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Abstract. We consider the problem of computing a large stable matching in a
bipartite graph G = (A∪B,E) where each vertex u ∈ A∪B ranks its neighbors
in an order of preference, perhaps involving ties. A matching M is said to be
stable if there is no edge (a, b) such that a is unmatched or prefers b to M(a) and
similarly, b is unmatched or prefers a to M(b). While a stable matching in G can
be easily computed in linear time by the Gale-Shapley algorithm, it is known that
computing a maximum size stable matching is APX-hard.

In this paper we consider the case when the preference lists of vertices in A
are strict while the preference lists of vertices in B may include ties. This case
is also APX-hard and the current best approximation ratio known here is 25/17
≈ 1.4706 which relies on solving an LP. We improve this ratio to 22/15 ≈ 1.4667
by a simple linear time algorithm.

We first compute a half-integral stable matching in {0, 0.5, 1}|E| and round it
to an integral stable matching M . The ratio |OPT|/|M | is bounded via a payment
scheme that charges other components in OPT⊕M to cover the costs of length-5
augmenting paths. There will be no length-3 augmenting paths here.

We also consider the following special case of two-sided ties, where every tie
length is 2. This case is known to be UGC-hard to approximate to within 4/3. We
show a 10/7 ≈ 1.4286 approximation algorithm here that runs in linear time.

1 Introduction

The stable marriage problem is a classical and well-studied matching problem in bipar-
tite graphs. The input here is a bipartite graph G = (A∪B,E) where every u ∈ A∪B
ranks its neighbors in an order of preference and ties are permitted in preference lists. It
is customary to refer to the vertices in A and B as men and women, respectively. Pref-
erence lists may be incomplete: that is, a vertex need not be adjacent to all the vertices
on the other side.

A matching is a set of edges, no two of which share an endpoint. An edge (a, b) is
said to be a blocking edge for a matching M if either a is unmatched or prefers b to
its partner in M , i.e., M(a), and similarly, b is unmatched or prefers a to its partner
M(b). A matching that admits no blocking edges is said to be stable. The problem of
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computing a stable matching in G is the stable marriage problem. A stable matching
always exists and can be computed in linear time by the well-known Gale-Shapley
algorithm [2].

Several real-world assignment problems can be modeled as the stable marriage prob-
lem; for instance, the problems of assigning residents to hospitals [4] or students to
schools [19]. The input instance could admit many stable matchings and the desired sta-
ble matching in most real-world applications is a maximum cardinality stable matching.
When preference lists are strict (no ties permitted), it is known that all stable matchings
in G have the same size and the set of vertices matched in every stable matching is the
same [3]. However when preference lists involve ties, stable matchings can vary in size.

Consider the following simple example, where A = {a1, a2} and B = {b1, b2} and
let the preference lists be as follows:

a1 : b1; a2 : b1, b2; b1 : {a1, a2}; and b2 : a2.

The preference list of a1 consists of just b1 while the preference list of a2 consists
of b1 followed by b2. The preference list of b1 consists of a1 and a2 tied as the top
choice while the preference list of b2 consists of the single vertex a2. There are 2 stable
matchings here: {(a2, b1)} and {(a1, b1), (a2, b2)}. Thus the sizes of stable matchings
in G could differ by a factor of 2 and it is easy to see that they cannot differ by a factor
more than 2 since every stable matching has to be a maximal matching. As stated earlier,
the desired matching here is a maximum size stable matching. However it is known that
computing such a matching is NP-hard [8,15].

Iwama et al. [9] showed a 15/8 = 1.875-approximation algorithm for this problem
using a local search technique. The next breakthrough was due to Király [11], who
introduced the simple and effective technique of “promotion” to break ties in a modifi-
cation of the Gale-Shapley algorithm. He improved the approximation ratio to 5/3 for
the general case and to 1.5 for one-sided ties, i.e., the preference lists of vertices in A
have to be strict while ties are permitted in the preference lists of vertices in B. McDer-
mid [16] then improved the approximation ratio for the general case also to 1.5. For the
case of one-sided ties, Iwama et al. [10] showed a 25/17 ≈ 1.4706-approximation.

On the inapproximability side, the strongest hardness results are due to Yanag-
isama [21] and Iwama et al. [9]. In [21], the general problem was shown to be NP-hard
to approximate to within 33/29 and UGC-hard to approximate to within 4/3; the case
of one-sided ties was considered in [9] and shown to be NP-hard to approximate to
within 21/19 and UGC-hard to approximate to within 5/4.

In this paper we focus mostly on the case of one-sided ties. The case of one-sided
ties occurs frequently in several real-world problems; for instance, in the Scottish Foun-
dation Allocation Scheme (SFAS), the preference lists of applicants have to be strictly
ordered while the preference lists of positions can admit ties [7]. Let OPT be a maxi-
mum size stable marriage in the given instance. We show the following result here.

Theorem 1. Let G = (A ∪ B,E) be a stable marriage instance where vertices in A
have strict preference lists while vertices in B are allowed to have ties in preference
lists. A stable matching M in G such that |OPT|/|M | ≤ 22/15 ≈ 1.4667 can be
computed in linear time.
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Techniques. Our algorithm constructs a half-integral stable matchings using a modi-
fied Gale-Shapley algorithm: each man can make two proposals and each woman can
accept two proposals. How the proposals are made by men and how women accept these
proposals forms the core part of our algorithms. In our algorithms, after the proposing
phase is over, we have a half-integral vector x, where xab = 1 (similarly, 1/2 or 0) if b
accepts 2 (respectively, 1 or 0) proposals from a. We then build a subgraph G′ of G by
retaining an edge e only if xe > 0. Our solution is a maximum cardinality matching in
G′ where every degree 2 vertex gets matched.

In the original Gale-Shapley algorithm, when two proposals are made to a woman
from men that are tied on her list, she is forced to make a blind choice since she has
no way of knowing which is a better proposal (i.e., it leads to a larger matching) to
accept. Our approach to deal with this issue is to let her accept both proposals. Since
neither proposer is fully accepted, each of them has to propose down his list further and
get another proposal accepted. Essentially, our strategy of letting men make multiple
proposals and letting women accept multiple proposals is a way of coping with their
lack of knowledge about the best decision at any point in time. Note that we limit the
number of proposals a man makes/a woman accepts to be 2 because we want the graph
G′ to have a simple structure. In our algorithms, every vertex in G′ has degree at most
2 and this allows us to bound our approximation guarantees.

We first show that there are no length-3 augmenting paths in M⊕OPT using the idea
of promotion introduced by Király [11] to break ties in favor of those vertices rejected
once by all their neighbors. This idea was also used by McDermid [16] and Iwama
et al. [10]. This idea essentially guarantees an approximation factor of 1.5 by eliminat-
ing all length-3 augmenting paths in M ⊕ OPT. In order to obtain an approximation
ratio < 1.5, we use a new combinatorial technique that makes components other than
augmenting paths of length-5 in M ⊕ OPT pay for augmenting paths of length-5.

Let R denote the set of augmenting paths of length-5 in M ⊕ OPT and let Q =
(M ⊕ OPT) \ R. Suppose q ∈ Q is an augmenting path on 2� + 3 ≥ 7 edges or an
alternating cycle/path on 2� edges or an alternating path on 2�− 1 edges (with � edges
of M ). In our algorithm for one-sided ties, q will be charged for ≤ 3� elements in R
and this will imply that |OPT|/|M | ≤ 22/15.

For the case of one-sided ties, to obtain an approximation guarantee < 1.5, the algo-
rithm by Iwama et al. [10] formulates the maximum cardinality stable matching prob-
lem as an integer program and solves its LP relaxation. This optimal LP-solution guides
women in accepting proposals and leads to a 25/17-approximation.

It was also shown in [10] that for two-sided ties, the integrality gap of a natural LP for
this problem (first used in [20]) is 1.5−Θ(1/n). As mentioned earlier, McDermid [16]
gave a 1.5-approximation algorithm here; Király [12] and Paluch [17] have shown linear
time algorithms for this ratio. A variation of the general problem was recently studied
by Askalidis et al. [1].

Since no approximation guarantee better than 1.5 is known for the general case of
two-sided ties while better approximation algorithms are known for the one-sided ties
case, as a first step we consider the following variant of two-sided ties where each tie
length is 2. This is a natural variant as there are several application domains where ties
are permitted but their length has to be small. We show the following result here.
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Theorem 2. Let G = (A ∪ B,E) be a stable marriage instance where vertices in
A ∪ B are allowed to have ties in preference lists, however each tie has length 2. A
stable matching M ′ in G such that |OPT|/|M ′| ≤ 10/7 ≈ 1.4286 can be computed in
linear time.

Currently, this is the only case with approximation ratio better than 1.5 for any special
case of the stable marriage problem where ties can occur on both sides of G. Interest-
ingly, in the hardness results shown in [21] and [9], it is assumed that each vertex has at
most one tie in its preference list, and such a tie is of length 2. Thus if the general case
really has higher inapproximability, say 1.5 as previously conjectured by Király [11],
then the reduction in the hardness proof needs to use longer ties.

We also note that the ratio of 10/7 we achieve in this special case coincides with the
ratio attained by Halldórsson et al. [5] for the case that ties only appear on women’s
side and each tie is of length 2.

The stable marriage problem is an extensively studied subject on which several
monographs [4,13,14,18] are available. The generalization of allowing ties in the prefer-
ence lists was first introduced by Irving [6]. There are several ways of defining stability
when ties are allowed in preference lists. The definition, as used in this paper, is Irving’s
“weak-stability.”

Due to the space limit, we only present our algorithm for one-sided ties in Section 2
and its analysis in Section 3. Some missing proofs, along with the algorithm for two-
sided ties where each tie has length 2, can be found in the full version.

2 Our Algorithm

Our algorithm produces a fractional matching x = (xe, e ∈ E) where each xe ∈
{0, 1/2, 1}. The algorithm is a modification of the Gale-Shapley algorithm in G =
(A ∪B,E). We first explain how men propose to women and then how women decide
(see Fig. 1).

How men propose. Every man a has two proposals p1a and p2a, where each proposal
pia (for i = 1, 2) goes to the women on a’s preference list in a round-robin manner.
Initially, the target of both proposals p1a and p2a is the first woman on a’s list. For any
i, at any point, if pia is rejected by the woman who is ranked k-th on a’s list (for any
k), then pia goes to the woman ranked (k + 1)-st on a’s list; in case the k-th woman is
already the last woman on a’s list, then the proposal pia is again made to the first woman
on a’s list.

A man has three possible levels in status: basic, 1-promoted, or 2-promoted. Every
man a starts out basic with rejection history ra = ∅. Let N(a) be the set of all women on
a’s list. When ra = N(a), then a becomes 1-promoted. Once he becomes 1-promoted,
ra is reset to the empty set. If ra = N(a) after a becomes 1-promoted, then a becomes
2-promoted and ra is reset once again to the empty set. After a becomes 2-promoted, if
ra = N(a), then a gives up.

To illustrate promotions, consider the following example: man a has only two women
b1 and b2 on his list. He starts as a basic man and makes his proposals p1a and p2a to b1.
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Suppose b1 rejects both. Then a makes both these proposals to b2. Suppose b2 accepts
p1a but rejects p2a. Then a becomes 1-promoted since ra = {b1, b2} now and ra is reset
to ∅. Note that for a to become 2-promoted, we need ra to become {b1, b2} once again.
Similarly, a 2-promoted man a gives up only when his rejection history ra becomes
{b1, b2} after he becomes 2-promoted.

– For every a ∈ A, t1a := t2a := 1; ra := ∅.
{ra is the rejection history of man a; tia is the rank of the next woman targeted by the proposal
pia.}
while some a ∈ A has his proposal pia (i is 1 or 2) not accepted by any woman and he has not
given up do

– a makes his proposal pia to the tia-th woman b on his list.
if b has at most two proposals now (incl. pia) then

– b accepts pia
else

– b rejects any of her “least desirable” (see Definition 1) proposals pja′

if tja′ = number of women on the list of a′ then
tja′ := 1 {the round-robin nature of proposing}

else
tja′ := tja′ + 1

end if
– ra′ := ra′ ∪ {b}
if ra′ = the entire set of neighbors of a′ then

if a′ is basic then
a′ becomes 1-promoted and ra′ := ∅

else if a′ is 1-promoted then
a′ becomes 2-promoted and ra′ := ∅

else if a′ is 2-promoted then
a′ gives up

end if
end if

end if
end while

Fig. 1. A description of proposals/disposals in our algorithm with one-sided ties

Our algorithm terminates when each a ∈ A satisfies one of the following conditions:
(1) both his proposals p1a and p2a are accepted, (2) he gives up. Note that when (2)
happens, the man a must be 2-promoted.

How women decide: A woman can accept up to two proposals. The two proposals can
be from the same man. When she currently has less than two proposals, she uncondi-
tionally accepts the new proposal. If she has already accepted two proposals and is faced
with a third one, then she rejects one of her “least desirable” proposals (see Definition 1
below).
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Definition 1. For a woman b, proposal pia is superior to pi
′
a′ if on b’s list:

(1) a ranks better than a′.
(2) a and a′ are tied; a is currently 2-promoted while a′ is currently 1-promoted or

basic.
(3) a and a′ are tied; a is currently 1-promoted while a′ is currently basic.
(4) a and a′ are tied and both are currently basic; moreover, woman b has already

rejected one proposal of a while so far she has not rejected any of the proposals of
a′.

Let pia be among the three proposals that a woman has and suppose it is not superior
to either of the other two proposals. Then pia is a least desirable proposal.

The reasoning behind the rules of a woman’s decision can be summarized as follows.

– Proposals from higher-ranking men should be preferred, as in the Gale-Shapley
algorithm.

– When a woman receives proposals from men who are tied in her list, she prefers
the man who has been promoted: a 1-promoted (similarly, 2-promoted) man having
been rejected by the entire set of women on his list once (resp. twice) should be
preferred, since he is more desperate and deserves to be given a chance.

– When two basic men of the same rank propose to a woman, she prefers the one who
has been rejected by her before. The intuition again is that he is more desperate—
though he has not been rejected by all women on his list yet (otherwise he would
have been 1-promoted).

It is easy to see that the algorithm in Fig. 1 runs in linear time. When it terminates,
for each edge (a, b) ∈ E, we set xab = 1 or 0.5 or 0 if the number of proposals that
woman b accepts from man a is 2 or 1 or 0, respectively. Let G′ = (A ∪ B,E′) be the
subgraph where an edge e ∈ E′ if and only if xe > 0. It is easy to see that in G′, the
maximum degree of any vertex is 2.

There is a maximum cardinality matching in G′ where all degree 2 vertices are
matched; moreover, such a matching can be computed in linear time. Let M be such a
matching. We first show that M is stable and then prove it is a 22/15 approximation.
Propositions 1 and 2 follow easily from our algorithm and lead to the stability of M .

Proposition 1. Let woman b reject proposal pia from man a. Then from this point till
the end of the algorithm, b has two proposals pi

′
a′ and pi

′′
a′′ from men a′ and a′′ (it is

possible that a′ = a′′) who rank at least as high as man a on b’s list. In particular, if a′

(similarly, a′′) is tied with man a on the list of b, then at the time a proposed to b:

1. if a is �-promoted (� is either 1 or 2), then man a′ (resp. a′′) has to be ≥ �-promoted.
2. if a is basic and his other proposal is already rejected by b, then it has to be the case

that either a′ (resp. a′′) is not basic or b has already rejected his other proposal.

In the rest of the paper, unless we specifically state the time point, when we say a man
is basic/1-promoted/2-promoted, we mean his status when the algorithm terminates.
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Proposition 2. The following facts hold:

1. If a man (similarly, a woman) is unmatched in M , then he has at most one proposal
accepted by a woman (resp., she receives at most one proposal) during the entire
algorithm.

2. At the end of the algorithm, every man with less than two proposals accepted is
2-promoted. Furthermore, he must have been rejected by all women on his list as a
2-promoted man.

3. If woman b on the list of the man a is unmatched in M , then man a has to be basic
and he does not prefer b to the women who accepted his proposals.

3 Bounding the Size of M

Let OPT be an optimal stable matching. We now need to bound |OPT|/|M |. Whenever
we refer to an augmenting path in M ⊕ OPT, we mean the path is augmenting with
respect to M . Lemma 1 will be crucial in our analysis.

Lemma 1. Suppose (a, b) and (a′, b′) are in OPT where man a′ is not 2-promoted and
a′ prefers b to b′. If a is unmatched in M , then (a′, b) cannot be in G′.

Proof. We prove this lemma by contradiction. Suppose (a′, b) ∈ G′. If b prefers a′ to
a, then (a′, b) blocks OPT. On the other hand, if b prefers a to a′, then this contradicts
the fact that b rejected at least one proposal from a (by Proposition 2.1) while b has
a proposal from a′, who is ranked worse on b’s list, at the end of the algorithm since
(a′, b) ∈ G′.

So the only option possible is that a′ and a are tied on b’s list. Since a is unmatched
in M , it follows from (1)-(2) of Proposition 2 that a has been rejected by b as a 2-
promoted man. Since (a′, b) ∈ G′, Proposition 1 implies that a′ has to be 2-promoted.
This however contradicts the lemma statement that a′ is not 2-promoted. 	

Corollary 1. There is no length-3 augmenting path M ⊕ OPT.

Proof. If such a path a− b − a′ − b′ exists (see Fig. 2), then (a′, b) ∈ G′ since it is in
M . As b′ is unmatched in M , a′ is basic and prefers b to b′ (by Proposition 2.3). This
contradicts Lemma 1. 	
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Fig. 2. On the left we have a length-3 augmenting path and on the right we have the length-5
augmenting path ρi with respect to M in M ⊕ OPT
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Let R = {ρ1, . . . , ρt} denote the set of length-5 augmenting paths in M ⊕ OPT.
Lemma 2 lists properties of vertices in a length-5 augmenting path ρi (Fig. 2).

Lemma 2. If ρi = ai0 − bi0 − ai1 − bi1 − ai2 − bi2 is a length-5 augmenting path in
M ⊕ OPT, then

1. ai0 is 2-promoted and has been rejected by bi0 as a 2-promoted man.
2. ai1 is not 2-promoted and he prefers bi1 to bi0.
3. ai2 is basic and he prefers bi1 to bi2.
4. bi1 is indifferent between ai1 and ai2.
5. In G′, bi0 has degree 1 if and only if ai1 has degree 1.
6. In G′, bi1 has degree 1 if and only if ai2 has degree 1.

Recall that G′ is a subgraph of G and every vertex has degree at most 2 in G′. We
form a directed graph H from G′ as follows: first orient all edges in the graph G′

from A to B; then contract each edge of M ∩ ρi for i = 1, . . . , t. That is, if ρi =
ai0 − bi0 − ai1 − bi1 − ai2 − bi2, then in H , the edge (ai1, b

i
0) gets contracted into a single

node (call it xi) and similarly the edge (ai2, b
i
1) gets contracted into a single node (call

it yi) and this happens for all i = 1, . . . , t.
Note that (5)-(6) of Lemma 2 imply that degH(xi), degH(yi) ∈ {0, 2} for 1 ≤ i ≤ t,

where degH(v) = 2 means in H in-degree(v) = out-degree(v) = 1. The following
lemma rules out the possibility of certain arcs in H .

Lemma 3. For any 1 ≤ i, j ≤ t, there is no arc from yi to xj in H .

Proof. Suppose there is an arc in H from yi to xj for some 1 ≤ i, j,≤ t. That is, G′

contains the edge (ai2, b
j
0). Since the woman bi2 is unmatched, we use Proposition 2.3

to conclude that ai2 is basic and he prefers bj0 to bi2. This contradicts Lemma 1, by
substituting a = aj0, b = bj0, a′ = ai2, and b′ = bi2. 	

We now define a “good path” in H . In H , let us refer to the x-nodes and y-nodes as red
and let the other vertices be called blue.

Definition 2. A directed path in H is good if its end vertices are blue while all its
intermediate vertices are red. Also, we assume there is at least one intermediate vertex
in such a path.

Lemma 3 implies that every good path looks as follows: a blue man, followed by some
x-nodes (possibly none), followed by some y-nodes (possibly none), and a blue woman.

For any y-node yi, if degH(yi) �= 0, using Lemma 3 we can conclude that yi is either
in a cycle of y-nodes or in a good path. In other words, there are only 3 possibilities in
H for each yi: (1) yi is an isolated node, (2) yi is in a cycle of y-nodes, (3) yi is in a
good path.

We next define a critical arc in H . We will use critical arcs to show that H has
enough good paths. Since the endpoints of a good path are vertices outside R, this
bounds |OPT|/|M |.
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Definition 3. Call an arc (xi, z) in H critical if either ai1 prefers z to bi1 or z = bi1.

In case z is a red node, let w be the woman in z – in Definition 3, we mean either
w = bi1 or ai1 prefers w to bi1. We show (via Lemma 4 and Claim 1) that every critical
arc is in a distinct good path. It follows from Lemma 4 that every good path has at most
one critical arc. Lemma 5 is the main technical lemma here. It shows there are enough
critical arcs in H .

Lemma 4. For any i, if (xi, z) is critical, then z is not an x-node, i.e., z �= xj for any j.

Proof. For any 1 ≤ i, j ≤ t, if a proposal of ai1 is accepted by a woman w that ai1
prefers to bi1, then we need to show that w cannot be bj0. Suppose w = bj0 for some j. In
the first place, j �= i since we know ai1 prefers bi1 to bi0 (by Lemma 2.2). We know ai1 is
not 2-promoted by Lemma 2.2. We now contradict Lemma 1, by substituting a = aj0,
b = bj0, a′ = ai1, and b′ = bi1. 	

Claim 1. Every critical arc is in some good path and every pair of good paths is vertex-
disjoint.

Lemma 5. In the graph H , the following statements hold:

(1) If yi is an isolated node, then there exists a critical arc (xi, z) in H .
(2) If (yi, yj) is an arc, then there exists a critical arc (xi, z) or a critical arc (xj , z

′)
(or both).

Proof. We first show part (1) of this lemma. Suppose yi is an isolated node in H .
By parts (2) and (6) of Lemma 2, the woman bi1 accepts both proposals from ai2 and
she rejects ai1 at least once. Suppose bi1 rejects ai1 exactly once. This means that one
proposal of ai1 (other than the one accepted by bi0) has been accepted by a woman w
that ai1 prefers to bi1. That is, there is a critical arc (xi, z) in H .

So suppose bi1 rejects ai1 more than once. Then either ai1 has both of his proposals
rejected by bi1 while he was basic, or he was rejected by bi1 as a 1-promoted man. In both
cases we have a contradiction to Proposition 1 since bi1 has accepted both proposals
from ai2, who is basic and is tied with ai1.

We now show part (2) of this lemma. Suppose ai1 prefers bi1 to the women accepting
his proposals and aj1 prefers bj1 to the women accepting his proposals. Note that this
includes the possibility that both of ai1’s proposals are accepted by bi0 and the possibility
that both of aj1’s proposals are accepted by bj0. The first observation is that aj1 could not
have proposed to bj1 as a 1-promoted man, as it would contradict Proposition 1 otherwise
(recall aj2 is basic and aj1, a

j
2 are tied on the list of bj1). For the same reason, ai1 never

proposed to bi1 as a 1-promoted man.
Since we assumed that aj1 prefers bj1 to the women accepting his proposals and he

never proposed to bj1 as a 1-promoted man, it must be the case that both of his proposals
were rejected by bj1 when he was still basic. The edge (ai2, b

j
1) ∈ G′ since (yi, yj) is

in H . We now claim this implies ai2 is tied with aj1 on the list of bj1. If bj1 prefers ai2 to
aj1, then (ai2, b

j
1) blocks OPT, since Proposition 2.3 states that ai2 prefers bj1 to bi2. Now

suppose bj1 prefers aj1 to ai2. Since aj1 prefers bj1 to bj0 (by Lemma 2.2), he must have
been rejected by bj1 before he proposed to bj0, implying a contradiction to Proposition 1.
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We also know that aj1 is tied with aj2 on the list of bj1 (by Lemma 2.4) and that ai2
is basic. Since we know that both of aj1’s proposals were rejected by bj1, it has to be
the case that while bj1 accepted one proposal of ai2, she rejected his other proposal (by
Proposition 1.2). This other proposal of ai2 was at some point accepted by bi1. So it
follows that bj1 ranks higher than bi1 on the list of ai2, furthermore, bi1 never rejects a
proposal from ai2.

Since we assumed that ai1 prefers bi1 to the women accepting his proposals and he
never proposed to bi1 as a 1-promoted man, it follows that both of his proposals were
rejected by bi1 when he was basic. This, combined with the fact that bi1 never rejects a
proposal from ai2, contradicts Proposition 1.2. Thus either one proposal of ai1 has been
accepted by a woman w that is bi1 or better than bi1 in ai1’s list or one proposal of aj1 has
been accepted by a woman w′ that aj1 prefers to bj1. Hence there is a critical arc (xi, z)
or a critical arc (xj , z

′) in H . 	

We define a function f : [t] → P , where P is the set of all good paths in H and
[t] = {1, . . . , t}. For any i ∈ [t], f(i) is defined as follows:

(1) Suppose yi is isolated. Then let f(i) = p, where p ∈ P contains the critical arc
(xi, z). We know there is such an arc in H by Lemma 5.1.

(2) Suppose yi belongs to a cycle C of y-nodes, so there is an arc (yi, yj) in C. We
know H has a critical arc (xi, z) or (xj , z

′) (by Lemma 5.2). Then let f(i) = p,
where p ∈ P contains such a critical arc.

(3) Suppose yi belongs to a good path p′. If yi is the last y-node in p′, then let f(i) = p′.
Otherwise there is an arc (yi, yj) in p′ and we know H has a critical arc (xi, z) or
(xj , z

′) (by Lemma 5.2). Then let f(yi) = p, where p ∈ P contains such a critical
arc.

For any p ∈ P , let cost(p) = the number of pre-images of p under f . We now show
a charging scheme that distributes cost(p), for each p ∈ P , among the vertices in G so
that the following properties hold. Let Q = (M ⊕ OPT) \R.

(I) Each v ∈ A∪B is assigned a charge of at most 1.5 and the sum of all vertex charges
is t.

(II) Every vertex that is assigned a positive charge must be matched in M and is in
some q ∈ Q. Moreover, if q ∈ Q is an augmenting path on 2�q +3 ≥ 7 edges, then
at most 2�q vertices in q will be assigned a positive charge.

Note that a vertex not assigned a positive charge has charge 0 by default.
Suppose there is such a charging scheme, we now show why this implies |OPT|/|M |

is at most 22/15. Let q ∈ Q be an alternating cycle/path on 2�q edges or an alternating
path on 2�q − 1 edges (with �q edges from M ) or an augmenting path on 2�q + 3 ≥ 7
edges. It follows from (I) and (II) that the total charge assigned to vertices in q is at
most 1.5(2�q) = 3�q, i.e., if the vertices in q are being charged for cq augmenting paths
of length-5 in M ⊕ OPT, then cq ≤ 3�q.

Since
∑

q∈Q cq = t, all the paths in R are paid for in this manner. So we have:

|OPT| =
∑

q∈Q

(|OPT ∩ q|+ 3cq) and |M | =
∑

q∈Q

(|M ∩ q|+ 2cq),
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because there are 3cq edges of OPT in the cq augmenting paths of length-5 covered by
q and 2cq edges of M in the cq augmenting paths of length-5 covered by q. Thus we
have:

|OPT|
|M | ≤ max

q∈Q

|OPT ∩ q|+ 3cq
|M ∩ q|+ 2cq

≤ max
lq≥2

10�q + 2

7�q + 1
≤ 22

15
.

We use (
∑

i si)/(
∑

i ti) ≤ maxi si/ti in the first inequality. The above ratio gets
maximized for any q ∈ Q by setting cq to its largest value of 3�q and letting q be an
augmenting path so that |OPT ∩ q| > |M ∩ q|.

This yields (�q +2+ 3 · 3�q)/(�q +1+ 2 · 3�q), where |q| = 2�q +3 ≥ 7. Note that
since augmenting paths in Q have length ≥ 7, this forces �q ≥ 2 in this ratio. Setting
�q = 2 maximizes the ratio (10�q + 2)/(7�q + 1). Thus our upper bound is 22/15.

Ensuring properties (I) and (II). We now show a charging scheme that defines a func-
tion charge : A ∪ B → [0, 1.5] such that

∑
u charge(u) =

∑
p∈P cost(p) = t, where

the sum is over all u ∈ A ∪ B. We start with charge(u) = 0 for all u ∈ A ∪ B. Our
task now is to reset charge values for some vertices so that properties (I) and (II) are
satisfied.

Each p ∈ P is one of the following three types: (1) type-1 path: this has no x-nodes,
(2) type-2 path: this has no y-nodes, and (3) type-3 path: this has both x-nodes and
y-nodes. The following lemma will be useful later in our analysis.

Lemma 6. For any p ∈ P and k = 1, 2, 3, if p is a type-k path, then cost(p) ≤ k.

Consider any p ∈ P . Though p was defined as a good path in H , we now consider p
as a path in the graph G′. Since each intermediate node of p is an edge of M , p is an
alternating path in G′. Let ap (man) and bp (woman) be the endpoints of the path p.

If both ap and bp are unmatched in M , then the path p becomes an augmenting path in
G′. Since M is a maximum cardinality matching in G′, there cannot be an augmenting
path with respect to M in G′; hence at least one of ap, bp has to be matched in M .

Case 1. Suppose both ap and bp are matched. If p is a type-1 path, then reset charge(bp)
= cost(p), i.e., the entire cost associated with p is assigned to the woman who is an
endpoint of p. If p is a type-k path for k = 2 or 3, then reset charge(ap) = charge(bp) =
cost(p)/2.

Case 2. Suppose exactly one of ap, bp is matched: call the matched vertex sp and the
unmatched vertex up. Construct the alternating path with respect to M in G′ with up as
the starting vertex. The vertex up has degree 1 since it is unmatched, also the maximum
degree of any vertex in G′ is 2. So there is only one such alternating path in G′. This
path continues till it encounters a degree 1 vertex, call it rp.

Note that rp has to be matched, otherwise there is an augmenting path in G′ between
up and rp. Since rp is reached via a matched edge on this path, both up and rp are
either in A or in B. In other words, exactly one of rp, sp (recall sp = {ap, bp} \ {up})
is a woman. If p is a type-1 path, then we reset charge(w) = cost(p), where w is the
woman in {rp, sp}. If p is a type-k path, where k = 2 or 3, then we reset charge(sp) =
charge(rp) = cost(p)/2. This concludes the description of our charging scheme.
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