
Scheduling and Fixed-Parameter Tractability

Matthias Mnich1 and Andreas Wiese2

1 Cluster of Excellence MMCI, Saarbrücken, Germany
m.mnich@mmci.uni-saarland.de

2 Max Planck Institute for Computer Science, Saarbrücken, Germany
awiese@mpi-inf.mpg.de

Abstract. Fixed-parameter tractability analysis and scheduling are two
core domains of combinatorial optimization which led to deep under-
standing of many important algorithmic questions. However, even though
fixed-parameter algorithms are appealing for many reasons, no such al-
gorithms are known for many fundamental scheduling problems.

In this paper we present the first fixed-parameter algorithms for classi-
cal scheduling problems such as makespan minimization, scheduling with
job-dependent cost functions—one important example being weighted
flow time—and scheduling with rejection. To this end, we identify cru-
cial parameters that determine the problems’ complexity. In particular,
we manage to cope with the problem complexity stemming from nu-
meric input values, such as job processing times, which is usually a core
bottleneck in the design of fixed-parameter algorithms. We complement
our algorithms with W[1]-hardness results showing that for smaller sets
of parameters the respective problems do not allow FPT-algorithms. In
particular, our positive and negative results for scheduling with rejection
explore a research direction proposed by Dániel Marx.

1 Introduction

Scheduling and fixed-parameter tractability are two very well-studied research
areas. In scheduling, the usual setting is that one is given a set of machines and a
set of jobs with individual characteristics. The jobs need to be scheduled on the
machines according to some problem-specific constraints, such as release dates,
precedence constraints, or rules regarding preemption and migration. Typical
objectives are minimizing the global makespan, the weighted sum of completion
times of the jobs, or the total flow time. During the last decades of research
on scheduling, many important algorithmic questions have been settled. For
instance, for minimizing the makespan and the weighted sum of completion time
on identical machines, (1+ ε)-approximation algorithms (PTASs) are known for
almost all NP-hard settings [1,2].

However, the running time of these approximation schemes usually has a bad
dependence on ε, and in practise exact algorithms are often desired. These and
other considerations motivate to study which scheduling problems are fixed-
parameter tractable (FPT), which amounts to identifying instance-dependent
parameters k that allow for algorithms that find optimal solutions in time
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f(k) · nO(1) for instances of size n and some function f depending only on k.
Separating the dependence of k and n is often much more desirable than a run-
ning time of, e.g., O(nk), which becomes infeasible even for small k and large n.
The parameter k measures the complexity of a given instance and thus, problem
classification according to parameters yields an instance-depending measure of
problem hardness.

Despite the fundamental nature of scheduling problems, and the clear ad-
vantages of fixed-parameter algorithms, to the best of our knowledge no such
algorithms are known for the classical scheduling problems we study here. One
obstacle towards obtaining positive results appears to be that—in contrast to
most problems known to be fixed-parameter tractable—scheduling problems in-
volve many numerical input data (e.g., job processing times, release dates, job
weights), which alone render many problems NP-hard, thus ruling out fixed-
parameter algorithms. One contribution of this paper is that—for the funda-
mental problems studied here—choosing the number of distinct numeric values
or an upper bound on them as the parameter suffices to overcome this impedi-
ment. Note that this condition is much weaker than assuming the parameter to
be bounded by a constant (that can appear in the exponent of the run time).

1.1 Our Contributions

In this paper we present the first fixed-parameter algorithms for several fun-
damental scheduling problems. In Section 2 we study one of the most classical
scheduling problems, which is minimizing the makespan on an arbitrary number
of machines without preemption, i.e. the problem P ||Cmax. Assuming integral
input data, our parameter pmax defines an upper bound on the job processing
times appearing in an instance with n jobs. We first prove that for any num-
ber of machines, we can restrict ourselves to (optimal) solutions where jobs of
the same length are almost equally distributed among the machines, up to an
additive error term of ±f(pmax) jobs. This insight can be used as an indepen-
dent preprocessing routine which optimally assigns the majority of the jobs of
an instance (given that n � pmax). After this preparation, we show that the
remaining problem can be formulated as an integer program in fixed dimension,
yielding an overall running time bounded by f(pmax) ·nO(1). We note that with-
out a fixed parameter, the problem is strongly NP-hard. For the much more
general machine model of unrelated machines, we show that R||Cmax is fixed-
parameter tractable when choosing the number of machines and the number of
distinct processing times as parameters. We reduce this problem again to integer
programming in fixed dimension where our variables model how many jobs of
each size are scheduled on each machine. To ensure that an assignment of all
given jobs to these “slots” exists we argue via Hall’s Theorem and ensure that
for each subset of jobs there are enough usable slots. We remark that these prob-
lems are sufficiently complex so that we do not see a way of using the “number
of numbers” result by Fellows et al. [3]. Note that if the number of machines or
the number of processing times are constant, the problem is still NP-hard [4],
and thus no fixed-parameter algorithms can exist for those cases (if P �= NP).
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Then, in Section 3, we study scheduling with rejection. Each job j is specified
by a processing time pj , a weight wj , and a rejection cost ej (all jobs are released
at time zero). We want to reject a set J ′ of at most k jobs, and schedule all other
jobs on one machine to minimize

∑
j /∈J′ wjCj +

∑
j∈J′ ej . We identify three key

parameters: the number of distinct processing times, the number of distinct
weights, and the maximum number k of jobs to be rejected. We show that if
any two of the three values are taken as parameters, the problem becomes fixed-
parameter tractable. If k and either of the other two are parameters, then we
show that an optimal solution is characterized by one of sufficiently few possible
patterns of jobs to be rejected. Once we guessed the correct pattern, an actual
solution can be found by a dynamic program efficiently. If the number of distinct
processing times and lengths are parameters (but not k), we provide a careful
modeling of the problem as an integer program with convex objective function in
fixed dimension. To the best of our knowledge, this is the first time that convex
programming is used in fixed-parameter algorithms. We complement this result
by showing that if only the number of rejected jobs k is the fixed parameter,
then the problem becomes W[1]-hard, which prohibits the existence of a fixed-
parameter algorithm, unless FPT = W[1] (which would imply subexponential
time algorithms for many canonical NP-complete problems). Our results respond
to a question by Dániel Marx [5] for investigating the fixed-parameter tractability
of scheduling with rejection.

Finally, in Section 4 we turn our attention to the parametrized dual of the
latter problem: scheduling with rejection of at least n − s jobs (s being the
parameter). We reduce this to a much more general problem which can be cast
as the profit maximization version of the General Scheduling Problem (GSP) [6].
We need to select a subset J ′ of at most s jobs to schedule from a given set J , and
each scheduled job j yields a profit fj(Cj), depending on its completion time Cj .
Note that this function can be different for each job and might stem from a
difficult scheduling objective such as weighted flow time. Additionally, each job j
has a release date rj and a processing time pj . The goal is to schedule these jobs
on one machine to maximize

∑
j∈J′ fj(Cj). We study the preemptive as well as

the non-preemptive version of this problem. In its full generality, GSP is not
well understood. Despite that, we are able to give a fixed-parameter algorithm
if the number of distinct processing times is bounded by a parameter, as well as
the maximum cardinality of J ′. We complement our findings by showing that
for fewer parameters the problem is W[1]-hard or para-NP-hard, respectively,
see Table 1. Our contributions are summarized in Table 1.

Due to space constraints, proofs are deferred to the full version of this paper.

1.2 Related Work

Scheduling. One classical scheduling problem studied in this paper is to sched-
ule a set of jobs non-preemptively on a set of m identical machines, i.e., P ||Cmax.
Research for it dates back to the 1960s when Graham showed that the greedy list
scheduling algorithm yields a (2 − 1

m )-approximation and a 4/3-approximation
when the jobs are ordered non-decreasingly by length [7]. After a series of
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Table 1. Summary of our results. For a job j we denote by pj its processing time, by
wj its weight, by ej its rejection cost, by fj its cost function. and by Cj its completion
time in a computed schedule.

Problem Parameters Result

P ||Cmax maximum pj FPT

R||Cmax #distinct pj and #machines FPT

1||∑≤k ej +
∑

wjCj #rejected jobs k and #distinct pj FPT

1||∑≤k ej +
∑

wjCj #rejected jobs k and #distinct wj FPT

1||∑≤k ej +
∑

wjCj #distinct pj and #distinct wj FPT

1||∑≤k ej +
∑

wjCj #rejected jobs k W[1]-hard

1|rj , (pmtn)|max
∑

≤s fj(Cj) #selected jobs s and #distinct pj FPT

1|rj , (pmtn)|max
∑

≤s fj(Cj) #selected jobs s W[1]-hard

1|rj , (pmtn)|max
∑

≤s fj(Cj) #distinct pj (in fact ∀ pj ∈ {1, 3}) para-NP-hard

improvements [8,9,10,11], Hochbaum and Shmoys present a polynomial time
approximation scheme (PTAS), even if the number of machines is part of the
input [2]. On unrelated machines, the problem is NP-hard to approximate with a
better factor than 3/2 [12,4] and there is a 2-approximation algorithm [4] that ex-
tends to the generalized assignment problem [13]. For the restricted assignment
case, i.e., each job has a fixed processing time and a set of machines where one
can assign it to, Svensson [14] gives a polynomial time algorithm that estimates
the optimal makespan up to a factor of 33/17 + ε ≈ 1.9412 + ε.

For scheduling jobs with release dates preemptively on one machine, a vast
class of important objective functions is captured by the General Scheduling
Problem (GSP). In its full generality, Bansal and Pruhs [6] give a O(log lognP )-
approximation, where P is the maximum ratio of processing times. One particu-
larly important special case is the weighted flow time objective where previously
to Bansal and Pruhs [6] the best known approximation factors where O(log2 P ),
O(logW ), and O(log nP ) [15,16]; where W is the maximum ratios of job weights.
Also, a quasi-PTAS with running time nO(logP logW ) is known [17].

A generalization of classical scheduling problems is scheduling with rejection.
There, each job j is has additionally a rejection cost ej. The scheduler has the
freedom to reject job j and to pay a penalty of ej, in addition to some (ordinary)
objective function for the scheduled jobs. For one machine and the objective be-
ing to minimize the sum of weighted completion times, Engels et al. [18] give
an optimal pseudopolynomial dynamic program for the case that all jobs are re-
leased at time zero and show that the problem is weakly NP-hard. Sviridenko and
Wiese [19] give a PTAS for arbitrary release dates. For objective the makespan
minimization and given multiple machines, Hoogeveen et al. [20] give FPTASs
for almost all machine settings, and a 1.58-approximation for the APX-hard case
of an arbitrary number of unrelated machines (when allowing preemption).
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In high-multiplicity scheduling, one considers the setting where there are only
few different job types, with jobs of the same type appearing in large bulks; one
might consider the number of job types as a fixed parameter. We refer to the
survey Brauner et al. [21].

Fixed-Parameter Tractability. Until now, to the best of our knowledge, no
fixed-parameter algorithms for the classical scheduling problems studied in this
paper have been devised. In contrast, classical scheduling problems investigated
in the framework of parameterized complexity appear to be intractable; for ex-
ample, k-processor scheduling with precedence constraints is W[2]-hard [22] and
scheduling unit-length tasks with deadlines and precedence constraints and k
tardy tasks is W[1]-hard [23], for parameter k. Mere exemptions seem to be
an algorithm by Marx and Schlotter [24] for makespan minimization where k
jobs have processing time p ∈ N and all other jobs have processing time 1,
for combined parameter (k, p), as well as work of Alon et al. [25] who show that
makespan-minimization on m identical machines is fixed-parameter tractable pa-
rameterized by the optimal makespan. We also mention that Chu et al. [26] con-
sider the parameterized complexity of checking feasibility of a schedule (rather
than optimization). We remark that some scheduling-type problems can be ad-
dressed by choosing as parameter the “number of numbers”, as done by Fellows
et al. [3].

2 Minimizing the Makespan

We first consider the problem P ||Cmax, where a given a set J of n jobs (with
individual processing time pj and released at time zero) must be scheduled non-
preemptively on a set of m identical machines, as to minimize the makespan of
the schedule. We develop a fixed-parameter algorithm solving this problem in
time f(pmax) · nO(1), where pmax is the maximum processing time over all jobs.

In the sequel, we say that some job j is of type t if pj = t; we define
Jt := {j ∈ J | pj = t}. First, we prove that there is always an optimal solution
in which each machine has almost the same number of jobs of each type, up
to an additive error of ±f(pmax) for suitable function f . This allows us to fix
some jobs on the machines. For the remaining jobs, we show that each machine
receives at most 2f(pmax) jobs of each type; hence there are only (2f(pmax))

pmax

possible configurations for each machine. We solve the remaining problem with
an integer linear program in fixed dimension.

As a first step, for each type t, we assign
⌊
|Jt|
m

⌋
−f(pmax) jobs of type t to each

machine; let J0 ⊆ J be this set of jobs. This is justified by the next lemma, which
can be proven by starting with an arbitrary optimal schedule and exchanging
jobs carefully between machines until the claimed property holds.

Lemma 1. There is a function f : N → N with f(pmax) ≤ 2O(pmax·log pmax) for
all pmax ∈ N such that every instance of P ||Cmax admits an optimal solution
in which for each type t, each of the m machines schedules at least 	|Jt|/m
 −
f(pmax) and at most 	|Jt|/m
+ f(pmax) jobs of type t.
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Denote by J ′ = J \ J0 be the set of yet unscheduled jobs. We ignore all other
jobs from now on. By Lemma 1, there is an optimal solution in which each
machine receives at most 2 · f(pmax) + 1 jobs from each type. Hence, there
are at most (2 · f(pmax) + 2)pmax ways how the schedule for each machine can
look like (up to permuting jobs of the same length). Therefore, the remaining
problem can be solved with the following integer program. Define a set C =
{0, . . . , 2 · f(pmax) + 1}pmax of at most (2 · f(pmax) + 2)pmax “configurations”,
where each configuration is a vector C ∈ C encoding the number of jobs from J ′

of each type assigned to a machine.
In any optimal solution for J ′, the makespan is in the range {�p(J ′)/m� ,

. . . , �p(J ′)/m�+ pmax}, where p(J ′) =
∑

j ∈ J ′pj , as pj ≤ pmax for each j. For
each value T in this range we try whether opt ≤ T , where opt denotes the mini-
mum makespan of the instance. So fix a value T . We allow only configurations
C = (c1, . . . , cpmax) which satisfy

∑pmax

i=1 ci · i ≤ T ; let C(T ) be the set of these
configurations. For each C ∈ C(T ), introduce a variable yC for the number of
machines with configuration C in the solution. (As the machines are identical,
only the number of machines following each configuration is important.)

∑

C∈C(T )

yC ≤ m (1)

∑

C=(c1,...,cpmax)∈C(T )

yC · cp ≥ |J ′ ∩ Jp|, p = 0, . . . , pmax (2)

yC ∈ {0, . . . ,m}, C ∈ C(T ) (3)

Inequality (1) ensures that at most m machines are used, inequalities (2) ensure
that all jobs from each job type are scheduled. The whole integer program (1)–(3)
has at most (2 · f(pmax) + 2)pmax dimensions.

To determine feasibility of (1)–(3), we employ deep results about integer pro-
gramming in fixed dimension. As we will need it later, we cite here an algorithm
due to Heinz [27,28] that can even minimize over convex spaces described by
(quasi-)convex polynomials, rather than only over polytopes.

Theorem 1 ([27,28]). Let f, g1, . . . , gm ∈ Z[x1, . . . , xt] be quasi-convex poly-
nomials of degree at most d ≥ 2, whose coefficients have binary encoding length
at most �. There is an algorithm that in time m · �O(1) · dO(t) · 2O(t3) computes a
minimizer x� ∈ Z

t of the following problem (4) or reports that no minimizer ex-
ists. If the algorithm outputs a minimizer x�, its binary encoding size is � ·dO(t).

min f(x1, . . . , xt), subject to gi(x1, . . . , xt) ≤ 0, i = 1, . . . ,m x ∈ Z
t . (4)

The smallest value T for which (1)–(3) is feasible gives the optimal makespan and
together with the preprocessing routine of Lemma 1 yields an optimal schedule.

Theorem 2. There is a function f such that instances of P ||Cmax with n jobs
and m machines can be solved in time f(pmax) · (n+ logm)O(1).

Recall that without choosing a parameter, problem P ||Cmax is strongly NP-hard
(as it contains 3-Partition). When parameterizing P ||Cmax by the number p of
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distinct processing times, Lemma 1 is no longer true (details deferred to full ver-
sion of this paper). However, for constantly many processing times the problem
was recently shown to be polynomial time solvable for any constant p [29].

2.1 Bounded Number of Unrelated Machines

We study the problem Rm||Cmax where now the machines are unrelated, meaning
that a job can have different processing times on different machines. In particular,
it might be that a job cannot be processed on some machine at all, i.e., has infinite
processing time on that machine. We choose as parameters the number p of
distinct (finite) processing times and the number of machines m of the instance.

We model this problem as an integer program in fixed dimension. Denote by
q1, . . . , qp the distinct finite processing times in a given instance. For each com-
bination of a machine i and a finite processing time q� we introduce a variable
yi,� ∈ {0, . . . , n} that models how many jobs of processing time q� are assigned
to i. Note that the number of these variables is bounded by m ·p. An assignment
to these variables can be understood as allocating yi,� slots for jobs with pro-
cessing time q� to machine i, without specifying what actual jobs are assigned
to these slots. Assigning the jobs to the slots can be understood as a bipartite
matching: introduce one vertex vj for each job j, one vertex ws,i for each slot s
on each machine i, and an edge {vj, ws,i} whenever job j has the same size on
machine i as slot s. According to Hall’s Theorem, there is a matching in which
each job is matched if and only if for each set of jobs J ′ ⊆ J there are at least |J ′|
slots to which at least one job in J ′ can be assigned. For one single set J ′ the
latter can be expressed by a linear constraint; however, the number of subsets J ′

is exponential. We overcome this as follows: We say that two jobs j, j′ are of the
same type if pi,j = pi,j′ for each machine i. Note that there are only (p̄ + 1)m

different types of jobs. As we will show, it suffices to add a constraint for sets of
jobs J ′ such that for each job type either all or none of the jobs of that type are
contained in J ′ (those sets „dominate“ all other sets). This gives rise to the fol-
lowing integer program. Denote by Z the set of all job types and for each z ∈ Z
denote by Jz ⊆ J the set of jobs of type z. For each set Z ′ ⊆ Z denote by Qi,Z′

the set of distinct finite processing times of jobs of types in Z ′ on machine i.
Using Theorem 1 we can solve the following IP:

min T s.t.
∑

�∈{1,...,p}
yi,� · q� ≤ T, i = 1, . . . ,m (5)

∑

z∈Z′
|Jz| ≤

∑

i

∑

�:q�∈Qi,Z′

yi,� ∀ Z ′ ⊆ Z (6)

yi,� ∈ {0, . . . , n} i = 1, . . . ,m, � = 1, . . . , p
(7)

T ≥ 0 (8)

Theorem 3. Instances of R||Cmax with m machines and n jobs
with p distinct finite processing times q1, ..., qp̄ can be solved in time
f(p,m) · (n+ logmax� q�)

O(1) for a suitable function f .
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A natural question is the case when only the number of machines is a fixed pa-
rameter. Even if one requires the processing times to be polynomially bounded,
then already P ||Cmax is still W[1]-hard [30]. On the other hand, R||Cmax is NP-
hard if only processing times {1, 2,∞} are allowed [12,4]. This justifies to take
both m and p̄ as a parameters in the unrelated machine case.

3 Scheduling with Rejection
In this section we study scheduling with rejection to optimize the weighted sum of
completion time plus the total rejection cost, i.e, 1||∑≤k ej+

∑
wjCj . Formally,

we are given an integer k and a set J of n jobs, all released at time zero. Each
job j ∈ J is characterized by a processing time pj ∈ N, a weight wj ∈ N and
rejection cost ej ∈ N. The goal is to reject a set J ′ ⊆ J of at most k jobs and
to schedule all other jobs non-preemptively on a single machine, as to minimize∑

j∈J\J′ wjCj+
∑

j∈J′ ej where Cj denotes the completion time in the computed
schedule.

3.1 Number of Rejected Jobs and Processing Times or Weights

Denote by p ∈ N the number of distinct processing times in a given instance.
First, we assume that p and the maximum number k of rejected jobs are param-
eters. Thereafter, using a standard reduction, we will derive an algorithm for the
case that k and the number w of distinct weights are parameters.

Denote by q1, . . . , qp the distinct processing times in a given instance. For each
i ∈ {1, . . . , p}, we guess the number of jobs with processing time qi which are
rejected in an optimal solution. Each possible guess is characterized by a vector
v = {v1, . . . , vp̄} whose entries vi contain integers between 0 and k, and whose
total sum is at most k. There are at most (k + 1)p such vectors v, each one
prescribing that at most vi jobs of processing time pi can be rejected. We enu-
merate them all. One of these vectors must correspond to the optimal solution,
so the reader may assume that we know this vector v.

In the following, we will search for the optimal schedule that respects v, mean-
ing that for each i ∈ {1, . . . , p} at most vi jobs of processing time qi are rejected.
To find an optimal schedule respecting v, we use a dynamic program. Suppose
the jobs in J are labeled by 1, . . . , n by non-increasing Smith ratios wj/pj. Each
dynamic programming cell is characterized by a value n′ ∈ {0, . . . , n}, and a
vector v′ with p entries which is dominated by v, meaning that v′i ≤ vi for each
i ∈ {1, . . . , p}. For each pair (n′,v′) we have a cell C(n′,v′) modeling the fol-
lowing subproblem. Assume that for jobs in J ′ := {1, . . . , n′} we have already
decided whether we want to schedule them or not. For each processing time qi
denote by n′

i the number of jobs in J ′ with processing time qi. Assume that for
each type i, we have decided to reject vi − v′i jobs from J ′. Note that then the
total processing time of the scheduled jobs sums up to t :=

∑
i qi ·(n′

i−(vi−v′i)).
It remains to define a solution for the jobs in J ′′ := {n′ + 1, . . . , n} during time
interval [t,∞), such that for each type i we can reject up to v′i jobs. The problem
described by each cell C(n′,v′) can be solved in polynomial time, given one has
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already computed the values for each cell C(n′′,v′′) with n′′ > n′ (proof de-
ferred). The size of the dynamic programming table is bounded by n · (k + 1)p.
Since for 1||∑wjCj one can interchange weights and processing times and get
an equivalent instance [31, Theorem 3.1], we obtain the same result when there
are only p̄ distinct weights.

Theorem 4. For sets J of n jobs with p distinct processing times or weights,
the problem 1||∑≤k ej +

∑
wjCj is solvable in time O(n · (k + 1)p + n · logn).

We show next that when only the number k of rejected jobs is taken as parameter,
problem becomes W[1]-hard. (This requires that the numbers in the input can
be super-polynomially large. Note that for polynomially bounded processing
times the problem admits a polynomial time algorithm for arbitrary k [18].)
This justifies to define additionally the number of weights or processing times as
parameter. We remark that when jobs have non-trivial release dates, then even
for k = 0 the problem is NP-hard [32].

Theorem 5. The problem 1||∑≤k ej +
∑

wjCj is W[1]-hard if the parameter
is the number k of rejected jobs.

3.2 Number of Distinct Processing Times and Weights

We consider the number of distinct processing times and weights as parameters.
To this end, we say that two jobs j, j′ are of the same type if pj = pj′ and wj =
wj′ ; let τ be the number of types in an instance. Note, however, that jobs with the
same type might have different rejection costs, so we cannot bound the “number
of input numbers” like Fellows et al. [3]. Instead, we resort to convex integer
programming, which to the best of our knowledge is used here for the first time
in fixed-parameter algorithms. The running time of our algorithm will depend
only polynomially on k, the upper bound on the number of jobs we are allowed
to reject. For each type i, let w(i) be the weight and p(i) be the processing time
of jobs of type i. Assume that job types are numbered 1, . . . , τ such w(i)/p(i) ≥
w(i+1)/p(i+1) for each i ∈ {1, . . . , τ − 1}. Clearly, an optimal solution schedules
jobs ordered non-increasingly by Smith’s ratio without preemption.

The basis for our algorithm is a problem formulation as a convex integer
minimization problem with dimension at most 2τ . In an instance, for each i, we
let ni be the number of jobs of type i and introduce an integer variable xi ∈ N0

modeling how many jobs of type i we decide to schedule. We introduce the linear
constraint

∑τ
i=1(ni − xi) ≤ k, to ensure that at most k jobs are rejected.

The objective function is more involved. For each type i, scheduling the jobs
of type i costs

xi∑

�=1

w(i) · (� · p(i) +
∑

i′<i

xi′ · p(i′)) = w(i) · xi ·
∑

i′<i

xi′ · p(i′) + w(i) · p(i)
xi∑

�=1

�

= w(i) · xi ·
∑

i′<i

xi′ · p(i′) + w(i) · p(i) · xi · (xi + 1)

2
=: si(x).
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Note that si(x) is a convex polynomial of degree 2 (being the sum of quadratic
polynomials with only positive coefficients). Observe that when scheduling xi

jobs of type i, it is optimal to reject the ni − xi jobs with lowest rejection cost
among all jobs of type i. Assume the jobs of each type i are labeled j

(i)
1 , . . . , j

(i)
ni

by non-decreasing rejection cost. For each s ∈ N let fi(s) :=
∑ni−s

�=1 e
j
(i)
�

. In
particular, to schedule xi jobs of type i we can select them such that we need to
pay fi(s) for rejecting the non-scheduled jobs (and this is an optimal decision).
The difficulty is that the function fi(s) is in general not expressible by a poly-
nomial whose degree is globally bounded (i.e., for each possible instance), which
prevents a direct application of Theorem 1.

However, in Lemma 2 we show that fi(s) is the maximum of ni linear poly-
nomials, allowing us to formulate a convex program and solve it by Theorem 1.

Lemma 2. For each type i there is a set of ni polynomials p
(1)
i , . . . , p

(ni)
i of

degree one such that fi(s) = max� p
(�)
i (s) for each s ∈ {0, . . . , ni}.

Lemma 2 allows modeling the entire problem with the following convex program,
where for each type i, variable gi models the rejection cost for jobs of type i.

min

τ∑

i=1

gi + si(x) s.t.
τ∑

i=1

(ni − xi) ≤ k,

gi ≥ p
(�)
i (xi) ∀ i ∈ {1, . . . , τ} ∀ � ∈ {1, . . . , ni},g,x ∈ Z

τ≥ 0 . (9)

Observe that (9) admits an optimal solution with gi = max� p
(�)
i (xi) = fi(xi) for

each i. Thus, solving (9) yields an optimal solution to the overall instance.

Theorem 6. For sets of n jobs of τ types the problem 1||∑≤k ej +
∑

wjCj can
be solved in time (n+ log(maxj max{ej, pj , wj}))O(1) · 2O(τ3).

4 Profit Maximization for General Scheduling Problems

The parameterized dual problem of scheduling jobs with rejection is the problem
to reject at least n − s jobs (s being the parameter) to minimize the total cost
given by the rejection penalties plus the cost of the schedule. This is equivalent
to the following problem where here we allow even non-trivial release dates and
job dependent profit functions:

We are given a set J of n jobs, where each job j is characterized by a release
date rj , a processing time pj , and a non-increasing profit function fj(t). Let p
denote the number of distinct processing times pj in the instance. We want to
schedule a set J̄ ⊆ J of at most s jobs from J on a single machine. Our objective
is to maximize

∑
j∈J̄ fj(Cj), where Cj denotes the completion time of j in the

computed schedule. We call this problem the s-bounded General Profit Scheduling
Problem, or s-GPSP for short. Observe that this generic problem definition
allows to model profit functions that stem from difficult scheduling objectives
such as weighted flow time or weighted tardiness.
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Theorem 7. There is a deterministic algorithm that, given an instance of s-
GPSP with n jobs and p processing times, computes an optimal preemptive or
non-preemptive schedule in time 2O(s)sO(p)n4 logn.

When only the number s of scheduled jobs is chosen as parameter the problem
becomes W[1]-hard, as pointed out to us by an anonymous reviewer. The next
theorem assumes that numeric input values are allowed to be exponentially large.

Theorem 8. (Non-)preemptive s-GPSP is W[1]-hard for parameter s.

On the other hand, we prove that choosing only the number of distinct processing
times p̄ as a parameter is not enough, as we show the problem to be NP-hard even
if pj ∈ {1, 3} for all jobs j. The same holds for the related General Scheduling
Problem (GSP) [6]. While all processing times are either 1 or 3, in our reduction
we use cost functions whose values can be exponentially large.

Theorem 9. The General Profit Scheduling Problem (GPSP) and the General
Scheduling Problem (GSP) are (weakly) NP-hard, even if pj ∈ {1, 3} for each
job j. This holds in both the preemptive and non-preemptive setting.

Acknowledgment. We thank the IPCO reviewers, as well as an anonymous
reviewer of an earlier version for suggestions how to improve the algorithms in
Sect. 4 and to prove Theorem 8.
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