the fixed word. Then we observe that increasing i
by one changes the current signature only slightly, which allows us to apply the
aforementioned structure to maintain S(ti, . . . , ti+m−1) as shown in Lemma 5.
Therefore we can efficiently eliminate all starting positions for which the Ham-
ming distance between the signatures is too large.

For all the remaining starting positions, we reduce the problem to computing
the heaviest increasing subsequence, which is a weighted version of the well-known
longest increasing subsequence, in Lemma 6. The time taken by the reduction de-
pends on the Hamming distance, which is small as otherwise the position would
be eliminated in the previous step. Finally, such weighted version of the longest
increasing subsequence can be solved efficiently as shown in Lemma 7. Altogether
these results give an algorithm for order-preserving pattern matching with k with
the cost of processing a single i depending mostly on k.

An implicit assumption in this solution is that there are no repeated elements
in neither the text nor the pattern. The assumption can be removed without
increasing the time complexity by carefully modifying all parts of the algorithm.
Some of these changes are not completely trivial, for example the definition
of a signature becomes more involved, which in turn makes the proofs more
complicated. Because of the limited space we defer the details (and a few proofs)
to the full version.

3 Preliminaries

We consider strings over an integer alphabet, or in other words sequences of
integers. Two such sequences are order-isomorphic (or simply isomorphic), de-
noted by (a1, . . . , am) ∼ (b1, . . . , bm), when ai ≤ aj iff bi ≤ bj for all i, j. We will
also use the usual equality of strings. Whenever we are talking about sequences,
we are interested in the relative order between their elements, and whenever we
are talking about strings consisting of characters, the equality of elements is of
interest to us. For two strings s and t, their Hamming distance H(s, t) is simply
the number of positions where the corresponding characters differ.

Given a text (t1, . . . , tn) and a pattern (p1, . . . , pm), the order-preserving pat-
tern matching problem is to find i such that (ti, . . . , ti+m−1) ∼ (p1, . . . , pm). We
consider its approximate version, i.e., order-preserving pattern matching with
k mismatches. We define two sequences order-isomorphic with k mismatches,
denoted by (a1, . . . , am) k∼(b1, . . . , bm), when we can select (up to) k indices
1 ≤ i1 < . . . < ik ≤ m, and remove the corresponding elements from both
sequences so that the resulting two new sequences are isomorphic, i.e., aj ≤ aj′

iff bj ≤ bj′ for any j, j′ /∈ {i1, . . . , ik}. In order-preserving pattern matching with

k mismatches we want i such that (ti, . . . , ti+m−1)
k∼(p1, . . . , pm), see Fig. 1.

Our solution works in the word RAM model, where n integers can be sorted
in O(n log logn) time [5], and we can implement dynamic dictionaries using

Order-Preserving Pattern Matching with k Mismatches 133

Fig. 1. [1, 4, 2, 5, 11] occurs in [1, 10, 6, 4, 8, 5, 7, 9, 3] (at position 4) with 1 mismatch

van Emde Boas trees. In the restricted comparison model, where we can only
compare the integers, all log log in our complexities increase to log.

We assume that integers in any sequence are all distinct. Such assumption was
already made in one of the papers introducing the problem [9], with a justification
that we can always perturb the input to ensure this (or, more precisely, we can
consider pairs consisting of a number and its position). In some cases this can
change the answer, though1. Nevertheless, using a more complicated argument,
given in the full version, we can generalize our solution to allow the numbers to
repeat. Another simplifying assumption that we make in designing our algorithm
is that n ≤ 2m. We can do so using a standard trick of cutting the text into
overlapping fragments of length 2m and running the algorithm on each such
fragment separately, which preserves all possible occurrences.

4 The Algorithm

First we translate k-isomorphism into the language of subsequences.

Lemma 1. (a1, . . . , am) k∼(b1, . . . , bm) iff there exist i1, . . . , im−k such that ai1 <
. . . < aim−k

and bi1 < . . . < bim−k
.

The above lemma implies an inductive interpretation of k-isomorphism useful in
further proofs and a fast method for testing k-isomorphism.

Proposition 1. If (a1, . . . , am)
k+1∼ (b1, . . . , bm) then there exists (a′1, . . . , a

′
m)

such that (a1, . . . , am)
1∼ (a′1, . . . , a

′
m) and (a′1, . . . , a

′
m) k∼(b1, . . . , bm).

Lemma 2. (a1, . . . , am) k∼(b1, . . . , bm) can be checked in time O(m log logm).

Proof. Let π be the sorting permutation of (a1, . . . , am). Such permutation can
be found in time O(m log logm). Let (b′1, . . . , b′m) be a sequence defined by setting

b′i := bπ(i). Then, by Lemma 1, (a1, . . . , am) k∼(b1, . . . , bm) iff there exists an
increasing subsequence of b′ of length m − k. Existence of such a subsequence
can be checked in time O(m log logm) using a van Emde Boas tree [7]. ��
1 More precisely, it might make two non-isomorphic sequences isomorphic, but not the
other way around.

134 P. Gawrychowski and P. Uznański

By applying the above lemma to each of the possible occurrences separately,
we can already solve order-preserving pattern matching with k mismatches in
time O(nm log logm). However, our goal is to develop a faster O(nf(k)) time
algorithm. For this we cannot afford to verify every possible position using
Lemma 2, and we need a closer look into the structure of the problem.

The first step is to define the signature of a sequence (a1, . . . , am). Let pred(i)
be the position where the predecessor of ai among {a1, . . . , am} occurs in the
sequence (or 0, if ai is the smallest element). Then the signature S(a1, . . . , am)
is a new sequence (1 − pred(1), . . . ,m− pred(m)) (a simpler version, where the
new sequence is (pred(1), . . . , pred(m)), was already used to solve the exact ver-
sion). The signature clearly can be computed in time O(m log logm) by sorting.
While looking at the signatures is not enough to determine if two sequences are
k-isomorphic, in some cases it is enough to detect that they are not.

Lemma 3. If (a1, . . . , am) k∼(b1, . . . , bm), then the Hamming distance between
S(a1, . . . , am) and S(b1, . . . , bm) is at most 3k.

Proof. We apply induction on the number of mismatches k.
For k = 0, (a1, . . . , am) ∼ (b1, . . . , bm) iff S(a1, . . . , am) = S(b1, . . . , bm), so

the Hamming distance is clearly zero.

Nowwe proceed to the inductive step. If (a1, . . . , am)
k+1∼ (b1, . . . , bm), then due

to Proposition 1, there exists (a′1, . . . , a
′
m), such that (a′1, . . . , a

′
m) k∼(b1, . . . , bm)

and (a1, . . . , am)
1∼ (a′1, . . . , a

′
m). Second constraint is equivalent (by application

of Lemma 1) to existence of such i, that (a1, . . . , ai−1, ai+1, . . . , am) ∼
(a′1, . . . , a

′
i−1, a

′
i+1, . . . , a

′
m).

We want to upperbound the Hamming distance between S(a1, . . . , am) and
S(a′1, . . . , a′m). Let j, j′ be indices such that aj is the direct predecessor of ai and
aj′ is the direct successor of ai, both taken from the set {a1, . . . , am}. Similarly,
let �, �′ be such indices, that a′� is the direct predecessor, and a′�′ is the direct
successor of a′i, both taken from the set {a′1, . . . , a′m}. That is,

. . . < aj < ai < aj′ < . . .

is the sorted version of (a1, . . . , am), and

. . . < a′� < a′i < a′�′ < . . .

is the sorted version of (a′1, . . . , a
′
m). The signatures S(a1, . . . , am) and

S(a′1, . . . , a
′
m) differ on at most 3 positions: j′, �′, and i. Thus H(S(a1, . . . , am),

S(b1, . . . , bm)) can be upperbounded by

H(S(a1, . . . , am), S(a′1, . . . , a
′
m)) + H(S(a′1, . . . , a

′
m), S(b1, . . . , bm)) ≤ 3k + 3,

which ends the inductive step. ��
Our algorithm iterates through i = 1, 2, 3, . . . maintaining the signature of the
current (ti, . . . , ti+m−1). Hence the second step is that we develop in the next
two lemmas a data structure, which allows us to store S(ti, . . . , ti+m−1), update
it efficiently after increasing i by one, and compute its Hamming distance to
S(p1, . . . , pm).

Order-Preserving Pattern Matching with k Mismatches 135

Fig. 2. Updating the representation. Black boxes represent mismatches, gray areas are
full fragments between mismatches. Fragments are either left untouched (on the left),
or compressed into a single new one (on the right).

Lemma 4. Given a string SP [1..m], we can maintain a string ST [1..2m] and
perform the following operations:

1. replacing any character ST [x] in amortized time O(log logm),
2. generating the first 3k mismatches between ST [i..(i +m− 1)] and SP [1..m]

in amortized time O(k + log logm).

The structure is initialized in time O(m log logm).

Proof. We represent the current ST [1..2m] as a concatenation of a number of
fragments. Each fragment is a subword of SP (possibly single letter) or a special
character $ not occurring in SP . The starting positions of the fragments are kept
in a van Emde Boas tree, and additionally each fragment knows its successor
and predecessor. In order to bound the amortized complexity of each operation,
we maintain an invariant that every element of the tree has 2 credits available,
with one credit being worth O(log logm) time. We assume that given any two
substrings of SP , we can compute their longest common prefix in O(1) time.
This is possible after O(m) preprocessing [2,8].

We initialize the structure by partitioning ST into 2m single characters. The
cost of initialization, including allocating the credits, is O(m log logm).

Replacing ST [x] with a new character c starts with locating the fragment w
containing the position i using the tree. If w is a single character, we replace it
with the new one. If w is a longer subword w[i..j] of SP , and we need to replace
its �-th character, we first split w into three fragments w[i..(i+ �− 1)], w[i+ �],
w[(i+ �+1)..j]. In both cases we spend O(log logm) time, including the cost of
inserting the new elements and allocating their credits.

Generating the mismatches begins with locating the fragment corresponding
to the position i. Then we scan the representation from left to right starting from
there. Locating the fragment takes O(log logm) time, but traversing can be done
in O(1) time per each step, as we can use the information about the successor of
each fragment. We will match SP with the representation of ST while scanning.
This is done using constant time longest common prefix queries. Each such query
allows us to either detect a mismatch, or move to the next fragment. Whenever
we find a mismatch, if the part of the text between the previous mismatch (or
the beginning of the window) and the current mismatch contains at least 3 full

136 P. Gawrychowski and P. Uznański

fragments, we replace them with a single fragment, which is the corresponding
subword of SP . If there are less than 3 full fragments, we keep the current
representation intact, see Fig. 2. We stop the scanning after reaching (3k+1)-th
mismatch, or after the whole window was processed, whichever comes first. By a
standard argument, the amortized cost of processing a single mismatch is O(1),
so we need O(k + log logm) time to generate all the mismatches. ��
Lemma 5. Given a pattern (p1, . . . , pm) and a text (t1, . . . , t2m), we can main-
tain an implicit representation of the current signature S(ti, . . . , ti+m−1) and
perform the following operations:

1. increasing i by one in amortized time O(log logm),
2. generating the first 3kmismatches betweenS(p1, . . . , pm) andS(ti, . . . , ti+m−1)

in time O(k + log logm).

The structure is initialized in time O(m log logm).

Proof. First we construct S(p1, . . . , pm) in timeO(m log logm) by sorting.When-
ever we increase i by one, just a few characters of S(ti, . . . , ti+m−1) = (s1, . . . , sm)
need to be modified. The new signature can be created by first removing the first
character s1, appending a new character sm+1, and then modifying the characters
corresponding to the successors of ti and ti+m. By maintaining all ti, . . . , ti+m−1

in a van Emde Boas tree (we can rename the elements so that ti ∈ {1, . . . , 2m} by
sorting) we can calculate both sm+1 and the characters which needs to be mod-
ified in O(log logm) time. Current S(ti, . . . , ti+m−1) is stored using Lemma 4.
We initialize ST [1..2m] to be S(t1, . . . , tm) concatenated with m copies of, say,
0. After increasing i by one, we replace ST [i], ST [i+m] and possibly two more
characters in O(log logm) time. Generating the mismatches is straightforward
using Lemma 4. ��
Now our algorithm first uses Lemma 5 to quickly eliminate the starting po-
sitions i such that the Hamming distance between the corresponding signa-
tures is large. For the remaining starting positions, we reduce checking if
(ti, . . . , ti+m−1)

k∼(p1, . . . , pm) to a weighted version of the well-known longest
increasing subsequence problem on at most 3(k + 1) elements. In the weighted
variant, which we call heaviest increasing subsequence, the input is a sequence
(a1, . . . , a�) and weight wi of each element ai, and we look for an increasing
subsequence with the largest total weight, i.e., for 1 ≤ i1 < . . . < is ≤ � such
that ai1 < . . . < ais and

∑
j wij is maximized.

Lemma 6. Assuming random access to (a1, . . . , am), the sorting permutation
πb of (b1, . . . , bm), and the rank of every bi in {b1, . . . , bm}, and given � positions
where S(a1, . . . , am) and S(b1, . . . , bm) differ, we can reduce in O(� log log �) time

checking if (a1, . . . , am) k∼(b1, . . . , bm) to computing the heaviest increasing sub-
sequence on at most �+ 1 elements.

Proof. Let d1, . . . , d� be the positions where S(a1, . . . , am) and S(b1, . . . , bm)
differ. From the definition of a signature, for any other position i the predecessors

Order-Preserving Pattern Matching with k Mismatches 137

Fig. 3. Partition into maximal paths. The heaviest increasing subsequence is marked.

of ai and bi in their respective sequences are at the same position j, which we
denote by j → i. For any given i, j → i for at most one j. Similarly, for any given
j, j → i for at most one i, because the only such i corresponds to the successor
of, say, aj in its sequence. Consider a partition of the set of all positions into
maximal paths of the form j1 → . . . → jk (see Fig. 3). Such partition is clearly
unique, and furthermore the first element of every path is one of the positions
where the signatures differ (except one possible path starting with the position
corresponding to the smallest element). Hence there are at most � + 1 paths,
and we denote by Ij the path starting with dj . If the smallest element occurs at
the same position in both sequences, we additionally denote this position by d0,
and call the path starting there I0 (we will assume that this is always the case,
which can be ensured by appending −∞ to both sequences).

Recall that our goal is to check if (a1, . . . , am) k∼(b1, . . . , bm). For this we need
to check if there exist i1, . . . , im−k such that ai1 < . . . < aim−k

and bi1 < . . . <
bim−k

. Alternatively, we could compute the largest s for which there exist a
solution i1, . . . , is such that ai1 < . . . < ais and bi1 < . . . < bis . We claim
that one can assume that for each path I either none of its elements are among
i1, . . . , is, or all of its elements are there. We prove this in two steps.

1. If ik ∈ I and ik → j, then without losing the generality ik+1 = j. Assume
otherwise, so ik+1 	= j or k = s. Recall that it means that aj is the successor
of aik and bj is the successor of bik . Hence aik < aj and bik < bj . If k = s we
can extend the current solution by appending j. Otherwise aj < aik+1

and
bj < bik+1

, so we can extend the solution by inserting j between ik and ik+1.
2. If ik ∈ I and j → ik, then without losing the generality ik−1 = j. Assume

otherwise, so ik−1 	= j or k = 1. Similarly as in the previous case, aj is
the predecessor of aik and bj is the predecessor of bik . Hence aj < aik and
bj < bik . If k = 1 we can extend the current solution by prepending j.
Otherwise aik+1

< aj and bik+1
< bj, so we can insert j between ik−1 and ik.

Now let the weight of a path I be its length |I|. From the above reasoning we
know that the optimal solution contains either no elements from a path, or all

138 P. Gawrychowski and P. Uznański

of its elements. Hence if we know which paths contain the elements used in the
optimal solution, we can compute s as the sum of the weights of these paths. Ad-
ditionally, if we take such optimal solution, and remove all but the first element
from every path, we get a valid solution. Hence s can be computed by choosing
some solution restricted only to d0, . . . , d�, and then summing up weights of the
corresponding paths. It follows that computing the optimal solution can be done,
similarly as in the proof of Lemma 2, by finding an increasing subsequence. We
define a new weighted sequence (a′0, . . . , a′�) by setting a′j = bπb(dj) and choosing
the weight of a′j to be |Ij |. Then an increasing subsequence of (a′0, . . . , a

′
�) cor-

responds to a valid solution restricted to d0, . . . , d�, and moreover the weight of
the heaviest such subsequence is exactly s. In other words, we can reduce our
question to computing the heaviest increasing subsequence.

Finally, we need to analyze the complexity of our reduction. Assuming random
access to both (a1, . . . , am) and πb, we can construct (a′0, . . . , a

′
�) in time O(�).

Computing the weight of every a′j is more complicated. We need to find every
|Ij | without explicitly constructing the paths. For every dj we can retrieve the
rank rj of its corresponding element in {b1, . . . , bm}. Then Ij contains dj and all
i such that the predecessor of bi among {bd0, . . . , bd�

} is bdj . Hence |Ij | can be
computed by counting such i. This can be done by locating the successor bdj′ of
bdj in {bd0 , . . . , bd�

} and returning rdj′ − rdj − 1 (if the successor does not exist,
m− rdj). To find all these successors, we only need to sort {bd0, . . . , bd�

}, which
can, again, be done in time O(� log log �). ��
Lemma 7. Given a sequence of � weighted elements, we can compute its heaviest
increasing subsequence in time O(� log log �).

Proof. Let the sequence be (a1, . . . , a�), and denote the weight of ai by wi. We
will describe how to compute the weight of the heaviest increasing subsequence,
reconstructing the subsequence itself will be straightforward. At a high level, for
each i we want to compute the weight ri of the heaviest increasing subsequence
ending at ai. Observe that ri = wi + max{rj : j < i and aj < ai}, where
we assume that a0 = −∞ and r0 = 0. We process i = 1, . . . , �, so we need a
dynamic structure where we could store all already computed results rj so that
we can select the appropriate one efficiently. To simplify the implementation of
this structure, we rename the elements in the sequence so that ai ∈ {1, . . . , �}.
This can be done in O(� log log �) time by sorting. Then the dynamic structure
needs to store n values v1, . . . , vn, all initialized to −∞ in the beginning, and
implement two operations:

1. increase any vk,
2. given k, return the maximum among v1, . . . , vk.

Then to compute ri we first find the maximum among v1, . . . , vai−1, and after-
wards update vai to be ri. Both operations can be implemented in amortized
time O(log log �) using a van Emde Boas tree. ��
By combining the above ingredients (and, as mentioned before, cutting the input
into overlapping fragments of length 2m) we obtain the following result.

Order-Preserving Pattern Matching with k Mismatches 139

Theorem 1. Order-preserving pattern matching with k mismatches can be solved
in time O(n(log logm+ k log log k)), where n is the length of the text and m is the
length of the pattern.

5 Conclusions

Recall that the complexity of our solution is O(n(log logm+ k log log k)). Given
that it is straightforward to prove a lower bound of Ω(n + m logm) in the
comparison model, and that for k = 0 one can achieve O(n+sort(m)) time [10],
a natural question is whether achieving O(nf(k)) + O(m polylog(m)) time is
possible. Finally, even though the version with k errors seems hard (see the
introduction), there might be an O(nf(k)) time algorithm, with f(k) being an
exponential function.

References

1. Belazzougui, D., Pierrot, A., Raffinot, M., Vialette, S.: Single and multiple con-
secutive permutation motif search. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 66–77. Springer, Heidelberg (2013)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process.
Lett. 65(5), 277–283 (1998)

4. Crochemore, M., et al.: Order-preserving incomplete suffix trees and order-
preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013.
LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)

5. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. In: Proceed-
ings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC
2002, pp. 602–608. ACM, New York (2002)

6. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM
Transactions on Algorithms 3(3) (2007)

7. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Commun. ACM 20(5), 350–353 (1977)

8. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

9. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order preserving matching. CoRR abs/1302.4064 (2013)

10. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A lin-
ear time algorithm for consecutive permutation pattern matching. Inf. Process.
Lett. 113(12), 430–433 (2013)

	Order-Preserving Pattern Matching
with k Mismatches

	1 Introduction
	2 Overview of the Algorithm
	3 Preliminaries
	4 The Algorithm
	5 Conclusions
	References

